[ARM] MVE sext costs
[llvm-complete.git] / lib / Analysis / BlockFrequencyInfoImpl.cpp
blob0db6dd04a7e88ce05832ec35026f15b1acec0152
1 //===- BlockFrequencyImplInfo.cpp - Block Frequency Info Implementation ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Loops should be simplified before this analysis.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/GraphTraits.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/SCCIterator.h"
19 #include "llvm/Config/llvm-config.h"
20 #include "llvm/IR/Function.h"
21 #include "llvm/Support/BlockFrequency.h"
22 #include "llvm/Support/BranchProbability.h"
23 #include "llvm/Support/Compiler.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/ScaledNumber.h"
26 #include "llvm/Support/MathExtras.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include <algorithm>
29 #include <cassert>
30 #include <cstddef>
31 #include <cstdint>
32 #include <iterator>
33 #include <list>
34 #include <numeric>
35 #include <utility>
36 #include <vector>
38 using namespace llvm;
39 using namespace llvm::bfi_detail;
41 #define DEBUG_TYPE "block-freq"
43 ScaledNumber<uint64_t> BlockMass::toScaled() const {
44 if (isFull())
45 return ScaledNumber<uint64_t>(1, 0);
46 return ScaledNumber<uint64_t>(getMass() + 1, -64);
49 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
50 LLVM_DUMP_METHOD void BlockMass::dump() const { print(dbgs()); }
51 #endif
53 static char getHexDigit(int N) {
54 assert(N < 16);
55 if (N < 10)
56 return '0' + N;
57 return 'a' + N - 10;
60 raw_ostream &BlockMass::print(raw_ostream &OS) const {
61 for (int Digits = 0; Digits < 16; ++Digits)
62 OS << getHexDigit(Mass >> (60 - Digits * 4) & 0xf);
63 return OS;
66 namespace {
68 using BlockNode = BlockFrequencyInfoImplBase::BlockNode;
69 using Distribution = BlockFrequencyInfoImplBase::Distribution;
70 using WeightList = BlockFrequencyInfoImplBase::Distribution::WeightList;
71 using Scaled64 = BlockFrequencyInfoImplBase::Scaled64;
72 using LoopData = BlockFrequencyInfoImplBase::LoopData;
73 using Weight = BlockFrequencyInfoImplBase::Weight;
74 using FrequencyData = BlockFrequencyInfoImplBase::FrequencyData;
76 /// Dithering mass distributer.
77 ///
78 /// This class splits up a single mass into portions by weight, dithering to
79 /// spread out error. No mass is lost. The dithering precision depends on the
80 /// precision of the product of \a BlockMass and \a BranchProbability.
81 ///
82 /// The distribution algorithm follows.
83 ///
84 /// 1. Initialize by saving the sum of the weights in \a RemWeight and the
85 /// mass to distribute in \a RemMass.
86 ///
87 /// 2. For each portion:
88 ///
89 /// 1. Construct a branch probability, P, as the portion's weight divided
90 /// by the current value of \a RemWeight.
91 /// 2. Calculate the portion's mass as \a RemMass times P.
92 /// 3. Update \a RemWeight and \a RemMass at each portion by subtracting
93 /// the current portion's weight and mass.
94 struct DitheringDistributer {
95 uint32_t RemWeight;
96 BlockMass RemMass;
98 DitheringDistributer(Distribution &Dist, const BlockMass &Mass);
100 BlockMass takeMass(uint32_t Weight);
103 } // end anonymous namespace
105 DitheringDistributer::DitheringDistributer(Distribution &Dist,
106 const BlockMass &Mass) {
107 Dist.normalize();
108 RemWeight = Dist.Total;
109 RemMass = Mass;
112 BlockMass DitheringDistributer::takeMass(uint32_t Weight) {
113 assert(Weight && "invalid weight");
114 assert(Weight <= RemWeight);
115 BlockMass Mass = RemMass * BranchProbability(Weight, RemWeight);
117 // Decrement totals (dither).
118 RemWeight -= Weight;
119 RemMass -= Mass;
120 return Mass;
123 void Distribution::add(const BlockNode &Node, uint64_t Amount,
124 Weight::DistType Type) {
125 assert(Amount && "invalid weight of 0");
126 uint64_t NewTotal = Total + Amount;
128 // Check for overflow. It should be impossible to overflow twice.
129 bool IsOverflow = NewTotal < Total;
130 assert(!(DidOverflow && IsOverflow) && "unexpected repeated overflow");
131 DidOverflow |= IsOverflow;
133 // Update the total.
134 Total = NewTotal;
136 // Save the weight.
137 Weights.push_back(Weight(Type, Node, Amount));
140 static void combineWeight(Weight &W, const Weight &OtherW) {
141 assert(OtherW.TargetNode.isValid());
142 if (!W.Amount) {
143 W = OtherW;
144 return;
146 assert(W.Type == OtherW.Type);
147 assert(W.TargetNode == OtherW.TargetNode);
148 assert(OtherW.Amount && "Expected non-zero weight");
149 if (W.Amount > W.Amount + OtherW.Amount)
150 // Saturate on overflow.
151 W.Amount = UINT64_MAX;
152 else
153 W.Amount += OtherW.Amount;
156 static void combineWeightsBySorting(WeightList &Weights) {
157 // Sort so edges to the same node are adjacent.
158 llvm::sort(Weights, [](const Weight &L, const Weight &R) {
159 return L.TargetNode < R.TargetNode;
162 // Combine adjacent edges.
163 WeightList::iterator O = Weights.begin();
164 for (WeightList::const_iterator I = O, L = O, E = Weights.end(); I != E;
165 ++O, (I = L)) {
166 *O = *I;
168 // Find the adjacent weights to the same node.
169 for (++L; L != E && I->TargetNode == L->TargetNode; ++L)
170 combineWeight(*O, *L);
173 // Erase extra entries.
174 Weights.erase(O, Weights.end());
177 static void combineWeightsByHashing(WeightList &Weights) {
178 // Collect weights into a DenseMap.
179 using HashTable = DenseMap<BlockNode::IndexType, Weight>;
181 HashTable Combined(NextPowerOf2(2 * Weights.size()));
182 for (const Weight &W : Weights)
183 combineWeight(Combined[W.TargetNode.Index], W);
185 // Check whether anything changed.
186 if (Weights.size() == Combined.size())
187 return;
189 // Fill in the new weights.
190 Weights.clear();
191 Weights.reserve(Combined.size());
192 for (const auto &I : Combined)
193 Weights.push_back(I.second);
196 static void combineWeights(WeightList &Weights) {
197 // Use a hash table for many successors to keep this linear.
198 if (Weights.size() > 128) {
199 combineWeightsByHashing(Weights);
200 return;
203 combineWeightsBySorting(Weights);
206 static uint64_t shiftRightAndRound(uint64_t N, int Shift) {
207 assert(Shift >= 0);
208 assert(Shift < 64);
209 if (!Shift)
210 return N;
211 return (N >> Shift) + (UINT64_C(1) & N >> (Shift - 1));
214 void Distribution::normalize() {
215 // Early exit for termination nodes.
216 if (Weights.empty())
217 return;
219 // Only bother if there are multiple successors.
220 if (Weights.size() > 1)
221 combineWeights(Weights);
223 // Early exit when combined into a single successor.
224 if (Weights.size() == 1) {
225 Total = 1;
226 Weights.front().Amount = 1;
227 return;
230 // Determine how much to shift right so that the total fits into 32-bits.
232 // If we shift at all, shift by 1 extra. Otherwise, the lower limit of 1
233 // for each weight can cause a 32-bit overflow.
234 int Shift = 0;
235 if (DidOverflow)
236 Shift = 33;
237 else if (Total > UINT32_MAX)
238 Shift = 33 - countLeadingZeros(Total);
240 // Early exit if nothing needs to be scaled.
241 if (!Shift) {
242 // If we didn't overflow then combineWeights() shouldn't have changed the
243 // sum of the weights, but let's double-check.
244 assert(Total == std::accumulate(Weights.begin(), Weights.end(), UINT64_C(0),
245 [](uint64_t Sum, const Weight &W) {
246 return Sum + W.Amount;
247 }) &&
248 "Expected total to be correct");
249 return;
252 // Recompute the total through accumulation (rather than shifting it) so that
253 // it's accurate after shifting and any changes combineWeights() made above.
254 Total = 0;
256 // Sum the weights to each node and shift right if necessary.
257 for (Weight &W : Weights) {
258 // Scale down below UINT32_MAX. Since Shift is larger than necessary, we
259 // can round here without concern about overflow.
260 assert(W.TargetNode.isValid());
261 W.Amount = std::max(UINT64_C(1), shiftRightAndRound(W.Amount, Shift));
262 assert(W.Amount <= UINT32_MAX);
264 // Update the total.
265 Total += W.Amount;
267 assert(Total <= UINT32_MAX);
270 void BlockFrequencyInfoImplBase::clear() {
271 // Swap with a default-constructed std::vector, since std::vector<>::clear()
272 // does not actually clear heap storage.
273 std::vector<FrequencyData>().swap(Freqs);
274 IsIrrLoopHeader.clear();
275 std::vector<WorkingData>().swap(Working);
276 Loops.clear();
279 /// Clear all memory not needed downstream.
281 /// Releases all memory not used downstream. In particular, saves Freqs.
282 static void cleanup(BlockFrequencyInfoImplBase &BFI) {
283 std::vector<FrequencyData> SavedFreqs(std::move(BFI.Freqs));
284 SparseBitVector<> SavedIsIrrLoopHeader(std::move(BFI.IsIrrLoopHeader));
285 BFI.clear();
286 BFI.Freqs = std::move(SavedFreqs);
287 BFI.IsIrrLoopHeader = std::move(SavedIsIrrLoopHeader);
290 bool BlockFrequencyInfoImplBase::addToDist(Distribution &Dist,
291 const LoopData *OuterLoop,
292 const BlockNode &Pred,
293 const BlockNode &Succ,
294 uint64_t Weight) {
295 if (!Weight)
296 Weight = 1;
298 auto isLoopHeader = [&OuterLoop](const BlockNode &Node) {
299 return OuterLoop && OuterLoop->isHeader(Node);
302 BlockNode Resolved = Working[Succ.Index].getResolvedNode();
304 #ifndef NDEBUG
305 auto debugSuccessor = [&](const char *Type) {
306 dbgs() << " =>"
307 << " [" << Type << "] weight = " << Weight;
308 if (!isLoopHeader(Resolved))
309 dbgs() << ", succ = " << getBlockName(Succ);
310 if (Resolved != Succ)
311 dbgs() << ", resolved = " << getBlockName(Resolved);
312 dbgs() << "\n";
314 (void)debugSuccessor;
315 #endif
317 if (isLoopHeader(Resolved)) {
318 LLVM_DEBUG(debugSuccessor("backedge"));
319 Dist.addBackedge(Resolved, Weight);
320 return true;
323 if (Working[Resolved.Index].getContainingLoop() != OuterLoop) {
324 LLVM_DEBUG(debugSuccessor(" exit "));
325 Dist.addExit(Resolved, Weight);
326 return true;
329 if (Resolved < Pred) {
330 if (!isLoopHeader(Pred)) {
331 // If OuterLoop is an irreducible loop, we can't actually handle this.
332 assert((!OuterLoop || !OuterLoop->isIrreducible()) &&
333 "unhandled irreducible control flow");
335 // Irreducible backedge. Abort.
336 LLVM_DEBUG(debugSuccessor("abort!!!"));
337 return false;
340 // If "Pred" is a loop header, then this isn't really a backedge; rather,
341 // OuterLoop must be irreducible. These false backedges can come only from
342 // secondary loop headers.
343 assert(OuterLoop && OuterLoop->isIrreducible() && !isLoopHeader(Resolved) &&
344 "unhandled irreducible control flow");
347 LLVM_DEBUG(debugSuccessor(" local "));
348 Dist.addLocal(Resolved, Weight);
349 return true;
352 bool BlockFrequencyInfoImplBase::addLoopSuccessorsToDist(
353 const LoopData *OuterLoop, LoopData &Loop, Distribution &Dist) {
354 // Copy the exit map into Dist.
355 for (const auto &I : Loop.Exits)
356 if (!addToDist(Dist, OuterLoop, Loop.getHeader(), I.first,
357 I.second.getMass()))
358 // Irreducible backedge.
359 return false;
361 return true;
364 /// Compute the loop scale for a loop.
365 void BlockFrequencyInfoImplBase::computeLoopScale(LoopData &Loop) {
366 // Compute loop scale.
367 LLVM_DEBUG(dbgs() << "compute-loop-scale: " << getLoopName(Loop) << "\n");
369 // Infinite loops need special handling. If we give the back edge an infinite
370 // mass, they may saturate all the other scales in the function down to 1,
371 // making all the other region temperatures look exactly the same. Choose an
372 // arbitrary scale to avoid these issues.
374 // FIXME: An alternate way would be to select a symbolic scale which is later
375 // replaced to be the maximum of all computed scales plus 1. This would
376 // appropriately describe the loop as having a large scale, without skewing
377 // the final frequency computation.
378 const Scaled64 InfiniteLoopScale(1, 12);
380 // LoopScale == 1 / ExitMass
381 // ExitMass == HeadMass - BackedgeMass
382 BlockMass TotalBackedgeMass;
383 for (auto &Mass : Loop.BackedgeMass)
384 TotalBackedgeMass += Mass;
385 BlockMass ExitMass = BlockMass::getFull() - TotalBackedgeMass;
387 // Block scale stores the inverse of the scale. If this is an infinite loop,
388 // its exit mass will be zero. In this case, use an arbitrary scale for the
389 // loop scale.
390 Loop.Scale =
391 ExitMass.isEmpty() ? InfiniteLoopScale : ExitMass.toScaled().inverse();
393 LLVM_DEBUG(dbgs() << " - exit-mass = " << ExitMass << " ("
394 << BlockMass::getFull() << " - " << TotalBackedgeMass
395 << ")\n"
396 << " - scale = " << Loop.Scale << "\n");
399 /// Package up a loop.
400 void BlockFrequencyInfoImplBase::packageLoop(LoopData &Loop) {
401 LLVM_DEBUG(dbgs() << "packaging-loop: " << getLoopName(Loop) << "\n");
403 // Clear the subloop exits to prevent quadratic memory usage.
404 for (const BlockNode &M : Loop.Nodes) {
405 if (auto *Loop = Working[M.Index].getPackagedLoop())
406 Loop->Exits.clear();
407 LLVM_DEBUG(dbgs() << " - node: " << getBlockName(M.Index) << "\n");
409 Loop.IsPackaged = true;
412 #ifndef NDEBUG
413 static void debugAssign(const BlockFrequencyInfoImplBase &BFI,
414 const DitheringDistributer &D, const BlockNode &T,
415 const BlockMass &M, const char *Desc) {
416 dbgs() << " => assign " << M << " (" << D.RemMass << ")";
417 if (Desc)
418 dbgs() << " [" << Desc << "]";
419 if (T.isValid())
420 dbgs() << " to " << BFI.getBlockName(T);
421 dbgs() << "\n";
423 #endif
425 void BlockFrequencyInfoImplBase::distributeMass(const BlockNode &Source,
426 LoopData *OuterLoop,
427 Distribution &Dist) {
428 BlockMass Mass = Working[Source.Index].getMass();
429 LLVM_DEBUG(dbgs() << " => mass: " << Mass << "\n");
431 // Distribute mass to successors as laid out in Dist.
432 DitheringDistributer D(Dist, Mass);
434 for (const Weight &W : Dist.Weights) {
435 // Check for a local edge (non-backedge and non-exit).
436 BlockMass Taken = D.takeMass(W.Amount);
437 if (W.Type == Weight::Local) {
438 Working[W.TargetNode.Index].getMass() += Taken;
439 LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, nullptr));
440 continue;
443 // Backedges and exits only make sense if we're processing a loop.
444 assert(OuterLoop && "backedge or exit outside of loop");
446 // Check for a backedge.
447 if (W.Type == Weight::Backedge) {
448 OuterLoop->BackedgeMass[OuterLoop->getHeaderIndex(W.TargetNode)] += Taken;
449 LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, "back"));
450 continue;
453 // This must be an exit.
454 assert(W.Type == Weight::Exit);
455 OuterLoop->Exits.push_back(std::make_pair(W.TargetNode, Taken));
456 LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, "exit"));
460 static void convertFloatingToInteger(BlockFrequencyInfoImplBase &BFI,
461 const Scaled64 &Min, const Scaled64 &Max) {
462 // Scale the Factor to a size that creates integers. Ideally, integers would
463 // be scaled so that Max == UINT64_MAX so that they can be best
464 // differentiated. However, in the presence of large frequency values, small
465 // frequencies are scaled down to 1, making it impossible to differentiate
466 // small, unequal numbers. When the spread between Min and Max frequencies
467 // fits well within MaxBits, we make the scale be at least 8.
468 const unsigned MaxBits = 64;
469 const unsigned SpreadBits = (Max / Min).lg();
470 Scaled64 ScalingFactor;
471 if (SpreadBits <= MaxBits - 3) {
472 // If the values are small enough, make the scaling factor at least 8 to
473 // allow distinguishing small values.
474 ScalingFactor = Min.inverse();
475 ScalingFactor <<= 3;
476 } else {
477 // If the values need more than MaxBits to be represented, saturate small
478 // frequency values down to 1 by using a scaling factor that benefits large
479 // frequency values.
480 ScalingFactor = Scaled64(1, MaxBits) / Max;
483 // Translate the floats to integers.
484 LLVM_DEBUG(dbgs() << "float-to-int: min = " << Min << ", max = " << Max
485 << ", factor = " << ScalingFactor << "\n");
486 for (size_t Index = 0; Index < BFI.Freqs.size(); ++Index) {
487 Scaled64 Scaled = BFI.Freqs[Index].Scaled * ScalingFactor;
488 BFI.Freqs[Index].Integer = std::max(UINT64_C(1), Scaled.toInt<uint64_t>());
489 LLVM_DEBUG(dbgs() << " - " << BFI.getBlockName(Index) << ": float = "
490 << BFI.Freqs[Index].Scaled << ", scaled = " << Scaled
491 << ", int = " << BFI.Freqs[Index].Integer << "\n");
495 /// Unwrap a loop package.
497 /// Visits all the members of a loop, adjusting their BlockData according to
498 /// the loop's pseudo-node.
499 static void unwrapLoop(BlockFrequencyInfoImplBase &BFI, LoopData &Loop) {
500 LLVM_DEBUG(dbgs() << "unwrap-loop-package: " << BFI.getLoopName(Loop)
501 << ": mass = " << Loop.Mass << ", scale = " << Loop.Scale
502 << "\n");
503 Loop.Scale *= Loop.Mass.toScaled();
504 Loop.IsPackaged = false;
505 LLVM_DEBUG(dbgs() << " => combined-scale = " << Loop.Scale << "\n");
507 // Propagate the head scale through the loop. Since members are visited in
508 // RPO, the head scale will be updated by the loop scale first, and then the
509 // final head scale will be used for updated the rest of the members.
510 for (const BlockNode &N : Loop.Nodes) {
511 const auto &Working = BFI.Working[N.Index];
512 Scaled64 &F = Working.isAPackage() ? Working.getPackagedLoop()->Scale
513 : BFI.Freqs[N.Index].Scaled;
514 Scaled64 New = Loop.Scale * F;
515 LLVM_DEBUG(dbgs() << " - " << BFI.getBlockName(N) << ": " << F << " => "
516 << New << "\n");
517 F = New;
521 void BlockFrequencyInfoImplBase::unwrapLoops() {
522 // Set initial frequencies from loop-local masses.
523 for (size_t Index = 0; Index < Working.size(); ++Index)
524 Freqs[Index].Scaled = Working[Index].Mass.toScaled();
526 for (LoopData &Loop : Loops)
527 unwrapLoop(*this, Loop);
530 void BlockFrequencyInfoImplBase::finalizeMetrics() {
531 // Unwrap loop packages in reverse post-order, tracking min and max
532 // frequencies.
533 auto Min = Scaled64::getLargest();
534 auto Max = Scaled64::getZero();
535 for (size_t Index = 0; Index < Working.size(); ++Index) {
536 // Update min/max scale.
537 Min = std::min(Min, Freqs[Index].Scaled);
538 Max = std::max(Max, Freqs[Index].Scaled);
541 // Convert to integers.
542 convertFloatingToInteger(*this, Min, Max);
544 // Clean up data structures.
545 cleanup(*this);
547 // Print out the final stats.
548 LLVM_DEBUG(dump());
551 BlockFrequency
552 BlockFrequencyInfoImplBase::getBlockFreq(const BlockNode &Node) const {
553 if (!Node.isValid())
554 return 0;
555 return Freqs[Node.Index].Integer;
558 Optional<uint64_t>
559 BlockFrequencyInfoImplBase::getBlockProfileCount(const Function &F,
560 const BlockNode &Node,
561 bool AllowSynthetic) const {
562 return getProfileCountFromFreq(F, getBlockFreq(Node).getFrequency(),
563 AllowSynthetic);
566 Optional<uint64_t>
567 BlockFrequencyInfoImplBase::getProfileCountFromFreq(const Function &F,
568 uint64_t Freq,
569 bool AllowSynthetic) const {
570 auto EntryCount = F.getEntryCount(AllowSynthetic);
571 if (!EntryCount)
572 return None;
573 // Use 128 bit APInt to do the arithmetic to avoid overflow.
574 APInt BlockCount(128, EntryCount.getCount());
575 APInt BlockFreq(128, Freq);
576 APInt EntryFreq(128, getEntryFreq());
577 BlockCount *= BlockFreq;
578 // Rounded division of BlockCount by EntryFreq. Since EntryFreq is unsigned
579 // lshr by 1 gives EntryFreq/2.
580 BlockCount = (BlockCount + EntryFreq.lshr(1)).udiv(EntryFreq);
581 return BlockCount.getLimitedValue();
584 bool
585 BlockFrequencyInfoImplBase::isIrrLoopHeader(const BlockNode &Node) {
586 if (!Node.isValid())
587 return false;
588 return IsIrrLoopHeader.test(Node.Index);
591 Scaled64
592 BlockFrequencyInfoImplBase::getFloatingBlockFreq(const BlockNode &Node) const {
593 if (!Node.isValid())
594 return Scaled64::getZero();
595 return Freqs[Node.Index].Scaled;
598 void BlockFrequencyInfoImplBase::setBlockFreq(const BlockNode &Node,
599 uint64_t Freq) {
600 assert(Node.isValid() && "Expected valid node");
601 assert(Node.Index < Freqs.size() && "Expected legal index");
602 Freqs[Node.Index].Integer = Freq;
605 std::string
606 BlockFrequencyInfoImplBase::getBlockName(const BlockNode &Node) const {
607 return {};
610 std::string
611 BlockFrequencyInfoImplBase::getLoopName(const LoopData &Loop) const {
612 return getBlockName(Loop.getHeader()) + (Loop.isIrreducible() ? "**" : "*");
615 raw_ostream &
616 BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS,
617 const BlockNode &Node) const {
618 return OS << getFloatingBlockFreq(Node);
621 raw_ostream &
622 BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS,
623 const BlockFrequency &Freq) const {
624 Scaled64 Block(Freq.getFrequency(), 0);
625 Scaled64 Entry(getEntryFreq(), 0);
627 return OS << Block / Entry;
630 void IrreducibleGraph::addNodesInLoop(const BFIBase::LoopData &OuterLoop) {
631 Start = OuterLoop.getHeader();
632 Nodes.reserve(OuterLoop.Nodes.size());
633 for (auto N : OuterLoop.Nodes)
634 addNode(N);
635 indexNodes();
638 void IrreducibleGraph::addNodesInFunction() {
639 Start = 0;
640 for (uint32_t Index = 0; Index < BFI.Working.size(); ++Index)
641 if (!BFI.Working[Index].isPackaged())
642 addNode(Index);
643 indexNodes();
646 void IrreducibleGraph::indexNodes() {
647 for (auto &I : Nodes)
648 Lookup[I.Node.Index] = &I;
651 void IrreducibleGraph::addEdge(IrrNode &Irr, const BlockNode &Succ,
652 const BFIBase::LoopData *OuterLoop) {
653 if (OuterLoop && OuterLoop->isHeader(Succ))
654 return;
655 auto L = Lookup.find(Succ.Index);
656 if (L == Lookup.end())
657 return;
658 IrrNode &SuccIrr = *L->second;
659 Irr.Edges.push_back(&SuccIrr);
660 SuccIrr.Edges.push_front(&Irr);
661 ++SuccIrr.NumIn;
664 namespace llvm {
666 template <> struct GraphTraits<IrreducibleGraph> {
667 using GraphT = bfi_detail::IrreducibleGraph;
668 using NodeRef = const GraphT::IrrNode *;
669 using ChildIteratorType = GraphT::IrrNode::iterator;
671 static NodeRef getEntryNode(const GraphT &G) { return G.StartIrr; }
672 static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
673 static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
676 } // end namespace llvm
678 /// Find extra irreducible headers.
680 /// Find entry blocks and other blocks with backedges, which exist when \c G
681 /// contains irreducible sub-SCCs.
682 static void findIrreducibleHeaders(
683 const BlockFrequencyInfoImplBase &BFI,
684 const IrreducibleGraph &G,
685 const std::vector<const IrreducibleGraph::IrrNode *> &SCC,
686 LoopData::NodeList &Headers, LoopData::NodeList &Others) {
687 // Map from nodes in the SCC to whether it's an entry block.
688 SmallDenseMap<const IrreducibleGraph::IrrNode *, bool, 8> InSCC;
690 // InSCC also acts the set of nodes in the graph. Seed it.
691 for (const auto *I : SCC)
692 InSCC[I] = false;
694 for (auto I = InSCC.begin(), E = InSCC.end(); I != E; ++I) {
695 auto &Irr = *I->first;
696 for (const auto *P : make_range(Irr.pred_begin(), Irr.pred_end())) {
697 if (InSCC.count(P))
698 continue;
700 // This is an entry block.
701 I->second = true;
702 Headers.push_back(Irr.Node);
703 LLVM_DEBUG(dbgs() << " => entry = " << BFI.getBlockName(Irr.Node)
704 << "\n");
705 break;
708 assert(Headers.size() >= 2 &&
709 "Expected irreducible CFG; -loop-info is likely invalid");
710 if (Headers.size() == InSCC.size()) {
711 // Every block is a header.
712 llvm::sort(Headers);
713 return;
716 // Look for extra headers from irreducible sub-SCCs.
717 for (const auto &I : InSCC) {
718 // Entry blocks are already headers.
719 if (I.second)
720 continue;
722 auto &Irr = *I.first;
723 for (const auto *P : make_range(Irr.pred_begin(), Irr.pred_end())) {
724 // Skip forward edges.
725 if (P->Node < Irr.Node)
726 continue;
728 // Skip predecessors from entry blocks. These can have inverted
729 // ordering.
730 if (InSCC.lookup(P))
731 continue;
733 // Store the extra header.
734 Headers.push_back(Irr.Node);
735 LLVM_DEBUG(dbgs() << " => extra = " << BFI.getBlockName(Irr.Node)
736 << "\n");
737 break;
739 if (Headers.back() == Irr.Node)
740 // Added this as a header.
741 continue;
743 // This is not a header.
744 Others.push_back(Irr.Node);
745 LLVM_DEBUG(dbgs() << " => other = " << BFI.getBlockName(Irr.Node) << "\n");
747 llvm::sort(Headers);
748 llvm::sort(Others);
751 static void createIrreducibleLoop(
752 BlockFrequencyInfoImplBase &BFI, const IrreducibleGraph &G,
753 LoopData *OuterLoop, std::list<LoopData>::iterator Insert,
754 const std::vector<const IrreducibleGraph::IrrNode *> &SCC) {
755 // Translate the SCC into RPO.
756 LLVM_DEBUG(dbgs() << " - found-scc\n");
758 LoopData::NodeList Headers;
759 LoopData::NodeList Others;
760 findIrreducibleHeaders(BFI, G, SCC, Headers, Others);
762 auto Loop = BFI.Loops.emplace(Insert, OuterLoop, Headers.begin(),
763 Headers.end(), Others.begin(), Others.end());
765 // Update loop hierarchy.
766 for (const auto &N : Loop->Nodes)
767 if (BFI.Working[N.Index].isLoopHeader())
768 BFI.Working[N.Index].Loop->Parent = &*Loop;
769 else
770 BFI.Working[N.Index].Loop = &*Loop;
773 iterator_range<std::list<LoopData>::iterator>
774 BlockFrequencyInfoImplBase::analyzeIrreducible(
775 const IrreducibleGraph &G, LoopData *OuterLoop,
776 std::list<LoopData>::iterator Insert) {
777 assert((OuterLoop == nullptr) == (Insert == Loops.begin()));
778 auto Prev = OuterLoop ? std::prev(Insert) : Loops.end();
780 for (auto I = scc_begin(G); !I.isAtEnd(); ++I) {
781 if (I->size() < 2)
782 continue;
784 // Translate the SCC into RPO.
785 createIrreducibleLoop(*this, G, OuterLoop, Insert, *I);
788 if (OuterLoop)
789 return make_range(std::next(Prev), Insert);
790 return make_range(Loops.begin(), Insert);
793 void
794 BlockFrequencyInfoImplBase::updateLoopWithIrreducible(LoopData &OuterLoop) {
795 OuterLoop.Exits.clear();
796 for (auto &Mass : OuterLoop.BackedgeMass)
797 Mass = BlockMass::getEmpty();
798 auto O = OuterLoop.Nodes.begin() + 1;
799 for (auto I = O, E = OuterLoop.Nodes.end(); I != E; ++I)
800 if (!Working[I->Index].isPackaged())
801 *O++ = *I;
802 OuterLoop.Nodes.erase(O, OuterLoop.Nodes.end());
805 void BlockFrequencyInfoImplBase::adjustLoopHeaderMass(LoopData &Loop) {
806 assert(Loop.isIrreducible() && "this only makes sense on irreducible loops");
808 // Since the loop has more than one header block, the mass flowing back into
809 // each header will be different. Adjust the mass in each header loop to
810 // reflect the masses flowing through back edges.
812 // To do this, we distribute the initial mass using the backedge masses
813 // as weights for the distribution.
814 BlockMass LoopMass = BlockMass::getFull();
815 Distribution Dist;
817 LLVM_DEBUG(dbgs() << "adjust-loop-header-mass:\n");
818 for (uint32_t H = 0; H < Loop.NumHeaders; ++H) {
819 auto &HeaderNode = Loop.Nodes[H];
820 auto &BackedgeMass = Loop.BackedgeMass[Loop.getHeaderIndex(HeaderNode)];
821 LLVM_DEBUG(dbgs() << " - Add back edge mass for node "
822 << getBlockName(HeaderNode) << ": " << BackedgeMass
823 << "\n");
824 if (BackedgeMass.getMass() > 0)
825 Dist.addLocal(HeaderNode, BackedgeMass.getMass());
826 else
827 LLVM_DEBUG(dbgs() << " Nothing added. Back edge mass is zero\n");
830 DitheringDistributer D(Dist, LoopMass);
832 LLVM_DEBUG(dbgs() << " Distribute loop mass " << LoopMass
833 << " to headers using above weights\n");
834 for (const Weight &W : Dist.Weights) {
835 BlockMass Taken = D.takeMass(W.Amount);
836 assert(W.Type == Weight::Local && "all weights should be local");
837 Working[W.TargetNode.Index].getMass() = Taken;
838 LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, nullptr));
842 void BlockFrequencyInfoImplBase::distributeIrrLoopHeaderMass(Distribution &Dist) {
843 BlockMass LoopMass = BlockMass::getFull();
844 DitheringDistributer D(Dist, LoopMass);
845 for (const Weight &W : Dist.Weights) {
846 BlockMass Taken = D.takeMass(W.Amount);
847 assert(W.Type == Weight::Local && "all weights should be local");
848 Working[W.TargetNode.Index].getMass() = Taken;
849 LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, nullptr));