rtlwifi: rtl8192{c,u}: Remove CamelCase variables
[linux/fpc-iii.git] / mm / page-writeback.c
blob7d1010453fb95a26c13e9004999d028659815987
1 /*
2 * mm/page-writeback.c
4 * Copyright (C) 2002, Linus Torvalds.
5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
10 * 10Apr2002 Andrew Morton
11 * Initial version
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/smp.h>
31 #include <linux/sysctl.h>
32 #include <linux/cpu.h>
33 #include <linux/syscalls.h>
34 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
35 #include <linux/pagevec.h>
36 #include <linux/timer.h>
37 #include <linux/sched/rt.h>
38 #include <linux/sched/signal.h>
39 #include <linux/mm_inline.h>
40 #include <trace/events/writeback.h>
42 #include "internal.h"
45 * Sleep at most 200ms at a time in balance_dirty_pages().
47 #define MAX_PAUSE max(HZ/5, 1)
50 * Try to keep balance_dirty_pages() call intervals higher than this many pages
51 * by raising pause time to max_pause when falls below it.
53 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
56 * Estimate write bandwidth at 200ms intervals.
58 #define BANDWIDTH_INTERVAL max(HZ/5, 1)
60 #define RATELIMIT_CALC_SHIFT 10
63 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
64 * will look to see if it needs to force writeback or throttling.
66 static long ratelimit_pages = 32;
68 /* The following parameters are exported via /proc/sys/vm */
71 * Start background writeback (via writeback threads) at this percentage
73 int dirty_background_ratio = 10;
76 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
77 * dirty_background_ratio * the amount of dirtyable memory
79 unsigned long dirty_background_bytes;
82 * free highmem will not be subtracted from the total free memory
83 * for calculating free ratios if vm_highmem_is_dirtyable is true
85 int vm_highmem_is_dirtyable;
88 * The generator of dirty data starts writeback at this percentage
90 int vm_dirty_ratio = 20;
93 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
94 * vm_dirty_ratio * the amount of dirtyable memory
96 unsigned long vm_dirty_bytes;
99 * The interval between `kupdate'-style writebacks
101 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
103 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
106 * The longest time for which data is allowed to remain dirty
108 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
111 * Flag that makes the machine dump writes/reads and block dirtyings.
113 int block_dump;
116 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
117 * a full sync is triggered after this time elapses without any disk activity.
119 int laptop_mode;
121 EXPORT_SYMBOL(laptop_mode);
123 /* End of sysctl-exported parameters */
125 struct wb_domain global_wb_domain;
127 /* consolidated parameters for balance_dirty_pages() and its subroutines */
128 struct dirty_throttle_control {
129 #ifdef CONFIG_CGROUP_WRITEBACK
130 struct wb_domain *dom;
131 struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */
132 #endif
133 struct bdi_writeback *wb;
134 struct fprop_local_percpu *wb_completions;
136 unsigned long avail; /* dirtyable */
137 unsigned long dirty; /* file_dirty + write + nfs */
138 unsigned long thresh; /* dirty threshold */
139 unsigned long bg_thresh; /* dirty background threshold */
141 unsigned long wb_dirty; /* per-wb counterparts */
142 unsigned long wb_thresh;
143 unsigned long wb_bg_thresh;
145 unsigned long pos_ratio;
149 * Length of period for aging writeout fractions of bdis. This is an
150 * arbitrarily chosen number. The longer the period, the slower fractions will
151 * reflect changes in current writeout rate.
153 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
155 #ifdef CONFIG_CGROUP_WRITEBACK
157 #define GDTC_INIT(__wb) .wb = (__wb), \
158 .dom = &global_wb_domain, \
159 .wb_completions = &(__wb)->completions
161 #define GDTC_INIT_NO_WB .dom = &global_wb_domain
163 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \
164 .dom = mem_cgroup_wb_domain(__wb), \
165 .wb_completions = &(__wb)->memcg_completions, \
166 .gdtc = __gdtc
168 static bool mdtc_valid(struct dirty_throttle_control *dtc)
170 return dtc->dom;
173 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
175 return dtc->dom;
178 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
180 return mdtc->gdtc;
183 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
185 return &wb->memcg_completions;
188 static void wb_min_max_ratio(struct bdi_writeback *wb,
189 unsigned long *minp, unsigned long *maxp)
191 unsigned long this_bw = wb->avg_write_bandwidth;
192 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
193 unsigned long long min = wb->bdi->min_ratio;
194 unsigned long long max = wb->bdi->max_ratio;
197 * @wb may already be clean by the time control reaches here and
198 * the total may not include its bw.
200 if (this_bw < tot_bw) {
201 if (min) {
202 min *= this_bw;
203 do_div(min, tot_bw);
205 if (max < 100) {
206 max *= this_bw;
207 do_div(max, tot_bw);
211 *minp = min;
212 *maxp = max;
215 #else /* CONFIG_CGROUP_WRITEBACK */
217 #define GDTC_INIT(__wb) .wb = (__wb), \
218 .wb_completions = &(__wb)->completions
219 #define GDTC_INIT_NO_WB
220 #define MDTC_INIT(__wb, __gdtc)
222 static bool mdtc_valid(struct dirty_throttle_control *dtc)
224 return false;
227 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
229 return &global_wb_domain;
232 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
234 return NULL;
237 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
239 return NULL;
242 static void wb_min_max_ratio(struct bdi_writeback *wb,
243 unsigned long *minp, unsigned long *maxp)
245 *minp = wb->bdi->min_ratio;
246 *maxp = wb->bdi->max_ratio;
249 #endif /* CONFIG_CGROUP_WRITEBACK */
252 * In a memory zone, there is a certain amount of pages we consider
253 * available for the page cache, which is essentially the number of
254 * free and reclaimable pages, minus some zone reserves to protect
255 * lowmem and the ability to uphold the zone's watermarks without
256 * requiring writeback.
258 * This number of dirtyable pages is the base value of which the
259 * user-configurable dirty ratio is the effictive number of pages that
260 * are allowed to be actually dirtied. Per individual zone, or
261 * globally by using the sum of dirtyable pages over all zones.
263 * Because the user is allowed to specify the dirty limit globally as
264 * absolute number of bytes, calculating the per-zone dirty limit can
265 * require translating the configured limit into a percentage of
266 * global dirtyable memory first.
270 * node_dirtyable_memory - number of dirtyable pages in a node
271 * @pgdat: the node
273 * Returns the node's number of pages potentially available for dirty
274 * page cache. This is the base value for the per-node dirty limits.
276 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
278 unsigned long nr_pages = 0;
279 int z;
281 for (z = 0; z < MAX_NR_ZONES; z++) {
282 struct zone *zone = pgdat->node_zones + z;
284 if (!populated_zone(zone))
285 continue;
287 nr_pages += zone_page_state(zone, NR_FREE_PAGES);
291 * Pages reserved for the kernel should not be considered
292 * dirtyable, to prevent a situation where reclaim has to
293 * clean pages in order to balance the zones.
295 nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
297 nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
298 nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
300 return nr_pages;
303 static unsigned long highmem_dirtyable_memory(unsigned long total)
305 #ifdef CONFIG_HIGHMEM
306 int node;
307 unsigned long x = 0;
308 int i;
310 for_each_node_state(node, N_HIGH_MEMORY) {
311 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
312 struct zone *z;
313 unsigned long nr_pages;
315 if (!is_highmem_idx(i))
316 continue;
318 z = &NODE_DATA(node)->node_zones[i];
319 if (!populated_zone(z))
320 continue;
322 nr_pages = zone_page_state(z, NR_FREE_PAGES);
323 /* watch for underflows */
324 nr_pages -= min(nr_pages, high_wmark_pages(z));
325 nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
326 nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
327 x += nr_pages;
332 * Unreclaimable memory (kernel memory or anonymous memory
333 * without swap) can bring down the dirtyable pages below
334 * the zone's dirty balance reserve and the above calculation
335 * will underflow. However we still want to add in nodes
336 * which are below threshold (negative values) to get a more
337 * accurate calculation but make sure that the total never
338 * underflows.
340 if ((long)x < 0)
341 x = 0;
344 * Make sure that the number of highmem pages is never larger
345 * than the number of the total dirtyable memory. This can only
346 * occur in very strange VM situations but we want to make sure
347 * that this does not occur.
349 return min(x, total);
350 #else
351 return 0;
352 #endif
356 * global_dirtyable_memory - number of globally dirtyable pages
358 * Returns the global number of pages potentially available for dirty
359 * page cache. This is the base value for the global dirty limits.
361 static unsigned long global_dirtyable_memory(void)
363 unsigned long x;
365 x = global_zone_page_state(NR_FREE_PAGES);
367 * Pages reserved for the kernel should not be considered
368 * dirtyable, to prevent a situation where reclaim has to
369 * clean pages in order to balance the zones.
371 x -= min(x, totalreserve_pages);
373 x += global_node_page_state(NR_INACTIVE_FILE);
374 x += global_node_page_state(NR_ACTIVE_FILE);
376 if (!vm_highmem_is_dirtyable)
377 x -= highmem_dirtyable_memory(x);
379 return x + 1; /* Ensure that we never return 0 */
383 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
384 * @dtc: dirty_throttle_control of interest
386 * Calculate @dtc->thresh and ->bg_thresh considering
387 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller
388 * must ensure that @dtc->avail is set before calling this function. The
389 * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
390 * real-time tasks.
392 static void domain_dirty_limits(struct dirty_throttle_control *dtc)
394 const unsigned long available_memory = dtc->avail;
395 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
396 unsigned long bytes = vm_dirty_bytes;
397 unsigned long bg_bytes = dirty_background_bytes;
398 /* convert ratios to per-PAGE_SIZE for higher precision */
399 unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
400 unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
401 unsigned long thresh;
402 unsigned long bg_thresh;
403 struct task_struct *tsk;
405 /* gdtc is !NULL iff @dtc is for memcg domain */
406 if (gdtc) {
407 unsigned long global_avail = gdtc->avail;
410 * The byte settings can't be applied directly to memcg
411 * domains. Convert them to ratios by scaling against
412 * globally available memory. As the ratios are in
413 * per-PAGE_SIZE, they can be obtained by dividing bytes by
414 * number of pages.
416 if (bytes)
417 ratio = min(DIV_ROUND_UP(bytes, global_avail),
418 PAGE_SIZE);
419 if (bg_bytes)
420 bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
421 PAGE_SIZE);
422 bytes = bg_bytes = 0;
425 if (bytes)
426 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
427 else
428 thresh = (ratio * available_memory) / PAGE_SIZE;
430 if (bg_bytes)
431 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
432 else
433 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
435 if (bg_thresh >= thresh)
436 bg_thresh = thresh / 2;
437 tsk = current;
438 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
439 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
440 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
442 dtc->thresh = thresh;
443 dtc->bg_thresh = bg_thresh;
445 /* we should eventually report the domain in the TP */
446 if (!gdtc)
447 trace_global_dirty_state(bg_thresh, thresh);
451 * global_dirty_limits - background-writeback and dirty-throttling thresholds
452 * @pbackground: out parameter for bg_thresh
453 * @pdirty: out parameter for thresh
455 * Calculate bg_thresh and thresh for global_wb_domain. See
456 * domain_dirty_limits() for details.
458 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
460 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
462 gdtc.avail = global_dirtyable_memory();
463 domain_dirty_limits(&gdtc);
465 *pbackground = gdtc.bg_thresh;
466 *pdirty = gdtc.thresh;
470 * node_dirty_limit - maximum number of dirty pages allowed in a node
471 * @pgdat: the node
473 * Returns the maximum number of dirty pages allowed in a node, based
474 * on the node's dirtyable memory.
476 static unsigned long node_dirty_limit(struct pglist_data *pgdat)
478 unsigned long node_memory = node_dirtyable_memory(pgdat);
479 struct task_struct *tsk = current;
480 unsigned long dirty;
482 if (vm_dirty_bytes)
483 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
484 node_memory / global_dirtyable_memory();
485 else
486 dirty = vm_dirty_ratio * node_memory / 100;
488 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
489 dirty += dirty / 4;
491 return dirty;
495 * node_dirty_ok - tells whether a node is within its dirty limits
496 * @pgdat: the node to check
498 * Returns %true when the dirty pages in @pgdat are within the node's
499 * dirty limit, %false if the limit is exceeded.
501 bool node_dirty_ok(struct pglist_data *pgdat)
503 unsigned long limit = node_dirty_limit(pgdat);
504 unsigned long nr_pages = 0;
506 nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
507 nr_pages += node_page_state(pgdat, NR_UNSTABLE_NFS);
508 nr_pages += node_page_state(pgdat, NR_WRITEBACK);
510 return nr_pages <= limit;
513 int dirty_background_ratio_handler(struct ctl_table *table, int write,
514 void __user *buffer, size_t *lenp,
515 loff_t *ppos)
517 int ret;
519 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
520 if (ret == 0 && write)
521 dirty_background_bytes = 0;
522 return ret;
525 int dirty_background_bytes_handler(struct ctl_table *table, int write,
526 void __user *buffer, size_t *lenp,
527 loff_t *ppos)
529 int ret;
531 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
532 if (ret == 0 && write)
533 dirty_background_ratio = 0;
534 return ret;
537 int dirty_ratio_handler(struct ctl_table *table, int write,
538 void __user *buffer, size_t *lenp,
539 loff_t *ppos)
541 int old_ratio = vm_dirty_ratio;
542 int ret;
544 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
545 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
546 writeback_set_ratelimit();
547 vm_dirty_bytes = 0;
549 return ret;
552 int dirty_bytes_handler(struct ctl_table *table, int write,
553 void __user *buffer, size_t *lenp,
554 loff_t *ppos)
556 unsigned long old_bytes = vm_dirty_bytes;
557 int ret;
559 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
560 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
561 writeback_set_ratelimit();
562 vm_dirty_ratio = 0;
564 return ret;
567 static unsigned long wp_next_time(unsigned long cur_time)
569 cur_time += VM_COMPLETIONS_PERIOD_LEN;
570 /* 0 has a special meaning... */
571 if (!cur_time)
572 return 1;
573 return cur_time;
576 static void wb_domain_writeout_inc(struct wb_domain *dom,
577 struct fprop_local_percpu *completions,
578 unsigned int max_prop_frac)
580 __fprop_inc_percpu_max(&dom->completions, completions,
581 max_prop_frac);
582 /* First event after period switching was turned off? */
583 if (unlikely(!dom->period_time)) {
585 * We can race with other __bdi_writeout_inc calls here but
586 * it does not cause any harm since the resulting time when
587 * timer will fire and what is in writeout_period_time will be
588 * roughly the same.
590 dom->period_time = wp_next_time(jiffies);
591 mod_timer(&dom->period_timer, dom->period_time);
596 * Increment @wb's writeout completion count and the global writeout
597 * completion count. Called from test_clear_page_writeback().
599 static inline void __wb_writeout_inc(struct bdi_writeback *wb)
601 struct wb_domain *cgdom;
603 inc_wb_stat(wb, WB_WRITTEN);
604 wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
605 wb->bdi->max_prop_frac);
607 cgdom = mem_cgroup_wb_domain(wb);
608 if (cgdom)
609 wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
610 wb->bdi->max_prop_frac);
613 void wb_writeout_inc(struct bdi_writeback *wb)
615 unsigned long flags;
617 local_irq_save(flags);
618 __wb_writeout_inc(wb);
619 local_irq_restore(flags);
621 EXPORT_SYMBOL_GPL(wb_writeout_inc);
624 * On idle system, we can be called long after we scheduled because we use
625 * deferred timers so count with missed periods.
627 static void writeout_period(struct timer_list *t)
629 struct wb_domain *dom = from_timer(dom, t, period_timer);
630 int miss_periods = (jiffies - dom->period_time) /
631 VM_COMPLETIONS_PERIOD_LEN;
633 if (fprop_new_period(&dom->completions, miss_periods + 1)) {
634 dom->period_time = wp_next_time(dom->period_time +
635 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
636 mod_timer(&dom->period_timer, dom->period_time);
637 } else {
639 * Aging has zeroed all fractions. Stop wasting CPU on period
640 * updates.
642 dom->period_time = 0;
646 int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
648 memset(dom, 0, sizeof(*dom));
650 spin_lock_init(&dom->lock);
652 timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
654 dom->dirty_limit_tstamp = jiffies;
656 return fprop_global_init(&dom->completions, gfp);
659 #ifdef CONFIG_CGROUP_WRITEBACK
660 void wb_domain_exit(struct wb_domain *dom)
662 del_timer_sync(&dom->period_timer);
663 fprop_global_destroy(&dom->completions);
665 #endif
668 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
669 * registered backing devices, which, for obvious reasons, can not
670 * exceed 100%.
672 static unsigned int bdi_min_ratio;
674 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
676 int ret = 0;
678 spin_lock_bh(&bdi_lock);
679 if (min_ratio > bdi->max_ratio) {
680 ret = -EINVAL;
681 } else {
682 min_ratio -= bdi->min_ratio;
683 if (bdi_min_ratio + min_ratio < 100) {
684 bdi_min_ratio += min_ratio;
685 bdi->min_ratio += min_ratio;
686 } else {
687 ret = -EINVAL;
690 spin_unlock_bh(&bdi_lock);
692 return ret;
695 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
697 int ret = 0;
699 if (max_ratio > 100)
700 return -EINVAL;
702 spin_lock_bh(&bdi_lock);
703 if (bdi->min_ratio > max_ratio) {
704 ret = -EINVAL;
705 } else {
706 bdi->max_ratio = max_ratio;
707 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
709 spin_unlock_bh(&bdi_lock);
711 return ret;
713 EXPORT_SYMBOL(bdi_set_max_ratio);
715 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
716 unsigned long bg_thresh)
718 return (thresh + bg_thresh) / 2;
721 static unsigned long hard_dirty_limit(struct wb_domain *dom,
722 unsigned long thresh)
724 return max(thresh, dom->dirty_limit);
728 * Memory which can be further allocated to a memcg domain is capped by
729 * system-wide clean memory excluding the amount being used in the domain.
731 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
732 unsigned long filepages, unsigned long headroom)
734 struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
735 unsigned long clean = filepages - min(filepages, mdtc->dirty);
736 unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
737 unsigned long other_clean = global_clean - min(global_clean, clean);
739 mdtc->avail = filepages + min(headroom, other_clean);
743 * __wb_calc_thresh - @wb's share of dirty throttling threshold
744 * @dtc: dirty_throttle_context of interest
746 * Returns @wb's dirty limit in pages. The term "dirty" in the context of
747 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
749 * Note that balance_dirty_pages() will only seriously take it as a hard limit
750 * when sleeping max_pause per page is not enough to keep the dirty pages under
751 * control. For example, when the device is completely stalled due to some error
752 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
753 * In the other normal situations, it acts more gently by throttling the tasks
754 * more (rather than completely block them) when the wb dirty pages go high.
756 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
757 * - starving fast devices
758 * - piling up dirty pages (that will take long time to sync) on slow devices
760 * The wb's share of dirty limit will be adapting to its throughput and
761 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
763 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
765 struct wb_domain *dom = dtc_dom(dtc);
766 unsigned long thresh = dtc->thresh;
767 u64 wb_thresh;
768 long numerator, denominator;
769 unsigned long wb_min_ratio, wb_max_ratio;
772 * Calculate this BDI's share of the thresh ratio.
774 fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
775 &numerator, &denominator);
777 wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
778 wb_thresh *= numerator;
779 do_div(wb_thresh, denominator);
781 wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
783 wb_thresh += (thresh * wb_min_ratio) / 100;
784 if (wb_thresh > (thresh * wb_max_ratio) / 100)
785 wb_thresh = thresh * wb_max_ratio / 100;
787 return wb_thresh;
790 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
792 struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
793 .thresh = thresh };
794 return __wb_calc_thresh(&gdtc);
798 * setpoint - dirty 3
799 * f(dirty) := 1.0 + (----------------)
800 * limit - setpoint
802 * it's a 3rd order polynomial that subjects to
804 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
805 * (2) f(setpoint) = 1.0 => the balance point
806 * (3) f(limit) = 0 => the hard limit
807 * (4) df/dx <= 0 => negative feedback control
808 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
809 * => fast response on large errors; small oscillation near setpoint
811 static long long pos_ratio_polynom(unsigned long setpoint,
812 unsigned long dirty,
813 unsigned long limit)
815 long long pos_ratio;
816 long x;
818 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
819 (limit - setpoint) | 1);
820 pos_ratio = x;
821 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
822 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
823 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
825 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
829 * Dirty position control.
831 * (o) global/bdi setpoints
833 * We want the dirty pages be balanced around the global/wb setpoints.
834 * When the number of dirty pages is higher/lower than the setpoint, the
835 * dirty position control ratio (and hence task dirty ratelimit) will be
836 * decreased/increased to bring the dirty pages back to the setpoint.
838 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
840 * if (dirty < setpoint) scale up pos_ratio
841 * if (dirty > setpoint) scale down pos_ratio
843 * if (wb_dirty < wb_setpoint) scale up pos_ratio
844 * if (wb_dirty > wb_setpoint) scale down pos_ratio
846 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
848 * (o) global control line
850 * ^ pos_ratio
852 * | |<===== global dirty control scope ======>|
853 * 2.0 .............*
854 * | .*
855 * | . *
856 * | . *
857 * | . *
858 * | . *
859 * | . *
860 * 1.0 ................................*
861 * | . . *
862 * | . . *
863 * | . . *
864 * | . . *
865 * | . . *
866 * 0 +------------.------------------.----------------------*------------->
867 * freerun^ setpoint^ limit^ dirty pages
869 * (o) wb control line
871 * ^ pos_ratio
873 * | *
874 * | *
875 * | *
876 * | *
877 * | * |<=========== span ============>|
878 * 1.0 .......................*
879 * | . *
880 * | . *
881 * | . *
882 * | . *
883 * | . *
884 * | . *
885 * | . *
886 * | . *
887 * | . *
888 * | . *
889 * | . *
890 * 1/4 ...............................................* * * * * * * * * * * *
891 * | . .
892 * | . .
893 * | . .
894 * 0 +----------------------.-------------------------------.------------->
895 * wb_setpoint^ x_intercept^
897 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
898 * be smoothly throttled down to normal if it starts high in situations like
899 * - start writing to a slow SD card and a fast disk at the same time. The SD
900 * card's wb_dirty may rush to many times higher than wb_setpoint.
901 * - the wb dirty thresh drops quickly due to change of JBOD workload
903 static void wb_position_ratio(struct dirty_throttle_control *dtc)
905 struct bdi_writeback *wb = dtc->wb;
906 unsigned long write_bw = wb->avg_write_bandwidth;
907 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
908 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
909 unsigned long wb_thresh = dtc->wb_thresh;
910 unsigned long x_intercept;
911 unsigned long setpoint; /* dirty pages' target balance point */
912 unsigned long wb_setpoint;
913 unsigned long span;
914 long long pos_ratio; /* for scaling up/down the rate limit */
915 long x;
917 dtc->pos_ratio = 0;
919 if (unlikely(dtc->dirty >= limit))
920 return;
923 * global setpoint
925 * See comment for pos_ratio_polynom().
927 setpoint = (freerun + limit) / 2;
928 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
931 * The strictlimit feature is a tool preventing mistrusted filesystems
932 * from growing a large number of dirty pages before throttling. For
933 * such filesystems balance_dirty_pages always checks wb counters
934 * against wb limits. Even if global "nr_dirty" is under "freerun".
935 * This is especially important for fuse which sets bdi->max_ratio to
936 * 1% by default. Without strictlimit feature, fuse writeback may
937 * consume arbitrary amount of RAM because it is accounted in
938 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
940 * Here, in wb_position_ratio(), we calculate pos_ratio based on
941 * two values: wb_dirty and wb_thresh. Let's consider an example:
942 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
943 * limits are set by default to 10% and 20% (background and throttle).
944 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
945 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
946 * about ~6K pages (as the average of background and throttle wb
947 * limits). The 3rd order polynomial will provide positive feedback if
948 * wb_dirty is under wb_setpoint and vice versa.
950 * Note, that we cannot use global counters in these calculations
951 * because we want to throttle process writing to a strictlimit wb
952 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
953 * in the example above).
955 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
956 long long wb_pos_ratio;
958 if (dtc->wb_dirty < 8) {
959 dtc->pos_ratio = min_t(long long, pos_ratio * 2,
960 2 << RATELIMIT_CALC_SHIFT);
961 return;
964 if (dtc->wb_dirty >= wb_thresh)
965 return;
967 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
968 dtc->wb_bg_thresh);
970 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
971 return;
973 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
974 wb_thresh);
977 * Typically, for strictlimit case, wb_setpoint << setpoint
978 * and pos_ratio >> wb_pos_ratio. In the other words global
979 * state ("dirty") is not limiting factor and we have to
980 * make decision based on wb counters. But there is an
981 * important case when global pos_ratio should get precedence:
982 * global limits are exceeded (e.g. due to activities on other
983 * wb's) while given strictlimit wb is below limit.
985 * "pos_ratio * wb_pos_ratio" would work for the case above,
986 * but it would look too non-natural for the case of all
987 * activity in the system coming from a single strictlimit wb
988 * with bdi->max_ratio == 100%.
990 * Note that min() below somewhat changes the dynamics of the
991 * control system. Normally, pos_ratio value can be well over 3
992 * (when globally we are at freerun and wb is well below wb
993 * setpoint). Now the maximum pos_ratio in the same situation
994 * is 2. We might want to tweak this if we observe the control
995 * system is too slow to adapt.
997 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
998 return;
1002 * We have computed basic pos_ratio above based on global situation. If
1003 * the wb is over/under its share of dirty pages, we want to scale
1004 * pos_ratio further down/up. That is done by the following mechanism.
1008 * wb setpoint
1010 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
1012 * x_intercept - wb_dirty
1013 * := --------------------------
1014 * x_intercept - wb_setpoint
1016 * The main wb control line is a linear function that subjects to
1018 * (1) f(wb_setpoint) = 1.0
1019 * (2) k = - 1 / (8 * write_bw) (in single wb case)
1020 * or equally: x_intercept = wb_setpoint + 8 * write_bw
1022 * For single wb case, the dirty pages are observed to fluctuate
1023 * regularly within range
1024 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1025 * for various filesystems, where (2) can yield in a reasonable 12.5%
1026 * fluctuation range for pos_ratio.
1028 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1029 * own size, so move the slope over accordingly and choose a slope that
1030 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1032 if (unlikely(wb_thresh > dtc->thresh))
1033 wb_thresh = dtc->thresh;
1035 * It's very possible that wb_thresh is close to 0 not because the
1036 * device is slow, but that it has remained inactive for long time.
1037 * Honour such devices a reasonable good (hopefully IO efficient)
1038 * threshold, so that the occasional writes won't be blocked and active
1039 * writes can rampup the threshold quickly.
1041 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1043 * scale global setpoint to wb's:
1044 * wb_setpoint = setpoint * wb_thresh / thresh
1046 x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1047 wb_setpoint = setpoint * (u64)x >> 16;
1049 * Use span=(8*write_bw) in single wb case as indicated by
1050 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1052 * wb_thresh thresh - wb_thresh
1053 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1054 * thresh thresh
1056 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1057 x_intercept = wb_setpoint + span;
1059 if (dtc->wb_dirty < x_intercept - span / 4) {
1060 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1061 (x_intercept - wb_setpoint) | 1);
1062 } else
1063 pos_ratio /= 4;
1066 * wb reserve area, safeguard against dirty pool underrun and disk idle
1067 * It may push the desired control point of global dirty pages higher
1068 * than setpoint.
1070 x_intercept = wb_thresh / 2;
1071 if (dtc->wb_dirty < x_intercept) {
1072 if (dtc->wb_dirty > x_intercept / 8)
1073 pos_ratio = div_u64(pos_ratio * x_intercept,
1074 dtc->wb_dirty);
1075 else
1076 pos_ratio *= 8;
1079 dtc->pos_ratio = pos_ratio;
1082 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1083 unsigned long elapsed,
1084 unsigned long written)
1086 const unsigned long period = roundup_pow_of_two(3 * HZ);
1087 unsigned long avg = wb->avg_write_bandwidth;
1088 unsigned long old = wb->write_bandwidth;
1089 u64 bw;
1092 * bw = written * HZ / elapsed
1094 * bw * elapsed + write_bandwidth * (period - elapsed)
1095 * write_bandwidth = ---------------------------------------------------
1096 * period
1098 * @written may have decreased due to account_page_redirty().
1099 * Avoid underflowing @bw calculation.
1101 bw = written - min(written, wb->written_stamp);
1102 bw *= HZ;
1103 if (unlikely(elapsed > period)) {
1104 do_div(bw, elapsed);
1105 avg = bw;
1106 goto out;
1108 bw += (u64)wb->write_bandwidth * (period - elapsed);
1109 bw >>= ilog2(period);
1112 * one more level of smoothing, for filtering out sudden spikes
1114 if (avg > old && old >= (unsigned long)bw)
1115 avg -= (avg - old) >> 3;
1117 if (avg < old && old <= (unsigned long)bw)
1118 avg += (old - avg) >> 3;
1120 out:
1121 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1122 avg = max(avg, 1LU);
1123 if (wb_has_dirty_io(wb)) {
1124 long delta = avg - wb->avg_write_bandwidth;
1125 WARN_ON_ONCE(atomic_long_add_return(delta,
1126 &wb->bdi->tot_write_bandwidth) <= 0);
1128 wb->write_bandwidth = bw;
1129 wb->avg_write_bandwidth = avg;
1132 static void update_dirty_limit(struct dirty_throttle_control *dtc)
1134 struct wb_domain *dom = dtc_dom(dtc);
1135 unsigned long thresh = dtc->thresh;
1136 unsigned long limit = dom->dirty_limit;
1139 * Follow up in one step.
1141 if (limit < thresh) {
1142 limit = thresh;
1143 goto update;
1147 * Follow down slowly. Use the higher one as the target, because thresh
1148 * may drop below dirty. This is exactly the reason to introduce
1149 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1151 thresh = max(thresh, dtc->dirty);
1152 if (limit > thresh) {
1153 limit -= (limit - thresh) >> 5;
1154 goto update;
1156 return;
1157 update:
1158 dom->dirty_limit = limit;
1161 static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
1162 unsigned long now)
1164 struct wb_domain *dom = dtc_dom(dtc);
1167 * check locklessly first to optimize away locking for the most time
1169 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1170 return;
1172 spin_lock(&dom->lock);
1173 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1174 update_dirty_limit(dtc);
1175 dom->dirty_limit_tstamp = now;
1177 spin_unlock(&dom->lock);
1181 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1183 * Normal wb tasks will be curbed at or below it in long term.
1184 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1186 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1187 unsigned long dirtied,
1188 unsigned long elapsed)
1190 struct bdi_writeback *wb = dtc->wb;
1191 unsigned long dirty = dtc->dirty;
1192 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1193 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1194 unsigned long setpoint = (freerun + limit) / 2;
1195 unsigned long write_bw = wb->avg_write_bandwidth;
1196 unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1197 unsigned long dirty_rate;
1198 unsigned long task_ratelimit;
1199 unsigned long balanced_dirty_ratelimit;
1200 unsigned long step;
1201 unsigned long x;
1202 unsigned long shift;
1205 * The dirty rate will match the writeout rate in long term, except
1206 * when dirty pages are truncated by userspace or re-dirtied by FS.
1208 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1211 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1213 task_ratelimit = (u64)dirty_ratelimit *
1214 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1215 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1218 * A linear estimation of the "balanced" throttle rate. The theory is,
1219 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1220 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1221 * formula will yield the balanced rate limit (write_bw / N).
1223 * Note that the expanded form is not a pure rate feedback:
1224 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
1225 * but also takes pos_ratio into account:
1226 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
1228 * (1) is not realistic because pos_ratio also takes part in balancing
1229 * the dirty rate. Consider the state
1230 * pos_ratio = 0.5 (3)
1231 * rate = 2 * (write_bw / N) (4)
1232 * If (1) is used, it will stuck in that state! Because each dd will
1233 * be throttled at
1234 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
1235 * yielding
1236 * dirty_rate = N * task_ratelimit = write_bw (6)
1237 * put (6) into (1) we get
1238 * rate_(i+1) = rate_(i) (7)
1240 * So we end up using (2) to always keep
1241 * rate_(i+1) ~= (write_bw / N) (8)
1242 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1243 * pos_ratio is able to drive itself to 1.0, which is not only where
1244 * the dirty count meet the setpoint, but also where the slope of
1245 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1247 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1248 dirty_rate | 1);
1250 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1252 if (unlikely(balanced_dirty_ratelimit > write_bw))
1253 balanced_dirty_ratelimit = write_bw;
1256 * We could safely do this and return immediately:
1258 * wb->dirty_ratelimit = balanced_dirty_ratelimit;
1260 * However to get a more stable dirty_ratelimit, the below elaborated
1261 * code makes use of task_ratelimit to filter out singular points and
1262 * limit the step size.
1264 * The below code essentially only uses the relative value of
1266 * task_ratelimit - dirty_ratelimit
1267 * = (pos_ratio - 1) * dirty_ratelimit
1269 * which reflects the direction and size of dirty position error.
1273 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1274 * task_ratelimit is on the same side of dirty_ratelimit, too.
1275 * For example, when
1276 * - dirty_ratelimit > balanced_dirty_ratelimit
1277 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1278 * lowering dirty_ratelimit will help meet both the position and rate
1279 * control targets. Otherwise, don't update dirty_ratelimit if it will
1280 * only help meet the rate target. After all, what the users ultimately
1281 * feel and care are stable dirty rate and small position error.
1283 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1284 * and filter out the singular points of balanced_dirty_ratelimit. Which
1285 * keeps jumping around randomly and can even leap far away at times
1286 * due to the small 200ms estimation period of dirty_rate (we want to
1287 * keep that period small to reduce time lags).
1289 step = 0;
1292 * For strictlimit case, calculations above were based on wb counters
1293 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1294 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1295 * Hence, to calculate "step" properly, we have to use wb_dirty as
1296 * "dirty" and wb_setpoint as "setpoint".
1298 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1299 * it's possible that wb_thresh is close to zero due to inactivity
1300 * of backing device.
1302 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1303 dirty = dtc->wb_dirty;
1304 if (dtc->wb_dirty < 8)
1305 setpoint = dtc->wb_dirty + 1;
1306 else
1307 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1310 if (dirty < setpoint) {
1311 x = min3(wb->balanced_dirty_ratelimit,
1312 balanced_dirty_ratelimit, task_ratelimit);
1313 if (dirty_ratelimit < x)
1314 step = x - dirty_ratelimit;
1315 } else {
1316 x = max3(wb->balanced_dirty_ratelimit,
1317 balanced_dirty_ratelimit, task_ratelimit);
1318 if (dirty_ratelimit > x)
1319 step = dirty_ratelimit - x;
1323 * Don't pursue 100% rate matching. It's impossible since the balanced
1324 * rate itself is constantly fluctuating. So decrease the track speed
1325 * when it gets close to the target. Helps eliminate pointless tremors.
1327 shift = dirty_ratelimit / (2 * step + 1);
1328 if (shift < BITS_PER_LONG)
1329 step = DIV_ROUND_UP(step >> shift, 8);
1330 else
1331 step = 0;
1333 if (dirty_ratelimit < balanced_dirty_ratelimit)
1334 dirty_ratelimit += step;
1335 else
1336 dirty_ratelimit -= step;
1338 wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1339 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1341 trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1344 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1345 struct dirty_throttle_control *mdtc,
1346 unsigned long start_time,
1347 bool update_ratelimit)
1349 struct bdi_writeback *wb = gdtc->wb;
1350 unsigned long now = jiffies;
1351 unsigned long elapsed = now - wb->bw_time_stamp;
1352 unsigned long dirtied;
1353 unsigned long written;
1355 lockdep_assert_held(&wb->list_lock);
1358 * rate-limit, only update once every 200ms.
1360 if (elapsed < BANDWIDTH_INTERVAL)
1361 return;
1363 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1364 written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1367 * Skip quiet periods when disk bandwidth is under-utilized.
1368 * (at least 1s idle time between two flusher runs)
1370 if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1371 goto snapshot;
1373 if (update_ratelimit) {
1374 domain_update_bandwidth(gdtc, now);
1375 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1378 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1379 * compiler has no way to figure that out. Help it.
1381 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1382 domain_update_bandwidth(mdtc, now);
1383 wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1386 wb_update_write_bandwidth(wb, elapsed, written);
1388 snapshot:
1389 wb->dirtied_stamp = dirtied;
1390 wb->written_stamp = written;
1391 wb->bw_time_stamp = now;
1394 void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
1396 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1398 __wb_update_bandwidth(&gdtc, NULL, start_time, false);
1402 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1403 * will look to see if it needs to start dirty throttling.
1405 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1406 * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
1407 * (the number of pages we may dirty without exceeding the dirty limits).
1409 static unsigned long dirty_poll_interval(unsigned long dirty,
1410 unsigned long thresh)
1412 if (thresh > dirty)
1413 return 1UL << (ilog2(thresh - dirty) >> 1);
1415 return 1;
1418 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1419 unsigned long wb_dirty)
1421 unsigned long bw = wb->avg_write_bandwidth;
1422 unsigned long t;
1425 * Limit pause time for small memory systems. If sleeping for too long
1426 * time, a small pool of dirty/writeback pages may go empty and disk go
1427 * idle.
1429 * 8 serves as the safety ratio.
1431 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1432 t++;
1434 return min_t(unsigned long, t, MAX_PAUSE);
1437 static long wb_min_pause(struct bdi_writeback *wb,
1438 long max_pause,
1439 unsigned long task_ratelimit,
1440 unsigned long dirty_ratelimit,
1441 int *nr_dirtied_pause)
1443 long hi = ilog2(wb->avg_write_bandwidth);
1444 long lo = ilog2(wb->dirty_ratelimit);
1445 long t; /* target pause */
1446 long pause; /* estimated next pause */
1447 int pages; /* target nr_dirtied_pause */
1449 /* target for 10ms pause on 1-dd case */
1450 t = max(1, HZ / 100);
1453 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1454 * overheads.
1456 * (N * 10ms) on 2^N concurrent tasks.
1458 if (hi > lo)
1459 t += (hi - lo) * (10 * HZ) / 1024;
1462 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1463 * on the much more stable dirty_ratelimit. However the next pause time
1464 * will be computed based on task_ratelimit and the two rate limits may
1465 * depart considerably at some time. Especially if task_ratelimit goes
1466 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1467 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1468 * result task_ratelimit won't be executed faithfully, which could
1469 * eventually bring down dirty_ratelimit.
1471 * We apply two rules to fix it up:
1472 * 1) try to estimate the next pause time and if necessary, use a lower
1473 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1474 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1475 * 2) limit the target pause time to max_pause/2, so that the normal
1476 * small fluctuations of task_ratelimit won't trigger rule (1) and
1477 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
1479 t = min(t, 1 + max_pause / 2);
1480 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1483 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1484 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1485 * When the 16 consecutive reads are often interrupted by some dirty
1486 * throttling pause during the async writes, cfq will go into idles
1487 * (deadline is fine). So push nr_dirtied_pause as high as possible
1488 * until reaches DIRTY_POLL_THRESH=32 pages.
1490 if (pages < DIRTY_POLL_THRESH) {
1491 t = max_pause;
1492 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1493 if (pages > DIRTY_POLL_THRESH) {
1494 pages = DIRTY_POLL_THRESH;
1495 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1499 pause = HZ * pages / (task_ratelimit + 1);
1500 if (pause > max_pause) {
1501 t = max_pause;
1502 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1505 *nr_dirtied_pause = pages;
1507 * The minimal pause time will normally be half the target pause time.
1509 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1512 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1514 struct bdi_writeback *wb = dtc->wb;
1515 unsigned long wb_reclaimable;
1518 * wb_thresh is not treated as some limiting factor as
1519 * dirty_thresh, due to reasons
1520 * - in JBOD setup, wb_thresh can fluctuate a lot
1521 * - in a system with HDD and USB key, the USB key may somehow
1522 * go into state (wb_dirty >> wb_thresh) either because
1523 * wb_dirty starts high, or because wb_thresh drops low.
1524 * In this case we don't want to hard throttle the USB key
1525 * dirtiers for 100 seconds until wb_dirty drops under
1526 * wb_thresh. Instead the auxiliary wb control line in
1527 * wb_position_ratio() will let the dirtier task progress
1528 * at some rate <= (write_bw / 2) for bringing down wb_dirty.
1530 dtc->wb_thresh = __wb_calc_thresh(dtc);
1531 dtc->wb_bg_thresh = dtc->thresh ?
1532 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1535 * In order to avoid the stacked BDI deadlock we need
1536 * to ensure we accurately count the 'dirty' pages when
1537 * the threshold is low.
1539 * Otherwise it would be possible to get thresh+n pages
1540 * reported dirty, even though there are thresh-m pages
1541 * actually dirty; with m+n sitting in the percpu
1542 * deltas.
1544 if (dtc->wb_thresh < 2 * wb_stat_error()) {
1545 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1546 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1547 } else {
1548 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1549 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1554 * balance_dirty_pages() must be called by processes which are generating dirty
1555 * data. It looks at the number of dirty pages in the machine and will force
1556 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1557 * If we're over `background_thresh' then the writeback threads are woken to
1558 * perform some writeout.
1560 static void balance_dirty_pages(struct bdi_writeback *wb,
1561 unsigned long pages_dirtied)
1563 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1564 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1565 struct dirty_throttle_control * const gdtc = &gdtc_stor;
1566 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1567 &mdtc_stor : NULL;
1568 struct dirty_throttle_control *sdtc;
1569 unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
1570 long period;
1571 long pause;
1572 long max_pause;
1573 long min_pause;
1574 int nr_dirtied_pause;
1575 bool dirty_exceeded = false;
1576 unsigned long task_ratelimit;
1577 unsigned long dirty_ratelimit;
1578 struct backing_dev_info *bdi = wb->bdi;
1579 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1580 unsigned long start_time = jiffies;
1582 for (;;) {
1583 unsigned long now = jiffies;
1584 unsigned long dirty, thresh, bg_thresh;
1585 unsigned long m_dirty = 0; /* stop bogus uninit warnings */
1586 unsigned long m_thresh = 0;
1587 unsigned long m_bg_thresh = 0;
1590 * Unstable writes are a feature of certain networked
1591 * filesystems (i.e. NFS) in which data may have been
1592 * written to the server's write cache, but has not yet
1593 * been flushed to permanent storage.
1595 nr_reclaimable = global_node_page_state(NR_FILE_DIRTY) +
1596 global_node_page_state(NR_UNSTABLE_NFS);
1597 gdtc->avail = global_dirtyable_memory();
1598 gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
1600 domain_dirty_limits(gdtc);
1602 if (unlikely(strictlimit)) {
1603 wb_dirty_limits(gdtc);
1605 dirty = gdtc->wb_dirty;
1606 thresh = gdtc->wb_thresh;
1607 bg_thresh = gdtc->wb_bg_thresh;
1608 } else {
1609 dirty = gdtc->dirty;
1610 thresh = gdtc->thresh;
1611 bg_thresh = gdtc->bg_thresh;
1614 if (mdtc) {
1615 unsigned long filepages, headroom, writeback;
1618 * If @wb belongs to !root memcg, repeat the same
1619 * basic calculations for the memcg domain.
1621 mem_cgroup_wb_stats(wb, &filepages, &headroom,
1622 &mdtc->dirty, &writeback);
1623 mdtc->dirty += writeback;
1624 mdtc_calc_avail(mdtc, filepages, headroom);
1626 domain_dirty_limits(mdtc);
1628 if (unlikely(strictlimit)) {
1629 wb_dirty_limits(mdtc);
1630 m_dirty = mdtc->wb_dirty;
1631 m_thresh = mdtc->wb_thresh;
1632 m_bg_thresh = mdtc->wb_bg_thresh;
1633 } else {
1634 m_dirty = mdtc->dirty;
1635 m_thresh = mdtc->thresh;
1636 m_bg_thresh = mdtc->bg_thresh;
1641 * Throttle it only when the background writeback cannot
1642 * catch-up. This avoids (excessively) small writeouts
1643 * when the wb limits are ramping up in case of !strictlimit.
1645 * In strictlimit case make decision based on the wb counters
1646 * and limits. Small writeouts when the wb limits are ramping
1647 * up are the price we consciously pay for strictlimit-ing.
1649 * If memcg domain is in effect, @dirty should be under
1650 * both global and memcg freerun ceilings.
1652 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1653 (!mdtc ||
1654 m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1655 unsigned long intv = dirty_poll_interval(dirty, thresh);
1656 unsigned long m_intv = ULONG_MAX;
1658 current->dirty_paused_when = now;
1659 current->nr_dirtied = 0;
1660 if (mdtc)
1661 m_intv = dirty_poll_interval(m_dirty, m_thresh);
1662 current->nr_dirtied_pause = min(intv, m_intv);
1663 break;
1666 if (unlikely(!writeback_in_progress(wb)))
1667 wb_start_background_writeback(wb);
1670 * Calculate global domain's pos_ratio and select the
1671 * global dtc by default.
1673 if (!strictlimit)
1674 wb_dirty_limits(gdtc);
1676 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1677 ((gdtc->dirty > gdtc->thresh) || strictlimit);
1679 wb_position_ratio(gdtc);
1680 sdtc = gdtc;
1682 if (mdtc) {
1684 * If memcg domain is in effect, calculate its
1685 * pos_ratio. @wb should satisfy constraints from
1686 * both global and memcg domains. Choose the one
1687 * w/ lower pos_ratio.
1689 if (!strictlimit)
1690 wb_dirty_limits(mdtc);
1692 dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1693 ((mdtc->dirty > mdtc->thresh) || strictlimit);
1695 wb_position_ratio(mdtc);
1696 if (mdtc->pos_ratio < gdtc->pos_ratio)
1697 sdtc = mdtc;
1700 if (dirty_exceeded && !wb->dirty_exceeded)
1701 wb->dirty_exceeded = 1;
1703 if (time_is_before_jiffies(wb->bw_time_stamp +
1704 BANDWIDTH_INTERVAL)) {
1705 spin_lock(&wb->list_lock);
1706 __wb_update_bandwidth(gdtc, mdtc, start_time, true);
1707 spin_unlock(&wb->list_lock);
1710 /* throttle according to the chosen dtc */
1711 dirty_ratelimit = wb->dirty_ratelimit;
1712 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1713 RATELIMIT_CALC_SHIFT;
1714 max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1715 min_pause = wb_min_pause(wb, max_pause,
1716 task_ratelimit, dirty_ratelimit,
1717 &nr_dirtied_pause);
1719 if (unlikely(task_ratelimit == 0)) {
1720 period = max_pause;
1721 pause = max_pause;
1722 goto pause;
1724 period = HZ * pages_dirtied / task_ratelimit;
1725 pause = period;
1726 if (current->dirty_paused_when)
1727 pause -= now - current->dirty_paused_when;
1729 * For less than 1s think time (ext3/4 may block the dirtier
1730 * for up to 800ms from time to time on 1-HDD; so does xfs,
1731 * however at much less frequency), try to compensate it in
1732 * future periods by updating the virtual time; otherwise just
1733 * do a reset, as it may be a light dirtier.
1735 if (pause < min_pause) {
1736 trace_balance_dirty_pages(wb,
1737 sdtc->thresh,
1738 sdtc->bg_thresh,
1739 sdtc->dirty,
1740 sdtc->wb_thresh,
1741 sdtc->wb_dirty,
1742 dirty_ratelimit,
1743 task_ratelimit,
1744 pages_dirtied,
1745 period,
1746 min(pause, 0L),
1747 start_time);
1748 if (pause < -HZ) {
1749 current->dirty_paused_when = now;
1750 current->nr_dirtied = 0;
1751 } else if (period) {
1752 current->dirty_paused_when += period;
1753 current->nr_dirtied = 0;
1754 } else if (current->nr_dirtied_pause <= pages_dirtied)
1755 current->nr_dirtied_pause += pages_dirtied;
1756 break;
1758 if (unlikely(pause > max_pause)) {
1759 /* for occasional dropped task_ratelimit */
1760 now += min(pause - max_pause, max_pause);
1761 pause = max_pause;
1764 pause:
1765 trace_balance_dirty_pages(wb,
1766 sdtc->thresh,
1767 sdtc->bg_thresh,
1768 sdtc->dirty,
1769 sdtc->wb_thresh,
1770 sdtc->wb_dirty,
1771 dirty_ratelimit,
1772 task_ratelimit,
1773 pages_dirtied,
1774 period,
1775 pause,
1776 start_time);
1777 __set_current_state(TASK_KILLABLE);
1778 wb->dirty_sleep = now;
1779 io_schedule_timeout(pause);
1781 current->dirty_paused_when = now + pause;
1782 current->nr_dirtied = 0;
1783 current->nr_dirtied_pause = nr_dirtied_pause;
1786 * This is typically equal to (dirty < thresh) and can also
1787 * keep "1000+ dd on a slow USB stick" under control.
1789 if (task_ratelimit)
1790 break;
1793 * In the case of an unresponding NFS server and the NFS dirty
1794 * pages exceeds dirty_thresh, give the other good wb's a pipe
1795 * to go through, so that tasks on them still remain responsive.
1797 * In theory 1 page is enough to keep the consumer-producer
1798 * pipe going: the flusher cleans 1 page => the task dirties 1
1799 * more page. However wb_dirty has accounting errors. So use
1800 * the larger and more IO friendly wb_stat_error.
1802 if (sdtc->wb_dirty <= wb_stat_error())
1803 break;
1805 if (fatal_signal_pending(current))
1806 break;
1809 if (!dirty_exceeded && wb->dirty_exceeded)
1810 wb->dirty_exceeded = 0;
1812 if (writeback_in_progress(wb))
1813 return;
1816 * In laptop mode, we wait until hitting the higher threshold before
1817 * starting background writeout, and then write out all the way down
1818 * to the lower threshold. So slow writers cause minimal disk activity.
1820 * In normal mode, we start background writeout at the lower
1821 * background_thresh, to keep the amount of dirty memory low.
1823 if (laptop_mode)
1824 return;
1826 if (nr_reclaimable > gdtc->bg_thresh)
1827 wb_start_background_writeback(wb);
1830 static DEFINE_PER_CPU(int, bdp_ratelimits);
1833 * Normal tasks are throttled by
1834 * loop {
1835 * dirty tsk->nr_dirtied_pause pages;
1836 * take a snap in balance_dirty_pages();
1838 * However there is a worst case. If every task exit immediately when dirtied
1839 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1840 * called to throttle the page dirties. The solution is to save the not yet
1841 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1842 * randomly into the running tasks. This works well for the above worst case,
1843 * as the new task will pick up and accumulate the old task's leaked dirty
1844 * count and eventually get throttled.
1846 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1849 * balance_dirty_pages_ratelimited - balance dirty memory state
1850 * @mapping: address_space which was dirtied
1852 * Processes which are dirtying memory should call in here once for each page
1853 * which was newly dirtied. The function will periodically check the system's
1854 * dirty state and will initiate writeback if needed.
1856 * On really big machines, get_writeback_state is expensive, so try to avoid
1857 * calling it too often (ratelimiting). But once we're over the dirty memory
1858 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1859 * from overshooting the limit by (ratelimit_pages) each.
1861 void balance_dirty_pages_ratelimited(struct address_space *mapping)
1863 struct inode *inode = mapping->host;
1864 struct backing_dev_info *bdi = inode_to_bdi(inode);
1865 struct bdi_writeback *wb = NULL;
1866 int ratelimit;
1867 int *p;
1869 if (!bdi_cap_account_dirty(bdi))
1870 return;
1872 if (inode_cgwb_enabled(inode))
1873 wb = wb_get_create_current(bdi, GFP_KERNEL);
1874 if (!wb)
1875 wb = &bdi->wb;
1877 ratelimit = current->nr_dirtied_pause;
1878 if (wb->dirty_exceeded)
1879 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1881 preempt_disable();
1883 * This prevents one CPU to accumulate too many dirtied pages without
1884 * calling into balance_dirty_pages(), which can happen when there are
1885 * 1000+ tasks, all of them start dirtying pages at exactly the same
1886 * time, hence all honoured too large initial task->nr_dirtied_pause.
1888 p = this_cpu_ptr(&bdp_ratelimits);
1889 if (unlikely(current->nr_dirtied >= ratelimit))
1890 *p = 0;
1891 else if (unlikely(*p >= ratelimit_pages)) {
1892 *p = 0;
1893 ratelimit = 0;
1896 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1897 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1898 * the dirty throttling and livelock other long-run dirtiers.
1900 p = this_cpu_ptr(&dirty_throttle_leaks);
1901 if (*p > 0 && current->nr_dirtied < ratelimit) {
1902 unsigned long nr_pages_dirtied;
1903 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1904 *p -= nr_pages_dirtied;
1905 current->nr_dirtied += nr_pages_dirtied;
1907 preempt_enable();
1909 if (unlikely(current->nr_dirtied >= ratelimit))
1910 balance_dirty_pages(wb, current->nr_dirtied);
1912 wb_put(wb);
1914 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1917 * wb_over_bg_thresh - does @wb need to be written back?
1918 * @wb: bdi_writeback of interest
1920 * Determines whether background writeback should keep writing @wb or it's
1921 * clean enough. Returns %true if writeback should continue.
1923 bool wb_over_bg_thresh(struct bdi_writeback *wb)
1925 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1926 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1927 struct dirty_throttle_control * const gdtc = &gdtc_stor;
1928 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1929 &mdtc_stor : NULL;
1932 * Similar to balance_dirty_pages() but ignores pages being written
1933 * as we're trying to decide whether to put more under writeback.
1935 gdtc->avail = global_dirtyable_memory();
1936 gdtc->dirty = global_node_page_state(NR_FILE_DIRTY) +
1937 global_node_page_state(NR_UNSTABLE_NFS);
1938 domain_dirty_limits(gdtc);
1940 if (gdtc->dirty > gdtc->bg_thresh)
1941 return true;
1943 if (wb_stat(wb, WB_RECLAIMABLE) >
1944 wb_calc_thresh(gdtc->wb, gdtc->bg_thresh))
1945 return true;
1947 if (mdtc) {
1948 unsigned long filepages, headroom, writeback;
1950 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1951 &writeback);
1952 mdtc_calc_avail(mdtc, filepages, headroom);
1953 domain_dirty_limits(mdtc); /* ditto, ignore writeback */
1955 if (mdtc->dirty > mdtc->bg_thresh)
1956 return true;
1958 if (wb_stat(wb, WB_RECLAIMABLE) >
1959 wb_calc_thresh(mdtc->wb, mdtc->bg_thresh))
1960 return true;
1963 return false;
1967 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1969 int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1970 void __user *buffer, size_t *length, loff_t *ppos)
1972 unsigned int old_interval = dirty_writeback_interval;
1973 int ret;
1975 ret = proc_dointvec(table, write, buffer, length, ppos);
1978 * Writing 0 to dirty_writeback_interval will disable periodic writeback
1979 * and a different non-zero value will wakeup the writeback threads.
1980 * wb_wakeup_delayed() would be more appropriate, but it's a pain to
1981 * iterate over all bdis and wbs.
1982 * The reason we do this is to make the change take effect immediately.
1984 if (!ret && write && dirty_writeback_interval &&
1985 dirty_writeback_interval != old_interval)
1986 wakeup_flusher_threads(WB_REASON_PERIODIC);
1988 return ret;
1991 #ifdef CONFIG_BLOCK
1992 void laptop_mode_timer_fn(struct timer_list *t)
1994 struct backing_dev_info *backing_dev_info =
1995 from_timer(backing_dev_info, t, laptop_mode_wb_timer);
1997 wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
2001 * We've spun up the disk and we're in laptop mode: schedule writeback
2002 * of all dirty data a few seconds from now. If the flush is already scheduled
2003 * then push it back - the user is still using the disk.
2005 void laptop_io_completion(struct backing_dev_info *info)
2007 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2011 * We're in laptop mode and we've just synced. The sync's writes will have
2012 * caused another writeback to be scheduled by laptop_io_completion.
2013 * Nothing needs to be written back anymore, so we unschedule the writeback.
2015 void laptop_sync_completion(void)
2017 struct backing_dev_info *bdi;
2019 rcu_read_lock();
2021 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2022 del_timer(&bdi->laptop_mode_wb_timer);
2024 rcu_read_unlock();
2026 #endif
2029 * If ratelimit_pages is too high then we can get into dirty-data overload
2030 * if a large number of processes all perform writes at the same time.
2031 * If it is too low then SMP machines will call the (expensive)
2032 * get_writeback_state too often.
2034 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2035 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2036 * thresholds.
2039 void writeback_set_ratelimit(void)
2041 struct wb_domain *dom = &global_wb_domain;
2042 unsigned long background_thresh;
2043 unsigned long dirty_thresh;
2045 global_dirty_limits(&background_thresh, &dirty_thresh);
2046 dom->dirty_limit = dirty_thresh;
2047 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2048 if (ratelimit_pages < 16)
2049 ratelimit_pages = 16;
2052 static int page_writeback_cpu_online(unsigned int cpu)
2054 writeback_set_ratelimit();
2055 return 0;
2059 * Called early on to tune the page writeback dirty limits.
2061 * We used to scale dirty pages according to how total memory
2062 * related to pages that could be allocated for buffers (by
2063 * comparing nr_free_buffer_pages() to vm_total_pages.
2065 * However, that was when we used "dirty_ratio" to scale with
2066 * all memory, and we don't do that any more. "dirty_ratio"
2067 * is now applied to total non-HIGHPAGE memory (by subtracting
2068 * totalhigh_pages from vm_total_pages), and as such we can't
2069 * get into the old insane situation any more where we had
2070 * large amounts of dirty pages compared to a small amount of
2071 * non-HIGHMEM memory.
2073 * But we might still want to scale the dirty_ratio by how
2074 * much memory the box has..
2076 void __init page_writeback_init(void)
2078 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2080 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2081 page_writeback_cpu_online, NULL);
2082 cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2083 page_writeback_cpu_online);
2087 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2088 * @mapping: address space structure to write
2089 * @start: starting page index
2090 * @end: ending page index (inclusive)
2092 * This function scans the page range from @start to @end (inclusive) and tags
2093 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2094 * that write_cache_pages (or whoever calls this function) will then use
2095 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
2096 * used to avoid livelocking of writeback by a process steadily creating new
2097 * dirty pages in the file (thus it is important for this function to be quick
2098 * so that it can tag pages faster than a dirtying process can create them).
2100 void tag_pages_for_writeback(struct address_space *mapping,
2101 pgoff_t start, pgoff_t end)
2103 XA_STATE(xas, &mapping->i_pages, start);
2104 unsigned int tagged = 0;
2105 void *page;
2107 xas_lock_irq(&xas);
2108 xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) {
2109 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
2110 if (++tagged % XA_CHECK_SCHED)
2111 continue;
2113 xas_pause(&xas);
2114 xas_unlock_irq(&xas);
2115 cond_resched();
2116 xas_lock_irq(&xas);
2118 xas_unlock_irq(&xas);
2120 EXPORT_SYMBOL(tag_pages_for_writeback);
2123 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2124 * @mapping: address space structure to write
2125 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2126 * @writepage: function called for each page
2127 * @data: data passed to writepage function
2129 * If a page is already under I/O, write_cache_pages() skips it, even
2130 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2131 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2132 * and msync() need to guarantee that all the data which was dirty at the time
2133 * the call was made get new I/O started against them. If wbc->sync_mode is
2134 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2135 * existing IO to complete.
2137 * To avoid livelocks (when other process dirties new pages), we first tag
2138 * pages which should be written back with TOWRITE tag and only then start
2139 * writing them. For data-integrity sync we have to be careful so that we do
2140 * not miss some pages (e.g., because some other process has cleared TOWRITE
2141 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2142 * by the process clearing the DIRTY tag (and submitting the page for IO).
2144 * To avoid deadlocks between range_cyclic writeback and callers that hold
2145 * pages in PageWriteback to aggregate IO until write_cache_pages() returns,
2146 * we do not loop back to the start of the file. Doing so causes a page
2147 * lock/page writeback access order inversion - we should only ever lock
2148 * multiple pages in ascending page->index order, and looping back to the start
2149 * of the file violates that rule and causes deadlocks.
2151 int write_cache_pages(struct address_space *mapping,
2152 struct writeback_control *wbc, writepage_t writepage,
2153 void *data)
2155 int ret = 0;
2156 int done = 0;
2157 int error;
2158 struct pagevec pvec;
2159 int nr_pages;
2160 pgoff_t uninitialized_var(writeback_index);
2161 pgoff_t index;
2162 pgoff_t end; /* Inclusive */
2163 pgoff_t done_index;
2164 int range_whole = 0;
2165 xa_mark_t tag;
2167 pagevec_init(&pvec);
2168 if (wbc->range_cyclic) {
2169 writeback_index = mapping->writeback_index; /* prev offset */
2170 index = writeback_index;
2171 end = -1;
2172 } else {
2173 index = wbc->range_start >> PAGE_SHIFT;
2174 end = wbc->range_end >> PAGE_SHIFT;
2175 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2176 range_whole = 1;
2178 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2179 tag = PAGECACHE_TAG_TOWRITE;
2180 else
2181 tag = PAGECACHE_TAG_DIRTY;
2182 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2183 tag_pages_for_writeback(mapping, index, end);
2184 done_index = index;
2185 while (!done && (index <= end)) {
2186 int i;
2188 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2189 tag);
2190 if (nr_pages == 0)
2191 break;
2193 for (i = 0; i < nr_pages; i++) {
2194 struct page *page = pvec.pages[i];
2196 done_index = page->index;
2198 lock_page(page);
2201 * Page truncated or invalidated. We can freely skip it
2202 * then, even for data integrity operations: the page
2203 * has disappeared concurrently, so there could be no
2204 * real expectation of this data interity operation
2205 * even if there is now a new, dirty page at the same
2206 * pagecache address.
2208 if (unlikely(page->mapping != mapping)) {
2209 continue_unlock:
2210 unlock_page(page);
2211 continue;
2214 if (!PageDirty(page)) {
2215 /* someone wrote it for us */
2216 goto continue_unlock;
2219 if (PageWriteback(page)) {
2220 if (wbc->sync_mode != WB_SYNC_NONE)
2221 wait_on_page_writeback(page);
2222 else
2223 goto continue_unlock;
2226 BUG_ON(PageWriteback(page));
2227 if (!clear_page_dirty_for_io(page))
2228 goto continue_unlock;
2230 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2231 error = (*writepage)(page, wbc, data);
2232 if (unlikely(error)) {
2234 * Handle errors according to the type of
2235 * writeback. There's no need to continue for
2236 * background writeback. Just push done_index
2237 * past this page so media errors won't choke
2238 * writeout for the entire file. For integrity
2239 * writeback, we must process the entire dirty
2240 * set regardless of errors because the fs may
2241 * still have state to clear for each page. In
2242 * that case we continue processing and return
2243 * the first error.
2245 if (error == AOP_WRITEPAGE_ACTIVATE) {
2246 unlock_page(page);
2247 error = 0;
2248 } else if (wbc->sync_mode != WB_SYNC_ALL) {
2249 ret = error;
2250 done_index = page->index + 1;
2251 done = 1;
2252 break;
2254 if (!ret)
2255 ret = error;
2259 * We stop writing back only if we are not doing
2260 * integrity sync. In case of integrity sync we have to
2261 * keep going until we have written all the pages
2262 * we tagged for writeback prior to entering this loop.
2264 if (--wbc->nr_to_write <= 0 &&
2265 wbc->sync_mode == WB_SYNC_NONE) {
2266 done = 1;
2267 break;
2270 pagevec_release(&pvec);
2271 cond_resched();
2275 * If we hit the last page and there is more work to be done: wrap
2276 * back the index back to the start of the file for the next
2277 * time we are called.
2279 if (wbc->range_cyclic && !done)
2280 done_index = 0;
2281 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2282 mapping->writeback_index = done_index;
2284 return ret;
2286 EXPORT_SYMBOL(write_cache_pages);
2289 * Function used by generic_writepages to call the real writepage
2290 * function and set the mapping flags on error
2292 static int __writepage(struct page *page, struct writeback_control *wbc,
2293 void *data)
2295 struct address_space *mapping = data;
2296 int ret = mapping->a_ops->writepage(page, wbc);
2297 mapping_set_error(mapping, ret);
2298 return ret;
2302 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2303 * @mapping: address space structure to write
2304 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2306 * This is a library function, which implements the writepages()
2307 * address_space_operation.
2309 int generic_writepages(struct address_space *mapping,
2310 struct writeback_control *wbc)
2312 struct blk_plug plug;
2313 int ret;
2315 /* deal with chardevs and other special file */
2316 if (!mapping->a_ops->writepage)
2317 return 0;
2319 blk_start_plug(&plug);
2320 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2321 blk_finish_plug(&plug);
2322 return ret;
2325 EXPORT_SYMBOL(generic_writepages);
2327 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2329 int ret;
2331 if (wbc->nr_to_write <= 0)
2332 return 0;
2333 while (1) {
2334 if (mapping->a_ops->writepages)
2335 ret = mapping->a_ops->writepages(mapping, wbc);
2336 else
2337 ret = generic_writepages(mapping, wbc);
2338 if ((ret != -ENOMEM) || (wbc->sync_mode != WB_SYNC_ALL))
2339 break;
2340 cond_resched();
2341 congestion_wait(BLK_RW_ASYNC, HZ/50);
2343 return ret;
2347 * write_one_page - write out a single page and wait on I/O
2348 * @page: the page to write
2350 * The page must be locked by the caller and will be unlocked upon return.
2352 * Note that the mapping's AS_EIO/AS_ENOSPC flags will be cleared when this
2353 * function returns.
2355 int write_one_page(struct page *page)
2357 struct address_space *mapping = page->mapping;
2358 int ret = 0;
2359 struct writeback_control wbc = {
2360 .sync_mode = WB_SYNC_ALL,
2361 .nr_to_write = 1,
2364 BUG_ON(!PageLocked(page));
2366 wait_on_page_writeback(page);
2368 if (clear_page_dirty_for_io(page)) {
2369 get_page(page);
2370 ret = mapping->a_ops->writepage(page, &wbc);
2371 if (ret == 0)
2372 wait_on_page_writeback(page);
2373 put_page(page);
2374 } else {
2375 unlock_page(page);
2378 if (!ret)
2379 ret = filemap_check_errors(mapping);
2380 return ret;
2382 EXPORT_SYMBOL(write_one_page);
2385 * For address_spaces which do not use buffers nor write back.
2387 int __set_page_dirty_no_writeback(struct page *page)
2389 if (!PageDirty(page))
2390 return !TestSetPageDirty(page);
2391 return 0;
2395 * Helper function for set_page_dirty family.
2397 * Caller must hold lock_page_memcg().
2399 * NOTE: This relies on being atomic wrt interrupts.
2401 void account_page_dirtied(struct page *page, struct address_space *mapping)
2403 struct inode *inode = mapping->host;
2405 trace_writeback_dirty_page(page, mapping);
2407 if (mapping_cap_account_dirty(mapping)) {
2408 struct bdi_writeback *wb;
2410 inode_attach_wb(inode, page);
2411 wb = inode_to_wb(inode);
2413 __inc_lruvec_page_state(page, NR_FILE_DIRTY);
2414 __inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2415 __inc_node_page_state(page, NR_DIRTIED);
2416 inc_wb_stat(wb, WB_RECLAIMABLE);
2417 inc_wb_stat(wb, WB_DIRTIED);
2418 task_io_account_write(PAGE_SIZE);
2419 current->nr_dirtied++;
2420 this_cpu_inc(bdp_ratelimits);
2423 EXPORT_SYMBOL(account_page_dirtied);
2426 * Helper function for deaccounting dirty page without writeback.
2428 * Caller must hold lock_page_memcg().
2430 void account_page_cleaned(struct page *page, struct address_space *mapping,
2431 struct bdi_writeback *wb)
2433 if (mapping_cap_account_dirty(mapping)) {
2434 dec_lruvec_page_state(page, NR_FILE_DIRTY);
2435 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2436 dec_wb_stat(wb, WB_RECLAIMABLE);
2437 task_io_account_cancelled_write(PAGE_SIZE);
2442 * For address_spaces which do not use buffers. Just tag the page as dirty in
2443 * the xarray.
2445 * This is also used when a single buffer is being dirtied: we want to set the
2446 * page dirty in that case, but not all the buffers. This is a "bottom-up"
2447 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2449 * The caller must ensure this doesn't race with truncation. Most will simply
2450 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2451 * the pte lock held, which also locks out truncation.
2453 int __set_page_dirty_nobuffers(struct page *page)
2455 lock_page_memcg(page);
2456 if (!TestSetPageDirty(page)) {
2457 struct address_space *mapping = page_mapping(page);
2458 unsigned long flags;
2460 if (!mapping) {
2461 unlock_page_memcg(page);
2462 return 1;
2465 xa_lock_irqsave(&mapping->i_pages, flags);
2466 BUG_ON(page_mapping(page) != mapping);
2467 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2468 account_page_dirtied(page, mapping);
2469 __xa_set_mark(&mapping->i_pages, page_index(page),
2470 PAGECACHE_TAG_DIRTY);
2471 xa_unlock_irqrestore(&mapping->i_pages, flags);
2472 unlock_page_memcg(page);
2474 if (mapping->host) {
2475 /* !PageAnon && !swapper_space */
2476 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2478 return 1;
2480 unlock_page_memcg(page);
2481 return 0;
2483 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2486 * Call this whenever redirtying a page, to de-account the dirty counters
2487 * (NR_DIRTIED, WB_DIRTIED, tsk->nr_dirtied), so that they match the written
2488 * counters (NR_WRITTEN, WB_WRITTEN) in long term. The mismatches will lead to
2489 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2490 * control.
2492 void account_page_redirty(struct page *page)
2494 struct address_space *mapping = page->mapping;
2496 if (mapping && mapping_cap_account_dirty(mapping)) {
2497 struct inode *inode = mapping->host;
2498 struct bdi_writeback *wb;
2499 struct wb_lock_cookie cookie = {};
2501 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2502 current->nr_dirtied--;
2503 dec_node_page_state(page, NR_DIRTIED);
2504 dec_wb_stat(wb, WB_DIRTIED);
2505 unlocked_inode_to_wb_end(inode, &cookie);
2508 EXPORT_SYMBOL(account_page_redirty);
2511 * When a writepage implementation decides that it doesn't want to write this
2512 * page for some reason, it should redirty the locked page via
2513 * redirty_page_for_writepage() and it should then unlock the page and return 0
2515 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2517 int ret;
2519 wbc->pages_skipped++;
2520 ret = __set_page_dirty_nobuffers(page);
2521 account_page_redirty(page);
2522 return ret;
2524 EXPORT_SYMBOL(redirty_page_for_writepage);
2527 * Dirty a page.
2529 * For pages with a mapping this should be done under the page lock
2530 * for the benefit of asynchronous memory errors who prefer a consistent
2531 * dirty state. This rule can be broken in some special cases,
2532 * but should be better not to.
2534 * If the mapping doesn't provide a set_page_dirty a_op, then
2535 * just fall through and assume that it wants buffer_heads.
2537 int set_page_dirty(struct page *page)
2539 struct address_space *mapping = page_mapping(page);
2541 page = compound_head(page);
2542 if (likely(mapping)) {
2543 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2545 * readahead/lru_deactivate_page could remain
2546 * PG_readahead/PG_reclaim due to race with end_page_writeback
2547 * About readahead, if the page is written, the flags would be
2548 * reset. So no problem.
2549 * About lru_deactivate_page, if the page is redirty, the flag
2550 * will be reset. So no problem. but if the page is used by readahead
2551 * it will confuse readahead and make it restart the size rampup
2552 * process. But it's a trivial problem.
2554 if (PageReclaim(page))
2555 ClearPageReclaim(page);
2556 #ifdef CONFIG_BLOCK
2557 if (!spd)
2558 spd = __set_page_dirty_buffers;
2559 #endif
2560 return (*spd)(page);
2562 if (!PageDirty(page)) {
2563 if (!TestSetPageDirty(page))
2564 return 1;
2566 return 0;
2568 EXPORT_SYMBOL(set_page_dirty);
2571 * set_page_dirty() is racy if the caller has no reference against
2572 * page->mapping->host, and if the page is unlocked. This is because another
2573 * CPU could truncate the page off the mapping and then free the mapping.
2575 * Usually, the page _is_ locked, or the caller is a user-space process which
2576 * holds a reference on the inode by having an open file.
2578 * In other cases, the page should be locked before running set_page_dirty().
2580 int set_page_dirty_lock(struct page *page)
2582 int ret;
2584 lock_page(page);
2585 ret = set_page_dirty(page);
2586 unlock_page(page);
2587 return ret;
2589 EXPORT_SYMBOL(set_page_dirty_lock);
2592 * This cancels just the dirty bit on the kernel page itself, it does NOT
2593 * actually remove dirty bits on any mmap's that may be around. It also
2594 * leaves the page tagged dirty, so any sync activity will still find it on
2595 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2596 * look at the dirty bits in the VM.
2598 * Doing this should *normally* only ever be done when a page is truncated,
2599 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2600 * this when it notices that somebody has cleaned out all the buffers on a
2601 * page without actually doing it through the VM. Can you say "ext3 is
2602 * horribly ugly"? Thought you could.
2604 void __cancel_dirty_page(struct page *page)
2606 struct address_space *mapping = page_mapping(page);
2608 if (mapping_cap_account_dirty(mapping)) {
2609 struct inode *inode = mapping->host;
2610 struct bdi_writeback *wb;
2611 struct wb_lock_cookie cookie = {};
2613 lock_page_memcg(page);
2614 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2616 if (TestClearPageDirty(page))
2617 account_page_cleaned(page, mapping, wb);
2619 unlocked_inode_to_wb_end(inode, &cookie);
2620 unlock_page_memcg(page);
2621 } else {
2622 ClearPageDirty(page);
2625 EXPORT_SYMBOL(__cancel_dirty_page);
2628 * Clear a page's dirty flag, while caring for dirty memory accounting.
2629 * Returns true if the page was previously dirty.
2631 * This is for preparing to put the page under writeout. We leave the page
2632 * tagged as dirty in the xarray so that a concurrent write-for-sync
2633 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
2634 * implementation will run either set_page_writeback() or set_page_dirty(),
2635 * at which stage we bring the page's dirty flag and xarray dirty tag
2636 * back into sync.
2638 * This incoherency between the page's dirty flag and xarray tag is
2639 * unfortunate, but it only exists while the page is locked.
2641 int clear_page_dirty_for_io(struct page *page)
2643 struct address_space *mapping = page_mapping(page);
2644 int ret = 0;
2646 BUG_ON(!PageLocked(page));
2648 if (mapping && mapping_cap_account_dirty(mapping)) {
2649 struct inode *inode = mapping->host;
2650 struct bdi_writeback *wb;
2651 struct wb_lock_cookie cookie = {};
2654 * Yes, Virginia, this is indeed insane.
2656 * We use this sequence to make sure that
2657 * (a) we account for dirty stats properly
2658 * (b) we tell the low-level filesystem to
2659 * mark the whole page dirty if it was
2660 * dirty in a pagetable. Only to then
2661 * (c) clean the page again and return 1 to
2662 * cause the writeback.
2664 * This way we avoid all nasty races with the
2665 * dirty bit in multiple places and clearing
2666 * them concurrently from different threads.
2668 * Note! Normally the "set_page_dirty(page)"
2669 * has no effect on the actual dirty bit - since
2670 * that will already usually be set. But we
2671 * need the side effects, and it can help us
2672 * avoid races.
2674 * We basically use the page "master dirty bit"
2675 * as a serialization point for all the different
2676 * threads doing their things.
2678 if (page_mkclean(page))
2679 set_page_dirty(page);
2681 * We carefully synchronise fault handlers against
2682 * installing a dirty pte and marking the page dirty
2683 * at this point. We do this by having them hold the
2684 * page lock while dirtying the page, and pages are
2685 * always locked coming in here, so we get the desired
2686 * exclusion.
2688 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2689 if (TestClearPageDirty(page)) {
2690 dec_lruvec_page_state(page, NR_FILE_DIRTY);
2691 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2692 dec_wb_stat(wb, WB_RECLAIMABLE);
2693 ret = 1;
2695 unlocked_inode_to_wb_end(inode, &cookie);
2696 return ret;
2698 return TestClearPageDirty(page);
2700 EXPORT_SYMBOL(clear_page_dirty_for_io);
2702 int test_clear_page_writeback(struct page *page)
2704 struct address_space *mapping = page_mapping(page);
2705 struct mem_cgroup *memcg;
2706 struct lruvec *lruvec;
2707 int ret;
2709 memcg = lock_page_memcg(page);
2710 lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page));
2711 if (mapping && mapping_use_writeback_tags(mapping)) {
2712 struct inode *inode = mapping->host;
2713 struct backing_dev_info *bdi = inode_to_bdi(inode);
2714 unsigned long flags;
2716 xa_lock_irqsave(&mapping->i_pages, flags);
2717 ret = TestClearPageWriteback(page);
2718 if (ret) {
2719 __xa_clear_mark(&mapping->i_pages, page_index(page),
2720 PAGECACHE_TAG_WRITEBACK);
2721 if (bdi_cap_account_writeback(bdi)) {
2722 struct bdi_writeback *wb = inode_to_wb(inode);
2724 dec_wb_stat(wb, WB_WRITEBACK);
2725 __wb_writeout_inc(wb);
2729 if (mapping->host && !mapping_tagged(mapping,
2730 PAGECACHE_TAG_WRITEBACK))
2731 sb_clear_inode_writeback(mapping->host);
2733 xa_unlock_irqrestore(&mapping->i_pages, flags);
2734 } else {
2735 ret = TestClearPageWriteback(page);
2738 * NOTE: Page might be free now! Writeback doesn't hold a page
2739 * reference on its own, it relies on truncation to wait for
2740 * the clearing of PG_writeback. The below can only access
2741 * page state that is static across allocation cycles.
2743 if (ret) {
2744 dec_lruvec_state(lruvec, NR_WRITEBACK);
2745 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2746 inc_node_page_state(page, NR_WRITTEN);
2748 __unlock_page_memcg(memcg);
2749 return ret;
2752 int __test_set_page_writeback(struct page *page, bool keep_write)
2754 struct address_space *mapping = page_mapping(page);
2755 int ret;
2757 lock_page_memcg(page);
2758 if (mapping && mapping_use_writeback_tags(mapping)) {
2759 XA_STATE(xas, &mapping->i_pages, page_index(page));
2760 struct inode *inode = mapping->host;
2761 struct backing_dev_info *bdi = inode_to_bdi(inode);
2762 unsigned long flags;
2764 xas_lock_irqsave(&xas, flags);
2765 xas_load(&xas);
2766 ret = TestSetPageWriteback(page);
2767 if (!ret) {
2768 bool on_wblist;
2770 on_wblist = mapping_tagged(mapping,
2771 PAGECACHE_TAG_WRITEBACK);
2773 xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
2774 if (bdi_cap_account_writeback(bdi))
2775 inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
2778 * We can come through here when swapping anonymous
2779 * pages, so we don't necessarily have an inode to track
2780 * for sync.
2782 if (mapping->host && !on_wblist)
2783 sb_mark_inode_writeback(mapping->host);
2785 if (!PageDirty(page))
2786 xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
2787 if (!keep_write)
2788 xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
2789 xas_unlock_irqrestore(&xas, flags);
2790 } else {
2791 ret = TestSetPageWriteback(page);
2793 if (!ret) {
2794 inc_lruvec_page_state(page, NR_WRITEBACK);
2795 inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2797 unlock_page_memcg(page);
2798 return ret;
2801 EXPORT_SYMBOL(__test_set_page_writeback);
2804 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2805 * @page: The page to wait on.
2807 * This function determines if the given page is related to a backing device
2808 * that requires page contents to be held stable during writeback. If so, then
2809 * it will wait for any pending writeback to complete.
2811 void wait_for_stable_page(struct page *page)
2813 if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2814 wait_on_page_writeback(page);
2816 EXPORT_SYMBOL_GPL(wait_for_stable_page);