1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements routines for folding instructions into simpler forms
10 // that do not require creating new instructions. This does constant folding
11 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
12 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value
13 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been
14 // simplified: This is usually true and assuming it simplifies the logic (if
15 // they have not been simplified then results are correct but maybe suboptimal).
17 //===----------------------------------------------------------------------===//
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/CaptureTracking.h"
25 #include "llvm/Analysis/CmpInstAnalysis.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/LoopAnalysisManager.h"
28 #include "llvm/Analysis/MemoryBuiltins.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/Analysis/VectorUtils.h"
31 #include "llvm/IR/ConstantRange.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/Dominators.h"
34 #include "llvm/IR/GetElementPtrTypeIterator.h"
35 #include "llvm/IR/GlobalAlias.h"
36 #include "llvm/IR/InstrTypes.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/Operator.h"
39 #include "llvm/IR/PatternMatch.h"
40 #include "llvm/IR/ValueHandle.h"
41 #include "llvm/Support/KnownBits.h"
44 using namespace llvm::PatternMatch
;
46 #define DEBUG_TYPE "instsimplify"
48 enum { RecursionLimit
= 3 };
50 STATISTIC(NumExpand
, "Number of expansions");
51 STATISTIC(NumReassoc
, "Number of reassociations");
53 static Value
*SimplifyAndInst(Value
*, Value
*, const SimplifyQuery
&, unsigned);
54 static Value
*simplifyUnOp(unsigned, Value
*, const SimplifyQuery
&, unsigned);
55 static Value
*simplifyFPUnOp(unsigned, Value
*, const FastMathFlags
&,
56 const SimplifyQuery
&, unsigned);
57 static Value
*SimplifyBinOp(unsigned, Value
*, Value
*, const SimplifyQuery
&,
59 static Value
*SimplifyBinOp(unsigned, Value
*, Value
*, const FastMathFlags
&,
60 const SimplifyQuery
&, unsigned);
61 static Value
*SimplifyCmpInst(unsigned, Value
*, Value
*, const SimplifyQuery
&,
63 static Value
*SimplifyICmpInst(unsigned Predicate
, Value
*LHS
, Value
*RHS
,
64 const SimplifyQuery
&Q
, unsigned MaxRecurse
);
65 static Value
*SimplifyOrInst(Value
*, Value
*, const SimplifyQuery
&, unsigned);
66 static Value
*SimplifyXorInst(Value
*, Value
*, const SimplifyQuery
&, unsigned);
67 static Value
*SimplifyCastInst(unsigned, Value
*, Type
*,
68 const SimplifyQuery
&, unsigned);
69 static Value
*SimplifyGEPInst(Type
*, ArrayRef
<Value
*>, const SimplifyQuery
&,
72 static Value
*foldSelectWithBinaryOp(Value
*Cond
, Value
*TrueVal
,
74 BinaryOperator::BinaryOps BinOpCode
;
75 if (auto *BO
= dyn_cast
<BinaryOperator
>(Cond
))
76 BinOpCode
= BO
->getOpcode();
80 CmpInst::Predicate ExpectedPred
, Pred1
, Pred2
;
81 if (BinOpCode
== BinaryOperator::Or
) {
82 ExpectedPred
= ICmpInst::ICMP_NE
;
83 } else if (BinOpCode
== BinaryOperator::And
) {
84 ExpectedPred
= ICmpInst::ICMP_EQ
;
88 // %A = icmp eq %TV, %FV
89 // %B = icmp eq %X, %Y (and one of these is a select operand)
91 // %D = select %C, %TV, %FV
95 // %A = icmp ne %TV, %FV
96 // %B = icmp ne %X, %Y (and one of these is a select operand)
98 // %D = select %C, %TV, %FV
102 if (!match(Cond
, m_c_BinOp(m_c_ICmp(Pred1
, m_Specific(TrueVal
),
103 m_Specific(FalseVal
)),
104 m_ICmp(Pred2
, m_Value(X
), m_Value(Y
)))) ||
105 Pred1
!= Pred2
|| Pred1
!= ExpectedPred
)
108 if (X
== TrueVal
|| X
== FalseVal
|| Y
== TrueVal
|| Y
== FalseVal
)
109 return BinOpCode
== BinaryOperator::Or
? TrueVal
: FalseVal
;
114 /// For a boolean type or a vector of boolean type, return false or a vector
115 /// with every element false.
116 static Constant
*getFalse(Type
*Ty
) {
117 return ConstantInt::getFalse(Ty
);
120 /// For a boolean type or a vector of boolean type, return true or a vector
121 /// with every element true.
122 static Constant
*getTrue(Type
*Ty
) {
123 return ConstantInt::getTrue(Ty
);
126 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
127 static bool isSameCompare(Value
*V
, CmpInst::Predicate Pred
, Value
*LHS
,
129 CmpInst
*Cmp
= dyn_cast
<CmpInst
>(V
);
132 CmpInst::Predicate CPred
= Cmp
->getPredicate();
133 Value
*CLHS
= Cmp
->getOperand(0), *CRHS
= Cmp
->getOperand(1);
134 if (CPred
== Pred
&& CLHS
== LHS
&& CRHS
== RHS
)
136 return CPred
== CmpInst::getSwappedPredicate(Pred
) && CLHS
== RHS
&&
140 /// Does the given value dominate the specified phi node?
141 static bool valueDominatesPHI(Value
*V
, PHINode
*P
, const DominatorTree
*DT
) {
142 Instruction
*I
= dyn_cast
<Instruction
>(V
);
144 // Arguments and constants dominate all instructions.
147 // If we are processing instructions (and/or basic blocks) that have not been
148 // fully added to a function, the parent nodes may still be null. Simply
149 // return the conservative answer in these cases.
150 if (!I
->getParent() || !P
->getParent() || !I
->getFunction())
153 // If we have a DominatorTree then do a precise test.
155 return DT
->dominates(I
, P
);
157 // Otherwise, if the instruction is in the entry block and is not an invoke,
158 // then it obviously dominates all phi nodes.
159 if (I
->getParent() == &I
->getFunction()->getEntryBlock() &&
166 /// Simplify "A op (B op' C)" by distributing op over op', turning it into
167 /// "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is
168 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
169 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
170 /// Returns the simplified value, or null if no simplification was performed.
171 static Value
*ExpandBinOp(Instruction::BinaryOps Opcode
, Value
*LHS
, Value
*RHS
,
172 Instruction::BinaryOps OpcodeToExpand
,
173 const SimplifyQuery
&Q
, unsigned MaxRecurse
) {
174 // Recursion is always used, so bail out at once if we already hit the limit.
178 // Check whether the expression has the form "(A op' B) op C".
179 if (BinaryOperator
*Op0
= dyn_cast
<BinaryOperator
>(LHS
))
180 if (Op0
->getOpcode() == OpcodeToExpand
) {
181 // It does! Try turning it into "(A op C) op' (B op C)".
182 Value
*A
= Op0
->getOperand(0), *B
= Op0
->getOperand(1), *C
= RHS
;
183 // Do "A op C" and "B op C" both simplify?
184 if (Value
*L
= SimplifyBinOp(Opcode
, A
, C
, Q
, MaxRecurse
))
185 if (Value
*R
= SimplifyBinOp(Opcode
, B
, C
, Q
, MaxRecurse
)) {
186 // They do! Return "L op' R" if it simplifies or is already available.
187 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
188 if ((L
== A
&& R
== B
) || (Instruction::isCommutative(OpcodeToExpand
)
189 && L
== B
&& R
== A
)) {
193 // Otherwise return "L op' R" if it simplifies.
194 if (Value
*V
= SimplifyBinOp(OpcodeToExpand
, L
, R
, Q
, MaxRecurse
)) {
201 // Check whether the expression has the form "A op (B op' C)".
202 if (BinaryOperator
*Op1
= dyn_cast
<BinaryOperator
>(RHS
))
203 if (Op1
->getOpcode() == OpcodeToExpand
) {
204 // It does! Try turning it into "(A op B) op' (A op C)".
205 Value
*A
= LHS
, *B
= Op1
->getOperand(0), *C
= Op1
->getOperand(1);
206 // Do "A op B" and "A op C" both simplify?
207 if (Value
*L
= SimplifyBinOp(Opcode
, A
, B
, Q
, MaxRecurse
))
208 if (Value
*R
= SimplifyBinOp(Opcode
, A
, C
, Q
, MaxRecurse
)) {
209 // They do! Return "L op' R" if it simplifies or is already available.
210 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
211 if ((L
== B
&& R
== C
) || (Instruction::isCommutative(OpcodeToExpand
)
212 && L
== C
&& R
== B
)) {
216 // Otherwise return "L op' R" if it simplifies.
217 if (Value
*V
= SimplifyBinOp(OpcodeToExpand
, L
, R
, Q
, MaxRecurse
)) {
227 /// Generic simplifications for associative binary operations.
228 /// Returns the simpler value, or null if none was found.
229 static Value
*SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode
,
230 Value
*LHS
, Value
*RHS
,
231 const SimplifyQuery
&Q
,
232 unsigned MaxRecurse
) {
233 assert(Instruction::isAssociative(Opcode
) && "Not an associative operation!");
235 // Recursion is always used, so bail out at once if we already hit the limit.
239 BinaryOperator
*Op0
= dyn_cast
<BinaryOperator
>(LHS
);
240 BinaryOperator
*Op1
= dyn_cast
<BinaryOperator
>(RHS
);
242 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
243 if (Op0
&& Op0
->getOpcode() == Opcode
) {
244 Value
*A
= Op0
->getOperand(0);
245 Value
*B
= Op0
->getOperand(1);
248 // Does "B op C" simplify?
249 if (Value
*V
= SimplifyBinOp(Opcode
, B
, C
, Q
, MaxRecurse
)) {
250 // It does! Return "A op V" if it simplifies or is already available.
251 // If V equals B then "A op V" is just the LHS.
252 if (V
== B
) return LHS
;
253 // Otherwise return "A op V" if it simplifies.
254 if (Value
*W
= SimplifyBinOp(Opcode
, A
, V
, Q
, MaxRecurse
)) {
261 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
262 if (Op1
&& Op1
->getOpcode() == Opcode
) {
264 Value
*B
= Op1
->getOperand(0);
265 Value
*C
= Op1
->getOperand(1);
267 // Does "A op B" simplify?
268 if (Value
*V
= SimplifyBinOp(Opcode
, A
, B
, Q
, MaxRecurse
)) {
269 // It does! Return "V op C" if it simplifies or is already available.
270 // If V equals B then "V op C" is just the RHS.
271 if (V
== B
) return RHS
;
272 // Otherwise return "V op C" if it simplifies.
273 if (Value
*W
= SimplifyBinOp(Opcode
, V
, C
, Q
, MaxRecurse
)) {
280 // The remaining transforms require commutativity as well as associativity.
281 if (!Instruction::isCommutative(Opcode
))
284 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
285 if (Op0
&& Op0
->getOpcode() == Opcode
) {
286 Value
*A
= Op0
->getOperand(0);
287 Value
*B
= Op0
->getOperand(1);
290 // Does "C op A" simplify?
291 if (Value
*V
= SimplifyBinOp(Opcode
, C
, A
, Q
, MaxRecurse
)) {
292 // It does! Return "V op B" if it simplifies or is already available.
293 // If V equals A then "V op B" is just the LHS.
294 if (V
== A
) return LHS
;
295 // Otherwise return "V op B" if it simplifies.
296 if (Value
*W
= SimplifyBinOp(Opcode
, V
, B
, Q
, MaxRecurse
)) {
303 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
304 if (Op1
&& Op1
->getOpcode() == Opcode
) {
306 Value
*B
= Op1
->getOperand(0);
307 Value
*C
= Op1
->getOperand(1);
309 // Does "C op A" simplify?
310 if (Value
*V
= SimplifyBinOp(Opcode
, C
, A
, Q
, MaxRecurse
)) {
311 // It does! Return "B op V" if it simplifies or is already available.
312 // If V equals C then "B op V" is just the RHS.
313 if (V
== C
) return RHS
;
314 // Otherwise return "B op V" if it simplifies.
315 if (Value
*W
= SimplifyBinOp(Opcode
, B
, V
, Q
, MaxRecurse
)) {
325 /// In the case of a binary operation with a select instruction as an operand,
326 /// try to simplify the binop by seeing whether evaluating it on both branches
327 /// of the select results in the same value. Returns the common value if so,
328 /// otherwise returns null.
329 static Value
*ThreadBinOpOverSelect(Instruction::BinaryOps Opcode
, Value
*LHS
,
330 Value
*RHS
, const SimplifyQuery
&Q
,
331 unsigned MaxRecurse
) {
332 // Recursion is always used, so bail out at once if we already hit the limit.
337 if (isa
<SelectInst
>(LHS
)) {
338 SI
= cast
<SelectInst
>(LHS
);
340 assert(isa
<SelectInst
>(RHS
) && "No select instruction operand!");
341 SI
= cast
<SelectInst
>(RHS
);
344 // Evaluate the BinOp on the true and false branches of the select.
348 TV
= SimplifyBinOp(Opcode
, SI
->getTrueValue(), RHS
, Q
, MaxRecurse
);
349 FV
= SimplifyBinOp(Opcode
, SI
->getFalseValue(), RHS
, Q
, MaxRecurse
);
351 TV
= SimplifyBinOp(Opcode
, LHS
, SI
->getTrueValue(), Q
, MaxRecurse
);
352 FV
= SimplifyBinOp(Opcode
, LHS
, SI
->getFalseValue(), Q
, MaxRecurse
);
355 // If they simplified to the same value, then return the common value.
356 // If they both failed to simplify then return null.
360 // If one branch simplified to undef, return the other one.
361 if (TV
&& isa
<UndefValue
>(TV
))
363 if (FV
&& isa
<UndefValue
>(FV
))
366 // If applying the operation did not change the true and false select values,
367 // then the result of the binop is the select itself.
368 if (TV
== SI
->getTrueValue() && FV
== SI
->getFalseValue())
371 // If one branch simplified and the other did not, and the simplified
372 // value is equal to the unsimplified one, return the simplified value.
373 // For example, select (cond, X, X & Z) & Z -> X & Z.
374 if ((FV
&& !TV
) || (TV
&& !FV
)) {
375 // Check that the simplified value has the form "X op Y" where "op" is the
376 // same as the original operation.
377 Instruction
*Simplified
= dyn_cast
<Instruction
>(FV
? FV
: TV
);
378 if (Simplified
&& Simplified
->getOpcode() == unsigned(Opcode
)) {
379 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
380 // We already know that "op" is the same as for the simplified value. See
381 // if the operands match too. If so, return the simplified value.
382 Value
*UnsimplifiedBranch
= FV
? SI
->getTrueValue() : SI
->getFalseValue();
383 Value
*UnsimplifiedLHS
= SI
== LHS
? UnsimplifiedBranch
: LHS
;
384 Value
*UnsimplifiedRHS
= SI
== LHS
? RHS
: UnsimplifiedBranch
;
385 if (Simplified
->getOperand(0) == UnsimplifiedLHS
&&
386 Simplified
->getOperand(1) == UnsimplifiedRHS
)
388 if (Simplified
->isCommutative() &&
389 Simplified
->getOperand(1) == UnsimplifiedLHS
&&
390 Simplified
->getOperand(0) == UnsimplifiedRHS
)
398 /// In the case of a comparison with a select instruction, try to simplify the
399 /// comparison by seeing whether both branches of the select result in the same
400 /// value. Returns the common value if so, otherwise returns null.
401 static Value
*ThreadCmpOverSelect(CmpInst::Predicate Pred
, Value
*LHS
,
402 Value
*RHS
, const SimplifyQuery
&Q
,
403 unsigned MaxRecurse
) {
404 // Recursion is always used, so bail out at once if we already hit the limit.
408 // Make sure the select is on the LHS.
409 if (!isa
<SelectInst
>(LHS
)) {
411 Pred
= CmpInst::getSwappedPredicate(Pred
);
413 assert(isa
<SelectInst
>(LHS
) && "Not comparing with a select instruction!");
414 SelectInst
*SI
= cast
<SelectInst
>(LHS
);
415 Value
*Cond
= SI
->getCondition();
416 Value
*TV
= SI
->getTrueValue();
417 Value
*FV
= SI
->getFalseValue();
419 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
420 // Does "cmp TV, RHS" simplify?
421 Value
*TCmp
= SimplifyCmpInst(Pred
, TV
, RHS
, Q
, MaxRecurse
);
423 // It not only simplified, it simplified to the select condition. Replace
425 TCmp
= getTrue(Cond
->getType());
427 // It didn't simplify. However if "cmp TV, RHS" is equal to the select
428 // condition then we can replace it with 'true'. Otherwise give up.
429 if (!isSameCompare(Cond
, Pred
, TV
, RHS
))
431 TCmp
= getTrue(Cond
->getType());
434 // Does "cmp FV, RHS" simplify?
435 Value
*FCmp
= SimplifyCmpInst(Pred
, FV
, RHS
, Q
, MaxRecurse
);
437 // It not only simplified, it simplified to the select condition. Replace
439 FCmp
= getFalse(Cond
->getType());
441 // It didn't simplify. However if "cmp FV, RHS" is equal to the select
442 // condition then we can replace it with 'false'. Otherwise give up.
443 if (!isSameCompare(Cond
, Pred
, FV
, RHS
))
445 FCmp
= getFalse(Cond
->getType());
448 // If both sides simplified to the same value, then use it as the result of
449 // the original comparison.
453 // The remaining cases only make sense if the select condition has the same
454 // type as the result of the comparison, so bail out if this is not so.
455 if (Cond
->getType()->isVectorTy() != RHS
->getType()->isVectorTy())
457 // If the false value simplified to false, then the result of the compare
458 // is equal to "Cond && TCmp". This also catches the case when the false
459 // value simplified to false and the true value to true, returning "Cond".
460 if (match(FCmp
, m_Zero()))
461 if (Value
*V
= SimplifyAndInst(Cond
, TCmp
, Q
, MaxRecurse
))
463 // If the true value simplified to true, then the result of the compare
464 // is equal to "Cond || FCmp".
465 if (match(TCmp
, m_One()))
466 if (Value
*V
= SimplifyOrInst(Cond
, FCmp
, Q
, MaxRecurse
))
468 // Finally, if the false value simplified to true and the true value to
469 // false, then the result of the compare is equal to "!Cond".
470 if (match(FCmp
, m_One()) && match(TCmp
, m_Zero()))
472 SimplifyXorInst(Cond
, Constant::getAllOnesValue(Cond
->getType()),
479 /// In the case of a binary operation with an operand that is a PHI instruction,
480 /// try to simplify the binop by seeing whether evaluating it on the incoming
481 /// phi values yields the same result for every value. If so returns the common
482 /// value, otherwise returns null.
483 static Value
*ThreadBinOpOverPHI(Instruction::BinaryOps Opcode
, Value
*LHS
,
484 Value
*RHS
, const SimplifyQuery
&Q
,
485 unsigned MaxRecurse
) {
486 // Recursion is always used, so bail out at once if we already hit the limit.
491 if (isa
<PHINode
>(LHS
)) {
492 PI
= cast
<PHINode
>(LHS
);
493 // Bail out if RHS and the phi may be mutually interdependent due to a loop.
494 if (!valueDominatesPHI(RHS
, PI
, Q
.DT
))
497 assert(isa
<PHINode
>(RHS
) && "No PHI instruction operand!");
498 PI
= cast
<PHINode
>(RHS
);
499 // Bail out if LHS and the phi may be mutually interdependent due to a loop.
500 if (!valueDominatesPHI(LHS
, PI
, Q
.DT
))
504 // Evaluate the BinOp on the incoming phi values.
505 Value
*CommonValue
= nullptr;
506 for (Value
*Incoming
: PI
->incoming_values()) {
507 // If the incoming value is the phi node itself, it can safely be skipped.
508 if (Incoming
== PI
) continue;
509 Value
*V
= PI
== LHS
?
510 SimplifyBinOp(Opcode
, Incoming
, RHS
, Q
, MaxRecurse
) :
511 SimplifyBinOp(Opcode
, LHS
, Incoming
, Q
, MaxRecurse
);
512 // If the operation failed to simplify, or simplified to a different value
513 // to previously, then give up.
514 if (!V
|| (CommonValue
&& V
!= CommonValue
))
522 /// In the case of a comparison with a PHI instruction, try to simplify the
523 /// comparison by seeing whether comparing with all of the incoming phi values
524 /// yields the same result every time. If so returns the common result,
525 /// otherwise returns null.
526 static Value
*ThreadCmpOverPHI(CmpInst::Predicate Pred
, Value
*LHS
, Value
*RHS
,
527 const SimplifyQuery
&Q
, unsigned MaxRecurse
) {
528 // Recursion is always used, so bail out at once if we already hit the limit.
532 // Make sure the phi is on the LHS.
533 if (!isa
<PHINode
>(LHS
)) {
535 Pred
= CmpInst::getSwappedPredicate(Pred
);
537 assert(isa
<PHINode
>(LHS
) && "Not comparing with a phi instruction!");
538 PHINode
*PI
= cast
<PHINode
>(LHS
);
540 // Bail out if RHS and the phi may be mutually interdependent due to a loop.
541 if (!valueDominatesPHI(RHS
, PI
, Q
.DT
))
544 // Evaluate the BinOp on the incoming phi values.
545 Value
*CommonValue
= nullptr;
546 for (Value
*Incoming
: PI
->incoming_values()) {
547 // If the incoming value is the phi node itself, it can safely be skipped.
548 if (Incoming
== PI
) continue;
549 Value
*V
= SimplifyCmpInst(Pred
, Incoming
, RHS
, Q
, MaxRecurse
);
550 // If the operation failed to simplify, or simplified to a different value
551 // to previously, then give up.
552 if (!V
|| (CommonValue
&& V
!= CommonValue
))
560 static Constant
*foldOrCommuteConstant(Instruction::BinaryOps Opcode
,
561 Value
*&Op0
, Value
*&Op1
,
562 const SimplifyQuery
&Q
) {
563 if (auto *CLHS
= dyn_cast
<Constant
>(Op0
)) {
564 if (auto *CRHS
= dyn_cast
<Constant
>(Op1
))
565 return ConstantFoldBinaryOpOperands(Opcode
, CLHS
, CRHS
, Q
.DL
);
567 // Canonicalize the constant to the RHS if this is a commutative operation.
568 if (Instruction::isCommutative(Opcode
))
574 /// Given operands for an Add, see if we can fold the result.
575 /// If not, this returns null.
576 static Value
*SimplifyAddInst(Value
*Op0
, Value
*Op1
, bool IsNSW
, bool IsNUW
,
577 const SimplifyQuery
&Q
, unsigned MaxRecurse
) {
578 if (Constant
*C
= foldOrCommuteConstant(Instruction::Add
, Op0
, Op1
, Q
))
581 // X + undef -> undef
582 if (match(Op1
, m_Undef()))
586 if (match(Op1
, m_Zero()))
589 // If two operands are negative, return 0.
590 if (isKnownNegation(Op0
, Op1
))
591 return Constant::getNullValue(Op0
->getType());
597 if (match(Op1
, m_Sub(m_Value(Y
), m_Specific(Op0
))) ||
598 match(Op0
, m_Sub(m_Value(Y
), m_Specific(Op1
))))
601 // X + ~X -> -1 since ~X = -X-1
602 Type
*Ty
= Op0
->getType();
603 if (match(Op0
, m_Not(m_Specific(Op1
))) ||
604 match(Op1
, m_Not(m_Specific(Op0
))))
605 return Constant::getAllOnesValue(Ty
);
607 // add nsw/nuw (xor Y, signmask), signmask --> Y
608 // The no-wrapping add guarantees that the top bit will be set by the add.
609 // Therefore, the xor must be clearing the already set sign bit of Y.
610 if ((IsNSW
|| IsNUW
) && match(Op1
, m_SignMask()) &&
611 match(Op0
, m_Xor(m_Value(Y
), m_SignMask())))
614 // add nuw %x, -1 -> -1, because %x can only be 0.
615 if (IsNUW
&& match(Op1
, m_AllOnes()))
616 return Op1
; // Which is -1.
619 if (MaxRecurse
&& Op0
->getType()->isIntOrIntVectorTy(1))
620 if (Value
*V
= SimplifyXorInst(Op0
, Op1
, Q
, MaxRecurse
-1))
623 // Try some generic simplifications for associative operations.
624 if (Value
*V
= SimplifyAssociativeBinOp(Instruction::Add
, Op0
, Op1
, Q
,
628 // Threading Add over selects and phi nodes is pointless, so don't bother.
629 // Threading over the select in "A + select(cond, B, C)" means evaluating
630 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
631 // only if B and C are equal. If B and C are equal then (since we assume
632 // that operands have already been simplified) "select(cond, B, C)" should
633 // have been simplified to the common value of B and C already. Analysing
634 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly
635 // for threading over phi nodes.
640 Value
*llvm::SimplifyAddInst(Value
*Op0
, Value
*Op1
, bool IsNSW
, bool IsNUW
,
641 const SimplifyQuery
&Query
) {
642 return ::SimplifyAddInst(Op0
, Op1
, IsNSW
, IsNUW
, Query
, RecursionLimit
);
645 /// Compute the base pointer and cumulative constant offsets for V.
647 /// This strips all constant offsets off of V, leaving it the base pointer, and
648 /// accumulates the total constant offset applied in the returned constant. It
649 /// returns 0 if V is not a pointer, and returns the constant '0' if there are
650 /// no constant offsets applied.
652 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't
653 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc.
655 static Constant
*stripAndComputeConstantOffsets(const DataLayout
&DL
, Value
*&V
,
656 bool AllowNonInbounds
= false) {
657 assert(V
->getType()->isPtrOrPtrVectorTy());
659 Type
*IntPtrTy
= DL
.getIntPtrType(V
->getType())->getScalarType();
660 APInt Offset
= APInt::getNullValue(IntPtrTy
->getIntegerBitWidth());
662 V
= V
->stripAndAccumulateConstantOffsets(DL
, Offset
, AllowNonInbounds
);
663 // As that strip may trace through `addrspacecast`, need to sext or trunc
664 // the offset calculated.
665 IntPtrTy
= DL
.getIntPtrType(V
->getType())->getScalarType();
666 Offset
= Offset
.sextOrTrunc(IntPtrTy
->getIntegerBitWidth());
668 Constant
*OffsetIntPtr
= ConstantInt::get(IntPtrTy
, Offset
);
669 if (V
->getType()->isVectorTy())
670 return ConstantVector::getSplat(V
->getType()->getVectorNumElements(),
675 /// Compute the constant difference between two pointer values.
676 /// If the difference is not a constant, returns zero.
677 static Constant
*computePointerDifference(const DataLayout
&DL
, Value
*LHS
,
679 Constant
*LHSOffset
= stripAndComputeConstantOffsets(DL
, LHS
);
680 Constant
*RHSOffset
= stripAndComputeConstantOffsets(DL
, RHS
);
682 // If LHS and RHS are not related via constant offsets to the same base
683 // value, there is nothing we can do here.
687 // Otherwise, the difference of LHS - RHS can be computed as:
689 // = (LHSOffset + Base) - (RHSOffset + Base)
690 // = LHSOffset - RHSOffset
691 return ConstantExpr::getSub(LHSOffset
, RHSOffset
);
694 /// Given operands for a Sub, see if we can fold the result.
695 /// If not, this returns null.
696 static Value
*SimplifySubInst(Value
*Op0
, Value
*Op1
, bool isNSW
, bool isNUW
,
697 const SimplifyQuery
&Q
, unsigned MaxRecurse
) {
698 if (Constant
*C
= foldOrCommuteConstant(Instruction::Sub
, Op0
, Op1
, Q
))
701 // X - undef -> undef
702 // undef - X -> undef
703 if (match(Op0
, m_Undef()) || match(Op1
, m_Undef()))
704 return UndefValue::get(Op0
->getType());
707 if (match(Op1
, m_Zero()))
712 return Constant::getNullValue(Op0
->getType());
714 // Is this a negation?
715 if (match(Op0
, m_Zero())) {
716 // 0 - X -> 0 if the sub is NUW.
718 return Constant::getNullValue(Op0
->getType());
720 KnownBits Known
= computeKnownBits(Op1
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
);
721 if (Known
.Zero
.isMaxSignedValue()) {
722 // Op1 is either 0 or the minimum signed value. If the sub is NSW, then
723 // Op1 must be 0 because negating the minimum signed value is undefined.
725 return Constant::getNullValue(Op0
->getType());
727 // 0 - X -> X if X is 0 or the minimum signed value.
732 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
733 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
734 Value
*X
= nullptr, *Y
= nullptr, *Z
= Op1
;
735 if (MaxRecurse
&& match(Op0
, m_Add(m_Value(X
), m_Value(Y
)))) { // (X + Y) - Z
736 // See if "V === Y - Z" simplifies.
737 if (Value
*V
= SimplifyBinOp(Instruction::Sub
, Y
, Z
, Q
, MaxRecurse
-1))
738 // It does! Now see if "X + V" simplifies.
739 if (Value
*W
= SimplifyBinOp(Instruction::Add
, X
, V
, Q
, MaxRecurse
-1)) {
740 // It does, we successfully reassociated!
744 // See if "V === X - Z" simplifies.
745 if (Value
*V
= SimplifyBinOp(Instruction::Sub
, X
, Z
, Q
, MaxRecurse
-1))
746 // It does! Now see if "Y + V" simplifies.
747 if (Value
*W
= SimplifyBinOp(Instruction::Add
, Y
, V
, Q
, MaxRecurse
-1)) {
748 // It does, we successfully reassociated!
754 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
755 // For example, X - (X + 1) -> -1
757 if (MaxRecurse
&& match(Op1
, m_Add(m_Value(Y
), m_Value(Z
)))) { // X - (Y + Z)
758 // See if "V === X - Y" simplifies.
759 if (Value
*V
= SimplifyBinOp(Instruction::Sub
, X
, Y
, Q
, MaxRecurse
-1))
760 // It does! Now see if "V - Z" simplifies.
761 if (Value
*W
= SimplifyBinOp(Instruction::Sub
, V
, Z
, Q
, MaxRecurse
-1)) {
762 // It does, we successfully reassociated!
766 // See if "V === X - Z" simplifies.
767 if (Value
*V
= SimplifyBinOp(Instruction::Sub
, X
, Z
, Q
, MaxRecurse
-1))
768 // It does! Now see if "V - Y" simplifies.
769 if (Value
*W
= SimplifyBinOp(Instruction::Sub
, V
, Y
, Q
, MaxRecurse
-1)) {
770 // It does, we successfully reassociated!
776 // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
777 // For example, X - (X - Y) -> Y.
779 if (MaxRecurse
&& match(Op1
, m_Sub(m_Value(X
), m_Value(Y
)))) // Z - (X - Y)
780 // See if "V === Z - X" simplifies.
781 if (Value
*V
= SimplifyBinOp(Instruction::Sub
, Z
, X
, Q
, MaxRecurse
-1))
782 // It does! Now see if "V + Y" simplifies.
783 if (Value
*W
= SimplifyBinOp(Instruction::Add
, V
, Y
, Q
, MaxRecurse
-1)) {
784 // It does, we successfully reassociated!
789 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
790 if (MaxRecurse
&& match(Op0
, m_Trunc(m_Value(X
))) &&
791 match(Op1
, m_Trunc(m_Value(Y
))))
792 if (X
->getType() == Y
->getType())
793 // See if "V === X - Y" simplifies.
794 if (Value
*V
= SimplifyBinOp(Instruction::Sub
, X
, Y
, Q
, MaxRecurse
-1))
795 // It does! Now see if "trunc V" simplifies.
796 if (Value
*W
= SimplifyCastInst(Instruction::Trunc
, V
, Op0
->getType(),
798 // It does, return the simplified "trunc V".
801 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
802 if (match(Op0
, m_PtrToInt(m_Value(X
))) &&
803 match(Op1
, m_PtrToInt(m_Value(Y
))))
804 if (Constant
*Result
= computePointerDifference(Q
.DL
, X
, Y
))
805 return ConstantExpr::getIntegerCast(Result
, Op0
->getType(), true);
808 if (MaxRecurse
&& Op0
->getType()->isIntOrIntVectorTy(1))
809 if (Value
*V
= SimplifyXorInst(Op0
, Op1
, Q
, MaxRecurse
-1))
812 // Threading Sub over selects and phi nodes is pointless, so don't bother.
813 // Threading over the select in "A - select(cond, B, C)" means evaluating
814 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
815 // only if B and C are equal. If B and C are equal then (since we assume
816 // that operands have already been simplified) "select(cond, B, C)" should
817 // have been simplified to the common value of B and C already. Analysing
818 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly
819 // for threading over phi nodes.
824 Value
*llvm::SimplifySubInst(Value
*Op0
, Value
*Op1
, bool isNSW
, bool isNUW
,
825 const SimplifyQuery
&Q
) {
826 return ::SimplifySubInst(Op0
, Op1
, isNSW
, isNUW
, Q
, RecursionLimit
);
829 /// Given operands for a Mul, see if we can fold the result.
830 /// If not, this returns null.
831 static Value
*SimplifyMulInst(Value
*Op0
, Value
*Op1
, const SimplifyQuery
&Q
,
832 unsigned MaxRecurse
) {
833 if (Constant
*C
= foldOrCommuteConstant(Instruction::Mul
, Op0
, Op1
, Q
))
838 if (match(Op1
, m_CombineOr(m_Undef(), m_Zero())))
839 return Constant::getNullValue(Op0
->getType());
842 if (match(Op1
, m_One()))
845 // (X / Y) * Y -> X if the division is exact.
847 if (Q
.IIQ
.UseInstrInfo
&&
849 m_Exact(m_IDiv(m_Value(X
), m_Specific(Op1
)))) || // (X / Y) * Y
850 match(Op1
, m_Exact(m_IDiv(m_Value(X
), m_Specific(Op0
)))))) // Y * (X / Y)
854 if (MaxRecurse
&& Op0
->getType()->isIntOrIntVectorTy(1))
855 if (Value
*V
= SimplifyAndInst(Op0
, Op1
, Q
, MaxRecurse
-1))
858 // Try some generic simplifications for associative operations.
859 if (Value
*V
= SimplifyAssociativeBinOp(Instruction::Mul
, Op0
, Op1
, Q
,
863 // Mul distributes over Add. Try some generic simplifications based on this.
864 if (Value
*V
= ExpandBinOp(Instruction::Mul
, Op0
, Op1
, Instruction::Add
,
868 // If the operation is with the result of a select instruction, check whether
869 // operating on either branch of the select always yields the same value.
870 if (isa
<SelectInst
>(Op0
) || isa
<SelectInst
>(Op1
))
871 if (Value
*V
= ThreadBinOpOverSelect(Instruction::Mul
, Op0
, Op1
, Q
,
875 // If the operation is with the result of a phi instruction, check whether
876 // operating on all incoming values of the phi always yields the same value.
877 if (isa
<PHINode
>(Op0
) || isa
<PHINode
>(Op1
))
878 if (Value
*V
= ThreadBinOpOverPHI(Instruction::Mul
, Op0
, Op1
, Q
,
885 Value
*llvm::SimplifyMulInst(Value
*Op0
, Value
*Op1
, const SimplifyQuery
&Q
) {
886 return ::SimplifyMulInst(Op0
, Op1
, Q
, RecursionLimit
);
889 /// Check for common or similar folds of integer division or integer remainder.
890 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem).
891 static Value
*simplifyDivRem(Value
*Op0
, Value
*Op1
, bool IsDiv
) {
892 Type
*Ty
= Op0
->getType();
894 // X / undef -> undef
895 // X % undef -> undef
896 if (match(Op1
, m_Undef()))
901 // We don't need to preserve faults!
902 if (match(Op1
, m_Zero()))
903 return UndefValue::get(Ty
);
905 // If any element of a constant divisor vector is zero or undef, the whole op
907 auto *Op1C
= dyn_cast
<Constant
>(Op1
);
908 if (Op1C
&& Ty
->isVectorTy()) {
909 unsigned NumElts
= Ty
->getVectorNumElements();
910 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
911 Constant
*Elt
= Op1C
->getAggregateElement(i
);
912 if (Elt
&& (Elt
->isNullValue() || isa
<UndefValue
>(Elt
)))
913 return UndefValue::get(Ty
);
919 if (match(Op0
, m_Undef()))
920 return Constant::getNullValue(Ty
);
924 if (match(Op0
, m_Zero()))
925 return Constant::getNullValue(Op0
->getType());
930 return IsDiv
? ConstantInt::get(Ty
, 1) : Constant::getNullValue(Ty
);
934 // If this is a boolean op (single-bit element type), we can't have
935 // division-by-zero or remainder-by-zero, so assume the divisor is 1.
936 // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1.
938 if (match(Op1
, m_One()) || Ty
->isIntOrIntVectorTy(1) ||
939 (match(Op1
, m_ZExt(m_Value(X
))) && X
->getType()->isIntOrIntVectorTy(1)))
940 return IsDiv
? Op0
: Constant::getNullValue(Ty
);
945 /// Given a predicate and two operands, return true if the comparison is true.
946 /// This is a helper for div/rem simplification where we return some other value
947 /// when we can prove a relationship between the operands.
948 static bool isICmpTrue(ICmpInst::Predicate Pred
, Value
*LHS
, Value
*RHS
,
949 const SimplifyQuery
&Q
, unsigned MaxRecurse
) {
950 Value
*V
= SimplifyICmpInst(Pred
, LHS
, RHS
, Q
, MaxRecurse
);
951 Constant
*C
= dyn_cast_or_null
<Constant
>(V
);
952 return (C
&& C
->isAllOnesValue());
955 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer
956 /// to simplify X % Y to X.
957 static bool isDivZero(Value
*X
, Value
*Y
, const SimplifyQuery
&Q
,
958 unsigned MaxRecurse
, bool IsSigned
) {
959 // Recursion is always used, so bail out at once if we already hit the limit.
966 // We require that 1 operand is a simple constant. That could be extended to
967 // 2 variables if we computed the sign bit for each.
969 // Make sure that a constant is not the minimum signed value because taking
970 // the abs() of that is undefined.
971 Type
*Ty
= X
->getType();
973 if (match(X
, m_APInt(C
)) && !C
->isMinSignedValue()) {
974 // Is the variable divisor magnitude always greater than the constant
975 // dividend magnitude?
976 // |Y| > |C| --> Y < -abs(C) or Y > abs(C)
977 Constant
*PosDividendC
= ConstantInt::get(Ty
, C
->abs());
978 Constant
*NegDividendC
= ConstantInt::get(Ty
, -C
->abs());
979 if (isICmpTrue(CmpInst::ICMP_SLT
, Y
, NegDividendC
, Q
, MaxRecurse
) ||
980 isICmpTrue(CmpInst::ICMP_SGT
, Y
, PosDividendC
, Q
, MaxRecurse
))
983 if (match(Y
, m_APInt(C
))) {
984 // Special-case: we can't take the abs() of a minimum signed value. If
985 // that's the divisor, then all we have to do is prove that the dividend
986 // is also not the minimum signed value.
987 if (C
->isMinSignedValue())
988 return isICmpTrue(CmpInst::ICMP_NE
, X
, Y
, Q
, MaxRecurse
);
990 // Is the variable dividend magnitude always less than the constant
991 // divisor magnitude?
992 // |X| < |C| --> X > -abs(C) and X < abs(C)
993 Constant
*PosDivisorC
= ConstantInt::get(Ty
, C
->abs());
994 Constant
*NegDivisorC
= ConstantInt::get(Ty
, -C
->abs());
995 if (isICmpTrue(CmpInst::ICMP_SGT
, X
, NegDivisorC
, Q
, MaxRecurse
) &&
996 isICmpTrue(CmpInst::ICMP_SLT
, X
, PosDivisorC
, Q
, MaxRecurse
))
1002 // IsSigned == false.
1003 // Is the dividend unsigned less than the divisor?
1004 return isICmpTrue(ICmpInst::ICMP_ULT
, X
, Y
, Q
, MaxRecurse
);
1007 /// These are simplifications common to SDiv and UDiv.
1008 static Value
*simplifyDiv(Instruction::BinaryOps Opcode
, Value
*Op0
, Value
*Op1
,
1009 const SimplifyQuery
&Q
, unsigned MaxRecurse
) {
1010 if (Constant
*C
= foldOrCommuteConstant(Opcode
, Op0
, Op1
, Q
))
1013 if (Value
*V
= simplifyDivRem(Op0
, Op1
, true))
1016 bool IsSigned
= Opcode
== Instruction::SDiv
;
1018 // (X * Y) / Y -> X if the multiplication does not overflow.
1020 if (match(Op0
, m_c_Mul(m_Value(X
), m_Specific(Op1
)))) {
1021 auto *Mul
= cast
<OverflowingBinaryOperator
>(Op0
);
1022 // If the Mul does not overflow, then we are good to go.
1023 if ((IsSigned
&& Q
.IIQ
.hasNoSignedWrap(Mul
)) ||
1024 (!IsSigned
&& Q
.IIQ
.hasNoUnsignedWrap(Mul
)))
1026 // If X has the form X = A / Y, then X * Y cannot overflow.
1027 if ((IsSigned
&& match(X
, m_SDiv(m_Value(), m_Specific(Op1
)))) ||
1028 (!IsSigned
&& match(X
, m_UDiv(m_Value(), m_Specific(Op1
)))))
1032 // (X rem Y) / Y -> 0
1033 if ((IsSigned
&& match(Op0
, m_SRem(m_Value(), m_Specific(Op1
)))) ||
1034 (!IsSigned
&& match(Op0
, m_URem(m_Value(), m_Specific(Op1
)))))
1035 return Constant::getNullValue(Op0
->getType());
1037 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow
1038 ConstantInt
*C1
, *C2
;
1039 if (!IsSigned
&& match(Op0
, m_UDiv(m_Value(X
), m_ConstantInt(C1
))) &&
1040 match(Op1
, m_ConstantInt(C2
))) {
1042 (void)C1
->getValue().umul_ov(C2
->getValue(), Overflow
);
1044 return Constant::getNullValue(Op0
->getType());
1047 // If the operation is with the result of a select instruction, check whether
1048 // operating on either branch of the select always yields the same value.
1049 if (isa
<SelectInst
>(Op0
) || isa
<SelectInst
>(Op1
))
1050 if (Value
*V
= ThreadBinOpOverSelect(Opcode
, Op0
, Op1
, Q
, MaxRecurse
))
1053 // If the operation is with the result of a phi instruction, check whether
1054 // operating on all incoming values of the phi always yields the same value.
1055 if (isa
<PHINode
>(Op0
) || isa
<PHINode
>(Op1
))
1056 if (Value
*V
= ThreadBinOpOverPHI(Opcode
, Op0
, Op1
, Q
, MaxRecurse
))
1059 if (isDivZero(Op0
, Op1
, Q
, MaxRecurse
, IsSigned
))
1060 return Constant::getNullValue(Op0
->getType());
1065 /// These are simplifications common to SRem and URem.
1066 static Value
*simplifyRem(Instruction::BinaryOps Opcode
, Value
*Op0
, Value
*Op1
,
1067 const SimplifyQuery
&Q
, unsigned MaxRecurse
) {
1068 if (Constant
*C
= foldOrCommuteConstant(Opcode
, Op0
, Op1
, Q
))
1071 if (Value
*V
= simplifyDivRem(Op0
, Op1
, false))
1074 // (X % Y) % Y -> X % Y
1075 if ((Opcode
== Instruction::SRem
&&
1076 match(Op0
, m_SRem(m_Value(), m_Specific(Op1
)))) ||
1077 (Opcode
== Instruction::URem
&&
1078 match(Op0
, m_URem(m_Value(), m_Specific(Op1
)))))
1081 // (X << Y) % X -> 0
1082 if (Q
.IIQ
.UseInstrInfo
&&
1083 ((Opcode
== Instruction::SRem
&&
1084 match(Op0
, m_NSWShl(m_Specific(Op1
), m_Value()))) ||
1085 (Opcode
== Instruction::URem
&&
1086 match(Op0
, m_NUWShl(m_Specific(Op1
), m_Value())))))
1087 return Constant::getNullValue(Op0
->getType());
1089 // If the operation is with the result of a select instruction, check whether
1090 // operating on either branch of the select always yields the same value.
1091 if (isa
<SelectInst
>(Op0
) || isa
<SelectInst
>(Op1
))
1092 if (Value
*V
= ThreadBinOpOverSelect(Opcode
, Op0
, Op1
, Q
, MaxRecurse
))
1095 // If the operation is with the result of a phi instruction, check whether
1096 // operating on all incoming values of the phi always yields the same value.
1097 if (isa
<PHINode
>(Op0
) || isa
<PHINode
>(Op1
))
1098 if (Value
*V
= ThreadBinOpOverPHI(Opcode
, Op0
, Op1
, Q
, MaxRecurse
))
1101 // If X / Y == 0, then X % Y == X.
1102 if (isDivZero(Op0
, Op1
, Q
, MaxRecurse
, Opcode
== Instruction::SRem
))
1108 /// Given operands for an SDiv, see if we can fold the result.
1109 /// If not, this returns null.
1110 static Value
*SimplifySDivInst(Value
*Op0
, Value
*Op1
, const SimplifyQuery
&Q
,
1111 unsigned MaxRecurse
) {
1112 // If two operands are negated and no signed overflow, return -1.
1113 if (isKnownNegation(Op0
, Op1
, /*NeedNSW=*/true))
1114 return Constant::getAllOnesValue(Op0
->getType());
1116 return simplifyDiv(Instruction::SDiv
, Op0
, Op1
, Q
, MaxRecurse
);
1119 Value
*llvm::SimplifySDivInst(Value
*Op0
, Value
*Op1
, const SimplifyQuery
&Q
) {
1120 return ::SimplifySDivInst(Op0
, Op1
, Q
, RecursionLimit
);
1123 /// Given operands for a UDiv, see if we can fold the result.
1124 /// If not, this returns null.
1125 static Value
*SimplifyUDivInst(Value
*Op0
, Value
*Op1
, const SimplifyQuery
&Q
,
1126 unsigned MaxRecurse
) {
1127 return simplifyDiv(Instruction::UDiv
, Op0
, Op1
, Q
, MaxRecurse
);
1130 Value
*llvm::SimplifyUDivInst(Value
*Op0
, Value
*Op1
, const SimplifyQuery
&Q
) {
1131 return ::SimplifyUDivInst(Op0
, Op1
, Q
, RecursionLimit
);
1134 /// Given operands for an SRem, see if we can fold the result.
1135 /// If not, this returns null.
1136 static Value
*SimplifySRemInst(Value
*Op0
, Value
*Op1
, const SimplifyQuery
&Q
,
1137 unsigned MaxRecurse
) {
1138 // If the divisor is 0, the result is undefined, so assume the divisor is -1.
1139 // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0
1141 if (match(Op1
, m_SExt(m_Value(X
))) && X
->getType()->isIntOrIntVectorTy(1))
1142 return ConstantInt::getNullValue(Op0
->getType());
1144 // If the two operands are negated, return 0.
1145 if (isKnownNegation(Op0
, Op1
))
1146 return ConstantInt::getNullValue(Op0
->getType());
1148 return simplifyRem(Instruction::SRem
, Op0
, Op1
, Q
, MaxRecurse
);
1151 Value
*llvm::SimplifySRemInst(Value
*Op0
, Value
*Op1
, const SimplifyQuery
&Q
) {
1152 return ::SimplifySRemInst(Op0
, Op1
, Q
, RecursionLimit
);
1155 /// Given operands for a URem, see if we can fold the result.
1156 /// If not, this returns null.
1157 static Value
*SimplifyURemInst(Value
*Op0
, Value
*Op1
, const SimplifyQuery
&Q
,
1158 unsigned MaxRecurse
) {
1159 return simplifyRem(Instruction::URem
, Op0
, Op1
, Q
, MaxRecurse
);
1162 Value
*llvm::SimplifyURemInst(Value
*Op0
, Value
*Op1
, const SimplifyQuery
&Q
) {
1163 return ::SimplifyURemInst(Op0
, Op1
, Q
, RecursionLimit
);
1166 /// Returns true if a shift by \c Amount always yields undef.
1167 static bool isUndefShift(Value
*Amount
) {
1168 Constant
*C
= dyn_cast
<Constant
>(Amount
);
1172 // X shift by undef -> undef because it may shift by the bitwidth.
1173 if (isa
<UndefValue
>(C
))
1176 // Shifting by the bitwidth or more is undefined.
1177 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(C
))
1178 if (CI
->getValue().getLimitedValue() >=
1179 CI
->getType()->getScalarSizeInBits())
1182 // If all lanes of a vector shift are undefined the whole shift is.
1183 if (isa
<ConstantVector
>(C
) || isa
<ConstantDataVector
>(C
)) {
1184 for (unsigned I
= 0, E
= C
->getType()->getVectorNumElements(); I
!= E
; ++I
)
1185 if (!isUndefShift(C
->getAggregateElement(I
)))
1193 /// Given operands for an Shl, LShr or AShr, see if we can fold the result.
1194 /// If not, this returns null.
1195 static Value
*SimplifyShift(Instruction::BinaryOps Opcode
, Value
*Op0
,
1196 Value
*Op1
, const SimplifyQuery
&Q
, unsigned MaxRecurse
) {
1197 if (Constant
*C
= foldOrCommuteConstant(Opcode
, Op0
, Op1
, Q
))
1200 // 0 shift by X -> 0
1201 if (match(Op0
, m_Zero()))
1202 return Constant::getNullValue(Op0
->getType());
1204 // X shift by 0 -> X
1205 // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones
1208 if (match(Op1
, m_Zero()) ||
1209 (match(Op1
, m_SExt(m_Value(X
))) && X
->getType()->isIntOrIntVectorTy(1)))
1212 // Fold undefined shifts.
1213 if (isUndefShift(Op1
))
1214 return UndefValue::get(Op0
->getType());
1216 // If the operation is with the result of a select instruction, check whether
1217 // operating on either branch of the select always yields the same value.
1218 if (isa
<SelectInst
>(Op0
) || isa
<SelectInst
>(Op1
))
1219 if (Value
*V
= ThreadBinOpOverSelect(Opcode
, Op0
, Op1
, Q
, MaxRecurse
))
1222 // If the operation is with the result of a phi instruction, check whether
1223 // operating on all incoming values of the phi always yields the same value.
1224 if (isa
<PHINode
>(Op0
) || isa
<PHINode
>(Op1
))
1225 if (Value
*V
= ThreadBinOpOverPHI(Opcode
, Op0
, Op1
, Q
, MaxRecurse
))
1228 // If any bits in the shift amount make that value greater than or equal to
1229 // the number of bits in the type, the shift is undefined.
1230 KnownBits Known
= computeKnownBits(Op1
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
);
1231 if (Known
.One
.getLimitedValue() >= Known
.getBitWidth())
1232 return UndefValue::get(Op0
->getType());
1234 // If all valid bits in the shift amount are known zero, the first operand is
1236 unsigned NumValidShiftBits
= Log2_32_Ceil(Known
.getBitWidth());
1237 if (Known
.countMinTrailingZeros() >= NumValidShiftBits
)
1243 /// Given operands for an Shl, LShr or AShr, see if we can
1244 /// fold the result. If not, this returns null.
1245 static Value
*SimplifyRightShift(Instruction::BinaryOps Opcode
, Value
*Op0
,
1246 Value
*Op1
, bool isExact
, const SimplifyQuery
&Q
,
1247 unsigned MaxRecurse
) {
1248 if (Value
*V
= SimplifyShift(Opcode
, Op0
, Op1
, Q
, MaxRecurse
))
1253 return Constant::getNullValue(Op0
->getType());
1256 // undef >> X -> undef (if it's exact)
1257 if (match(Op0
, m_Undef()))
1258 return isExact
? Op0
: Constant::getNullValue(Op0
->getType());
1260 // The low bit cannot be shifted out of an exact shift if it is set.
1262 KnownBits Op0Known
= computeKnownBits(Op0
, Q
.DL
, /*Depth=*/0, Q
.AC
, Q
.CxtI
, Q
.DT
);
1263 if (Op0Known
.One
[0])
1270 /// Given operands for an Shl, see if we can fold the result.
1271 /// If not, this returns null.
1272 static Value
*SimplifyShlInst(Value
*Op0
, Value
*Op1
, bool isNSW
, bool isNUW
,
1273 const SimplifyQuery
&Q
, unsigned MaxRecurse
) {
1274 if (Value
*V
= SimplifyShift(Instruction::Shl
, Op0
, Op1
, Q
, MaxRecurse
))
1278 // undef << X -> undef if (if it's NSW/NUW)
1279 if (match(Op0
, m_Undef()))
1280 return isNSW
|| isNUW
? Op0
: Constant::getNullValue(Op0
->getType());
1282 // (X >> A) << A -> X
1284 if (Q
.IIQ
.UseInstrInfo
&&
1285 match(Op0
, m_Exact(m_Shr(m_Value(X
), m_Specific(Op1
)))))
1288 // shl nuw i8 C, %x -> C iff C has sign bit set.
1289 if (isNUW
&& match(Op0
, m_Negative()))
1291 // NOTE: could use computeKnownBits() / LazyValueInfo,
1292 // but the cost-benefit analysis suggests it isn't worth it.
1297 Value
*llvm::SimplifyShlInst(Value
*Op0
, Value
*Op1
, bool isNSW
, bool isNUW
,
1298 const SimplifyQuery
&Q
) {
1299 return ::SimplifyShlInst(Op0
, Op1
, isNSW
, isNUW
, Q
, RecursionLimit
);
1302 /// Given operands for an LShr, see if we can fold the result.
1303 /// If not, this returns null.
1304 static Value
*SimplifyLShrInst(Value
*Op0
, Value
*Op1
, bool isExact
,
1305 const SimplifyQuery
&Q
, unsigned MaxRecurse
) {
1306 if (Value
*V
= SimplifyRightShift(Instruction::LShr
, Op0
, Op1
, isExact
, Q
,
1310 // (X << A) >> A -> X
1312 if (match(Op0
, m_NUWShl(m_Value(X
), m_Specific(Op1
))))
1315 // ((X << A) | Y) >> A -> X if effective width of Y is not larger than A.
1316 // We can return X as we do in the above case since OR alters no bits in X.
1317 // SimplifyDemandedBits in InstCombine can do more general optimization for
1318 // bit manipulation. This pattern aims to provide opportunities for other
1319 // optimizers by supporting a simple but common case in InstSimplify.
1321 const APInt
*ShRAmt
, *ShLAmt
;
1322 if (match(Op1
, m_APInt(ShRAmt
)) &&
1323 match(Op0
, m_c_Or(m_NUWShl(m_Value(X
), m_APInt(ShLAmt
)), m_Value(Y
))) &&
1324 *ShRAmt
== *ShLAmt
) {
1325 const KnownBits YKnown
= computeKnownBits(Y
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
);
1326 const unsigned Width
= Op0
->getType()->getScalarSizeInBits();
1327 const unsigned EffWidthY
= Width
- YKnown
.countMinLeadingZeros();
1328 if (ShRAmt
->uge(EffWidthY
))
1335 Value
*llvm::SimplifyLShrInst(Value
*Op0
, Value
*Op1
, bool isExact
,
1336 const SimplifyQuery
&Q
) {
1337 return ::SimplifyLShrInst(Op0
, Op1
, isExact
, Q
, RecursionLimit
);
1340 /// Given operands for an AShr, see if we can fold the result.
1341 /// If not, this returns null.
1342 static Value
*SimplifyAShrInst(Value
*Op0
, Value
*Op1
, bool isExact
,
1343 const SimplifyQuery
&Q
, unsigned MaxRecurse
) {
1344 if (Value
*V
= SimplifyRightShift(Instruction::AShr
, Op0
, Op1
, isExact
, Q
,
1348 // all ones >>a X -> -1
1349 // Do not return Op0 because it may contain undef elements if it's a vector.
1350 if (match(Op0
, m_AllOnes()))
1351 return Constant::getAllOnesValue(Op0
->getType());
1353 // (X << A) >> A -> X
1355 if (Q
.IIQ
.UseInstrInfo
&& match(Op0
, m_NSWShl(m_Value(X
), m_Specific(Op1
))))
1358 // Arithmetic shifting an all-sign-bit value is a no-op.
1359 unsigned NumSignBits
= ComputeNumSignBits(Op0
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
);
1360 if (NumSignBits
== Op0
->getType()->getScalarSizeInBits())
1366 Value
*llvm::SimplifyAShrInst(Value
*Op0
, Value
*Op1
, bool isExact
,
1367 const SimplifyQuery
&Q
) {
1368 return ::SimplifyAShrInst(Op0
, Op1
, isExact
, Q
, RecursionLimit
);
1371 /// Commuted variants are assumed to be handled by calling this function again
1372 /// with the parameters swapped.
1373 static Value
*simplifyUnsignedRangeCheck(ICmpInst
*ZeroICmp
,
1374 ICmpInst
*UnsignedICmp
, bool IsAnd
) {
1377 ICmpInst::Predicate EqPred
;
1378 if (!match(ZeroICmp
, m_ICmp(EqPred
, m_Value(Y
), m_Zero())) ||
1379 !ICmpInst::isEquality(EqPred
))
1382 ICmpInst::Predicate UnsignedPred
;
1383 if (match(UnsignedICmp
, m_ICmp(UnsignedPred
, m_Value(X
), m_Specific(Y
))) &&
1384 ICmpInst::isUnsigned(UnsignedPred
))
1386 else if (match(UnsignedICmp
,
1387 m_ICmp(UnsignedPred
, m_Specific(Y
), m_Value(X
))) &&
1388 ICmpInst::isUnsigned(UnsignedPred
))
1389 UnsignedPred
= ICmpInst::getSwappedPredicate(UnsignedPred
);
1393 // X < Y && Y != 0 --> X < Y
1394 // X < Y || Y != 0 --> Y != 0
1395 if (UnsignedPred
== ICmpInst::ICMP_ULT
&& EqPred
== ICmpInst::ICMP_NE
)
1396 return IsAnd
? UnsignedICmp
: ZeroICmp
;
1398 // X >= Y || Y != 0 --> true
1399 // X >= Y || Y == 0 --> X >= Y
1400 if (UnsignedPred
== ICmpInst::ICMP_UGE
&& !IsAnd
) {
1401 if (EqPred
== ICmpInst::ICMP_NE
)
1402 return getTrue(UnsignedICmp
->getType());
1403 return UnsignedICmp
;
1406 // X < Y && Y == 0 --> false
1407 if (UnsignedPred
== ICmpInst::ICMP_ULT
&& EqPred
== ICmpInst::ICMP_EQ
&&
1409 return getFalse(UnsignedICmp
->getType());
1414 /// Commuted variants are assumed to be handled by calling this function again
1415 /// with the parameters swapped.
1416 static Value
*simplifyAndOfICmpsWithSameOperands(ICmpInst
*Op0
, ICmpInst
*Op1
) {
1417 ICmpInst::Predicate Pred0
, Pred1
;
1419 if (!match(Op0
, m_ICmp(Pred0
, m_Value(A
), m_Value(B
))) ||
1420 !match(Op1
, m_ICmp(Pred1
, m_Specific(A
), m_Specific(B
))))
1423 // We have (icmp Pred0, A, B) & (icmp Pred1, A, B).
1424 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1425 // can eliminate Op1 from this 'and'.
1426 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0
, Pred1
))
1429 // Check for any combination of predicates that are guaranteed to be disjoint.
1430 if ((Pred0
== ICmpInst::getInversePredicate(Pred1
)) ||
1431 (Pred0
== ICmpInst::ICMP_EQ
&& ICmpInst::isFalseWhenEqual(Pred1
)) ||
1432 (Pred0
== ICmpInst::ICMP_SLT
&& Pred1
== ICmpInst::ICMP_SGT
) ||
1433 (Pred0
== ICmpInst::ICMP_ULT
&& Pred1
== ICmpInst::ICMP_UGT
))
1434 return getFalse(Op0
->getType());
1439 /// Commuted variants are assumed to be handled by calling this function again
1440 /// with the parameters swapped.
1441 static Value
*simplifyOrOfICmpsWithSameOperands(ICmpInst
*Op0
, ICmpInst
*Op1
) {
1442 ICmpInst::Predicate Pred0
, Pred1
;
1444 if (!match(Op0
, m_ICmp(Pred0
, m_Value(A
), m_Value(B
))) ||
1445 !match(Op1
, m_ICmp(Pred1
, m_Specific(A
), m_Specific(B
))))
1448 // We have (icmp Pred0, A, B) | (icmp Pred1, A, B).
1449 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1450 // can eliminate Op0 from this 'or'.
1451 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0
, Pred1
))
1454 // Check for any combination of predicates that cover the entire range of
1456 if ((Pred0
== ICmpInst::getInversePredicate(Pred1
)) ||
1457 (Pred0
== ICmpInst::ICMP_NE
&& ICmpInst::isTrueWhenEqual(Pred1
)) ||
1458 (Pred0
== ICmpInst::ICMP_SLE
&& Pred1
== ICmpInst::ICMP_SGE
) ||
1459 (Pred0
== ICmpInst::ICMP_ULE
&& Pred1
== ICmpInst::ICMP_UGE
))
1460 return getTrue(Op0
->getType());
1465 /// Test if a pair of compares with a shared operand and 2 constants has an
1466 /// empty set intersection, full set union, or if one compare is a superset of
1468 static Value
*simplifyAndOrOfICmpsWithConstants(ICmpInst
*Cmp0
, ICmpInst
*Cmp1
,
1470 // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)).
1471 if (Cmp0
->getOperand(0) != Cmp1
->getOperand(0))
1474 const APInt
*C0
, *C1
;
1475 if (!match(Cmp0
->getOperand(1), m_APInt(C0
)) ||
1476 !match(Cmp1
->getOperand(1), m_APInt(C1
)))
1479 auto Range0
= ConstantRange::makeExactICmpRegion(Cmp0
->getPredicate(), *C0
);
1480 auto Range1
= ConstantRange::makeExactICmpRegion(Cmp1
->getPredicate(), *C1
);
1482 // For and-of-compares, check if the intersection is empty:
1483 // (icmp X, C0) && (icmp X, C1) --> empty set --> false
1484 if (IsAnd
&& Range0
.intersectWith(Range1
).isEmptySet())
1485 return getFalse(Cmp0
->getType());
1487 // For or-of-compares, check if the union is full:
1488 // (icmp X, C0) || (icmp X, C1) --> full set --> true
1489 if (!IsAnd
&& Range0
.unionWith(Range1
).isFullSet())
1490 return getTrue(Cmp0
->getType());
1492 // Is one range a superset of the other?
1493 // If this is and-of-compares, take the smaller set:
1494 // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42
1495 // If this is or-of-compares, take the larger set:
1496 // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4
1497 if (Range0
.contains(Range1
))
1498 return IsAnd
? Cmp1
: Cmp0
;
1499 if (Range1
.contains(Range0
))
1500 return IsAnd
? Cmp0
: Cmp1
;
1505 static Value
*simplifyAndOrOfICmpsWithZero(ICmpInst
*Cmp0
, ICmpInst
*Cmp1
,
1507 ICmpInst::Predicate P0
= Cmp0
->getPredicate(), P1
= Cmp1
->getPredicate();
1508 if (!match(Cmp0
->getOperand(1), m_Zero()) ||
1509 !match(Cmp1
->getOperand(1), m_Zero()) || P0
!= P1
)
1512 if ((IsAnd
&& P0
!= ICmpInst::ICMP_NE
) || (!IsAnd
&& P1
!= ICmpInst::ICMP_EQ
))
1515 // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)".
1516 Value
*X
= Cmp0
->getOperand(0);
1517 Value
*Y
= Cmp1
->getOperand(0);
1519 // If one of the compares is a masked version of a (not) null check, then
1520 // that compare implies the other, so we eliminate the other. Optionally, look
1521 // through a pointer-to-int cast to match a null check of a pointer type.
1523 // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0
1524 // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0
1525 // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0
1526 // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0
1527 if (match(Y
, m_c_And(m_Specific(X
), m_Value())) ||
1528 match(Y
, m_c_And(m_PtrToInt(m_Specific(X
)), m_Value())))
1531 // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0
1532 // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0
1533 // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0
1534 // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0
1535 if (match(X
, m_c_And(m_Specific(Y
), m_Value())) ||
1536 match(X
, m_c_And(m_PtrToInt(m_Specific(Y
)), m_Value())))
1542 static Value
*simplifyAndOfICmpsWithAdd(ICmpInst
*Op0
, ICmpInst
*Op1
,
1543 const InstrInfoQuery
&IIQ
) {
1544 // (icmp (add V, C0), C1) & (icmp V, C0)
1545 ICmpInst::Predicate Pred0
, Pred1
;
1546 const APInt
*C0
, *C1
;
1548 if (!match(Op0
, m_ICmp(Pred0
, m_Add(m_Value(V
), m_APInt(C0
)), m_APInt(C1
))))
1551 if (!match(Op1
, m_ICmp(Pred1
, m_Specific(V
), m_Value())))
1554 auto *AddInst
= cast
<OverflowingBinaryOperator
>(Op0
->getOperand(0));
1555 if (AddInst
->getOperand(1) != Op1
->getOperand(1))
1558 Type
*ITy
= Op0
->getType();
1559 bool isNSW
= IIQ
.hasNoSignedWrap(AddInst
);
1560 bool isNUW
= IIQ
.hasNoUnsignedWrap(AddInst
);
1562 const APInt Delta
= *C1
- *C0
;
1563 if (C0
->isStrictlyPositive()) {
1565 if (Pred0
== ICmpInst::ICMP_ULT
&& Pred1
== ICmpInst::ICMP_SGT
)
1566 return getFalse(ITy
);
1567 if (Pred0
== ICmpInst::ICMP_SLT
&& Pred1
== ICmpInst::ICMP_SGT
&& isNSW
)
1568 return getFalse(ITy
);
1571 if (Pred0
== ICmpInst::ICMP_ULE
&& Pred1
== ICmpInst::ICMP_SGT
)
1572 return getFalse(ITy
);
1573 if (Pred0
== ICmpInst::ICMP_SLE
&& Pred1
== ICmpInst::ICMP_SGT
&& isNSW
)
1574 return getFalse(ITy
);
1577 if (C0
->getBoolValue() && isNUW
) {
1579 if (Pred0
== ICmpInst::ICMP_ULT
&& Pred1
== ICmpInst::ICMP_UGT
)
1580 return getFalse(ITy
);
1582 if (Pred0
== ICmpInst::ICMP_ULE
&& Pred1
== ICmpInst::ICMP_UGT
)
1583 return getFalse(ITy
);
1589 static Value
*simplifyAndOfICmps(ICmpInst
*Op0
, ICmpInst
*Op1
,
1590 const InstrInfoQuery
&IIQ
) {
1591 if (Value
*X
= simplifyUnsignedRangeCheck(Op0
, Op1
, /*IsAnd=*/true))
1593 if (Value
*X
= simplifyUnsignedRangeCheck(Op1
, Op0
, /*IsAnd=*/true))
1596 if (Value
*X
= simplifyAndOfICmpsWithSameOperands(Op0
, Op1
))
1598 if (Value
*X
= simplifyAndOfICmpsWithSameOperands(Op1
, Op0
))
1601 if (Value
*X
= simplifyAndOrOfICmpsWithConstants(Op0
, Op1
, true))
1604 if (Value
*X
= simplifyAndOrOfICmpsWithZero(Op0
, Op1
, true))
1607 if (Value
*X
= simplifyAndOfICmpsWithAdd(Op0
, Op1
, IIQ
))
1609 if (Value
*X
= simplifyAndOfICmpsWithAdd(Op1
, Op0
, IIQ
))
1615 static Value
*simplifyOrOfICmpsWithAdd(ICmpInst
*Op0
, ICmpInst
*Op1
,
1616 const InstrInfoQuery
&IIQ
) {
1617 // (icmp (add V, C0), C1) | (icmp V, C0)
1618 ICmpInst::Predicate Pred0
, Pred1
;
1619 const APInt
*C0
, *C1
;
1621 if (!match(Op0
, m_ICmp(Pred0
, m_Add(m_Value(V
), m_APInt(C0
)), m_APInt(C1
))))
1624 if (!match(Op1
, m_ICmp(Pred1
, m_Specific(V
), m_Value())))
1627 auto *AddInst
= cast
<BinaryOperator
>(Op0
->getOperand(0));
1628 if (AddInst
->getOperand(1) != Op1
->getOperand(1))
1631 Type
*ITy
= Op0
->getType();
1632 bool isNSW
= IIQ
.hasNoSignedWrap(AddInst
);
1633 bool isNUW
= IIQ
.hasNoUnsignedWrap(AddInst
);
1635 const APInt Delta
= *C1
- *C0
;
1636 if (C0
->isStrictlyPositive()) {
1638 if (Pred0
== ICmpInst::ICMP_UGE
&& Pred1
== ICmpInst::ICMP_SLE
)
1639 return getTrue(ITy
);
1640 if (Pred0
== ICmpInst::ICMP_SGE
&& Pred1
== ICmpInst::ICMP_SLE
&& isNSW
)
1641 return getTrue(ITy
);
1644 if (Pred0
== ICmpInst::ICMP_UGT
&& Pred1
== ICmpInst::ICMP_SLE
)
1645 return getTrue(ITy
);
1646 if (Pred0
== ICmpInst::ICMP_SGT
&& Pred1
== ICmpInst::ICMP_SLE
&& isNSW
)
1647 return getTrue(ITy
);
1650 if (C0
->getBoolValue() && isNUW
) {
1652 if (Pred0
== ICmpInst::ICMP_UGE
&& Pred1
== ICmpInst::ICMP_ULE
)
1653 return getTrue(ITy
);
1655 if (Pred0
== ICmpInst::ICMP_UGT
&& Pred1
== ICmpInst::ICMP_ULE
)
1656 return getTrue(ITy
);
1662 static Value
*simplifyOrOfICmps(ICmpInst
*Op0
, ICmpInst
*Op1
,
1663 const InstrInfoQuery
&IIQ
) {
1664 if (Value
*X
= simplifyUnsignedRangeCheck(Op0
, Op1
, /*IsAnd=*/false))
1666 if (Value
*X
= simplifyUnsignedRangeCheck(Op1
, Op0
, /*IsAnd=*/false))
1669 if (Value
*X
= simplifyOrOfICmpsWithSameOperands(Op0
, Op1
))
1671 if (Value
*X
= simplifyOrOfICmpsWithSameOperands(Op1
, Op0
))
1674 if (Value
*X
= simplifyAndOrOfICmpsWithConstants(Op0
, Op1
, false))
1677 if (Value
*X
= simplifyAndOrOfICmpsWithZero(Op0
, Op1
, false))
1680 if (Value
*X
= simplifyOrOfICmpsWithAdd(Op0
, Op1
, IIQ
))
1682 if (Value
*X
= simplifyOrOfICmpsWithAdd(Op1
, Op0
, IIQ
))
1688 static Value
*simplifyAndOrOfFCmps(const TargetLibraryInfo
*TLI
,
1689 FCmpInst
*LHS
, FCmpInst
*RHS
, bool IsAnd
) {
1690 Value
*LHS0
= LHS
->getOperand(0), *LHS1
= LHS
->getOperand(1);
1691 Value
*RHS0
= RHS
->getOperand(0), *RHS1
= RHS
->getOperand(1);
1692 if (LHS0
->getType() != RHS0
->getType())
1695 FCmpInst::Predicate PredL
= LHS
->getPredicate(), PredR
= RHS
->getPredicate();
1696 if ((PredL
== FCmpInst::FCMP_ORD
&& PredR
== FCmpInst::FCMP_ORD
&& IsAnd
) ||
1697 (PredL
== FCmpInst::FCMP_UNO
&& PredR
== FCmpInst::FCMP_UNO
&& !IsAnd
)) {
1698 // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y
1699 // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X
1700 // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y
1701 // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X
1702 // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y
1703 // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X
1704 // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y
1705 // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X
1706 if ((isKnownNeverNaN(LHS0
, TLI
) && (LHS1
== RHS0
|| LHS1
== RHS1
)) ||
1707 (isKnownNeverNaN(LHS1
, TLI
) && (LHS0
== RHS0
|| LHS0
== RHS1
)))
1710 // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y
1711 // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X
1712 // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y
1713 // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X
1714 // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y
1715 // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X
1716 // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y
1717 // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X
1718 if ((isKnownNeverNaN(RHS0
, TLI
) && (RHS1
== LHS0
|| RHS1
== LHS1
)) ||
1719 (isKnownNeverNaN(RHS1
, TLI
) && (RHS0
== LHS0
|| RHS0
== LHS1
)))
1726 static Value
*simplifyAndOrOfCmps(const SimplifyQuery
&Q
,
1727 Value
*Op0
, Value
*Op1
, bool IsAnd
) {
1728 // Look through casts of the 'and' operands to find compares.
1729 auto *Cast0
= dyn_cast
<CastInst
>(Op0
);
1730 auto *Cast1
= dyn_cast
<CastInst
>(Op1
);
1731 if (Cast0
&& Cast1
&& Cast0
->getOpcode() == Cast1
->getOpcode() &&
1732 Cast0
->getSrcTy() == Cast1
->getSrcTy()) {
1733 Op0
= Cast0
->getOperand(0);
1734 Op1
= Cast1
->getOperand(0);
1738 auto *ICmp0
= dyn_cast
<ICmpInst
>(Op0
);
1739 auto *ICmp1
= dyn_cast
<ICmpInst
>(Op1
);
1741 V
= IsAnd
? simplifyAndOfICmps(ICmp0
, ICmp1
, Q
.IIQ
)
1742 : simplifyOrOfICmps(ICmp0
, ICmp1
, Q
.IIQ
);
1744 auto *FCmp0
= dyn_cast
<FCmpInst
>(Op0
);
1745 auto *FCmp1
= dyn_cast
<FCmpInst
>(Op1
);
1747 V
= simplifyAndOrOfFCmps(Q
.TLI
, FCmp0
, FCmp1
, IsAnd
);
1754 // If we looked through casts, we can only handle a constant simplification
1755 // because we are not allowed to create a cast instruction here.
1756 if (auto *C
= dyn_cast
<Constant
>(V
))
1757 return ConstantExpr::getCast(Cast0
->getOpcode(), C
, Cast0
->getType());
1762 /// Given operands for an And, see if we can fold the result.
1763 /// If not, this returns null.
1764 static Value
*SimplifyAndInst(Value
*Op0
, Value
*Op1
, const SimplifyQuery
&Q
,
1765 unsigned MaxRecurse
) {
1766 if (Constant
*C
= foldOrCommuteConstant(Instruction::And
, Op0
, Op1
, Q
))
1770 if (match(Op1
, m_Undef()))
1771 return Constant::getNullValue(Op0
->getType());
1778 if (match(Op1
, m_Zero()))
1779 return Constant::getNullValue(Op0
->getType());
1782 if (match(Op1
, m_AllOnes()))
1785 // A & ~A = ~A & A = 0
1786 if (match(Op0
, m_Not(m_Specific(Op1
))) ||
1787 match(Op1
, m_Not(m_Specific(Op0
))))
1788 return Constant::getNullValue(Op0
->getType());
1791 if (match(Op0
, m_c_Or(m_Specific(Op1
), m_Value())))
1795 if (match(Op1
, m_c_Or(m_Specific(Op0
), m_Value())))
1798 // A mask that only clears known zeros of a shifted value is a no-op.
1802 if (match(Op1
, m_APInt(Mask
))) {
1803 // If all bits in the inverted and shifted mask are clear:
1804 // and (shl X, ShAmt), Mask --> shl X, ShAmt
1805 if (match(Op0
, m_Shl(m_Value(X
), m_APInt(ShAmt
))) &&
1806 (~(*Mask
)).lshr(*ShAmt
).isNullValue())
1809 // If all bits in the inverted and shifted mask are clear:
1810 // and (lshr X, ShAmt), Mask --> lshr X, ShAmt
1811 if (match(Op0
, m_LShr(m_Value(X
), m_APInt(ShAmt
))) &&
1812 (~(*Mask
)).shl(*ShAmt
).isNullValue())
1816 // A & (-A) = A if A is a power of two or zero.
1817 if (match(Op0
, m_Neg(m_Specific(Op1
))) ||
1818 match(Op1
, m_Neg(m_Specific(Op0
)))) {
1819 if (isKnownToBeAPowerOfTwo(Op0
, Q
.DL
, /*OrZero*/ true, 0, Q
.AC
, Q
.CxtI
,
1822 if (isKnownToBeAPowerOfTwo(Op1
, Q
.DL
, /*OrZero*/ true, 0, Q
.AC
, Q
.CxtI
,
1827 // This is a similar pattern used for checking if a value is a power-of-2:
1828 // (A - 1) & A --> 0 (if A is a power-of-2 or 0)
1829 // A & (A - 1) --> 0 (if A is a power-of-2 or 0)
1830 if (match(Op0
, m_Add(m_Specific(Op1
), m_AllOnes())) &&
1831 isKnownToBeAPowerOfTwo(Op1
, Q
.DL
, /*OrZero*/ true, 0, Q
.AC
, Q
.CxtI
, Q
.DT
))
1832 return Constant::getNullValue(Op1
->getType());
1833 if (match(Op1
, m_Add(m_Specific(Op0
), m_AllOnes())) &&
1834 isKnownToBeAPowerOfTwo(Op0
, Q
.DL
, /*OrZero*/ true, 0, Q
.AC
, Q
.CxtI
, Q
.DT
))
1835 return Constant::getNullValue(Op0
->getType());
1837 if (Value
*V
= simplifyAndOrOfCmps(Q
, Op0
, Op1
, true))
1840 // Try some generic simplifications for associative operations.
1841 if (Value
*V
= SimplifyAssociativeBinOp(Instruction::And
, Op0
, Op1
, Q
,
1845 // And distributes over Or. Try some generic simplifications based on this.
1846 if (Value
*V
= ExpandBinOp(Instruction::And
, Op0
, Op1
, Instruction::Or
,
1850 // And distributes over Xor. Try some generic simplifications based on this.
1851 if (Value
*V
= ExpandBinOp(Instruction::And
, Op0
, Op1
, Instruction::Xor
,
1855 // If the operation is with the result of a select instruction, check whether
1856 // operating on either branch of the select always yields the same value.
1857 if (isa
<SelectInst
>(Op0
) || isa
<SelectInst
>(Op1
))
1858 if (Value
*V
= ThreadBinOpOverSelect(Instruction::And
, Op0
, Op1
, Q
,
1862 // If the operation is with the result of a phi instruction, check whether
1863 // operating on all incoming values of the phi always yields the same value.
1864 if (isa
<PHINode
>(Op0
) || isa
<PHINode
>(Op1
))
1865 if (Value
*V
= ThreadBinOpOverPHI(Instruction::And
, Op0
, Op1
, Q
,
1869 // Assuming the effective width of Y is not larger than A, i.e. all bits
1870 // from X and Y are disjoint in (X << A) | Y,
1871 // if the mask of this AND op covers all bits of X or Y, while it covers
1872 // no bits from the other, we can bypass this AND op. E.g.,
1873 // ((X << A) | Y) & Mask -> Y,
1874 // if Mask = ((1 << effective_width_of(Y)) - 1)
1875 // ((X << A) | Y) & Mask -> X << A,
1876 // if Mask = ((1 << effective_width_of(X)) - 1) << A
1877 // SimplifyDemandedBits in InstCombine can optimize the general case.
1878 // This pattern aims to help other passes for a common case.
1879 Value
*Y
, *XShifted
;
1880 if (match(Op1
, m_APInt(Mask
)) &&
1881 match(Op0
, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X
), m_APInt(ShAmt
)),
1884 const unsigned Width
= Op0
->getType()->getScalarSizeInBits();
1885 const unsigned ShftCnt
= ShAmt
->getLimitedValue(Width
);
1886 const KnownBits YKnown
= computeKnownBits(Y
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
);
1887 const unsigned EffWidthY
= Width
- YKnown
.countMinLeadingZeros();
1888 if (EffWidthY
<= ShftCnt
) {
1889 const KnownBits XKnown
= computeKnownBits(X
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
,
1891 const unsigned EffWidthX
= Width
- XKnown
.countMinLeadingZeros();
1892 const APInt EffBitsY
= APInt::getLowBitsSet(Width
, EffWidthY
);
1893 const APInt EffBitsX
= APInt::getLowBitsSet(Width
, EffWidthX
) << ShftCnt
;
1894 // If the mask is extracting all bits from X or Y as is, we can skip
1896 if (EffBitsY
.isSubsetOf(*Mask
) && !EffBitsX
.intersects(*Mask
))
1898 if (EffBitsX
.isSubsetOf(*Mask
) && !EffBitsY
.intersects(*Mask
))
1906 Value
*llvm::SimplifyAndInst(Value
*Op0
, Value
*Op1
, const SimplifyQuery
&Q
) {
1907 return ::SimplifyAndInst(Op0
, Op1
, Q
, RecursionLimit
);
1910 /// Given operands for an Or, see if we can fold the result.
1911 /// If not, this returns null.
1912 static Value
*SimplifyOrInst(Value
*Op0
, Value
*Op1
, const SimplifyQuery
&Q
,
1913 unsigned MaxRecurse
) {
1914 if (Constant
*C
= foldOrCommuteConstant(Instruction::Or
, Op0
, Op1
, Q
))
1919 // Do not return Op1 because it may contain undef elements if it's a vector.
1920 if (match(Op1
, m_Undef()) || match(Op1
, m_AllOnes()))
1921 return Constant::getAllOnesValue(Op0
->getType());
1925 if (Op0
== Op1
|| match(Op1
, m_Zero()))
1928 // A | ~A = ~A | A = -1
1929 if (match(Op0
, m_Not(m_Specific(Op1
))) ||
1930 match(Op1
, m_Not(m_Specific(Op0
))))
1931 return Constant::getAllOnesValue(Op0
->getType());
1934 if (match(Op0
, m_c_And(m_Specific(Op1
), m_Value())))
1938 if (match(Op1
, m_c_And(m_Specific(Op0
), m_Value())))
1941 // ~(A & ?) | A = -1
1942 if (match(Op0
, m_Not(m_c_And(m_Specific(Op1
), m_Value()))))
1943 return Constant::getAllOnesValue(Op1
->getType());
1945 // A | ~(A & ?) = -1
1946 if (match(Op1
, m_Not(m_c_And(m_Specific(Op1
), m_Value()))))
1947 return Constant::getAllOnesValue(Op0
->getType());
1950 // (A & ~B) | (A ^ B) -> (A ^ B)
1951 // (~B & A) | (A ^ B) -> (A ^ B)
1952 // (A & ~B) | (B ^ A) -> (B ^ A)
1953 // (~B & A) | (B ^ A) -> (B ^ A)
1954 if (match(Op1
, m_Xor(m_Value(A
), m_Value(B
))) &&
1955 (match(Op0
, m_c_And(m_Specific(A
), m_Not(m_Specific(B
)))) ||
1956 match(Op0
, m_c_And(m_Not(m_Specific(A
)), m_Specific(B
)))))
1959 // Commute the 'or' operands.
1960 // (A ^ B) | (A & ~B) -> (A ^ B)
1961 // (A ^ B) | (~B & A) -> (A ^ B)
1962 // (B ^ A) | (A & ~B) -> (B ^ A)
1963 // (B ^ A) | (~B & A) -> (B ^ A)
1964 if (match(Op0
, m_Xor(m_Value(A
), m_Value(B
))) &&
1965 (match(Op1
, m_c_And(m_Specific(A
), m_Not(m_Specific(B
)))) ||
1966 match(Op1
, m_c_And(m_Not(m_Specific(A
)), m_Specific(B
)))))
1969 // (A & B) | (~A ^ B) -> (~A ^ B)
1970 // (B & A) | (~A ^ B) -> (~A ^ B)
1971 // (A & B) | (B ^ ~A) -> (B ^ ~A)
1972 // (B & A) | (B ^ ~A) -> (B ^ ~A)
1973 if (match(Op0
, m_And(m_Value(A
), m_Value(B
))) &&
1974 (match(Op1
, m_c_Xor(m_Specific(A
), m_Not(m_Specific(B
)))) ||
1975 match(Op1
, m_c_Xor(m_Not(m_Specific(A
)), m_Specific(B
)))))
1978 // (~A ^ B) | (A & B) -> (~A ^ B)
1979 // (~A ^ B) | (B & A) -> (~A ^ B)
1980 // (B ^ ~A) | (A & B) -> (B ^ ~A)
1981 // (B ^ ~A) | (B & A) -> (B ^ ~A)
1982 if (match(Op1
, m_And(m_Value(A
), m_Value(B
))) &&
1983 (match(Op0
, m_c_Xor(m_Specific(A
), m_Not(m_Specific(B
)))) ||
1984 match(Op0
, m_c_Xor(m_Not(m_Specific(A
)), m_Specific(B
)))))
1987 if (Value
*V
= simplifyAndOrOfCmps(Q
, Op0
, Op1
, false))
1990 // Try some generic simplifications for associative operations.
1991 if (Value
*V
= SimplifyAssociativeBinOp(Instruction::Or
, Op0
, Op1
, Q
,
1995 // Or distributes over And. Try some generic simplifications based on this.
1996 if (Value
*V
= ExpandBinOp(Instruction::Or
, Op0
, Op1
, Instruction::And
, Q
,
2000 // If the operation is with the result of a select instruction, check whether
2001 // operating on either branch of the select always yields the same value.
2002 if (isa
<SelectInst
>(Op0
) || isa
<SelectInst
>(Op1
))
2003 if (Value
*V
= ThreadBinOpOverSelect(Instruction::Or
, Op0
, Op1
, Q
,
2007 // (A & C1)|(B & C2)
2008 const APInt
*C1
, *C2
;
2009 if (match(Op0
, m_And(m_Value(A
), m_APInt(C1
))) &&
2010 match(Op1
, m_And(m_Value(B
), m_APInt(C2
)))) {
2012 // (A & C1)|(B & C2)
2013 // If we have: ((V + N) & C1) | (V & C2)
2014 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
2015 // replace with V+N.
2017 if (C2
->isMask() && // C2 == 0+1+
2018 match(A
, m_c_Add(m_Specific(B
), m_Value(N
)))) {
2019 // Add commutes, try both ways.
2020 if (MaskedValueIsZero(N
, *C2
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
))
2023 // Or commutes, try both ways.
2025 match(B
, m_c_Add(m_Specific(A
), m_Value(N
)))) {
2026 // Add commutes, try both ways.
2027 if (MaskedValueIsZero(N
, *C1
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
))
2033 // If the operation is with the result of a phi instruction, check whether
2034 // operating on all incoming values of the phi always yields the same value.
2035 if (isa
<PHINode
>(Op0
) || isa
<PHINode
>(Op1
))
2036 if (Value
*V
= ThreadBinOpOverPHI(Instruction::Or
, Op0
, Op1
, Q
, MaxRecurse
))
2042 Value
*llvm::SimplifyOrInst(Value
*Op0
, Value
*Op1
, const SimplifyQuery
&Q
) {
2043 return ::SimplifyOrInst(Op0
, Op1
, Q
, RecursionLimit
);
2046 /// Given operands for a Xor, see if we can fold the result.
2047 /// If not, this returns null.
2048 static Value
*SimplifyXorInst(Value
*Op0
, Value
*Op1
, const SimplifyQuery
&Q
,
2049 unsigned MaxRecurse
) {
2050 if (Constant
*C
= foldOrCommuteConstant(Instruction::Xor
, Op0
, Op1
, Q
))
2053 // A ^ undef -> undef
2054 if (match(Op1
, m_Undef()))
2058 if (match(Op1
, m_Zero()))
2063 return Constant::getNullValue(Op0
->getType());
2065 // A ^ ~A = ~A ^ A = -1
2066 if (match(Op0
, m_Not(m_Specific(Op1
))) ||
2067 match(Op1
, m_Not(m_Specific(Op0
))))
2068 return Constant::getAllOnesValue(Op0
->getType());
2070 // Try some generic simplifications for associative operations.
2071 if (Value
*V
= SimplifyAssociativeBinOp(Instruction::Xor
, Op0
, Op1
, Q
,
2075 // Threading Xor over selects and phi nodes is pointless, so don't bother.
2076 // Threading over the select in "A ^ select(cond, B, C)" means evaluating
2077 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
2078 // only if B and C are equal. If B and C are equal then (since we assume
2079 // that operands have already been simplified) "select(cond, B, C)" should
2080 // have been simplified to the common value of B and C already. Analysing
2081 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly
2082 // for threading over phi nodes.
2087 Value
*llvm::SimplifyXorInst(Value
*Op0
, Value
*Op1
, const SimplifyQuery
&Q
) {
2088 return ::SimplifyXorInst(Op0
, Op1
, Q
, RecursionLimit
);
2092 static Type
*GetCompareTy(Value
*Op
) {
2093 return CmpInst::makeCmpResultType(Op
->getType());
2096 /// Rummage around inside V looking for something equivalent to the comparison
2097 /// "LHS Pred RHS". Return such a value if found, otherwise return null.
2098 /// Helper function for analyzing max/min idioms.
2099 static Value
*ExtractEquivalentCondition(Value
*V
, CmpInst::Predicate Pred
,
2100 Value
*LHS
, Value
*RHS
) {
2101 SelectInst
*SI
= dyn_cast
<SelectInst
>(V
);
2104 CmpInst
*Cmp
= dyn_cast
<CmpInst
>(SI
->getCondition());
2107 Value
*CmpLHS
= Cmp
->getOperand(0), *CmpRHS
= Cmp
->getOperand(1);
2108 if (Pred
== Cmp
->getPredicate() && LHS
== CmpLHS
&& RHS
== CmpRHS
)
2110 if (Pred
== CmpInst::getSwappedPredicate(Cmp
->getPredicate()) &&
2111 LHS
== CmpRHS
&& RHS
== CmpLHS
)
2116 // A significant optimization not implemented here is assuming that alloca
2117 // addresses are not equal to incoming argument values. They don't *alias*,
2118 // as we say, but that doesn't mean they aren't equal, so we take a
2119 // conservative approach.
2121 // This is inspired in part by C++11 5.10p1:
2122 // "Two pointers of the same type compare equal if and only if they are both
2123 // null, both point to the same function, or both represent the same
2126 // This is pretty permissive.
2128 // It's also partly due to C11 6.5.9p6:
2129 // "Two pointers compare equal if and only if both are null pointers, both are
2130 // pointers to the same object (including a pointer to an object and a
2131 // subobject at its beginning) or function, both are pointers to one past the
2132 // last element of the same array object, or one is a pointer to one past the
2133 // end of one array object and the other is a pointer to the start of a
2134 // different array object that happens to immediately follow the first array
2135 // object in the address space.)
2137 // C11's version is more restrictive, however there's no reason why an argument
2138 // couldn't be a one-past-the-end value for a stack object in the caller and be
2139 // equal to the beginning of a stack object in the callee.
2141 // If the C and C++ standards are ever made sufficiently restrictive in this
2142 // area, it may be possible to update LLVM's semantics accordingly and reinstate
2143 // this optimization.
2145 computePointerICmp(const DataLayout
&DL
, const TargetLibraryInfo
*TLI
,
2146 const DominatorTree
*DT
, CmpInst::Predicate Pred
,
2147 AssumptionCache
*AC
, const Instruction
*CxtI
,
2148 const InstrInfoQuery
&IIQ
, Value
*LHS
, Value
*RHS
) {
2149 // First, skip past any trivial no-ops.
2150 LHS
= LHS
->stripPointerCasts();
2151 RHS
= RHS
->stripPointerCasts();
2153 // A non-null pointer is not equal to a null pointer.
2154 if (llvm::isKnownNonZero(LHS
, DL
, 0, nullptr, nullptr, nullptr,
2155 IIQ
.UseInstrInfo
) &&
2156 isa
<ConstantPointerNull
>(RHS
) &&
2157 (Pred
== CmpInst::ICMP_EQ
|| Pred
== CmpInst::ICMP_NE
))
2158 return ConstantInt::get(GetCompareTy(LHS
),
2159 !CmpInst::isTrueWhenEqual(Pred
));
2161 // We can only fold certain predicates on pointer comparisons.
2166 // Equality comaprisons are easy to fold.
2167 case CmpInst::ICMP_EQ
:
2168 case CmpInst::ICMP_NE
:
2171 // We can only handle unsigned relational comparisons because 'inbounds' on
2172 // a GEP only protects against unsigned wrapping.
2173 case CmpInst::ICMP_UGT
:
2174 case CmpInst::ICMP_UGE
:
2175 case CmpInst::ICMP_ULT
:
2176 case CmpInst::ICMP_ULE
:
2177 // However, we have to switch them to their signed variants to handle
2178 // negative indices from the base pointer.
2179 Pred
= ICmpInst::getSignedPredicate(Pred
);
2183 // Strip off any constant offsets so that we can reason about them.
2184 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
2185 // here and compare base addresses like AliasAnalysis does, however there are
2186 // numerous hazards. AliasAnalysis and its utilities rely on special rules
2187 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
2188 // doesn't need to guarantee pointer inequality when it says NoAlias.
2189 Constant
*LHSOffset
= stripAndComputeConstantOffsets(DL
, LHS
);
2190 Constant
*RHSOffset
= stripAndComputeConstantOffsets(DL
, RHS
);
2192 // If LHS and RHS are related via constant offsets to the same base
2193 // value, we can replace it with an icmp which just compares the offsets.
2195 return ConstantExpr::getICmp(Pred
, LHSOffset
, RHSOffset
);
2197 // Various optimizations for (in)equality comparisons.
2198 if (Pred
== CmpInst::ICMP_EQ
|| Pred
== CmpInst::ICMP_NE
) {
2199 // Different non-empty allocations that exist at the same time have
2200 // different addresses (if the program can tell). Global variables always
2201 // exist, so they always exist during the lifetime of each other and all
2202 // allocas. Two different allocas usually have different addresses...
2204 // However, if there's an @llvm.stackrestore dynamically in between two
2205 // allocas, they may have the same address. It's tempting to reduce the
2206 // scope of the problem by only looking at *static* allocas here. That would
2207 // cover the majority of allocas while significantly reducing the likelihood
2208 // of having an @llvm.stackrestore pop up in the middle. However, it's not
2209 // actually impossible for an @llvm.stackrestore to pop up in the middle of
2210 // an entry block. Also, if we have a block that's not attached to a
2211 // function, we can't tell if it's "static" under the current definition.
2212 // Theoretically, this problem could be fixed by creating a new kind of
2213 // instruction kind specifically for static allocas. Such a new instruction
2214 // could be required to be at the top of the entry block, thus preventing it
2215 // from being subject to a @llvm.stackrestore. Instcombine could even
2216 // convert regular allocas into these special allocas. It'd be nifty.
2217 // However, until then, this problem remains open.
2219 // So, we'll assume that two non-empty allocas have different addresses
2222 // With all that, if the offsets are within the bounds of their allocations
2223 // (and not one-past-the-end! so we can't use inbounds!), and their
2224 // allocations aren't the same, the pointers are not equal.
2226 // Note that it's not necessary to check for LHS being a global variable
2227 // address, due to canonicalization and constant folding.
2228 if (isa
<AllocaInst
>(LHS
) &&
2229 (isa
<AllocaInst
>(RHS
) || isa
<GlobalVariable
>(RHS
))) {
2230 ConstantInt
*LHSOffsetCI
= dyn_cast
<ConstantInt
>(LHSOffset
);
2231 ConstantInt
*RHSOffsetCI
= dyn_cast
<ConstantInt
>(RHSOffset
);
2232 uint64_t LHSSize
, RHSSize
;
2233 ObjectSizeOpts Opts
;
2234 Opts
.NullIsUnknownSize
=
2235 NullPointerIsDefined(cast
<AllocaInst
>(LHS
)->getFunction());
2236 if (LHSOffsetCI
&& RHSOffsetCI
&&
2237 getObjectSize(LHS
, LHSSize
, DL
, TLI
, Opts
) &&
2238 getObjectSize(RHS
, RHSSize
, DL
, TLI
, Opts
)) {
2239 const APInt
&LHSOffsetValue
= LHSOffsetCI
->getValue();
2240 const APInt
&RHSOffsetValue
= RHSOffsetCI
->getValue();
2241 if (!LHSOffsetValue
.isNegative() &&
2242 !RHSOffsetValue
.isNegative() &&
2243 LHSOffsetValue
.ult(LHSSize
) &&
2244 RHSOffsetValue
.ult(RHSSize
)) {
2245 return ConstantInt::get(GetCompareTy(LHS
),
2246 !CmpInst::isTrueWhenEqual(Pred
));
2250 // Repeat the above check but this time without depending on DataLayout
2251 // or being able to compute a precise size.
2252 if (!cast
<PointerType
>(LHS
->getType())->isEmptyTy() &&
2253 !cast
<PointerType
>(RHS
->getType())->isEmptyTy() &&
2254 LHSOffset
->isNullValue() &&
2255 RHSOffset
->isNullValue())
2256 return ConstantInt::get(GetCompareTy(LHS
),
2257 !CmpInst::isTrueWhenEqual(Pred
));
2260 // Even if an non-inbounds GEP occurs along the path we can still optimize
2261 // equality comparisons concerning the result. We avoid walking the whole
2262 // chain again by starting where the last calls to
2263 // stripAndComputeConstantOffsets left off and accumulate the offsets.
2264 Constant
*LHSNoBound
= stripAndComputeConstantOffsets(DL
, LHS
, true);
2265 Constant
*RHSNoBound
= stripAndComputeConstantOffsets(DL
, RHS
, true);
2267 return ConstantExpr::getICmp(Pred
,
2268 ConstantExpr::getAdd(LHSOffset
, LHSNoBound
),
2269 ConstantExpr::getAdd(RHSOffset
, RHSNoBound
));
2271 // If one side of the equality comparison must come from a noalias call
2272 // (meaning a system memory allocation function), and the other side must
2273 // come from a pointer that cannot overlap with dynamically-allocated
2274 // memory within the lifetime of the current function (allocas, byval
2275 // arguments, globals), then determine the comparison result here.
2276 SmallVector
<const Value
*, 8> LHSUObjs
, RHSUObjs
;
2277 GetUnderlyingObjects(LHS
, LHSUObjs
, DL
);
2278 GetUnderlyingObjects(RHS
, RHSUObjs
, DL
);
2280 // Is the set of underlying objects all noalias calls?
2281 auto IsNAC
= [](ArrayRef
<const Value
*> Objects
) {
2282 return all_of(Objects
, isNoAliasCall
);
2285 // Is the set of underlying objects all things which must be disjoint from
2286 // noalias calls. For allocas, we consider only static ones (dynamic
2287 // allocas might be transformed into calls to malloc not simultaneously
2288 // live with the compared-to allocation). For globals, we exclude symbols
2289 // that might be resolve lazily to symbols in another dynamically-loaded
2290 // library (and, thus, could be malloc'ed by the implementation).
2291 auto IsAllocDisjoint
= [](ArrayRef
<const Value
*> Objects
) {
2292 return all_of(Objects
, [](const Value
*V
) {
2293 if (const AllocaInst
*AI
= dyn_cast
<AllocaInst
>(V
))
2294 return AI
->getParent() && AI
->getFunction() && AI
->isStaticAlloca();
2295 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(V
))
2296 return (GV
->hasLocalLinkage() || GV
->hasHiddenVisibility() ||
2297 GV
->hasProtectedVisibility() || GV
->hasGlobalUnnamedAddr()) &&
2298 !GV
->isThreadLocal();
2299 if (const Argument
*A
= dyn_cast
<Argument
>(V
))
2300 return A
->hasByValAttr();
2305 if ((IsNAC(LHSUObjs
) && IsAllocDisjoint(RHSUObjs
)) ||
2306 (IsNAC(RHSUObjs
) && IsAllocDisjoint(LHSUObjs
)))
2307 return ConstantInt::get(GetCompareTy(LHS
),
2308 !CmpInst::isTrueWhenEqual(Pred
));
2310 // Fold comparisons for non-escaping pointer even if the allocation call
2311 // cannot be elided. We cannot fold malloc comparison to null. Also, the
2312 // dynamic allocation call could be either of the operands.
2313 Value
*MI
= nullptr;
2314 if (isAllocLikeFn(LHS
, TLI
) &&
2315 llvm::isKnownNonZero(RHS
, DL
, 0, nullptr, CxtI
, DT
))
2317 else if (isAllocLikeFn(RHS
, TLI
) &&
2318 llvm::isKnownNonZero(LHS
, DL
, 0, nullptr, CxtI
, DT
))
2320 // FIXME: We should also fold the compare when the pointer escapes, but the
2321 // compare dominates the pointer escape
2322 if (MI
&& !PointerMayBeCaptured(MI
, true, true))
2323 return ConstantInt::get(GetCompareTy(LHS
),
2324 CmpInst::isFalseWhenEqual(Pred
));
2331 /// Fold an icmp when its operands have i1 scalar type.
2332 static Value
*simplifyICmpOfBools(CmpInst::Predicate Pred
, Value
*LHS
,
2333 Value
*RHS
, const SimplifyQuery
&Q
) {
2334 Type
*ITy
= GetCompareTy(LHS
); // The return type.
2335 Type
*OpTy
= LHS
->getType(); // The operand type.
2336 if (!OpTy
->isIntOrIntVectorTy(1))
2339 // A boolean compared to true/false can be simplified in 14 out of the 20
2340 // (10 predicates * 2 constants) possible combinations. Cases not handled here
2341 // require a 'not' of the LHS, so those must be transformed in InstCombine.
2342 if (match(RHS
, m_Zero())) {
2344 case CmpInst::ICMP_NE
: // X != 0 -> X
2345 case CmpInst::ICMP_UGT
: // X >u 0 -> X
2346 case CmpInst::ICMP_SLT
: // X <s 0 -> X
2349 case CmpInst::ICMP_ULT
: // X <u 0 -> false
2350 case CmpInst::ICMP_SGT
: // X >s 0 -> false
2351 return getFalse(ITy
);
2353 case CmpInst::ICMP_UGE
: // X >=u 0 -> true
2354 case CmpInst::ICMP_SLE
: // X <=s 0 -> true
2355 return getTrue(ITy
);
2359 } else if (match(RHS
, m_One())) {
2361 case CmpInst::ICMP_EQ
: // X == 1 -> X
2362 case CmpInst::ICMP_UGE
: // X >=u 1 -> X
2363 case CmpInst::ICMP_SLE
: // X <=s -1 -> X
2366 case CmpInst::ICMP_UGT
: // X >u 1 -> false
2367 case CmpInst::ICMP_SLT
: // X <s -1 -> false
2368 return getFalse(ITy
);
2370 case CmpInst::ICMP_ULE
: // X <=u 1 -> true
2371 case CmpInst::ICMP_SGE
: // X >=s -1 -> true
2372 return getTrue(ITy
);
2381 case ICmpInst::ICMP_UGE
:
2382 if (isImpliedCondition(RHS
, LHS
, Q
.DL
).getValueOr(false))
2383 return getTrue(ITy
);
2385 case ICmpInst::ICMP_SGE
:
2386 /// For signed comparison, the values for an i1 are 0 and -1
2387 /// respectively. This maps into a truth table of:
2388 /// LHS | RHS | LHS >=s RHS | LHS implies RHS
2389 /// 0 | 0 | 1 (0 >= 0) | 1
2390 /// 0 | 1 | 1 (0 >= -1) | 1
2391 /// 1 | 0 | 0 (-1 >= 0) | 0
2392 /// 1 | 1 | 1 (-1 >= -1) | 1
2393 if (isImpliedCondition(LHS
, RHS
, Q
.DL
).getValueOr(false))
2394 return getTrue(ITy
);
2396 case ICmpInst::ICMP_ULE
:
2397 if (isImpliedCondition(LHS
, RHS
, Q
.DL
).getValueOr(false))
2398 return getTrue(ITy
);
2405 /// Try hard to fold icmp with zero RHS because this is a common case.
2406 static Value
*simplifyICmpWithZero(CmpInst::Predicate Pred
, Value
*LHS
,
2407 Value
*RHS
, const SimplifyQuery
&Q
) {
2408 if (!match(RHS
, m_Zero()))
2411 Type
*ITy
= GetCompareTy(LHS
); // The return type.
2414 llvm_unreachable("Unknown ICmp predicate!");
2415 case ICmpInst::ICMP_ULT
:
2416 return getFalse(ITy
);
2417 case ICmpInst::ICMP_UGE
:
2418 return getTrue(ITy
);
2419 case ICmpInst::ICMP_EQ
:
2420 case ICmpInst::ICMP_ULE
:
2421 if (isKnownNonZero(LHS
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
, Q
.IIQ
.UseInstrInfo
))
2422 return getFalse(ITy
);
2424 case ICmpInst::ICMP_NE
:
2425 case ICmpInst::ICMP_UGT
:
2426 if (isKnownNonZero(LHS
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
, Q
.IIQ
.UseInstrInfo
))
2427 return getTrue(ITy
);
2429 case ICmpInst::ICMP_SLT
: {
2430 KnownBits LHSKnown
= computeKnownBits(LHS
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
);
2431 if (LHSKnown
.isNegative())
2432 return getTrue(ITy
);
2433 if (LHSKnown
.isNonNegative())
2434 return getFalse(ITy
);
2437 case ICmpInst::ICMP_SLE
: {
2438 KnownBits LHSKnown
= computeKnownBits(LHS
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
);
2439 if (LHSKnown
.isNegative())
2440 return getTrue(ITy
);
2441 if (LHSKnown
.isNonNegative() &&
2442 isKnownNonZero(LHS
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
))
2443 return getFalse(ITy
);
2446 case ICmpInst::ICMP_SGE
: {
2447 KnownBits LHSKnown
= computeKnownBits(LHS
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
);
2448 if (LHSKnown
.isNegative())
2449 return getFalse(ITy
);
2450 if (LHSKnown
.isNonNegative())
2451 return getTrue(ITy
);
2454 case ICmpInst::ICMP_SGT
: {
2455 KnownBits LHSKnown
= computeKnownBits(LHS
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
);
2456 if (LHSKnown
.isNegative())
2457 return getFalse(ITy
);
2458 if (LHSKnown
.isNonNegative() &&
2459 isKnownNonZero(LHS
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
))
2460 return getTrue(ITy
);
2468 static Value
*simplifyICmpWithConstant(CmpInst::Predicate Pred
, Value
*LHS
,
2469 Value
*RHS
, const InstrInfoQuery
&IIQ
) {
2470 Type
*ITy
= GetCompareTy(RHS
); // The return type.
2473 // Sign-bit checks can be optimized to true/false after unsigned
2474 // floating-point casts:
2475 // icmp slt (bitcast (uitofp X)), 0 --> false
2476 // icmp sgt (bitcast (uitofp X)), -1 --> true
2477 if (match(LHS
, m_BitCast(m_UIToFP(m_Value(X
))))) {
2478 if (Pred
== ICmpInst::ICMP_SLT
&& match(RHS
, m_Zero()))
2479 return ConstantInt::getFalse(ITy
);
2480 if (Pred
== ICmpInst::ICMP_SGT
&& match(RHS
, m_AllOnes()))
2481 return ConstantInt::getTrue(ITy
);
2485 if (!match(RHS
, m_APInt(C
)))
2488 // Rule out tautological comparisons (eg., ult 0 or uge 0).
2489 ConstantRange RHS_CR
= ConstantRange::makeExactICmpRegion(Pred
, *C
);
2490 if (RHS_CR
.isEmptySet())
2491 return ConstantInt::getFalse(ITy
);
2492 if (RHS_CR
.isFullSet())
2493 return ConstantInt::getTrue(ITy
);
2495 ConstantRange LHS_CR
= computeConstantRange(LHS
, IIQ
.UseInstrInfo
);
2496 if (!LHS_CR
.isFullSet()) {
2497 if (RHS_CR
.contains(LHS_CR
))
2498 return ConstantInt::getTrue(ITy
);
2499 if (RHS_CR
.inverse().contains(LHS_CR
))
2500 return ConstantInt::getFalse(ITy
);
2506 /// TODO: A large part of this logic is duplicated in InstCombine's
2507 /// foldICmpBinOp(). We should be able to share that and avoid the code
2509 static Value
*simplifyICmpWithBinOp(CmpInst::Predicate Pred
, Value
*LHS
,
2510 Value
*RHS
, const SimplifyQuery
&Q
,
2511 unsigned MaxRecurse
) {
2512 Type
*ITy
= GetCompareTy(LHS
); // The return type.
2514 BinaryOperator
*LBO
= dyn_cast
<BinaryOperator
>(LHS
);
2515 BinaryOperator
*RBO
= dyn_cast
<BinaryOperator
>(RHS
);
2516 if (MaxRecurse
&& (LBO
|| RBO
)) {
2517 // Analyze the case when either LHS or RHS is an add instruction.
2518 Value
*A
= nullptr, *B
= nullptr, *C
= nullptr, *D
= nullptr;
2519 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
2520 bool NoLHSWrapProblem
= false, NoRHSWrapProblem
= false;
2521 if (LBO
&& LBO
->getOpcode() == Instruction::Add
) {
2522 A
= LBO
->getOperand(0);
2523 B
= LBO
->getOperand(1);
2525 ICmpInst::isEquality(Pred
) ||
2526 (CmpInst::isUnsigned(Pred
) &&
2527 Q
.IIQ
.hasNoUnsignedWrap(cast
<OverflowingBinaryOperator
>(LBO
))) ||
2528 (CmpInst::isSigned(Pred
) &&
2529 Q
.IIQ
.hasNoSignedWrap(cast
<OverflowingBinaryOperator
>(LBO
)));
2531 if (RBO
&& RBO
->getOpcode() == Instruction::Add
) {
2532 C
= RBO
->getOperand(0);
2533 D
= RBO
->getOperand(1);
2535 ICmpInst::isEquality(Pred
) ||
2536 (CmpInst::isUnsigned(Pred
) &&
2537 Q
.IIQ
.hasNoUnsignedWrap(cast
<OverflowingBinaryOperator
>(RBO
))) ||
2538 (CmpInst::isSigned(Pred
) &&
2539 Q
.IIQ
.hasNoSignedWrap(cast
<OverflowingBinaryOperator
>(RBO
)));
2542 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
2543 if ((A
== RHS
|| B
== RHS
) && NoLHSWrapProblem
)
2544 if (Value
*V
= SimplifyICmpInst(Pred
, A
== RHS
? B
: A
,
2545 Constant::getNullValue(RHS
->getType()), Q
,
2549 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
2550 if ((C
== LHS
|| D
== LHS
) && NoRHSWrapProblem
)
2552 SimplifyICmpInst(Pred
, Constant::getNullValue(LHS
->getType()),
2553 C
== LHS
? D
: C
, Q
, MaxRecurse
- 1))
2556 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
2557 if (A
&& C
&& (A
== C
|| A
== D
|| B
== C
|| B
== D
) && NoLHSWrapProblem
&&
2559 // Determine Y and Z in the form icmp (X+Y), (X+Z).
2562 // C + B == C + D -> B == D
2565 } else if (A
== D
) {
2566 // D + B == C + D -> B == C
2569 } else if (B
== C
) {
2570 // A + C == C + D -> A == D
2575 // A + D == C + D -> A == C
2579 if (Value
*V
= SimplifyICmpInst(Pred
, Y
, Z
, Q
, MaxRecurse
- 1))
2586 // icmp pred (or X, Y), X
2587 if (LBO
&& match(LBO
, m_c_Or(m_Value(Y
), m_Specific(RHS
)))) {
2588 if (Pred
== ICmpInst::ICMP_ULT
)
2589 return getFalse(ITy
);
2590 if (Pred
== ICmpInst::ICMP_UGE
)
2591 return getTrue(ITy
);
2593 if (Pred
== ICmpInst::ICMP_SLT
|| Pred
== ICmpInst::ICMP_SGE
) {
2594 KnownBits RHSKnown
= computeKnownBits(RHS
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
);
2595 KnownBits YKnown
= computeKnownBits(Y
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
);
2596 if (RHSKnown
.isNonNegative() && YKnown
.isNegative())
2597 return Pred
== ICmpInst::ICMP_SLT
? getTrue(ITy
) : getFalse(ITy
);
2598 if (RHSKnown
.isNegative() || YKnown
.isNonNegative())
2599 return Pred
== ICmpInst::ICMP_SLT
? getFalse(ITy
) : getTrue(ITy
);
2602 // icmp pred X, (or X, Y)
2603 if (RBO
&& match(RBO
, m_c_Or(m_Value(Y
), m_Specific(LHS
)))) {
2604 if (Pred
== ICmpInst::ICMP_ULE
)
2605 return getTrue(ITy
);
2606 if (Pred
== ICmpInst::ICMP_UGT
)
2607 return getFalse(ITy
);
2609 if (Pred
== ICmpInst::ICMP_SGT
|| Pred
== ICmpInst::ICMP_SLE
) {
2610 KnownBits LHSKnown
= computeKnownBits(LHS
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
);
2611 KnownBits YKnown
= computeKnownBits(Y
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
);
2612 if (LHSKnown
.isNonNegative() && YKnown
.isNegative())
2613 return Pred
== ICmpInst::ICMP_SGT
? getTrue(ITy
) : getFalse(ITy
);
2614 if (LHSKnown
.isNegative() || YKnown
.isNonNegative())
2615 return Pred
== ICmpInst::ICMP_SGT
? getFalse(ITy
) : getTrue(ITy
);
2620 // icmp pred (and X, Y), X
2621 if (LBO
&& match(LBO
, m_c_And(m_Value(), m_Specific(RHS
)))) {
2622 if (Pred
== ICmpInst::ICMP_UGT
)
2623 return getFalse(ITy
);
2624 if (Pred
== ICmpInst::ICMP_ULE
)
2625 return getTrue(ITy
);
2627 // icmp pred X, (and X, Y)
2628 if (RBO
&& match(RBO
, m_c_And(m_Value(), m_Specific(LHS
)))) {
2629 if (Pred
== ICmpInst::ICMP_UGE
)
2630 return getTrue(ITy
);
2631 if (Pred
== ICmpInst::ICMP_ULT
)
2632 return getFalse(ITy
);
2635 // 0 - (zext X) pred C
2636 if (!CmpInst::isUnsigned(Pred
) && match(LHS
, m_Neg(m_ZExt(m_Value())))) {
2637 if (ConstantInt
*RHSC
= dyn_cast
<ConstantInt
>(RHS
)) {
2638 if (RHSC
->getValue().isStrictlyPositive()) {
2639 if (Pred
== ICmpInst::ICMP_SLT
)
2640 return ConstantInt::getTrue(RHSC
->getContext());
2641 if (Pred
== ICmpInst::ICMP_SGE
)
2642 return ConstantInt::getFalse(RHSC
->getContext());
2643 if (Pred
== ICmpInst::ICMP_EQ
)
2644 return ConstantInt::getFalse(RHSC
->getContext());
2645 if (Pred
== ICmpInst::ICMP_NE
)
2646 return ConstantInt::getTrue(RHSC
->getContext());
2648 if (RHSC
->getValue().isNonNegative()) {
2649 if (Pred
== ICmpInst::ICMP_SLE
)
2650 return ConstantInt::getTrue(RHSC
->getContext());
2651 if (Pred
== ICmpInst::ICMP_SGT
)
2652 return ConstantInt::getFalse(RHSC
->getContext());
2657 // icmp pred (urem X, Y), Y
2658 if (LBO
&& match(LBO
, m_URem(m_Value(), m_Specific(RHS
)))) {
2662 case ICmpInst::ICMP_SGT
:
2663 case ICmpInst::ICMP_SGE
: {
2664 KnownBits Known
= computeKnownBits(RHS
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
);
2665 if (!Known
.isNonNegative())
2669 case ICmpInst::ICMP_EQ
:
2670 case ICmpInst::ICMP_UGT
:
2671 case ICmpInst::ICMP_UGE
:
2672 return getFalse(ITy
);
2673 case ICmpInst::ICMP_SLT
:
2674 case ICmpInst::ICMP_SLE
: {
2675 KnownBits Known
= computeKnownBits(RHS
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
);
2676 if (!Known
.isNonNegative())
2680 case ICmpInst::ICMP_NE
:
2681 case ICmpInst::ICMP_ULT
:
2682 case ICmpInst::ICMP_ULE
:
2683 return getTrue(ITy
);
2687 // icmp pred X, (urem Y, X)
2688 if (RBO
&& match(RBO
, m_URem(m_Value(), m_Specific(LHS
)))) {
2692 case ICmpInst::ICMP_SGT
:
2693 case ICmpInst::ICMP_SGE
: {
2694 KnownBits Known
= computeKnownBits(LHS
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
);
2695 if (!Known
.isNonNegative())
2699 case ICmpInst::ICMP_NE
:
2700 case ICmpInst::ICMP_UGT
:
2701 case ICmpInst::ICMP_UGE
:
2702 return getTrue(ITy
);
2703 case ICmpInst::ICMP_SLT
:
2704 case ICmpInst::ICMP_SLE
: {
2705 KnownBits Known
= computeKnownBits(LHS
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
);
2706 if (!Known
.isNonNegative())
2710 case ICmpInst::ICMP_EQ
:
2711 case ICmpInst::ICMP_ULT
:
2712 case ICmpInst::ICMP_ULE
:
2713 return getFalse(ITy
);
2719 if (LBO
&& (match(LBO
, m_LShr(m_Specific(RHS
), m_Value())) ||
2720 match(LBO
, m_UDiv(m_Specific(RHS
), m_Value())))) {
2721 // icmp pred (X op Y), X
2722 if (Pred
== ICmpInst::ICMP_UGT
)
2723 return getFalse(ITy
);
2724 if (Pred
== ICmpInst::ICMP_ULE
)
2725 return getTrue(ITy
);
2730 if (RBO
&& (match(RBO
, m_LShr(m_Specific(LHS
), m_Value())) ||
2731 match(RBO
, m_UDiv(m_Specific(LHS
), m_Value())))) {
2732 // icmp pred X, (X op Y)
2733 if (Pred
== ICmpInst::ICMP_ULT
)
2734 return getFalse(ITy
);
2735 if (Pred
== ICmpInst::ICMP_UGE
)
2736 return getTrue(ITy
);
2743 // where CI2 is a power of 2 and CI isn't
2744 if (auto *CI
= dyn_cast
<ConstantInt
>(RHS
)) {
2745 const APInt
*CI2Val
, *CIVal
= &CI
->getValue();
2746 if (LBO
&& match(LBO
, m_Shl(m_APInt(CI2Val
), m_Value())) &&
2747 CI2Val
->isPowerOf2()) {
2748 if (!CIVal
->isPowerOf2()) {
2749 // CI2 << X can equal zero in some circumstances,
2750 // this simplification is unsafe if CI is zero.
2752 // We know it is safe if:
2753 // - The shift is nsw, we can't shift out the one bit.
2754 // - The shift is nuw, we can't shift out the one bit.
2757 if (Q
.IIQ
.hasNoSignedWrap(cast
<OverflowingBinaryOperator
>(LBO
)) ||
2758 Q
.IIQ
.hasNoUnsignedWrap(cast
<OverflowingBinaryOperator
>(LBO
)) ||
2759 CI2Val
->isOneValue() || !CI
->isZero()) {
2760 if (Pred
== ICmpInst::ICMP_EQ
)
2761 return ConstantInt::getFalse(RHS
->getContext());
2762 if (Pred
== ICmpInst::ICMP_NE
)
2763 return ConstantInt::getTrue(RHS
->getContext());
2766 if (CIVal
->isSignMask() && CI2Val
->isOneValue()) {
2767 if (Pred
== ICmpInst::ICMP_UGT
)
2768 return ConstantInt::getFalse(RHS
->getContext());
2769 if (Pred
== ICmpInst::ICMP_ULE
)
2770 return ConstantInt::getTrue(RHS
->getContext());
2775 if (MaxRecurse
&& LBO
&& RBO
&& LBO
->getOpcode() == RBO
->getOpcode() &&
2776 LBO
->getOperand(1) == RBO
->getOperand(1)) {
2777 switch (LBO
->getOpcode()) {
2780 case Instruction::UDiv
:
2781 case Instruction::LShr
:
2782 if (ICmpInst::isSigned(Pred
) || !Q
.IIQ
.isExact(LBO
) ||
2783 !Q
.IIQ
.isExact(RBO
))
2785 if (Value
*V
= SimplifyICmpInst(Pred
, LBO
->getOperand(0),
2786 RBO
->getOperand(0), Q
, MaxRecurse
- 1))
2789 case Instruction::SDiv
:
2790 if (!ICmpInst::isEquality(Pred
) || !Q
.IIQ
.isExact(LBO
) ||
2791 !Q
.IIQ
.isExact(RBO
))
2793 if (Value
*V
= SimplifyICmpInst(Pred
, LBO
->getOperand(0),
2794 RBO
->getOperand(0), Q
, MaxRecurse
- 1))
2797 case Instruction::AShr
:
2798 if (!Q
.IIQ
.isExact(LBO
) || !Q
.IIQ
.isExact(RBO
))
2800 if (Value
*V
= SimplifyICmpInst(Pred
, LBO
->getOperand(0),
2801 RBO
->getOperand(0), Q
, MaxRecurse
- 1))
2804 case Instruction::Shl
: {
2805 bool NUW
= Q
.IIQ
.hasNoUnsignedWrap(LBO
) && Q
.IIQ
.hasNoUnsignedWrap(RBO
);
2806 bool NSW
= Q
.IIQ
.hasNoSignedWrap(LBO
) && Q
.IIQ
.hasNoSignedWrap(RBO
);
2809 if (!NSW
&& ICmpInst::isSigned(Pred
))
2811 if (Value
*V
= SimplifyICmpInst(Pred
, LBO
->getOperand(0),
2812 RBO
->getOperand(0), Q
, MaxRecurse
- 1))
2821 /// Simplify integer comparisons where at least one operand of the compare
2822 /// matches an integer min/max idiom.
2823 static Value
*simplifyICmpWithMinMax(CmpInst::Predicate Pred
, Value
*LHS
,
2824 Value
*RHS
, const SimplifyQuery
&Q
,
2825 unsigned MaxRecurse
) {
2826 Type
*ITy
= GetCompareTy(LHS
); // The return type.
2828 CmpInst::Predicate P
= CmpInst::BAD_ICMP_PREDICATE
;
2829 CmpInst::Predicate EqP
; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
2831 // Signed variants on "max(a,b)>=a -> true".
2832 if (match(LHS
, m_SMax(m_Value(A
), m_Value(B
))) && (A
== RHS
|| B
== RHS
)) {
2834 std::swap(A
, B
); // smax(A, B) pred A.
2835 EqP
= CmpInst::ICMP_SGE
; // "A == smax(A, B)" iff "A sge B".
2836 // We analyze this as smax(A, B) pred A.
2838 } else if (match(RHS
, m_SMax(m_Value(A
), m_Value(B
))) &&
2839 (A
== LHS
|| B
== LHS
)) {
2841 std::swap(A
, B
); // A pred smax(A, B).
2842 EqP
= CmpInst::ICMP_SGE
; // "A == smax(A, B)" iff "A sge B".
2843 // We analyze this as smax(A, B) swapped-pred A.
2844 P
= CmpInst::getSwappedPredicate(Pred
);
2845 } else if (match(LHS
, m_SMin(m_Value(A
), m_Value(B
))) &&
2846 (A
== RHS
|| B
== RHS
)) {
2848 std::swap(A
, B
); // smin(A, B) pred A.
2849 EqP
= CmpInst::ICMP_SLE
; // "A == smin(A, B)" iff "A sle B".
2850 // We analyze this as smax(-A, -B) swapped-pred -A.
2851 // Note that we do not need to actually form -A or -B thanks to EqP.
2852 P
= CmpInst::getSwappedPredicate(Pred
);
2853 } else if (match(RHS
, m_SMin(m_Value(A
), m_Value(B
))) &&
2854 (A
== LHS
|| B
== LHS
)) {
2856 std::swap(A
, B
); // A pred smin(A, B).
2857 EqP
= CmpInst::ICMP_SLE
; // "A == smin(A, B)" iff "A sle B".
2858 // We analyze this as smax(-A, -B) pred -A.
2859 // Note that we do not need to actually form -A or -B thanks to EqP.
2862 if (P
!= CmpInst::BAD_ICMP_PREDICATE
) {
2863 // Cases correspond to "max(A, B) p A".
2867 case CmpInst::ICMP_EQ
:
2868 case CmpInst::ICMP_SLE
:
2869 // Equivalent to "A EqP B". This may be the same as the condition tested
2870 // in the max/min; if so, we can just return that.
2871 if (Value
*V
= ExtractEquivalentCondition(LHS
, EqP
, A
, B
))
2873 if (Value
*V
= ExtractEquivalentCondition(RHS
, EqP
, A
, B
))
2875 // Otherwise, see if "A EqP B" simplifies.
2877 if (Value
*V
= SimplifyICmpInst(EqP
, A
, B
, Q
, MaxRecurse
- 1))
2880 case CmpInst::ICMP_NE
:
2881 case CmpInst::ICMP_SGT
: {
2882 CmpInst::Predicate InvEqP
= CmpInst::getInversePredicate(EqP
);
2883 // Equivalent to "A InvEqP B". This may be the same as the condition
2884 // tested in the max/min; if so, we can just return that.
2885 if (Value
*V
= ExtractEquivalentCondition(LHS
, InvEqP
, A
, B
))
2887 if (Value
*V
= ExtractEquivalentCondition(RHS
, InvEqP
, A
, B
))
2889 // Otherwise, see if "A InvEqP B" simplifies.
2891 if (Value
*V
= SimplifyICmpInst(InvEqP
, A
, B
, Q
, MaxRecurse
- 1))
2895 case CmpInst::ICMP_SGE
:
2897 return getTrue(ITy
);
2898 case CmpInst::ICMP_SLT
:
2900 return getFalse(ITy
);
2904 // Unsigned variants on "max(a,b)>=a -> true".
2905 P
= CmpInst::BAD_ICMP_PREDICATE
;
2906 if (match(LHS
, m_UMax(m_Value(A
), m_Value(B
))) && (A
== RHS
|| B
== RHS
)) {
2908 std::swap(A
, B
); // umax(A, B) pred A.
2909 EqP
= CmpInst::ICMP_UGE
; // "A == umax(A, B)" iff "A uge B".
2910 // We analyze this as umax(A, B) pred A.
2912 } else if (match(RHS
, m_UMax(m_Value(A
), m_Value(B
))) &&
2913 (A
== LHS
|| B
== LHS
)) {
2915 std::swap(A
, B
); // A pred umax(A, B).
2916 EqP
= CmpInst::ICMP_UGE
; // "A == umax(A, B)" iff "A uge B".
2917 // We analyze this as umax(A, B) swapped-pred A.
2918 P
= CmpInst::getSwappedPredicate(Pred
);
2919 } else if (match(LHS
, m_UMin(m_Value(A
), m_Value(B
))) &&
2920 (A
== RHS
|| B
== RHS
)) {
2922 std::swap(A
, B
); // umin(A, B) pred A.
2923 EqP
= CmpInst::ICMP_ULE
; // "A == umin(A, B)" iff "A ule B".
2924 // We analyze this as umax(-A, -B) swapped-pred -A.
2925 // Note that we do not need to actually form -A or -B thanks to EqP.
2926 P
= CmpInst::getSwappedPredicate(Pred
);
2927 } else if (match(RHS
, m_UMin(m_Value(A
), m_Value(B
))) &&
2928 (A
== LHS
|| B
== LHS
)) {
2930 std::swap(A
, B
); // A pred umin(A, B).
2931 EqP
= CmpInst::ICMP_ULE
; // "A == umin(A, B)" iff "A ule B".
2932 // We analyze this as umax(-A, -B) pred -A.
2933 // Note that we do not need to actually form -A or -B thanks to EqP.
2936 if (P
!= CmpInst::BAD_ICMP_PREDICATE
) {
2937 // Cases correspond to "max(A, B) p A".
2941 case CmpInst::ICMP_EQ
:
2942 case CmpInst::ICMP_ULE
:
2943 // Equivalent to "A EqP B". This may be the same as the condition tested
2944 // in the max/min; if so, we can just return that.
2945 if (Value
*V
= ExtractEquivalentCondition(LHS
, EqP
, A
, B
))
2947 if (Value
*V
= ExtractEquivalentCondition(RHS
, EqP
, A
, B
))
2949 // Otherwise, see if "A EqP B" simplifies.
2951 if (Value
*V
= SimplifyICmpInst(EqP
, A
, B
, Q
, MaxRecurse
- 1))
2954 case CmpInst::ICMP_NE
:
2955 case CmpInst::ICMP_UGT
: {
2956 CmpInst::Predicate InvEqP
= CmpInst::getInversePredicate(EqP
);
2957 // Equivalent to "A InvEqP B". This may be the same as the condition
2958 // tested in the max/min; if so, we can just return that.
2959 if (Value
*V
= ExtractEquivalentCondition(LHS
, InvEqP
, A
, B
))
2961 if (Value
*V
= ExtractEquivalentCondition(RHS
, InvEqP
, A
, B
))
2963 // Otherwise, see if "A InvEqP B" simplifies.
2965 if (Value
*V
= SimplifyICmpInst(InvEqP
, A
, B
, Q
, MaxRecurse
- 1))
2969 case CmpInst::ICMP_UGE
:
2971 return getTrue(ITy
);
2972 case CmpInst::ICMP_ULT
:
2974 return getFalse(ITy
);
2978 // Variants on "max(x,y) >= min(x,z)".
2980 if (match(LHS
, m_SMax(m_Value(A
), m_Value(B
))) &&
2981 match(RHS
, m_SMin(m_Value(C
), m_Value(D
))) &&
2982 (A
== C
|| A
== D
|| B
== C
|| B
== D
)) {
2983 // max(x, ?) pred min(x, ?).
2984 if (Pred
== CmpInst::ICMP_SGE
)
2986 return getTrue(ITy
);
2987 if (Pred
== CmpInst::ICMP_SLT
)
2989 return getFalse(ITy
);
2990 } else if (match(LHS
, m_SMin(m_Value(A
), m_Value(B
))) &&
2991 match(RHS
, m_SMax(m_Value(C
), m_Value(D
))) &&
2992 (A
== C
|| A
== D
|| B
== C
|| B
== D
)) {
2993 // min(x, ?) pred max(x, ?).
2994 if (Pred
== CmpInst::ICMP_SLE
)
2996 return getTrue(ITy
);
2997 if (Pred
== CmpInst::ICMP_SGT
)
2999 return getFalse(ITy
);
3000 } else if (match(LHS
, m_UMax(m_Value(A
), m_Value(B
))) &&
3001 match(RHS
, m_UMin(m_Value(C
), m_Value(D
))) &&
3002 (A
== C
|| A
== D
|| B
== C
|| B
== D
)) {
3003 // max(x, ?) pred min(x, ?).
3004 if (Pred
== CmpInst::ICMP_UGE
)
3006 return getTrue(ITy
);
3007 if (Pred
== CmpInst::ICMP_ULT
)
3009 return getFalse(ITy
);
3010 } else if (match(LHS
, m_UMin(m_Value(A
), m_Value(B
))) &&
3011 match(RHS
, m_UMax(m_Value(C
), m_Value(D
))) &&
3012 (A
== C
|| A
== D
|| B
== C
|| B
== D
)) {
3013 // min(x, ?) pred max(x, ?).
3014 if (Pred
== CmpInst::ICMP_ULE
)
3016 return getTrue(ITy
);
3017 if (Pred
== CmpInst::ICMP_UGT
)
3019 return getFalse(ITy
);
3025 /// Given operands for an ICmpInst, see if we can fold the result.
3026 /// If not, this returns null.
3027 static Value
*SimplifyICmpInst(unsigned Predicate
, Value
*LHS
, Value
*RHS
,
3028 const SimplifyQuery
&Q
, unsigned MaxRecurse
) {
3029 CmpInst::Predicate Pred
= (CmpInst::Predicate
)Predicate
;
3030 assert(CmpInst::isIntPredicate(Pred
) && "Not an integer compare!");
3032 if (Constant
*CLHS
= dyn_cast
<Constant
>(LHS
)) {
3033 if (Constant
*CRHS
= dyn_cast
<Constant
>(RHS
))
3034 return ConstantFoldCompareInstOperands(Pred
, CLHS
, CRHS
, Q
.DL
, Q
.TLI
);
3036 // If we have a constant, make sure it is on the RHS.
3037 std::swap(LHS
, RHS
);
3038 Pred
= CmpInst::getSwappedPredicate(Pred
);
3040 assert(!isa
<UndefValue
>(LHS
) && "Unexpected icmp undef,%X");
3042 Type
*ITy
= GetCompareTy(LHS
); // The return type.
3044 // For EQ and NE, we can always pick a value for the undef to make the
3045 // predicate pass or fail, so we can return undef.
3046 // Matches behavior in llvm::ConstantFoldCompareInstruction.
3047 if (isa
<UndefValue
>(RHS
) && ICmpInst::isEquality(Pred
))
3048 return UndefValue::get(ITy
);
3050 // icmp X, X -> true/false
3051 // icmp X, undef -> true/false because undef could be X.
3052 if (LHS
== RHS
|| isa
<UndefValue
>(RHS
))
3053 return ConstantInt::get(ITy
, CmpInst::isTrueWhenEqual(Pred
));
3055 if (Value
*V
= simplifyICmpOfBools(Pred
, LHS
, RHS
, Q
))
3058 if (Value
*V
= simplifyICmpWithZero(Pred
, LHS
, RHS
, Q
))
3061 if (Value
*V
= simplifyICmpWithConstant(Pred
, LHS
, RHS
, Q
.IIQ
))
3064 // If both operands have range metadata, use the metadata
3065 // to simplify the comparison.
3066 if (isa
<Instruction
>(RHS
) && isa
<Instruction
>(LHS
)) {
3067 auto RHS_Instr
= cast
<Instruction
>(RHS
);
3068 auto LHS_Instr
= cast
<Instruction
>(LHS
);
3070 if (Q
.IIQ
.getMetadata(RHS_Instr
, LLVMContext::MD_range
) &&
3071 Q
.IIQ
.getMetadata(LHS_Instr
, LLVMContext::MD_range
)) {
3072 auto RHS_CR
= getConstantRangeFromMetadata(
3073 *RHS_Instr
->getMetadata(LLVMContext::MD_range
));
3074 auto LHS_CR
= getConstantRangeFromMetadata(
3075 *LHS_Instr
->getMetadata(LLVMContext::MD_range
));
3077 auto Satisfied_CR
= ConstantRange::makeSatisfyingICmpRegion(Pred
, RHS_CR
);
3078 if (Satisfied_CR
.contains(LHS_CR
))
3079 return ConstantInt::getTrue(RHS
->getContext());
3081 auto InversedSatisfied_CR
= ConstantRange::makeSatisfyingICmpRegion(
3082 CmpInst::getInversePredicate(Pred
), RHS_CR
);
3083 if (InversedSatisfied_CR
.contains(LHS_CR
))
3084 return ConstantInt::getFalse(RHS
->getContext());
3088 // Compare of cast, for example (zext X) != 0 -> X != 0
3089 if (isa
<CastInst
>(LHS
) && (isa
<Constant
>(RHS
) || isa
<CastInst
>(RHS
))) {
3090 Instruction
*LI
= cast
<CastInst
>(LHS
);
3091 Value
*SrcOp
= LI
->getOperand(0);
3092 Type
*SrcTy
= SrcOp
->getType();
3093 Type
*DstTy
= LI
->getType();
3095 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
3096 // if the integer type is the same size as the pointer type.
3097 if (MaxRecurse
&& isa
<PtrToIntInst
>(LI
) &&
3098 Q
.DL
.getTypeSizeInBits(SrcTy
) == DstTy
->getPrimitiveSizeInBits()) {
3099 if (Constant
*RHSC
= dyn_cast
<Constant
>(RHS
)) {
3100 // Transfer the cast to the constant.
3101 if (Value
*V
= SimplifyICmpInst(Pred
, SrcOp
,
3102 ConstantExpr::getIntToPtr(RHSC
, SrcTy
),
3105 } else if (PtrToIntInst
*RI
= dyn_cast
<PtrToIntInst
>(RHS
)) {
3106 if (RI
->getOperand(0)->getType() == SrcTy
)
3107 // Compare without the cast.
3108 if (Value
*V
= SimplifyICmpInst(Pred
, SrcOp
, RI
->getOperand(0),
3114 if (isa
<ZExtInst
>(LHS
)) {
3115 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
3117 if (ZExtInst
*RI
= dyn_cast
<ZExtInst
>(RHS
)) {
3118 if (MaxRecurse
&& SrcTy
== RI
->getOperand(0)->getType())
3119 // Compare X and Y. Note that signed predicates become unsigned.
3120 if (Value
*V
= SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred
),
3121 SrcOp
, RI
->getOperand(0), Q
,
3125 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
3126 // too. If not, then try to deduce the result of the comparison.
3127 else if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(RHS
)) {
3128 // Compute the constant that would happen if we truncated to SrcTy then
3129 // reextended to DstTy.
3130 Constant
*Trunc
= ConstantExpr::getTrunc(CI
, SrcTy
);
3131 Constant
*RExt
= ConstantExpr::getCast(CastInst::ZExt
, Trunc
, DstTy
);
3133 // If the re-extended constant didn't change then this is effectively
3134 // also a case of comparing two zero-extended values.
3135 if (RExt
== CI
&& MaxRecurse
)
3136 if (Value
*V
= SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred
),
3137 SrcOp
, Trunc
, Q
, MaxRecurse
-1))
3140 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
3141 // there. Use this to work out the result of the comparison.
3144 default: llvm_unreachable("Unknown ICmp predicate!");
3146 case ICmpInst::ICMP_EQ
:
3147 case ICmpInst::ICMP_UGT
:
3148 case ICmpInst::ICMP_UGE
:
3149 return ConstantInt::getFalse(CI
->getContext());
3151 case ICmpInst::ICMP_NE
:
3152 case ICmpInst::ICMP_ULT
:
3153 case ICmpInst::ICMP_ULE
:
3154 return ConstantInt::getTrue(CI
->getContext());
3156 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS
3157 // is non-negative then LHS <s RHS.
3158 case ICmpInst::ICMP_SGT
:
3159 case ICmpInst::ICMP_SGE
:
3160 return CI
->getValue().isNegative() ?
3161 ConstantInt::getTrue(CI
->getContext()) :
3162 ConstantInt::getFalse(CI
->getContext());
3164 case ICmpInst::ICMP_SLT
:
3165 case ICmpInst::ICMP_SLE
:
3166 return CI
->getValue().isNegative() ?
3167 ConstantInt::getFalse(CI
->getContext()) :
3168 ConstantInt::getTrue(CI
->getContext());
3174 if (isa
<SExtInst
>(LHS
)) {
3175 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
3177 if (SExtInst
*RI
= dyn_cast
<SExtInst
>(RHS
)) {
3178 if (MaxRecurse
&& SrcTy
== RI
->getOperand(0)->getType())
3179 // Compare X and Y. Note that the predicate does not change.
3180 if (Value
*V
= SimplifyICmpInst(Pred
, SrcOp
, RI
->getOperand(0),
3184 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
3185 // too. If not, then try to deduce the result of the comparison.
3186 else if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(RHS
)) {
3187 // Compute the constant that would happen if we truncated to SrcTy then
3188 // reextended to DstTy.
3189 Constant
*Trunc
= ConstantExpr::getTrunc(CI
, SrcTy
);
3190 Constant
*RExt
= ConstantExpr::getCast(CastInst::SExt
, Trunc
, DstTy
);
3192 // If the re-extended constant didn't change then this is effectively
3193 // also a case of comparing two sign-extended values.
3194 if (RExt
== CI
&& MaxRecurse
)
3195 if (Value
*V
= SimplifyICmpInst(Pred
, SrcOp
, Trunc
, Q
, MaxRecurse
-1))
3198 // Otherwise the upper bits of LHS are all equal, while RHS has varying
3199 // bits there. Use this to work out the result of the comparison.
3202 default: llvm_unreachable("Unknown ICmp predicate!");
3203 case ICmpInst::ICMP_EQ
:
3204 return ConstantInt::getFalse(CI
->getContext());
3205 case ICmpInst::ICMP_NE
:
3206 return ConstantInt::getTrue(CI
->getContext());
3208 // If RHS is non-negative then LHS <s RHS. If RHS is negative then
3210 case ICmpInst::ICMP_SGT
:
3211 case ICmpInst::ICMP_SGE
:
3212 return CI
->getValue().isNegative() ?
3213 ConstantInt::getTrue(CI
->getContext()) :
3214 ConstantInt::getFalse(CI
->getContext());
3215 case ICmpInst::ICMP_SLT
:
3216 case ICmpInst::ICMP_SLE
:
3217 return CI
->getValue().isNegative() ?
3218 ConstantInt::getFalse(CI
->getContext()) :
3219 ConstantInt::getTrue(CI
->getContext());
3221 // If LHS is non-negative then LHS <u RHS. If LHS is negative then
3223 case ICmpInst::ICMP_UGT
:
3224 case ICmpInst::ICMP_UGE
:
3225 // Comparison is true iff the LHS <s 0.
3227 if (Value
*V
= SimplifyICmpInst(ICmpInst::ICMP_SLT
, SrcOp
,
3228 Constant::getNullValue(SrcTy
),
3232 case ICmpInst::ICMP_ULT
:
3233 case ICmpInst::ICMP_ULE
:
3234 // Comparison is true iff the LHS >=s 0.
3236 if (Value
*V
= SimplifyICmpInst(ICmpInst::ICMP_SGE
, SrcOp
,
3237 Constant::getNullValue(SrcTy
),
3247 // icmp eq|ne X, Y -> false|true if X != Y
3248 if (ICmpInst::isEquality(Pred
) &&
3249 isKnownNonEqual(LHS
, RHS
, Q
.DL
, Q
.AC
, Q
.CxtI
, Q
.DT
, Q
.IIQ
.UseInstrInfo
)) {
3250 return Pred
== ICmpInst::ICMP_NE
? getTrue(ITy
) : getFalse(ITy
);
3253 if (Value
*V
= simplifyICmpWithBinOp(Pred
, LHS
, RHS
, Q
, MaxRecurse
))
3256 if (Value
*V
= simplifyICmpWithMinMax(Pred
, LHS
, RHS
, Q
, MaxRecurse
))
3259 // Simplify comparisons of related pointers using a powerful, recursive
3260 // GEP-walk when we have target data available..
3261 if (LHS
->getType()->isPointerTy())
3262 if (auto *C
= computePointerICmp(Q
.DL
, Q
.TLI
, Q
.DT
, Pred
, Q
.AC
, Q
.CxtI
,
3265 if (auto *CLHS
= dyn_cast
<PtrToIntOperator
>(LHS
))
3266 if (auto *CRHS
= dyn_cast
<PtrToIntOperator
>(RHS
))
3267 if (Q
.DL
.getTypeSizeInBits(CLHS
->getPointerOperandType()) ==
3268 Q
.DL
.getTypeSizeInBits(CLHS
->getType()) &&
3269 Q
.DL
.getTypeSizeInBits(CRHS
->getPointerOperandType()) ==
3270 Q
.DL
.getTypeSizeInBits(CRHS
->getType()))
3271 if (auto *C
= computePointerICmp(Q
.DL
, Q
.TLI
, Q
.DT
, Pred
, Q
.AC
, Q
.CxtI
,
3272 Q
.IIQ
, CLHS
->getPointerOperand(),
3273 CRHS
->getPointerOperand()))
3276 if (GetElementPtrInst
*GLHS
= dyn_cast
<GetElementPtrInst
>(LHS
)) {
3277 if (GEPOperator
*GRHS
= dyn_cast
<GEPOperator
>(RHS
)) {
3278 if (GLHS
->getPointerOperand() == GRHS
->getPointerOperand() &&
3279 GLHS
->hasAllConstantIndices() && GRHS
->hasAllConstantIndices() &&
3280 (ICmpInst::isEquality(Pred
) ||
3281 (GLHS
->isInBounds() && GRHS
->isInBounds() &&
3282 Pred
== ICmpInst::getSignedPredicate(Pred
)))) {
3283 // The bases are equal and the indices are constant. Build a constant
3284 // expression GEP with the same indices and a null base pointer to see
3285 // what constant folding can make out of it.
3286 Constant
*Null
= Constant::getNullValue(GLHS
->getPointerOperandType());
3287 SmallVector
<Value
*, 4> IndicesLHS(GLHS
->idx_begin(), GLHS
->idx_end());
3288 Constant
*NewLHS
= ConstantExpr::getGetElementPtr(
3289 GLHS
->getSourceElementType(), Null
, IndicesLHS
);
3291 SmallVector
<Value
*, 4> IndicesRHS(GRHS
->idx_begin(), GRHS
->idx_end());
3292 Constant
*NewRHS
= ConstantExpr::getGetElementPtr(
3293 GLHS
->getSourceElementType(), Null
, IndicesRHS
);
3294 return ConstantExpr::getICmp(Pred
, NewLHS
, NewRHS
);
3299 // If the comparison is with the result of a select instruction, check whether
3300 // comparing with either branch of the select always yields the same value.
3301 if (isa
<SelectInst
>(LHS
) || isa
<SelectInst
>(RHS
))
3302 if (Value
*V
= ThreadCmpOverSelect(Pred
, LHS
, RHS
, Q
, MaxRecurse
))
3305 // If the comparison is with the result of a phi instruction, check whether
3306 // doing the compare with each incoming phi value yields a common result.
3307 if (isa
<PHINode
>(LHS
) || isa
<PHINode
>(RHS
))
3308 if (Value
*V
= ThreadCmpOverPHI(Pred
, LHS
, RHS
, Q
, MaxRecurse
))
3314 Value
*llvm::SimplifyICmpInst(unsigned Predicate
, Value
*LHS
, Value
*RHS
,
3315 const SimplifyQuery
&Q
) {
3316 return ::SimplifyICmpInst(Predicate
, LHS
, RHS
, Q
, RecursionLimit
);
3319 /// Given operands for an FCmpInst, see if we can fold the result.
3320 /// If not, this returns null.
3321 static Value
*SimplifyFCmpInst(unsigned Predicate
, Value
*LHS
, Value
*RHS
,
3322 FastMathFlags FMF
, const SimplifyQuery
&Q
,
3323 unsigned MaxRecurse
) {
3324 CmpInst::Predicate Pred
= (CmpInst::Predicate
)Predicate
;
3325 assert(CmpInst::isFPPredicate(Pred
) && "Not an FP compare!");
3327 if (Constant
*CLHS
= dyn_cast
<Constant
>(LHS
)) {
3328 if (Constant
*CRHS
= dyn_cast
<Constant
>(RHS
))
3329 return ConstantFoldCompareInstOperands(Pred
, CLHS
, CRHS
, Q
.DL
, Q
.TLI
);
3331 // If we have a constant, make sure it is on the RHS.
3332 std::swap(LHS
, RHS
);
3333 Pred
= CmpInst::getSwappedPredicate(Pred
);
3336 // Fold trivial predicates.
3337 Type
*RetTy
= GetCompareTy(LHS
);
3338 if (Pred
== FCmpInst::FCMP_FALSE
)
3339 return getFalse(RetTy
);
3340 if (Pred
== FCmpInst::FCMP_TRUE
)
3341 return getTrue(RetTy
);
3343 // Fold (un)ordered comparison if we can determine there are no NaNs.
3344 if (Pred
== FCmpInst::FCMP_UNO
|| Pred
== FCmpInst::FCMP_ORD
)
3346 (isKnownNeverNaN(LHS
, Q
.TLI
) && isKnownNeverNaN(RHS
, Q
.TLI
)))
3347 return ConstantInt::get(RetTy
, Pred
== FCmpInst::FCMP_ORD
);
3349 // NaN is unordered; NaN is not ordered.
3350 assert((FCmpInst::isOrdered(Pred
) || FCmpInst::isUnordered(Pred
)) &&
3351 "Comparison must be either ordered or unordered");
3352 if (match(RHS
, m_NaN()))
3353 return ConstantInt::get(RetTy
, CmpInst::isUnordered(Pred
));
3355 // fcmp pred x, undef and fcmp pred undef, x
3356 // fold to true if unordered, false if ordered
3357 if (isa
<UndefValue
>(LHS
) || isa
<UndefValue
>(RHS
)) {
3358 // Choosing NaN for the undef will always make unordered comparison succeed
3359 // and ordered comparison fail.
3360 return ConstantInt::get(RetTy
, CmpInst::isUnordered(Pred
));
3363 // fcmp x,x -> true/false. Not all compares are foldable.
3365 if (CmpInst::isTrueWhenEqual(Pred
))
3366 return getTrue(RetTy
);
3367 if (CmpInst::isFalseWhenEqual(Pred
))
3368 return getFalse(RetTy
);
3371 // Handle fcmp with constant RHS.
3372 // TODO: Use match with a specific FP value, so these work with vectors with
3375 if (match(RHS
, m_APFloat(C
))) {
3376 // Check whether the constant is an infinity.
3377 if (C
->isInfinity()) {
3378 if (C
->isNegative()) {
3380 case FCmpInst::FCMP_OLT
:
3381 // No value is ordered and less than negative infinity.
3382 return getFalse(RetTy
);
3383 case FCmpInst::FCMP_UGE
:
3384 // All values are unordered with or at least negative infinity.
3385 return getTrue(RetTy
);
3391 case FCmpInst::FCMP_OGT
:
3392 // No value is ordered and greater than infinity.
3393 return getFalse(RetTy
);
3394 case FCmpInst::FCMP_ULE
:
3395 // All values are unordered with and at most infinity.
3396 return getTrue(RetTy
);
3402 if (C
->isNegative() && !C
->isNegZero()) {
3403 assert(!C
->isNaN() && "Unexpected NaN constant!");
3404 // TODO: We can catch more cases by using a range check rather than
3405 // relying on CannotBeOrderedLessThanZero.
3407 case FCmpInst::FCMP_UGE
:
3408 case FCmpInst::FCMP_UGT
:
3409 case FCmpInst::FCMP_UNE
:
3410 // (X >= 0) implies (X > C) when (C < 0)
3411 if (CannotBeOrderedLessThanZero(LHS
, Q
.TLI
))
3412 return getTrue(RetTy
);
3414 case FCmpInst::FCMP_OEQ
:
3415 case FCmpInst::FCMP_OLE
:
3416 case FCmpInst::FCMP_OLT
:
3417 // (X >= 0) implies !(X < C) when (C < 0)
3418 if (CannotBeOrderedLessThanZero(LHS
, Q
.TLI
))
3419 return getFalse(RetTy
);
3426 // Check comparison of [minnum/maxnum with constant] with other constant.
3428 if ((match(LHS
, m_Intrinsic
<Intrinsic::minnum
>(m_Value(), m_APFloat(C2
))) &&
3429 C2
->compare(*C
) == APFloat::cmpLessThan
) ||
3430 (match(LHS
, m_Intrinsic
<Intrinsic::maxnum
>(m_Value(), m_APFloat(C2
))) &&
3431 C2
->compare(*C
) == APFloat::cmpGreaterThan
)) {
3433 cast
<IntrinsicInst
>(LHS
)->getIntrinsicID() == Intrinsic::maxnum
;
3434 // The ordered relationship and minnum/maxnum guarantee that we do not
3435 // have NaN constants, so ordered/unordered preds are handled the same.
3437 case FCmpInst::FCMP_OEQ
: case FCmpInst::FCMP_UEQ
:
3438 // minnum(X, LesserC) == C --> false
3439 // maxnum(X, GreaterC) == C --> false
3440 return getFalse(RetTy
);
3441 case FCmpInst::FCMP_ONE
: case FCmpInst::FCMP_UNE
:
3442 // minnum(X, LesserC) != C --> true
3443 // maxnum(X, GreaterC) != C --> true
3444 return getTrue(RetTy
);
3445 case FCmpInst::FCMP_OGE
: case FCmpInst::FCMP_UGE
:
3446 case FCmpInst::FCMP_OGT
: case FCmpInst::FCMP_UGT
:
3447 // minnum(X, LesserC) >= C --> false
3448 // minnum(X, LesserC) > C --> false
3449 // maxnum(X, GreaterC) >= C --> true
3450 // maxnum(X, GreaterC) > C --> true
3451 return ConstantInt::get(RetTy
, IsMaxNum
);
3452 case FCmpInst::FCMP_OLE
: case FCmpInst::FCMP_ULE
:
3453 case FCmpInst::FCMP_OLT
: case FCmpInst::FCMP_ULT
:
3454 // minnum(X, LesserC) <= C --> true
3455 // minnum(X, LesserC) < C --> true
3456 // maxnum(X, GreaterC) <= C --> false
3457 // maxnum(X, GreaterC) < C --> false
3458 return ConstantInt::get(RetTy
, !IsMaxNum
);
3460 // TRUE/FALSE/ORD/UNO should be handled before this.
3461 llvm_unreachable("Unexpected fcmp predicate");
3466 if (match(RHS
, m_AnyZeroFP())) {
3468 case FCmpInst::FCMP_OGE
:
3469 case FCmpInst::FCMP_ULT
:
3470 // Positive or zero X >= 0.0 --> true
3471 // Positive or zero X < 0.0 --> false
3472 if ((FMF
.noNaNs() || isKnownNeverNaN(LHS
, Q
.TLI
)) &&
3473 CannotBeOrderedLessThanZero(LHS
, Q
.TLI
))
3474 return Pred
== FCmpInst::FCMP_OGE
? getTrue(RetTy
) : getFalse(RetTy
);
3476 case FCmpInst::FCMP_UGE
:
3477 case FCmpInst::FCMP_OLT
:
3478 // Positive or zero or nan X >= 0.0 --> true
3479 // Positive or zero or nan X < 0.0 --> false
3480 if (CannotBeOrderedLessThanZero(LHS
, Q
.TLI
))
3481 return Pred
== FCmpInst::FCMP_UGE
? getTrue(RetTy
) : getFalse(RetTy
);
3488 // If the comparison is with the result of a select instruction, check whether
3489 // comparing with either branch of the select always yields the same value.
3490 if (isa
<SelectInst
>(LHS
) || isa
<SelectInst
>(RHS
))
3491 if (Value
*V
= ThreadCmpOverSelect(Pred
, LHS
, RHS
, Q
, MaxRecurse
))
3494 // If the comparison is with the result of a phi instruction, check whether
3495 // doing the compare with each incoming phi value yields a common result.
3496 if (isa
<PHINode
>(LHS
) || isa
<PHINode
>(RHS
))
3497 if (Value
*V
= ThreadCmpOverPHI(Pred
, LHS
, RHS
, Q
, MaxRecurse
))
3503 Value
*llvm::SimplifyFCmpInst(unsigned Predicate
, Value
*LHS
, Value
*RHS
,
3504 FastMathFlags FMF
, const SimplifyQuery
&Q
) {
3505 return ::SimplifyFCmpInst(Predicate
, LHS
, RHS
, FMF
, Q
, RecursionLimit
);
3508 /// See if V simplifies when its operand Op is replaced with RepOp.
3509 static const Value
*SimplifyWithOpReplaced(Value
*V
, Value
*Op
, Value
*RepOp
,
3510 const SimplifyQuery
&Q
,
3511 unsigned MaxRecurse
) {
3512 // Trivial replacement.
3516 // We cannot replace a constant, and shouldn't even try.
3517 if (isa
<Constant
>(Op
))
3520 auto *I
= dyn_cast
<Instruction
>(V
);
3524 // If this is a binary operator, try to simplify it with the replaced op.
3525 if (auto *B
= dyn_cast
<BinaryOperator
>(I
)) {
3527 // %cmp = icmp eq i32 %x, 2147483647
3528 // %add = add nsw i32 %x, 1
3529 // %sel = select i1 %cmp, i32 -2147483648, i32 %add
3531 // We can't replace %sel with %add unless we strip away the flags.
3532 // TODO: This is an unusual limitation because better analysis results in
3533 // worse simplification. InstCombine can do this fold more generally
3534 // by dropping the flags. Remove this fold to save compile-time?
3535 if (isa
<OverflowingBinaryOperator
>(B
))
3536 if (Q
.IIQ
.hasNoSignedWrap(B
) || Q
.IIQ
.hasNoUnsignedWrap(B
))
3538 if (isa
<PossiblyExactOperator
>(B
) && Q
.IIQ
.isExact(B
))
3542 if (B
->getOperand(0) == Op
)
3543 return SimplifyBinOp(B
->getOpcode(), RepOp
, B
->getOperand(1), Q
,
3545 if (B
->getOperand(1) == Op
)
3546 return SimplifyBinOp(B
->getOpcode(), B
->getOperand(0), RepOp
, Q
,
3551 // Same for CmpInsts.
3552 if (CmpInst
*C
= dyn_cast
<CmpInst
>(I
)) {
3554 if (C
->getOperand(0) == Op
)
3555 return SimplifyCmpInst(C
->getPredicate(), RepOp
, C
->getOperand(1), Q
,
3557 if (C
->getOperand(1) == Op
)
3558 return SimplifyCmpInst(C
->getPredicate(), C
->getOperand(0), RepOp
, Q
,
3564 if (auto *GEP
= dyn_cast
<GetElementPtrInst
>(I
)) {
3566 SmallVector
<Value
*, 8> NewOps(GEP
->getNumOperands());
3567 transform(GEP
->operands(), NewOps
.begin(),
3568 [&](Value
*V
) { return V
== Op
? RepOp
: V
; });
3569 return SimplifyGEPInst(GEP
->getSourceElementType(), NewOps
, Q
,
3574 // TODO: We could hand off more cases to instsimplify here.
3576 // If all operands are constant after substituting Op for RepOp then we can
3577 // constant fold the instruction.
3578 if (Constant
*CRepOp
= dyn_cast
<Constant
>(RepOp
)) {
3579 // Build a list of all constant operands.
3580 SmallVector
<Constant
*, 8> ConstOps
;
3581 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
) {
3582 if (I
->getOperand(i
) == Op
)
3583 ConstOps
.push_back(CRepOp
);
3584 else if (Constant
*COp
= dyn_cast
<Constant
>(I
->getOperand(i
)))
3585 ConstOps
.push_back(COp
);
3590 // All operands were constants, fold it.
3591 if (ConstOps
.size() == I
->getNumOperands()) {
3592 if (CmpInst
*C
= dyn_cast
<CmpInst
>(I
))
3593 return ConstantFoldCompareInstOperands(C
->getPredicate(), ConstOps
[0],
3594 ConstOps
[1], Q
.DL
, Q
.TLI
);
3596 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
))
3597 if (!LI
->isVolatile())
3598 return ConstantFoldLoadFromConstPtr(ConstOps
[0], LI
->getType(), Q
.DL
);
3600 return ConstantFoldInstOperands(I
, ConstOps
, Q
.DL
, Q
.TLI
);
3607 /// Try to simplify a select instruction when its condition operand is an
3608 /// integer comparison where one operand of the compare is a constant.
3609 static Value
*simplifySelectBitTest(Value
*TrueVal
, Value
*FalseVal
, Value
*X
,
3610 const APInt
*Y
, bool TrueWhenUnset
) {
3613 // (X & Y) == 0 ? X & ~Y : X --> X
3614 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y
3615 if (FalseVal
== X
&& match(TrueVal
, m_And(m_Specific(X
), m_APInt(C
))) &&
3617 return TrueWhenUnset
? FalseVal
: TrueVal
;
3619 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y
3620 // (X & Y) != 0 ? X : X & ~Y --> X
3621 if (TrueVal
== X
&& match(FalseVal
, m_And(m_Specific(X
), m_APInt(C
))) &&
3623 return TrueWhenUnset
? FalseVal
: TrueVal
;
3625 if (Y
->isPowerOf2()) {
3626 // (X & Y) == 0 ? X | Y : X --> X | Y
3627 // (X & Y) != 0 ? X | Y : X --> X
3628 if (FalseVal
== X
&& match(TrueVal
, m_Or(m_Specific(X
), m_APInt(C
))) &&
3630 return TrueWhenUnset
? TrueVal
: FalseVal
;
3632 // (X & Y) == 0 ? X : X | Y --> X
3633 // (X & Y) != 0 ? X : X | Y --> X | Y
3634 if (TrueVal
== X
&& match(FalseVal
, m_Or(m_Specific(X
), m_APInt(C
))) &&
3636 return TrueWhenUnset
? TrueVal
: FalseVal
;
3642 /// An alternative way to test if a bit is set or not uses sgt/slt instead of
3644 static Value
*simplifySelectWithFakeICmpEq(Value
*CmpLHS
, Value
*CmpRHS
,
3645 ICmpInst::Predicate Pred
,
3646 Value
*TrueVal
, Value
*FalseVal
) {
3649 if (!decomposeBitTestICmp(CmpLHS
, CmpRHS
, Pred
, X
, Mask
))
3652 return simplifySelectBitTest(TrueVal
, FalseVal
, X
, &Mask
,
3653 Pred
== ICmpInst::ICMP_EQ
);
3656 /// Try to simplify a select instruction when its condition operand is an
3657 /// integer comparison.
3658 static Value
*simplifySelectWithICmpCond(Value
*CondVal
, Value
*TrueVal
,
3659 Value
*FalseVal
, const SimplifyQuery
&Q
,
3660 unsigned MaxRecurse
) {
3661 ICmpInst::Predicate Pred
;
3662 Value
*CmpLHS
, *CmpRHS
;
3663 if (!match(CondVal
, m_ICmp(Pred
, m_Value(CmpLHS
), m_Value(CmpRHS
))))
3666 if (ICmpInst::isEquality(Pred
) && match(CmpRHS
, m_Zero())) {
3669 if (match(CmpLHS
, m_And(m_Value(X
), m_APInt(Y
))))
3670 if (Value
*V
= simplifySelectBitTest(TrueVal
, FalseVal
, X
, Y
,
3671 Pred
== ICmpInst::ICMP_EQ
))
3674 // Test for a bogus zero-shift-guard-op around funnel-shift or rotate.
3676 auto isFsh
= m_CombineOr(m_Intrinsic
<Intrinsic::fshl
>(m_Value(X
), m_Value(),
3678 m_Intrinsic
<Intrinsic::fshr
>(m_Value(), m_Value(X
),
3680 // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X
3681 // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X
3682 if (match(TrueVal
, isFsh
) && FalseVal
== X
&& CmpLHS
== ShAmt
&&
3683 Pred
== ICmpInst::ICMP_EQ
)
3685 // (ShAmt != 0) ? X : fshl(X, *, ShAmt) --> X
3686 // (ShAmt != 0) ? X : fshr(*, X, ShAmt) --> X
3687 if (match(FalseVal
, isFsh
) && TrueVal
== X
&& CmpLHS
== ShAmt
&&
3688 Pred
== ICmpInst::ICMP_NE
)
3691 // Test for a zero-shift-guard-op around rotates. These are used to
3692 // avoid UB from oversized shifts in raw IR rotate patterns, but the
3693 // intrinsics do not have that problem.
3694 // We do not allow this transform for the general funnel shift case because
3695 // that would not preserve the poison safety of the original code.
3696 auto isRotate
= m_CombineOr(m_Intrinsic
<Intrinsic::fshl
>(m_Value(X
),
3699 m_Intrinsic
<Intrinsic::fshr
>(m_Value(X
),
3702 // (ShAmt != 0) ? fshl(X, X, ShAmt) : X --> fshl(X, X, ShAmt)
3703 // (ShAmt != 0) ? fshr(X, X, ShAmt) : X --> fshr(X, X, ShAmt)
3704 if (match(TrueVal
, isRotate
) && FalseVal
== X
&& CmpLHS
== ShAmt
&&
3705 Pred
== ICmpInst::ICMP_NE
)
3707 // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt)
3708 // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt)
3709 if (match(FalseVal
, isRotate
) && TrueVal
== X
&& CmpLHS
== ShAmt
&&
3710 Pred
== ICmpInst::ICMP_EQ
)
3714 // Check for other compares that behave like bit test.
3715 if (Value
*V
= simplifySelectWithFakeICmpEq(CmpLHS
, CmpRHS
, Pred
,
3719 // If we have an equality comparison, then we know the value in one of the
3720 // arms of the select. See if substituting this value into the arm and
3721 // simplifying the result yields the same value as the other arm.
3722 if (Pred
== ICmpInst::ICMP_EQ
) {
3723 if (SimplifyWithOpReplaced(FalseVal
, CmpLHS
, CmpRHS
, Q
, MaxRecurse
) ==
3725 SimplifyWithOpReplaced(FalseVal
, CmpRHS
, CmpLHS
, Q
, MaxRecurse
) ==
3728 if (SimplifyWithOpReplaced(TrueVal
, CmpLHS
, CmpRHS
, Q
, MaxRecurse
) ==
3730 SimplifyWithOpReplaced(TrueVal
, CmpRHS
, CmpLHS
, Q
, MaxRecurse
) ==
3733 } else if (Pred
== ICmpInst::ICMP_NE
) {
3734 if (SimplifyWithOpReplaced(TrueVal
, CmpLHS
, CmpRHS
, Q
, MaxRecurse
) ==
3736 SimplifyWithOpReplaced(TrueVal
, CmpRHS
, CmpLHS
, Q
, MaxRecurse
) ==
3739 if (SimplifyWithOpReplaced(FalseVal
, CmpLHS
, CmpRHS
, Q
, MaxRecurse
) ==
3741 SimplifyWithOpReplaced(FalseVal
, CmpRHS
, CmpLHS
, Q
, MaxRecurse
) ==
3749 /// Try to simplify a select instruction when its condition operand is a
3750 /// floating-point comparison.
3751 static Value
*simplifySelectWithFCmp(Value
*Cond
, Value
*T
, Value
*F
) {
3752 FCmpInst::Predicate Pred
;
3753 if (!match(Cond
, m_FCmp(Pred
, m_Specific(T
), m_Specific(F
))) &&
3754 !match(Cond
, m_FCmp(Pred
, m_Specific(F
), m_Specific(T
))))
3757 // TODO: The transform may not be valid with -0.0. An incomplete way of
3758 // testing for that possibility is to check if at least one operand is a
3759 // non-zero constant.
3761 if ((match(T
, m_APFloat(C
)) && C
->isNonZero()) ||
3762 (match(F
, m_APFloat(C
)) && C
->isNonZero())) {
3763 // (T == F) ? T : F --> F
3764 // (F == T) ? T : F --> F
3765 if (Pred
== FCmpInst::FCMP_OEQ
)
3768 // (T != F) ? T : F --> T
3769 // (F != T) ? T : F --> T
3770 if (Pred
== FCmpInst::FCMP_UNE
)
3777 /// Given operands for a SelectInst, see if we can fold the result.
3778 /// If not, this returns null.
3779 static Value
*SimplifySelectInst(Value
*Cond
, Value
*TrueVal
, Value
*FalseVal
,
3780 const SimplifyQuery
&Q
, unsigned MaxRecurse
) {
3781 if (auto *CondC
= dyn_cast
<Constant
>(Cond
)) {
3782 if (auto *TrueC
= dyn_cast
<Constant
>(TrueVal
))
3783 if (auto *FalseC
= dyn_cast
<Constant
>(FalseVal
))
3784 return ConstantFoldSelectInstruction(CondC
, TrueC
, FalseC
);
3786 // select undef, X, Y -> X or Y
3787 if (isa
<UndefValue
>(CondC
))
3788 return isa
<Constant
>(FalseVal
) ? FalseVal
: TrueVal
;
3790 // TODO: Vector constants with undef elements don't simplify.
3792 // select true, X, Y -> X
3793 if (CondC
->isAllOnesValue())
3795 // select false, X, Y -> Y
3796 if (CondC
->isNullValue())
3800 // select ?, X, X -> X
3801 if (TrueVal
== FalseVal
)
3804 if (isa
<UndefValue
>(TrueVal
)) // select ?, undef, X -> X
3806 if (isa
<UndefValue
>(FalseVal
)) // select ?, X, undef -> X
3810 simplifySelectWithICmpCond(Cond
, TrueVal
, FalseVal
, Q
, MaxRecurse
))
3813 if (Value
*V
= simplifySelectWithFCmp(Cond
, TrueVal
, FalseVal
))
3816 if (Value
*V
= foldSelectWithBinaryOp(Cond
, TrueVal
, FalseVal
))
3819 Optional
<bool> Imp
= isImpliedByDomCondition(Cond
, Q
.CxtI
, Q
.DL
);
3821 return *Imp
? TrueVal
: FalseVal
;
3826 Value
*llvm::SimplifySelectInst(Value
*Cond
, Value
*TrueVal
, Value
*FalseVal
,
3827 const SimplifyQuery
&Q
) {
3828 return ::SimplifySelectInst(Cond
, TrueVal
, FalseVal
, Q
, RecursionLimit
);
3831 /// Given operands for an GetElementPtrInst, see if we can fold the result.
3832 /// If not, this returns null.
3833 static Value
*SimplifyGEPInst(Type
*SrcTy
, ArrayRef
<Value
*> Ops
,
3834 const SimplifyQuery
&Q
, unsigned) {
3835 // The type of the GEP pointer operand.
3837 cast
<PointerType
>(Ops
[0]->getType()->getScalarType())->getAddressSpace();
3839 // getelementptr P -> P.
3840 if (Ops
.size() == 1)
3843 // Compute the (pointer) type returned by the GEP instruction.
3844 Type
*LastType
= GetElementPtrInst::getIndexedType(SrcTy
, Ops
.slice(1));
3845 Type
*GEPTy
= PointerType::get(LastType
, AS
);
3846 if (VectorType
*VT
= dyn_cast
<VectorType
>(Ops
[0]->getType()))
3847 GEPTy
= VectorType::get(GEPTy
, VT
->getNumElements());
3848 else if (VectorType
*VT
= dyn_cast
<VectorType
>(Ops
[1]->getType()))
3849 GEPTy
= VectorType::get(GEPTy
, VT
->getNumElements());
3851 if (isa
<UndefValue
>(Ops
[0]))
3852 return UndefValue::get(GEPTy
);
3854 if (Ops
.size() == 2) {
3855 // getelementptr P, 0 -> P.
3856 if (match(Ops
[1], m_Zero()) && Ops
[0]->getType() == GEPTy
)
3860 if (Ty
->isSized()) {
3863 uint64_t TyAllocSize
= Q
.DL
.getTypeAllocSize(Ty
);
3864 // getelementptr P, N -> P if P points to a type of zero size.
3865 if (TyAllocSize
== 0 && Ops
[0]->getType() == GEPTy
)
3868 // The following transforms are only safe if the ptrtoint cast
3869 // doesn't truncate the pointers.
3870 if (Ops
[1]->getType()->getScalarSizeInBits() ==
3871 Q
.DL
.getIndexSizeInBits(AS
)) {
3872 auto PtrToIntOrZero
= [GEPTy
](Value
*P
) -> Value
* {
3873 if (match(P
, m_Zero()))
3874 return Constant::getNullValue(GEPTy
);
3876 if (match(P
, m_PtrToInt(m_Value(Temp
))))
3877 if (Temp
->getType() == GEPTy
)
3882 // getelementptr V, (sub P, V) -> P if P points to a type of size 1.
3883 if (TyAllocSize
== 1 &&
3884 match(Ops
[1], m_Sub(m_Value(P
), m_PtrToInt(m_Specific(Ops
[0])))))
3885 if (Value
*R
= PtrToIntOrZero(P
))
3888 // getelementptr V, (ashr (sub P, V), C) -> Q
3889 // if P points to a type of size 1 << C.
3891 m_AShr(m_Sub(m_Value(P
), m_PtrToInt(m_Specific(Ops
[0]))),
3892 m_ConstantInt(C
))) &&
3893 TyAllocSize
== 1ULL << C
)
3894 if (Value
*R
= PtrToIntOrZero(P
))
3897 // getelementptr V, (sdiv (sub P, V), C) -> Q
3898 // if P points to a type of size C.
3900 m_SDiv(m_Sub(m_Value(P
), m_PtrToInt(m_Specific(Ops
[0]))),
3901 m_SpecificInt(TyAllocSize
))))
3902 if (Value
*R
= PtrToIntOrZero(P
))
3908 if (Q
.DL
.getTypeAllocSize(LastType
) == 1 &&
3909 all_of(Ops
.slice(1).drop_back(1),
3910 [](Value
*Idx
) { return match(Idx
, m_Zero()); })) {
3912 Q
.DL
.getIndexSizeInBits(Ops
[0]->getType()->getPointerAddressSpace());
3913 if (Q
.DL
.getTypeSizeInBits(Ops
.back()->getType()) == IdxWidth
) {
3914 APInt
BasePtrOffset(IdxWidth
, 0);
3915 Value
*StrippedBasePtr
=
3916 Ops
[0]->stripAndAccumulateInBoundsConstantOffsets(Q
.DL
,
3919 // gep (gep V, C), (sub 0, V) -> C
3920 if (match(Ops
.back(),
3921 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr
))))) {
3922 auto *CI
= ConstantInt::get(GEPTy
->getContext(), BasePtrOffset
);
3923 return ConstantExpr::getIntToPtr(CI
, GEPTy
);
3925 // gep (gep V, C), (xor V, -1) -> C-1
3926 if (match(Ops
.back(),
3927 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr
)), m_AllOnes()))) {
3928 auto *CI
= ConstantInt::get(GEPTy
->getContext(), BasePtrOffset
- 1);
3929 return ConstantExpr::getIntToPtr(CI
, GEPTy
);
3934 // Check to see if this is constant foldable.
3935 if (!all_of(Ops
, [](Value
*V
) { return isa
<Constant
>(V
); }))
3938 auto *CE
= ConstantExpr::getGetElementPtr(SrcTy
, cast
<Constant
>(Ops
[0]),
3940 if (auto *CEFolded
= ConstantFoldConstant(CE
, Q
.DL
))
3945 Value
*llvm::SimplifyGEPInst(Type
*SrcTy
, ArrayRef
<Value
*> Ops
,
3946 const SimplifyQuery
&Q
) {
3947 return ::SimplifyGEPInst(SrcTy
, Ops
, Q
, RecursionLimit
);
3950 /// Given operands for an InsertValueInst, see if we can fold the result.
3951 /// If not, this returns null.
3952 static Value
*SimplifyInsertValueInst(Value
*Agg
, Value
*Val
,
3953 ArrayRef
<unsigned> Idxs
, const SimplifyQuery
&Q
,
3955 if (Constant
*CAgg
= dyn_cast
<Constant
>(Agg
))
3956 if (Constant
*CVal
= dyn_cast
<Constant
>(Val
))
3957 return ConstantFoldInsertValueInstruction(CAgg
, CVal
, Idxs
);
3959 // insertvalue x, undef, n -> x
3960 if (match(Val
, m_Undef()))
3963 // insertvalue x, (extractvalue y, n), n
3964 if (ExtractValueInst
*EV
= dyn_cast
<ExtractValueInst
>(Val
))
3965 if (EV
->getAggregateOperand()->getType() == Agg
->getType() &&
3966 EV
->getIndices() == Idxs
) {
3967 // insertvalue undef, (extractvalue y, n), n -> y
3968 if (match(Agg
, m_Undef()))
3969 return EV
->getAggregateOperand();
3971 // insertvalue y, (extractvalue y, n), n -> y
3972 if (Agg
== EV
->getAggregateOperand())
3979 Value
*llvm::SimplifyInsertValueInst(Value
*Agg
, Value
*Val
,
3980 ArrayRef
<unsigned> Idxs
,
3981 const SimplifyQuery
&Q
) {
3982 return ::SimplifyInsertValueInst(Agg
, Val
, Idxs
, Q
, RecursionLimit
);
3985 Value
*llvm::SimplifyInsertElementInst(Value
*Vec
, Value
*Val
, Value
*Idx
,
3986 const SimplifyQuery
&Q
) {
3987 // Try to constant fold.
3988 auto *VecC
= dyn_cast
<Constant
>(Vec
);
3989 auto *ValC
= dyn_cast
<Constant
>(Val
);
3990 auto *IdxC
= dyn_cast
<Constant
>(Idx
);
3991 if (VecC
&& ValC
&& IdxC
)
3992 return ConstantFoldInsertElementInstruction(VecC
, ValC
, IdxC
);
3994 // Fold into undef if index is out of bounds.
3995 if (auto *CI
= dyn_cast
<ConstantInt
>(Idx
)) {
3996 uint64_t NumElements
= cast
<VectorType
>(Vec
->getType())->getNumElements();
3997 if (CI
->uge(NumElements
))
3998 return UndefValue::get(Vec
->getType());
4001 // If index is undef, it might be out of bounds (see above case)
4002 if (isa
<UndefValue
>(Idx
))
4003 return UndefValue::get(Vec
->getType());
4005 // Inserting an undef scalar? Assume it is the same value as the existing
4007 if (isa
<UndefValue
>(Val
))
4010 // If we are extracting a value from a vector, then inserting it into the same
4011 // place, that's the input vector:
4012 // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec
4013 if (match(Val
, m_ExtractElement(m_Specific(Vec
), m_Specific(Idx
))))
4019 /// Given operands for an ExtractValueInst, see if we can fold the result.
4020 /// If not, this returns null.
4021 static Value
*SimplifyExtractValueInst(Value
*Agg
, ArrayRef
<unsigned> Idxs
,
4022 const SimplifyQuery
&, unsigned) {
4023 if (auto *CAgg
= dyn_cast
<Constant
>(Agg
))
4024 return ConstantFoldExtractValueInstruction(CAgg
, Idxs
);
4026 // extractvalue x, (insertvalue y, elt, n), n -> elt
4027 unsigned NumIdxs
= Idxs
.size();
4028 for (auto *IVI
= dyn_cast
<InsertValueInst
>(Agg
); IVI
!= nullptr;
4029 IVI
= dyn_cast
<InsertValueInst
>(IVI
->getAggregateOperand())) {
4030 ArrayRef
<unsigned> InsertValueIdxs
= IVI
->getIndices();
4031 unsigned NumInsertValueIdxs
= InsertValueIdxs
.size();
4032 unsigned NumCommonIdxs
= std::min(NumInsertValueIdxs
, NumIdxs
);
4033 if (InsertValueIdxs
.slice(0, NumCommonIdxs
) ==
4034 Idxs
.slice(0, NumCommonIdxs
)) {
4035 if (NumIdxs
== NumInsertValueIdxs
)
4036 return IVI
->getInsertedValueOperand();
4044 Value
*llvm::SimplifyExtractValueInst(Value
*Agg
, ArrayRef
<unsigned> Idxs
,
4045 const SimplifyQuery
&Q
) {
4046 return ::SimplifyExtractValueInst(Agg
, Idxs
, Q
, RecursionLimit
);
4049 /// Given operands for an ExtractElementInst, see if we can fold the result.
4050 /// If not, this returns null.
4051 static Value
*SimplifyExtractElementInst(Value
*Vec
, Value
*Idx
, const SimplifyQuery
&,
4053 if (auto *CVec
= dyn_cast
<Constant
>(Vec
)) {
4054 if (auto *CIdx
= dyn_cast
<Constant
>(Idx
))
4055 return ConstantFoldExtractElementInstruction(CVec
, CIdx
);
4057 // The index is not relevant if our vector is a splat.
4058 if (auto *Splat
= CVec
->getSplatValue())
4061 if (isa
<UndefValue
>(Vec
))
4062 return UndefValue::get(Vec
->getType()->getVectorElementType());
4065 // If extracting a specified index from the vector, see if we can recursively
4066 // find a previously computed scalar that was inserted into the vector.
4067 if (auto *IdxC
= dyn_cast
<ConstantInt
>(Idx
)) {
4068 if (IdxC
->getValue().uge(Vec
->getType()->getVectorNumElements()))
4069 // definitely out of bounds, thus undefined result
4070 return UndefValue::get(Vec
->getType()->getVectorElementType());
4071 if (Value
*Elt
= findScalarElement(Vec
, IdxC
->getZExtValue()))
4075 // An undef extract index can be arbitrarily chosen to be an out-of-range
4076 // index value, which would result in the instruction being undef.
4077 if (isa
<UndefValue
>(Idx
))
4078 return UndefValue::get(Vec
->getType()->getVectorElementType());
4083 Value
*llvm::SimplifyExtractElementInst(Value
*Vec
, Value
*Idx
,
4084 const SimplifyQuery
&Q
) {
4085 return ::SimplifyExtractElementInst(Vec
, Idx
, Q
, RecursionLimit
);
4088 /// See if we can fold the given phi. If not, returns null.
4089 static Value
*SimplifyPHINode(PHINode
*PN
, const SimplifyQuery
&Q
) {
4090 // If all of the PHI's incoming values are the same then replace the PHI node
4091 // with the common value.
4092 Value
*CommonValue
= nullptr;
4093 bool HasUndefInput
= false;
4094 for (Value
*Incoming
: PN
->incoming_values()) {
4095 // If the incoming value is the phi node itself, it can safely be skipped.
4096 if (Incoming
== PN
) continue;
4097 if (isa
<UndefValue
>(Incoming
)) {
4098 // Remember that we saw an undef value, but otherwise ignore them.
4099 HasUndefInput
= true;
4102 if (CommonValue
&& Incoming
!= CommonValue
)
4103 return nullptr; // Not the same, bail out.
4104 CommonValue
= Incoming
;
4107 // If CommonValue is null then all of the incoming values were either undef or
4108 // equal to the phi node itself.
4110 return UndefValue::get(PN
->getType());
4112 // If we have a PHI node like phi(X, undef, X), where X is defined by some
4113 // instruction, we cannot return X as the result of the PHI node unless it
4114 // dominates the PHI block.
4116 return valueDominatesPHI(CommonValue
, PN
, Q
.DT
) ? CommonValue
: nullptr;
4121 static Value
*SimplifyCastInst(unsigned CastOpc
, Value
*Op
,
4122 Type
*Ty
, const SimplifyQuery
&Q
, unsigned MaxRecurse
) {
4123 if (auto *C
= dyn_cast
<Constant
>(Op
))
4124 return ConstantFoldCastOperand(CastOpc
, C
, Ty
, Q
.DL
);
4126 if (auto *CI
= dyn_cast
<CastInst
>(Op
)) {
4127 auto *Src
= CI
->getOperand(0);
4128 Type
*SrcTy
= Src
->getType();
4129 Type
*MidTy
= CI
->getType();
4131 if (Src
->getType() == Ty
) {
4132 auto FirstOp
= static_cast<Instruction::CastOps
>(CI
->getOpcode());
4133 auto SecondOp
= static_cast<Instruction::CastOps
>(CastOpc
);
4135 SrcTy
->isPtrOrPtrVectorTy() ? Q
.DL
.getIntPtrType(SrcTy
) : nullptr;
4137 MidTy
->isPtrOrPtrVectorTy() ? Q
.DL
.getIntPtrType(MidTy
) : nullptr;
4139 DstTy
->isPtrOrPtrVectorTy() ? Q
.DL
.getIntPtrType(DstTy
) : nullptr;
4140 if (CastInst::isEliminableCastPair(FirstOp
, SecondOp
, SrcTy
, MidTy
, DstTy
,
4141 SrcIntPtrTy
, MidIntPtrTy
,
4142 DstIntPtrTy
) == Instruction::BitCast
)
4148 if (CastOpc
== Instruction::BitCast
)
4149 if (Op
->getType() == Ty
)
4155 Value
*llvm::SimplifyCastInst(unsigned CastOpc
, Value
*Op
, Type
*Ty
,
4156 const SimplifyQuery
&Q
) {
4157 return ::SimplifyCastInst(CastOpc
, Op
, Ty
, Q
, RecursionLimit
);
4160 /// For the given destination element of a shuffle, peek through shuffles to
4161 /// match a root vector source operand that contains that element in the same
4162 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s).
4163 static Value
*foldIdentityShuffles(int DestElt
, Value
*Op0
, Value
*Op1
,
4164 int MaskVal
, Value
*RootVec
,
4165 unsigned MaxRecurse
) {
4169 // Bail out if any mask value is undefined. That kind of shuffle may be
4170 // simplified further based on demanded bits or other folds.
4174 // The mask value chooses which source operand we need to look at next.
4175 int InVecNumElts
= Op0
->getType()->getVectorNumElements();
4176 int RootElt
= MaskVal
;
4177 Value
*SourceOp
= Op0
;
4178 if (MaskVal
>= InVecNumElts
) {
4179 RootElt
= MaskVal
- InVecNumElts
;
4183 // If the source operand is a shuffle itself, look through it to find the
4184 // matching root vector.
4185 if (auto *SourceShuf
= dyn_cast
<ShuffleVectorInst
>(SourceOp
)) {
4186 return foldIdentityShuffles(
4187 DestElt
, SourceShuf
->getOperand(0), SourceShuf
->getOperand(1),
4188 SourceShuf
->getMaskValue(RootElt
), RootVec
, MaxRecurse
);
4191 // TODO: Look through bitcasts? What if the bitcast changes the vector element
4194 // The source operand is not a shuffle. Initialize the root vector value for
4195 // this shuffle if that has not been done yet.
4199 // Give up as soon as a source operand does not match the existing root value.
4200 if (RootVec
!= SourceOp
)
4203 // The element must be coming from the same lane in the source vector
4204 // (although it may have crossed lanes in intermediate shuffles).
4205 if (RootElt
!= DestElt
)
4211 static Value
*SimplifyShuffleVectorInst(Value
*Op0
, Value
*Op1
, Constant
*Mask
,
4212 Type
*RetTy
, const SimplifyQuery
&Q
,
4213 unsigned MaxRecurse
) {
4214 if (isa
<UndefValue
>(Mask
))
4215 return UndefValue::get(RetTy
);
4217 Type
*InVecTy
= Op0
->getType();
4218 unsigned MaskNumElts
= Mask
->getType()->getVectorNumElements();
4219 unsigned InVecNumElts
= InVecTy
->getVectorNumElements();
4221 SmallVector
<int, 32> Indices
;
4222 ShuffleVectorInst::getShuffleMask(Mask
, Indices
);
4223 assert(MaskNumElts
== Indices
.size() &&
4224 "Size of Indices not same as number of mask elements?");
4226 // Canonicalization: If mask does not select elements from an input vector,
4227 // replace that input vector with undef.
4228 bool MaskSelects0
= false, MaskSelects1
= false;
4229 for (unsigned i
= 0; i
!= MaskNumElts
; ++i
) {
4230 if (Indices
[i
] == -1)
4232 if ((unsigned)Indices
[i
] < InVecNumElts
)
4233 MaskSelects0
= true;
4235 MaskSelects1
= true;
4238 Op0
= UndefValue::get(InVecTy
);
4240 Op1
= UndefValue::get(InVecTy
);
4242 auto *Op0Const
= dyn_cast
<Constant
>(Op0
);
4243 auto *Op1Const
= dyn_cast
<Constant
>(Op1
);
4245 // If all operands are constant, constant fold the shuffle.
4246 if (Op0Const
&& Op1Const
)
4247 return ConstantFoldShuffleVectorInstruction(Op0Const
, Op1Const
, Mask
);
4249 // Canonicalization: if only one input vector is constant, it shall be the
4251 if (Op0Const
&& !Op1Const
) {
4252 std::swap(Op0
, Op1
);
4253 ShuffleVectorInst::commuteShuffleMask(Indices
, InVecNumElts
);
4256 // A shuffle of a splat is always the splat itself. Legal if the shuffle's
4257 // value type is same as the input vectors' type.
4258 if (auto *OpShuf
= dyn_cast
<ShuffleVectorInst
>(Op0
))
4259 if (isa
<UndefValue
>(Op1
) && RetTy
== InVecTy
&&
4260 OpShuf
->getMask()->getSplatValue())
4263 // Don't fold a shuffle with undef mask elements. This may get folded in a
4264 // better way using demanded bits or other analysis.
4265 // TODO: Should we allow this?
4266 if (find(Indices
, -1) != Indices
.end())
4269 // Check if every element of this shuffle can be mapped back to the
4270 // corresponding element of a single root vector. If so, we don't need this
4271 // shuffle. This handles simple identity shuffles as well as chains of
4272 // shuffles that may widen/narrow and/or move elements across lanes and back.
4273 Value
*RootVec
= nullptr;
4274 for (unsigned i
= 0; i
!= MaskNumElts
; ++i
) {
4275 // Note that recursion is limited for each vector element, so if any element
4276 // exceeds the limit, this will fail to simplify.
4278 foldIdentityShuffles(i
, Op0
, Op1
, Indices
[i
], RootVec
, MaxRecurse
);
4280 // We can't replace a widening/narrowing shuffle with one of its operands.
4281 if (!RootVec
|| RootVec
->getType() != RetTy
)
4287 /// Given operands for a ShuffleVectorInst, fold the result or return null.
4288 Value
*llvm::SimplifyShuffleVectorInst(Value
*Op0
, Value
*Op1
, Constant
*Mask
,
4289 Type
*RetTy
, const SimplifyQuery
&Q
) {
4290 return ::SimplifyShuffleVectorInst(Op0
, Op1
, Mask
, RetTy
, Q
, RecursionLimit
);
4293 static Constant
*foldConstant(Instruction::UnaryOps Opcode
,
4294 Value
*&Op
, const SimplifyQuery
&Q
) {
4295 if (auto *C
= dyn_cast
<Constant
>(Op
))
4296 return ConstantFoldUnaryOpOperand(Opcode
, C
, Q
.DL
);
4300 /// Given the operand for an FNeg, see if we can fold the result. If not, this
4302 static Value
*simplifyFNegInst(Value
*Op
, FastMathFlags FMF
,
4303 const SimplifyQuery
&Q
, unsigned MaxRecurse
) {
4304 if (Constant
*C
= foldConstant(Instruction::FNeg
, Op
, Q
))
4308 // fneg (fneg X) ==> X
4309 if (match(Op
, m_FNeg(m_Value(X
))))
4315 Value
*llvm::SimplifyFNegInst(Value
*Op
, FastMathFlags FMF
,
4316 const SimplifyQuery
&Q
) {
4317 return ::simplifyFNegInst(Op
, FMF
, Q
, RecursionLimit
);
4320 static Constant
*propagateNaN(Constant
*In
) {
4321 // If the input is a vector with undef elements, just return a default NaN.
4323 return ConstantFP::getNaN(In
->getType());
4325 // Propagate the existing NaN constant when possible.
4326 // TODO: Should we quiet a signaling NaN?
4330 static Constant
*simplifyFPBinop(Value
*Op0
, Value
*Op1
) {
4331 if (isa
<UndefValue
>(Op0
) || isa
<UndefValue
>(Op1
))
4332 return ConstantFP::getNaN(Op0
->getType());
4334 if (match(Op0
, m_NaN()))
4335 return propagateNaN(cast
<Constant
>(Op0
));
4336 if (match(Op1
, m_NaN()))
4337 return propagateNaN(cast
<Constant
>(Op1
));
4342 /// Given operands for an FAdd, see if we can fold the result. If not, this
4344 static Value
*SimplifyFAddInst(Value
*Op0
, Value
*Op1
, FastMathFlags FMF
,
4345 const SimplifyQuery
&Q
, unsigned MaxRecurse
) {
4346 if (Constant
*C
= foldOrCommuteConstant(Instruction::FAdd
, Op0
, Op1
, Q
))
4349 if (Constant
*C
= simplifyFPBinop(Op0
, Op1
))
4353 if (match(Op1
, m_NegZeroFP()))
4356 // fadd X, 0 ==> X, when we know X is not -0
4357 if (match(Op1
, m_PosZeroFP()) &&
4358 (FMF
.noSignedZeros() || CannotBeNegativeZero(Op0
, Q
.TLI
)))
4361 // With nnan: -X + X --> 0.0 (and commuted variant)
4362 // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN.
4363 // Negative zeros are allowed because we always end up with positive zero:
4364 // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
4365 // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
4366 // X = 0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0
4367 // X = 0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0
4369 if (match(Op0
, m_FSub(m_AnyZeroFP(), m_Specific(Op1
))) ||
4370 match(Op1
, m_FSub(m_AnyZeroFP(), m_Specific(Op0
))))
4371 return ConstantFP::getNullValue(Op0
->getType());
4373 if (match(Op0
, m_FNeg(m_Specific(Op1
))) ||
4374 match(Op1
, m_FNeg(m_Specific(Op0
))))
4375 return ConstantFP::getNullValue(Op0
->getType());
4378 // (X - Y) + Y --> X
4379 // Y + (X - Y) --> X
4381 if (FMF
.noSignedZeros() && FMF
.allowReassoc() &&
4382 (match(Op0
, m_FSub(m_Value(X
), m_Specific(Op1
))) ||
4383 match(Op1
, m_FSub(m_Value(X
), m_Specific(Op0
)))))
4389 /// Given operands for an FSub, see if we can fold the result. If not, this
4391 static Value
*SimplifyFSubInst(Value
*Op0
, Value
*Op1
, FastMathFlags FMF
,
4392 const SimplifyQuery
&Q
, unsigned MaxRecurse
) {
4393 if (Constant
*C
= foldOrCommuteConstant(Instruction::FSub
, Op0
, Op1
, Q
))
4396 if (Constant
*C
= simplifyFPBinop(Op0
, Op1
))
4400 if (match(Op1
, m_PosZeroFP()))
4403 // fsub X, -0 ==> X, when we know X is not -0
4404 if (match(Op1
, m_NegZeroFP()) &&
4405 (FMF
.noSignedZeros() || CannotBeNegativeZero(Op0
, Q
.TLI
)))
4408 // fsub -0.0, (fsub -0.0, X) ==> X
4409 // fsub -0.0, (fneg X) ==> X
4411 if (match(Op0
, m_NegZeroFP()) &&
4412 match(Op1
, m_FNeg(m_Value(X
))))
4415 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored.
4416 // fsub 0.0, (fneg X) ==> X if signed zeros are ignored.
4417 if (FMF
.noSignedZeros() && match(Op0
, m_AnyZeroFP()) &&
4418 (match(Op1
, m_FSub(m_AnyZeroFP(), m_Value(X
))) ||
4419 match(Op1
, m_FNeg(m_Value(X
)))))
4422 // fsub nnan x, x ==> 0.0
4423 if (FMF
.noNaNs() && Op0
== Op1
)
4424 return Constant::getNullValue(Op0
->getType());
4426 // Y - (Y - X) --> X
4427 // (X + Y) - Y --> X
4428 if (FMF
.noSignedZeros() && FMF
.allowReassoc() &&
4429 (match(Op1
, m_FSub(m_Specific(Op0
), m_Value(X
))) ||
4430 match(Op0
, m_c_FAdd(m_Specific(Op1
), m_Value(X
)))))
4436 /// Given the operands for an FMul, see if we can fold the result
4437 static Value
*SimplifyFMulInst(Value
*Op0
, Value
*Op1
, FastMathFlags FMF
,
4438 const SimplifyQuery
&Q
, unsigned MaxRecurse
) {
4439 if (Constant
*C
= foldOrCommuteConstant(Instruction::FMul
, Op0
, Op1
, Q
))
4442 if (Constant
*C
= simplifyFPBinop(Op0
, Op1
))
4445 // fmul X, 1.0 ==> X
4446 if (match(Op1
, m_FPOne()))
4449 // fmul nnan nsz X, 0 ==> 0
4450 if (FMF
.noNaNs() && FMF
.noSignedZeros() && match(Op1
, m_AnyZeroFP()))
4451 return ConstantFP::getNullValue(Op0
->getType());
4453 // sqrt(X) * sqrt(X) --> X, if we can:
4454 // 1. Remove the intermediate rounding (reassociate).
4455 // 2. Ignore non-zero negative numbers because sqrt would produce NAN.
4456 // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0.
4458 if (Op0
== Op1
&& match(Op0
, m_Intrinsic
<Intrinsic::sqrt
>(m_Value(X
))) &&
4459 FMF
.allowReassoc() && FMF
.noNaNs() && FMF
.noSignedZeros())
4465 Value
*llvm::SimplifyFAddInst(Value
*Op0
, Value
*Op1
, FastMathFlags FMF
,
4466 const SimplifyQuery
&Q
) {
4467 return ::SimplifyFAddInst(Op0
, Op1
, FMF
, Q
, RecursionLimit
);
4471 Value
*llvm::SimplifyFSubInst(Value
*Op0
, Value
*Op1
, FastMathFlags FMF
,
4472 const SimplifyQuery
&Q
) {
4473 return ::SimplifyFSubInst(Op0
, Op1
, FMF
, Q
, RecursionLimit
);
4476 Value
*llvm::SimplifyFMulInst(Value
*Op0
, Value
*Op1
, FastMathFlags FMF
,
4477 const SimplifyQuery
&Q
) {
4478 return ::SimplifyFMulInst(Op0
, Op1
, FMF
, Q
, RecursionLimit
);
4481 static Value
*SimplifyFDivInst(Value
*Op0
, Value
*Op1
, FastMathFlags FMF
,
4482 const SimplifyQuery
&Q
, unsigned) {
4483 if (Constant
*C
= foldOrCommuteConstant(Instruction::FDiv
, Op0
, Op1
, Q
))
4486 if (Constant
*C
= simplifyFPBinop(Op0
, Op1
))
4490 if (match(Op1
, m_FPOne()))
4494 // Requires that NaNs are off (X could be zero) and signed zeroes are
4495 // ignored (X could be positive or negative, so the output sign is unknown).
4496 if (FMF
.noNaNs() && FMF
.noSignedZeros() && match(Op0
, m_AnyZeroFP()))
4497 return ConstantFP::getNullValue(Op0
->getType());
4500 // X / X -> 1.0 is legal when NaNs are ignored.
4501 // We can ignore infinities because INF/INF is NaN.
4503 return ConstantFP::get(Op0
->getType(), 1.0);
4505 // (X * Y) / Y --> X if we can reassociate to the above form.
4507 if (FMF
.allowReassoc() && match(Op0
, m_c_FMul(m_Value(X
), m_Specific(Op1
))))
4510 // -X / X -> -1.0 and
4511 // X / -X -> -1.0 are legal when NaNs are ignored.
4512 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored.
4513 if (match(Op0
, m_FNegNSZ(m_Specific(Op1
))) ||
4514 match(Op1
, m_FNegNSZ(m_Specific(Op0
))))
4515 return ConstantFP::get(Op0
->getType(), -1.0);
4521 Value
*llvm::SimplifyFDivInst(Value
*Op0
, Value
*Op1
, FastMathFlags FMF
,
4522 const SimplifyQuery
&Q
) {
4523 return ::SimplifyFDivInst(Op0
, Op1
, FMF
, Q
, RecursionLimit
);
4526 static Value
*SimplifyFRemInst(Value
*Op0
, Value
*Op1
, FastMathFlags FMF
,
4527 const SimplifyQuery
&Q
, unsigned) {
4528 if (Constant
*C
= foldOrCommuteConstant(Instruction::FRem
, Op0
, Op1
, Q
))
4531 if (Constant
*C
= simplifyFPBinop(Op0
, Op1
))
4534 // Unlike fdiv, the result of frem always matches the sign of the dividend.
4535 // The constant match may include undef elements in a vector, so return a full
4536 // zero constant as the result.
4539 if (match(Op0
, m_PosZeroFP()))
4540 return ConstantFP::getNullValue(Op0
->getType());
4542 if (match(Op0
, m_NegZeroFP()))
4543 return ConstantFP::getNegativeZero(Op0
->getType());
4549 Value
*llvm::SimplifyFRemInst(Value
*Op0
, Value
*Op1
, FastMathFlags FMF
,
4550 const SimplifyQuery
&Q
) {
4551 return ::SimplifyFRemInst(Op0
, Op1
, FMF
, Q
, RecursionLimit
);
4554 //=== Helper functions for higher up the class hierarchy.
4556 /// Given the operand for a UnaryOperator, see if we can fold the result.
4557 /// If not, this returns null.
4558 static Value
*simplifyUnOp(unsigned Opcode
, Value
*Op
, const SimplifyQuery
&Q
,
4559 unsigned MaxRecurse
) {
4561 case Instruction::FNeg
:
4562 return simplifyFNegInst(Op
, FastMathFlags(), Q
, MaxRecurse
);
4564 llvm_unreachable("Unexpected opcode");
4568 /// Given the operand for a UnaryOperator, see if we can fold the result.
4569 /// If not, this returns null.
4570 /// Try to use FastMathFlags when folding the result.
4571 static Value
*simplifyFPUnOp(unsigned Opcode
, Value
*Op
,
4572 const FastMathFlags
&FMF
,
4573 const SimplifyQuery
&Q
, unsigned MaxRecurse
) {
4575 case Instruction::FNeg
:
4576 return simplifyFNegInst(Op
, FMF
, Q
, MaxRecurse
);
4578 return simplifyUnOp(Opcode
, Op
, Q
, MaxRecurse
);
4582 Value
*llvm::SimplifyUnOp(unsigned Opcode
, Value
*Op
, const SimplifyQuery
&Q
) {
4583 return ::simplifyUnOp(Opcode
, Op
, Q
, RecursionLimit
);
4586 Value
*llvm::SimplifyUnOp(unsigned Opcode
, Value
*Op
, FastMathFlags FMF
,
4587 const SimplifyQuery
&Q
) {
4588 return ::simplifyFPUnOp(Opcode
, Op
, FMF
, Q
, RecursionLimit
);
4591 /// Given operands for a BinaryOperator, see if we can fold the result.
4592 /// If not, this returns null.
4593 static Value
*SimplifyBinOp(unsigned Opcode
, Value
*LHS
, Value
*RHS
,
4594 const SimplifyQuery
&Q
, unsigned MaxRecurse
) {
4596 case Instruction::Add
:
4597 return SimplifyAddInst(LHS
, RHS
, false, false, Q
, MaxRecurse
);
4598 case Instruction::Sub
:
4599 return SimplifySubInst(LHS
, RHS
, false, false, Q
, MaxRecurse
);
4600 case Instruction::Mul
:
4601 return SimplifyMulInst(LHS
, RHS
, Q
, MaxRecurse
);
4602 case Instruction::SDiv
:
4603 return SimplifySDivInst(LHS
, RHS
, Q
, MaxRecurse
);
4604 case Instruction::UDiv
:
4605 return SimplifyUDivInst(LHS
, RHS
, Q
, MaxRecurse
);
4606 case Instruction::SRem
:
4607 return SimplifySRemInst(LHS
, RHS
, Q
, MaxRecurse
);
4608 case Instruction::URem
:
4609 return SimplifyURemInst(LHS
, RHS
, Q
, MaxRecurse
);
4610 case Instruction::Shl
:
4611 return SimplifyShlInst(LHS
, RHS
, false, false, Q
, MaxRecurse
);
4612 case Instruction::LShr
:
4613 return SimplifyLShrInst(LHS
, RHS
, false, Q
, MaxRecurse
);
4614 case Instruction::AShr
:
4615 return SimplifyAShrInst(LHS
, RHS
, false, Q
, MaxRecurse
);
4616 case Instruction::And
:
4617 return SimplifyAndInst(LHS
, RHS
, Q
, MaxRecurse
);
4618 case Instruction::Or
:
4619 return SimplifyOrInst(LHS
, RHS
, Q
, MaxRecurse
);
4620 case Instruction::Xor
:
4621 return SimplifyXorInst(LHS
, RHS
, Q
, MaxRecurse
);
4622 case Instruction::FAdd
:
4623 return SimplifyFAddInst(LHS
, RHS
, FastMathFlags(), Q
, MaxRecurse
);
4624 case Instruction::FSub
:
4625 return SimplifyFSubInst(LHS
, RHS
, FastMathFlags(), Q
, MaxRecurse
);
4626 case Instruction::FMul
:
4627 return SimplifyFMulInst(LHS
, RHS
, FastMathFlags(), Q
, MaxRecurse
);
4628 case Instruction::FDiv
:
4629 return SimplifyFDivInst(LHS
, RHS
, FastMathFlags(), Q
, MaxRecurse
);
4630 case Instruction::FRem
:
4631 return SimplifyFRemInst(LHS
, RHS
, FastMathFlags(), Q
, MaxRecurse
);
4633 llvm_unreachable("Unexpected opcode");
4637 /// Given operands for a BinaryOperator, see if we can fold the result.
4638 /// If not, this returns null.
4639 /// Try to use FastMathFlags when folding the result.
4640 static Value
*SimplifyBinOp(unsigned Opcode
, Value
*LHS
, Value
*RHS
,
4641 const FastMathFlags
&FMF
, const SimplifyQuery
&Q
,
4642 unsigned MaxRecurse
) {
4644 case Instruction::FAdd
:
4645 return SimplifyFAddInst(LHS
, RHS
, FMF
, Q
, MaxRecurse
);
4646 case Instruction::FSub
:
4647 return SimplifyFSubInst(LHS
, RHS
, FMF
, Q
, MaxRecurse
);
4648 case Instruction::FMul
:
4649 return SimplifyFMulInst(LHS
, RHS
, FMF
, Q
, MaxRecurse
);
4650 case Instruction::FDiv
:
4651 return SimplifyFDivInst(LHS
, RHS
, FMF
, Q
, MaxRecurse
);
4653 return SimplifyBinOp(Opcode
, LHS
, RHS
, Q
, MaxRecurse
);
4657 Value
*llvm::SimplifyBinOp(unsigned Opcode
, Value
*LHS
, Value
*RHS
,
4658 const SimplifyQuery
&Q
) {
4659 return ::SimplifyBinOp(Opcode
, LHS
, RHS
, Q
, RecursionLimit
);
4662 Value
*llvm::SimplifyBinOp(unsigned Opcode
, Value
*LHS
, Value
*RHS
,
4663 FastMathFlags FMF
, const SimplifyQuery
&Q
) {
4664 return ::SimplifyBinOp(Opcode
, LHS
, RHS
, FMF
, Q
, RecursionLimit
);
4667 /// Given operands for a CmpInst, see if we can fold the result.
4668 static Value
*SimplifyCmpInst(unsigned Predicate
, Value
*LHS
, Value
*RHS
,
4669 const SimplifyQuery
&Q
, unsigned MaxRecurse
) {
4670 if (CmpInst::isIntPredicate((CmpInst::Predicate
)Predicate
))
4671 return SimplifyICmpInst(Predicate
, LHS
, RHS
, Q
, MaxRecurse
);
4672 return SimplifyFCmpInst(Predicate
, LHS
, RHS
, FastMathFlags(), Q
, MaxRecurse
);
4675 Value
*llvm::SimplifyCmpInst(unsigned Predicate
, Value
*LHS
, Value
*RHS
,
4676 const SimplifyQuery
&Q
) {
4677 return ::SimplifyCmpInst(Predicate
, LHS
, RHS
, Q
, RecursionLimit
);
4680 static bool IsIdempotent(Intrinsic::ID ID
) {
4682 default: return false;
4684 // Unary idempotent: f(f(x)) = f(x)
4685 case Intrinsic::fabs
:
4686 case Intrinsic::floor
:
4687 case Intrinsic::ceil
:
4688 case Intrinsic::trunc
:
4689 case Intrinsic::rint
:
4690 case Intrinsic::nearbyint
:
4691 case Intrinsic::round
:
4692 case Intrinsic::canonicalize
:
4697 static Value
*SimplifyRelativeLoad(Constant
*Ptr
, Constant
*Offset
,
4698 const DataLayout
&DL
) {
4699 GlobalValue
*PtrSym
;
4701 if (!IsConstantOffsetFromGlobal(Ptr
, PtrSym
, PtrOffset
, DL
))
4704 Type
*Int8PtrTy
= Type::getInt8PtrTy(Ptr
->getContext());
4705 Type
*Int32Ty
= Type::getInt32Ty(Ptr
->getContext());
4706 Type
*Int32PtrTy
= Int32Ty
->getPointerTo();
4707 Type
*Int64Ty
= Type::getInt64Ty(Ptr
->getContext());
4709 auto *OffsetConstInt
= dyn_cast
<ConstantInt
>(Offset
);
4710 if (!OffsetConstInt
|| OffsetConstInt
->getType()->getBitWidth() > 64)
4713 uint64_t OffsetInt
= OffsetConstInt
->getSExtValue();
4714 if (OffsetInt
% 4 != 0)
4717 Constant
*C
= ConstantExpr::getGetElementPtr(
4718 Int32Ty
, ConstantExpr::getBitCast(Ptr
, Int32PtrTy
),
4719 ConstantInt::get(Int64Ty
, OffsetInt
/ 4));
4720 Constant
*Loaded
= ConstantFoldLoadFromConstPtr(C
, Int32Ty
, DL
);
4724 auto *LoadedCE
= dyn_cast
<ConstantExpr
>(Loaded
);
4728 if (LoadedCE
->getOpcode() == Instruction::Trunc
) {
4729 LoadedCE
= dyn_cast
<ConstantExpr
>(LoadedCE
->getOperand(0));
4734 if (LoadedCE
->getOpcode() != Instruction::Sub
)
4737 auto *LoadedLHS
= dyn_cast
<ConstantExpr
>(LoadedCE
->getOperand(0));
4738 if (!LoadedLHS
|| LoadedLHS
->getOpcode() != Instruction::PtrToInt
)
4740 auto *LoadedLHSPtr
= LoadedLHS
->getOperand(0);
4742 Constant
*LoadedRHS
= LoadedCE
->getOperand(1);
4743 GlobalValue
*LoadedRHSSym
;
4744 APInt LoadedRHSOffset
;
4745 if (!IsConstantOffsetFromGlobal(LoadedRHS
, LoadedRHSSym
, LoadedRHSOffset
,
4747 PtrSym
!= LoadedRHSSym
|| PtrOffset
!= LoadedRHSOffset
)
4750 return ConstantExpr::getBitCast(LoadedLHSPtr
, Int8PtrTy
);
4753 static Value
*simplifyUnaryIntrinsic(Function
*F
, Value
*Op0
,
4754 const SimplifyQuery
&Q
) {
4755 // Idempotent functions return the same result when called repeatedly.
4756 Intrinsic::ID IID
= F
->getIntrinsicID();
4757 if (IsIdempotent(IID
))
4758 if (auto *II
= dyn_cast
<IntrinsicInst
>(Op0
))
4759 if (II
->getIntrinsicID() == IID
)
4764 case Intrinsic::fabs
:
4765 if (SignBitMustBeZero(Op0
, Q
.TLI
)) return Op0
;
4767 case Intrinsic::bswap
:
4768 // bswap(bswap(x)) -> x
4769 if (match(Op0
, m_BSwap(m_Value(X
)))) return X
;
4771 case Intrinsic::bitreverse
:
4772 // bitreverse(bitreverse(x)) -> x
4773 if (match(Op0
, m_BitReverse(m_Value(X
)))) return X
;
4775 case Intrinsic::exp
:
4777 if (Q
.CxtI
->hasAllowReassoc() &&
4778 match(Op0
, m_Intrinsic
<Intrinsic::log
>(m_Value(X
)))) return X
;
4780 case Intrinsic::exp2
:
4781 // exp2(log2(x)) -> x
4782 if (Q
.CxtI
->hasAllowReassoc() &&
4783 match(Op0
, m_Intrinsic
<Intrinsic::log2
>(m_Value(X
)))) return X
;
4785 case Intrinsic::log
:
4787 if (Q
.CxtI
->hasAllowReassoc() &&
4788 match(Op0
, m_Intrinsic
<Intrinsic::exp
>(m_Value(X
)))) return X
;
4790 case Intrinsic::log2
:
4791 // log2(exp2(x)) -> x
4792 if (Q
.CxtI
->hasAllowReassoc() &&
4793 (match(Op0
, m_Intrinsic
<Intrinsic::exp2
>(m_Value(X
))) ||
4794 match(Op0
, m_Intrinsic
<Intrinsic::pow
>(m_SpecificFP(2.0),
4795 m_Value(X
))))) return X
;
4797 case Intrinsic::log10
:
4798 // log10(pow(10.0, x)) -> x
4799 if (Q
.CxtI
->hasAllowReassoc() &&
4800 match(Op0
, m_Intrinsic
<Intrinsic::pow
>(m_SpecificFP(10.0),
4801 m_Value(X
)))) return X
;
4803 case Intrinsic::floor
:
4804 case Intrinsic::trunc
:
4805 case Intrinsic::ceil
:
4806 case Intrinsic::round
:
4807 case Intrinsic::nearbyint
:
4808 case Intrinsic::rint
: {
4809 // floor (sitofp x) -> sitofp x
4810 // floor (uitofp x) -> uitofp x
4812 // Converting from int always results in a finite integral number or
4813 // infinity. For either of those inputs, these rounding functions always
4814 // return the same value, so the rounding can be eliminated.
4815 if (match(Op0
, m_SIToFP(m_Value())) || match(Op0
, m_UIToFP(m_Value())))
4826 static Value
*simplifyBinaryIntrinsic(Function
*F
, Value
*Op0
, Value
*Op1
,
4827 const SimplifyQuery
&Q
) {
4828 Intrinsic::ID IID
= F
->getIntrinsicID();
4829 Type
*ReturnType
= F
->getReturnType();
4831 case Intrinsic::usub_with_overflow
:
4832 case Intrinsic::ssub_with_overflow
:
4833 // X - X -> { 0, false }
4835 return Constant::getNullValue(ReturnType
);
4837 case Intrinsic::uadd_with_overflow
:
4838 case Intrinsic::sadd_with_overflow
:
4839 // X - undef -> { undef, false }
4840 // undef - X -> { undef, false }
4841 // X + undef -> { undef, false }
4842 // undef + x -> { undef, false }
4843 if (isa
<UndefValue
>(Op0
) || isa
<UndefValue
>(Op1
)) {
4844 return ConstantStruct::get(
4845 cast
<StructType
>(ReturnType
),
4846 {UndefValue::get(ReturnType
->getStructElementType(0)),
4847 Constant::getNullValue(ReturnType
->getStructElementType(1))});
4850 case Intrinsic::umul_with_overflow
:
4851 case Intrinsic::smul_with_overflow
:
4852 // 0 * X -> { 0, false }
4853 // X * 0 -> { 0, false }
4854 if (match(Op0
, m_Zero()) || match(Op1
, m_Zero()))
4855 return Constant::getNullValue(ReturnType
);
4856 // undef * X -> { 0, false }
4857 // X * undef -> { 0, false }
4858 if (match(Op0
, m_Undef()) || match(Op1
, m_Undef()))
4859 return Constant::getNullValue(ReturnType
);
4861 case Intrinsic::uadd_sat
:
4862 // sat(MAX + X) -> MAX
4863 // sat(X + MAX) -> MAX
4864 if (match(Op0
, m_AllOnes()) || match(Op1
, m_AllOnes()))
4865 return Constant::getAllOnesValue(ReturnType
);
4867 case Intrinsic::sadd_sat
:
4868 // sat(X + undef) -> -1
4869 // sat(undef + X) -> -1
4870 // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1).
4871 // For signed: Assume undef is ~X, in which case X + ~X = -1.
4872 if (match(Op0
, m_Undef()) || match(Op1
, m_Undef()))
4873 return Constant::getAllOnesValue(ReturnType
);
4876 if (match(Op1
, m_Zero()))
4879 if (match(Op0
, m_Zero()))
4882 case Intrinsic::usub_sat
:
4883 // sat(0 - X) -> 0, sat(X - MAX) -> 0
4884 if (match(Op0
, m_Zero()) || match(Op1
, m_AllOnes()))
4885 return Constant::getNullValue(ReturnType
);
4887 case Intrinsic::ssub_sat
:
4888 // X - X -> 0, X - undef -> 0, undef - X -> 0
4889 if (Op0
== Op1
|| match(Op0
, m_Undef()) || match(Op1
, m_Undef()))
4890 return Constant::getNullValue(ReturnType
);
4892 if (match(Op1
, m_Zero()))
4895 case Intrinsic::load_relative
:
4896 if (auto *C0
= dyn_cast
<Constant
>(Op0
))
4897 if (auto *C1
= dyn_cast
<Constant
>(Op1
))
4898 return SimplifyRelativeLoad(C0
, C1
, Q
.DL
);
4900 case Intrinsic::powi
:
4901 if (auto *Power
= dyn_cast
<ConstantInt
>(Op1
)) {
4902 // powi(x, 0) -> 1.0
4903 if (Power
->isZero())
4904 return ConstantFP::get(Op0
->getType(), 1.0);
4910 case Intrinsic::maxnum
:
4911 case Intrinsic::minnum
:
4912 case Intrinsic::maximum
:
4913 case Intrinsic::minimum
: {
4914 // If the arguments are the same, this is a no-op.
4915 if (Op0
== Op1
) return Op0
;
4917 // If one argument is undef, return the other argument.
4918 if (match(Op0
, m_Undef()))
4920 if (match(Op1
, m_Undef()))
4923 // If one argument is NaN, return other or NaN appropriately.
4924 bool PropagateNaN
= IID
== Intrinsic::minimum
|| IID
== Intrinsic::maximum
;
4925 if (match(Op0
, m_NaN()))
4926 return PropagateNaN
? Op0
: Op1
;
4927 if (match(Op1
, m_NaN()))
4928 return PropagateNaN
? Op1
: Op0
;
4930 // Min/max of the same operation with common operand:
4931 // m(m(X, Y)), X --> m(X, Y) (4 commuted variants)
4932 if (auto *M0
= dyn_cast
<IntrinsicInst
>(Op0
))
4933 if (M0
->getIntrinsicID() == IID
&&
4934 (M0
->getOperand(0) == Op1
|| M0
->getOperand(1) == Op1
))
4936 if (auto *M1
= dyn_cast
<IntrinsicInst
>(Op1
))
4937 if (M1
->getIntrinsicID() == IID
&&
4938 (M1
->getOperand(0) == Op0
|| M1
->getOperand(1) == Op0
))
4941 // min(X, -Inf) --> -Inf (and commuted variant)
4942 // max(X, +Inf) --> +Inf (and commuted variant)
4943 bool UseNegInf
= IID
== Intrinsic::minnum
|| IID
== Intrinsic::minimum
;
4945 if ((match(Op0
, m_APFloat(C
)) && C
->isInfinity() &&
4946 C
->isNegative() == UseNegInf
) ||
4947 (match(Op1
, m_APFloat(C
)) && C
->isInfinity() &&
4948 C
->isNegative() == UseNegInf
))
4949 return ConstantFP::getInfinity(ReturnType
, UseNegInf
);
4951 // TODO: minnum(nnan x, inf) -> x
4952 // TODO: minnum(nnan ninf x, flt_max) -> x
4953 // TODO: maxnum(nnan x, -inf) -> x
4954 // TODO: maxnum(nnan ninf x, -flt_max) -> x
4964 static Value
*simplifyIntrinsic(CallBase
*Call
, const SimplifyQuery
&Q
) {
4966 // Intrinsics with no operands have some kind of side effect. Don't simplify.
4967 unsigned NumOperands
= Call
->getNumArgOperands();
4971 Function
*F
= cast
<Function
>(Call
->getCalledFunction());
4972 Intrinsic::ID IID
= F
->getIntrinsicID();
4973 if (NumOperands
== 1)
4974 return simplifyUnaryIntrinsic(F
, Call
->getArgOperand(0), Q
);
4976 if (NumOperands
== 2)
4977 return simplifyBinaryIntrinsic(F
, Call
->getArgOperand(0),
4978 Call
->getArgOperand(1), Q
);
4980 // Handle intrinsics with 3 or more arguments.
4982 case Intrinsic::masked_load
:
4983 case Intrinsic::masked_gather
: {
4984 Value
*MaskArg
= Call
->getArgOperand(2);
4985 Value
*PassthruArg
= Call
->getArgOperand(3);
4986 // If the mask is all zeros or undef, the "passthru" argument is the result.
4987 if (maskIsAllZeroOrUndef(MaskArg
))
4991 case Intrinsic::fshl
:
4992 case Intrinsic::fshr
: {
4993 Value
*Op0
= Call
->getArgOperand(0), *Op1
= Call
->getArgOperand(1),
4994 *ShAmtArg
= Call
->getArgOperand(2);
4996 // If both operands are undef, the result is undef.
4997 if (match(Op0
, m_Undef()) && match(Op1
, m_Undef()))
4998 return UndefValue::get(F
->getReturnType());
5000 // If shift amount is undef, assume it is zero.
5001 if (match(ShAmtArg
, m_Undef()))
5002 return Call
->getArgOperand(IID
== Intrinsic::fshl
? 0 : 1);
5004 const APInt
*ShAmtC
;
5005 if (match(ShAmtArg
, m_APInt(ShAmtC
))) {
5006 // If there's effectively no shift, return the 1st arg or 2nd arg.
5007 APInt BitWidth
= APInt(ShAmtC
->getBitWidth(), ShAmtC
->getBitWidth());
5008 if (ShAmtC
->urem(BitWidth
).isNullValue())
5009 return Call
->getArgOperand(IID
== Intrinsic::fshl
? 0 : 1);
5018 Value
*llvm::SimplifyCall(CallBase
*Call
, const SimplifyQuery
&Q
) {
5019 Value
*Callee
= Call
->getCalledValue();
5021 // call undef -> undef
5022 // call null -> undef
5023 if (isa
<UndefValue
>(Callee
) || isa
<ConstantPointerNull
>(Callee
))
5024 return UndefValue::get(Call
->getType());
5026 Function
*F
= dyn_cast
<Function
>(Callee
);
5030 if (F
->isIntrinsic())
5031 if (Value
*Ret
= simplifyIntrinsic(Call
, Q
))
5034 if (!canConstantFoldCallTo(Call
, F
))
5037 SmallVector
<Constant
*, 4> ConstantArgs
;
5038 unsigned NumArgs
= Call
->getNumArgOperands();
5039 ConstantArgs
.reserve(NumArgs
);
5040 for (auto &Arg
: Call
->args()) {
5041 Constant
*C
= dyn_cast
<Constant
>(&Arg
);
5044 ConstantArgs
.push_back(C
);
5047 return ConstantFoldCall(Call
, F
, ConstantArgs
, Q
.TLI
);
5050 /// See if we can compute a simplified version of this instruction.
5051 /// If not, this returns null.
5053 Value
*llvm::SimplifyInstruction(Instruction
*I
, const SimplifyQuery
&SQ
,
5054 OptimizationRemarkEmitter
*ORE
) {
5055 const SimplifyQuery Q
= SQ
.CxtI
? SQ
: SQ
.getWithInstruction(I
);
5058 switch (I
->getOpcode()) {
5060 Result
= ConstantFoldInstruction(I
, Q
.DL
, Q
.TLI
);
5062 case Instruction::FNeg
:
5063 Result
= SimplifyFNegInst(I
->getOperand(0), I
->getFastMathFlags(), Q
);
5065 case Instruction::FAdd
:
5066 Result
= SimplifyFAddInst(I
->getOperand(0), I
->getOperand(1),
5067 I
->getFastMathFlags(), Q
);
5069 case Instruction::Add
:
5071 SimplifyAddInst(I
->getOperand(0), I
->getOperand(1),
5072 Q
.IIQ
.hasNoSignedWrap(cast
<BinaryOperator
>(I
)),
5073 Q
.IIQ
.hasNoUnsignedWrap(cast
<BinaryOperator
>(I
)), Q
);
5075 case Instruction::FSub
:
5076 Result
= SimplifyFSubInst(I
->getOperand(0), I
->getOperand(1),
5077 I
->getFastMathFlags(), Q
);
5079 case Instruction::Sub
:
5081 SimplifySubInst(I
->getOperand(0), I
->getOperand(1),
5082 Q
.IIQ
.hasNoSignedWrap(cast
<BinaryOperator
>(I
)),
5083 Q
.IIQ
.hasNoUnsignedWrap(cast
<BinaryOperator
>(I
)), Q
);
5085 case Instruction::FMul
:
5086 Result
= SimplifyFMulInst(I
->getOperand(0), I
->getOperand(1),
5087 I
->getFastMathFlags(), Q
);
5089 case Instruction::Mul
:
5090 Result
= SimplifyMulInst(I
->getOperand(0), I
->getOperand(1), Q
);
5092 case Instruction::SDiv
:
5093 Result
= SimplifySDivInst(I
->getOperand(0), I
->getOperand(1), Q
);
5095 case Instruction::UDiv
:
5096 Result
= SimplifyUDivInst(I
->getOperand(0), I
->getOperand(1), Q
);
5098 case Instruction::FDiv
:
5099 Result
= SimplifyFDivInst(I
->getOperand(0), I
->getOperand(1),
5100 I
->getFastMathFlags(), Q
);
5102 case Instruction::SRem
:
5103 Result
= SimplifySRemInst(I
->getOperand(0), I
->getOperand(1), Q
);
5105 case Instruction::URem
:
5106 Result
= SimplifyURemInst(I
->getOperand(0), I
->getOperand(1), Q
);
5108 case Instruction::FRem
:
5109 Result
= SimplifyFRemInst(I
->getOperand(0), I
->getOperand(1),
5110 I
->getFastMathFlags(), Q
);
5112 case Instruction::Shl
:
5114 SimplifyShlInst(I
->getOperand(0), I
->getOperand(1),
5115 Q
.IIQ
.hasNoSignedWrap(cast
<BinaryOperator
>(I
)),
5116 Q
.IIQ
.hasNoUnsignedWrap(cast
<BinaryOperator
>(I
)), Q
);
5118 case Instruction::LShr
:
5119 Result
= SimplifyLShrInst(I
->getOperand(0), I
->getOperand(1),
5120 Q
.IIQ
.isExact(cast
<BinaryOperator
>(I
)), Q
);
5122 case Instruction::AShr
:
5123 Result
= SimplifyAShrInst(I
->getOperand(0), I
->getOperand(1),
5124 Q
.IIQ
.isExact(cast
<BinaryOperator
>(I
)), Q
);
5126 case Instruction::And
:
5127 Result
= SimplifyAndInst(I
->getOperand(0), I
->getOperand(1), Q
);
5129 case Instruction::Or
:
5130 Result
= SimplifyOrInst(I
->getOperand(0), I
->getOperand(1), Q
);
5132 case Instruction::Xor
:
5133 Result
= SimplifyXorInst(I
->getOperand(0), I
->getOperand(1), Q
);
5135 case Instruction::ICmp
:
5136 Result
= SimplifyICmpInst(cast
<ICmpInst
>(I
)->getPredicate(),
5137 I
->getOperand(0), I
->getOperand(1), Q
);
5139 case Instruction::FCmp
:
5141 SimplifyFCmpInst(cast
<FCmpInst
>(I
)->getPredicate(), I
->getOperand(0),
5142 I
->getOperand(1), I
->getFastMathFlags(), Q
);
5144 case Instruction::Select
:
5145 Result
= SimplifySelectInst(I
->getOperand(0), I
->getOperand(1),
5146 I
->getOperand(2), Q
);
5148 case Instruction::GetElementPtr
: {
5149 SmallVector
<Value
*, 8> Ops(I
->op_begin(), I
->op_end());
5150 Result
= SimplifyGEPInst(cast
<GetElementPtrInst
>(I
)->getSourceElementType(),
5154 case Instruction::InsertValue
: {
5155 InsertValueInst
*IV
= cast
<InsertValueInst
>(I
);
5156 Result
= SimplifyInsertValueInst(IV
->getAggregateOperand(),
5157 IV
->getInsertedValueOperand(),
5158 IV
->getIndices(), Q
);
5161 case Instruction::InsertElement
: {
5162 auto *IE
= cast
<InsertElementInst
>(I
);
5163 Result
= SimplifyInsertElementInst(IE
->getOperand(0), IE
->getOperand(1),
5164 IE
->getOperand(2), Q
);
5167 case Instruction::ExtractValue
: {
5168 auto *EVI
= cast
<ExtractValueInst
>(I
);
5169 Result
= SimplifyExtractValueInst(EVI
->getAggregateOperand(),
5170 EVI
->getIndices(), Q
);
5173 case Instruction::ExtractElement
: {
5174 auto *EEI
= cast
<ExtractElementInst
>(I
);
5175 Result
= SimplifyExtractElementInst(EEI
->getVectorOperand(),
5176 EEI
->getIndexOperand(), Q
);
5179 case Instruction::ShuffleVector
: {
5180 auto *SVI
= cast
<ShuffleVectorInst
>(I
);
5181 Result
= SimplifyShuffleVectorInst(SVI
->getOperand(0), SVI
->getOperand(1),
5182 SVI
->getMask(), SVI
->getType(), Q
);
5185 case Instruction::PHI
:
5186 Result
= SimplifyPHINode(cast
<PHINode
>(I
), Q
);
5188 case Instruction::Call
: {
5189 Result
= SimplifyCall(cast
<CallInst
>(I
), Q
);
5192 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc:
5193 #include "llvm/IR/Instruction.def"
5194 #undef HANDLE_CAST_INST
5196 SimplifyCastInst(I
->getOpcode(), I
->getOperand(0), I
->getType(), Q
);
5198 case Instruction::Alloca
:
5199 // No simplifications for Alloca and it can't be constant folded.
5204 // In general, it is possible for computeKnownBits to determine all bits in a
5205 // value even when the operands are not all constants.
5206 if (!Result
&& I
->getType()->isIntOrIntVectorTy()) {
5207 KnownBits Known
= computeKnownBits(I
, Q
.DL
, /*Depth*/ 0, Q
.AC
, I
, Q
.DT
, ORE
);
5208 if (Known
.isConstant())
5209 Result
= ConstantInt::get(I
->getType(), Known
.getConstant());
5212 /// If called on unreachable code, the above logic may report that the
5213 /// instruction simplified to itself. Make life easier for users by
5214 /// detecting that case here, returning a safe value instead.
5215 return Result
== I
? UndefValue::get(I
->getType()) : Result
;
5218 /// Implementation of recursive simplification through an instruction's
5221 /// This is the common implementation of the recursive simplification routines.
5222 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
5223 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
5224 /// instructions to process and attempt to simplify it using
5225 /// InstructionSimplify.
5227 /// This routine returns 'true' only when *it* simplifies something. The passed
5228 /// in simplified value does not count toward this.
5229 static bool replaceAndRecursivelySimplifyImpl(Instruction
*I
, Value
*SimpleV
,
5230 const TargetLibraryInfo
*TLI
,
5231 const DominatorTree
*DT
,
5232 AssumptionCache
*AC
) {
5233 bool Simplified
= false;
5234 SmallSetVector
<Instruction
*, 8> Worklist
;
5235 const DataLayout
&DL
= I
->getModule()->getDataLayout();
5237 // If we have an explicit value to collapse to, do that round of the
5238 // simplification loop by hand initially.
5240 for (User
*U
: I
->users())
5242 Worklist
.insert(cast
<Instruction
>(U
));
5244 // Replace the instruction with its simplified value.
5245 I
->replaceAllUsesWith(SimpleV
);
5247 // Gracefully handle edge cases where the instruction is not wired into any
5249 if (I
->getParent() && !I
->isEHPad() && !I
->isTerminator() &&
5250 !I
->mayHaveSideEffects())
5251 I
->eraseFromParent();
5256 // Note that we must test the size on each iteration, the worklist can grow.
5257 for (unsigned Idx
= 0; Idx
!= Worklist
.size(); ++Idx
) {
5260 // See if this instruction simplifies.
5261 SimpleV
= SimplifyInstruction(I
, {DL
, TLI
, DT
, AC
});
5267 // Stash away all the uses of the old instruction so we can check them for
5268 // recursive simplifications after a RAUW. This is cheaper than checking all
5269 // uses of To on the recursive step in most cases.
5270 for (User
*U
: I
->users())
5271 Worklist
.insert(cast
<Instruction
>(U
));
5273 // Replace the instruction with its simplified value.
5274 I
->replaceAllUsesWith(SimpleV
);
5276 // Gracefully handle edge cases where the instruction is not wired into any
5278 if (I
->getParent() && !I
->isEHPad() && !I
->isTerminator() &&
5279 !I
->mayHaveSideEffects())
5280 I
->eraseFromParent();
5285 bool llvm::recursivelySimplifyInstruction(Instruction
*I
,
5286 const TargetLibraryInfo
*TLI
,
5287 const DominatorTree
*DT
,
5288 AssumptionCache
*AC
) {
5289 return replaceAndRecursivelySimplifyImpl(I
, nullptr, TLI
, DT
, AC
);
5292 bool llvm::replaceAndRecursivelySimplify(Instruction
*I
, Value
*SimpleV
,
5293 const TargetLibraryInfo
*TLI
,
5294 const DominatorTree
*DT
,
5295 AssumptionCache
*AC
) {
5296 assert(I
!= SimpleV
&& "replaceAndRecursivelySimplify(X,X) is not valid!");
5297 assert(SimpleV
&& "Must provide a simplified value.");
5298 return replaceAndRecursivelySimplifyImpl(I
, SimpleV
, TLI
, DT
, AC
);
5302 const SimplifyQuery
getBestSimplifyQuery(Pass
&P
, Function
&F
) {
5303 auto *DTWP
= P
.getAnalysisIfAvailable
<DominatorTreeWrapperPass
>();
5304 auto *DT
= DTWP
? &DTWP
->getDomTree() : nullptr;
5305 auto *TLIWP
= P
.getAnalysisIfAvailable
<TargetLibraryInfoWrapperPass
>();
5306 auto *TLI
= TLIWP
? &TLIWP
->getTLI() : nullptr;
5307 auto *ACWP
= P
.getAnalysisIfAvailable
<AssumptionCacheTracker
>();
5308 auto *AC
= ACWP
? &ACWP
->getAssumptionCache(F
) : nullptr;
5309 return {F
.getParent()->getDataLayout(), TLI
, DT
, AC
};
5312 const SimplifyQuery
getBestSimplifyQuery(LoopStandardAnalysisResults
&AR
,
5313 const DataLayout
&DL
) {
5314 return {DL
, &AR
.TLI
, &AR
.DT
, &AR
.AC
};
5317 template <class T
, class... TArgs
>
5318 const SimplifyQuery
getBestSimplifyQuery(AnalysisManager
<T
, TArgs
...> &AM
,
5320 auto *DT
= AM
.template getCachedResult
<DominatorTreeAnalysis
>(F
);
5321 auto *TLI
= AM
.template getCachedResult
<TargetLibraryAnalysis
>(F
);
5322 auto *AC
= AM
.template getCachedResult
<AssumptionAnalysis
>(F
);
5323 return {F
.getParent()->getDataLayout(), TLI
, DT
, AC
};
5325 template const SimplifyQuery
getBestSimplifyQuery(AnalysisManager
<Function
> &,