1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 /// This is the parent TargetLowering class for hardware code gen
13 //===----------------------------------------------------------------------===//
15 #define AMDGPU_LOG2E_F 1.44269504088896340735992468100189214f
16 #define AMDGPU_LN2_F 0.693147180559945309417232121458176568f
17 #define AMDGPU_LN10_F 2.30258509299404568401799145468436421f
19 #include "AMDGPUISelLowering.h"
21 #include "AMDGPUCallLowering.h"
22 #include "AMDGPUFrameLowering.h"
23 #include "AMDGPURegisterInfo.h"
24 #include "AMDGPUSubtarget.h"
25 #include "AMDGPUTargetMachine.h"
26 #include "Utils/AMDGPUBaseInfo.h"
27 #include "R600MachineFunctionInfo.h"
28 #include "SIInstrInfo.h"
29 #include "SIMachineFunctionInfo.h"
30 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
31 #include "llvm/CodeGen/Analysis.h"
32 #include "llvm/CodeGen/CallingConvLower.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/SelectionDAG.h"
36 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/DiagnosticInfo.h"
39 #include "llvm/Support/KnownBits.h"
42 #include "AMDGPUGenCallingConv.inc"
44 // Find a larger type to do a load / store of a vector with.
45 EVT
AMDGPUTargetLowering::getEquivalentMemType(LLVMContext
&Ctx
, EVT VT
) {
46 unsigned StoreSize
= VT
.getStoreSizeInBits();
48 return EVT::getIntegerVT(Ctx
, StoreSize
);
50 assert(StoreSize
% 32 == 0 && "Store size not a multiple of 32");
51 return EVT::getVectorVT(Ctx
, MVT::i32
, StoreSize
/ 32);
54 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op
, SelectionDAG
&DAG
) {
55 EVT VT
= Op
.getValueType();
56 KnownBits Known
= DAG
.computeKnownBits(Op
);
57 return VT
.getSizeInBits() - Known
.countMinLeadingZeros();
60 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op
, SelectionDAG
&DAG
) {
61 EVT VT
= Op
.getValueType();
63 // In order for this to be a signed 24-bit value, bit 23, must
65 return VT
.getSizeInBits() - DAG
.ComputeNumSignBits(Op
);
68 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine
&TM
,
69 const AMDGPUSubtarget
&STI
)
70 : TargetLowering(TM
), Subtarget(&STI
) {
71 // Lower floating point store/load to integer store/load to reduce the number
72 // of patterns in tablegen.
73 setOperationAction(ISD::LOAD
, MVT::f32
, Promote
);
74 AddPromotedToType(ISD::LOAD
, MVT::f32
, MVT::i32
);
76 setOperationAction(ISD::LOAD
, MVT::v2f32
, Promote
);
77 AddPromotedToType(ISD::LOAD
, MVT::v2f32
, MVT::v2i32
);
79 setOperationAction(ISD::LOAD
, MVT::v3f32
, Promote
);
80 AddPromotedToType(ISD::LOAD
, MVT::v3f32
, MVT::v3i32
);
82 setOperationAction(ISD::LOAD
, MVT::v4f32
, Promote
);
83 AddPromotedToType(ISD::LOAD
, MVT::v4f32
, MVT::v4i32
);
85 setOperationAction(ISD::LOAD
, MVT::v5f32
, Promote
);
86 AddPromotedToType(ISD::LOAD
, MVT::v5f32
, MVT::v5i32
);
88 setOperationAction(ISD::LOAD
, MVT::v8f32
, Promote
);
89 AddPromotedToType(ISD::LOAD
, MVT::v8f32
, MVT::v8i32
);
91 setOperationAction(ISD::LOAD
, MVT::v16f32
, Promote
);
92 AddPromotedToType(ISD::LOAD
, MVT::v16f32
, MVT::v16i32
);
94 setOperationAction(ISD::LOAD
, MVT::v32f32
, Promote
);
95 AddPromotedToType(ISD::LOAD
, MVT::v32f32
, MVT::v32i32
);
97 setOperationAction(ISD::LOAD
, MVT::i64
, Promote
);
98 AddPromotedToType(ISD::LOAD
, MVT::i64
, MVT::v2i32
);
100 setOperationAction(ISD::LOAD
, MVT::v2i64
, Promote
);
101 AddPromotedToType(ISD::LOAD
, MVT::v2i64
, MVT::v4i32
);
103 setOperationAction(ISD::LOAD
, MVT::f64
, Promote
);
104 AddPromotedToType(ISD::LOAD
, MVT::f64
, MVT::v2i32
);
106 setOperationAction(ISD::LOAD
, MVT::v2f64
, Promote
);
107 AddPromotedToType(ISD::LOAD
, MVT::v2f64
, MVT::v4i32
);
109 // There are no 64-bit extloads. These should be done as a 32-bit extload and
110 // an extension to 64-bit.
111 for (MVT VT
: MVT::integer_valuetypes()) {
112 setLoadExtAction(ISD::EXTLOAD
, MVT::i64
, VT
, Expand
);
113 setLoadExtAction(ISD::SEXTLOAD
, MVT::i64
, VT
, Expand
);
114 setLoadExtAction(ISD::ZEXTLOAD
, MVT::i64
, VT
, Expand
);
117 for (MVT VT
: MVT::integer_valuetypes()) {
121 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::i1
, Promote
);
122 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::i8
, Legal
);
123 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::i16
, Legal
);
124 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::i32
, Expand
);
126 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::i1
, Promote
);
127 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::i8
, Legal
);
128 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::i16
, Legal
);
129 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::i32
, Expand
);
131 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::i1
, Promote
);
132 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::i8
, Legal
);
133 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::i16
, Legal
);
134 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::i32
, Expand
);
137 for (MVT VT
: MVT::integer_vector_valuetypes()) {
138 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::v2i8
, Expand
);
139 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::v2i8
, Expand
);
140 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::v2i8
, Expand
);
141 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::v4i8
, Expand
);
142 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::v4i8
, Expand
);
143 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::v4i8
, Expand
);
144 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::v2i16
, Expand
);
145 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::v2i16
, Expand
);
146 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::v2i16
, Expand
);
147 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::v4i16
, Expand
);
148 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::v4i16
, Expand
);
149 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::v4i16
, Expand
);
152 setLoadExtAction(ISD::EXTLOAD
, MVT::f32
, MVT::f16
, Expand
);
153 setLoadExtAction(ISD::EXTLOAD
, MVT::v2f32
, MVT::v2f16
, Expand
);
154 setLoadExtAction(ISD::EXTLOAD
, MVT::v4f32
, MVT::v4f16
, Expand
);
155 setLoadExtAction(ISD::EXTLOAD
, MVT::v8f32
, MVT::v8f16
, Expand
);
157 setLoadExtAction(ISD::EXTLOAD
, MVT::f64
, MVT::f32
, Expand
);
158 setLoadExtAction(ISD::EXTLOAD
, MVT::v2f64
, MVT::v2f32
, Expand
);
159 setLoadExtAction(ISD::EXTLOAD
, MVT::v4f64
, MVT::v4f32
, Expand
);
160 setLoadExtAction(ISD::EXTLOAD
, MVT::v8f64
, MVT::v8f32
, Expand
);
162 setLoadExtAction(ISD::EXTLOAD
, MVT::f64
, MVT::f16
, Expand
);
163 setLoadExtAction(ISD::EXTLOAD
, MVT::v2f64
, MVT::v2f16
, Expand
);
164 setLoadExtAction(ISD::EXTLOAD
, MVT::v4f64
, MVT::v4f16
, Expand
);
165 setLoadExtAction(ISD::EXTLOAD
, MVT::v8f64
, MVT::v8f16
, Expand
);
167 setOperationAction(ISD::STORE
, MVT::f32
, Promote
);
168 AddPromotedToType(ISD::STORE
, MVT::f32
, MVT::i32
);
170 setOperationAction(ISD::STORE
, MVT::v2f32
, Promote
);
171 AddPromotedToType(ISD::STORE
, MVT::v2f32
, MVT::v2i32
);
173 setOperationAction(ISD::STORE
, MVT::v3f32
, Promote
);
174 AddPromotedToType(ISD::STORE
, MVT::v3f32
, MVT::v3i32
);
176 setOperationAction(ISD::STORE
, MVT::v4f32
, Promote
);
177 AddPromotedToType(ISD::STORE
, MVT::v4f32
, MVT::v4i32
);
179 setOperationAction(ISD::STORE
, MVT::v5f32
, Promote
);
180 AddPromotedToType(ISD::STORE
, MVT::v5f32
, MVT::v5i32
);
182 setOperationAction(ISD::STORE
, MVT::v8f32
, Promote
);
183 AddPromotedToType(ISD::STORE
, MVT::v8f32
, MVT::v8i32
);
185 setOperationAction(ISD::STORE
, MVT::v16f32
, Promote
);
186 AddPromotedToType(ISD::STORE
, MVT::v16f32
, MVT::v16i32
);
188 setOperationAction(ISD::STORE
, MVT::v32f32
, Promote
);
189 AddPromotedToType(ISD::STORE
, MVT::v32f32
, MVT::v32i32
);
191 setOperationAction(ISD::STORE
, MVT::i64
, Promote
);
192 AddPromotedToType(ISD::STORE
, MVT::i64
, MVT::v2i32
);
194 setOperationAction(ISD::STORE
, MVT::v2i64
, Promote
);
195 AddPromotedToType(ISD::STORE
, MVT::v2i64
, MVT::v4i32
);
197 setOperationAction(ISD::STORE
, MVT::f64
, Promote
);
198 AddPromotedToType(ISD::STORE
, MVT::f64
, MVT::v2i32
);
200 setOperationAction(ISD::STORE
, MVT::v2f64
, Promote
);
201 AddPromotedToType(ISD::STORE
, MVT::v2f64
, MVT::v4i32
);
203 setTruncStoreAction(MVT::i64
, MVT::i1
, Expand
);
204 setTruncStoreAction(MVT::i64
, MVT::i8
, Expand
);
205 setTruncStoreAction(MVT::i64
, MVT::i16
, Expand
);
206 setTruncStoreAction(MVT::i64
, MVT::i32
, Expand
);
208 setTruncStoreAction(MVT::v2i64
, MVT::v2i1
, Expand
);
209 setTruncStoreAction(MVT::v2i64
, MVT::v2i8
, Expand
);
210 setTruncStoreAction(MVT::v2i64
, MVT::v2i16
, Expand
);
211 setTruncStoreAction(MVT::v2i64
, MVT::v2i32
, Expand
);
213 setTruncStoreAction(MVT::f32
, MVT::f16
, Expand
);
214 setTruncStoreAction(MVT::v2f32
, MVT::v2f16
, Expand
);
215 setTruncStoreAction(MVT::v4f32
, MVT::v4f16
, Expand
);
216 setTruncStoreAction(MVT::v8f32
, MVT::v8f16
, Expand
);
218 setTruncStoreAction(MVT::f64
, MVT::f16
, Expand
);
219 setTruncStoreAction(MVT::f64
, MVT::f32
, Expand
);
221 setTruncStoreAction(MVT::v2f64
, MVT::v2f32
, Expand
);
222 setTruncStoreAction(MVT::v2f64
, MVT::v2f16
, Expand
);
224 setTruncStoreAction(MVT::v4f64
, MVT::v4f32
, Expand
);
225 setTruncStoreAction(MVT::v4f64
, MVT::v4f16
, Expand
);
227 setTruncStoreAction(MVT::v8f64
, MVT::v8f32
, Expand
);
228 setTruncStoreAction(MVT::v8f64
, MVT::v8f16
, Expand
);
231 setOperationAction(ISD::Constant
, MVT::i32
, Legal
);
232 setOperationAction(ISD::Constant
, MVT::i64
, Legal
);
233 setOperationAction(ISD::ConstantFP
, MVT::f32
, Legal
);
234 setOperationAction(ISD::ConstantFP
, MVT::f64
, Legal
);
236 setOperationAction(ISD::BR_JT
, MVT::Other
, Expand
);
237 setOperationAction(ISD::BRIND
, MVT::Other
, Expand
);
239 // This is totally unsupported, just custom lower to produce an error.
240 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i32
, Custom
);
242 // Library functions. These default to Expand, but we have instructions
244 setOperationAction(ISD::FCEIL
, MVT::f32
, Legal
);
245 setOperationAction(ISD::FEXP2
, MVT::f32
, Legal
);
246 setOperationAction(ISD::FPOW
, MVT::f32
, Legal
);
247 setOperationAction(ISD::FLOG2
, MVT::f32
, Legal
);
248 setOperationAction(ISD::FABS
, MVT::f32
, Legal
);
249 setOperationAction(ISD::FFLOOR
, MVT::f32
, Legal
);
250 setOperationAction(ISD::FRINT
, MVT::f32
, Legal
);
251 setOperationAction(ISD::FTRUNC
, MVT::f32
, Legal
);
252 setOperationAction(ISD::FMINNUM
, MVT::f32
, Legal
);
253 setOperationAction(ISD::FMAXNUM
, MVT::f32
, Legal
);
255 setOperationAction(ISD::FROUND
, MVT::f32
, Custom
);
256 setOperationAction(ISD::FROUND
, MVT::f64
, Custom
);
258 setOperationAction(ISD::FLOG
, MVT::f32
, Custom
);
259 setOperationAction(ISD::FLOG10
, MVT::f32
, Custom
);
260 setOperationAction(ISD::FEXP
, MVT::f32
, Custom
);
263 setOperationAction(ISD::FNEARBYINT
, MVT::f32
, Custom
);
264 setOperationAction(ISD::FNEARBYINT
, MVT::f64
, Custom
);
266 setOperationAction(ISD::FREM
, MVT::f32
, Custom
);
267 setOperationAction(ISD::FREM
, MVT::f64
, Custom
);
269 // Expand to fneg + fadd.
270 setOperationAction(ISD::FSUB
, MVT::f64
, Expand
);
272 setOperationAction(ISD::CONCAT_VECTORS
, MVT::v3i32
, Custom
);
273 setOperationAction(ISD::CONCAT_VECTORS
, MVT::v3f32
, Custom
);
274 setOperationAction(ISD::CONCAT_VECTORS
, MVT::v4i32
, Custom
);
275 setOperationAction(ISD::CONCAT_VECTORS
, MVT::v4f32
, Custom
);
276 setOperationAction(ISD::CONCAT_VECTORS
, MVT::v5i32
, Custom
);
277 setOperationAction(ISD::CONCAT_VECTORS
, MVT::v5f32
, Custom
);
278 setOperationAction(ISD::CONCAT_VECTORS
, MVT::v8i32
, Custom
);
279 setOperationAction(ISD::CONCAT_VECTORS
, MVT::v8f32
, Custom
);
280 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v2f32
, Custom
);
281 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v2i32
, Custom
);
282 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v3f32
, Custom
);
283 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v3i32
, Custom
);
284 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v4f32
, Custom
);
285 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v4i32
, Custom
);
286 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v5f32
, Custom
);
287 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v5i32
, Custom
);
288 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v8f32
, Custom
);
289 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v8i32
, Custom
);
290 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v16f32
, Custom
);
291 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v16i32
, Custom
);
292 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v32f32
, Custom
);
293 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v32i32
, Custom
);
295 setOperationAction(ISD::FP16_TO_FP
, MVT::f64
, Expand
);
296 setOperationAction(ISD::FP_TO_FP16
, MVT::f64
, Custom
);
297 setOperationAction(ISD::FP_TO_FP16
, MVT::f32
, Custom
);
299 const MVT ScalarIntVTs
[] = { MVT::i32
, MVT::i64
};
300 for (MVT VT
: ScalarIntVTs
) {
301 // These should use [SU]DIVREM, so set them to expand
302 setOperationAction(ISD::SDIV
, VT
, Expand
);
303 setOperationAction(ISD::UDIV
, VT
, Expand
);
304 setOperationAction(ISD::SREM
, VT
, Expand
);
305 setOperationAction(ISD::UREM
, VT
, Expand
);
307 // GPU does not have divrem function for signed or unsigned.
308 setOperationAction(ISD::SDIVREM
, VT
, Custom
);
309 setOperationAction(ISD::UDIVREM
, VT
, Custom
);
311 // GPU does not have [S|U]MUL_LOHI functions as a single instruction.
312 setOperationAction(ISD::SMUL_LOHI
, VT
, Expand
);
313 setOperationAction(ISD::UMUL_LOHI
, VT
, Expand
);
315 setOperationAction(ISD::BSWAP
, VT
, Expand
);
316 setOperationAction(ISD::CTTZ
, VT
, Expand
);
317 setOperationAction(ISD::CTLZ
, VT
, Expand
);
319 // AMDGPU uses ADDC/SUBC/ADDE/SUBE
320 setOperationAction(ISD::ADDC
, VT
, Legal
);
321 setOperationAction(ISD::SUBC
, VT
, Legal
);
322 setOperationAction(ISD::ADDE
, VT
, Legal
);
323 setOperationAction(ISD::SUBE
, VT
, Legal
);
326 // The hardware supports 32-bit ROTR, but not ROTL.
327 setOperationAction(ISD::ROTL
, MVT::i32
, Expand
);
328 setOperationAction(ISD::ROTL
, MVT::i64
, Expand
);
329 setOperationAction(ISD::ROTR
, MVT::i64
, Expand
);
331 setOperationAction(ISD::MUL
, MVT::i64
, Expand
);
332 setOperationAction(ISD::MULHU
, MVT::i64
, Expand
);
333 setOperationAction(ISD::MULHS
, MVT::i64
, Expand
);
334 setOperationAction(ISD::UINT_TO_FP
, MVT::i64
, Custom
);
335 setOperationAction(ISD::SINT_TO_FP
, MVT::i64
, Custom
);
336 setOperationAction(ISD::FP_TO_SINT
, MVT::i64
, Custom
);
337 setOperationAction(ISD::FP_TO_UINT
, MVT::i64
, Custom
);
338 setOperationAction(ISD::SELECT_CC
, MVT::i64
, Expand
);
340 setOperationAction(ISD::SMIN
, MVT::i32
, Legal
);
341 setOperationAction(ISD::UMIN
, MVT::i32
, Legal
);
342 setOperationAction(ISD::SMAX
, MVT::i32
, Legal
);
343 setOperationAction(ISD::UMAX
, MVT::i32
, Legal
);
345 setOperationAction(ISD::CTTZ
, MVT::i64
, Custom
);
346 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::i64
, Custom
);
347 setOperationAction(ISD::CTLZ
, MVT::i64
, Custom
);
348 setOperationAction(ISD::CTLZ_ZERO_UNDEF
, MVT::i64
, Custom
);
350 static const MVT::SimpleValueType VectorIntTypes
[] = {
351 MVT::v2i32
, MVT::v3i32
, MVT::v4i32
, MVT::v5i32
354 for (MVT VT
: VectorIntTypes
) {
355 // Expand the following operations for the current type by default.
356 setOperationAction(ISD::ADD
, VT
, Expand
);
357 setOperationAction(ISD::AND
, VT
, Expand
);
358 setOperationAction(ISD::FP_TO_SINT
, VT
, Expand
);
359 setOperationAction(ISD::FP_TO_UINT
, VT
, Expand
);
360 setOperationAction(ISD::MUL
, VT
, Expand
);
361 setOperationAction(ISD::MULHU
, VT
, Expand
);
362 setOperationAction(ISD::MULHS
, VT
, Expand
);
363 setOperationAction(ISD::OR
, VT
, Expand
);
364 setOperationAction(ISD::SHL
, VT
, Expand
);
365 setOperationAction(ISD::SRA
, VT
, Expand
);
366 setOperationAction(ISD::SRL
, VT
, Expand
);
367 setOperationAction(ISD::ROTL
, VT
, Expand
);
368 setOperationAction(ISD::ROTR
, VT
, Expand
);
369 setOperationAction(ISD::SUB
, VT
, Expand
);
370 setOperationAction(ISD::SINT_TO_FP
, VT
, Expand
);
371 setOperationAction(ISD::UINT_TO_FP
, VT
, Expand
);
372 setOperationAction(ISD::SDIV
, VT
, Expand
);
373 setOperationAction(ISD::UDIV
, VT
, Expand
);
374 setOperationAction(ISD::SREM
, VT
, Expand
);
375 setOperationAction(ISD::UREM
, VT
, Expand
);
376 setOperationAction(ISD::SMUL_LOHI
, VT
, Expand
);
377 setOperationAction(ISD::UMUL_LOHI
, VT
, Expand
);
378 setOperationAction(ISD::SDIVREM
, VT
, Custom
);
379 setOperationAction(ISD::UDIVREM
, VT
, Expand
);
380 setOperationAction(ISD::SELECT
, VT
, Expand
);
381 setOperationAction(ISD::VSELECT
, VT
, Expand
);
382 setOperationAction(ISD::SELECT_CC
, VT
, Expand
);
383 setOperationAction(ISD::XOR
, VT
, Expand
);
384 setOperationAction(ISD::BSWAP
, VT
, Expand
);
385 setOperationAction(ISD::CTPOP
, VT
, Expand
);
386 setOperationAction(ISD::CTTZ
, VT
, Expand
);
387 setOperationAction(ISD::CTLZ
, VT
, Expand
);
388 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Expand
);
389 setOperationAction(ISD::SETCC
, VT
, Expand
);
392 static const MVT::SimpleValueType FloatVectorTypes
[] = {
393 MVT::v2f32
, MVT::v3f32
, MVT::v4f32
, MVT::v5f32
396 for (MVT VT
: FloatVectorTypes
) {
397 setOperationAction(ISD::FABS
, VT
, Expand
);
398 setOperationAction(ISD::FMINNUM
, VT
, Expand
);
399 setOperationAction(ISD::FMAXNUM
, VT
, Expand
);
400 setOperationAction(ISD::FADD
, VT
, Expand
);
401 setOperationAction(ISD::FCEIL
, VT
, Expand
);
402 setOperationAction(ISD::FCOS
, VT
, Expand
);
403 setOperationAction(ISD::FDIV
, VT
, Expand
);
404 setOperationAction(ISD::FEXP2
, VT
, Expand
);
405 setOperationAction(ISD::FEXP
, VT
, Expand
);
406 setOperationAction(ISD::FLOG2
, VT
, Expand
);
407 setOperationAction(ISD::FREM
, VT
, Expand
);
408 setOperationAction(ISD::FLOG
, VT
, Expand
);
409 setOperationAction(ISD::FLOG10
, VT
, Expand
);
410 setOperationAction(ISD::FPOW
, VT
, Expand
);
411 setOperationAction(ISD::FFLOOR
, VT
, Expand
);
412 setOperationAction(ISD::FTRUNC
, VT
, Expand
);
413 setOperationAction(ISD::FMUL
, VT
, Expand
);
414 setOperationAction(ISD::FMA
, VT
, Expand
);
415 setOperationAction(ISD::FRINT
, VT
, Expand
);
416 setOperationAction(ISD::FNEARBYINT
, VT
, Expand
);
417 setOperationAction(ISD::FSQRT
, VT
, Expand
);
418 setOperationAction(ISD::FSIN
, VT
, Expand
);
419 setOperationAction(ISD::FSUB
, VT
, Expand
);
420 setOperationAction(ISD::FNEG
, VT
, Expand
);
421 setOperationAction(ISD::VSELECT
, VT
, Expand
);
422 setOperationAction(ISD::SELECT_CC
, VT
, Expand
);
423 setOperationAction(ISD::FCOPYSIGN
, VT
, Expand
);
424 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Expand
);
425 setOperationAction(ISD::SETCC
, VT
, Expand
);
426 setOperationAction(ISD::FCANONICALIZE
, VT
, Expand
);
429 // This causes using an unrolled select operation rather than expansion with
430 // bit operations. This is in general better, but the alternative using BFI
431 // instructions may be better if the select sources are SGPRs.
432 setOperationAction(ISD::SELECT
, MVT::v2f32
, Promote
);
433 AddPromotedToType(ISD::SELECT
, MVT::v2f32
, MVT::v2i32
);
435 setOperationAction(ISD::SELECT
, MVT::v3f32
, Promote
);
436 AddPromotedToType(ISD::SELECT
, MVT::v3f32
, MVT::v3i32
);
438 setOperationAction(ISD::SELECT
, MVT::v4f32
, Promote
);
439 AddPromotedToType(ISD::SELECT
, MVT::v4f32
, MVT::v4i32
);
441 setOperationAction(ISD::SELECT
, MVT::v5f32
, Promote
);
442 AddPromotedToType(ISD::SELECT
, MVT::v5f32
, MVT::v5i32
);
444 // There are no libcalls of any kind.
445 for (int I
= 0; I
< RTLIB::UNKNOWN_LIBCALL
; ++I
)
446 setLibcallName(static_cast<RTLIB::Libcall
>(I
), nullptr);
448 setBooleanContents(ZeroOrNegativeOneBooleanContent
);
449 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent
);
451 setSchedulingPreference(Sched::RegPressure
);
452 setJumpIsExpensive(true);
454 // FIXME: This is only partially true. If we have to do vector compares, any
455 // SGPR pair can be a condition register. If we have a uniform condition, we
456 // are better off doing SALU operations, where there is only one SCC. For now,
457 // we don't have a way of knowing during instruction selection if a condition
458 // will be uniform and we always use vector compares. Assume we are using
459 // vector compares until that is fixed.
460 setHasMultipleConditionRegisters(true);
462 setMinCmpXchgSizeInBits(32);
463 setSupportsUnalignedAtomics(false);
465 PredictableSelectIsExpensive
= false;
467 // We want to find all load dependencies for long chains of stores to enable
468 // merging into very wide vectors. The problem is with vectors with > 4
469 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16
470 // vectors are a legal type, even though we have to split the loads
471 // usually. When we can more precisely specify load legality per address
472 // space, we should be able to make FindBetterChain/MergeConsecutiveStores
473 // smarter so that they can figure out what to do in 2 iterations without all
474 // N > 4 stores on the same chain.
475 GatherAllAliasesMaxDepth
= 16;
477 // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry
478 // about these during lowering.
479 MaxStoresPerMemcpy
= 0xffffffff;
480 MaxStoresPerMemmove
= 0xffffffff;
481 MaxStoresPerMemset
= 0xffffffff;
483 setTargetDAGCombine(ISD::BITCAST
);
484 setTargetDAGCombine(ISD::SHL
);
485 setTargetDAGCombine(ISD::SRA
);
486 setTargetDAGCombine(ISD::SRL
);
487 setTargetDAGCombine(ISD::TRUNCATE
);
488 setTargetDAGCombine(ISD::MUL
);
489 setTargetDAGCombine(ISD::MULHU
);
490 setTargetDAGCombine(ISD::MULHS
);
491 setTargetDAGCombine(ISD::SELECT
);
492 setTargetDAGCombine(ISD::SELECT_CC
);
493 setTargetDAGCombine(ISD::STORE
);
494 setTargetDAGCombine(ISD::FADD
);
495 setTargetDAGCombine(ISD::FSUB
);
496 setTargetDAGCombine(ISD::FNEG
);
497 setTargetDAGCombine(ISD::FABS
);
498 setTargetDAGCombine(ISD::AssertZext
);
499 setTargetDAGCombine(ISD::AssertSext
);
502 //===----------------------------------------------------------------------===//
503 // Target Information
504 //===----------------------------------------------------------------------===//
507 static bool fnegFoldsIntoOp(unsigned Opc
) {
516 case ISD::FMINNUM_IEEE
:
517 case ISD::FMAXNUM_IEEE
:
521 case ISD::FNEARBYINT
:
522 case ISD::FCANONICALIZE
:
524 case AMDGPUISD::RCP_LEGACY
:
525 case AMDGPUISD::RCP_IFLAG
:
526 case AMDGPUISD::SIN_HW
:
527 case AMDGPUISD::FMUL_LEGACY
:
528 case AMDGPUISD::FMIN_LEGACY
:
529 case AMDGPUISD::FMAX_LEGACY
:
530 case AMDGPUISD::FMED3
:
537 /// \p returns true if the operation will definitely need to use a 64-bit
538 /// encoding, and thus will use a VOP3 encoding regardless of the source
541 static bool opMustUseVOP3Encoding(const SDNode
*N
, MVT VT
) {
542 return N
->getNumOperands() > 2 || VT
== MVT::f64
;
545 // Most FP instructions support source modifiers, but this could be refined
548 static bool hasSourceMods(const SDNode
*N
) {
549 if (isa
<MemSDNode
>(N
))
552 switch (N
->getOpcode()) {
558 case ISD::INLINEASM_BR
:
559 case AMDGPUISD::INTERP_P1
:
560 case AMDGPUISD::INTERP_P2
:
561 case AMDGPUISD::DIV_SCALE
:
563 // TODO: Should really be looking at the users of the bitcast. These are
564 // problematic because bitcasts are used to legalize all stores to integer
573 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode
*N
,
574 unsigned CostThreshold
) {
575 // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus
576 // it is truly free to use a source modifier in all cases. If there are
577 // multiple users but for each one will necessitate using VOP3, there will be
578 // a code size increase. Try to avoid increasing code size unless we know it
579 // will save on the instruction count.
580 unsigned NumMayIncreaseSize
= 0;
581 MVT VT
= N
->getValueType(0).getScalarType().getSimpleVT();
583 // XXX - Should this limit number of uses to check?
584 for (const SDNode
*U
: N
->uses()) {
585 if (!hasSourceMods(U
))
588 if (!opMustUseVOP3Encoding(U
, VT
)) {
589 if (++NumMayIncreaseSize
> CostThreshold
)
597 MVT
AMDGPUTargetLowering::getVectorIdxTy(const DataLayout
&) const {
601 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType
) const {
605 // The backend supports 32 and 64 bit floating point immediates.
606 // FIXME: Why are we reporting vectors of FP immediates as legal?
607 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat
&Imm
, EVT VT
,
608 bool ForCodeSize
) const {
609 EVT ScalarVT
= VT
.getScalarType();
610 return (ScalarVT
== MVT::f32
|| ScalarVT
== MVT::f64
||
611 (ScalarVT
== MVT::f16
&& Subtarget
->has16BitInsts()));
614 // We don't want to shrink f64 / f32 constants.
615 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT
) const {
616 EVT ScalarVT
= VT
.getScalarType();
617 return (ScalarVT
!= MVT::f32
&& ScalarVT
!= MVT::f64
);
620 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode
*N
,
621 ISD::LoadExtType ExtTy
,
623 // TODO: This may be worth removing. Check regression tests for diffs.
624 if (!TargetLoweringBase::shouldReduceLoadWidth(N
, ExtTy
, NewVT
))
627 unsigned NewSize
= NewVT
.getStoreSizeInBits();
629 // If we are reducing to a 32-bit load, this is always better.
633 EVT OldVT
= N
->getValueType(0);
634 unsigned OldSize
= OldVT
.getStoreSizeInBits();
636 MemSDNode
*MN
= cast
<MemSDNode
>(N
);
637 unsigned AS
= MN
->getAddressSpace();
638 // Do not shrink an aligned scalar load to sub-dword.
639 // Scalar engine cannot do sub-dword loads.
640 if (OldSize
>= 32 && NewSize
< 32 && MN
->getAlignment() >= 4 &&
641 (AS
== AMDGPUAS::CONSTANT_ADDRESS
||
642 AS
== AMDGPUAS::CONSTANT_ADDRESS_32BIT
||
643 (isa
<LoadSDNode
>(N
) &&
644 AS
== AMDGPUAS::GLOBAL_ADDRESS
&& MN
->isInvariant())) &&
645 AMDGPUInstrInfo::isUniformMMO(MN
->getMemOperand()))
648 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar
649 // extloads, so doing one requires using a buffer_load. In cases where we
650 // still couldn't use a scalar load, using the wider load shouldn't really
653 // If the old size already had to be an extload, there's no harm in continuing
654 // to reduce the width.
655 return (OldSize
< 32);
658 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy
, EVT CastTy
,
659 const SelectionDAG
&DAG
,
660 const MachineMemOperand
&MMO
) const {
662 assert(LoadTy
.getSizeInBits() == CastTy
.getSizeInBits());
664 if (LoadTy
.getScalarType() == MVT::i32
)
667 unsigned LScalarSize
= LoadTy
.getScalarSizeInBits();
668 unsigned CastScalarSize
= CastTy
.getScalarSizeInBits();
670 if ((LScalarSize
>= CastScalarSize
) && (CastScalarSize
< 32))
674 return allowsMemoryAccess(*DAG
.getContext(), DAG
.getDataLayout(), CastTy
,
678 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also
679 // profitable with the expansion for 64-bit since it's generally good to
681 // FIXME: These should really have the size as a parameter.
682 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const {
686 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const {
690 bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode
* N
) const {
691 switch (N
->getOpcode()) {
694 case ISD::EntryToken
:
695 case ISD::TokenFactor
:
697 case ISD::INTRINSIC_WO_CHAIN
:
699 unsigned IntrID
= cast
<ConstantSDNode
>(N
->getOperand(0))->getZExtValue();
703 case Intrinsic::amdgcn_readfirstlane
:
704 case Intrinsic::amdgcn_readlane
:
711 const LoadSDNode
* L
= dyn_cast
<LoadSDNode
>(N
);
712 if (L
->getMemOperand()->getAddrSpace()
713 == AMDGPUAS::CONSTANT_ADDRESS_32BIT
)
721 //===---------------------------------------------------------------------===//
723 //===---------------------------------------------------------------------===//
725 bool AMDGPUTargetLowering::isFAbsFree(EVT VT
) const {
726 assert(VT
.isFloatingPoint());
728 // Packed operations do not have a fabs modifier.
729 return VT
== MVT::f32
|| VT
== MVT::f64
||
730 (Subtarget
->has16BitInsts() && VT
== MVT::f16
);
733 bool AMDGPUTargetLowering::isFNegFree(EVT VT
) const {
734 assert(VT
.isFloatingPoint());
735 return VT
== MVT::f32
|| VT
== MVT::f64
||
736 (Subtarget
->has16BitInsts() && VT
== MVT::f16
) ||
737 (Subtarget
->hasVOP3PInsts() && VT
== MVT::v2f16
);
740 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT
,
746 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT
) const {
747 // There are few operations which truly have vector input operands. Any vector
748 // operation is going to involve operations on each component, and a
749 // build_vector will be a copy per element, so it always makes sense to use a
750 // build_vector input in place of the extracted element to avoid a copy into a
753 // We should probably only do this if all users are extracts only, but this
754 // should be the common case.
758 bool AMDGPUTargetLowering::isTruncateFree(EVT Source
, EVT Dest
) const {
759 // Truncate is just accessing a subregister.
761 unsigned SrcSize
= Source
.getSizeInBits();
762 unsigned DestSize
= Dest
.getSizeInBits();
764 return DestSize
< SrcSize
&& DestSize
% 32 == 0 ;
767 bool AMDGPUTargetLowering::isTruncateFree(Type
*Source
, Type
*Dest
) const {
768 // Truncate is just accessing a subregister.
770 unsigned SrcSize
= Source
->getScalarSizeInBits();
771 unsigned DestSize
= Dest
->getScalarSizeInBits();
773 if (DestSize
== 16 && Subtarget
->has16BitInsts())
774 return SrcSize
>= 32;
776 return DestSize
< SrcSize
&& DestSize
% 32 == 0;
779 bool AMDGPUTargetLowering::isZExtFree(Type
*Src
, Type
*Dest
) const {
780 unsigned SrcSize
= Src
->getScalarSizeInBits();
781 unsigned DestSize
= Dest
->getScalarSizeInBits();
783 if (SrcSize
== 16 && Subtarget
->has16BitInsts())
784 return DestSize
>= 32;
786 return SrcSize
== 32 && DestSize
== 64;
789 bool AMDGPUTargetLowering::isZExtFree(EVT Src
, EVT Dest
) const {
790 // Any register load of a 64-bit value really requires 2 32-bit moves. For all
791 // practical purposes, the extra mov 0 to load a 64-bit is free. As used,
792 // this will enable reducing 64-bit operations the 32-bit, which is always
796 return Dest
== MVT::i32
||Dest
== MVT::i64
;
798 return Src
== MVT::i32
&& Dest
== MVT::i64
;
801 bool AMDGPUTargetLowering::isZExtFree(SDValue Val
, EVT VT2
) const {
802 return isZExtFree(Val
.getValueType(), VT2
);
805 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT
, EVT DestVT
) const {
806 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a
807 // limited number of native 64-bit operations. Shrinking an operation to fit
808 // in a single 32-bit register should always be helpful. As currently used,
809 // this is much less general than the name suggests, and is only used in
810 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is
811 // not profitable, and may actually be harmful.
812 return SrcVT
.getSizeInBits() > 32 && DestVT
.getSizeInBits() == 32;
815 //===---------------------------------------------------------------------===//
816 // TargetLowering Callbacks
817 //===---------------------------------------------------------------------===//
819 CCAssignFn
*AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC
,
822 case CallingConv::AMDGPU_VS
:
823 case CallingConv::AMDGPU_GS
:
824 case CallingConv::AMDGPU_PS
:
825 case CallingConv::AMDGPU_CS
:
826 case CallingConv::AMDGPU_HS
:
827 case CallingConv::AMDGPU_ES
:
828 case CallingConv::AMDGPU_LS
:
831 case CallingConv::Fast
:
832 case CallingConv::Cold
:
833 return CC_AMDGPU_Func
;
834 case CallingConv::AMDGPU_KERNEL
:
835 case CallingConv::SPIR_KERNEL
:
837 report_fatal_error("Unsupported calling convention for call");
841 CCAssignFn
*AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC
,
844 case CallingConv::AMDGPU_KERNEL
:
845 case CallingConv::SPIR_KERNEL
:
846 llvm_unreachable("kernels should not be handled here");
847 case CallingConv::AMDGPU_VS
:
848 case CallingConv::AMDGPU_GS
:
849 case CallingConv::AMDGPU_PS
:
850 case CallingConv::AMDGPU_CS
:
851 case CallingConv::AMDGPU_HS
:
852 case CallingConv::AMDGPU_ES
:
853 case CallingConv::AMDGPU_LS
:
854 return RetCC_SI_Shader
;
856 case CallingConv::Fast
:
857 case CallingConv::Cold
:
858 return RetCC_AMDGPU_Func
;
860 report_fatal_error("Unsupported calling convention.");
864 /// The SelectionDAGBuilder will automatically promote function arguments
865 /// with illegal types. However, this does not work for the AMDGPU targets
866 /// since the function arguments are stored in memory as these illegal types.
867 /// In order to handle this properly we need to get the original types sizes
868 /// from the LLVM IR Function and fixup the ISD:InputArg values before
869 /// passing them to AnalyzeFormalArguments()
871 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting
872 /// input values across multiple registers. Each item in the Ins array
873 /// represents a single value that will be stored in registers. Ins[x].VT is
874 /// the value type of the value that will be stored in the register, so
875 /// whatever SDNode we lower the argument to needs to be this type.
877 /// In order to correctly lower the arguments we need to know the size of each
878 /// argument. Since Ins[x].VT gives us the size of the register that will
879 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type
880 /// for the orignal function argument so that we can deduce the correct memory
881 /// type to use for Ins[x]. In most cases the correct memory type will be
882 /// Ins[x].ArgVT. However, this will not always be the case. If, for example,
883 /// we have a kernel argument of type v8i8, this argument will be split into
884 /// 8 parts and each part will be represented by its own item in the Ins array.
885 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of
886 /// the argument before it was split. From this, we deduce that the memory type
887 /// for each individual part is i8. We pass the memory type as LocVT to the
888 /// calling convention analysis function and the register type (Ins[x].VT) as
890 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute(
892 const SmallVectorImpl
<ISD::InputArg
> &Ins
) const {
893 const MachineFunction
&MF
= State
.getMachineFunction();
894 const Function
&Fn
= MF
.getFunction();
895 LLVMContext
&Ctx
= Fn
.getParent()->getContext();
896 const AMDGPUSubtarget
&ST
= AMDGPUSubtarget::get(MF
);
897 const unsigned ExplicitOffset
= ST
.getExplicitKernelArgOffset(Fn
);
898 CallingConv::ID CC
= Fn
.getCallingConv();
900 unsigned MaxAlign
= 1;
901 uint64_t ExplicitArgOffset
= 0;
902 const DataLayout
&DL
= Fn
.getParent()->getDataLayout();
904 unsigned InIndex
= 0;
906 for (const Argument
&Arg
: Fn
.args()) {
907 Type
*BaseArgTy
= Arg
.getType();
908 unsigned Align
= DL
.getABITypeAlignment(BaseArgTy
);
909 MaxAlign
= std::max(Align
, MaxAlign
);
910 unsigned AllocSize
= DL
.getTypeAllocSize(BaseArgTy
);
912 uint64_t ArgOffset
= alignTo(ExplicitArgOffset
, Align
) + ExplicitOffset
;
913 ExplicitArgOffset
= alignTo(ExplicitArgOffset
, Align
) + AllocSize
;
915 // We're basically throwing away everything passed into us and starting over
916 // to get accurate in-memory offsets. The "PartOffset" is completely useless
917 // to us as computed in Ins.
919 // We also need to figure out what type legalization is trying to do to get
920 // the correct memory offsets.
922 SmallVector
<EVT
, 16> ValueVTs
;
923 SmallVector
<uint64_t, 16> Offsets
;
924 ComputeValueVTs(*this, DL
, BaseArgTy
, ValueVTs
, &Offsets
, ArgOffset
);
926 for (unsigned Value
= 0, NumValues
= ValueVTs
.size();
927 Value
!= NumValues
; ++Value
) {
928 uint64_t BasePartOffset
= Offsets
[Value
];
930 EVT ArgVT
= ValueVTs
[Value
];
932 MVT RegisterVT
= getRegisterTypeForCallingConv(Ctx
, CC
, ArgVT
);
933 unsigned NumRegs
= getNumRegistersForCallingConv(Ctx
, CC
, ArgVT
);
936 // This argument is not split, so the IR type is the memory type.
937 if (ArgVT
.isExtended()) {
938 // We have an extended type, like i24, so we should just use the
944 } else if (ArgVT
.isVector() && RegisterVT
.isVector() &&
945 ArgVT
.getScalarType() == RegisterVT
.getScalarType()) {
946 assert(ArgVT
.getVectorNumElements() > RegisterVT
.getVectorNumElements());
947 // We have a vector value which has been split into a vector with
948 // the same scalar type, but fewer elements. This should handle
949 // all the floating-point vector types.
951 } else if (ArgVT
.isVector() &&
952 ArgVT
.getVectorNumElements() == NumRegs
) {
953 // This arg has been split so that each element is stored in a separate
955 MemVT
= ArgVT
.getScalarType();
956 } else if (ArgVT
.isExtended()) {
957 // We have an extended type, like i65.
960 unsigned MemoryBits
= ArgVT
.getStoreSizeInBits() / NumRegs
;
961 assert(ArgVT
.getStoreSizeInBits() % NumRegs
== 0);
962 if (RegisterVT
.isInteger()) {
963 MemVT
= EVT::getIntegerVT(State
.getContext(), MemoryBits
);
964 } else if (RegisterVT
.isVector()) {
965 assert(!RegisterVT
.getScalarType().isFloatingPoint());
966 unsigned NumElements
= RegisterVT
.getVectorNumElements();
967 assert(MemoryBits
% NumElements
== 0);
968 // This vector type has been split into another vector type with
969 // a different elements size.
970 EVT ScalarVT
= EVT::getIntegerVT(State
.getContext(),
971 MemoryBits
/ NumElements
);
972 MemVT
= EVT::getVectorVT(State
.getContext(), ScalarVT
, NumElements
);
974 llvm_unreachable("cannot deduce memory type.");
978 // Convert one element vectors to scalar.
979 if (MemVT
.isVector() && MemVT
.getVectorNumElements() == 1)
980 MemVT
= MemVT
.getScalarType();
982 // Round up vec3/vec5 argument.
983 if (MemVT
.isVector() && !MemVT
.isPow2VectorType()) {
984 assert(MemVT
.getVectorNumElements() == 3 ||
985 MemVT
.getVectorNumElements() == 5);
986 MemVT
= MemVT
.getPow2VectorType(State
.getContext());
989 unsigned PartOffset
= 0;
990 for (unsigned i
= 0; i
!= NumRegs
; ++i
) {
991 State
.addLoc(CCValAssign::getCustomMem(InIndex
++, RegisterVT
,
992 BasePartOffset
+ PartOffset
,
995 PartOffset
+= MemVT
.getStoreSize();
1001 SDValue
AMDGPUTargetLowering::LowerReturn(
1002 SDValue Chain
, CallingConv::ID CallConv
,
1004 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
1005 const SmallVectorImpl
<SDValue
> &OutVals
,
1006 const SDLoc
&DL
, SelectionDAG
&DAG
) const {
1007 // FIXME: Fails for r600 tests
1008 //assert(!isVarArg && Outs.empty() && OutVals.empty() &&
1009 // "wave terminate should not have return values");
1010 return DAG
.getNode(AMDGPUISD::ENDPGM
, DL
, MVT::Other
, Chain
);
1013 //===---------------------------------------------------------------------===//
1014 // Target specific lowering
1015 //===---------------------------------------------------------------------===//
1017 /// Selects the correct CCAssignFn for a given CallingConvention value.
1018 CCAssignFn
*AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC
,
1020 return AMDGPUCallLowering::CCAssignFnForCall(CC
, IsVarArg
);
1023 CCAssignFn
*AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC
,
1025 return AMDGPUCallLowering::CCAssignFnForReturn(CC
, IsVarArg
);
1028 SDValue
AMDGPUTargetLowering::addTokenForArgument(SDValue Chain
,
1030 MachineFrameInfo
&MFI
,
1031 int ClobberedFI
) const {
1032 SmallVector
<SDValue
, 8> ArgChains
;
1033 int64_t FirstByte
= MFI
.getObjectOffset(ClobberedFI
);
1034 int64_t LastByte
= FirstByte
+ MFI
.getObjectSize(ClobberedFI
) - 1;
1036 // Include the original chain at the beginning of the list. When this is
1037 // used by target LowerCall hooks, this helps legalize find the
1038 // CALLSEQ_BEGIN node.
1039 ArgChains
.push_back(Chain
);
1041 // Add a chain value for each stack argument corresponding
1042 for (SDNode::use_iterator U
= DAG
.getEntryNode().getNode()->use_begin(),
1043 UE
= DAG
.getEntryNode().getNode()->use_end();
1045 if (LoadSDNode
*L
= dyn_cast
<LoadSDNode
>(*U
)) {
1046 if (FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(L
->getBasePtr())) {
1047 if (FI
->getIndex() < 0) {
1048 int64_t InFirstByte
= MFI
.getObjectOffset(FI
->getIndex());
1049 int64_t InLastByte
= InFirstByte
;
1050 InLastByte
+= MFI
.getObjectSize(FI
->getIndex()) - 1;
1052 if ((InFirstByte
<= FirstByte
&& FirstByte
<= InLastByte
) ||
1053 (FirstByte
<= InFirstByte
&& InFirstByte
<= LastByte
))
1054 ArgChains
.push_back(SDValue(L
, 1));
1060 // Build a tokenfactor for all the chains.
1061 return DAG
.getNode(ISD::TokenFactor
, SDLoc(Chain
), MVT::Other
, ArgChains
);
1064 SDValue
AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo
&CLI
,
1065 SmallVectorImpl
<SDValue
> &InVals
,
1066 StringRef Reason
) const {
1067 SDValue Callee
= CLI
.Callee
;
1068 SelectionDAG
&DAG
= CLI
.DAG
;
1070 const Function
&Fn
= DAG
.getMachineFunction().getFunction();
1072 StringRef
FuncName("<unknown>");
1074 if (const ExternalSymbolSDNode
*G
= dyn_cast
<ExternalSymbolSDNode
>(Callee
))
1075 FuncName
= G
->getSymbol();
1076 else if (const GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
))
1077 FuncName
= G
->getGlobal()->getName();
1079 DiagnosticInfoUnsupported
NoCalls(
1080 Fn
, Reason
+ FuncName
, CLI
.DL
.getDebugLoc());
1081 DAG
.getContext()->diagnose(NoCalls
);
1083 if (!CLI
.IsTailCall
) {
1084 for (unsigned I
= 0, E
= CLI
.Ins
.size(); I
!= E
; ++I
)
1085 InVals
.push_back(DAG
.getUNDEF(CLI
.Ins
[I
].VT
));
1088 return DAG
.getEntryNode();
1091 SDValue
AMDGPUTargetLowering::LowerCall(CallLoweringInfo
&CLI
,
1092 SmallVectorImpl
<SDValue
> &InVals
) const {
1093 return lowerUnhandledCall(CLI
, InVals
, "unsupported call to function ");
1096 SDValue
AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op
,
1097 SelectionDAG
&DAG
) const {
1098 const Function
&Fn
= DAG
.getMachineFunction().getFunction();
1100 DiagnosticInfoUnsupported
NoDynamicAlloca(Fn
, "unsupported dynamic alloca",
1101 SDLoc(Op
).getDebugLoc());
1102 DAG
.getContext()->diagnose(NoDynamicAlloca
);
1103 auto Ops
= {DAG
.getConstant(0, SDLoc(), Op
.getValueType()), Op
.getOperand(0)};
1104 return DAG
.getMergeValues(Ops
, SDLoc());
1107 SDValue
AMDGPUTargetLowering::LowerOperation(SDValue Op
,
1108 SelectionDAG
&DAG
) const {
1109 switch (Op
.getOpcode()) {
1111 Op
->print(errs(), &DAG
);
1112 llvm_unreachable("Custom lowering code for this"
1113 "instruction is not implemented yet!");
1115 case ISD::SIGN_EXTEND_INREG
: return LowerSIGN_EXTEND_INREG(Op
, DAG
);
1116 case ISD::CONCAT_VECTORS
: return LowerCONCAT_VECTORS(Op
, DAG
);
1117 case ISD::EXTRACT_SUBVECTOR
: return LowerEXTRACT_SUBVECTOR(Op
, DAG
);
1118 case ISD::UDIVREM
: return LowerUDIVREM(Op
, DAG
);
1119 case ISD::SDIVREM
: return LowerSDIVREM(Op
, DAG
);
1120 case ISD::FREM
: return LowerFREM(Op
, DAG
);
1121 case ISD::FCEIL
: return LowerFCEIL(Op
, DAG
);
1122 case ISD::FTRUNC
: return LowerFTRUNC(Op
, DAG
);
1123 case ISD::FRINT
: return LowerFRINT(Op
, DAG
);
1124 case ISD::FNEARBYINT
: return LowerFNEARBYINT(Op
, DAG
);
1125 case ISD::FROUND
: return LowerFROUND(Op
, DAG
);
1126 case ISD::FFLOOR
: return LowerFFLOOR(Op
, DAG
);
1128 return LowerFLOG(Op
, DAG
, 1 / AMDGPU_LOG2E_F
);
1130 return LowerFLOG(Op
, DAG
, AMDGPU_LN2_F
/ AMDGPU_LN10_F
);
1132 return lowerFEXP(Op
, DAG
);
1133 case ISD::SINT_TO_FP
: return LowerSINT_TO_FP(Op
, DAG
);
1134 case ISD::UINT_TO_FP
: return LowerUINT_TO_FP(Op
, DAG
);
1135 case ISD::FP_TO_FP16
: return LowerFP_TO_FP16(Op
, DAG
);
1136 case ISD::FP_TO_SINT
: return LowerFP_TO_SINT(Op
, DAG
);
1137 case ISD::FP_TO_UINT
: return LowerFP_TO_UINT(Op
, DAG
);
1139 case ISD::CTTZ_ZERO_UNDEF
:
1141 case ISD::CTLZ_ZERO_UNDEF
:
1142 return LowerCTLZ_CTTZ(Op
, DAG
);
1143 case ISD::DYNAMIC_STACKALLOC
: return LowerDYNAMIC_STACKALLOC(Op
, DAG
);
1148 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode
*N
,
1149 SmallVectorImpl
<SDValue
> &Results
,
1150 SelectionDAG
&DAG
) const {
1151 switch (N
->getOpcode()) {
1152 case ISD::SIGN_EXTEND_INREG
:
1153 // Different parts of legalization seem to interpret which type of
1154 // sign_extend_inreg is the one to check for custom lowering. The extended
1155 // from type is what really matters, but some places check for custom
1156 // lowering of the result type. This results in trying to use
1157 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do
1158 // nothing here and let the illegal result integer be handled normally.
1165 static bool hasDefinedInitializer(const GlobalValue
*GV
) {
1166 const GlobalVariable
*GVar
= dyn_cast
<GlobalVariable
>(GV
);
1167 if (!GVar
|| !GVar
->hasInitializer())
1170 return !isa
<UndefValue
>(GVar
->getInitializer());
1173 SDValue
AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction
* MFI
,
1175 SelectionDAG
&DAG
) const {
1177 const DataLayout
&DL
= DAG
.getDataLayout();
1178 GlobalAddressSDNode
*G
= cast
<GlobalAddressSDNode
>(Op
);
1179 const GlobalValue
*GV
= G
->getGlobal();
1181 if (G
->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS
||
1182 G
->getAddressSpace() == AMDGPUAS::REGION_ADDRESS
) {
1183 if (!MFI
->isEntryFunction()) {
1184 const Function
&Fn
= DAG
.getMachineFunction().getFunction();
1185 DiagnosticInfoUnsupported
BadLDSDecl(
1186 Fn
, "local memory global used by non-kernel function", SDLoc(Op
).getDebugLoc());
1187 DAG
.getContext()->diagnose(BadLDSDecl
);
1190 // XXX: What does the value of G->getOffset() mean?
1191 assert(G
->getOffset() == 0 &&
1192 "Do not know what to do with an non-zero offset");
1194 // TODO: We could emit code to handle the initialization somewhere.
1195 if (!hasDefinedInitializer(GV
)) {
1196 unsigned Offset
= MFI
->allocateLDSGlobal(DL
, *GV
);
1197 return DAG
.getConstant(Offset
, SDLoc(Op
), Op
.getValueType());
1201 const Function
&Fn
= DAG
.getMachineFunction().getFunction();
1202 DiagnosticInfoUnsupported
BadInit(
1203 Fn
, "unsupported initializer for address space", SDLoc(Op
).getDebugLoc());
1204 DAG
.getContext()->diagnose(BadInit
);
1208 SDValue
AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op
,
1209 SelectionDAG
&DAG
) const {
1210 SmallVector
<SDValue
, 8> Args
;
1212 EVT VT
= Op
.getValueType();
1213 if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
1215 SDValue Lo
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::i32
, Op
.getOperand(0));
1216 SDValue Hi
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::i32
, Op
.getOperand(1));
1218 SDValue BV
= DAG
.getBuildVector(MVT::v2i32
, SL
, { Lo
, Hi
});
1219 return DAG
.getNode(ISD::BITCAST
, SL
, VT
, BV
);
1222 for (const SDUse
&U
: Op
->ops())
1223 DAG
.ExtractVectorElements(U
.get(), Args
);
1225 return DAG
.getBuildVector(Op
.getValueType(), SDLoc(Op
), Args
);
1228 SDValue
AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op
,
1229 SelectionDAG
&DAG
) const {
1231 SmallVector
<SDValue
, 8> Args
;
1232 unsigned Start
= cast
<ConstantSDNode
>(Op
.getOperand(1))->getZExtValue();
1233 EVT VT
= Op
.getValueType();
1234 DAG
.ExtractVectorElements(Op
.getOperand(0), Args
, Start
,
1235 VT
.getVectorNumElements());
1237 return DAG
.getBuildVector(Op
.getValueType(), SDLoc(Op
), Args
);
1240 /// Generate Min/Max node
1241 SDValue
AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc
&DL
, EVT VT
,
1242 SDValue LHS
, SDValue RHS
,
1243 SDValue True
, SDValue False
,
1245 DAGCombinerInfo
&DCI
) const {
1246 if (!(LHS
== True
&& RHS
== False
) && !(LHS
== False
&& RHS
== True
))
1249 SelectionDAG
&DAG
= DCI
.DAG
;
1250 ISD::CondCode CCOpcode
= cast
<CondCodeSDNode
>(CC
)->get();
1259 case ISD::SETFALSE2
:
1268 return DAG
.getNode(AMDGPUISD::FMIN_LEGACY
, DL
, VT
, RHS
, LHS
);
1269 return DAG
.getNode(AMDGPUISD::FMAX_LEGACY
, DL
, VT
, LHS
, RHS
);
1275 // Ordered. Assume ordered for undefined.
1277 // Only do this after legalization to avoid interfering with other combines
1278 // which might occur.
1279 if (DCI
.getDAGCombineLevel() < AfterLegalizeDAG
&&
1280 !DCI
.isCalledByLegalizer())
1283 // We need to permute the operands to get the correct NaN behavior. The
1284 // selected operand is the second one based on the failing compare with NaN,
1285 // so permute it based on the compare type the hardware uses.
1287 return DAG
.getNode(AMDGPUISD::FMIN_LEGACY
, DL
, VT
, LHS
, RHS
);
1288 return DAG
.getNode(AMDGPUISD::FMAX_LEGACY
, DL
, VT
, RHS
, LHS
);
1293 return DAG
.getNode(AMDGPUISD::FMAX_LEGACY
, DL
, VT
, RHS
, LHS
);
1294 return DAG
.getNode(AMDGPUISD::FMIN_LEGACY
, DL
, VT
, LHS
, RHS
);
1300 if (DCI
.getDAGCombineLevel() < AfterLegalizeDAG
&&
1301 !DCI
.isCalledByLegalizer())
1305 return DAG
.getNode(AMDGPUISD::FMAX_LEGACY
, DL
, VT
, LHS
, RHS
);
1306 return DAG
.getNode(AMDGPUISD::FMIN_LEGACY
, DL
, VT
, RHS
, LHS
);
1308 case ISD::SETCC_INVALID
:
1309 llvm_unreachable("Invalid setcc condcode!");
1314 std::pair
<SDValue
, SDValue
>
1315 AMDGPUTargetLowering::split64BitValue(SDValue Op
, SelectionDAG
&DAG
) const {
1318 SDValue Vec
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::v2i32
, Op
);
1320 const SDValue Zero
= DAG
.getConstant(0, SL
, MVT::i32
);
1321 const SDValue One
= DAG
.getConstant(1, SL
, MVT::i32
);
1323 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, Vec
, Zero
);
1324 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, Vec
, One
);
1326 return std::make_pair(Lo
, Hi
);
1329 SDValue
AMDGPUTargetLowering::getLoHalf64(SDValue Op
, SelectionDAG
&DAG
) const {
1332 SDValue Vec
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::v2i32
, Op
);
1333 const SDValue Zero
= DAG
.getConstant(0, SL
, MVT::i32
);
1334 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, Vec
, Zero
);
1337 SDValue
AMDGPUTargetLowering::getHiHalf64(SDValue Op
, SelectionDAG
&DAG
) const {
1340 SDValue Vec
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::v2i32
, Op
);
1341 const SDValue One
= DAG
.getConstant(1, SL
, MVT::i32
);
1342 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, Vec
, One
);
1345 // Split a vector type into two parts. The first part is a power of two vector.
1346 // The second part is whatever is left over, and is a scalar if it would
1347 // otherwise be a 1-vector.
1349 AMDGPUTargetLowering::getSplitDestVTs(const EVT
&VT
, SelectionDAG
&DAG
) const {
1351 EVT EltVT
= VT
.getVectorElementType();
1352 unsigned NumElts
= VT
.getVectorNumElements();
1353 unsigned LoNumElts
= PowerOf2Ceil((NumElts
+ 1) / 2);
1354 LoVT
= EVT::getVectorVT(*DAG
.getContext(), EltVT
, LoNumElts
);
1355 HiVT
= NumElts
- LoNumElts
== 1
1357 : EVT::getVectorVT(*DAG
.getContext(), EltVT
, NumElts
- LoNumElts
);
1358 return std::make_pair(LoVT
, HiVT
);
1361 // Split a vector value into two parts of types LoVT and HiVT. HiVT could be
1363 std::pair
<SDValue
, SDValue
>
1364 AMDGPUTargetLowering::splitVector(const SDValue
&N
, const SDLoc
&DL
,
1365 const EVT
&LoVT
, const EVT
&HiVT
,
1366 SelectionDAG
&DAG
) const {
1367 assert(LoVT
.getVectorNumElements() +
1368 (HiVT
.isVector() ? HiVT
.getVectorNumElements() : 1) <=
1369 N
.getValueType().getVectorNumElements() &&
1370 "More vector elements requested than available!");
1371 auto IdxTy
= getVectorIdxTy(DAG
.getDataLayout());
1372 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, LoVT
, N
,
1373 DAG
.getConstant(0, DL
, IdxTy
));
1374 SDValue Hi
= DAG
.getNode(
1375 HiVT
.isVector() ? ISD::EXTRACT_SUBVECTOR
: ISD::EXTRACT_VECTOR_ELT
, DL
,
1376 HiVT
, N
, DAG
.getConstant(LoVT
.getVectorNumElements(), DL
, IdxTy
));
1377 return std::make_pair(Lo
, Hi
);
1380 SDValue
AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op
,
1381 SelectionDAG
&DAG
) const {
1382 LoadSDNode
*Load
= cast
<LoadSDNode
>(Op
);
1383 EVT VT
= Op
.getValueType();
1386 // If this is a 2 element vector, we really want to scalarize and not create
1387 // weird 1 element vectors.
1388 if (VT
.getVectorNumElements() == 2)
1389 return scalarizeVectorLoad(Load
, DAG
);
1391 SDValue BasePtr
= Load
->getBasePtr();
1392 EVT MemVT
= Load
->getMemoryVT();
1395 const MachinePointerInfo
&SrcValue
= Load
->getMemOperand()->getPointerInfo();
1398 EVT LoMemVT
, HiMemVT
;
1401 std::tie(LoVT
, HiVT
) = getSplitDestVTs(VT
, DAG
);
1402 std::tie(LoMemVT
, HiMemVT
) = getSplitDestVTs(MemVT
, DAG
);
1403 std::tie(Lo
, Hi
) = splitVector(Op
, SL
, LoVT
, HiVT
, DAG
);
1405 unsigned Size
= LoMemVT
.getStoreSize();
1406 unsigned BaseAlign
= Load
->getAlignment();
1407 unsigned HiAlign
= MinAlign(BaseAlign
, Size
);
1409 SDValue LoLoad
= DAG
.getExtLoad(Load
->getExtensionType(), SL
, LoVT
,
1410 Load
->getChain(), BasePtr
, SrcValue
, LoMemVT
,
1411 BaseAlign
, Load
->getMemOperand()->getFlags());
1412 SDValue HiPtr
= DAG
.getObjectPtrOffset(SL
, BasePtr
, Size
);
1414 DAG
.getExtLoad(Load
->getExtensionType(), SL
, HiVT
, Load
->getChain(),
1415 HiPtr
, SrcValue
.getWithOffset(LoMemVT
.getStoreSize()),
1416 HiMemVT
, HiAlign
, Load
->getMemOperand()->getFlags());
1418 auto IdxTy
= getVectorIdxTy(DAG
.getDataLayout());
1421 // This is the case that the vector is power of two so was evenly split.
1422 Join
= DAG
.getNode(ISD::CONCAT_VECTORS
, SL
, VT
, LoLoad
, HiLoad
);
1424 Join
= DAG
.getNode(ISD::INSERT_SUBVECTOR
, SL
, VT
, DAG
.getUNDEF(VT
), LoLoad
,
1425 DAG
.getConstant(0, SL
, IdxTy
));
1426 Join
= DAG
.getNode(HiVT
.isVector() ? ISD::INSERT_SUBVECTOR
1427 : ISD::INSERT_VECTOR_ELT
,
1428 SL
, VT
, Join
, HiLoad
,
1429 DAG
.getConstant(LoVT
.getVectorNumElements(), SL
, IdxTy
));
1432 SDValue Ops
[] = {Join
, DAG
.getNode(ISD::TokenFactor
, SL
, MVT::Other
,
1433 LoLoad
.getValue(1), HiLoad
.getValue(1))};
1435 return DAG
.getMergeValues(Ops
, SL
);
1438 // Widen a vector load from vec3 to vec4.
1439 SDValue
AMDGPUTargetLowering::WidenVectorLoad(SDValue Op
,
1440 SelectionDAG
&DAG
) const {
1441 LoadSDNode
*Load
= cast
<LoadSDNode
>(Op
);
1442 EVT VT
= Op
.getValueType();
1443 assert(VT
.getVectorNumElements() == 3);
1444 SDValue BasePtr
= Load
->getBasePtr();
1445 EVT MemVT
= Load
->getMemoryVT();
1447 const MachinePointerInfo
&SrcValue
= Load
->getMemOperand()->getPointerInfo();
1448 unsigned BaseAlign
= Load
->getAlignment();
1451 EVT::getVectorVT(*DAG
.getContext(), VT
.getVectorElementType(), 4);
1453 EVT::getVectorVT(*DAG
.getContext(), MemVT
.getVectorElementType(), 4);
1454 SDValue WideLoad
= DAG
.getExtLoad(
1455 Load
->getExtensionType(), SL
, WideVT
, Load
->getChain(), BasePtr
, SrcValue
,
1456 WideMemVT
, BaseAlign
, Load
->getMemOperand()->getFlags());
1457 return DAG
.getMergeValues(
1458 {DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, SL
, VT
, WideLoad
,
1459 DAG
.getConstant(0, SL
, getVectorIdxTy(DAG
.getDataLayout()))),
1460 WideLoad
.getValue(1)},
1464 SDValue
AMDGPUTargetLowering::SplitVectorStore(SDValue Op
,
1465 SelectionDAG
&DAG
) const {
1466 StoreSDNode
*Store
= cast
<StoreSDNode
>(Op
);
1467 SDValue Val
= Store
->getValue();
1468 EVT VT
= Val
.getValueType();
1470 // If this is a 2 element vector, we really want to scalarize and not create
1471 // weird 1 element vectors.
1472 if (VT
.getVectorNumElements() == 2)
1473 return scalarizeVectorStore(Store
, DAG
);
1475 EVT MemVT
= Store
->getMemoryVT();
1476 SDValue Chain
= Store
->getChain();
1477 SDValue BasePtr
= Store
->getBasePtr();
1481 EVT LoMemVT
, HiMemVT
;
1484 std::tie(LoVT
, HiVT
) = getSplitDestVTs(VT
, DAG
);
1485 std::tie(LoMemVT
, HiMemVT
) = getSplitDestVTs(MemVT
, DAG
);
1486 std::tie(Lo
, Hi
) = splitVector(Val
, SL
, LoVT
, HiVT
, DAG
);
1488 SDValue HiPtr
= DAG
.getObjectPtrOffset(SL
, BasePtr
, LoMemVT
.getStoreSize());
1490 const MachinePointerInfo
&SrcValue
= Store
->getMemOperand()->getPointerInfo();
1491 unsigned BaseAlign
= Store
->getAlignment();
1492 unsigned Size
= LoMemVT
.getStoreSize();
1493 unsigned HiAlign
= MinAlign(BaseAlign
, Size
);
1496 DAG
.getTruncStore(Chain
, SL
, Lo
, BasePtr
, SrcValue
, LoMemVT
, BaseAlign
,
1497 Store
->getMemOperand()->getFlags());
1499 DAG
.getTruncStore(Chain
, SL
, Hi
, HiPtr
, SrcValue
.getWithOffset(Size
),
1500 HiMemVT
, HiAlign
, Store
->getMemOperand()->getFlags());
1502 return DAG
.getNode(ISD::TokenFactor
, SL
, MVT::Other
, LoStore
, HiStore
);
1505 // This is a shortcut for integer division because we have fast i32<->f32
1506 // conversions, and fast f32 reciprocal instructions. The fractional part of a
1507 // float is enough to accurately represent up to a 24-bit signed integer.
1508 SDValue
AMDGPUTargetLowering::LowerDIVREM24(SDValue Op
, SelectionDAG
&DAG
,
1511 EVT VT
= Op
.getValueType();
1512 SDValue LHS
= Op
.getOperand(0);
1513 SDValue RHS
= Op
.getOperand(1);
1514 MVT IntVT
= MVT::i32
;
1515 MVT FltVT
= MVT::f32
;
1517 unsigned LHSSignBits
= DAG
.ComputeNumSignBits(LHS
);
1518 if (LHSSignBits
< 9)
1521 unsigned RHSSignBits
= DAG
.ComputeNumSignBits(RHS
);
1522 if (RHSSignBits
< 9)
1525 unsigned BitSize
= VT
.getSizeInBits();
1526 unsigned SignBits
= std::min(LHSSignBits
, RHSSignBits
);
1527 unsigned DivBits
= BitSize
- SignBits
;
1531 ISD::NodeType ToFp
= Sign
? ISD::SINT_TO_FP
: ISD::UINT_TO_FP
;
1532 ISD::NodeType ToInt
= Sign
? ISD::FP_TO_SINT
: ISD::FP_TO_UINT
;
1534 SDValue jq
= DAG
.getConstant(1, DL
, IntVT
);
1537 // char|short jq = ia ^ ib;
1538 jq
= DAG
.getNode(ISD::XOR
, DL
, VT
, LHS
, RHS
);
1540 // jq = jq >> (bitsize - 2)
1541 jq
= DAG
.getNode(ISD::SRA
, DL
, VT
, jq
,
1542 DAG
.getConstant(BitSize
- 2, DL
, VT
));
1545 jq
= DAG
.getNode(ISD::OR
, DL
, VT
, jq
, DAG
.getConstant(1, DL
, VT
));
1548 // int ia = (int)LHS;
1551 // int ib, (int)RHS;
1554 // float fa = (float)ia;
1555 SDValue fa
= DAG
.getNode(ToFp
, DL
, FltVT
, ia
);
1557 // float fb = (float)ib;
1558 SDValue fb
= DAG
.getNode(ToFp
, DL
, FltVT
, ib
);
1560 SDValue fq
= DAG
.getNode(ISD::FMUL
, DL
, FltVT
,
1561 fa
, DAG
.getNode(AMDGPUISD::RCP
, DL
, FltVT
, fb
));
1564 fq
= DAG
.getNode(ISD::FTRUNC
, DL
, FltVT
, fq
);
1566 // float fqneg = -fq;
1567 SDValue fqneg
= DAG
.getNode(ISD::FNEG
, DL
, FltVT
, fq
);
1569 // float fr = mad(fqneg, fb, fa);
1570 unsigned OpCode
= Subtarget
->hasFP32Denormals() ?
1571 (unsigned)AMDGPUISD::FMAD_FTZ
:
1572 (unsigned)ISD::FMAD
;
1573 SDValue fr
= DAG
.getNode(OpCode
, DL
, FltVT
, fqneg
, fb
, fa
);
1575 // int iq = (int)fq;
1576 SDValue iq
= DAG
.getNode(ToInt
, DL
, IntVT
, fq
);
1579 fr
= DAG
.getNode(ISD::FABS
, DL
, FltVT
, fr
);
1582 fb
= DAG
.getNode(ISD::FABS
, DL
, FltVT
, fb
);
1584 EVT SetCCVT
= getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
);
1586 // int cv = fr >= fb;
1587 SDValue cv
= DAG
.getSetCC(DL
, SetCCVT
, fr
, fb
, ISD::SETOGE
);
1589 // jq = (cv ? jq : 0);
1590 jq
= DAG
.getNode(ISD::SELECT
, DL
, VT
, cv
, jq
, DAG
.getConstant(0, DL
, VT
));
1593 SDValue Div
= DAG
.getNode(ISD::ADD
, DL
, VT
, iq
, jq
);
1595 // Rem needs compensation, it's easier to recompute it
1596 SDValue Rem
= DAG
.getNode(ISD::MUL
, DL
, VT
, Div
, RHS
);
1597 Rem
= DAG
.getNode(ISD::SUB
, DL
, VT
, LHS
, Rem
);
1599 // Truncate to number of bits this divide really is.
1602 = DAG
.getValueType(EVT::getIntegerVT(*DAG
.getContext(), DivBits
));
1603 Div
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, DL
, VT
, Div
, InRegSize
);
1604 Rem
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, DL
, VT
, Rem
, InRegSize
);
1606 SDValue TruncMask
= DAG
.getConstant((UINT64_C(1) << DivBits
) - 1, DL
, VT
);
1607 Div
= DAG
.getNode(ISD::AND
, DL
, VT
, Div
, TruncMask
);
1608 Rem
= DAG
.getNode(ISD::AND
, DL
, VT
, Rem
, TruncMask
);
1611 return DAG
.getMergeValues({ Div
, Rem
}, DL
);
1614 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op
,
1616 SmallVectorImpl
<SDValue
> &Results
) const {
1618 EVT VT
= Op
.getValueType();
1620 assert(VT
== MVT::i64
&& "LowerUDIVREM64 expects an i64");
1622 EVT HalfVT
= VT
.getHalfSizedIntegerVT(*DAG
.getContext());
1624 SDValue One
= DAG
.getConstant(1, DL
, HalfVT
);
1625 SDValue Zero
= DAG
.getConstant(0, DL
, HalfVT
);
1628 SDValue LHS
= Op
.getOperand(0);
1629 SDValue LHS_Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, LHS
, Zero
);
1630 SDValue LHS_Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, LHS
, One
);
1632 SDValue RHS
= Op
.getOperand(1);
1633 SDValue RHS_Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, RHS
, Zero
);
1634 SDValue RHS_Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, RHS
, One
);
1636 if (DAG
.MaskedValueIsZero(RHS
, APInt::getHighBitsSet(64, 32)) &&
1637 DAG
.MaskedValueIsZero(LHS
, APInt::getHighBitsSet(64, 32))) {
1639 SDValue Res
= DAG
.getNode(ISD::UDIVREM
, DL
, DAG
.getVTList(HalfVT
, HalfVT
),
1642 SDValue DIV
= DAG
.getBuildVector(MVT::v2i32
, DL
, {Res
.getValue(0), Zero
});
1643 SDValue REM
= DAG
.getBuildVector(MVT::v2i32
, DL
, {Res
.getValue(1), Zero
});
1645 Results
.push_back(DAG
.getNode(ISD::BITCAST
, DL
, MVT::i64
, DIV
));
1646 Results
.push_back(DAG
.getNode(ISD::BITCAST
, DL
, MVT::i64
, REM
));
1650 if (isTypeLegal(MVT::i64
)) {
1651 // Compute denominator reciprocal.
1652 unsigned FMAD
= Subtarget
->hasFP32Denormals() ?
1653 (unsigned)AMDGPUISD::FMAD_FTZ
:
1654 (unsigned)ISD::FMAD
;
1656 SDValue Cvt_Lo
= DAG
.getNode(ISD::UINT_TO_FP
, DL
, MVT::f32
, RHS_Lo
);
1657 SDValue Cvt_Hi
= DAG
.getNode(ISD::UINT_TO_FP
, DL
, MVT::f32
, RHS_Hi
);
1658 SDValue Mad1
= DAG
.getNode(FMAD
, DL
, MVT::f32
, Cvt_Hi
,
1659 DAG
.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL
, MVT::f32
),
1661 SDValue Rcp
= DAG
.getNode(AMDGPUISD::RCP
, DL
, MVT::f32
, Mad1
);
1662 SDValue Mul1
= DAG
.getNode(ISD::FMUL
, DL
, MVT::f32
, Rcp
,
1663 DAG
.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL
, MVT::f32
));
1664 SDValue Mul2
= DAG
.getNode(ISD::FMUL
, DL
, MVT::f32
, Mul1
,
1665 DAG
.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL
, MVT::f32
));
1666 SDValue Trunc
= DAG
.getNode(ISD::FTRUNC
, DL
, MVT::f32
, Mul2
);
1667 SDValue Mad2
= DAG
.getNode(FMAD
, DL
, MVT::f32
, Trunc
,
1668 DAG
.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL
, MVT::f32
),
1670 SDValue Rcp_Lo
= DAG
.getNode(ISD::FP_TO_UINT
, DL
, HalfVT
, Mad2
);
1671 SDValue Rcp_Hi
= DAG
.getNode(ISD::FP_TO_UINT
, DL
, HalfVT
, Trunc
);
1672 SDValue Rcp64
= DAG
.getBitcast(VT
,
1673 DAG
.getBuildVector(MVT::v2i32
, DL
, {Rcp_Lo
, Rcp_Hi
}));
1675 SDValue Zero64
= DAG
.getConstant(0, DL
, VT
);
1676 SDValue One64
= DAG
.getConstant(1, DL
, VT
);
1677 SDValue Zero1
= DAG
.getConstant(0, DL
, MVT::i1
);
1678 SDVTList HalfCarryVT
= DAG
.getVTList(HalfVT
, MVT::i1
);
1680 SDValue Neg_RHS
= DAG
.getNode(ISD::SUB
, DL
, VT
, Zero64
, RHS
);
1681 SDValue Mullo1
= DAG
.getNode(ISD::MUL
, DL
, VT
, Neg_RHS
, Rcp64
);
1682 SDValue Mulhi1
= DAG
.getNode(ISD::MULHU
, DL
, VT
, Rcp64
, Mullo1
);
1683 SDValue Mulhi1_Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, Mulhi1
,
1685 SDValue Mulhi1_Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, Mulhi1
,
1688 SDValue Add1_Lo
= DAG
.getNode(ISD::ADDCARRY
, DL
, HalfCarryVT
, Rcp_Lo
,
1690 SDValue Add1_Hi
= DAG
.getNode(ISD::ADDCARRY
, DL
, HalfCarryVT
, Rcp_Hi
,
1691 Mulhi1_Hi
, Add1_Lo
.getValue(1));
1692 SDValue Add1_HiNc
= DAG
.getNode(ISD::ADD
, DL
, HalfVT
, Rcp_Hi
, Mulhi1_Hi
);
1693 SDValue Add1
= DAG
.getBitcast(VT
,
1694 DAG
.getBuildVector(MVT::v2i32
, DL
, {Add1_Lo
, Add1_Hi
}));
1696 SDValue Mullo2
= DAG
.getNode(ISD::MUL
, DL
, VT
, Neg_RHS
, Add1
);
1697 SDValue Mulhi2
= DAG
.getNode(ISD::MULHU
, DL
, VT
, Add1
, Mullo2
);
1698 SDValue Mulhi2_Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, Mulhi2
,
1700 SDValue Mulhi2_Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, Mulhi2
,
1703 SDValue Add2_Lo
= DAG
.getNode(ISD::ADDCARRY
, DL
, HalfCarryVT
, Add1_Lo
,
1705 SDValue Add2_HiC
= DAG
.getNode(ISD::ADDCARRY
, DL
, HalfCarryVT
, Add1_HiNc
,
1706 Mulhi2_Hi
, Add1_Lo
.getValue(1));
1707 SDValue Add2_Hi
= DAG
.getNode(ISD::ADDCARRY
, DL
, HalfCarryVT
, Add2_HiC
,
1708 Zero
, Add2_Lo
.getValue(1));
1709 SDValue Add2
= DAG
.getBitcast(VT
,
1710 DAG
.getBuildVector(MVT::v2i32
, DL
, {Add2_Lo
, Add2_Hi
}));
1711 SDValue Mulhi3
= DAG
.getNode(ISD::MULHU
, DL
, VT
, LHS
, Add2
);
1713 SDValue Mul3
= DAG
.getNode(ISD::MUL
, DL
, VT
, RHS
, Mulhi3
);
1715 SDValue Mul3_Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, Mul3
, Zero
);
1716 SDValue Mul3_Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, Mul3
, One
);
1717 SDValue Sub1_Lo
= DAG
.getNode(ISD::SUBCARRY
, DL
, HalfCarryVT
, LHS_Lo
,
1719 SDValue Sub1_Hi
= DAG
.getNode(ISD::SUBCARRY
, DL
, HalfCarryVT
, LHS_Hi
,
1720 Mul3_Hi
, Sub1_Lo
.getValue(1));
1721 SDValue Sub1_Mi
= DAG
.getNode(ISD::SUB
, DL
, HalfVT
, LHS_Hi
, Mul3_Hi
);
1722 SDValue Sub1
= DAG
.getBitcast(VT
,
1723 DAG
.getBuildVector(MVT::v2i32
, DL
, {Sub1_Lo
, Sub1_Hi
}));
1725 SDValue MinusOne
= DAG
.getConstant(0xffffffffu
, DL
, HalfVT
);
1726 SDValue C1
= DAG
.getSelectCC(DL
, Sub1_Hi
, RHS_Hi
, MinusOne
, Zero
,
1728 SDValue C2
= DAG
.getSelectCC(DL
, Sub1_Lo
, RHS_Lo
, MinusOne
, Zero
,
1730 SDValue C3
= DAG
.getSelectCC(DL
, Sub1_Hi
, RHS_Hi
, C2
, C1
, ISD::SETEQ
);
1732 // TODO: Here and below portions of the code can be enclosed into if/endif.
1733 // Currently control flow is unconditional and we have 4 selects after
1734 // potential endif to substitute PHIs.
1737 SDValue Sub2_Lo
= DAG
.getNode(ISD::SUBCARRY
, DL
, HalfCarryVT
, Sub1_Lo
,
1739 SDValue Sub2_Mi
= DAG
.getNode(ISD::SUBCARRY
, DL
, HalfCarryVT
, Sub1_Mi
,
1740 RHS_Hi
, Sub1_Lo
.getValue(1));
1741 SDValue Sub2_Hi
= DAG
.getNode(ISD::SUBCARRY
, DL
, HalfCarryVT
, Sub2_Mi
,
1742 Zero
, Sub2_Lo
.getValue(1));
1743 SDValue Sub2
= DAG
.getBitcast(VT
,
1744 DAG
.getBuildVector(MVT::v2i32
, DL
, {Sub2_Lo
, Sub2_Hi
}));
1746 SDValue Add3
= DAG
.getNode(ISD::ADD
, DL
, VT
, Mulhi3
, One64
);
1748 SDValue C4
= DAG
.getSelectCC(DL
, Sub2_Hi
, RHS_Hi
, MinusOne
, Zero
,
1750 SDValue C5
= DAG
.getSelectCC(DL
, Sub2_Lo
, RHS_Lo
, MinusOne
, Zero
,
1752 SDValue C6
= DAG
.getSelectCC(DL
, Sub2_Hi
, RHS_Hi
, C5
, C4
, ISD::SETEQ
);
1755 SDValue Add4
= DAG
.getNode(ISD::ADD
, DL
, VT
, Add3
, One64
);
1757 SDValue Sub3_Lo
= DAG
.getNode(ISD::SUBCARRY
, DL
, HalfCarryVT
, Sub2_Lo
,
1759 SDValue Sub3_Mi
= DAG
.getNode(ISD::SUBCARRY
, DL
, HalfCarryVT
, Sub2_Mi
,
1760 RHS_Hi
, Sub2_Lo
.getValue(1));
1761 SDValue Sub3_Hi
= DAG
.getNode(ISD::SUBCARRY
, DL
, HalfCarryVT
, Sub3_Mi
,
1762 Zero
, Sub3_Lo
.getValue(1));
1763 SDValue Sub3
= DAG
.getBitcast(VT
,
1764 DAG
.getBuildVector(MVT::v2i32
, DL
, {Sub3_Lo
, Sub3_Hi
}));
1769 SDValue Sel1
= DAG
.getSelectCC(DL
, C6
, Zero
, Add4
, Add3
, ISD::SETNE
);
1770 SDValue Div
= DAG
.getSelectCC(DL
, C3
, Zero
, Sel1
, Mulhi3
, ISD::SETNE
);
1772 SDValue Sel2
= DAG
.getSelectCC(DL
, C6
, Zero
, Sub3
, Sub2
, ISD::SETNE
);
1773 SDValue Rem
= DAG
.getSelectCC(DL
, C3
, Zero
, Sel2
, Sub1
, ISD::SETNE
);
1775 Results
.push_back(Div
);
1776 Results
.push_back(Rem
);
1782 // Get Speculative values
1783 SDValue DIV_Part
= DAG
.getNode(ISD::UDIV
, DL
, HalfVT
, LHS_Hi
, RHS_Lo
);
1784 SDValue REM_Part
= DAG
.getNode(ISD::UREM
, DL
, HalfVT
, LHS_Hi
, RHS_Lo
);
1786 SDValue REM_Lo
= DAG
.getSelectCC(DL
, RHS_Hi
, Zero
, REM_Part
, LHS_Hi
, ISD::SETEQ
);
1787 SDValue REM
= DAG
.getBuildVector(MVT::v2i32
, DL
, {REM_Lo
, Zero
});
1788 REM
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::i64
, REM
);
1790 SDValue DIV_Hi
= DAG
.getSelectCC(DL
, RHS_Hi
, Zero
, DIV_Part
, Zero
, ISD::SETEQ
);
1791 SDValue DIV_Lo
= Zero
;
1793 const unsigned halfBitWidth
= HalfVT
.getSizeInBits();
1795 for (unsigned i
= 0; i
< halfBitWidth
; ++i
) {
1796 const unsigned bitPos
= halfBitWidth
- i
- 1;
1797 SDValue POS
= DAG
.getConstant(bitPos
, DL
, HalfVT
);
1798 // Get value of high bit
1799 SDValue HBit
= DAG
.getNode(ISD::SRL
, DL
, HalfVT
, LHS_Lo
, POS
);
1800 HBit
= DAG
.getNode(ISD::AND
, DL
, HalfVT
, HBit
, One
);
1801 HBit
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, HBit
);
1804 REM
= DAG
.getNode(ISD::SHL
, DL
, VT
, REM
, DAG
.getConstant(1, DL
, VT
));
1806 REM
= DAG
.getNode(ISD::OR
, DL
, VT
, REM
, HBit
);
1808 SDValue BIT
= DAG
.getConstant(1ULL << bitPos
, DL
, HalfVT
);
1809 SDValue realBIT
= DAG
.getSelectCC(DL
, REM
, RHS
, BIT
, Zero
, ISD::SETUGE
);
1811 DIV_Lo
= DAG
.getNode(ISD::OR
, DL
, HalfVT
, DIV_Lo
, realBIT
);
1814 SDValue REM_sub
= DAG
.getNode(ISD::SUB
, DL
, VT
, REM
, RHS
);
1815 REM
= DAG
.getSelectCC(DL
, REM
, RHS
, REM_sub
, REM
, ISD::SETUGE
);
1818 SDValue DIV
= DAG
.getBuildVector(MVT::v2i32
, DL
, {DIV_Lo
, DIV_Hi
});
1819 DIV
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::i64
, DIV
);
1820 Results
.push_back(DIV
);
1821 Results
.push_back(REM
);
1824 SDValue
AMDGPUTargetLowering::LowerUDIVREM(SDValue Op
,
1825 SelectionDAG
&DAG
) const {
1827 EVT VT
= Op
.getValueType();
1829 if (VT
== MVT::i64
) {
1830 SmallVector
<SDValue
, 2> Results
;
1831 LowerUDIVREM64(Op
, DAG
, Results
);
1832 return DAG
.getMergeValues(Results
, DL
);
1835 if (VT
== MVT::i32
) {
1836 if (SDValue Res
= LowerDIVREM24(Op
, DAG
, false))
1840 SDValue Num
= Op
.getOperand(0);
1841 SDValue Den
= Op
.getOperand(1);
1843 // RCP = URECIP(Den) = 2^32 / Den + e
1844 // e is rounding error.
1845 SDValue RCP
= DAG
.getNode(AMDGPUISD::URECIP
, DL
, VT
, Den
);
1847 // RCP_LO = mul(RCP, Den) */
1848 SDValue RCP_LO
= DAG
.getNode(ISD::MUL
, DL
, VT
, RCP
, Den
);
1850 // RCP_HI = mulhu (RCP, Den) */
1851 SDValue RCP_HI
= DAG
.getNode(ISD::MULHU
, DL
, VT
, RCP
, Den
);
1853 // NEG_RCP_LO = -RCP_LO
1854 SDValue NEG_RCP_LO
= DAG
.getNode(ISD::SUB
, DL
, VT
, DAG
.getConstant(0, DL
, VT
),
1857 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO)
1858 SDValue ABS_RCP_LO
= DAG
.getSelectCC(DL
, RCP_HI
, DAG
.getConstant(0, DL
, VT
),
1861 // Calculate the rounding error from the URECIP instruction
1862 // E = mulhu(ABS_RCP_LO, RCP)
1863 SDValue E
= DAG
.getNode(ISD::MULHU
, DL
, VT
, ABS_RCP_LO
, RCP
);
1865 // RCP_A_E = RCP + E
1866 SDValue RCP_A_E
= DAG
.getNode(ISD::ADD
, DL
, VT
, RCP
, E
);
1868 // RCP_S_E = RCP - E
1869 SDValue RCP_S_E
= DAG
.getNode(ISD::SUB
, DL
, VT
, RCP
, E
);
1871 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E)
1872 SDValue Tmp0
= DAG
.getSelectCC(DL
, RCP_HI
, DAG
.getConstant(0, DL
, VT
),
1875 // Quotient = mulhu(Tmp0, Num)
1876 SDValue Quotient
= DAG
.getNode(ISD::MULHU
, DL
, VT
, Tmp0
, Num
);
1878 // Num_S_Remainder = Quotient * Den
1879 SDValue Num_S_Remainder
= DAG
.getNode(ISD::MUL
, DL
, VT
, Quotient
, Den
);
1881 // Remainder = Num - Num_S_Remainder
1882 SDValue Remainder
= DAG
.getNode(ISD::SUB
, DL
, VT
, Num
, Num_S_Remainder
);
1884 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0)
1885 SDValue Remainder_GE_Den
= DAG
.getSelectCC(DL
, Remainder
, Den
,
1886 DAG
.getConstant(-1, DL
, VT
),
1887 DAG
.getConstant(0, DL
, VT
),
1889 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0)
1890 SDValue Remainder_GE_Zero
= DAG
.getSelectCC(DL
, Num
,
1892 DAG
.getConstant(-1, DL
, VT
),
1893 DAG
.getConstant(0, DL
, VT
),
1895 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero
1896 SDValue Tmp1
= DAG
.getNode(ISD::AND
, DL
, VT
, Remainder_GE_Den
,
1899 // Calculate Division result:
1901 // Quotient_A_One = Quotient + 1
1902 SDValue Quotient_A_One
= DAG
.getNode(ISD::ADD
, DL
, VT
, Quotient
,
1903 DAG
.getConstant(1, DL
, VT
));
1905 // Quotient_S_One = Quotient - 1
1906 SDValue Quotient_S_One
= DAG
.getNode(ISD::SUB
, DL
, VT
, Quotient
,
1907 DAG
.getConstant(1, DL
, VT
));
1909 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One)
1910 SDValue Div
= DAG
.getSelectCC(DL
, Tmp1
, DAG
.getConstant(0, DL
, VT
),
1911 Quotient
, Quotient_A_One
, ISD::SETEQ
);
1913 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div)
1914 Div
= DAG
.getSelectCC(DL
, Remainder_GE_Zero
, DAG
.getConstant(0, DL
, VT
),
1915 Quotient_S_One
, Div
, ISD::SETEQ
);
1917 // Calculate Rem result:
1919 // Remainder_S_Den = Remainder - Den
1920 SDValue Remainder_S_Den
= DAG
.getNode(ISD::SUB
, DL
, VT
, Remainder
, Den
);
1922 // Remainder_A_Den = Remainder + Den
1923 SDValue Remainder_A_Den
= DAG
.getNode(ISD::ADD
, DL
, VT
, Remainder
, Den
);
1925 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den)
1926 SDValue Rem
= DAG
.getSelectCC(DL
, Tmp1
, DAG
.getConstant(0, DL
, VT
),
1927 Remainder
, Remainder_S_Den
, ISD::SETEQ
);
1929 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem)
1930 Rem
= DAG
.getSelectCC(DL
, Remainder_GE_Zero
, DAG
.getConstant(0, DL
, VT
),
1931 Remainder_A_Den
, Rem
, ISD::SETEQ
);
1936 return DAG
.getMergeValues(Ops
, DL
);
1939 SDValue
AMDGPUTargetLowering::LowerSDIVREM(SDValue Op
,
1940 SelectionDAG
&DAG
) const {
1942 EVT VT
= Op
.getValueType();
1944 SDValue LHS
= Op
.getOperand(0);
1945 SDValue RHS
= Op
.getOperand(1);
1947 SDValue Zero
= DAG
.getConstant(0, DL
, VT
);
1948 SDValue NegOne
= DAG
.getConstant(-1, DL
, VT
);
1950 if (VT
== MVT::i32
) {
1951 if (SDValue Res
= LowerDIVREM24(Op
, DAG
, true))
1955 if (VT
== MVT::i64
&&
1956 DAG
.ComputeNumSignBits(LHS
) > 32 &&
1957 DAG
.ComputeNumSignBits(RHS
) > 32) {
1958 EVT HalfVT
= VT
.getHalfSizedIntegerVT(*DAG
.getContext());
1961 SDValue LHS_Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, LHS
, Zero
);
1962 SDValue RHS_Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, RHS
, Zero
);
1963 SDValue DIVREM
= DAG
.getNode(ISD::SDIVREM
, DL
, DAG
.getVTList(HalfVT
, HalfVT
),
1966 DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VT
, DIVREM
.getValue(0)),
1967 DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VT
, DIVREM
.getValue(1))
1969 return DAG
.getMergeValues(Res
, DL
);
1972 SDValue LHSign
= DAG
.getSelectCC(DL
, LHS
, Zero
, NegOne
, Zero
, ISD::SETLT
);
1973 SDValue RHSign
= DAG
.getSelectCC(DL
, RHS
, Zero
, NegOne
, Zero
, ISD::SETLT
);
1974 SDValue DSign
= DAG
.getNode(ISD::XOR
, DL
, VT
, LHSign
, RHSign
);
1975 SDValue RSign
= LHSign
; // Remainder sign is the same as LHS
1977 LHS
= DAG
.getNode(ISD::ADD
, DL
, VT
, LHS
, LHSign
);
1978 RHS
= DAG
.getNode(ISD::ADD
, DL
, VT
, RHS
, RHSign
);
1980 LHS
= DAG
.getNode(ISD::XOR
, DL
, VT
, LHS
, LHSign
);
1981 RHS
= DAG
.getNode(ISD::XOR
, DL
, VT
, RHS
, RHSign
);
1983 SDValue Div
= DAG
.getNode(ISD::UDIVREM
, DL
, DAG
.getVTList(VT
, VT
), LHS
, RHS
);
1984 SDValue Rem
= Div
.getValue(1);
1986 Div
= DAG
.getNode(ISD::XOR
, DL
, VT
, Div
, DSign
);
1987 Rem
= DAG
.getNode(ISD::XOR
, DL
, VT
, Rem
, RSign
);
1989 Div
= DAG
.getNode(ISD::SUB
, DL
, VT
, Div
, DSign
);
1990 Rem
= DAG
.getNode(ISD::SUB
, DL
, VT
, Rem
, RSign
);
1996 return DAG
.getMergeValues(Res
, DL
);
1999 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y))
2000 SDValue
AMDGPUTargetLowering::LowerFREM(SDValue Op
, SelectionDAG
&DAG
) const {
2002 EVT VT
= Op
.getValueType();
2003 SDValue X
= Op
.getOperand(0);
2004 SDValue Y
= Op
.getOperand(1);
2006 // TODO: Should this propagate fast-math-flags?
2008 SDValue Div
= DAG
.getNode(ISD::FDIV
, SL
, VT
, X
, Y
);
2009 SDValue Floor
= DAG
.getNode(ISD::FTRUNC
, SL
, VT
, Div
);
2010 SDValue Mul
= DAG
.getNode(ISD::FMUL
, SL
, VT
, Floor
, Y
);
2012 return DAG
.getNode(ISD::FSUB
, SL
, VT
, X
, Mul
);
2015 SDValue
AMDGPUTargetLowering::LowerFCEIL(SDValue Op
, SelectionDAG
&DAG
) const {
2017 SDValue Src
= Op
.getOperand(0);
2019 // result = trunc(src)
2020 // if (src > 0.0 && src != result)
2023 SDValue Trunc
= DAG
.getNode(ISD::FTRUNC
, SL
, MVT::f64
, Src
);
2025 const SDValue Zero
= DAG
.getConstantFP(0.0, SL
, MVT::f64
);
2026 const SDValue One
= DAG
.getConstantFP(1.0, SL
, MVT::f64
);
2029 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), MVT::f64
);
2031 SDValue Lt0
= DAG
.getSetCC(SL
, SetCCVT
, Src
, Zero
, ISD::SETOGT
);
2032 SDValue NeTrunc
= DAG
.getSetCC(SL
, SetCCVT
, Src
, Trunc
, ISD::SETONE
);
2033 SDValue And
= DAG
.getNode(ISD::AND
, SL
, SetCCVT
, Lt0
, NeTrunc
);
2035 SDValue Add
= DAG
.getNode(ISD::SELECT
, SL
, MVT::f64
, And
, One
, Zero
);
2036 // TODO: Should this propagate fast-math-flags?
2037 return DAG
.getNode(ISD::FADD
, SL
, MVT::f64
, Trunc
, Add
);
2040 static SDValue
extractF64Exponent(SDValue Hi
, const SDLoc
&SL
,
2041 SelectionDAG
&DAG
) {
2042 const unsigned FractBits
= 52;
2043 const unsigned ExpBits
= 11;
2045 SDValue ExpPart
= DAG
.getNode(AMDGPUISD::BFE_U32
, SL
, MVT::i32
,
2047 DAG
.getConstant(FractBits
- 32, SL
, MVT::i32
),
2048 DAG
.getConstant(ExpBits
, SL
, MVT::i32
));
2049 SDValue Exp
= DAG
.getNode(ISD::SUB
, SL
, MVT::i32
, ExpPart
,
2050 DAG
.getConstant(1023, SL
, MVT::i32
));
2055 SDValue
AMDGPUTargetLowering::LowerFTRUNC(SDValue Op
, SelectionDAG
&DAG
) const {
2057 SDValue Src
= Op
.getOperand(0);
2059 assert(Op
.getValueType() == MVT::f64
);
2061 const SDValue Zero
= DAG
.getConstant(0, SL
, MVT::i32
);
2062 const SDValue One
= DAG
.getConstant(1, SL
, MVT::i32
);
2064 SDValue VecSrc
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::v2i32
, Src
);
2066 // Extract the upper half, since this is where we will find the sign and
2068 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, VecSrc
, One
);
2070 SDValue Exp
= extractF64Exponent(Hi
, SL
, DAG
);
2072 const unsigned FractBits
= 52;
2074 // Extract the sign bit.
2075 const SDValue SignBitMask
= DAG
.getConstant(UINT32_C(1) << 31, SL
, MVT::i32
);
2076 SDValue SignBit
= DAG
.getNode(ISD::AND
, SL
, MVT::i32
, Hi
, SignBitMask
);
2078 // Extend back to 64-bits.
2079 SDValue SignBit64
= DAG
.getBuildVector(MVT::v2i32
, SL
, {Zero
, SignBit
});
2080 SignBit64
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::i64
, SignBit64
);
2082 SDValue BcInt
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::i64
, Src
);
2083 const SDValue FractMask
2084 = DAG
.getConstant((UINT64_C(1) << FractBits
) - 1, SL
, MVT::i64
);
2086 SDValue Shr
= DAG
.getNode(ISD::SRA
, SL
, MVT::i64
, FractMask
, Exp
);
2087 SDValue Not
= DAG
.getNOT(SL
, Shr
, MVT::i64
);
2088 SDValue Tmp0
= DAG
.getNode(ISD::AND
, SL
, MVT::i64
, BcInt
, Not
);
2091 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), MVT::i32
);
2093 const SDValue FiftyOne
= DAG
.getConstant(FractBits
- 1, SL
, MVT::i32
);
2095 SDValue ExpLt0
= DAG
.getSetCC(SL
, SetCCVT
, Exp
, Zero
, ISD::SETLT
);
2096 SDValue ExpGt51
= DAG
.getSetCC(SL
, SetCCVT
, Exp
, FiftyOne
, ISD::SETGT
);
2098 SDValue Tmp1
= DAG
.getNode(ISD::SELECT
, SL
, MVT::i64
, ExpLt0
, SignBit64
, Tmp0
);
2099 SDValue Tmp2
= DAG
.getNode(ISD::SELECT
, SL
, MVT::i64
, ExpGt51
, BcInt
, Tmp1
);
2101 return DAG
.getNode(ISD::BITCAST
, SL
, MVT::f64
, Tmp2
);
2104 SDValue
AMDGPUTargetLowering::LowerFRINT(SDValue Op
, SelectionDAG
&DAG
) const {
2106 SDValue Src
= Op
.getOperand(0);
2108 assert(Op
.getValueType() == MVT::f64
);
2110 APFloat
C1Val(APFloat::IEEEdouble(), "0x1.0p+52");
2111 SDValue C1
= DAG
.getConstantFP(C1Val
, SL
, MVT::f64
);
2112 SDValue CopySign
= DAG
.getNode(ISD::FCOPYSIGN
, SL
, MVT::f64
, C1
, Src
);
2114 // TODO: Should this propagate fast-math-flags?
2116 SDValue Tmp1
= DAG
.getNode(ISD::FADD
, SL
, MVT::f64
, Src
, CopySign
);
2117 SDValue Tmp2
= DAG
.getNode(ISD::FSUB
, SL
, MVT::f64
, Tmp1
, CopySign
);
2119 SDValue Fabs
= DAG
.getNode(ISD::FABS
, SL
, MVT::f64
, Src
);
2121 APFloat
C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51");
2122 SDValue C2
= DAG
.getConstantFP(C2Val
, SL
, MVT::f64
);
2125 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), MVT::f64
);
2126 SDValue Cond
= DAG
.getSetCC(SL
, SetCCVT
, Fabs
, C2
, ISD::SETOGT
);
2128 return DAG
.getSelect(SL
, MVT::f64
, Cond
, Src
, Tmp2
);
2131 SDValue
AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op
, SelectionDAG
&DAG
) const {
2132 // FNEARBYINT and FRINT are the same, except in their handling of FP
2133 // exceptions. Those aren't really meaningful for us, and OpenCL only has
2134 // rint, so just treat them as equivalent.
2135 return DAG
.getNode(ISD::FRINT
, SDLoc(Op
), Op
.getValueType(), Op
.getOperand(0));
2138 // XXX - May require not supporting f32 denormals?
2140 // Don't handle v2f16. The extra instructions to scalarize and repack around the
2141 // compare and vselect end up producing worse code than scalarizing the whole
2143 SDValue
AMDGPUTargetLowering::LowerFROUND32_16(SDValue Op
, SelectionDAG
&DAG
) const {
2145 SDValue X
= Op
.getOperand(0);
2146 EVT VT
= Op
.getValueType();
2148 SDValue T
= DAG
.getNode(ISD::FTRUNC
, SL
, VT
, X
);
2150 // TODO: Should this propagate fast-math-flags?
2152 SDValue Diff
= DAG
.getNode(ISD::FSUB
, SL
, VT
, X
, T
);
2154 SDValue AbsDiff
= DAG
.getNode(ISD::FABS
, SL
, VT
, Diff
);
2156 const SDValue Zero
= DAG
.getConstantFP(0.0, SL
, VT
);
2157 const SDValue One
= DAG
.getConstantFP(1.0, SL
, VT
);
2158 const SDValue Half
= DAG
.getConstantFP(0.5, SL
, VT
);
2160 SDValue SignOne
= DAG
.getNode(ISD::FCOPYSIGN
, SL
, VT
, One
, X
);
2163 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
);
2165 SDValue Cmp
= DAG
.getSetCC(SL
, SetCCVT
, AbsDiff
, Half
, ISD::SETOGE
);
2167 SDValue Sel
= DAG
.getNode(ISD::SELECT
, SL
, VT
, Cmp
, SignOne
, Zero
);
2169 return DAG
.getNode(ISD::FADD
, SL
, VT
, T
, Sel
);
2172 SDValue
AMDGPUTargetLowering::LowerFROUND64(SDValue Op
, SelectionDAG
&DAG
) const {
2174 SDValue X
= Op
.getOperand(0);
2176 SDValue L
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::i64
, X
);
2178 const SDValue Zero
= DAG
.getConstant(0, SL
, MVT::i32
);
2179 const SDValue One
= DAG
.getConstant(1, SL
, MVT::i32
);
2180 const SDValue NegOne
= DAG
.getConstant(-1, SL
, MVT::i32
);
2181 const SDValue FiftyOne
= DAG
.getConstant(51, SL
, MVT::i32
);
2183 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), MVT::i32
);
2185 SDValue BC
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::v2i32
, X
);
2187 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, BC
, One
);
2189 SDValue Exp
= extractF64Exponent(Hi
, SL
, DAG
);
2191 const SDValue Mask
= DAG
.getConstant(INT64_C(0x000fffffffffffff), SL
,
2194 SDValue M
= DAG
.getNode(ISD::SRA
, SL
, MVT::i64
, Mask
, Exp
);
2195 SDValue D
= DAG
.getNode(ISD::SRA
, SL
, MVT::i64
,
2196 DAG
.getConstant(INT64_C(0x0008000000000000), SL
,
2200 SDValue Tmp0
= DAG
.getNode(ISD::AND
, SL
, MVT::i64
, L
, M
);
2201 SDValue Tmp1
= DAG
.getSetCC(SL
, SetCCVT
,
2202 DAG
.getConstant(0, SL
, MVT::i64
), Tmp0
,
2205 SDValue Tmp2
= DAG
.getNode(ISD::SELECT
, SL
, MVT::i64
, Tmp1
,
2206 D
, DAG
.getConstant(0, SL
, MVT::i64
));
2207 SDValue K
= DAG
.getNode(ISD::ADD
, SL
, MVT::i64
, L
, Tmp2
);
2209 K
= DAG
.getNode(ISD::AND
, SL
, MVT::i64
, K
, DAG
.getNOT(SL
, M
, MVT::i64
));
2210 K
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::f64
, K
);
2212 SDValue ExpLt0
= DAG
.getSetCC(SL
, SetCCVT
, Exp
, Zero
, ISD::SETLT
);
2213 SDValue ExpGt51
= DAG
.getSetCC(SL
, SetCCVT
, Exp
, FiftyOne
, ISD::SETGT
);
2214 SDValue ExpEqNegOne
= DAG
.getSetCC(SL
, SetCCVT
, NegOne
, Exp
, ISD::SETEQ
);
2216 SDValue Mag
= DAG
.getNode(ISD::SELECT
, SL
, MVT::f64
,
2218 DAG
.getConstantFP(1.0, SL
, MVT::f64
),
2219 DAG
.getConstantFP(0.0, SL
, MVT::f64
));
2221 SDValue S
= DAG
.getNode(ISD::FCOPYSIGN
, SL
, MVT::f64
, Mag
, X
);
2223 K
= DAG
.getNode(ISD::SELECT
, SL
, MVT::f64
, ExpLt0
, S
, K
);
2224 K
= DAG
.getNode(ISD::SELECT
, SL
, MVT::f64
, ExpGt51
, X
, K
);
2229 SDValue
AMDGPUTargetLowering::LowerFROUND(SDValue Op
, SelectionDAG
&DAG
) const {
2230 EVT VT
= Op
.getValueType();
2232 if (VT
== MVT::f32
|| VT
== MVT::f16
)
2233 return LowerFROUND32_16(Op
, DAG
);
2236 return LowerFROUND64(Op
, DAG
);
2238 llvm_unreachable("unhandled type");
2241 SDValue
AMDGPUTargetLowering::LowerFFLOOR(SDValue Op
, SelectionDAG
&DAG
) const {
2243 SDValue Src
= Op
.getOperand(0);
2245 // result = trunc(src);
2246 // if (src < 0.0 && src != result)
2249 SDValue Trunc
= DAG
.getNode(ISD::FTRUNC
, SL
, MVT::f64
, Src
);
2251 const SDValue Zero
= DAG
.getConstantFP(0.0, SL
, MVT::f64
);
2252 const SDValue NegOne
= DAG
.getConstantFP(-1.0, SL
, MVT::f64
);
2255 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), MVT::f64
);
2257 SDValue Lt0
= DAG
.getSetCC(SL
, SetCCVT
, Src
, Zero
, ISD::SETOLT
);
2258 SDValue NeTrunc
= DAG
.getSetCC(SL
, SetCCVT
, Src
, Trunc
, ISD::SETONE
);
2259 SDValue And
= DAG
.getNode(ISD::AND
, SL
, SetCCVT
, Lt0
, NeTrunc
);
2261 SDValue Add
= DAG
.getNode(ISD::SELECT
, SL
, MVT::f64
, And
, NegOne
, Zero
);
2262 // TODO: Should this propagate fast-math-flags?
2263 return DAG
.getNode(ISD::FADD
, SL
, MVT::f64
, Trunc
, Add
);
2266 SDValue
AMDGPUTargetLowering::LowerFLOG(SDValue Op
, SelectionDAG
&DAG
,
2267 double Log2BaseInverted
) const {
2268 EVT VT
= Op
.getValueType();
2271 SDValue Operand
= Op
.getOperand(0);
2272 SDValue Log2Operand
= DAG
.getNode(ISD::FLOG2
, SL
, VT
, Operand
);
2273 SDValue Log2BaseInvertedOperand
= DAG
.getConstantFP(Log2BaseInverted
, SL
, VT
);
2275 return DAG
.getNode(ISD::FMUL
, SL
, VT
, Log2Operand
, Log2BaseInvertedOperand
);
2278 // Return M_LOG2E of appropriate type
2279 static SDValue
getLog2EVal(SelectionDAG
&DAG
, const SDLoc
&SL
, EVT VT
) {
2280 switch (VT
.getScalarType().getSimpleVT().SimpleTy
) {
2282 return DAG
.getConstantFP(1.44269504088896340735992468100189214f
, SL
, VT
);
2284 return DAG
.getConstantFP(
2285 APFloat(APFloat::IEEEhalf(), "1.44269504088896340735992468100189214"),
2288 return DAG
.getConstantFP(
2289 APFloat(APFloat::IEEEdouble(), "0x1.71547652b82fep+0"), SL
, VT
);
2291 llvm_unreachable("unsupported fp type");
2295 // exp2(M_LOG2E_F * f);
2296 SDValue
AMDGPUTargetLowering::lowerFEXP(SDValue Op
, SelectionDAG
&DAG
) const {
2297 EVT VT
= Op
.getValueType();
2299 SDValue Src
= Op
.getOperand(0);
2301 const SDValue K
= getLog2EVal(DAG
, SL
, VT
);
2302 SDValue Mul
= DAG
.getNode(ISD::FMUL
, SL
, VT
, Src
, K
, Op
->getFlags());
2303 return DAG
.getNode(ISD::FEXP2
, SL
, VT
, Mul
, Op
->getFlags());
2306 static bool isCtlzOpc(unsigned Opc
) {
2307 return Opc
== ISD::CTLZ
|| Opc
== ISD::CTLZ_ZERO_UNDEF
;
2310 static bool isCttzOpc(unsigned Opc
) {
2311 return Opc
== ISD::CTTZ
|| Opc
== ISD::CTTZ_ZERO_UNDEF
;
2314 SDValue
AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op
, SelectionDAG
&DAG
) const {
2316 SDValue Src
= Op
.getOperand(0);
2317 bool ZeroUndef
= Op
.getOpcode() == ISD::CTTZ_ZERO_UNDEF
||
2318 Op
.getOpcode() == ISD::CTLZ_ZERO_UNDEF
;
2320 unsigned ISDOpc
, NewOpc
;
2321 if (isCtlzOpc(Op
.getOpcode())) {
2322 ISDOpc
= ISD::CTLZ_ZERO_UNDEF
;
2323 NewOpc
= AMDGPUISD::FFBH_U32
;
2324 } else if (isCttzOpc(Op
.getOpcode())) {
2325 ISDOpc
= ISD::CTTZ_ZERO_UNDEF
;
2326 NewOpc
= AMDGPUISD::FFBL_B32
;
2328 llvm_unreachable("Unexpected OPCode!!!");
2331 if (ZeroUndef
&& Src
.getValueType() == MVT::i32
)
2332 return DAG
.getNode(NewOpc
, SL
, MVT::i32
, Src
);
2334 SDValue Vec
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::v2i32
, Src
);
2336 const SDValue Zero
= DAG
.getConstant(0, SL
, MVT::i32
);
2337 const SDValue One
= DAG
.getConstant(1, SL
, MVT::i32
);
2339 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, Vec
, Zero
);
2340 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, Vec
, One
);
2342 EVT SetCCVT
= getSetCCResultType(DAG
.getDataLayout(),
2343 *DAG
.getContext(), MVT::i32
);
2345 SDValue HiOrLo
= isCtlzOpc(Op
.getOpcode()) ? Hi
: Lo
;
2346 SDValue Hi0orLo0
= DAG
.getSetCC(SL
, SetCCVT
, HiOrLo
, Zero
, ISD::SETEQ
);
2348 SDValue OprLo
= DAG
.getNode(ISDOpc
, SL
, MVT::i32
, Lo
);
2349 SDValue OprHi
= DAG
.getNode(ISDOpc
, SL
, MVT::i32
, Hi
);
2351 const SDValue Bits32
= DAG
.getConstant(32, SL
, MVT::i32
);
2352 SDValue Add
, NewOpr
;
2353 if (isCtlzOpc(Op
.getOpcode())) {
2354 Add
= DAG
.getNode(ISD::ADD
, SL
, MVT::i32
, OprLo
, Bits32
);
2355 // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x))
2356 NewOpr
= DAG
.getNode(ISD::SELECT
, SL
, MVT::i32
, Hi0orLo0
, Add
, OprHi
);
2358 Add
= DAG
.getNode(ISD::ADD
, SL
, MVT::i32
, OprHi
, Bits32
);
2359 // cttz(x) = lo_32(x) == 0 ? cttz(hi_32(x)) + 32 : cttz(lo_32(x))
2360 NewOpr
= DAG
.getNode(ISD::SELECT
, SL
, MVT::i32
, Hi0orLo0
, Add
, OprLo
);
2364 // Test if the full 64-bit input is zero.
2366 // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32,
2367 // which we probably don't want.
2368 SDValue LoOrHi
= isCtlzOpc(Op
.getOpcode()) ? Lo
: Hi
;
2369 SDValue Lo0OrHi0
= DAG
.getSetCC(SL
, SetCCVT
, LoOrHi
, Zero
, ISD::SETEQ
);
2370 SDValue SrcIsZero
= DAG
.getNode(ISD::AND
, SL
, SetCCVT
, Lo0OrHi0
, Hi0orLo0
);
2372 // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction
2373 // with the same cycles, otherwise it is slower.
2374 // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src,
2375 // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ);
2377 const SDValue Bits32
= DAG
.getConstant(64, SL
, MVT::i32
);
2379 // The instruction returns -1 for 0 input, but the defined intrinsic
2380 // behavior is to return the number of bits.
2381 NewOpr
= DAG
.getNode(ISD::SELECT
, SL
, MVT::i32
,
2382 SrcIsZero
, Bits32
, NewOpr
);
2385 return DAG
.getNode(ISD::ZERO_EXTEND
, SL
, MVT::i64
, NewOpr
);
2388 SDValue
AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op
, SelectionDAG
&DAG
,
2389 bool Signed
) const {
2393 // uint lz = clz(u);
2394 // uint e = (u != 0) ? 127U + 63U - lz : 0;
2395 // u = (u << lz) & 0x7fffffffffffffffUL;
2396 // ulong t = u & 0xffffffffffUL;
2397 // uint v = (e << 23) | (uint)(u >> 40);
2398 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
2399 // return as_float(v + r);
2404 // long s = l >> 63;
2405 // float r = cul2f((l + s) ^ s);
2406 // return s ? -r : r;
2410 SDValue Src
= Op
.getOperand(0);
2415 const SDValue SignBit
= DAG
.getConstant(63, SL
, MVT::i64
);
2416 S
= DAG
.getNode(ISD::SRA
, SL
, MVT::i64
, L
, SignBit
);
2418 SDValue LPlusS
= DAG
.getNode(ISD::ADD
, SL
, MVT::i64
, L
, S
);
2419 L
= DAG
.getNode(ISD::XOR
, SL
, MVT::i64
, LPlusS
, S
);
2422 EVT SetCCVT
= getSetCCResultType(DAG
.getDataLayout(),
2423 *DAG
.getContext(), MVT::f32
);
2426 SDValue ZeroI32
= DAG
.getConstant(0, SL
, MVT::i32
);
2427 SDValue ZeroI64
= DAG
.getConstant(0, SL
, MVT::i64
);
2428 SDValue LZ
= DAG
.getNode(ISD::CTLZ_ZERO_UNDEF
, SL
, MVT::i64
, L
);
2429 LZ
= DAG
.getNode(ISD::TRUNCATE
, SL
, MVT::i32
, LZ
);
2431 SDValue K
= DAG
.getConstant(127U + 63U, SL
, MVT::i32
);
2432 SDValue E
= DAG
.getSelect(SL
, MVT::i32
,
2433 DAG
.getSetCC(SL
, SetCCVT
, L
, ZeroI64
, ISD::SETNE
),
2434 DAG
.getNode(ISD::SUB
, SL
, MVT::i32
, K
, LZ
),
2437 SDValue U
= DAG
.getNode(ISD::AND
, SL
, MVT::i64
,
2438 DAG
.getNode(ISD::SHL
, SL
, MVT::i64
, L
, LZ
),
2439 DAG
.getConstant((-1ULL) >> 1, SL
, MVT::i64
));
2441 SDValue T
= DAG
.getNode(ISD::AND
, SL
, MVT::i64
, U
,
2442 DAG
.getConstant(0xffffffffffULL
, SL
, MVT::i64
));
2444 SDValue UShl
= DAG
.getNode(ISD::SRL
, SL
, MVT::i64
,
2445 U
, DAG
.getConstant(40, SL
, MVT::i64
));
2447 SDValue V
= DAG
.getNode(ISD::OR
, SL
, MVT::i32
,
2448 DAG
.getNode(ISD::SHL
, SL
, MVT::i32
, E
, DAG
.getConstant(23, SL
, MVT::i32
)),
2449 DAG
.getNode(ISD::TRUNCATE
, SL
, MVT::i32
, UShl
));
2451 SDValue C
= DAG
.getConstant(0x8000000000ULL
, SL
, MVT::i64
);
2452 SDValue RCmp
= DAG
.getSetCC(SL
, SetCCVT
, T
, C
, ISD::SETUGT
);
2453 SDValue TCmp
= DAG
.getSetCC(SL
, SetCCVT
, T
, C
, ISD::SETEQ
);
2455 SDValue One
= DAG
.getConstant(1, SL
, MVT::i32
);
2457 SDValue VTrunc1
= DAG
.getNode(ISD::AND
, SL
, MVT::i32
, V
, One
);
2459 SDValue R
= DAG
.getSelect(SL
, MVT::i32
,
2462 DAG
.getSelect(SL
, MVT::i32
, TCmp
, VTrunc1
, ZeroI32
));
2463 R
= DAG
.getNode(ISD::ADD
, SL
, MVT::i32
, V
, R
);
2464 R
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::f32
, R
);
2469 SDValue RNeg
= DAG
.getNode(ISD::FNEG
, SL
, MVT::f32
, R
);
2470 return DAG
.getSelect(SL
, MVT::f32
, DAG
.getSExtOrTrunc(S
, SL
, SetCCVT
), RNeg
, R
);
2473 SDValue
AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op
, SelectionDAG
&DAG
,
2474 bool Signed
) const {
2476 SDValue Src
= Op
.getOperand(0);
2478 SDValue BC
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::v2i32
, Src
);
2480 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, BC
,
2481 DAG
.getConstant(0, SL
, MVT::i32
));
2482 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, BC
,
2483 DAG
.getConstant(1, SL
, MVT::i32
));
2485 SDValue CvtHi
= DAG
.getNode(Signed
? ISD::SINT_TO_FP
: ISD::UINT_TO_FP
,
2488 SDValue CvtLo
= DAG
.getNode(ISD::UINT_TO_FP
, SL
, MVT::f64
, Lo
);
2490 SDValue LdExp
= DAG
.getNode(AMDGPUISD::LDEXP
, SL
, MVT::f64
, CvtHi
,
2491 DAG
.getConstant(32, SL
, MVT::i32
));
2492 // TODO: Should this propagate fast-math-flags?
2493 return DAG
.getNode(ISD::FADD
, SL
, MVT::f64
, LdExp
, CvtLo
);
2496 SDValue
AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op
,
2497 SelectionDAG
&DAG
) const {
2498 assert(Op
.getOperand(0).getValueType() == MVT::i64
&&
2499 "operation should be legal");
2501 // TODO: Factor out code common with LowerSINT_TO_FP.
2503 EVT DestVT
= Op
.getValueType();
2504 if (Subtarget
->has16BitInsts() && DestVT
== MVT::f16
) {
2506 SDValue Src
= Op
.getOperand(0);
2508 SDValue IntToFp32
= DAG
.getNode(Op
.getOpcode(), DL
, MVT::f32
, Src
);
2509 SDValue FPRoundFlag
= DAG
.getIntPtrConstant(0, SDLoc(Op
));
2511 DAG
.getNode(ISD::FP_ROUND
, DL
, MVT::f16
, IntToFp32
, FPRoundFlag
);
2516 if (DestVT
== MVT::f32
)
2517 return LowerINT_TO_FP32(Op
, DAG
, false);
2519 assert(DestVT
== MVT::f64
);
2520 return LowerINT_TO_FP64(Op
, DAG
, false);
2523 SDValue
AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op
,
2524 SelectionDAG
&DAG
) const {
2525 assert(Op
.getOperand(0).getValueType() == MVT::i64
&&
2526 "operation should be legal");
2528 // TODO: Factor out code common with LowerUINT_TO_FP.
2530 EVT DestVT
= Op
.getValueType();
2531 if (Subtarget
->has16BitInsts() && DestVT
== MVT::f16
) {
2533 SDValue Src
= Op
.getOperand(0);
2535 SDValue IntToFp32
= DAG
.getNode(Op
.getOpcode(), DL
, MVT::f32
, Src
);
2536 SDValue FPRoundFlag
= DAG
.getIntPtrConstant(0, SDLoc(Op
));
2538 DAG
.getNode(ISD::FP_ROUND
, DL
, MVT::f16
, IntToFp32
, FPRoundFlag
);
2543 if (DestVT
== MVT::f32
)
2544 return LowerINT_TO_FP32(Op
, DAG
, true);
2546 assert(DestVT
== MVT::f64
);
2547 return LowerINT_TO_FP64(Op
, DAG
, true);
2550 SDValue
AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op
, SelectionDAG
&DAG
,
2551 bool Signed
) const {
2554 SDValue Src
= Op
.getOperand(0);
2556 SDValue Trunc
= DAG
.getNode(ISD::FTRUNC
, SL
, MVT::f64
, Src
);
2558 SDValue K0
= DAG
.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL
,
2560 SDValue K1
= DAG
.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL
,
2562 // TODO: Should this propagate fast-math-flags?
2563 SDValue Mul
= DAG
.getNode(ISD::FMUL
, SL
, MVT::f64
, Trunc
, K0
);
2565 SDValue FloorMul
= DAG
.getNode(ISD::FFLOOR
, SL
, MVT::f64
, Mul
);
2568 SDValue Fma
= DAG
.getNode(ISD::FMA
, SL
, MVT::f64
, FloorMul
, K1
, Trunc
);
2570 SDValue Hi
= DAG
.getNode(Signed
? ISD::FP_TO_SINT
: ISD::FP_TO_UINT
, SL
,
2571 MVT::i32
, FloorMul
);
2572 SDValue Lo
= DAG
.getNode(ISD::FP_TO_UINT
, SL
, MVT::i32
, Fma
);
2574 SDValue Result
= DAG
.getBuildVector(MVT::v2i32
, SL
, {Lo
, Hi
});
2576 return DAG
.getNode(ISD::BITCAST
, SL
, MVT::i64
, Result
);
2579 SDValue
AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op
, SelectionDAG
&DAG
) const {
2581 SDValue N0
= Op
.getOperand(0);
2583 // Convert to target node to get known bits
2584 if (N0
.getValueType() == MVT::f32
)
2585 return DAG
.getNode(AMDGPUISD::FP_TO_FP16
, DL
, Op
.getValueType(), N0
);
2587 if (getTargetMachine().Options
.UnsafeFPMath
) {
2588 // There is a generic expand for FP_TO_FP16 with unsafe fast math.
2592 assert(N0
.getSimpleValueType() == MVT::f64
);
2594 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
2595 const unsigned ExpMask
= 0x7ff;
2596 const unsigned ExpBiasf64
= 1023;
2597 const unsigned ExpBiasf16
= 15;
2598 SDValue Zero
= DAG
.getConstant(0, DL
, MVT::i32
);
2599 SDValue One
= DAG
.getConstant(1, DL
, MVT::i32
);
2600 SDValue U
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::i64
, N0
);
2601 SDValue UH
= DAG
.getNode(ISD::SRL
, DL
, MVT::i64
, U
,
2602 DAG
.getConstant(32, DL
, MVT::i64
));
2603 UH
= DAG
.getZExtOrTrunc(UH
, DL
, MVT::i32
);
2604 U
= DAG
.getZExtOrTrunc(U
, DL
, MVT::i32
);
2605 SDValue E
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, UH
,
2606 DAG
.getConstant(20, DL
, MVT::i64
));
2607 E
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, E
,
2608 DAG
.getConstant(ExpMask
, DL
, MVT::i32
));
2609 // Subtract the fp64 exponent bias (1023) to get the real exponent and
2610 // add the f16 bias (15) to get the biased exponent for the f16 format.
2611 E
= DAG
.getNode(ISD::ADD
, DL
, MVT::i32
, E
,
2612 DAG
.getConstant(-ExpBiasf64
+ ExpBiasf16
, DL
, MVT::i32
));
2614 SDValue M
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, UH
,
2615 DAG
.getConstant(8, DL
, MVT::i32
));
2616 M
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, M
,
2617 DAG
.getConstant(0xffe, DL
, MVT::i32
));
2619 SDValue MaskedSig
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, UH
,
2620 DAG
.getConstant(0x1ff, DL
, MVT::i32
));
2621 MaskedSig
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
, MaskedSig
, U
);
2623 SDValue Lo40Set
= DAG
.getSelectCC(DL
, MaskedSig
, Zero
, Zero
, One
, ISD::SETEQ
);
2624 M
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
, M
, Lo40Set
);
2626 // (M != 0 ? 0x0200 : 0) | 0x7c00;
2627 SDValue I
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
,
2628 DAG
.getSelectCC(DL
, M
, Zero
, DAG
.getConstant(0x0200, DL
, MVT::i32
),
2629 Zero
, ISD::SETNE
), DAG
.getConstant(0x7c00, DL
, MVT::i32
));
2631 // N = M | (E << 12);
2632 SDValue N
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
, M
,
2633 DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, E
,
2634 DAG
.getConstant(12, DL
, MVT::i32
)));
2636 // B = clamp(1-E, 0, 13);
2637 SDValue OneSubExp
= DAG
.getNode(ISD::SUB
, DL
, MVT::i32
,
2639 SDValue B
= DAG
.getNode(ISD::SMAX
, DL
, MVT::i32
, OneSubExp
, Zero
);
2640 B
= DAG
.getNode(ISD::SMIN
, DL
, MVT::i32
, B
,
2641 DAG
.getConstant(13, DL
, MVT::i32
));
2643 SDValue SigSetHigh
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
, M
,
2644 DAG
.getConstant(0x1000, DL
, MVT::i32
));
2646 SDValue D
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, SigSetHigh
, B
);
2647 SDValue D0
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, D
, B
);
2648 SDValue D1
= DAG
.getSelectCC(DL
, D0
, SigSetHigh
, One
, Zero
, ISD::SETNE
);
2649 D
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
, D
, D1
);
2651 SDValue V
= DAG
.getSelectCC(DL
, E
, One
, D
, N
, ISD::SETLT
);
2652 SDValue VLow3
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, V
,
2653 DAG
.getConstant(0x7, DL
, MVT::i32
));
2654 V
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, V
,
2655 DAG
.getConstant(2, DL
, MVT::i32
));
2656 SDValue V0
= DAG
.getSelectCC(DL
, VLow3
, DAG
.getConstant(3, DL
, MVT::i32
),
2657 One
, Zero
, ISD::SETEQ
);
2658 SDValue V1
= DAG
.getSelectCC(DL
, VLow3
, DAG
.getConstant(5, DL
, MVT::i32
),
2659 One
, Zero
, ISD::SETGT
);
2660 V1
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
, V0
, V1
);
2661 V
= DAG
.getNode(ISD::ADD
, DL
, MVT::i32
, V
, V1
);
2663 V
= DAG
.getSelectCC(DL
, E
, DAG
.getConstant(30, DL
, MVT::i32
),
2664 DAG
.getConstant(0x7c00, DL
, MVT::i32
), V
, ISD::SETGT
);
2665 V
= DAG
.getSelectCC(DL
, E
, DAG
.getConstant(1039, DL
, MVT::i32
),
2668 // Extract the sign bit.
2669 SDValue Sign
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, UH
,
2670 DAG
.getConstant(16, DL
, MVT::i32
));
2671 Sign
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, Sign
,
2672 DAG
.getConstant(0x8000, DL
, MVT::i32
));
2674 V
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
, Sign
, V
);
2675 return DAG
.getZExtOrTrunc(V
, DL
, Op
.getValueType());
2678 SDValue
AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op
,
2679 SelectionDAG
&DAG
) const {
2680 SDValue Src
= Op
.getOperand(0);
2682 // TODO: Factor out code common with LowerFP_TO_UINT.
2684 EVT SrcVT
= Src
.getValueType();
2685 if (Subtarget
->has16BitInsts() && SrcVT
== MVT::f16
) {
2688 SDValue FPExtend
= DAG
.getNode(ISD::FP_EXTEND
, DL
, MVT::f32
, Src
);
2690 DAG
.getNode(Op
.getOpcode(), DL
, MVT::i64
, FPExtend
);
2695 if (Op
.getValueType() == MVT::i64
&& Src
.getValueType() == MVT::f64
)
2696 return LowerFP64_TO_INT(Op
, DAG
, true);
2701 SDValue
AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op
,
2702 SelectionDAG
&DAG
) const {
2703 SDValue Src
= Op
.getOperand(0);
2705 // TODO: Factor out code common with LowerFP_TO_SINT.
2707 EVT SrcVT
= Src
.getValueType();
2708 if (Subtarget
->has16BitInsts() && SrcVT
== MVT::f16
) {
2711 SDValue FPExtend
= DAG
.getNode(ISD::FP_EXTEND
, DL
, MVT::f32
, Src
);
2713 DAG
.getNode(Op
.getOpcode(), DL
, MVT::i64
, FPExtend
);
2718 if (Op
.getValueType() == MVT::i64
&& Src
.getValueType() == MVT::f64
)
2719 return LowerFP64_TO_INT(Op
, DAG
, false);
2724 SDValue
AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op
,
2725 SelectionDAG
&DAG
) const {
2726 EVT ExtraVT
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT();
2727 MVT VT
= Op
.getSimpleValueType();
2728 MVT ScalarVT
= VT
.getScalarType();
2730 assert(VT
.isVector());
2732 SDValue Src
= Op
.getOperand(0);
2735 // TODO: Don't scalarize on Evergreen?
2736 unsigned NElts
= VT
.getVectorNumElements();
2737 SmallVector
<SDValue
, 8> Args
;
2738 DAG
.ExtractVectorElements(Src
, Args
, 0, NElts
);
2740 SDValue VTOp
= DAG
.getValueType(ExtraVT
.getScalarType());
2741 for (unsigned I
= 0; I
< NElts
; ++I
)
2742 Args
[I
] = DAG
.getNode(ISD::SIGN_EXTEND_INREG
, DL
, ScalarVT
, Args
[I
], VTOp
);
2744 return DAG
.getBuildVector(VT
, DL
, Args
);
2747 //===----------------------------------------------------------------------===//
2748 // Custom DAG optimizations
2749 //===----------------------------------------------------------------------===//
2751 static bool isU24(SDValue Op
, SelectionDAG
&DAG
) {
2752 return AMDGPUTargetLowering::numBitsUnsigned(Op
, DAG
) <= 24;
2755 static bool isI24(SDValue Op
, SelectionDAG
&DAG
) {
2756 EVT VT
= Op
.getValueType();
2757 return VT
.getSizeInBits() >= 24 && // Types less than 24-bit should be treated
2758 // as unsigned 24-bit values.
2759 AMDGPUTargetLowering::numBitsSigned(Op
, DAG
) < 24;
2762 static SDValue
simplifyI24(SDNode
*Node24
,
2763 TargetLowering::DAGCombinerInfo
&DCI
) {
2764 SelectionDAG
&DAG
= DCI
.DAG
;
2765 SDValue LHS
= Node24
->getOperand(0);
2766 SDValue RHS
= Node24
->getOperand(1);
2768 APInt Demanded
= APInt::getLowBitsSet(LHS
.getValueSizeInBits(), 24);
2770 // First try to simplify using GetDemandedBits which allows the operands to
2771 // have other uses, but will only perform simplifications that involve
2772 // bypassing some nodes for this user.
2773 SDValue DemandedLHS
= DAG
.GetDemandedBits(LHS
, Demanded
);
2774 SDValue DemandedRHS
= DAG
.GetDemandedBits(RHS
, Demanded
);
2775 if (DemandedLHS
|| DemandedRHS
)
2776 return DAG
.getNode(Node24
->getOpcode(), SDLoc(Node24
), Node24
->getVTList(),
2777 DemandedLHS
? DemandedLHS
: LHS
,
2778 DemandedRHS
? DemandedRHS
: RHS
);
2780 // Now try SimplifyDemandedBits which can simplify the nodes used by our
2781 // operands if this node is the only user.
2782 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
2783 if (TLI
.SimplifyDemandedBits(LHS
, Demanded
, DCI
))
2784 return SDValue(Node24
, 0);
2785 if (TLI
.SimplifyDemandedBits(RHS
, Demanded
, DCI
))
2786 return SDValue(Node24
, 0);
2791 template <typename IntTy
>
2792 static SDValue
constantFoldBFE(SelectionDAG
&DAG
, IntTy Src0
, uint32_t Offset
,
2793 uint32_t Width
, const SDLoc
&DL
) {
2794 if (Width
+ Offset
< 32) {
2795 uint32_t Shl
= static_cast<uint32_t>(Src0
) << (32 - Offset
- Width
);
2796 IntTy Result
= static_cast<IntTy
>(Shl
) >> (32 - Width
);
2797 return DAG
.getConstant(Result
, DL
, MVT::i32
);
2800 return DAG
.getConstant(Src0
>> Offset
, DL
, MVT::i32
);
2803 static bool hasVolatileUser(SDNode
*Val
) {
2804 for (SDNode
*U
: Val
->uses()) {
2805 if (MemSDNode
*M
= dyn_cast
<MemSDNode
>(U
)) {
2806 if (M
->isVolatile())
2814 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT
) const {
2815 // i32 vectors are the canonical memory type.
2816 if (VT
.getScalarType() == MVT::i32
|| isTypeLegal(VT
))
2819 if (!VT
.isByteSized())
2822 unsigned Size
= VT
.getStoreSize();
2824 if ((Size
== 1 || Size
== 2 || Size
== 4) && !VT
.isVector())
2827 if (Size
== 3 || (Size
> 4 && (Size
% 4 != 0)))
2833 // Find a load or store from corresponding pattern root.
2834 // Roots may be build_vector, bitconvert or their combinations.
2835 static MemSDNode
* findMemSDNode(SDNode
*N
) {
2836 N
= AMDGPUTargetLowering::stripBitcast(SDValue(N
,0)).getNode();
2837 if (MemSDNode
*MN
= dyn_cast
<MemSDNode
>(N
))
2839 assert(isa
<BuildVectorSDNode
>(N
));
2840 for (SDValue V
: N
->op_values())
2842 dyn_cast
<MemSDNode
>(AMDGPUTargetLowering::stripBitcast(V
)))
2844 llvm_unreachable("cannot find MemSDNode in the pattern!");
2847 bool AMDGPUTargetLowering::SelectFlatOffset(bool IsSigned
,
2853 SDValue
&SLC
) const {
2854 const GCNSubtarget
&ST
=
2855 DAG
.getMachineFunction().getSubtarget
<GCNSubtarget
>();
2856 int64_t OffsetVal
= 0;
2858 if (ST
.hasFlatInstOffsets() &&
2859 (!ST
.hasFlatSegmentOffsetBug() ||
2860 findMemSDNode(N
)->getAddressSpace() != AMDGPUAS::FLAT_ADDRESS
) &&
2861 DAG
.isBaseWithConstantOffset(Addr
)) {
2862 SDValue N0
= Addr
.getOperand(0);
2863 SDValue N1
= Addr
.getOperand(1);
2864 int64_t COffsetVal
= cast
<ConstantSDNode
>(N1
)->getSExtValue();
2866 const SIInstrInfo
*TII
= ST
.getInstrInfo();
2867 if (TII
->isLegalFLATOffset(COffsetVal
, findMemSDNode(N
)->getAddressSpace(),
2870 OffsetVal
= COffsetVal
;
2875 Offset
= DAG
.getTargetConstant(OffsetVal
, SDLoc(), MVT::i16
);
2876 SLC
= DAG
.getTargetConstant(0, SDLoc(), MVT::i1
);
2881 // Replace load of an illegal type with a store of a bitcast to a friendlier
2883 SDValue
AMDGPUTargetLowering::performLoadCombine(SDNode
*N
,
2884 DAGCombinerInfo
&DCI
) const {
2885 if (!DCI
.isBeforeLegalize())
2888 LoadSDNode
*LN
= cast
<LoadSDNode
>(N
);
2889 if (LN
->isVolatile() || !ISD::isNormalLoad(LN
) || hasVolatileUser(LN
))
2893 SelectionDAG
&DAG
= DCI
.DAG
;
2894 EVT VT
= LN
->getMemoryVT();
2896 unsigned Size
= VT
.getStoreSize();
2897 unsigned Align
= LN
->getAlignment();
2898 if (Align
< Size
&& isTypeLegal(VT
)) {
2900 unsigned AS
= LN
->getAddressSpace();
2902 // Expand unaligned loads earlier than legalization. Due to visitation order
2903 // problems during legalization, the emitted instructions to pack and unpack
2904 // the bytes again are not eliminated in the case of an unaligned copy.
2905 if (!allowsMisalignedMemoryAccesses(
2906 VT
, AS
, Align
, LN
->getMemOperand()->getFlags(), &IsFast
)) {
2908 return scalarizeVectorLoad(LN
, DAG
);
2911 std::tie(Ops
[0], Ops
[1]) = expandUnalignedLoad(LN
, DAG
);
2912 return DAG
.getMergeValues(Ops
, SDLoc(N
));
2919 if (!shouldCombineMemoryType(VT
))
2922 EVT NewVT
= getEquivalentMemType(*DAG
.getContext(), VT
);
2925 = DAG
.getLoad(NewVT
, SL
, LN
->getChain(),
2926 LN
->getBasePtr(), LN
->getMemOperand());
2928 SDValue BC
= DAG
.getNode(ISD::BITCAST
, SL
, VT
, NewLoad
);
2929 DCI
.CombineTo(N
, BC
, NewLoad
.getValue(1));
2930 return SDValue(N
, 0);
2933 // Replace store of an illegal type with a store of a bitcast to a friendlier
2935 SDValue
AMDGPUTargetLowering::performStoreCombine(SDNode
*N
,
2936 DAGCombinerInfo
&DCI
) const {
2937 if (!DCI
.isBeforeLegalize())
2940 StoreSDNode
*SN
= cast
<StoreSDNode
>(N
);
2941 if (SN
->isVolatile() || !ISD::isNormalStore(SN
))
2944 EVT VT
= SN
->getMemoryVT();
2945 unsigned Size
= VT
.getStoreSize();
2948 SelectionDAG
&DAG
= DCI
.DAG
;
2949 unsigned Align
= SN
->getAlignment();
2950 if (Align
< Size
&& isTypeLegal(VT
)) {
2952 unsigned AS
= SN
->getAddressSpace();
2954 // Expand unaligned stores earlier than legalization. Due to visitation
2955 // order problems during legalization, the emitted instructions to pack and
2956 // unpack the bytes again are not eliminated in the case of an unaligned
2958 if (!allowsMisalignedMemoryAccesses(
2959 VT
, AS
, Align
, SN
->getMemOperand()->getFlags(), &IsFast
)) {
2961 return scalarizeVectorStore(SN
, DAG
);
2963 return expandUnalignedStore(SN
, DAG
);
2970 if (!shouldCombineMemoryType(VT
))
2973 EVT NewVT
= getEquivalentMemType(*DAG
.getContext(), VT
);
2974 SDValue Val
= SN
->getValue();
2976 //DCI.AddToWorklist(Val.getNode());
2978 bool OtherUses
= !Val
.hasOneUse();
2979 SDValue CastVal
= DAG
.getNode(ISD::BITCAST
, SL
, NewVT
, Val
);
2981 SDValue CastBack
= DAG
.getNode(ISD::BITCAST
, SL
, VT
, CastVal
);
2982 DAG
.ReplaceAllUsesOfValueWith(Val
, CastBack
);
2985 return DAG
.getStore(SN
->getChain(), SL
, CastVal
,
2986 SN
->getBasePtr(), SN
->getMemOperand());
2989 // FIXME: This should go in generic DAG combiner with an isTruncateFree check,
2990 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU
2992 SDValue
AMDGPUTargetLowering::performAssertSZExtCombine(SDNode
*N
,
2993 DAGCombinerInfo
&DCI
) const {
2994 SelectionDAG
&DAG
= DCI
.DAG
;
2995 SDValue N0
= N
->getOperand(0);
2997 // (vt2 (assertzext (truncate vt0:x), vt1)) ->
2998 // (vt2 (truncate (assertzext vt0:x, vt1)))
2999 if (N0
.getOpcode() == ISD::TRUNCATE
) {
3000 SDValue N1
= N
->getOperand(1);
3001 EVT ExtVT
= cast
<VTSDNode
>(N1
)->getVT();
3004 SDValue Src
= N0
.getOperand(0);
3005 EVT SrcVT
= Src
.getValueType();
3006 if (SrcVT
.bitsGE(ExtVT
)) {
3007 SDValue NewInReg
= DAG
.getNode(N
->getOpcode(), SL
, SrcVT
, Src
, N1
);
3008 return DAG
.getNode(ISD::TRUNCATE
, SL
, N
->getValueType(0), NewInReg
);
3014 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the
3015 /// binary operation \p Opc to it with the corresponding constant operands.
3016 SDValue
AMDGPUTargetLowering::splitBinaryBitConstantOpImpl(
3017 DAGCombinerInfo
&DCI
, const SDLoc
&SL
,
3018 unsigned Opc
, SDValue LHS
,
3019 uint32_t ValLo
, uint32_t ValHi
) const {
3020 SelectionDAG
&DAG
= DCI
.DAG
;
3022 std::tie(Lo
, Hi
) = split64BitValue(LHS
, DAG
);
3024 SDValue LoRHS
= DAG
.getConstant(ValLo
, SL
, MVT::i32
);
3025 SDValue HiRHS
= DAG
.getConstant(ValHi
, SL
, MVT::i32
);
3027 SDValue LoAnd
= DAG
.getNode(Opc
, SL
, MVT::i32
, Lo
, LoRHS
);
3028 SDValue HiAnd
= DAG
.getNode(Opc
, SL
, MVT::i32
, Hi
, HiRHS
);
3030 // Re-visit the ands. It's possible we eliminated one of them and it could
3031 // simplify the vector.
3032 DCI
.AddToWorklist(Lo
.getNode());
3033 DCI
.AddToWorklist(Hi
.getNode());
3035 SDValue Vec
= DAG
.getBuildVector(MVT::v2i32
, SL
, {LoAnd
, HiAnd
});
3036 return DAG
.getNode(ISD::BITCAST
, SL
, MVT::i64
, Vec
);
3039 SDValue
AMDGPUTargetLowering::performShlCombine(SDNode
*N
,
3040 DAGCombinerInfo
&DCI
) const {
3041 EVT VT
= N
->getValueType(0);
3043 ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
3047 SDValue LHS
= N
->getOperand(0);
3048 unsigned RHSVal
= RHS
->getZExtValue();
3053 SelectionDAG
&DAG
= DCI
.DAG
;
3055 switch (LHS
->getOpcode()) {
3058 case ISD::ZERO_EXTEND
:
3059 case ISD::SIGN_EXTEND
:
3060 case ISD::ANY_EXTEND
: {
3061 SDValue X
= LHS
->getOperand(0);
3063 if (VT
== MVT::i32
&& RHSVal
== 16 && X
.getValueType() == MVT::i16
&&
3064 isOperationLegal(ISD::BUILD_VECTOR
, MVT::v2i16
)) {
3065 // Prefer build_vector as the canonical form if packed types are legal.
3066 // (shl ([asz]ext i16:x), 16 -> build_vector 0, x
3067 SDValue Vec
= DAG
.getBuildVector(MVT::v2i16
, SL
,
3068 { DAG
.getConstant(0, SL
, MVT::i16
), LHS
->getOperand(0) });
3069 return DAG
.getNode(ISD::BITCAST
, SL
, MVT::i32
, Vec
);
3072 // shl (ext x) => zext (shl x), if shift does not overflow int
3075 KnownBits Known
= DAG
.computeKnownBits(X
);
3076 unsigned LZ
= Known
.countMinLeadingZeros();
3079 EVT XVT
= X
.getValueType();
3080 SDValue Shl
= DAG
.getNode(ISD::SHL
, SL
, XVT
, X
, SDValue(RHS
, 0));
3081 return DAG
.getZExtOrTrunc(Shl
, SL
, VT
);
3088 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32))
3090 // On some subtargets, 64-bit shift is a quarter rate instruction. In the
3091 // common case, splitting this into a move and a 32-bit shift is faster and
3092 // the same code size.
3096 SDValue ShiftAmt
= DAG
.getConstant(RHSVal
- 32, SL
, MVT::i32
);
3098 SDValue Lo
= DAG
.getNode(ISD::TRUNCATE
, SL
, MVT::i32
, LHS
);
3099 SDValue NewShift
= DAG
.getNode(ISD::SHL
, SL
, MVT::i32
, Lo
, ShiftAmt
);
3101 const SDValue Zero
= DAG
.getConstant(0, SL
, MVT::i32
);
3103 SDValue Vec
= DAG
.getBuildVector(MVT::v2i32
, SL
, {Zero
, NewShift
});
3104 return DAG
.getNode(ISD::BITCAST
, SL
, MVT::i64
, Vec
);
3107 SDValue
AMDGPUTargetLowering::performSraCombine(SDNode
*N
,
3108 DAGCombinerInfo
&DCI
) const {
3109 if (N
->getValueType(0) != MVT::i64
)
3112 const ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
3116 SelectionDAG
&DAG
= DCI
.DAG
;
3118 unsigned RHSVal
= RHS
->getZExtValue();
3120 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31)
3122 SDValue Hi
= getHiHalf64(N
->getOperand(0), DAG
);
3123 SDValue NewShift
= DAG
.getNode(ISD::SRA
, SL
, MVT::i32
, Hi
,
3124 DAG
.getConstant(31, SL
, MVT::i32
));
3126 SDValue BuildVec
= DAG
.getBuildVector(MVT::v2i32
, SL
, {Hi
, NewShift
});
3127 return DAG
.getNode(ISD::BITCAST
, SL
, MVT::i64
, BuildVec
);
3130 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31)
3132 SDValue Hi
= getHiHalf64(N
->getOperand(0), DAG
);
3133 SDValue NewShift
= DAG
.getNode(ISD::SRA
, SL
, MVT::i32
, Hi
,
3134 DAG
.getConstant(31, SL
, MVT::i32
));
3135 SDValue BuildVec
= DAG
.getBuildVector(MVT::v2i32
, SL
, {NewShift
, NewShift
});
3136 return DAG
.getNode(ISD::BITCAST
, SL
, MVT::i64
, BuildVec
);
3142 SDValue
AMDGPUTargetLowering::performSrlCombine(SDNode
*N
,
3143 DAGCombinerInfo
&DCI
) const {
3144 auto *RHS
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
3148 EVT VT
= N
->getValueType(0);
3149 SDValue LHS
= N
->getOperand(0);
3150 unsigned ShiftAmt
= RHS
->getZExtValue();
3151 SelectionDAG
&DAG
= DCI
.DAG
;
3154 // fold (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1)
3155 // this improves the ability to match BFE patterns in isel.
3156 if (LHS
.getOpcode() == ISD::AND
) {
3157 if (auto *Mask
= dyn_cast
<ConstantSDNode
>(LHS
.getOperand(1))) {
3158 if (Mask
->getAPIntValue().isShiftedMask() &&
3159 Mask
->getAPIntValue().countTrailingZeros() == ShiftAmt
) {
3162 DAG
.getNode(ISD::SRL
, SL
, VT
, LHS
.getOperand(0), N
->getOperand(1)),
3163 DAG
.getNode(ISD::SRL
, SL
, VT
, LHS
.getOperand(1), N
->getOperand(1)));
3174 // srl i64:x, C for C >= 32
3176 // build_pair (srl hi_32(x), C - 32), 0
3177 SDValue One
= DAG
.getConstant(1, SL
, MVT::i32
);
3178 SDValue Zero
= DAG
.getConstant(0, SL
, MVT::i32
);
3180 SDValue VecOp
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::v2i32
, LHS
);
3181 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, VecOp
, One
);
3183 SDValue NewConst
= DAG
.getConstant(ShiftAmt
- 32, SL
, MVT::i32
);
3184 SDValue NewShift
= DAG
.getNode(ISD::SRL
, SL
, MVT::i32
, Hi
, NewConst
);
3186 SDValue BuildPair
= DAG
.getBuildVector(MVT::v2i32
, SL
, {NewShift
, Zero
});
3188 return DAG
.getNode(ISD::BITCAST
, SL
, MVT::i64
, BuildPair
);
3191 SDValue
AMDGPUTargetLowering::performTruncateCombine(
3192 SDNode
*N
, DAGCombinerInfo
&DCI
) const {
3194 SelectionDAG
&DAG
= DCI
.DAG
;
3195 EVT VT
= N
->getValueType(0);
3196 SDValue Src
= N
->getOperand(0);
3198 // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x)
3199 if (Src
.getOpcode() == ISD::BITCAST
&& !VT
.isVector()) {
3200 SDValue Vec
= Src
.getOperand(0);
3201 if (Vec
.getOpcode() == ISD::BUILD_VECTOR
) {
3202 SDValue Elt0
= Vec
.getOperand(0);
3203 EVT EltVT
= Elt0
.getValueType();
3204 if (VT
.getSizeInBits() <= EltVT
.getSizeInBits()) {
3205 if (EltVT
.isFloatingPoint()) {
3206 Elt0
= DAG
.getNode(ISD::BITCAST
, SL
,
3207 EltVT
.changeTypeToInteger(), Elt0
);
3210 return DAG
.getNode(ISD::TRUNCATE
, SL
, VT
, Elt0
);
3215 // Equivalent of above for accessing the high element of a vector as an
3216 // integer operation.
3217 // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y)
3218 if (Src
.getOpcode() == ISD::SRL
&& !VT
.isVector()) {
3219 if (auto K
= isConstOrConstSplat(Src
.getOperand(1))) {
3220 if (2 * K
->getZExtValue() == Src
.getValueType().getScalarSizeInBits()) {
3221 SDValue BV
= stripBitcast(Src
.getOperand(0));
3222 if (BV
.getOpcode() == ISD::BUILD_VECTOR
&&
3223 BV
.getValueType().getVectorNumElements() == 2) {
3224 SDValue SrcElt
= BV
.getOperand(1);
3225 EVT SrcEltVT
= SrcElt
.getValueType();
3226 if (SrcEltVT
.isFloatingPoint()) {
3227 SrcElt
= DAG
.getNode(ISD::BITCAST
, SL
,
3228 SrcEltVT
.changeTypeToInteger(), SrcElt
);
3231 return DAG
.getNode(ISD::TRUNCATE
, SL
, VT
, SrcElt
);
3237 // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit.
3239 // i16 (trunc (srl i64:x, K)), K <= 16 ->
3240 // i16 (trunc (srl (i32 (trunc x), K)))
3241 if (VT
.getScalarSizeInBits() < 32) {
3242 EVT SrcVT
= Src
.getValueType();
3243 if (SrcVT
.getScalarSizeInBits() > 32 &&
3244 (Src
.getOpcode() == ISD::SRL
||
3245 Src
.getOpcode() == ISD::SRA
||
3246 Src
.getOpcode() == ISD::SHL
)) {
3247 SDValue Amt
= Src
.getOperand(1);
3248 KnownBits Known
= DAG
.computeKnownBits(Amt
);
3249 unsigned Size
= VT
.getScalarSizeInBits();
3250 if ((Known
.isConstant() && Known
.getConstant().ule(Size
)) ||
3251 (Known
.getBitWidth() - Known
.countMinLeadingZeros() <= Log2_32(Size
))) {
3252 EVT MidVT
= VT
.isVector() ?
3253 EVT::getVectorVT(*DAG
.getContext(), MVT::i32
,
3254 VT
.getVectorNumElements()) : MVT::i32
;
3256 EVT NewShiftVT
= getShiftAmountTy(MidVT
, DAG
.getDataLayout());
3257 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, SL
, MidVT
,
3259 DCI
.AddToWorklist(Trunc
.getNode());
3261 if (Amt
.getValueType() != NewShiftVT
) {
3262 Amt
= DAG
.getZExtOrTrunc(Amt
, SL
, NewShiftVT
);
3263 DCI
.AddToWorklist(Amt
.getNode());
3266 SDValue ShrunkShift
= DAG
.getNode(Src
.getOpcode(), SL
, MidVT
,
3268 return DAG
.getNode(ISD::TRUNCATE
, SL
, VT
, ShrunkShift
);
3276 // We need to specifically handle i64 mul here to avoid unnecessary conversion
3277 // instructions. If we only match on the legalized i64 mul expansion,
3278 // SimplifyDemandedBits will be unable to remove them because there will be
3279 // multiple uses due to the separate mul + mulh[su].
3280 static SDValue
getMul24(SelectionDAG
&DAG
, const SDLoc
&SL
,
3281 SDValue N0
, SDValue N1
, unsigned Size
, bool Signed
) {
3283 unsigned MulOpc
= Signed
? AMDGPUISD::MUL_I24
: AMDGPUISD::MUL_U24
;
3284 return DAG
.getNode(MulOpc
, SL
, MVT::i32
, N0
, N1
);
3287 // Because we want to eliminate extension instructions before the
3288 // operation, we need to create a single user here (i.e. not the separate
3289 // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it.
3291 unsigned MulOpc
= Signed
? AMDGPUISD::MUL_LOHI_I24
: AMDGPUISD::MUL_LOHI_U24
;
3293 SDValue Mul
= DAG
.getNode(MulOpc
, SL
,
3294 DAG
.getVTList(MVT::i32
, MVT::i32
), N0
, N1
);
3296 return DAG
.getNode(ISD::BUILD_PAIR
, SL
, MVT::i64
,
3297 Mul
.getValue(0), Mul
.getValue(1));
3300 SDValue
AMDGPUTargetLowering::performMulCombine(SDNode
*N
,
3301 DAGCombinerInfo
&DCI
) const {
3302 EVT VT
= N
->getValueType(0);
3304 unsigned Size
= VT
.getSizeInBits();
3305 if (VT
.isVector() || Size
> 64)
3308 // There are i16 integer mul/mad.
3309 if (Subtarget
->has16BitInsts() && VT
.getScalarType().bitsLE(MVT::i16
))
3312 SelectionDAG
&DAG
= DCI
.DAG
;
3315 SDValue N0
= N
->getOperand(0);
3316 SDValue N1
= N
->getOperand(1);
3318 // SimplifyDemandedBits has the annoying habit of turning useful zero_extends
3319 // in the source into any_extends if the result of the mul is truncated. Since
3320 // we can assume the high bits are whatever we want, use the underlying value
3321 // to avoid the unknown high bits from interfering.
3322 if (N0
.getOpcode() == ISD::ANY_EXTEND
)
3323 N0
= N0
.getOperand(0);
3325 if (N1
.getOpcode() == ISD::ANY_EXTEND
)
3326 N1
= N1
.getOperand(0);
3330 if (Subtarget
->hasMulU24() && isU24(N0
, DAG
) && isU24(N1
, DAG
)) {
3331 N0
= DAG
.getZExtOrTrunc(N0
, DL
, MVT::i32
);
3332 N1
= DAG
.getZExtOrTrunc(N1
, DL
, MVT::i32
);
3333 Mul
= getMul24(DAG
, DL
, N0
, N1
, Size
, false);
3334 } else if (Subtarget
->hasMulI24() && isI24(N0
, DAG
) && isI24(N1
, DAG
)) {
3335 N0
= DAG
.getSExtOrTrunc(N0
, DL
, MVT::i32
);
3336 N1
= DAG
.getSExtOrTrunc(N1
, DL
, MVT::i32
);
3337 Mul
= getMul24(DAG
, DL
, N0
, N1
, Size
, true);
3342 // We need to use sext even for MUL_U24, because MUL_U24 is used
3343 // for signed multiply of 8 and 16-bit types.
3344 return DAG
.getSExtOrTrunc(Mul
, DL
, VT
);
3347 SDValue
AMDGPUTargetLowering::performMulhsCombine(SDNode
*N
,
3348 DAGCombinerInfo
&DCI
) const {
3349 EVT VT
= N
->getValueType(0);
3351 if (!Subtarget
->hasMulI24() || VT
.isVector())
3354 SelectionDAG
&DAG
= DCI
.DAG
;
3357 SDValue N0
= N
->getOperand(0);
3358 SDValue N1
= N
->getOperand(1);
3360 if (!isI24(N0
, DAG
) || !isI24(N1
, DAG
))
3363 N0
= DAG
.getSExtOrTrunc(N0
, DL
, MVT::i32
);
3364 N1
= DAG
.getSExtOrTrunc(N1
, DL
, MVT::i32
);
3366 SDValue Mulhi
= DAG
.getNode(AMDGPUISD::MULHI_I24
, DL
, MVT::i32
, N0
, N1
);
3367 DCI
.AddToWorklist(Mulhi
.getNode());
3368 return DAG
.getSExtOrTrunc(Mulhi
, DL
, VT
);
3371 SDValue
AMDGPUTargetLowering::performMulhuCombine(SDNode
*N
,
3372 DAGCombinerInfo
&DCI
) const {
3373 EVT VT
= N
->getValueType(0);
3375 if (!Subtarget
->hasMulU24() || VT
.isVector() || VT
.getSizeInBits() > 32)
3378 SelectionDAG
&DAG
= DCI
.DAG
;
3381 SDValue N0
= N
->getOperand(0);
3382 SDValue N1
= N
->getOperand(1);
3384 if (!isU24(N0
, DAG
) || !isU24(N1
, DAG
))
3387 N0
= DAG
.getZExtOrTrunc(N0
, DL
, MVT::i32
);
3388 N1
= DAG
.getZExtOrTrunc(N1
, DL
, MVT::i32
);
3390 SDValue Mulhi
= DAG
.getNode(AMDGPUISD::MULHI_U24
, DL
, MVT::i32
, N0
, N1
);
3391 DCI
.AddToWorklist(Mulhi
.getNode());
3392 return DAG
.getZExtOrTrunc(Mulhi
, DL
, VT
);
3395 SDValue
AMDGPUTargetLowering::performMulLoHi24Combine(
3396 SDNode
*N
, DAGCombinerInfo
&DCI
) const {
3397 SelectionDAG
&DAG
= DCI
.DAG
;
3399 // Simplify demanded bits before splitting into multiple users.
3400 if (SDValue V
= simplifyI24(N
, DCI
))
3403 SDValue N0
= N
->getOperand(0);
3404 SDValue N1
= N
->getOperand(1);
3406 bool Signed
= (N
->getOpcode() == AMDGPUISD::MUL_LOHI_I24
);
3408 unsigned MulLoOpc
= Signed
? AMDGPUISD::MUL_I24
: AMDGPUISD::MUL_U24
;
3409 unsigned MulHiOpc
= Signed
? AMDGPUISD::MULHI_I24
: AMDGPUISD::MULHI_U24
;
3413 SDValue MulLo
= DAG
.getNode(MulLoOpc
, SL
, MVT::i32
, N0
, N1
);
3414 SDValue MulHi
= DAG
.getNode(MulHiOpc
, SL
, MVT::i32
, N0
, N1
);
3415 return DAG
.getMergeValues({ MulLo
, MulHi
}, SL
);
3418 static bool isNegativeOne(SDValue Val
) {
3419 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Val
))
3420 return C
->isAllOnesValue();
3424 SDValue
AMDGPUTargetLowering::getFFBX_U32(SelectionDAG
&DAG
,
3427 unsigned Opc
) const {
3428 EVT VT
= Op
.getValueType();
3429 EVT LegalVT
= getTypeToTransformTo(*DAG
.getContext(), VT
);
3430 if (LegalVT
!= MVT::i32
&& (Subtarget
->has16BitInsts() &&
3431 LegalVT
!= MVT::i16
))
3435 Op
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, MVT::i32
, Op
);
3437 SDValue FFBX
= DAG
.getNode(Opc
, DL
, MVT::i32
, Op
);
3439 FFBX
= DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, FFBX
);
3444 // The native instructions return -1 on 0 input. Optimize out a select that
3445 // produces -1 on 0.
3447 // TODO: If zero is not undef, we could also do this if the output is compared
3448 // against the bitwidth.
3450 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly.
3451 SDValue
AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc
&SL
, SDValue Cond
,
3452 SDValue LHS
, SDValue RHS
,
3453 DAGCombinerInfo
&DCI
) const {
3454 ConstantSDNode
*CmpRhs
= dyn_cast
<ConstantSDNode
>(Cond
.getOperand(1));
3455 if (!CmpRhs
|| !CmpRhs
->isNullValue())
3458 SelectionDAG
&DAG
= DCI
.DAG
;
3459 ISD::CondCode CCOpcode
= cast
<CondCodeSDNode
>(Cond
.getOperand(2))->get();
3460 SDValue CmpLHS
= Cond
.getOperand(0);
3462 unsigned Opc
= isCttzOpc(RHS
.getOpcode()) ? AMDGPUISD::FFBL_B32
:
3463 AMDGPUISD::FFBH_U32
;
3465 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x
3466 // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x
3467 if (CCOpcode
== ISD::SETEQ
&&
3468 (isCtlzOpc(RHS
.getOpcode()) || isCttzOpc(RHS
.getOpcode())) &&
3469 RHS
.getOperand(0) == CmpLHS
&&
3470 isNegativeOne(LHS
)) {
3471 return getFFBX_U32(DAG
, CmpLHS
, SL
, Opc
);
3474 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x
3475 // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x
3476 if (CCOpcode
== ISD::SETNE
&&
3477 (isCtlzOpc(LHS
.getOpcode()) || isCttzOpc(RHS
.getOpcode())) &&
3478 LHS
.getOperand(0) == CmpLHS
&&
3479 isNegativeOne(RHS
)) {
3480 return getFFBX_U32(DAG
, CmpLHS
, SL
, Opc
);
3486 static SDValue
distributeOpThroughSelect(TargetLowering::DAGCombinerInfo
&DCI
,
3492 SelectionDAG
&DAG
= DCI
.DAG
;
3493 EVT VT
= N1
.getValueType();
3495 SDValue NewSelect
= DAG
.getNode(ISD::SELECT
, SL
, VT
, Cond
,
3496 N1
.getOperand(0), N2
.getOperand(0));
3497 DCI
.AddToWorklist(NewSelect
.getNode());
3498 return DAG
.getNode(Op
, SL
, VT
, NewSelect
);
3501 // Pull a free FP operation out of a select so it may fold into uses.
3503 // select c, (fneg x), (fneg y) -> fneg (select c, x, y)
3504 // select c, (fneg x), k -> fneg (select c, x, (fneg k))
3506 // select c, (fabs x), (fabs y) -> fabs (select c, x, y)
3507 // select c, (fabs x), +k -> fabs (select c, x, k)
3508 static SDValue
foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo
&DCI
,
3510 SelectionDAG
&DAG
= DCI
.DAG
;
3511 SDValue Cond
= N
.getOperand(0);
3512 SDValue LHS
= N
.getOperand(1);
3513 SDValue RHS
= N
.getOperand(2);
3515 EVT VT
= N
.getValueType();
3516 if ((LHS
.getOpcode() == ISD::FABS
&& RHS
.getOpcode() == ISD::FABS
) ||
3517 (LHS
.getOpcode() == ISD::FNEG
&& RHS
.getOpcode() == ISD::FNEG
)) {
3518 return distributeOpThroughSelect(DCI
, LHS
.getOpcode(),
3519 SDLoc(N
), Cond
, LHS
, RHS
);
3523 if (RHS
.getOpcode() == ISD::FABS
|| RHS
.getOpcode() == ISD::FNEG
) {
3524 std::swap(LHS
, RHS
);
3528 // TODO: Support vector constants.
3529 ConstantFPSDNode
*CRHS
= dyn_cast
<ConstantFPSDNode
>(RHS
);
3530 if ((LHS
.getOpcode() == ISD::FNEG
|| LHS
.getOpcode() == ISD::FABS
) && CRHS
) {
3532 // If one side is an fneg/fabs and the other is a constant, we can push the
3533 // fneg/fabs down. If it's an fabs, the constant needs to be non-negative.
3534 SDValue NewLHS
= LHS
.getOperand(0);
3535 SDValue NewRHS
= RHS
;
3537 // Careful: if the neg can be folded up, don't try to pull it back down.
3538 bool ShouldFoldNeg
= true;
3540 if (NewLHS
.hasOneUse()) {
3541 unsigned Opc
= NewLHS
.getOpcode();
3542 if (LHS
.getOpcode() == ISD::FNEG
&& fnegFoldsIntoOp(Opc
))
3543 ShouldFoldNeg
= false;
3544 if (LHS
.getOpcode() == ISD::FABS
&& Opc
== ISD::FMUL
)
3545 ShouldFoldNeg
= false;
3548 if (ShouldFoldNeg
) {
3549 if (LHS
.getOpcode() == ISD::FNEG
)
3550 NewRHS
= DAG
.getNode(ISD::FNEG
, SL
, VT
, RHS
);
3551 else if (CRHS
->isNegative())
3555 std::swap(NewLHS
, NewRHS
);
3557 SDValue NewSelect
= DAG
.getNode(ISD::SELECT
, SL
, VT
,
3558 Cond
, NewLHS
, NewRHS
);
3559 DCI
.AddToWorklist(NewSelect
.getNode());
3560 return DAG
.getNode(LHS
.getOpcode(), SL
, VT
, NewSelect
);
3568 SDValue
AMDGPUTargetLowering::performSelectCombine(SDNode
*N
,
3569 DAGCombinerInfo
&DCI
) const {
3570 if (SDValue Folded
= foldFreeOpFromSelect(DCI
, SDValue(N
, 0)))
3573 SDValue Cond
= N
->getOperand(0);
3574 if (Cond
.getOpcode() != ISD::SETCC
)
3577 EVT VT
= N
->getValueType(0);
3578 SDValue LHS
= Cond
.getOperand(0);
3579 SDValue RHS
= Cond
.getOperand(1);
3580 SDValue CC
= Cond
.getOperand(2);
3582 SDValue True
= N
->getOperand(1);
3583 SDValue False
= N
->getOperand(2);
3585 if (Cond
.hasOneUse()) { // TODO: Look for multiple select uses.
3586 SelectionDAG
&DAG
= DCI
.DAG
;
3587 if (DAG
.isConstantValueOfAnyType(True
) &&
3588 !DAG
.isConstantValueOfAnyType(False
)) {
3589 // Swap cmp + select pair to move constant to false input.
3590 // This will allow using VOPC cndmasks more often.
3591 // select (setcc x, y), k, x -> select (setccinv x, y), x, k
3594 ISD::CondCode NewCC
= getSetCCInverse(cast
<CondCodeSDNode
>(CC
)->get(),
3595 LHS
.getValueType().isInteger());
3597 SDValue NewCond
= DAG
.getSetCC(SL
, Cond
.getValueType(), LHS
, RHS
, NewCC
);
3598 return DAG
.getNode(ISD::SELECT
, SL
, VT
, NewCond
, False
, True
);
3601 if (VT
== MVT::f32
&& Subtarget
->hasFminFmaxLegacy()) {
3603 = combineFMinMaxLegacy(SDLoc(N
), VT
, LHS
, RHS
, True
, False
, CC
, DCI
);
3604 // Revisit this node so we can catch min3/max3/med3 patterns.
3605 //DCI.AddToWorklist(MinMax.getNode());
3610 // There's no reason to not do this if the condition has other uses.
3611 return performCtlz_CttzCombine(SDLoc(N
), Cond
, True
, False
, DCI
);
3614 static bool isInv2Pi(const APFloat
&APF
) {
3615 static const APFloat
KF16(APFloat::IEEEhalf(), APInt(16, 0x3118));
3616 static const APFloat
KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983));
3617 static const APFloat
KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882));
3619 return APF
.bitwiseIsEqual(KF16
) ||
3620 APF
.bitwiseIsEqual(KF32
) ||
3621 APF
.bitwiseIsEqual(KF64
);
3624 // 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an
3625 // additional cost to negate them.
3626 bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N
) const {
3627 if (const ConstantFPSDNode
*C
= isConstOrConstSplatFP(N
)) {
3628 if (C
->isZero() && !C
->isNegative())
3631 if (Subtarget
->hasInv2PiInlineImm() && isInv2Pi(C
->getValueAPF()))
3638 static unsigned inverseMinMax(unsigned Opc
) {
3641 return ISD::FMINNUM
;
3643 return ISD::FMAXNUM
;
3644 case ISD::FMAXNUM_IEEE
:
3645 return ISD::FMINNUM_IEEE
;
3646 case ISD::FMINNUM_IEEE
:
3647 return ISD::FMAXNUM_IEEE
;
3648 case AMDGPUISD::FMAX_LEGACY
:
3649 return AMDGPUISD::FMIN_LEGACY
;
3650 case AMDGPUISD::FMIN_LEGACY
:
3651 return AMDGPUISD::FMAX_LEGACY
;
3653 llvm_unreachable("invalid min/max opcode");
3657 SDValue
AMDGPUTargetLowering::performFNegCombine(SDNode
*N
,
3658 DAGCombinerInfo
&DCI
) const {
3659 SelectionDAG
&DAG
= DCI
.DAG
;
3660 SDValue N0
= N
->getOperand(0);
3661 EVT VT
= N
->getValueType(0);
3663 unsigned Opc
= N0
.getOpcode();
3665 // If the input has multiple uses and we can either fold the negate down, or
3666 // the other uses cannot, give up. This both prevents unprofitable
3667 // transformations and infinite loops: we won't repeatedly try to fold around
3668 // a negate that has no 'good' form.
3669 if (N0
.hasOneUse()) {
3670 // This may be able to fold into the source, but at a code size cost. Don't
3671 // fold if the fold into the user is free.
3672 if (allUsesHaveSourceMods(N
, 0))
3675 if (fnegFoldsIntoOp(Opc
) &&
3676 (allUsesHaveSourceMods(N
) || !allUsesHaveSourceMods(N0
.getNode())))
3683 if (!mayIgnoreSignedZero(N0
))
3686 // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y))
3687 SDValue LHS
= N0
.getOperand(0);
3688 SDValue RHS
= N0
.getOperand(1);
3690 if (LHS
.getOpcode() != ISD::FNEG
)
3691 LHS
= DAG
.getNode(ISD::FNEG
, SL
, VT
, LHS
);
3693 LHS
= LHS
.getOperand(0);
3695 if (RHS
.getOpcode() != ISD::FNEG
)
3696 RHS
= DAG
.getNode(ISD::FNEG
, SL
, VT
, RHS
);
3698 RHS
= RHS
.getOperand(0);
3700 SDValue Res
= DAG
.getNode(ISD::FADD
, SL
, VT
, LHS
, RHS
, N0
->getFlags());
3701 if (Res
.getOpcode() != ISD::FADD
)
3702 return SDValue(); // Op got folded away.
3703 if (!N0
.hasOneUse())
3704 DAG
.ReplaceAllUsesWith(N0
, DAG
.getNode(ISD::FNEG
, SL
, VT
, Res
));
3708 case AMDGPUISD::FMUL_LEGACY
: {
3709 // (fneg (fmul x, y)) -> (fmul x, (fneg y))
3710 // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y))
3711 SDValue LHS
= N0
.getOperand(0);
3712 SDValue RHS
= N0
.getOperand(1);
3714 if (LHS
.getOpcode() == ISD::FNEG
)
3715 LHS
= LHS
.getOperand(0);
3716 else if (RHS
.getOpcode() == ISD::FNEG
)
3717 RHS
= RHS
.getOperand(0);
3719 RHS
= DAG
.getNode(ISD::FNEG
, SL
, VT
, RHS
);
3721 SDValue Res
= DAG
.getNode(Opc
, SL
, VT
, LHS
, RHS
, N0
->getFlags());
3722 if (Res
.getOpcode() != Opc
)
3723 return SDValue(); // Op got folded away.
3724 if (!N0
.hasOneUse())
3725 DAG
.ReplaceAllUsesWith(N0
, DAG
.getNode(ISD::FNEG
, SL
, VT
, Res
));
3730 if (!mayIgnoreSignedZero(N0
))
3733 // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z))
3734 SDValue LHS
= N0
.getOperand(0);
3735 SDValue MHS
= N0
.getOperand(1);
3736 SDValue RHS
= N0
.getOperand(2);
3738 if (LHS
.getOpcode() == ISD::FNEG
)
3739 LHS
= LHS
.getOperand(0);
3740 else if (MHS
.getOpcode() == ISD::FNEG
)
3741 MHS
= MHS
.getOperand(0);
3743 MHS
= DAG
.getNode(ISD::FNEG
, SL
, VT
, MHS
);
3745 if (RHS
.getOpcode() != ISD::FNEG
)
3746 RHS
= DAG
.getNode(ISD::FNEG
, SL
, VT
, RHS
);
3748 RHS
= RHS
.getOperand(0);
3750 SDValue Res
= DAG
.getNode(Opc
, SL
, VT
, LHS
, MHS
, RHS
);
3751 if (Res
.getOpcode() != Opc
)
3752 return SDValue(); // Op got folded away.
3753 if (!N0
.hasOneUse())
3754 DAG
.ReplaceAllUsesWith(N0
, DAG
.getNode(ISD::FNEG
, SL
, VT
, Res
));
3759 case ISD::FMAXNUM_IEEE
:
3760 case ISD::FMINNUM_IEEE
:
3761 case AMDGPUISD::FMAX_LEGACY
:
3762 case AMDGPUISD::FMIN_LEGACY
: {
3763 // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y)
3764 // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y)
3765 // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y)
3766 // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y)
3768 SDValue LHS
= N0
.getOperand(0);
3769 SDValue RHS
= N0
.getOperand(1);
3771 // 0 doesn't have a negated inline immediate.
3772 // TODO: This constant check should be generalized to other operations.
3773 if (isConstantCostlierToNegate(RHS
))
3776 SDValue NegLHS
= DAG
.getNode(ISD::FNEG
, SL
, VT
, LHS
);
3777 SDValue NegRHS
= DAG
.getNode(ISD::FNEG
, SL
, VT
, RHS
);
3778 unsigned Opposite
= inverseMinMax(Opc
);
3780 SDValue Res
= DAG
.getNode(Opposite
, SL
, VT
, NegLHS
, NegRHS
, N0
->getFlags());
3781 if (Res
.getOpcode() != Opposite
)
3782 return SDValue(); // Op got folded away.
3783 if (!N0
.hasOneUse())
3784 DAG
.ReplaceAllUsesWith(N0
, DAG
.getNode(ISD::FNEG
, SL
, VT
, Res
));
3787 case AMDGPUISD::FMED3
: {
3789 for (unsigned I
= 0; I
< 3; ++I
)
3790 Ops
[I
] = DAG
.getNode(ISD::FNEG
, SL
, VT
, N0
->getOperand(I
), N0
->getFlags());
3792 SDValue Res
= DAG
.getNode(AMDGPUISD::FMED3
, SL
, VT
, Ops
, N0
->getFlags());
3793 if (Res
.getOpcode() != AMDGPUISD::FMED3
)
3794 return SDValue(); // Op got folded away.
3795 if (!N0
.hasOneUse())
3796 DAG
.ReplaceAllUsesWith(N0
, DAG
.getNode(ISD::FNEG
, SL
, VT
, Res
));
3799 case ISD::FP_EXTEND
:
3802 case ISD::FNEARBYINT
: // XXX - Should fround be handled?
3804 case ISD::FCANONICALIZE
:
3805 case AMDGPUISD::RCP
:
3806 case AMDGPUISD::RCP_LEGACY
:
3807 case AMDGPUISD::RCP_IFLAG
:
3808 case AMDGPUISD::SIN_HW
: {
3809 SDValue CvtSrc
= N0
.getOperand(0);
3810 if (CvtSrc
.getOpcode() == ISD::FNEG
) {
3811 // (fneg (fp_extend (fneg x))) -> (fp_extend x)
3812 // (fneg (rcp (fneg x))) -> (rcp x)
3813 return DAG
.getNode(Opc
, SL
, VT
, CvtSrc
.getOperand(0));
3816 if (!N0
.hasOneUse())
3819 // (fneg (fp_extend x)) -> (fp_extend (fneg x))
3820 // (fneg (rcp x)) -> (rcp (fneg x))
3821 SDValue Neg
= DAG
.getNode(ISD::FNEG
, SL
, CvtSrc
.getValueType(), CvtSrc
);
3822 return DAG
.getNode(Opc
, SL
, VT
, Neg
, N0
->getFlags());
3824 case ISD::FP_ROUND
: {
3825 SDValue CvtSrc
= N0
.getOperand(0);
3827 if (CvtSrc
.getOpcode() == ISD::FNEG
) {
3828 // (fneg (fp_round (fneg x))) -> (fp_round x)
3829 return DAG
.getNode(ISD::FP_ROUND
, SL
, VT
,
3830 CvtSrc
.getOperand(0), N0
.getOperand(1));
3833 if (!N0
.hasOneUse())
3836 // (fneg (fp_round x)) -> (fp_round (fneg x))
3837 SDValue Neg
= DAG
.getNode(ISD::FNEG
, SL
, CvtSrc
.getValueType(), CvtSrc
);
3838 return DAG
.getNode(ISD::FP_ROUND
, SL
, VT
, Neg
, N0
.getOperand(1));
3840 case ISD::FP16_TO_FP
: {
3841 // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal
3842 // f16, but legalization of f16 fneg ends up pulling it out of the source.
3843 // Put the fneg back as a legal source operation that can be matched later.
3846 SDValue Src
= N0
.getOperand(0);
3847 EVT SrcVT
= Src
.getValueType();
3849 // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000)
3850 SDValue IntFNeg
= DAG
.getNode(ISD::XOR
, SL
, SrcVT
, Src
,
3851 DAG
.getConstant(0x8000, SL
, SrcVT
));
3852 return DAG
.getNode(ISD::FP16_TO_FP
, SL
, N
->getValueType(0), IntFNeg
);
3859 SDValue
AMDGPUTargetLowering::performFAbsCombine(SDNode
*N
,
3860 DAGCombinerInfo
&DCI
) const {
3861 SelectionDAG
&DAG
= DCI
.DAG
;
3862 SDValue N0
= N
->getOperand(0);
3864 if (!N0
.hasOneUse())
3867 switch (N0
.getOpcode()) {
3868 case ISD::FP16_TO_FP
: {
3869 assert(!Subtarget
->has16BitInsts() && "should only see if f16 is illegal");
3871 SDValue Src
= N0
.getOperand(0);
3872 EVT SrcVT
= Src
.getValueType();
3874 // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff)
3875 SDValue IntFAbs
= DAG
.getNode(ISD::AND
, SL
, SrcVT
, Src
,
3876 DAG
.getConstant(0x7fff, SL
, SrcVT
));
3877 return DAG
.getNode(ISD::FP16_TO_FP
, SL
, N
->getValueType(0), IntFAbs
);
3884 SDValue
AMDGPUTargetLowering::performRcpCombine(SDNode
*N
,
3885 DAGCombinerInfo
&DCI
) const {
3886 const auto *CFP
= dyn_cast
<ConstantFPSDNode
>(N
->getOperand(0));
3890 // XXX - Should this flush denormals?
3891 const APFloat
&Val
= CFP
->getValueAPF();
3892 APFloat
One(Val
.getSemantics(), "1.0");
3893 return DCI
.DAG
.getConstantFP(One
/ Val
, SDLoc(N
), N
->getValueType(0));
3896 SDValue
AMDGPUTargetLowering::PerformDAGCombine(SDNode
*N
,
3897 DAGCombinerInfo
&DCI
) const {
3898 SelectionDAG
&DAG
= DCI
.DAG
;
3901 switch(N
->getOpcode()) {
3904 case ISD::BITCAST
: {
3905 EVT DestVT
= N
->getValueType(0);
3907 // Push casts through vector builds. This helps avoid emitting a large
3908 // number of copies when materializing floating point vector constants.
3910 // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) =>
3911 // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y))
3912 if (DestVT
.isVector()) {
3913 SDValue Src
= N
->getOperand(0);
3914 if (Src
.getOpcode() == ISD::BUILD_VECTOR
) {
3915 EVT SrcVT
= Src
.getValueType();
3916 unsigned NElts
= DestVT
.getVectorNumElements();
3918 if (SrcVT
.getVectorNumElements() == NElts
) {
3919 EVT DestEltVT
= DestVT
.getVectorElementType();
3921 SmallVector
<SDValue
, 8> CastedElts
;
3923 for (unsigned I
= 0, E
= SrcVT
.getVectorNumElements(); I
!= E
; ++I
) {
3924 SDValue Elt
= Src
.getOperand(I
);
3925 CastedElts
.push_back(DAG
.getNode(ISD::BITCAST
, DL
, DestEltVT
, Elt
));
3928 return DAG
.getBuildVector(DestVT
, SL
, CastedElts
);
3933 if (DestVT
.getSizeInBits() != 64 && !DestVT
.isVector())
3936 // Fold bitcasts of constants.
3938 // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k)
3939 // TODO: Generalize and move to DAGCombiner
3940 SDValue Src
= N
->getOperand(0);
3941 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Src
)) {
3942 if (Src
.getValueType() == MVT::i64
) {
3944 uint64_t CVal
= C
->getZExtValue();
3945 SDValue BV
= DAG
.getNode(ISD::BUILD_VECTOR
, SL
, MVT::v2i32
,
3946 DAG
.getConstant(Lo_32(CVal
), SL
, MVT::i32
),
3947 DAG
.getConstant(Hi_32(CVal
), SL
, MVT::i32
));
3948 return DAG
.getNode(ISD::BITCAST
, SL
, DestVT
, BV
);
3952 if (ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(Src
)) {
3953 const APInt
&Val
= C
->getValueAPF().bitcastToAPInt();
3955 uint64_t CVal
= Val
.getZExtValue();
3956 SDValue Vec
= DAG
.getNode(ISD::BUILD_VECTOR
, SL
, MVT::v2i32
,
3957 DAG
.getConstant(Lo_32(CVal
), SL
, MVT::i32
),
3958 DAG
.getConstant(Hi_32(CVal
), SL
, MVT::i32
));
3960 return DAG
.getNode(ISD::BITCAST
, SL
, DestVT
, Vec
);
3966 if (DCI
.getDAGCombineLevel() < AfterLegalizeDAG
)
3969 return performShlCombine(N
, DCI
);
3972 if (DCI
.getDAGCombineLevel() < AfterLegalizeDAG
)
3975 return performSrlCombine(N
, DCI
);
3978 if (DCI
.getDAGCombineLevel() < AfterLegalizeDAG
)
3981 return performSraCombine(N
, DCI
);
3984 return performTruncateCombine(N
, DCI
);
3986 return performMulCombine(N
, DCI
);
3988 return performMulhsCombine(N
, DCI
);
3990 return performMulhuCombine(N
, DCI
);
3991 case AMDGPUISD::MUL_I24
:
3992 case AMDGPUISD::MUL_U24
:
3993 case AMDGPUISD::MULHI_I24
:
3994 case AMDGPUISD::MULHI_U24
: {
3995 if (SDValue V
= simplifyI24(N
, DCI
))
3999 case AMDGPUISD::MUL_LOHI_I24
:
4000 case AMDGPUISD::MUL_LOHI_U24
:
4001 return performMulLoHi24Combine(N
, DCI
);
4003 return performSelectCombine(N
, DCI
);
4005 return performFNegCombine(N
, DCI
);
4007 return performFAbsCombine(N
, DCI
);
4008 case AMDGPUISD::BFE_I32
:
4009 case AMDGPUISD::BFE_U32
: {
4010 assert(!N
->getValueType(0).isVector() &&
4011 "Vector handling of BFE not implemented");
4012 ConstantSDNode
*Width
= dyn_cast
<ConstantSDNode
>(N
->getOperand(2));
4016 uint32_t WidthVal
= Width
->getZExtValue() & 0x1f;
4018 return DAG
.getConstant(0, DL
, MVT::i32
);
4020 ConstantSDNode
*Offset
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
4024 SDValue BitsFrom
= N
->getOperand(0);
4025 uint32_t OffsetVal
= Offset
->getZExtValue() & 0x1f;
4027 bool Signed
= N
->getOpcode() == AMDGPUISD::BFE_I32
;
4029 if (OffsetVal
== 0) {
4030 // This is already sign / zero extended, so try to fold away extra BFEs.
4031 unsigned SignBits
= Signed
? (32 - WidthVal
+ 1) : (32 - WidthVal
);
4033 unsigned OpSignBits
= DAG
.ComputeNumSignBits(BitsFrom
);
4034 if (OpSignBits
>= SignBits
)
4037 EVT SmallVT
= EVT::getIntegerVT(*DAG
.getContext(), WidthVal
);
4039 // This is a sign_extend_inreg. Replace it to take advantage of existing
4040 // DAG Combines. If not eliminated, we will match back to BFE during
4043 // TODO: The sext_inreg of extended types ends, although we can could
4044 // handle them in a single BFE.
4045 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, DL
, MVT::i32
, BitsFrom
,
4046 DAG
.getValueType(SmallVT
));
4049 return DAG
.getZeroExtendInReg(BitsFrom
, DL
, SmallVT
);
4052 if (ConstantSDNode
*CVal
= dyn_cast
<ConstantSDNode
>(BitsFrom
)) {
4054 return constantFoldBFE
<int32_t>(DAG
,
4055 CVal
->getSExtValue(),
4061 return constantFoldBFE
<uint32_t>(DAG
,
4062 CVal
->getZExtValue(),
4068 if ((OffsetVal
+ WidthVal
) >= 32 &&
4069 !(Subtarget
->hasSDWA() && OffsetVal
== 16 && WidthVal
== 16)) {
4070 SDValue ShiftVal
= DAG
.getConstant(OffsetVal
, DL
, MVT::i32
);
4071 return DAG
.getNode(Signed
? ISD::SRA
: ISD::SRL
, DL
, MVT::i32
,
4072 BitsFrom
, ShiftVal
);
4075 if (BitsFrom
.hasOneUse()) {
4076 APInt Demanded
= APInt::getBitsSet(32,
4078 OffsetVal
+ WidthVal
);
4081 TargetLowering::TargetLoweringOpt
TLO(DAG
, !DCI
.isBeforeLegalize(),
4082 !DCI
.isBeforeLegalizeOps());
4083 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
4084 if (TLI
.ShrinkDemandedConstant(BitsFrom
, Demanded
, TLO
) ||
4085 TLI
.SimplifyDemandedBits(BitsFrom
, Demanded
, Known
, TLO
)) {
4086 DCI
.CommitTargetLoweringOpt(TLO
);
4093 return performLoadCombine(N
, DCI
);
4095 return performStoreCombine(N
, DCI
);
4096 case AMDGPUISD::RCP
:
4097 case AMDGPUISD::RCP_IFLAG
:
4098 return performRcpCombine(N
, DCI
);
4099 case ISD::AssertZext
:
4100 case ISD::AssertSext
:
4101 return performAssertSZExtCombine(N
, DCI
);
4106 //===----------------------------------------------------------------------===//
4108 //===----------------------------------------------------------------------===//
4110 SDValue
AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG
&DAG
,
4111 const TargetRegisterClass
*RC
,
4112 unsigned Reg
, EVT VT
,
4114 bool RawReg
) const {
4115 MachineFunction
&MF
= DAG
.getMachineFunction();
4116 MachineRegisterInfo
&MRI
= MF
.getRegInfo();
4119 if (!MRI
.isLiveIn(Reg
)) {
4120 VReg
= MRI
.createVirtualRegister(RC
);
4121 MRI
.addLiveIn(Reg
, VReg
);
4123 VReg
= MRI
.getLiveInVirtReg(Reg
);
4127 return DAG
.getRegister(VReg
, VT
);
4129 return DAG
.getCopyFromReg(DAG
.getEntryNode(), SL
, VReg
, VT
);
4132 SDValue
AMDGPUTargetLowering::loadStackInputValue(SelectionDAG
&DAG
,
4135 int64_t Offset
) const {
4136 MachineFunction
&MF
= DAG
.getMachineFunction();
4137 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
4139 int FI
= MFI
.CreateFixedObject(VT
.getStoreSize(), Offset
, true);
4140 auto SrcPtrInfo
= MachinePointerInfo::getStack(MF
, Offset
);
4141 SDValue Ptr
= DAG
.getFrameIndex(FI
, MVT::i32
);
4143 return DAG
.getLoad(VT
, SL
, DAG
.getEntryNode(), Ptr
, SrcPtrInfo
, 4,
4144 MachineMemOperand::MODereferenceable
|
4145 MachineMemOperand::MOInvariant
);
4148 SDValue
AMDGPUTargetLowering::storeStackInputValue(SelectionDAG
&DAG
,
4152 int64_t Offset
) const {
4153 MachineFunction
&MF
= DAG
.getMachineFunction();
4154 MachinePointerInfo DstInfo
= MachinePointerInfo::getStack(MF
, Offset
);
4156 SDValue Ptr
= DAG
.getConstant(Offset
, SL
, MVT::i32
);
4157 SDValue Store
= DAG
.getStore(Chain
, SL
, ArgVal
, Ptr
, DstInfo
, 4,
4158 MachineMemOperand::MODereferenceable
);
4162 SDValue
AMDGPUTargetLowering::loadInputValue(SelectionDAG
&DAG
,
4163 const TargetRegisterClass
*RC
,
4164 EVT VT
, const SDLoc
&SL
,
4165 const ArgDescriptor
&Arg
) const {
4166 assert(Arg
&& "Attempting to load missing argument");
4168 SDValue V
= Arg
.isRegister() ?
4169 CreateLiveInRegister(DAG
, RC
, Arg
.getRegister(), VT
, SL
) :
4170 loadStackInputValue(DAG
, VT
, SL
, Arg
.getStackOffset());
4172 if (!Arg
.isMasked())
4175 unsigned Mask
= Arg
.getMask();
4176 unsigned Shift
= countTrailingZeros
<unsigned>(Mask
);
4177 V
= DAG
.getNode(ISD::SRL
, SL
, VT
, V
,
4178 DAG
.getShiftAmountConstant(Shift
, VT
, SL
));
4179 return DAG
.getNode(ISD::AND
, SL
, VT
, V
,
4180 DAG
.getConstant(Mask
>> Shift
, SL
, VT
));
4183 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset(
4184 const MachineFunction
&MF
, const ImplicitParameter Param
) const {
4185 const AMDGPUMachineFunction
*MFI
= MF
.getInfo
<AMDGPUMachineFunction
>();
4186 const AMDGPUSubtarget
&ST
=
4187 AMDGPUSubtarget::get(getTargetMachine(), MF
.getFunction());
4188 unsigned ExplicitArgOffset
= ST
.getExplicitKernelArgOffset(MF
.getFunction());
4189 unsigned Alignment
= ST
.getAlignmentForImplicitArgPtr();
4190 uint64_t ArgOffset
= alignTo(MFI
->getExplicitKernArgSize(), Alignment
) +
4196 return ArgOffset
+ 4;
4198 llvm_unreachable("unexpected implicit parameter type");
4201 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node;
4203 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode
) const {
4204 switch ((AMDGPUISD::NodeType
)Opcode
) {
4205 case AMDGPUISD::FIRST_NUMBER
: break;
4207 NODE_NAME_CASE(UMUL
);
4208 NODE_NAME_CASE(BRANCH_COND
);
4212 NODE_NAME_CASE(ELSE
)
4213 NODE_NAME_CASE(LOOP
)
4214 NODE_NAME_CASE(CALL
)
4215 NODE_NAME_CASE(TC_RETURN
)
4216 NODE_NAME_CASE(TRAP
)
4217 NODE_NAME_CASE(RET_FLAG
)
4218 NODE_NAME_CASE(RETURN_TO_EPILOG
)
4219 NODE_NAME_CASE(ENDPGM
)
4220 NODE_NAME_CASE(DWORDADDR
)
4221 NODE_NAME_CASE(FRACT
)
4222 NODE_NAME_CASE(SETCC
)
4223 NODE_NAME_CASE(SETREG
)
4224 NODE_NAME_CASE(FMA_W_CHAIN
)
4225 NODE_NAME_CASE(FMUL_W_CHAIN
)
4226 NODE_NAME_CASE(CLAMP
)
4227 NODE_NAME_CASE(COS_HW
)
4228 NODE_NAME_CASE(SIN_HW
)
4229 NODE_NAME_CASE(FMAX_LEGACY
)
4230 NODE_NAME_CASE(FMIN_LEGACY
)
4231 NODE_NAME_CASE(FMAX3
)
4232 NODE_NAME_CASE(SMAX3
)
4233 NODE_NAME_CASE(UMAX3
)
4234 NODE_NAME_CASE(FMIN3
)
4235 NODE_NAME_CASE(SMIN3
)
4236 NODE_NAME_CASE(UMIN3
)
4237 NODE_NAME_CASE(FMED3
)
4238 NODE_NAME_CASE(SMED3
)
4239 NODE_NAME_CASE(UMED3
)
4240 NODE_NAME_CASE(FDOT2
)
4241 NODE_NAME_CASE(URECIP
)
4242 NODE_NAME_CASE(DIV_SCALE
)
4243 NODE_NAME_CASE(DIV_FMAS
)
4244 NODE_NAME_CASE(DIV_FIXUP
)
4245 NODE_NAME_CASE(FMAD_FTZ
)
4246 NODE_NAME_CASE(TRIG_PREOP
)
4249 NODE_NAME_CASE(RCP_LEGACY
)
4250 NODE_NAME_CASE(RSQ_LEGACY
)
4251 NODE_NAME_CASE(RCP_IFLAG
)
4252 NODE_NAME_CASE(FMUL_LEGACY
)
4253 NODE_NAME_CASE(RSQ_CLAMP
)
4254 NODE_NAME_CASE(LDEXP
)
4255 NODE_NAME_CASE(FP_CLASS
)
4256 NODE_NAME_CASE(DOT4
)
4257 NODE_NAME_CASE(CARRY
)
4258 NODE_NAME_CASE(BORROW
)
4259 NODE_NAME_CASE(BFE_U32
)
4260 NODE_NAME_CASE(BFE_I32
)
4263 NODE_NAME_CASE(FFBH_U32
)
4264 NODE_NAME_CASE(FFBH_I32
)
4265 NODE_NAME_CASE(FFBL_B32
)
4266 NODE_NAME_CASE(MUL_U24
)
4267 NODE_NAME_CASE(MUL_I24
)
4268 NODE_NAME_CASE(MULHI_U24
)
4269 NODE_NAME_CASE(MULHI_I24
)
4270 NODE_NAME_CASE(MUL_LOHI_U24
)
4271 NODE_NAME_CASE(MUL_LOHI_I24
)
4272 NODE_NAME_CASE(MAD_U24
)
4273 NODE_NAME_CASE(MAD_I24
)
4274 NODE_NAME_CASE(MAD_I64_I32
)
4275 NODE_NAME_CASE(MAD_U64_U32
)
4276 NODE_NAME_CASE(PERM
)
4277 NODE_NAME_CASE(TEXTURE_FETCH
)
4278 NODE_NAME_CASE(EXPORT
)
4279 NODE_NAME_CASE(EXPORT_DONE
)
4280 NODE_NAME_CASE(R600_EXPORT
)
4281 NODE_NAME_CASE(CONST_ADDRESS
)
4282 NODE_NAME_CASE(REGISTER_LOAD
)
4283 NODE_NAME_CASE(REGISTER_STORE
)
4284 NODE_NAME_CASE(SAMPLE
)
4285 NODE_NAME_CASE(SAMPLEB
)
4286 NODE_NAME_CASE(SAMPLED
)
4287 NODE_NAME_CASE(SAMPLEL
)
4288 NODE_NAME_CASE(CVT_F32_UBYTE0
)
4289 NODE_NAME_CASE(CVT_F32_UBYTE1
)
4290 NODE_NAME_CASE(CVT_F32_UBYTE2
)
4291 NODE_NAME_CASE(CVT_F32_UBYTE3
)
4292 NODE_NAME_CASE(CVT_PKRTZ_F16_F32
)
4293 NODE_NAME_CASE(CVT_PKNORM_I16_F32
)
4294 NODE_NAME_CASE(CVT_PKNORM_U16_F32
)
4295 NODE_NAME_CASE(CVT_PK_I16_I32
)
4296 NODE_NAME_CASE(CVT_PK_U16_U32
)
4297 NODE_NAME_CASE(FP_TO_FP16
)
4298 NODE_NAME_CASE(FP16_ZEXT
)
4299 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR
)
4300 NODE_NAME_CASE(CONST_DATA_PTR
)
4301 NODE_NAME_CASE(PC_ADD_REL_OFFSET
)
4303 NODE_NAME_CASE(KILL
)
4304 NODE_NAME_CASE(DUMMY_CHAIN
)
4305 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER
: break;
4306 NODE_NAME_CASE(INIT_EXEC
)
4307 NODE_NAME_CASE(INIT_EXEC_FROM_INPUT
)
4308 NODE_NAME_CASE(SENDMSG
)
4309 NODE_NAME_CASE(SENDMSGHALT
)
4310 NODE_NAME_CASE(INTERP_MOV
)
4311 NODE_NAME_CASE(INTERP_P1
)
4312 NODE_NAME_CASE(INTERP_P2
)
4313 NODE_NAME_CASE(INTERP_P1LL_F16
)
4314 NODE_NAME_CASE(INTERP_P1LV_F16
)
4315 NODE_NAME_CASE(INTERP_P2_F16
)
4316 NODE_NAME_CASE(LOAD_D16_HI
)
4317 NODE_NAME_CASE(LOAD_D16_LO
)
4318 NODE_NAME_CASE(LOAD_D16_HI_I8
)
4319 NODE_NAME_CASE(LOAD_D16_HI_U8
)
4320 NODE_NAME_CASE(LOAD_D16_LO_I8
)
4321 NODE_NAME_CASE(LOAD_D16_LO_U8
)
4322 NODE_NAME_CASE(STORE_MSKOR
)
4323 NODE_NAME_CASE(LOAD_CONSTANT
)
4324 NODE_NAME_CASE(TBUFFER_STORE_FORMAT
)
4325 NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16
)
4326 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT
)
4327 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16
)
4328 NODE_NAME_CASE(DS_ORDERED_COUNT
)
4329 NODE_NAME_CASE(ATOMIC_CMP_SWAP
)
4330 NODE_NAME_CASE(ATOMIC_INC
)
4331 NODE_NAME_CASE(ATOMIC_DEC
)
4332 NODE_NAME_CASE(ATOMIC_LOAD_FMIN
)
4333 NODE_NAME_CASE(ATOMIC_LOAD_FMAX
)
4334 NODE_NAME_CASE(BUFFER_LOAD
)
4335 NODE_NAME_CASE(BUFFER_LOAD_UBYTE
)
4336 NODE_NAME_CASE(BUFFER_LOAD_USHORT
)
4337 NODE_NAME_CASE(BUFFER_LOAD_BYTE
)
4338 NODE_NAME_CASE(BUFFER_LOAD_SHORT
)
4339 NODE_NAME_CASE(BUFFER_LOAD_FORMAT
)
4340 NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16
)
4341 NODE_NAME_CASE(SBUFFER_LOAD
)
4342 NODE_NAME_CASE(BUFFER_STORE
)
4343 NODE_NAME_CASE(BUFFER_STORE_BYTE
)
4344 NODE_NAME_CASE(BUFFER_STORE_SHORT
)
4345 NODE_NAME_CASE(BUFFER_STORE_FORMAT
)
4346 NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16
)
4347 NODE_NAME_CASE(BUFFER_ATOMIC_SWAP
)
4348 NODE_NAME_CASE(BUFFER_ATOMIC_ADD
)
4349 NODE_NAME_CASE(BUFFER_ATOMIC_SUB
)
4350 NODE_NAME_CASE(BUFFER_ATOMIC_SMIN
)
4351 NODE_NAME_CASE(BUFFER_ATOMIC_UMIN
)
4352 NODE_NAME_CASE(BUFFER_ATOMIC_SMAX
)
4353 NODE_NAME_CASE(BUFFER_ATOMIC_UMAX
)
4354 NODE_NAME_CASE(BUFFER_ATOMIC_AND
)
4355 NODE_NAME_CASE(BUFFER_ATOMIC_OR
)
4356 NODE_NAME_CASE(BUFFER_ATOMIC_XOR
)
4357 NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP
)
4358 NODE_NAME_CASE(BUFFER_ATOMIC_FADD
)
4359 NODE_NAME_CASE(BUFFER_ATOMIC_PK_FADD
)
4360 NODE_NAME_CASE(ATOMIC_FADD
)
4361 NODE_NAME_CASE(ATOMIC_PK_FADD
)
4363 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER
: break;
4368 SDValue
AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand
,
4369 SelectionDAG
&DAG
, int Enabled
,
4370 int &RefinementSteps
,
4371 bool &UseOneConstNR
,
4372 bool Reciprocal
) const {
4373 EVT VT
= Operand
.getValueType();
4375 if (VT
== MVT::f32
) {
4376 RefinementSteps
= 0;
4377 return DAG
.getNode(AMDGPUISD::RSQ
, SDLoc(Operand
), VT
, Operand
);
4380 // TODO: There is also f64 rsq instruction, but the documentation is less
4381 // clear on its precision.
4386 SDValue
AMDGPUTargetLowering::getRecipEstimate(SDValue Operand
,
4387 SelectionDAG
&DAG
, int Enabled
,
4388 int &RefinementSteps
) const {
4389 EVT VT
= Operand
.getValueType();
4391 if (VT
== MVT::f32
) {
4392 // Reciprocal, < 1 ulp error.
4394 // This reciprocal approximation converges to < 0.5 ulp error with one
4395 // newton rhapson performed with two fused multiple adds (FMAs).
4397 RefinementSteps
= 0;
4398 return DAG
.getNode(AMDGPUISD::RCP
, SDLoc(Operand
), VT
, Operand
);
4401 // TODO: There is also f64 rcp instruction, but the documentation is less
4402 // clear on its precision.
4407 void AMDGPUTargetLowering::computeKnownBitsForTargetNode(
4408 const SDValue Op
, KnownBits
&Known
,
4409 const APInt
&DemandedElts
, const SelectionDAG
&DAG
, unsigned Depth
) const {
4411 Known
.resetAll(); // Don't know anything.
4413 unsigned Opc
= Op
.getOpcode();
4418 case AMDGPUISD::CARRY
:
4419 case AMDGPUISD::BORROW
: {
4420 Known
.Zero
= APInt::getHighBitsSet(32, 31);
4424 case AMDGPUISD::BFE_I32
:
4425 case AMDGPUISD::BFE_U32
: {
4426 ConstantSDNode
*CWidth
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(2));
4430 uint32_t Width
= CWidth
->getZExtValue() & 0x1f;
4432 if (Opc
== AMDGPUISD::BFE_U32
)
4433 Known
.Zero
= APInt::getHighBitsSet(32, 32 - Width
);
4437 case AMDGPUISD::FP_TO_FP16
:
4438 case AMDGPUISD::FP16_ZEXT
: {
4439 unsigned BitWidth
= Known
.getBitWidth();
4441 // High bits are zero.
4442 Known
.Zero
= APInt::getHighBitsSet(BitWidth
, BitWidth
- 16);
4445 case AMDGPUISD::MUL_U24
:
4446 case AMDGPUISD::MUL_I24
: {
4447 KnownBits LHSKnown
= DAG
.computeKnownBits(Op
.getOperand(0), Depth
+ 1);
4448 KnownBits RHSKnown
= DAG
.computeKnownBits(Op
.getOperand(1), Depth
+ 1);
4449 unsigned TrailZ
= LHSKnown
.countMinTrailingZeros() +
4450 RHSKnown
.countMinTrailingZeros();
4451 Known
.Zero
.setLowBits(std::min(TrailZ
, 32u));
4453 // Truncate to 24 bits.
4454 LHSKnown
= LHSKnown
.trunc(24);
4455 RHSKnown
= RHSKnown
.trunc(24);
4457 bool Negative
= false;
4458 if (Opc
== AMDGPUISD::MUL_I24
) {
4459 unsigned LHSValBits
= 24 - LHSKnown
.countMinSignBits();
4460 unsigned RHSValBits
= 24 - RHSKnown
.countMinSignBits();
4461 unsigned MaxValBits
= std::min(LHSValBits
+ RHSValBits
, 32u);
4462 if (MaxValBits
>= 32)
4464 bool LHSNegative
= LHSKnown
.isNegative();
4465 bool LHSPositive
= LHSKnown
.isNonNegative();
4466 bool RHSNegative
= RHSKnown
.isNegative();
4467 bool RHSPositive
= RHSKnown
.isNonNegative();
4468 if ((!LHSNegative
&& !LHSPositive
) || (!RHSNegative
&& !RHSPositive
))
4470 Negative
= (LHSNegative
&& RHSPositive
) || (LHSPositive
&& RHSNegative
);
4472 Known
.One
.setHighBits(32 - MaxValBits
);
4474 Known
.Zero
.setHighBits(32 - MaxValBits
);
4476 unsigned LHSValBits
= 24 - LHSKnown
.countMinLeadingZeros();
4477 unsigned RHSValBits
= 24 - RHSKnown
.countMinLeadingZeros();
4478 unsigned MaxValBits
= std::min(LHSValBits
+ RHSValBits
, 32u);
4479 if (MaxValBits
>= 32)
4481 Known
.Zero
.setHighBits(32 - MaxValBits
);
4485 case AMDGPUISD::PERM
: {
4486 ConstantSDNode
*CMask
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(2));
4490 KnownBits LHSKnown
= DAG
.computeKnownBits(Op
.getOperand(0), Depth
+ 1);
4491 KnownBits RHSKnown
= DAG
.computeKnownBits(Op
.getOperand(1), Depth
+ 1);
4492 unsigned Sel
= CMask
->getZExtValue();
4494 for (unsigned I
= 0; I
< 32; I
+= 8) {
4495 unsigned SelBits
= Sel
& 0xff;
4498 Known
.One
|= ((RHSKnown
.One
.getZExtValue() >> SelBits
) & 0xff) << I
;
4499 Known
.Zero
|= ((RHSKnown
.Zero
.getZExtValue() >> SelBits
) & 0xff) << I
;
4500 } else if (SelBits
< 7) {
4501 SelBits
= (SelBits
& 3) * 8;
4502 Known
.One
|= ((LHSKnown
.One
.getZExtValue() >> SelBits
) & 0xff) << I
;
4503 Known
.Zero
|= ((LHSKnown
.Zero
.getZExtValue() >> SelBits
) & 0xff) << I
;
4504 } else if (SelBits
== 0x0c) {
4505 Known
.Zero
|= 0xFFull
<< I
;
4506 } else if (SelBits
> 0x0c) {
4507 Known
.One
|= 0xFFull
<< I
;
4513 case AMDGPUISD::BUFFER_LOAD_UBYTE
: {
4514 Known
.Zero
.setHighBits(24);
4517 case AMDGPUISD::BUFFER_LOAD_USHORT
: {
4518 Known
.Zero
.setHighBits(16);
4521 case AMDGPUISD::LDS
: {
4522 auto GA
= cast
<GlobalAddressSDNode
>(Op
.getOperand(0).getNode());
4523 unsigned Align
= GA
->getGlobal()->getAlignment();
4525 Known
.Zero
.setHighBits(16);
4527 Known
.Zero
.setLowBits(Log2_32(Align
));
4530 case ISD::INTRINSIC_WO_CHAIN
: {
4531 unsigned IID
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
4533 case Intrinsic::amdgcn_mbcnt_lo
:
4534 case Intrinsic::amdgcn_mbcnt_hi
: {
4535 const GCNSubtarget
&ST
=
4536 DAG
.getMachineFunction().getSubtarget
<GCNSubtarget
>();
4537 // These return at most the wavefront size - 1.
4538 unsigned Size
= Op
.getValueType().getSizeInBits();
4539 Known
.Zero
.setHighBits(Size
- ST
.getWavefrontSizeLog2());
4549 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode(
4550 SDValue Op
, const APInt
&DemandedElts
, const SelectionDAG
&DAG
,
4551 unsigned Depth
) const {
4552 switch (Op
.getOpcode()) {
4553 case AMDGPUISD::BFE_I32
: {
4554 ConstantSDNode
*Width
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(2));
4558 unsigned SignBits
= 32 - Width
->getZExtValue() + 1;
4559 if (!isNullConstant(Op
.getOperand(1)))
4562 // TODO: Could probably figure something out with non-0 offsets.
4563 unsigned Op0SignBits
= DAG
.ComputeNumSignBits(Op
.getOperand(0), Depth
+ 1);
4564 return std::max(SignBits
, Op0SignBits
);
4567 case AMDGPUISD::BFE_U32
: {
4568 ConstantSDNode
*Width
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(2));
4569 return Width
? 32 - (Width
->getZExtValue() & 0x1f) : 1;
4572 case AMDGPUISD::CARRY
:
4573 case AMDGPUISD::BORROW
:
4575 case AMDGPUISD::BUFFER_LOAD_BYTE
:
4577 case AMDGPUISD::BUFFER_LOAD_SHORT
:
4579 case AMDGPUISD::BUFFER_LOAD_UBYTE
:
4581 case AMDGPUISD::BUFFER_LOAD_USHORT
:
4583 case AMDGPUISD::FP_TO_FP16
:
4584 case AMDGPUISD::FP16_ZEXT
:
4591 bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op
,
4592 const SelectionDAG
&DAG
,
4594 unsigned Depth
) const {
4595 unsigned Opcode
= Op
.getOpcode();
4597 case AMDGPUISD::FMIN_LEGACY
:
4598 case AMDGPUISD::FMAX_LEGACY
: {
4602 // TODO: Can check no nans on one of the operands for each one, but which
4606 case AMDGPUISD::FMUL_LEGACY
:
4607 case AMDGPUISD::CVT_PKRTZ_F16_F32
: {
4610 return DAG
.isKnownNeverNaN(Op
.getOperand(0), SNaN
, Depth
+ 1) &&
4611 DAG
.isKnownNeverNaN(Op
.getOperand(1), SNaN
, Depth
+ 1);
4613 case AMDGPUISD::FMED3
:
4614 case AMDGPUISD::FMIN3
:
4615 case AMDGPUISD::FMAX3
:
4616 case AMDGPUISD::FMAD_FTZ
: {
4619 return DAG
.isKnownNeverNaN(Op
.getOperand(0), SNaN
, Depth
+ 1) &&
4620 DAG
.isKnownNeverNaN(Op
.getOperand(1), SNaN
, Depth
+ 1) &&
4621 DAG
.isKnownNeverNaN(Op
.getOperand(2), SNaN
, Depth
+ 1);
4623 case AMDGPUISD::CVT_F32_UBYTE0
:
4624 case AMDGPUISD::CVT_F32_UBYTE1
:
4625 case AMDGPUISD::CVT_F32_UBYTE2
:
4626 case AMDGPUISD::CVT_F32_UBYTE3
:
4629 case AMDGPUISD::RCP
:
4630 case AMDGPUISD::RSQ
:
4631 case AMDGPUISD::RCP_LEGACY
:
4632 case AMDGPUISD::RSQ_LEGACY
:
4633 case AMDGPUISD::RSQ_CLAMP
: {
4637 // TODO: Need is known positive check.
4640 case AMDGPUISD::LDEXP
:
4641 case AMDGPUISD::FRACT
: {
4644 return DAG
.isKnownNeverNaN(Op
.getOperand(0), SNaN
, Depth
+ 1);
4646 case AMDGPUISD::DIV_SCALE
:
4647 case AMDGPUISD::DIV_FMAS
:
4648 case AMDGPUISD::DIV_FIXUP
:
4649 case AMDGPUISD::TRIG_PREOP
:
4650 // TODO: Refine on operands.
4652 case AMDGPUISD::SIN_HW
:
4653 case AMDGPUISD::COS_HW
: {
4654 // TODO: Need check for infinity
4657 case ISD::INTRINSIC_WO_CHAIN
: {
4658 unsigned IntrinsicID
4659 = cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
4660 // TODO: Handle more intrinsics
4661 switch (IntrinsicID
) {
4662 case Intrinsic::amdgcn_cubeid
:
4665 case Intrinsic::amdgcn_frexp_mant
: {
4668 return DAG
.isKnownNeverNaN(Op
.getOperand(1), SNaN
, Depth
+ 1);
4670 case Intrinsic::amdgcn_cvt_pkrtz
: {
4673 return DAG
.isKnownNeverNaN(Op
.getOperand(1), SNaN
, Depth
+ 1) &&
4674 DAG
.isKnownNeverNaN(Op
.getOperand(2), SNaN
, Depth
+ 1);
4676 case Intrinsic::amdgcn_fdot2
:
4677 // TODO: Refine on operand
4688 TargetLowering::AtomicExpansionKind
4689 AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst
*RMW
) const {
4690 switch (RMW
->getOperation()) {
4691 case AtomicRMWInst::Nand
:
4692 case AtomicRMWInst::FAdd
:
4693 case AtomicRMWInst::FSub
:
4694 return AtomicExpansionKind::CmpXChg
;
4696 return AtomicExpansionKind::None
;