[ARM] MVE sext costs
[llvm-complete.git] / lib / Analysis / MemorySSAUpdater.cpp
blob39882dab04ca4d7fbecfb99effa2609f2d2fc1d9
1 //===-- MemorySSAUpdater.cpp - Memory SSA Updater--------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------===//
8 //
9 // This file implements the MemorySSAUpdater class.
11 //===----------------------------------------------------------------===//
12 #include "llvm/Analysis/MemorySSAUpdater.h"
13 #include "llvm/ADT/STLExtras.h"
14 #include "llvm/ADT/SetVector.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/Analysis/IteratedDominanceFrontier.h"
17 #include "llvm/Analysis/MemorySSA.h"
18 #include "llvm/IR/DataLayout.h"
19 #include "llvm/IR/Dominators.h"
20 #include "llvm/IR/GlobalVariable.h"
21 #include "llvm/IR/IRBuilder.h"
22 #include "llvm/IR/LLVMContext.h"
23 #include "llvm/IR/Metadata.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/FormattedStream.h"
27 #include <algorithm>
29 #define DEBUG_TYPE "memoryssa"
30 using namespace llvm;
32 // This is the marker algorithm from "Simple and Efficient Construction of
33 // Static Single Assignment Form"
34 // The simple, non-marker algorithm places phi nodes at any join
35 // Here, we place markers, and only place phi nodes if they end up necessary.
36 // They are only necessary if they break a cycle (IE we recursively visit
37 // ourselves again), or we discover, while getting the value of the operands,
38 // that there are two or more definitions needing to be merged.
39 // This still will leave non-minimal form in the case of irreducible control
40 // flow, where phi nodes may be in cycles with themselves, but unnecessary.
41 MemoryAccess *MemorySSAUpdater::getPreviousDefRecursive(
42 BasicBlock *BB,
43 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) {
44 // First, do a cache lookup. Without this cache, certain CFG structures
45 // (like a series of if statements) take exponential time to visit.
46 auto Cached = CachedPreviousDef.find(BB);
47 if (Cached != CachedPreviousDef.end()) {
48 return Cached->second;
51 if (BasicBlock *Pred = BB->getSinglePredecessor()) {
52 // Single predecessor case, just recurse, we can only have one definition.
53 MemoryAccess *Result = getPreviousDefFromEnd(Pred, CachedPreviousDef);
54 CachedPreviousDef.insert({BB, Result});
55 return Result;
58 if (VisitedBlocks.count(BB)) {
59 // We hit our node again, meaning we had a cycle, we must insert a phi
60 // node to break it so we have an operand. The only case this will
61 // insert useless phis is if we have irreducible control flow.
62 MemoryAccess *Result = MSSA->createMemoryPhi(BB);
63 CachedPreviousDef.insert({BB, Result});
64 return Result;
67 if (VisitedBlocks.insert(BB).second) {
68 // Mark us visited so we can detect a cycle
69 SmallVector<TrackingVH<MemoryAccess>, 8> PhiOps;
71 // Recurse to get the values in our predecessors for placement of a
72 // potential phi node. This will insert phi nodes if we cycle in order to
73 // break the cycle and have an operand.
74 for (auto *Pred : predecessors(BB))
75 if (MSSA->DT->isReachableFromEntry(Pred))
76 PhiOps.push_back(getPreviousDefFromEnd(Pred, CachedPreviousDef));
77 else
78 PhiOps.push_back(MSSA->getLiveOnEntryDef());
80 // Now try to simplify the ops to avoid placing a phi.
81 // This may return null if we never created a phi yet, that's okay
82 MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MSSA->getMemoryAccess(BB));
84 // See if we can avoid the phi by simplifying it.
85 auto *Result = tryRemoveTrivialPhi(Phi, PhiOps);
86 // If we couldn't simplify, we may have to create a phi
87 if (Result == Phi) {
88 if (!Phi)
89 Phi = MSSA->createMemoryPhi(BB);
91 // See if the existing phi operands match what we need.
92 // Unlike normal SSA, we only allow one phi node per block, so we can't just
93 // create a new one.
94 if (Phi->getNumOperands() != 0) {
95 // FIXME: Figure out whether this is dead code and if so remove it.
96 if (!std::equal(Phi->op_begin(), Phi->op_end(), PhiOps.begin())) {
97 // These will have been filled in by the recursive read we did above.
98 llvm::copy(PhiOps, Phi->op_begin());
99 std::copy(pred_begin(BB), pred_end(BB), Phi->block_begin());
101 } else {
102 unsigned i = 0;
103 for (auto *Pred : predecessors(BB))
104 Phi->addIncoming(&*PhiOps[i++], Pred);
105 InsertedPHIs.push_back(Phi);
107 Result = Phi;
110 // Set ourselves up for the next variable by resetting visited state.
111 VisitedBlocks.erase(BB);
112 CachedPreviousDef.insert({BB, Result});
113 return Result;
115 llvm_unreachable("Should have hit one of the three cases above");
118 // This starts at the memory access, and goes backwards in the block to find the
119 // previous definition. If a definition is not found the block of the access,
120 // it continues globally, creating phi nodes to ensure we have a single
121 // definition.
122 MemoryAccess *MemorySSAUpdater::getPreviousDef(MemoryAccess *MA) {
123 if (auto *LocalResult = getPreviousDefInBlock(MA))
124 return LocalResult;
125 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef;
126 return getPreviousDefRecursive(MA->getBlock(), CachedPreviousDef);
129 // This starts at the memory access, and goes backwards in the block to the find
130 // the previous definition. If the definition is not found in the block of the
131 // access, it returns nullptr.
132 MemoryAccess *MemorySSAUpdater::getPreviousDefInBlock(MemoryAccess *MA) {
133 auto *Defs = MSSA->getWritableBlockDefs(MA->getBlock());
135 // It's possible there are no defs, or we got handed the first def to start.
136 if (Defs) {
137 // If this is a def, we can just use the def iterators.
138 if (!isa<MemoryUse>(MA)) {
139 auto Iter = MA->getReverseDefsIterator();
140 ++Iter;
141 if (Iter != Defs->rend())
142 return &*Iter;
143 } else {
144 // Otherwise, have to walk the all access iterator.
145 auto End = MSSA->getWritableBlockAccesses(MA->getBlock())->rend();
146 for (auto &U : make_range(++MA->getReverseIterator(), End))
147 if (!isa<MemoryUse>(U))
148 return cast<MemoryAccess>(&U);
149 // Note that if MA comes before Defs->begin(), we won't hit a def.
150 return nullptr;
153 return nullptr;
156 // This starts at the end of block
157 MemoryAccess *MemorySSAUpdater::getPreviousDefFromEnd(
158 BasicBlock *BB,
159 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) {
160 auto *Defs = MSSA->getWritableBlockDefs(BB);
162 if (Defs) {
163 CachedPreviousDef.insert({BB, &*Defs->rbegin()});
164 return &*Defs->rbegin();
167 return getPreviousDefRecursive(BB, CachedPreviousDef);
169 // Recurse over a set of phi uses to eliminate the trivial ones
170 MemoryAccess *MemorySSAUpdater::recursePhi(MemoryAccess *Phi) {
171 if (!Phi)
172 return nullptr;
173 TrackingVH<MemoryAccess> Res(Phi);
174 SmallVector<TrackingVH<Value>, 8> Uses;
175 std::copy(Phi->user_begin(), Phi->user_end(), std::back_inserter(Uses));
176 for (auto &U : Uses) {
177 if (MemoryPhi *UsePhi = dyn_cast<MemoryPhi>(&*U)) {
178 auto OperRange = UsePhi->operands();
179 tryRemoveTrivialPhi(UsePhi, OperRange);
182 return Res;
185 // Eliminate trivial phis
186 // Phis are trivial if they are defined either by themselves, or all the same
187 // argument.
188 // IE phi(a, a) or b = phi(a, b) or c = phi(a, a, c)
189 // We recursively try to remove them.
190 template <class RangeType>
191 MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi,
192 RangeType &Operands) {
193 // Bail out on non-opt Phis.
194 if (NonOptPhis.count(Phi))
195 return Phi;
197 // Detect equal or self arguments
198 MemoryAccess *Same = nullptr;
199 for (auto &Op : Operands) {
200 // If the same or self, good so far
201 if (Op == Phi || Op == Same)
202 continue;
203 // not the same, return the phi since it's not eliminatable by us
204 if (Same)
205 return Phi;
206 Same = cast<MemoryAccess>(&*Op);
208 // Never found a non-self reference, the phi is undef
209 if (Same == nullptr)
210 return MSSA->getLiveOnEntryDef();
211 if (Phi) {
212 Phi->replaceAllUsesWith(Same);
213 removeMemoryAccess(Phi);
216 // We should only end up recursing in case we replaced something, in which
217 // case, we may have made other Phis trivial.
218 return recursePhi(Same);
221 void MemorySSAUpdater::insertUse(MemoryUse *MU) {
222 InsertedPHIs.clear();
223 MU->setDefiningAccess(getPreviousDef(MU));
224 // Unlike for defs, there is no extra work to do. Because uses do not create
225 // new may-defs, there are only two cases:
227 // 1. There was a def already below us, and therefore, we should not have
228 // created a phi node because it was already needed for the def.
230 // 2. There is no def below us, and therefore, there is no extra renaming work
231 // to do.
234 // Set every incoming edge {BB, MP->getBlock()} of MemoryPhi MP to NewDef.
235 static void setMemoryPhiValueForBlock(MemoryPhi *MP, const BasicBlock *BB,
236 MemoryAccess *NewDef) {
237 // Replace any operand with us an incoming block with the new defining
238 // access.
239 int i = MP->getBasicBlockIndex(BB);
240 assert(i != -1 && "Should have found the basic block in the phi");
241 // We can't just compare i against getNumOperands since one is signed and the
242 // other not. So use it to index into the block iterator.
243 for (auto BBIter = MP->block_begin() + i; BBIter != MP->block_end();
244 ++BBIter) {
245 if (*BBIter != BB)
246 break;
247 MP->setIncomingValue(i, NewDef);
248 ++i;
252 // A brief description of the algorithm:
253 // First, we compute what should define the new def, using the SSA
254 // construction algorithm.
255 // Then, we update the defs below us (and any new phi nodes) in the graph to
256 // point to the correct new defs, to ensure we only have one variable, and no
257 // disconnected stores.
258 void MemorySSAUpdater::insertDef(MemoryDef *MD, bool RenameUses) {
259 InsertedPHIs.clear();
261 // See if we had a local def, and if not, go hunting.
262 MemoryAccess *DefBefore = getPreviousDef(MD);
263 bool DefBeforeSameBlock = DefBefore->getBlock() == MD->getBlock();
265 // There is a def before us, which means we can replace any store/phi uses
266 // of that thing with us, since we are in the way of whatever was there
267 // before.
268 // We now define that def's memorydefs and memoryphis
269 if (DefBeforeSameBlock) {
270 DefBefore->replaceUsesWithIf(MD, [MD](Use &U) {
271 // Leave the MemoryUses alone.
272 // Also make sure we skip ourselves to avoid self references.
273 User *Usr = U.getUser();
274 return !isa<MemoryUse>(Usr) && Usr != MD;
275 // Defs are automatically unoptimized when the user is set to MD below,
276 // because the isOptimized() call will fail to find the same ID.
280 // and that def is now our defining access.
281 MD->setDefiningAccess(DefBefore);
283 // Remember the index where we may insert new phis below.
284 unsigned NewPhiIndex = InsertedPHIs.size();
286 SmallVector<WeakVH, 8> FixupList(InsertedPHIs.begin(), InsertedPHIs.end());
287 if (!DefBeforeSameBlock) {
288 // If there was a local def before us, we must have the same effect it
289 // did. Because every may-def is the same, any phis/etc we would create, it
290 // would also have created. If there was no local def before us, we
291 // performed a global update, and have to search all successors and make
292 // sure we update the first def in each of them (following all paths until
293 // we hit the first def along each path). This may also insert phi nodes.
294 // TODO: There are other cases we can skip this work, such as when we have a
295 // single successor, and only used a straight line of single pred blocks
296 // backwards to find the def. To make that work, we'd have to track whether
297 // getDefRecursive only ever used the single predecessor case. These types
298 // of paths also only exist in between CFG simplifications.
300 // If this is the first def in the block and this insert is in an arbitrary
301 // place, compute IDF and place phis.
302 auto Iter = MD->getDefsIterator();
303 ++Iter;
304 auto IterEnd = MSSA->getBlockDefs(MD->getBlock())->end();
305 if (Iter == IterEnd) {
306 ForwardIDFCalculator IDFs(*MSSA->DT);
307 SmallVector<BasicBlock *, 32> IDFBlocks;
308 SmallPtrSet<BasicBlock *, 2> DefiningBlocks;
309 DefiningBlocks.insert(MD->getBlock());
310 IDFs.setDefiningBlocks(DefiningBlocks);
311 IDFs.calculate(IDFBlocks);
312 SmallVector<AssertingVH<MemoryPhi>, 4> NewInsertedPHIs;
313 for (auto *BBIDF : IDFBlocks)
314 if (!MSSA->getMemoryAccess(BBIDF)) {
315 auto *MPhi = MSSA->createMemoryPhi(BBIDF);
316 NewInsertedPHIs.push_back(MPhi);
317 // Add the phis created into the IDF blocks to NonOptPhis, so they are
318 // not optimized out as trivial by the call to getPreviousDefFromEnd
319 // below. Once they are complete, all these Phis are added to the
320 // FixupList, and removed from NonOptPhis inside fixupDefs().
321 NonOptPhis.insert(MPhi);
324 for (auto &MPhi : NewInsertedPHIs) {
325 auto *BBIDF = MPhi->getBlock();
326 for (auto *Pred : predecessors(BBIDF)) {
327 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef;
328 MPhi->addIncoming(getPreviousDefFromEnd(Pred, CachedPreviousDef),
329 Pred);
333 // Re-take the index where we're adding the new phis, because the above
334 // call to getPreviousDefFromEnd, may have inserted into InsertedPHIs.
335 NewPhiIndex = InsertedPHIs.size();
336 for (auto &MPhi : NewInsertedPHIs) {
337 InsertedPHIs.push_back(&*MPhi);
338 FixupList.push_back(&*MPhi);
342 FixupList.push_back(MD);
345 // Remember the index where we stopped inserting new phis above, since the
346 // fixupDefs call in the loop below may insert more, that are already minimal.
347 unsigned NewPhiIndexEnd = InsertedPHIs.size();
349 while (!FixupList.empty()) {
350 unsigned StartingPHISize = InsertedPHIs.size();
351 fixupDefs(FixupList);
352 FixupList.clear();
353 // Put any new phis on the fixup list, and process them
354 FixupList.append(InsertedPHIs.begin() + StartingPHISize, InsertedPHIs.end());
357 // Optimize potentially non-minimal phis added in this method.
358 unsigned NewPhiSize = NewPhiIndexEnd - NewPhiIndex;
359 if (NewPhiSize)
360 tryRemoveTrivialPhis(ArrayRef<WeakVH>(&InsertedPHIs[NewPhiIndex], NewPhiSize));
362 // Now that all fixups are done, rename all uses if we are asked.
363 if (RenameUses) {
364 SmallPtrSet<BasicBlock *, 16> Visited;
365 BasicBlock *StartBlock = MD->getBlock();
366 // We are guaranteed there is a def in the block, because we just got it
367 // handed to us in this function.
368 MemoryAccess *FirstDef = &*MSSA->getWritableBlockDefs(StartBlock)->begin();
369 // Convert to incoming value if it's a memorydef. A phi *is* already an
370 // incoming value.
371 if (auto *MD = dyn_cast<MemoryDef>(FirstDef))
372 FirstDef = MD->getDefiningAccess();
374 MSSA->renamePass(MD->getBlock(), FirstDef, Visited);
375 // We just inserted a phi into this block, so the incoming value will become
376 // the phi anyway, so it does not matter what we pass.
377 for (auto &MP : InsertedPHIs) {
378 MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MP);
379 if (Phi)
380 MSSA->renamePass(Phi->getBlock(), nullptr, Visited);
385 void MemorySSAUpdater::fixupDefs(const SmallVectorImpl<WeakVH> &Vars) {
386 SmallPtrSet<const BasicBlock *, 8> Seen;
387 SmallVector<const BasicBlock *, 16> Worklist;
388 for (auto &Var : Vars) {
389 MemoryAccess *NewDef = dyn_cast_or_null<MemoryAccess>(Var);
390 if (!NewDef)
391 continue;
392 // First, see if there is a local def after the operand.
393 auto *Defs = MSSA->getWritableBlockDefs(NewDef->getBlock());
394 auto DefIter = NewDef->getDefsIterator();
396 // The temporary Phi is being fixed, unmark it for not to optimize.
397 if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(NewDef))
398 NonOptPhis.erase(Phi);
400 // If there is a local def after us, we only have to rename that.
401 if (++DefIter != Defs->end()) {
402 cast<MemoryDef>(DefIter)->setDefiningAccess(NewDef);
403 continue;
406 // Otherwise, we need to search down through the CFG.
407 // For each of our successors, handle it directly if their is a phi, or
408 // place on the fixup worklist.
409 for (const auto *S : successors(NewDef->getBlock())) {
410 if (auto *MP = MSSA->getMemoryAccess(S))
411 setMemoryPhiValueForBlock(MP, NewDef->getBlock(), NewDef);
412 else
413 Worklist.push_back(S);
416 while (!Worklist.empty()) {
417 const BasicBlock *FixupBlock = Worklist.back();
418 Worklist.pop_back();
420 // Get the first def in the block that isn't a phi node.
421 if (auto *Defs = MSSA->getWritableBlockDefs(FixupBlock)) {
422 auto *FirstDef = &*Defs->begin();
423 // The loop above and below should have taken care of phi nodes
424 assert(!isa<MemoryPhi>(FirstDef) &&
425 "Should have already handled phi nodes!");
426 // We are now this def's defining access, make sure we actually dominate
427 // it
428 assert(MSSA->dominates(NewDef, FirstDef) &&
429 "Should have dominated the new access");
431 // This may insert new phi nodes, because we are not guaranteed the
432 // block we are processing has a single pred, and depending where the
433 // store was inserted, it may require phi nodes below it.
434 cast<MemoryDef>(FirstDef)->setDefiningAccess(getPreviousDef(FirstDef));
435 return;
437 // We didn't find a def, so we must continue.
438 for (const auto *S : successors(FixupBlock)) {
439 // If there is a phi node, handle it.
440 // Otherwise, put the block on the worklist
441 if (auto *MP = MSSA->getMemoryAccess(S))
442 setMemoryPhiValueForBlock(MP, FixupBlock, NewDef);
443 else {
444 // If we cycle, we should have ended up at a phi node that we already
445 // processed. FIXME: Double check this
446 if (!Seen.insert(S).second)
447 continue;
448 Worklist.push_back(S);
455 void MemorySSAUpdater::removeEdge(BasicBlock *From, BasicBlock *To) {
456 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) {
457 MPhi->unorderedDeleteIncomingBlock(From);
458 if (MPhi->getNumIncomingValues() == 1)
459 removeMemoryAccess(MPhi);
463 void MemorySSAUpdater::removeDuplicatePhiEdgesBetween(const BasicBlock *From,
464 const BasicBlock *To) {
465 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) {
466 bool Found = false;
467 MPhi->unorderedDeleteIncomingIf([&](const MemoryAccess *, BasicBlock *B) {
468 if (From != B)
469 return false;
470 if (Found)
471 return true;
472 Found = true;
473 return false;
475 if (MPhi->getNumIncomingValues() == 1)
476 removeMemoryAccess(MPhi);
480 static MemoryAccess *getNewDefiningAccessForClone(MemoryAccess *MA,
481 const ValueToValueMapTy &VMap,
482 PhiToDefMap &MPhiMap,
483 bool CloneWasSimplified,
484 MemorySSA *MSSA) {
485 MemoryAccess *InsnDefining = MA;
486 if (MemoryDef *DefMUD = dyn_cast<MemoryDef>(InsnDefining)) {
487 if (!MSSA->isLiveOnEntryDef(DefMUD)) {
488 Instruction *DefMUDI = DefMUD->getMemoryInst();
489 assert(DefMUDI && "Found MemoryUseOrDef with no Instruction.");
490 if (Instruction *NewDefMUDI =
491 cast_or_null<Instruction>(VMap.lookup(DefMUDI))) {
492 InsnDefining = MSSA->getMemoryAccess(NewDefMUDI);
493 if (!CloneWasSimplified)
494 assert(InsnDefining && "Defining instruction cannot be nullptr.");
495 else if (!InsnDefining || isa<MemoryUse>(InsnDefining)) {
496 // The clone was simplified, it's no longer a MemoryDef, look up.
497 auto DefIt = DefMUD->getDefsIterator();
498 // Since simplified clones only occur in single block cloning, a
499 // previous definition must exist, otherwise NewDefMUDI would not
500 // have been found in VMap.
501 assert(DefIt != MSSA->getBlockDefs(DefMUD->getBlock())->begin() &&
502 "Previous def must exist");
503 InsnDefining = getNewDefiningAccessForClone(
504 &*(--DefIt), VMap, MPhiMap, CloneWasSimplified, MSSA);
508 } else {
509 MemoryPhi *DefPhi = cast<MemoryPhi>(InsnDefining);
510 if (MemoryAccess *NewDefPhi = MPhiMap.lookup(DefPhi))
511 InsnDefining = NewDefPhi;
513 assert(InsnDefining && "Defining instruction cannot be nullptr.");
514 return InsnDefining;
517 void MemorySSAUpdater::cloneUsesAndDefs(BasicBlock *BB, BasicBlock *NewBB,
518 const ValueToValueMapTy &VMap,
519 PhiToDefMap &MPhiMap,
520 bool CloneWasSimplified) {
521 const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB);
522 if (!Acc)
523 return;
524 for (const MemoryAccess &MA : *Acc) {
525 if (const MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&MA)) {
526 Instruction *Insn = MUD->getMemoryInst();
527 // Entry does not exist if the clone of the block did not clone all
528 // instructions. This occurs in LoopRotate when cloning instructions
529 // from the old header to the old preheader. The cloned instruction may
530 // also be a simplified Value, not an Instruction (see LoopRotate).
531 // Also in LoopRotate, even when it's an instruction, due to it being
532 // simplified, it may be a Use rather than a Def, so we cannot use MUD as
533 // template. Calls coming from updateForClonedBlockIntoPred, ensure this.
534 if (Instruction *NewInsn =
535 dyn_cast_or_null<Instruction>(VMap.lookup(Insn))) {
536 MemoryAccess *NewUseOrDef = MSSA->createDefinedAccess(
537 NewInsn,
538 getNewDefiningAccessForClone(MUD->getDefiningAccess(), VMap,
539 MPhiMap, CloneWasSimplified, MSSA),
540 /*Template=*/CloneWasSimplified ? nullptr : MUD,
541 /*CreationMustSucceed=*/CloneWasSimplified ? false : true);
542 if (NewUseOrDef)
543 MSSA->insertIntoListsForBlock(NewUseOrDef, NewBB, MemorySSA::End);
549 void MemorySSAUpdater::updatePhisWhenInsertingUniqueBackedgeBlock(
550 BasicBlock *Header, BasicBlock *Preheader, BasicBlock *BEBlock) {
551 auto *MPhi = MSSA->getMemoryAccess(Header);
552 if (!MPhi)
553 return;
555 // Create phi node in the backedge block and populate it with the same
556 // incoming values as MPhi. Skip incoming values coming from Preheader.
557 auto *NewMPhi = MSSA->createMemoryPhi(BEBlock);
558 bool HasUniqueIncomingValue = true;
559 MemoryAccess *UniqueValue = nullptr;
560 for (unsigned I = 0, E = MPhi->getNumIncomingValues(); I != E; ++I) {
561 BasicBlock *IBB = MPhi->getIncomingBlock(I);
562 MemoryAccess *IV = MPhi->getIncomingValue(I);
563 if (IBB != Preheader) {
564 NewMPhi->addIncoming(IV, IBB);
565 if (HasUniqueIncomingValue) {
566 if (!UniqueValue)
567 UniqueValue = IV;
568 else if (UniqueValue != IV)
569 HasUniqueIncomingValue = false;
574 // Update incoming edges into MPhi. Remove all but the incoming edge from
575 // Preheader. Add an edge from NewMPhi
576 auto *AccFromPreheader = MPhi->getIncomingValueForBlock(Preheader);
577 MPhi->setIncomingValue(0, AccFromPreheader);
578 MPhi->setIncomingBlock(0, Preheader);
579 for (unsigned I = MPhi->getNumIncomingValues() - 1; I >= 1; --I)
580 MPhi->unorderedDeleteIncoming(I);
581 MPhi->addIncoming(NewMPhi, BEBlock);
583 // If NewMPhi is a trivial phi, remove it. Its use in the header MPhi will be
584 // replaced with the unique value.
585 if (HasUniqueIncomingValue)
586 removeMemoryAccess(NewMPhi);
589 void MemorySSAUpdater::updateForClonedLoop(const LoopBlocksRPO &LoopBlocks,
590 ArrayRef<BasicBlock *> ExitBlocks,
591 const ValueToValueMapTy &VMap,
592 bool IgnoreIncomingWithNoClones) {
593 PhiToDefMap MPhiMap;
595 auto FixPhiIncomingValues = [&](MemoryPhi *Phi, MemoryPhi *NewPhi) {
596 assert(Phi && NewPhi && "Invalid Phi nodes.");
597 BasicBlock *NewPhiBB = NewPhi->getBlock();
598 SmallPtrSet<BasicBlock *, 4> NewPhiBBPreds(pred_begin(NewPhiBB),
599 pred_end(NewPhiBB));
600 for (unsigned It = 0, E = Phi->getNumIncomingValues(); It < E; ++It) {
601 MemoryAccess *IncomingAccess = Phi->getIncomingValue(It);
602 BasicBlock *IncBB = Phi->getIncomingBlock(It);
604 if (BasicBlock *NewIncBB = cast_or_null<BasicBlock>(VMap.lookup(IncBB)))
605 IncBB = NewIncBB;
606 else if (IgnoreIncomingWithNoClones)
607 continue;
609 // Now we have IncBB, and will need to add incoming from it to NewPhi.
611 // If IncBB is not a predecessor of NewPhiBB, then do not add it.
612 // NewPhiBB was cloned without that edge.
613 if (!NewPhiBBPreds.count(IncBB))
614 continue;
616 // Determine incoming value and add it as incoming from IncBB.
617 if (MemoryUseOrDef *IncMUD = dyn_cast<MemoryUseOrDef>(IncomingAccess)) {
618 if (!MSSA->isLiveOnEntryDef(IncMUD)) {
619 Instruction *IncI = IncMUD->getMemoryInst();
620 assert(IncI && "Found MemoryUseOrDef with no Instruction.");
621 if (Instruction *NewIncI =
622 cast_or_null<Instruction>(VMap.lookup(IncI))) {
623 IncMUD = MSSA->getMemoryAccess(NewIncI);
624 assert(IncMUD &&
625 "MemoryUseOrDef cannot be null, all preds processed.");
628 NewPhi->addIncoming(IncMUD, IncBB);
629 } else {
630 MemoryPhi *IncPhi = cast<MemoryPhi>(IncomingAccess);
631 if (MemoryAccess *NewDefPhi = MPhiMap.lookup(IncPhi))
632 NewPhi->addIncoming(NewDefPhi, IncBB);
633 else
634 NewPhi->addIncoming(IncPhi, IncBB);
639 auto ProcessBlock = [&](BasicBlock *BB) {
640 BasicBlock *NewBlock = cast_or_null<BasicBlock>(VMap.lookup(BB));
641 if (!NewBlock)
642 return;
644 assert(!MSSA->getWritableBlockAccesses(NewBlock) &&
645 "Cloned block should have no accesses");
647 // Add MemoryPhi.
648 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB)) {
649 MemoryPhi *NewPhi = MSSA->createMemoryPhi(NewBlock);
650 MPhiMap[MPhi] = NewPhi;
652 // Update Uses and Defs.
653 cloneUsesAndDefs(BB, NewBlock, VMap, MPhiMap);
656 for (auto BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks))
657 ProcessBlock(BB);
659 for (auto BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks))
660 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB))
661 if (MemoryAccess *NewPhi = MPhiMap.lookup(MPhi))
662 FixPhiIncomingValues(MPhi, cast<MemoryPhi>(NewPhi));
665 void MemorySSAUpdater::updateForClonedBlockIntoPred(
666 BasicBlock *BB, BasicBlock *P1, const ValueToValueMapTy &VM) {
667 // All defs/phis from outside BB that are used in BB, are valid uses in P1.
668 // Since those defs/phis must have dominated BB, and also dominate P1.
669 // Defs from BB being used in BB will be replaced with the cloned defs from
670 // VM. The uses of BB's Phi (if it exists) in BB will be replaced by the
671 // incoming def into the Phi from P1.
672 // Instructions cloned into the predecessor are in practice sometimes
673 // simplified, so disable the use of the template, and create an access from
674 // scratch.
675 PhiToDefMap MPhiMap;
676 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB))
677 MPhiMap[MPhi] = MPhi->getIncomingValueForBlock(P1);
678 cloneUsesAndDefs(BB, P1, VM, MPhiMap, /*CloneWasSimplified=*/true);
681 template <typename Iter>
682 void MemorySSAUpdater::privateUpdateExitBlocksForClonedLoop(
683 ArrayRef<BasicBlock *> ExitBlocks, Iter ValuesBegin, Iter ValuesEnd,
684 DominatorTree &DT) {
685 SmallVector<CFGUpdate, 4> Updates;
686 // Update/insert phis in all successors of exit blocks.
687 for (auto *Exit : ExitBlocks)
688 for (const ValueToValueMapTy *VMap : make_range(ValuesBegin, ValuesEnd))
689 if (BasicBlock *NewExit = cast_or_null<BasicBlock>(VMap->lookup(Exit))) {
690 BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
691 Updates.push_back({DT.Insert, NewExit, ExitSucc});
693 applyInsertUpdates(Updates, DT);
696 void MemorySSAUpdater::updateExitBlocksForClonedLoop(
697 ArrayRef<BasicBlock *> ExitBlocks, const ValueToValueMapTy &VMap,
698 DominatorTree &DT) {
699 const ValueToValueMapTy *const Arr[] = {&VMap};
700 privateUpdateExitBlocksForClonedLoop(ExitBlocks, std::begin(Arr),
701 std::end(Arr), DT);
704 void MemorySSAUpdater::updateExitBlocksForClonedLoop(
705 ArrayRef<BasicBlock *> ExitBlocks,
706 ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, DominatorTree &DT) {
707 auto GetPtr = [&](const std::unique_ptr<ValueToValueMapTy> &I) {
708 return I.get();
710 using MappedIteratorType =
711 mapped_iterator<const std::unique_ptr<ValueToValueMapTy> *,
712 decltype(GetPtr)>;
713 auto MapBegin = MappedIteratorType(VMaps.begin(), GetPtr);
714 auto MapEnd = MappedIteratorType(VMaps.end(), GetPtr);
715 privateUpdateExitBlocksForClonedLoop(ExitBlocks, MapBegin, MapEnd, DT);
718 void MemorySSAUpdater::applyUpdates(ArrayRef<CFGUpdate> Updates,
719 DominatorTree &DT) {
720 SmallVector<CFGUpdate, 4> RevDeleteUpdates;
721 SmallVector<CFGUpdate, 4> InsertUpdates;
722 for (auto &Update : Updates) {
723 if (Update.getKind() == DT.Insert)
724 InsertUpdates.push_back({DT.Insert, Update.getFrom(), Update.getTo()});
725 else
726 RevDeleteUpdates.push_back({DT.Insert, Update.getFrom(), Update.getTo()});
729 if (!RevDeleteUpdates.empty()) {
730 // Update for inserted edges: use newDT and snapshot CFG as if deletes had
731 // not occurred.
732 // FIXME: This creates a new DT, so it's more expensive to do mix
733 // delete/inserts vs just inserts. We can do an incremental update on the DT
734 // to revert deletes, than re-delete the edges. Teaching DT to do this, is
735 // part of a pending cleanup.
736 DominatorTree NewDT(DT, RevDeleteUpdates);
737 GraphDiff<BasicBlock *> GD(RevDeleteUpdates);
738 applyInsertUpdates(InsertUpdates, NewDT, &GD);
739 } else {
740 GraphDiff<BasicBlock *> GD;
741 applyInsertUpdates(InsertUpdates, DT, &GD);
744 // Update for deleted edges
745 for (auto &Update : RevDeleteUpdates)
746 removeEdge(Update.getFrom(), Update.getTo());
749 void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates,
750 DominatorTree &DT) {
751 GraphDiff<BasicBlock *> GD;
752 applyInsertUpdates(Updates, DT, &GD);
755 void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates,
756 DominatorTree &DT,
757 const GraphDiff<BasicBlock *> *GD) {
758 // Get recursive last Def, assuming well formed MSSA and updated DT.
759 auto GetLastDef = [&](BasicBlock *BB) -> MemoryAccess * {
760 while (true) {
761 MemorySSA::DefsList *Defs = MSSA->getWritableBlockDefs(BB);
762 // Return last Def or Phi in BB, if it exists.
763 if (Defs)
764 return &*(--Defs->end());
766 // Check number of predecessors, we only care if there's more than one.
767 unsigned Count = 0;
768 BasicBlock *Pred = nullptr;
769 for (auto &Pair : children<GraphDiffInvBBPair>({GD, BB})) {
770 Pred = Pair.second;
771 Count++;
772 if (Count == 2)
773 break;
776 // If BB has multiple predecessors, get last definition from IDom.
777 if (Count != 1) {
778 // [SimpleLoopUnswitch] If BB is a dead block, about to be deleted, its
779 // DT is invalidated. Return LoE as its last def. This will be added to
780 // MemoryPhi node, and later deleted when the block is deleted.
781 if (!DT.getNode(BB))
782 return MSSA->getLiveOnEntryDef();
783 if (auto *IDom = DT.getNode(BB)->getIDom())
784 if (IDom->getBlock() != BB) {
785 BB = IDom->getBlock();
786 continue;
788 return MSSA->getLiveOnEntryDef();
789 } else {
790 // Single predecessor, BB cannot be dead. GetLastDef of Pred.
791 assert(Count == 1 && Pred && "Single predecessor expected.");
792 BB = Pred;
795 llvm_unreachable("Unable to get last definition.");
798 // Get nearest IDom given a set of blocks.
799 // TODO: this can be optimized by starting the search at the node with the
800 // lowest level (highest in the tree).
801 auto FindNearestCommonDominator =
802 [&](const SmallSetVector<BasicBlock *, 2> &BBSet) -> BasicBlock * {
803 BasicBlock *PrevIDom = *BBSet.begin();
804 for (auto *BB : BBSet)
805 PrevIDom = DT.findNearestCommonDominator(PrevIDom, BB);
806 return PrevIDom;
809 // Get all blocks that dominate PrevIDom, stop when reaching CurrIDom. Do not
810 // include CurrIDom.
811 auto GetNoLongerDomBlocks =
812 [&](BasicBlock *PrevIDom, BasicBlock *CurrIDom,
813 SmallVectorImpl<BasicBlock *> &BlocksPrevDom) {
814 if (PrevIDom == CurrIDom)
815 return;
816 BlocksPrevDom.push_back(PrevIDom);
817 BasicBlock *NextIDom = PrevIDom;
818 while (BasicBlock *UpIDom =
819 DT.getNode(NextIDom)->getIDom()->getBlock()) {
820 if (UpIDom == CurrIDom)
821 break;
822 BlocksPrevDom.push_back(UpIDom);
823 NextIDom = UpIDom;
827 // Map a BB to its predecessors: added + previously existing. To get a
828 // deterministic order, store predecessors as SetVectors. The order in each
829 // will be defined by the order in Updates (fixed) and the order given by
830 // children<> (also fixed). Since we further iterate over these ordered sets,
831 // we lose the information of multiple edges possibly existing between two
832 // blocks, so we'll keep and EdgeCount map for that.
833 // An alternate implementation could keep unordered set for the predecessors,
834 // traverse either Updates or children<> each time to get the deterministic
835 // order, and drop the usage of EdgeCount. This alternate approach would still
836 // require querying the maps for each predecessor, and children<> call has
837 // additional computation inside for creating the snapshot-graph predecessors.
838 // As such, we favor using a little additional storage and less compute time.
839 // This decision can be revisited if we find the alternative more favorable.
841 struct PredInfo {
842 SmallSetVector<BasicBlock *, 2> Added;
843 SmallSetVector<BasicBlock *, 2> Prev;
845 SmallDenseMap<BasicBlock *, PredInfo> PredMap;
847 for (auto &Edge : Updates) {
848 BasicBlock *BB = Edge.getTo();
849 auto &AddedBlockSet = PredMap[BB].Added;
850 AddedBlockSet.insert(Edge.getFrom());
853 // Store all existing predecessor for each BB, at least one must exist.
854 SmallDenseMap<std::pair<BasicBlock *, BasicBlock *>, int> EdgeCountMap;
855 SmallPtrSet<BasicBlock *, 2> NewBlocks;
856 for (auto &BBPredPair : PredMap) {
857 auto *BB = BBPredPair.first;
858 const auto &AddedBlockSet = BBPredPair.second.Added;
859 auto &PrevBlockSet = BBPredPair.second.Prev;
860 for (auto &Pair : children<GraphDiffInvBBPair>({GD, BB})) {
861 BasicBlock *Pi = Pair.second;
862 if (!AddedBlockSet.count(Pi))
863 PrevBlockSet.insert(Pi);
864 EdgeCountMap[{Pi, BB}]++;
867 if (PrevBlockSet.empty()) {
868 assert(pred_size(BB) == AddedBlockSet.size() && "Duplicate edges added.");
869 LLVM_DEBUG(
870 dbgs()
871 << "Adding a predecessor to a block with no predecessors. "
872 "This must be an edge added to a new, likely cloned, block. "
873 "Its memory accesses must be already correct, assuming completed "
874 "via the updateExitBlocksForClonedLoop API. "
875 "Assert a single such edge is added so no phi addition or "
876 "additional processing is required.\n");
877 assert(AddedBlockSet.size() == 1 &&
878 "Can only handle adding one predecessor to a new block.");
879 // Need to remove new blocks from PredMap. Remove below to not invalidate
880 // iterator here.
881 NewBlocks.insert(BB);
884 // Nothing to process for new/cloned blocks.
885 for (auto *BB : NewBlocks)
886 PredMap.erase(BB);
888 SmallVector<BasicBlock *, 16> BlocksWithDefsToReplace;
889 SmallVector<WeakVH, 8> InsertedPhis;
891 // First create MemoryPhis in all blocks that don't have one. Create in the
892 // order found in Updates, not in PredMap, to get deterministic numbering.
893 for (auto &Edge : Updates) {
894 BasicBlock *BB = Edge.getTo();
895 if (PredMap.count(BB) && !MSSA->getMemoryAccess(BB))
896 InsertedPhis.push_back(MSSA->createMemoryPhi(BB));
899 // Now we'll fill in the MemoryPhis with the right incoming values.
900 for (auto &BBPredPair : PredMap) {
901 auto *BB = BBPredPair.first;
902 const auto &PrevBlockSet = BBPredPair.second.Prev;
903 const auto &AddedBlockSet = BBPredPair.second.Added;
904 assert(!PrevBlockSet.empty() &&
905 "At least one previous predecessor must exist.");
907 // TODO: if this becomes a bottleneck, we can save on GetLastDef calls by
908 // keeping this map before the loop. We can reuse already populated entries
909 // if an edge is added from the same predecessor to two different blocks,
910 // and this does happen in rotate. Note that the map needs to be updated
911 // when deleting non-necessary phis below, if the phi is in the map by
912 // replacing the value with DefP1.
913 SmallDenseMap<BasicBlock *, MemoryAccess *> LastDefAddedPred;
914 for (auto *AddedPred : AddedBlockSet) {
915 auto *DefPn = GetLastDef(AddedPred);
916 assert(DefPn != nullptr && "Unable to find last definition.");
917 LastDefAddedPred[AddedPred] = DefPn;
920 MemoryPhi *NewPhi = MSSA->getMemoryAccess(BB);
921 // If Phi is not empty, add an incoming edge from each added pred. Must
922 // still compute blocks with defs to replace for this block below.
923 if (NewPhi->getNumOperands()) {
924 for (auto *Pred : AddedBlockSet) {
925 auto *LastDefForPred = LastDefAddedPred[Pred];
926 for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
927 NewPhi->addIncoming(LastDefForPred, Pred);
929 } else {
930 // Pick any existing predecessor and get its definition. All other
931 // existing predecessors should have the same one, since no phi existed.
932 auto *P1 = *PrevBlockSet.begin();
933 MemoryAccess *DefP1 = GetLastDef(P1);
935 // Check DefP1 against all Defs in LastDefPredPair. If all the same,
936 // nothing to add.
937 bool InsertPhi = false;
938 for (auto LastDefPredPair : LastDefAddedPred)
939 if (DefP1 != LastDefPredPair.second) {
940 InsertPhi = true;
941 break;
943 if (!InsertPhi) {
944 // Since NewPhi may be used in other newly added Phis, replace all uses
945 // of NewPhi with the definition coming from all predecessors (DefP1),
946 // before deleting it.
947 NewPhi->replaceAllUsesWith(DefP1);
948 removeMemoryAccess(NewPhi);
949 continue;
952 // Update Phi with new values for new predecessors and old value for all
953 // other predecessors. Since AddedBlockSet and PrevBlockSet are ordered
954 // sets, the order of entries in NewPhi is deterministic.
955 for (auto *Pred : AddedBlockSet) {
956 auto *LastDefForPred = LastDefAddedPred[Pred];
957 for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
958 NewPhi->addIncoming(LastDefForPred, Pred);
960 for (auto *Pred : PrevBlockSet)
961 for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
962 NewPhi->addIncoming(DefP1, Pred);
965 // Get all blocks that used to dominate BB and no longer do after adding
966 // AddedBlockSet, where PrevBlockSet are the previously known predecessors.
967 assert(DT.getNode(BB)->getIDom() && "BB does not have valid idom");
968 BasicBlock *PrevIDom = FindNearestCommonDominator(PrevBlockSet);
969 assert(PrevIDom && "Previous IDom should exists");
970 BasicBlock *NewIDom = DT.getNode(BB)->getIDom()->getBlock();
971 assert(NewIDom && "BB should have a new valid idom");
972 assert(DT.dominates(NewIDom, PrevIDom) &&
973 "New idom should dominate old idom");
974 GetNoLongerDomBlocks(PrevIDom, NewIDom, BlocksWithDefsToReplace);
977 tryRemoveTrivialPhis(InsertedPhis);
978 // Create the set of blocks that now have a definition. We'll use this to
979 // compute IDF and add Phis there next.
980 SmallVector<BasicBlock *, 8> BlocksToProcess;
981 for (auto &VH : InsertedPhis)
982 if (auto *MPhi = cast_or_null<MemoryPhi>(VH))
983 BlocksToProcess.push_back(MPhi->getBlock());
985 // Compute IDF and add Phis in all IDF blocks that do not have one.
986 SmallVector<BasicBlock *, 32> IDFBlocks;
987 if (!BlocksToProcess.empty()) {
988 ForwardIDFCalculator IDFs(DT, GD);
989 SmallPtrSet<BasicBlock *, 16> DefiningBlocks(BlocksToProcess.begin(),
990 BlocksToProcess.end());
991 IDFs.setDefiningBlocks(DefiningBlocks);
992 IDFs.calculate(IDFBlocks);
994 SmallSetVector<MemoryPhi *, 4> PhisToFill;
995 // First create all needed Phis.
996 for (auto *BBIDF : IDFBlocks)
997 if (!MSSA->getMemoryAccess(BBIDF)) {
998 auto *IDFPhi = MSSA->createMemoryPhi(BBIDF);
999 InsertedPhis.push_back(IDFPhi);
1000 PhisToFill.insert(IDFPhi);
1002 // Then update or insert their correct incoming values.
1003 for (auto *BBIDF : IDFBlocks) {
1004 auto *IDFPhi = MSSA->getMemoryAccess(BBIDF);
1005 assert(IDFPhi && "Phi must exist");
1006 if (!PhisToFill.count(IDFPhi)) {
1007 // Update existing Phi.
1008 // FIXME: some updates may be redundant, try to optimize and skip some.
1009 for (unsigned I = 0, E = IDFPhi->getNumIncomingValues(); I < E; ++I)
1010 IDFPhi->setIncomingValue(I, GetLastDef(IDFPhi->getIncomingBlock(I)));
1011 } else {
1012 for (auto &Pair : children<GraphDiffInvBBPair>({GD, BBIDF})) {
1013 BasicBlock *Pi = Pair.second;
1014 IDFPhi->addIncoming(GetLastDef(Pi), Pi);
1020 // Now for all defs in BlocksWithDefsToReplace, if there are uses they no
1021 // longer dominate, replace those with the closest dominating def.
1022 // This will also update optimized accesses, as they're also uses.
1023 for (auto *BlockWithDefsToReplace : BlocksWithDefsToReplace) {
1024 if (auto DefsList = MSSA->getWritableBlockDefs(BlockWithDefsToReplace)) {
1025 for (auto &DefToReplaceUses : *DefsList) {
1026 BasicBlock *DominatingBlock = DefToReplaceUses.getBlock();
1027 Value::use_iterator UI = DefToReplaceUses.use_begin(),
1028 E = DefToReplaceUses.use_end();
1029 for (; UI != E;) {
1030 Use &U = *UI;
1031 ++UI;
1032 MemoryAccess *Usr = dyn_cast<MemoryAccess>(U.getUser());
1033 if (MemoryPhi *UsrPhi = dyn_cast<MemoryPhi>(Usr)) {
1034 BasicBlock *DominatedBlock = UsrPhi->getIncomingBlock(U);
1035 if (!DT.dominates(DominatingBlock, DominatedBlock))
1036 U.set(GetLastDef(DominatedBlock));
1037 } else {
1038 BasicBlock *DominatedBlock = Usr->getBlock();
1039 if (!DT.dominates(DominatingBlock, DominatedBlock)) {
1040 if (auto *DomBlPhi = MSSA->getMemoryAccess(DominatedBlock))
1041 U.set(DomBlPhi);
1042 else {
1043 auto *IDom = DT.getNode(DominatedBlock)->getIDom();
1044 assert(IDom && "Block must have a valid IDom.");
1045 U.set(GetLastDef(IDom->getBlock()));
1047 cast<MemoryUseOrDef>(Usr)->resetOptimized();
1054 tryRemoveTrivialPhis(InsertedPhis);
1057 // Move What before Where in the MemorySSA IR.
1058 template <class WhereType>
1059 void MemorySSAUpdater::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
1060 WhereType Where) {
1061 // Mark MemoryPhi users of What not to be optimized.
1062 for (auto *U : What->users())
1063 if (MemoryPhi *PhiUser = dyn_cast<MemoryPhi>(U))
1064 NonOptPhis.insert(PhiUser);
1066 // Replace all our users with our defining access.
1067 What->replaceAllUsesWith(What->getDefiningAccess());
1069 // Let MemorySSA take care of moving it around in the lists.
1070 MSSA->moveTo(What, BB, Where);
1072 // Now reinsert it into the IR and do whatever fixups needed.
1073 if (auto *MD = dyn_cast<MemoryDef>(What))
1074 insertDef(MD, true);
1075 else
1076 insertUse(cast<MemoryUse>(What));
1078 // Clear dangling pointers. We added all MemoryPhi users, but not all
1079 // of them are removed by fixupDefs().
1080 NonOptPhis.clear();
1083 // Move What before Where in the MemorySSA IR.
1084 void MemorySSAUpdater::moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
1085 moveTo(What, Where->getBlock(), Where->getIterator());
1088 // Move What after Where in the MemorySSA IR.
1089 void MemorySSAUpdater::moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
1090 moveTo(What, Where->getBlock(), ++Where->getIterator());
1093 void MemorySSAUpdater::moveToPlace(MemoryUseOrDef *What, BasicBlock *BB,
1094 MemorySSA::InsertionPlace Where) {
1095 return moveTo(What, BB, Where);
1098 // All accesses in To used to be in From. Move to end and update access lists.
1099 void MemorySSAUpdater::moveAllAccesses(BasicBlock *From, BasicBlock *To,
1100 Instruction *Start) {
1102 MemorySSA::AccessList *Accs = MSSA->getWritableBlockAccesses(From);
1103 if (!Accs)
1104 return;
1106 MemoryAccess *FirstInNew = nullptr;
1107 for (Instruction &I : make_range(Start->getIterator(), To->end()))
1108 if ((FirstInNew = MSSA->getMemoryAccess(&I)))
1109 break;
1110 if (!FirstInNew)
1111 return;
1113 auto *MUD = cast<MemoryUseOrDef>(FirstInNew);
1114 do {
1115 auto NextIt = ++MUD->getIterator();
1116 MemoryUseOrDef *NextMUD = (!Accs || NextIt == Accs->end())
1117 ? nullptr
1118 : cast<MemoryUseOrDef>(&*NextIt);
1119 MSSA->moveTo(MUD, To, MemorySSA::End);
1120 // Moving MUD from Accs in the moveTo above, may delete Accs, so we need to
1121 // retrieve it again.
1122 Accs = MSSA->getWritableBlockAccesses(From);
1123 MUD = NextMUD;
1124 } while (MUD);
1127 void MemorySSAUpdater::moveAllAfterSpliceBlocks(BasicBlock *From,
1128 BasicBlock *To,
1129 Instruction *Start) {
1130 assert(MSSA->getBlockAccesses(To) == nullptr &&
1131 "To block is expected to be free of MemoryAccesses.");
1132 moveAllAccesses(From, To, Start);
1133 for (BasicBlock *Succ : successors(To))
1134 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ))
1135 MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To);
1138 void MemorySSAUpdater::moveAllAfterMergeBlocks(BasicBlock *From, BasicBlock *To,
1139 Instruction *Start) {
1140 assert(From->getSinglePredecessor() == To &&
1141 "From block is expected to have a single predecessor (To).");
1142 moveAllAccesses(From, To, Start);
1143 for (BasicBlock *Succ : successors(From))
1144 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ))
1145 MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To);
1148 /// If all arguments of a MemoryPHI are defined by the same incoming
1149 /// argument, return that argument.
1150 static MemoryAccess *onlySingleValue(MemoryPhi *MP) {
1151 MemoryAccess *MA = nullptr;
1153 for (auto &Arg : MP->operands()) {
1154 if (!MA)
1155 MA = cast<MemoryAccess>(Arg);
1156 else if (MA != Arg)
1157 return nullptr;
1159 return MA;
1162 void MemorySSAUpdater::wireOldPredecessorsToNewImmediatePredecessor(
1163 BasicBlock *Old, BasicBlock *New, ArrayRef<BasicBlock *> Preds,
1164 bool IdenticalEdgesWereMerged) {
1165 assert(!MSSA->getWritableBlockAccesses(New) &&
1166 "Access list should be null for a new block.");
1167 MemoryPhi *Phi = MSSA->getMemoryAccess(Old);
1168 if (!Phi)
1169 return;
1170 if (Old->hasNPredecessors(1)) {
1171 assert(pred_size(New) == Preds.size() &&
1172 "Should have moved all predecessors.");
1173 MSSA->moveTo(Phi, New, MemorySSA::Beginning);
1174 } else {
1175 assert(!Preds.empty() && "Must be moving at least one predecessor to the "
1176 "new immediate predecessor.");
1177 MemoryPhi *NewPhi = MSSA->createMemoryPhi(New);
1178 SmallPtrSet<BasicBlock *, 16> PredsSet(Preds.begin(), Preds.end());
1179 // Currently only support the case of removing a single incoming edge when
1180 // identical edges were not merged.
1181 if (!IdenticalEdgesWereMerged)
1182 assert(PredsSet.size() == Preds.size() &&
1183 "If identical edges were not merged, we cannot have duplicate "
1184 "blocks in the predecessors");
1185 Phi->unorderedDeleteIncomingIf([&](MemoryAccess *MA, BasicBlock *B) {
1186 if (PredsSet.count(B)) {
1187 NewPhi->addIncoming(MA, B);
1188 if (!IdenticalEdgesWereMerged)
1189 PredsSet.erase(B);
1190 return true;
1192 return false;
1194 Phi->addIncoming(NewPhi, New);
1195 if (onlySingleValue(NewPhi))
1196 removeMemoryAccess(NewPhi);
1200 void MemorySSAUpdater::removeMemoryAccess(MemoryAccess *MA, bool OptimizePhis) {
1201 assert(!MSSA->isLiveOnEntryDef(MA) &&
1202 "Trying to remove the live on entry def");
1203 // We can only delete phi nodes if they have no uses, or we can replace all
1204 // uses with a single definition.
1205 MemoryAccess *NewDefTarget = nullptr;
1206 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(MA)) {
1207 // Note that it is sufficient to know that all edges of the phi node have
1208 // the same argument. If they do, by the definition of dominance frontiers
1209 // (which we used to place this phi), that argument must dominate this phi,
1210 // and thus, must dominate the phi's uses, and so we will not hit the assert
1211 // below.
1212 NewDefTarget = onlySingleValue(MP);
1213 assert((NewDefTarget || MP->use_empty()) &&
1214 "We can't delete this memory phi");
1215 } else {
1216 NewDefTarget = cast<MemoryUseOrDef>(MA)->getDefiningAccess();
1219 SmallSetVector<MemoryPhi *, 4> PhisToCheck;
1221 // Re-point the uses at our defining access
1222 if (!isa<MemoryUse>(MA) && !MA->use_empty()) {
1223 // Reset optimized on users of this store, and reset the uses.
1224 // A few notes:
1225 // 1. This is a slightly modified version of RAUW to avoid walking the
1226 // uses twice here.
1227 // 2. If we wanted to be complete, we would have to reset the optimized
1228 // flags on users of phi nodes if doing the below makes a phi node have all
1229 // the same arguments. Instead, we prefer users to removeMemoryAccess those
1230 // phi nodes, because doing it here would be N^3.
1231 if (MA->hasValueHandle())
1232 ValueHandleBase::ValueIsRAUWd(MA, NewDefTarget);
1233 // Note: We assume MemorySSA is not used in metadata since it's not really
1234 // part of the IR.
1236 while (!MA->use_empty()) {
1237 Use &U = *MA->use_begin();
1238 if (auto *MUD = dyn_cast<MemoryUseOrDef>(U.getUser()))
1239 MUD->resetOptimized();
1240 if (OptimizePhis)
1241 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(U.getUser()))
1242 PhisToCheck.insert(MP);
1243 U.set(NewDefTarget);
1247 // The call below to erase will destroy MA, so we can't change the order we
1248 // are doing things here
1249 MSSA->removeFromLookups(MA);
1250 MSSA->removeFromLists(MA);
1252 // Optionally optimize Phi uses. This will recursively remove trivial phis.
1253 if (!PhisToCheck.empty()) {
1254 SmallVector<WeakVH, 16> PhisToOptimize{PhisToCheck.begin(),
1255 PhisToCheck.end()};
1256 PhisToCheck.clear();
1258 unsigned PhisSize = PhisToOptimize.size();
1259 while (PhisSize-- > 0)
1260 if (MemoryPhi *MP =
1261 cast_or_null<MemoryPhi>(PhisToOptimize.pop_back_val())) {
1262 auto OperRange = MP->operands();
1263 tryRemoveTrivialPhi(MP, OperRange);
1268 void MemorySSAUpdater::removeBlocks(
1269 const SmallSetVector<BasicBlock *, 8> &DeadBlocks) {
1270 // First delete all uses of BB in MemoryPhis.
1271 for (BasicBlock *BB : DeadBlocks) {
1272 Instruction *TI = BB->getTerminator();
1273 assert(TI && "Basic block expected to have a terminator instruction");
1274 for (BasicBlock *Succ : successors(TI))
1275 if (!DeadBlocks.count(Succ))
1276 if (MemoryPhi *MP = MSSA->getMemoryAccess(Succ)) {
1277 MP->unorderedDeleteIncomingBlock(BB);
1278 if (MP->getNumIncomingValues() == 1)
1279 removeMemoryAccess(MP);
1281 // Drop all references of all accesses in BB
1282 if (MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB))
1283 for (MemoryAccess &MA : *Acc)
1284 MA.dropAllReferences();
1287 // Next, delete all memory accesses in each block
1288 for (BasicBlock *BB : DeadBlocks) {
1289 MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB);
1290 if (!Acc)
1291 continue;
1292 for (auto AB = Acc->begin(), AE = Acc->end(); AB != AE;) {
1293 MemoryAccess *MA = &*AB;
1294 ++AB;
1295 MSSA->removeFromLookups(MA);
1296 MSSA->removeFromLists(MA);
1301 void MemorySSAUpdater::tryRemoveTrivialPhis(ArrayRef<WeakVH> UpdatedPHIs) {
1302 for (auto &VH : UpdatedPHIs)
1303 if (auto *MPhi = cast_or_null<MemoryPhi>(VH)) {
1304 auto OperRange = MPhi->operands();
1305 tryRemoveTrivialPhi(MPhi, OperRange);
1309 void MemorySSAUpdater::changeToUnreachable(const Instruction *I) {
1310 const BasicBlock *BB = I->getParent();
1311 // Remove memory accesses in BB for I and all following instructions.
1312 auto BBI = I->getIterator(), BBE = BB->end();
1313 // FIXME: If this becomes too expensive, iterate until the first instruction
1314 // with a memory access, then iterate over MemoryAccesses.
1315 while (BBI != BBE)
1316 removeMemoryAccess(&*(BBI++));
1317 // Update phis in BB's successors to remove BB.
1318 SmallVector<WeakVH, 16> UpdatedPHIs;
1319 for (const BasicBlock *Successor : successors(BB)) {
1320 removeDuplicatePhiEdgesBetween(BB, Successor);
1321 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Successor)) {
1322 MPhi->unorderedDeleteIncomingBlock(BB);
1323 UpdatedPHIs.push_back(MPhi);
1326 // Optimize trivial phis.
1327 tryRemoveTrivialPhis(UpdatedPHIs);
1330 void MemorySSAUpdater::changeCondBranchToUnconditionalTo(const BranchInst *BI,
1331 const BasicBlock *To) {
1332 const BasicBlock *BB = BI->getParent();
1333 SmallVector<WeakVH, 16> UpdatedPHIs;
1334 for (const BasicBlock *Succ : successors(BB)) {
1335 removeDuplicatePhiEdgesBetween(BB, Succ);
1336 if (Succ != To)
1337 if (auto *MPhi = MSSA->getMemoryAccess(Succ)) {
1338 MPhi->unorderedDeleteIncomingBlock(BB);
1339 UpdatedPHIs.push_back(MPhi);
1342 // Optimize trivial phis.
1343 tryRemoveTrivialPhis(UpdatedPHIs);
1346 MemoryAccess *MemorySSAUpdater::createMemoryAccessInBB(
1347 Instruction *I, MemoryAccess *Definition, const BasicBlock *BB,
1348 MemorySSA::InsertionPlace Point) {
1349 MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
1350 MSSA->insertIntoListsForBlock(NewAccess, BB, Point);
1351 return NewAccess;
1354 MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessBefore(
1355 Instruction *I, MemoryAccess *Definition, MemoryUseOrDef *InsertPt) {
1356 assert(I->getParent() == InsertPt->getBlock() &&
1357 "New and old access must be in the same block");
1358 MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
1359 MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(),
1360 InsertPt->getIterator());
1361 return NewAccess;
1364 MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessAfter(
1365 Instruction *I, MemoryAccess *Definition, MemoryAccess *InsertPt) {
1366 assert(I->getParent() == InsertPt->getBlock() &&
1367 "New and old access must be in the same block");
1368 MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
1369 MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(),
1370 ++InsertPt->getIterator());
1371 return NewAccess;