1 //===-- AMDGPUAtomicOptimizer.cpp -----------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 /// This pass optimizes atomic operations by using a single lane of a wavefront
11 /// to perform the atomic operation, thus reducing contention on that memory
14 //===----------------------------------------------------------------------===//
17 #include "AMDGPUSubtarget.h"
18 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
19 #include "llvm/CodeGen/TargetPassConfig.h"
20 #include "llvm/IR/IRBuilder.h"
21 #include "llvm/IR/InstVisitor.h"
22 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
24 #define DEBUG_TYPE "amdgpu-atomic-optimizer"
37 DPP_ROW_BCAST15
= 0x142,
38 DPP_ROW_BCAST31
= 0x143
41 struct ReplacementInfo
{
43 AtomicRMWInst::BinOp Op
;
48 class AMDGPUAtomicOptimizer
: public FunctionPass
,
49 public InstVisitor
<AMDGPUAtomicOptimizer
> {
51 SmallVector
<ReplacementInfo
, 8> ToReplace
;
52 const LegacyDivergenceAnalysis
*DA
;
58 void optimizeAtomic(Instruction
&I
, AtomicRMWInst::BinOp Op
, unsigned ValIdx
,
59 bool ValDivergent
) const;
64 AMDGPUAtomicOptimizer() : FunctionPass(ID
) {}
66 bool runOnFunction(Function
&F
) override
;
68 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
69 AU
.addPreserved
<DominatorTreeWrapperPass
>();
70 AU
.addRequired
<LegacyDivergenceAnalysis
>();
71 AU
.addRequired
<TargetPassConfig
>();
74 void visitAtomicRMWInst(AtomicRMWInst
&I
);
75 void visitIntrinsicInst(IntrinsicInst
&I
);
80 char AMDGPUAtomicOptimizer::ID
= 0;
82 char &llvm::AMDGPUAtomicOptimizerID
= AMDGPUAtomicOptimizer::ID
;
84 bool AMDGPUAtomicOptimizer::runOnFunction(Function
&F
) {
85 if (skipFunction(F
)) {
89 DA
= &getAnalysis
<LegacyDivergenceAnalysis
>();
90 DL
= &F
.getParent()->getDataLayout();
91 DominatorTreeWrapperPass
*const DTW
=
92 getAnalysisIfAvailable
<DominatorTreeWrapperPass
>();
93 DT
= DTW
? &DTW
->getDomTree() : nullptr;
94 const TargetPassConfig
&TPC
= getAnalysis
<TargetPassConfig
>();
95 const TargetMachine
&TM
= TPC
.getTM
<TargetMachine
>();
96 const GCNSubtarget
&ST
= TM
.getSubtarget
<GCNSubtarget
>(F
);
98 IsPixelShader
= F
.getCallingConv() == CallingConv::AMDGPU_PS
;
102 const bool Changed
= !ToReplace
.empty();
104 for (ReplacementInfo
&Info
: ToReplace
) {
105 optimizeAtomic(*Info
.I
, Info
.Op
, Info
.ValIdx
, Info
.ValDivergent
);
113 void AMDGPUAtomicOptimizer::visitAtomicRMWInst(AtomicRMWInst
&I
) {
114 // Early exit for unhandled address space atomic instructions.
115 switch (I
.getPointerAddressSpace()) {
118 case AMDGPUAS::GLOBAL_ADDRESS
:
119 case AMDGPUAS::LOCAL_ADDRESS
:
123 AtomicRMWInst::BinOp Op
= I
.getOperation();
128 case AtomicRMWInst::Add
:
129 case AtomicRMWInst::Sub
:
130 case AtomicRMWInst::And
:
131 case AtomicRMWInst::Or
:
132 case AtomicRMWInst::Xor
:
133 case AtomicRMWInst::Max
:
134 case AtomicRMWInst::Min
:
135 case AtomicRMWInst::UMax
:
136 case AtomicRMWInst::UMin
:
140 const unsigned PtrIdx
= 0;
141 const unsigned ValIdx
= 1;
143 // If the pointer operand is divergent, then each lane is doing an atomic
144 // operation on a different address, and we cannot optimize that.
145 if (DA
->isDivergent(I
.getOperand(PtrIdx
))) {
149 const bool ValDivergent
= DA
->isDivergent(I
.getOperand(ValIdx
));
151 // If the value operand is divergent, each lane is contributing a different
152 // value to the atomic calculation. We can only optimize divergent values if
153 // we have DPP available on our subtarget, and the atomic operation is 32
155 if (ValDivergent
&& (!HasDPP
|| (DL
->getTypeSizeInBits(I
.getType()) != 32))) {
159 // If we get here, we can optimize the atomic using a single wavefront-wide
160 // atomic operation to do the calculation for the entire wavefront, so
161 // remember the instruction so we can come back to it.
162 const ReplacementInfo Info
= {&I
, Op
, ValIdx
, ValDivergent
};
164 ToReplace
.push_back(Info
);
167 void AMDGPUAtomicOptimizer::visitIntrinsicInst(IntrinsicInst
&I
) {
168 AtomicRMWInst::BinOp Op
;
170 switch (I
.getIntrinsicID()) {
173 case Intrinsic::amdgcn_buffer_atomic_add
:
174 case Intrinsic::amdgcn_struct_buffer_atomic_add
:
175 case Intrinsic::amdgcn_raw_buffer_atomic_add
:
176 Op
= AtomicRMWInst::Add
;
178 case Intrinsic::amdgcn_buffer_atomic_sub
:
179 case Intrinsic::amdgcn_struct_buffer_atomic_sub
:
180 case Intrinsic::amdgcn_raw_buffer_atomic_sub
:
181 Op
= AtomicRMWInst::Sub
;
183 case Intrinsic::amdgcn_buffer_atomic_and
:
184 case Intrinsic::amdgcn_struct_buffer_atomic_and
:
185 case Intrinsic::amdgcn_raw_buffer_atomic_and
:
186 Op
= AtomicRMWInst::And
;
188 case Intrinsic::amdgcn_buffer_atomic_or
:
189 case Intrinsic::amdgcn_struct_buffer_atomic_or
:
190 case Intrinsic::amdgcn_raw_buffer_atomic_or
:
191 Op
= AtomicRMWInst::Or
;
193 case Intrinsic::amdgcn_buffer_atomic_xor
:
194 case Intrinsic::amdgcn_struct_buffer_atomic_xor
:
195 case Intrinsic::amdgcn_raw_buffer_atomic_xor
:
196 Op
= AtomicRMWInst::Xor
;
198 case Intrinsic::amdgcn_buffer_atomic_smin
:
199 case Intrinsic::amdgcn_struct_buffer_atomic_smin
:
200 case Intrinsic::amdgcn_raw_buffer_atomic_smin
:
201 Op
= AtomicRMWInst::Min
;
203 case Intrinsic::amdgcn_buffer_atomic_umin
:
204 case Intrinsic::amdgcn_struct_buffer_atomic_umin
:
205 case Intrinsic::amdgcn_raw_buffer_atomic_umin
:
206 Op
= AtomicRMWInst::UMin
;
208 case Intrinsic::amdgcn_buffer_atomic_smax
:
209 case Intrinsic::amdgcn_struct_buffer_atomic_smax
:
210 case Intrinsic::amdgcn_raw_buffer_atomic_smax
:
211 Op
= AtomicRMWInst::Max
;
213 case Intrinsic::amdgcn_buffer_atomic_umax
:
214 case Intrinsic::amdgcn_struct_buffer_atomic_umax
:
215 case Intrinsic::amdgcn_raw_buffer_atomic_umax
:
216 Op
= AtomicRMWInst::UMax
;
220 const unsigned ValIdx
= 0;
222 const bool ValDivergent
= DA
->isDivergent(I
.getOperand(ValIdx
));
224 // If the value operand is divergent, each lane is contributing a different
225 // value to the atomic calculation. We can only optimize divergent values if
226 // we have DPP available on our subtarget, and the atomic operation is 32
228 if (ValDivergent
&& (!HasDPP
|| (DL
->getTypeSizeInBits(I
.getType()) != 32))) {
232 // If any of the other arguments to the intrinsic are divergent, we can't
233 // optimize the operation.
234 for (unsigned Idx
= 1; Idx
< I
.getNumOperands(); Idx
++) {
235 if (DA
->isDivergent(I
.getOperand(Idx
))) {
240 // If we get here, we can optimize the atomic using a single wavefront-wide
241 // atomic operation to do the calculation for the entire wavefront, so
242 // remember the instruction so we can come back to it.
243 const ReplacementInfo Info
= {&I
, Op
, ValIdx
, ValDivergent
};
245 ToReplace
.push_back(Info
);
248 // Use the builder to create the non-atomic counterpart of the specified
249 // atomicrmw binary op.
250 static Value
*buildNonAtomicBinOp(IRBuilder
<> &B
, AtomicRMWInst::BinOp Op
,
251 Value
*LHS
, Value
*RHS
) {
252 CmpInst::Predicate Pred
;
256 llvm_unreachable("Unhandled atomic op");
257 case AtomicRMWInst::Add
:
258 return B
.CreateBinOp(Instruction::Add
, LHS
, RHS
);
259 case AtomicRMWInst::Sub
:
260 return B
.CreateBinOp(Instruction::Sub
, LHS
, RHS
);
261 case AtomicRMWInst::And
:
262 return B
.CreateBinOp(Instruction::And
, LHS
, RHS
);
263 case AtomicRMWInst::Or
:
264 return B
.CreateBinOp(Instruction::Or
, LHS
, RHS
);
265 case AtomicRMWInst::Xor
:
266 return B
.CreateBinOp(Instruction::Xor
, LHS
, RHS
);
268 case AtomicRMWInst::Max
:
269 Pred
= CmpInst::ICMP_SGT
;
271 case AtomicRMWInst::Min
:
272 Pred
= CmpInst::ICMP_SLT
;
274 case AtomicRMWInst::UMax
:
275 Pred
= CmpInst::ICMP_UGT
;
277 case AtomicRMWInst::UMin
:
278 Pred
= CmpInst::ICMP_ULT
;
281 Value
*Cond
= B
.CreateICmp(Pred
, LHS
, RHS
);
282 return B
.CreateSelect(Cond
, LHS
, RHS
);
285 static APInt
getIdentityValueForAtomicOp(AtomicRMWInst::BinOp Op
,
289 llvm_unreachable("Unhandled atomic op");
290 case AtomicRMWInst::Add
:
291 case AtomicRMWInst::Sub
:
292 case AtomicRMWInst::Or
:
293 case AtomicRMWInst::Xor
:
294 case AtomicRMWInst::UMax
:
295 return APInt::getMinValue(BitWidth
);
296 case AtomicRMWInst::And
:
297 case AtomicRMWInst::UMin
:
298 return APInt::getMaxValue(BitWidth
);
299 case AtomicRMWInst::Max
:
300 return APInt::getSignedMinValue(BitWidth
);
301 case AtomicRMWInst::Min
:
302 return APInt::getSignedMaxValue(BitWidth
);
306 void AMDGPUAtomicOptimizer::optimizeAtomic(Instruction
&I
,
307 AtomicRMWInst::BinOp Op
,
309 bool ValDivergent
) const {
310 // Start building just before the instruction.
313 // If we are in a pixel shader, because of how we have to mask out helper
314 // lane invocations, we need to record the entry and exit BB's.
315 BasicBlock
*PixelEntryBB
= nullptr;
316 BasicBlock
*PixelExitBB
= nullptr;
318 // If we're optimizing an atomic within a pixel shader, we need to wrap the
319 // entire atomic operation in a helper-lane check. We do not want any helper
320 // lanes that are around only for the purposes of derivatives to take part
321 // in any cross-lane communication, and we use a branch on whether the lane is
324 // Record I's original position as the entry block.
325 PixelEntryBB
= I
.getParent();
327 Value
*const Cond
= B
.CreateIntrinsic(Intrinsic::amdgcn_ps_live
, {}, {});
328 Instruction
*const NonHelperTerminator
=
329 SplitBlockAndInsertIfThen(Cond
, &I
, false, nullptr, DT
, nullptr);
331 // Record I's new position as the exit block.
332 PixelExitBB
= I
.getParent();
334 I
.moveBefore(NonHelperTerminator
);
335 B
.SetInsertPoint(&I
);
338 Type
*const Ty
= I
.getType();
339 const unsigned TyBitWidth
= DL
->getTypeSizeInBits(Ty
);
340 Type
*const VecTy
= VectorType::get(B
.getInt32Ty(), 2);
342 // This is the value in the atomic operation we need to combine in order to
343 // reduce the number of atomic operations.
344 Value
*const V
= I
.getOperand(ValIdx
);
346 // We need to know how many lanes are active within the wavefront, and we do
347 // this by doing a ballot of active lanes.
348 CallInst
*const Ballot
= B
.CreateIntrinsic(
349 Intrinsic::amdgcn_icmp
, {B
.getInt64Ty(), B
.getInt32Ty()},
350 {B
.getInt32(1), B
.getInt32(0), B
.getInt32(CmpInst::ICMP_NE
)});
352 // We need to know how many lanes are active within the wavefront that are
353 // below us. If we counted each lane linearly starting from 0, a lane is
354 // below us only if its associated index was less than ours. We do this by
355 // using the mbcnt intrinsic.
356 Value
*const BitCast
= B
.CreateBitCast(Ballot
, VecTy
);
357 Value
*const ExtractLo
= B
.CreateExtractElement(BitCast
, B
.getInt32(0));
358 Value
*const ExtractHi
= B
.CreateExtractElement(BitCast
, B
.getInt32(1));
359 CallInst
*const PartialMbcnt
= B
.CreateIntrinsic(
360 Intrinsic::amdgcn_mbcnt_lo
, {}, {ExtractLo
, B
.getInt32(0)});
362 B
.CreateIntCast(B
.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_hi
, {},
363 {ExtractHi
, PartialMbcnt
}),
366 Value
*const Identity
= B
.getInt(getIdentityValueForAtomicOp(Op
, TyBitWidth
));
368 Value
*ExclScan
= nullptr;
369 Value
*NewV
= nullptr;
371 // If we have a divergent value in each lane, we need to combine the value
374 // First we need to set all inactive invocations to the identity value, so
375 // that they can correctly contribute to the final result.
376 CallInst
*const SetInactive
=
377 B
.CreateIntrinsic(Intrinsic::amdgcn_set_inactive
, Ty
, {V
, Identity
});
380 B
.CreateIntrinsic(Intrinsic::amdgcn_update_dpp
, Ty
,
381 {Identity
, SetInactive
, B
.getInt32(DPP_WF_SR1
),
382 B
.getInt32(0xf), B
.getInt32(0xf), B
.getFalse()});
384 const unsigned Iters
= 6;
385 const unsigned DPPCtrl
[Iters
] = {DPP_ROW_SR1
, DPP_ROW_SR2
,
386 DPP_ROW_SR4
, DPP_ROW_SR8
,
387 DPP_ROW_BCAST15
, DPP_ROW_BCAST31
};
388 const unsigned RowMask
[Iters
] = {0xf, 0xf, 0xf, 0xf, 0xa, 0xc};
389 const unsigned BankMask
[Iters
] = {0xf, 0xf, 0xe, 0xc, 0xf, 0xf};
391 // This loop performs an exclusive scan across the wavefront, with all lanes
392 // active (by using the WWM intrinsic).
393 for (unsigned Idx
= 0; Idx
< Iters
; Idx
++) {
394 CallInst
*const DPP
= B
.CreateIntrinsic(
395 Intrinsic::amdgcn_update_dpp
, Ty
,
396 {Identity
, ExclScan
, B
.getInt32(DPPCtrl
[Idx
]),
397 B
.getInt32(RowMask
[Idx
]), B
.getInt32(BankMask
[Idx
]), B
.getFalse()});
399 ExclScan
= buildNonAtomicBinOp(B
, Op
, ExclScan
, DPP
);
402 NewV
= buildNonAtomicBinOp(B
, Op
, SetInactive
, ExclScan
);
404 // Read the value from the last lane, which has accumlated the values of
405 // each active lane in the wavefront. This will be our new value which we
406 // will provide to the atomic operation.
407 if (TyBitWidth
== 64) {
408 Value
*const ExtractLo
= B
.CreateTrunc(NewV
, B
.getInt32Ty());
409 Value
*const ExtractHi
=
410 B
.CreateTrunc(B
.CreateLShr(NewV
, B
.getInt64(32)), B
.getInt32Ty());
411 CallInst
*const ReadLaneLo
= B
.CreateIntrinsic(
412 Intrinsic::amdgcn_readlane
, {}, {ExtractLo
, B
.getInt32(63)});
413 CallInst
*const ReadLaneHi
= B
.CreateIntrinsic(
414 Intrinsic::amdgcn_readlane
, {}, {ExtractHi
, B
.getInt32(63)});
415 Value
*const PartialInsert
= B
.CreateInsertElement(
416 UndefValue::get(VecTy
), ReadLaneLo
, B
.getInt32(0));
417 Value
*const Insert
=
418 B
.CreateInsertElement(PartialInsert
, ReadLaneHi
, B
.getInt32(1));
419 NewV
= B
.CreateBitCast(Insert
, Ty
);
420 } else if (TyBitWidth
== 32) {
421 NewV
= B
.CreateIntrinsic(Intrinsic::amdgcn_readlane
, {},
422 {NewV
, B
.getInt32(63)});
424 llvm_unreachable("Unhandled atomic bit width");
427 // Finally mark the readlanes in the WWM section.
428 NewV
= B
.CreateIntrinsic(Intrinsic::amdgcn_wwm
, Ty
, NewV
);
432 llvm_unreachable("Unhandled atomic op");
434 case AtomicRMWInst::Add
:
435 case AtomicRMWInst::Sub
: {
436 // The new value we will be contributing to the atomic operation is the
437 // old value times the number of active lanes.
438 Value
*const Ctpop
= B
.CreateIntCast(
439 B
.CreateUnaryIntrinsic(Intrinsic::ctpop
, Ballot
), Ty
, false);
440 NewV
= B
.CreateMul(V
, Ctpop
);
444 case AtomicRMWInst::And
:
445 case AtomicRMWInst::Or
:
446 case AtomicRMWInst::Max
:
447 case AtomicRMWInst::Min
:
448 case AtomicRMWInst::UMax
:
449 case AtomicRMWInst::UMin
:
450 // These operations with a uniform value are idempotent: doing the atomic
451 // operation multiple times has the same effect as doing it once.
455 case AtomicRMWInst::Xor
:
456 // The new value we will be contributing to the atomic operation is the
457 // old value times the parity of the number of active lanes.
458 Value
*const Ctpop
= B
.CreateIntCast(
459 B
.CreateUnaryIntrinsic(Intrinsic::ctpop
, Ballot
), Ty
, false);
460 NewV
= B
.CreateMul(V
, B
.CreateAnd(Ctpop
, 1));
465 // We only want a single lane to enter our new control flow, and we do this
466 // by checking if there are any active lanes below us. Only one lane will
467 // have 0 active lanes below us, so that will be the only one to progress.
468 Value
*const Cond
= B
.CreateICmpEQ(Mbcnt
, B
.getIntN(TyBitWidth
, 0));
470 // Store I's original basic block before we split the block.
471 BasicBlock
*const EntryBB
= I
.getParent();
473 // We need to introduce some new control flow to force a single lane to be
474 // active. We do this by splitting I's basic block at I, and introducing the
475 // new block such that:
476 // entry --> single_lane -\
477 // \------------------> exit
478 Instruction
*const SingleLaneTerminator
=
479 SplitBlockAndInsertIfThen(Cond
, &I
, false, nullptr, DT
, nullptr);
481 // Move the IR builder into single_lane next.
482 B
.SetInsertPoint(SingleLaneTerminator
);
484 // Clone the original atomic operation into single lane, replacing the
485 // original value with our newly created one.
486 Instruction
*const NewI
= I
.clone();
488 NewI
->setOperand(ValIdx
, NewV
);
490 // Move the IR builder into exit next, and start inserting just before the
491 // original instruction.
492 B
.SetInsertPoint(&I
);
494 const bool NeedResult
= !I
.use_empty();
496 // Create a PHI node to get our new atomic result into the exit block.
497 PHINode
*const PHI
= B
.CreatePHI(Ty
, 2);
498 PHI
->addIncoming(UndefValue::get(Ty
), EntryBB
);
499 PHI
->addIncoming(NewI
, SingleLaneTerminator
->getParent());
501 // We need to broadcast the value who was the lowest active lane (the first
502 // lane) to all other lanes in the wavefront. We use an intrinsic for this,
503 // but have to handle 64-bit broadcasts with two calls to this intrinsic.
504 Value
*BroadcastI
= nullptr;
506 if (TyBitWidth
== 64) {
507 Value
*const ExtractLo
= B
.CreateTrunc(PHI
, B
.getInt32Ty());
508 Value
*const ExtractHi
=
509 B
.CreateTrunc(B
.CreateLShr(PHI
, B
.getInt64(32)), B
.getInt32Ty());
510 CallInst
*const ReadFirstLaneLo
=
511 B
.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane
, {}, ExtractLo
);
512 CallInst
*const ReadFirstLaneHi
=
513 B
.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane
, {}, ExtractHi
);
514 Value
*const PartialInsert
= B
.CreateInsertElement(
515 UndefValue::get(VecTy
), ReadFirstLaneLo
, B
.getInt32(0));
516 Value
*const Insert
=
517 B
.CreateInsertElement(PartialInsert
, ReadFirstLaneHi
, B
.getInt32(1));
518 BroadcastI
= B
.CreateBitCast(Insert
, Ty
);
519 } else if (TyBitWidth
== 32) {
521 BroadcastI
= B
.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane
, {}, PHI
);
523 llvm_unreachable("Unhandled atomic bit width");
526 // Now that we have the result of our single atomic operation, we need to
527 // get our individual lane's slice into the result. We use the lane offset
528 // we previously calculated combined with the atomic result value we got
529 // from the first lane, to get our lane's index into the atomic result.
530 Value
*LaneOffset
= nullptr;
532 LaneOffset
= B
.CreateIntrinsic(Intrinsic::amdgcn_wwm
, Ty
, ExclScan
);
536 llvm_unreachable("Unhandled atomic op");
537 case AtomicRMWInst::Add
:
538 case AtomicRMWInst::Sub
:
539 LaneOffset
= B
.CreateMul(V
, Mbcnt
);
541 case AtomicRMWInst::And
:
542 case AtomicRMWInst::Or
:
543 case AtomicRMWInst::Max
:
544 case AtomicRMWInst::Min
:
545 case AtomicRMWInst::UMax
:
546 case AtomicRMWInst::UMin
:
547 LaneOffset
= B
.CreateSelect(Cond
, Identity
, V
);
549 case AtomicRMWInst::Xor
:
550 LaneOffset
= B
.CreateMul(V
, B
.CreateAnd(Mbcnt
, 1));
554 Value
*const Result
= buildNonAtomicBinOp(B
, Op
, BroadcastI
, LaneOffset
);
557 // Need a final PHI to reconverge to above the helper lane branch mask.
558 B
.SetInsertPoint(PixelExitBB
->getFirstNonPHI());
560 PHINode
*const PHI
= B
.CreatePHI(Ty
, 2);
561 PHI
->addIncoming(UndefValue::get(Ty
), PixelEntryBB
);
562 PHI
->addIncoming(Result
, I
.getParent());
563 I
.replaceAllUsesWith(PHI
);
565 // Replace the original atomic instruction with the new one.
566 I
.replaceAllUsesWith(Result
);
570 // And delete the original.
574 INITIALIZE_PASS_BEGIN(AMDGPUAtomicOptimizer
, DEBUG_TYPE
,
575 "AMDGPU atomic optimizations", false, false)
576 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis
)
577 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig
)
578 INITIALIZE_PASS_END(AMDGPUAtomicOptimizer
, DEBUG_TYPE
,
579 "AMDGPU atomic optimizations", false, false)
581 FunctionPass
*llvm::createAMDGPUAtomicOptimizerPass() {
582 return new AMDGPUAtomicOptimizer();