[ARM] Better patterns for fp <> predicate vectors
[llvm-complete.git] / lib / Target / AMDGPU / AMDGPUISelLowering.cpp
bloba5098f42fca50f54b971122036ef200e0369e481
1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This is the parent TargetLowering class for hardware code gen
11 /// targets.
13 //===----------------------------------------------------------------------===//
15 #define AMDGPU_LOG2E_F 1.44269504088896340735992468100189214f
16 #define AMDGPU_LN2_F 0.693147180559945309417232121458176568f
17 #define AMDGPU_LN10_F 2.30258509299404568401799145468436421f
19 #include "AMDGPUISelLowering.h"
20 #include "AMDGPU.h"
21 #include "AMDGPUCallLowering.h"
22 #include "AMDGPUFrameLowering.h"
23 #include "AMDGPURegisterInfo.h"
24 #include "AMDGPUSubtarget.h"
25 #include "AMDGPUTargetMachine.h"
26 #include "Utils/AMDGPUBaseInfo.h"
27 #include "R600MachineFunctionInfo.h"
28 #include "SIInstrInfo.h"
29 #include "SIMachineFunctionInfo.h"
30 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
31 #include "llvm/CodeGen/Analysis.h"
32 #include "llvm/CodeGen/CallingConvLower.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/SelectionDAG.h"
36 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/DiagnosticInfo.h"
39 #include "llvm/Support/KnownBits.h"
40 using namespace llvm;
42 #include "AMDGPUGenCallingConv.inc"
44 // Find a larger type to do a load / store of a vector with.
45 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) {
46 unsigned StoreSize = VT.getStoreSizeInBits();
47 if (StoreSize <= 32)
48 return EVT::getIntegerVT(Ctx, StoreSize);
50 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32");
51 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
54 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) {
55 EVT VT = Op.getValueType();
56 KnownBits Known = DAG.computeKnownBits(Op);
57 return VT.getSizeInBits() - Known.countMinLeadingZeros();
60 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) {
61 EVT VT = Op.getValueType();
63 // In order for this to be a signed 24-bit value, bit 23, must
64 // be a sign bit.
65 return VT.getSizeInBits() - DAG.ComputeNumSignBits(Op);
68 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM,
69 const AMDGPUSubtarget &STI)
70 : TargetLowering(TM), Subtarget(&STI) {
71 // Lower floating point store/load to integer store/load to reduce the number
72 // of patterns in tablegen.
73 setOperationAction(ISD::LOAD, MVT::f32, Promote);
74 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32);
76 setOperationAction(ISD::LOAD, MVT::v2f32, Promote);
77 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32);
79 setOperationAction(ISD::LOAD, MVT::v3f32, Promote);
80 AddPromotedToType(ISD::LOAD, MVT::v3f32, MVT::v3i32);
82 setOperationAction(ISD::LOAD, MVT::v4f32, Promote);
83 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32);
85 setOperationAction(ISD::LOAD, MVT::v5f32, Promote);
86 AddPromotedToType(ISD::LOAD, MVT::v5f32, MVT::v5i32);
88 setOperationAction(ISD::LOAD, MVT::v8f32, Promote);
89 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32);
91 setOperationAction(ISD::LOAD, MVT::v16f32, Promote);
92 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32);
94 setOperationAction(ISD::LOAD, MVT::v32f32, Promote);
95 AddPromotedToType(ISD::LOAD, MVT::v32f32, MVT::v32i32);
97 setOperationAction(ISD::LOAD, MVT::i64, Promote);
98 AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32);
100 setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
101 AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32);
103 setOperationAction(ISD::LOAD, MVT::f64, Promote);
104 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32);
106 setOperationAction(ISD::LOAD, MVT::v2f64, Promote);
107 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32);
109 // There are no 64-bit extloads. These should be done as a 32-bit extload and
110 // an extension to 64-bit.
111 for (MVT VT : MVT::integer_valuetypes()) {
112 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand);
113 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand);
114 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand);
117 for (MVT VT : MVT::integer_valuetypes()) {
118 if (VT == MVT::i64)
119 continue;
121 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
122 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal);
123 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal);
124 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
126 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
127 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal);
128 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal);
129 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
131 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
132 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal);
133 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal);
134 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
137 for (MVT VT : MVT::integer_vector_valuetypes()) {
138 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand);
139 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand);
140 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand);
141 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand);
142 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand);
143 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand);
144 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand);
145 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand);
146 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand);
147 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand);
148 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand);
149 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand);
152 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
153 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand);
154 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand);
155 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand);
157 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
158 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
159 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand);
160 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand);
162 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
163 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
164 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand);
165 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand);
167 setOperationAction(ISD::STORE, MVT::f32, Promote);
168 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32);
170 setOperationAction(ISD::STORE, MVT::v2f32, Promote);
171 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32);
173 setOperationAction(ISD::STORE, MVT::v3f32, Promote);
174 AddPromotedToType(ISD::STORE, MVT::v3f32, MVT::v3i32);
176 setOperationAction(ISD::STORE, MVT::v4f32, Promote);
177 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32);
179 setOperationAction(ISD::STORE, MVT::v5f32, Promote);
180 AddPromotedToType(ISD::STORE, MVT::v5f32, MVT::v5i32);
182 setOperationAction(ISD::STORE, MVT::v8f32, Promote);
183 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32);
185 setOperationAction(ISD::STORE, MVT::v16f32, Promote);
186 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32);
188 setOperationAction(ISD::STORE, MVT::v32f32, Promote);
189 AddPromotedToType(ISD::STORE, MVT::v32f32, MVT::v32i32);
191 setOperationAction(ISD::STORE, MVT::i64, Promote);
192 AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32);
194 setOperationAction(ISD::STORE, MVT::v2i64, Promote);
195 AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32);
197 setOperationAction(ISD::STORE, MVT::f64, Promote);
198 AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32);
200 setOperationAction(ISD::STORE, MVT::v2f64, Promote);
201 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32);
203 setTruncStoreAction(MVT::i64, MVT::i1, Expand);
204 setTruncStoreAction(MVT::i64, MVT::i8, Expand);
205 setTruncStoreAction(MVT::i64, MVT::i16, Expand);
206 setTruncStoreAction(MVT::i64, MVT::i32, Expand);
208 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand);
209 setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand);
210 setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand);
211 setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand);
213 setTruncStoreAction(MVT::f32, MVT::f16, Expand);
214 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand);
215 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand);
216 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand);
218 setTruncStoreAction(MVT::f64, MVT::f16, Expand);
219 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
221 setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
222 setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand);
224 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand);
225 setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand);
227 setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand);
228 setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand);
231 setOperationAction(ISD::Constant, MVT::i32, Legal);
232 setOperationAction(ISD::Constant, MVT::i64, Legal);
233 setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
234 setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
236 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
237 setOperationAction(ISD::BRIND, MVT::Other, Expand);
239 // This is totally unsupported, just custom lower to produce an error.
240 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
242 // Library functions. These default to Expand, but we have instructions
243 // for them.
244 setOperationAction(ISD::FCEIL, MVT::f32, Legal);
245 setOperationAction(ISD::FEXP2, MVT::f32, Legal);
246 setOperationAction(ISD::FPOW, MVT::f32, Legal);
247 setOperationAction(ISD::FLOG2, MVT::f32, Legal);
248 setOperationAction(ISD::FABS, MVT::f32, Legal);
249 setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
250 setOperationAction(ISD::FRINT, MVT::f32, Legal);
251 setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
252 setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
253 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
255 setOperationAction(ISD::FROUND, MVT::f32, Custom);
256 setOperationAction(ISD::FROUND, MVT::f64, Custom);
258 setOperationAction(ISD::FLOG, MVT::f32, Custom);
259 setOperationAction(ISD::FLOG10, MVT::f32, Custom);
260 setOperationAction(ISD::FEXP, MVT::f32, Custom);
263 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom);
264 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom);
266 setOperationAction(ISD::FREM, MVT::f32, Custom);
267 setOperationAction(ISD::FREM, MVT::f64, Custom);
269 // Expand to fneg + fadd.
270 setOperationAction(ISD::FSUB, MVT::f64, Expand);
272 setOperationAction(ISD::CONCAT_VECTORS, MVT::v3i32, Custom);
273 setOperationAction(ISD::CONCAT_VECTORS, MVT::v3f32, Custom);
274 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
275 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom);
276 setOperationAction(ISD::CONCAT_VECTORS, MVT::v5i32, Custom);
277 setOperationAction(ISD::CONCAT_VECTORS, MVT::v5f32, Custom);
278 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom);
279 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom);
280 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom);
281 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom);
282 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f32, Custom);
283 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i32, Custom);
284 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom);
285 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom);
286 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5f32, Custom);
287 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5i32, Custom);
288 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom);
289 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom);
290 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f32, Custom);
291 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i32, Custom);
292 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32f32, Custom);
293 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32i32, Custom);
295 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
296 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom);
297 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom);
299 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
300 for (MVT VT : ScalarIntVTs) {
301 // These should use [SU]DIVREM, so set them to expand
302 setOperationAction(ISD::SDIV, VT, Expand);
303 setOperationAction(ISD::UDIV, VT, Expand);
304 setOperationAction(ISD::SREM, VT, Expand);
305 setOperationAction(ISD::UREM, VT, Expand);
307 // GPU does not have divrem function for signed or unsigned.
308 setOperationAction(ISD::SDIVREM, VT, Custom);
309 setOperationAction(ISD::UDIVREM, VT, Custom);
311 // GPU does not have [S|U]MUL_LOHI functions as a single instruction.
312 setOperationAction(ISD::SMUL_LOHI, VT, Expand);
313 setOperationAction(ISD::UMUL_LOHI, VT, Expand);
315 setOperationAction(ISD::BSWAP, VT, Expand);
316 setOperationAction(ISD::CTTZ, VT, Expand);
317 setOperationAction(ISD::CTLZ, VT, Expand);
319 // AMDGPU uses ADDC/SUBC/ADDE/SUBE
320 setOperationAction(ISD::ADDC, VT, Legal);
321 setOperationAction(ISD::SUBC, VT, Legal);
322 setOperationAction(ISD::ADDE, VT, Legal);
323 setOperationAction(ISD::SUBE, VT, Legal);
326 // The hardware supports 32-bit ROTR, but not ROTL.
327 setOperationAction(ISD::ROTL, MVT::i32, Expand);
328 setOperationAction(ISD::ROTL, MVT::i64, Expand);
329 setOperationAction(ISD::ROTR, MVT::i64, Expand);
331 setOperationAction(ISD::MUL, MVT::i64, Expand);
332 setOperationAction(ISD::MULHU, MVT::i64, Expand);
333 setOperationAction(ISD::MULHS, MVT::i64, Expand);
334 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
335 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
336 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
337 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
338 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
340 setOperationAction(ISD::SMIN, MVT::i32, Legal);
341 setOperationAction(ISD::UMIN, MVT::i32, Legal);
342 setOperationAction(ISD::SMAX, MVT::i32, Legal);
343 setOperationAction(ISD::UMAX, MVT::i32, Legal);
345 setOperationAction(ISD::CTTZ, MVT::i64, Custom);
346 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom);
347 setOperationAction(ISD::CTLZ, MVT::i64, Custom);
348 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
350 static const MVT::SimpleValueType VectorIntTypes[] = {
351 MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32
354 for (MVT VT : VectorIntTypes) {
355 // Expand the following operations for the current type by default.
356 setOperationAction(ISD::ADD, VT, Expand);
357 setOperationAction(ISD::AND, VT, Expand);
358 setOperationAction(ISD::FP_TO_SINT, VT, Expand);
359 setOperationAction(ISD::FP_TO_UINT, VT, Expand);
360 setOperationAction(ISD::MUL, VT, Expand);
361 setOperationAction(ISD::MULHU, VT, Expand);
362 setOperationAction(ISD::MULHS, VT, Expand);
363 setOperationAction(ISD::OR, VT, Expand);
364 setOperationAction(ISD::SHL, VT, Expand);
365 setOperationAction(ISD::SRA, VT, Expand);
366 setOperationAction(ISD::SRL, VT, Expand);
367 setOperationAction(ISD::ROTL, VT, Expand);
368 setOperationAction(ISD::ROTR, VT, Expand);
369 setOperationAction(ISD::SUB, VT, Expand);
370 setOperationAction(ISD::SINT_TO_FP, VT, Expand);
371 setOperationAction(ISD::UINT_TO_FP, VT, Expand);
372 setOperationAction(ISD::SDIV, VT, Expand);
373 setOperationAction(ISD::UDIV, VT, Expand);
374 setOperationAction(ISD::SREM, VT, Expand);
375 setOperationAction(ISD::UREM, VT, Expand);
376 setOperationAction(ISD::SMUL_LOHI, VT, Expand);
377 setOperationAction(ISD::UMUL_LOHI, VT, Expand);
378 setOperationAction(ISD::SDIVREM, VT, Custom);
379 setOperationAction(ISD::UDIVREM, VT, Expand);
380 setOperationAction(ISD::SELECT, VT, Expand);
381 setOperationAction(ISD::VSELECT, VT, Expand);
382 setOperationAction(ISD::SELECT_CC, VT, Expand);
383 setOperationAction(ISD::XOR, VT, Expand);
384 setOperationAction(ISD::BSWAP, VT, Expand);
385 setOperationAction(ISD::CTPOP, VT, Expand);
386 setOperationAction(ISD::CTTZ, VT, Expand);
387 setOperationAction(ISD::CTLZ, VT, Expand);
388 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
389 setOperationAction(ISD::SETCC, VT, Expand);
392 static const MVT::SimpleValueType FloatVectorTypes[] = {
393 MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32
396 for (MVT VT : FloatVectorTypes) {
397 setOperationAction(ISD::FABS, VT, Expand);
398 setOperationAction(ISD::FMINNUM, VT, Expand);
399 setOperationAction(ISD::FMAXNUM, VT, Expand);
400 setOperationAction(ISD::FADD, VT, Expand);
401 setOperationAction(ISD::FCEIL, VT, Expand);
402 setOperationAction(ISD::FCOS, VT, Expand);
403 setOperationAction(ISD::FDIV, VT, Expand);
404 setOperationAction(ISD::FEXP2, VT, Expand);
405 setOperationAction(ISD::FEXP, VT, Expand);
406 setOperationAction(ISD::FLOG2, VT, Expand);
407 setOperationAction(ISD::FREM, VT, Expand);
408 setOperationAction(ISD::FLOG, VT, Expand);
409 setOperationAction(ISD::FLOG10, VT, Expand);
410 setOperationAction(ISD::FPOW, VT, Expand);
411 setOperationAction(ISD::FFLOOR, VT, Expand);
412 setOperationAction(ISD::FTRUNC, VT, Expand);
413 setOperationAction(ISD::FMUL, VT, Expand);
414 setOperationAction(ISD::FMA, VT, Expand);
415 setOperationAction(ISD::FRINT, VT, Expand);
416 setOperationAction(ISD::FNEARBYINT, VT, Expand);
417 setOperationAction(ISD::FSQRT, VT, Expand);
418 setOperationAction(ISD::FSIN, VT, Expand);
419 setOperationAction(ISD::FSUB, VT, Expand);
420 setOperationAction(ISD::FNEG, VT, Expand);
421 setOperationAction(ISD::VSELECT, VT, Expand);
422 setOperationAction(ISD::SELECT_CC, VT, Expand);
423 setOperationAction(ISD::FCOPYSIGN, VT, Expand);
424 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
425 setOperationAction(ISD::SETCC, VT, Expand);
426 setOperationAction(ISD::FCANONICALIZE, VT, Expand);
429 // This causes using an unrolled select operation rather than expansion with
430 // bit operations. This is in general better, but the alternative using BFI
431 // instructions may be better if the select sources are SGPRs.
432 setOperationAction(ISD::SELECT, MVT::v2f32, Promote);
433 AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32);
435 setOperationAction(ISD::SELECT, MVT::v3f32, Promote);
436 AddPromotedToType(ISD::SELECT, MVT::v3f32, MVT::v3i32);
438 setOperationAction(ISD::SELECT, MVT::v4f32, Promote);
439 AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32);
441 setOperationAction(ISD::SELECT, MVT::v5f32, Promote);
442 AddPromotedToType(ISD::SELECT, MVT::v5f32, MVT::v5i32);
444 // There are no libcalls of any kind.
445 for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I)
446 setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr);
448 setBooleanContents(ZeroOrNegativeOneBooleanContent);
449 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
451 setSchedulingPreference(Sched::RegPressure);
452 setJumpIsExpensive(true);
454 // FIXME: This is only partially true. If we have to do vector compares, any
455 // SGPR pair can be a condition register. If we have a uniform condition, we
456 // are better off doing SALU operations, where there is only one SCC. For now,
457 // we don't have a way of knowing during instruction selection if a condition
458 // will be uniform and we always use vector compares. Assume we are using
459 // vector compares until that is fixed.
460 setHasMultipleConditionRegisters(true);
462 setMinCmpXchgSizeInBits(32);
463 setSupportsUnalignedAtomics(false);
465 PredictableSelectIsExpensive = false;
467 // We want to find all load dependencies for long chains of stores to enable
468 // merging into very wide vectors. The problem is with vectors with > 4
469 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16
470 // vectors are a legal type, even though we have to split the loads
471 // usually. When we can more precisely specify load legality per address
472 // space, we should be able to make FindBetterChain/MergeConsecutiveStores
473 // smarter so that they can figure out what to do in 2 iterations without all
474 // N > 4 stores on the same chain.
475 GatherAllAliasesMaxDepth = 16;
477 // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry
478 // about these during lowering.
479 MaxStoresPerMemcpy = 0xffffffff;
480 MaxStoresPerMemmove = 0xffffffff;
481 MaxStoresPerMemset = 0xffffffff;
483 setTargetDAGCombine(ISD::BITCAST);
484 setTargetDAGCombine(ISD::SHL);
485 setTargetDAGCombine(ISD::SRA);
486 setTargetDAGCombine(ISD::SRL);
487 setTargetDAGCombine(ISD::TRUNCATE);
488 setTargetDAGCombine(ISD::MUL);
489 setTargetDAGCombine(ISD::MULHU);
490 setTargetDAGCombine(ISD::MULHS);
491 setTargetDAGCombine(ISD::SELECT);
492 setTargetDAGCombine(ISD::SELECT_CC);
493 setTargetDAGCombine(ISD::STORE);
494 setTargetDAGCombine(ISD::FADD);
495 setTargetDAGCombine(ISD::FSUB);
496 setTargetDAGCombine(ISD::FNEG);
497 setTargetDAGCombine(ISD::FABS);
498 setTargetDAGCombine(ISD::AssertZext);
499 setTargetDAGCombine(ISD::AssertSext);
502 //===----------------------------------------------------------------------===//
503 // Target Information
504 //===----------------------------------------------------------------------===//
506 LLVM_READNONE
507 static bool fnegFoldsIntoOp(unsigned Opc) {
508 switch (Opc) {
509 case ISD::FADD:
510 case ISD::FSUB:
511 case ISD::FMUL:
512 case ISD::FMA:
513 case ISD::FMAD:
514 case ISD::FMINNUM:
515 case ISD::FMAXNUM:
516 case ISD::FMINNUM_IEEE:
517 case ISD::FMAXNUM_IEEE:
518 case ISD::FSIN:
519 case ISD::FTRUNC:
520 case ISD::FRINT:
521 case ISD::FNEARBYINT:
522 case ISD::FCANONICALIZE:
523 case AMDGPUISD::RCP:
524 case AMDGPUISD::RCP_LEGACY:
525 case AMDGPUISD::RCP_IFLAG:
526 case AMDGPUISD::SIN_HW:
527 case AMDGPUISD::FMUL_LEGACY:
528 case AMDGPUISD::FMIN_LEGACY:
529 case AMDGPUISD::FMAX_LEGACY:
530 case AMDGPUISD::FMED3:
531 return true;
532 default:
533 return false;
537 /// \p returns true if the operation will definitely need to use a 64-bit
538 /// encoding, and thus will use a VOP3 encoding regardless of the source
539 /// modifiers.
540 LLVM_READONLY
541 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) {
542 return N->getNumOperands() > 2 || VT == MVT::f64;
545 // Most FP instructions support source modifiers, but this could be refined
546 // slightly.
547 LLVM_READONLY
548 static bool hasSourceMods(const SDNode *N) {
549 if (isa<MemSDNode>(N))
550 return false;
552 switch (N->getOpcode()) {
553 case ISD::CopyToReg:
554 case ISD::SELECT:
555 case ISD::FDIV:
556 case ISD::FREM:
557 case ISD::INLINEASM:
558 case ISD::INLINEASM_BR:
559 case AMDGPUISD::INTERP_P1:
560 case AMDGPUISD::INTERP_P2:
561 case AMDGPUISD::DIV_SCALE:
563 // TODO: Should really be looking at the users of the bitcast. These are
564 // problematic because bitcasts are used to legalize all stores to integer
565 // types.
566 case ISD::BITCAST:
567 return false;
568 default:
569 return true;
573 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N,
574 unsigned CostThreshold) {
575 // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus
576 // it is truly free to use a source modifier in all cases. If there are
577 // multiple users but for each one will necessitate using VOP3, there will be
578 // a code size increase. Try to avoid increasing code size unless we know it
579 // will save on the instruction count.
580 unsigned NumMayIncreaseSize = 0;
581 MVT VT = N->getValueType(0).getScalarType().getSimpleVT();
583 // XXX - Should this limit number of uses to check?
584 for (const SDNode *U : N->uses()) {
585 if (!hasSourceMods(U))
586 return false;
588 if (!opMustUseVOP3Encoding(U, VT)) {
589 if (++NumMayIncreaseSize > CostThreshold)
590 return false;
594 return true;
597 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const {
598 return MVT::i32;
601 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const {
602 return true;
605 // The backend supports 32 and 64 bit floating point immediates.
606 // FIXME: Why are we reporting vectors of FP immediates as legal?
607 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
608 bool ForCodeSize) const {
609 EVT ScalarVT = VT.getScalarType();
610 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 ||
611 (ScalarVT == MVT::f16 && Subtarget->has16BitInsts()));
614 // We don't want to shrink f64 / f32 constants.
615 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const {
616 EVT ScalarVT = VT.getScalarType();
617 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64);
620 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N,
621 ISD::LoadExtType ExtTy,
622 EVT NewVT) const {
623 // TODO: This may be worth removing. Check regression tests for diffs.
624 if (!TargetLoweringBase::shouldReduceLoadWidth(N, ExtTy, NewVT))
625 return false;
627 unsigned NewSize = NewVT.getStoreSizeInBits();
629 // If we are reducing to a 32-bit load, this is always better.
630 if (NewSize == 32)
631 return true;
633 EVT OldVT = N->getValueType(0);
634 unsigned OldSize = OldVT.getStoreSizeInBits();
636 MemSDNode *MN = cast<MemSDNode>(N);
637 unsigned AS = MN->getAddressSpace();
638 // Do not shrink an aligned scalar load to sub-dword.
639 // Scalar engine cannot do sub-dword loads.
640 if (OldSize >= 32 && NewSize < 32 && MN->getAlignment() >= 4 &&
641 (AS == AMDGPUAS::CONSTANT_ADDRESS ||
642 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
643 (isa<LoadSDNode>(N) &&
644 AS == AMDGPUAS::GLOBAL_ADDRESS && MN->isInvariant())) &&
645 AMDGPUInstrInfo::isUniformMMO(MN->getMemOperand()))
646 return false;
648 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar
649 // extloads, so doing one requires using a buffer_load. In cases where we
650 // still couldn't use a scalar load, using the wider load shouldn't really
651 // hurt anything.
653 // If the old size already had to be an extload, there's no harm in continuing
654 // to reduce the width.
655 return (OldSize < 32);
658 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, EVT CastTy,
659 const SelectionDAG &DAG,
660 const MachineMemOperand &MMO) const {
662 assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits());
664 if (LoadTy.getScalarType() == MVT::i32)
665 return false;
667 unsigned LScalarSize = LoadTy.getScalarSizeInBits();
668 unsigned CastScalarSize = CastTy.getScalarSizeInBits();
670 if ((LScalarSize >= CastScalarSize) && (CastScalarSize < 32))
671 return false;
673 bool Fast = false;
674 return allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), CastTy,
675 MMO, &Fast) && Fast;
678 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also
679 // profitable with the expansion for 64-bit since it's generally good to
680 // speculate things.
681 // FIXME: These should really have the size as a parameter.
682 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const {
683 return true;
686 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const {
687 return true;
690 bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode * N) const {
691 switch (N->getOpcode()) {
692 default:
693 return false;
694 case ISD::EntryToken:
695 case ISD::TokenFactor:
696 return true;
697 case ISD::INTRINSIC_WO_CHAIN:
699 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
700 switch (IntrID) {
701 default:
702 return false;
703 case Intrinsic::amdgcn_readfirstlane:
704 case Intrinsic::amdgcn_readlane:
705 return true;
708 break;
709 case ISD::LOAD:
711 const LoadSDNode * L = dyn_cast<LoadSDNode>(N);
712 if (L->getMemOperand()->getAddrSpace()
713 == AMDGPUAS::CONSTANT_ADDRESS_32BIT)
714 return true;
715 return false;
717 break;
721 //===---------------------------------------------------------------------===//
722 // Target Properties
723 //===---------------------------------------------------------------------===//
725 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const {
726 assert(VT.isFloatingPoint());
728 // Packed operations do not have a fabs modifier.
729 return VT == MVT::f32 || VT == MVT::f64 ||
730 (Subtarget->has16BitInsts() && VT == MVT::f16);
733 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const {
734 assert(VT.isFloatingPoint());
735 return VT == MVT::f32 || VT == MVT::f64 ||
736 (Subtarget->has16BitInsts() && VT == MVT::f16) ||
737 (Subtarget->hasVOP3PInsts() && VT == MVT::v2f16);
740 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT,
741 unsigned NumElem,
742 unsigned AS) const {
743 return true;
746 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const {
747 // There are few operations which truly have vector input operands. Any vector
748 // operation is going to involve operations on each component, and a
749 // build_vector will be a copy per element, so it always makes sense to use a
750 // build_vector input in place of the extracted element to avoid a copy into a
751 // super register.
753 // We should probably only do this if all users are extracts only, but this
754 // should be the common case.
755 return true;
758 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const {
759 // Truncate is just accessing a subregister.
761 unsigned SrcSize = Source.getSizeInBits();
762 unsigned DestSize = Dest.getSizeInBits();
764 return DestSize < SrcSize && DestSize % 32 == 0 ;
767 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const {
768 // Truncate is just accessing a subregister.
770 unsigned SrcSize = Source->getScalarSizeInBits();
771 unsigned DestSize = Dest->getScalarSizeInBits();
773 if (DestSize== 16 && Subtarget->has16BitInsts())
774 return SrcSize >= 32;
776 return DestSize < SrcSize && DestSize % 32 == 0;
779 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const {
780 unsigned SrcSize = Src->getScalarSizeInBits();
781 unsigned DestSize = Dest->getScalarSizeInBits();
783 if (SrcSize == 16 && Subtarget->has16BitInsts())
784 return DestSize >= 32;
786 return SrcSize == 32 && DestSize == 64;
789 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const {
790 // Any register load of a 64-bit value really requires 2 32-bit moves. For all
791 // practical purposes, the extra mov 0 to load a 64-bit is free. As used,
792 // this will enable reducing 64-bit operations the 32-bit, which is always
793 // good.
795 if (Src == MVT::i16)
796 return Dest == MVT::i32 ||Dest == MVT::i64 ;
798 return Src == MVT::i32 && Dest == MVT::i64;
801 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
802 return isZExtFree(Val.getValueType(), VT2);
805 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const {
806 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a
807 // limited number of native 64-bit operations. Shrinking an operation to fit
808 // in a single 32-bit register should always be helpful. As currently used,
809 // this is much less general than the name suggests, and is only used in
810 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is
811 // not profitable, and may actually be harmful.
812 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32;
815 //===---------------------------------------------------------------------===//
816 // TargetLowering Callbacks
817 //===---------------------------------------------------------------------===//
819 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC,
820 bool IsVarArg) {
821 switch (CC) {
822 case CallingConv::AMDGPU_VS:
823 case CallingConv::AMDGPU_GS:
824 case CallingConv::AMDGPU_PS:
825 case CallingConv::AMDGPU_CS:
826 case CallingConv::AMDGPU_HS:
827 case CallingConv::AMDGPU_ES:
828 case CallingConv::AMDGPU_LS:
829 return CC_AMDGPU;
830 case CallingConv::C:
831 case CallingConv::Fast:
832 case CallingConv::Cold:
833 return CC_AMDGPU_Func;
834 case CallingConv::AMDGPU_KERNEL:
835 case CallingConv::SPIR_KERNEL:
836 default:
837 report_fatal_error("Unsupported calling convention for call");
841 CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC,
842 bool IsVarArg) {
843 switch (CC) {
844 case CallingConv::AMDGPU_KERNEL:
845 case CallingConv::SPIR_KERNEL:
846 llvm_unreachable("kernels should not be handled here");
847 case CallingConv::AMDGPU_VS:
848 case CallingConv::AMDGPU_GS:
849 case CallingConv::AMDGPU_PS:
850 case CallingConv::AMDGPU_CS:
851 case CallingConv::AMDGPU_HS:
852 case CallingConv::AMDGPU_ES:
853 case CallingConv::AMDGPU_LS:
854 return RetCC_SI_Shader;
855 case CallingConv::C:
856 case CallingConv::Fast:
857 case CallingConv::Cold:
858 return RetCC_AMDGPU_Func;
859 default:
860 report_fatal_error("Unsupported calling convention.");
864 /// The SelectionDAGBuilder will automatically promote function arguments
865 /// with illegal types. However, this does not work for the AMDGPU targets
866 /// since the function arguments are stored in memory as these illegal types.
867 /// In order to handle this properly we need to get the original types sizes
868 /// from the LLVM IR Function and fixup the ISD:InputArg values before
869 /// passing them to AnalyzeFormalArguments()
871 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting
872 /// input values across multiple registers. Each item in the Ins array
873 /// represents a single value that will be stored in registers. Ins[x].VT is
874 /// the value type of the value that will be stored in the register, so
875 /// whatever SDNode we lower the argument to needs to be this type.
877 /// In order to correctly lower the arguments we need to know the size of each
878 /// argument. Since Ins[x].VT gives us the size of the register that will
879 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type
880 /// for the orignal function argument so that we can deduce the correct memory
881 /// type to use for Ins[x]. In most cases the correct memory type will be
882 /// Ins[x].ArgVT. However, this will not always be the case. If, for example,
883 /// we have a kernel argument of type v8i8, this argument will be split into
884 /// 8 parts and each part will be represented by its own item in the Ins array.
885 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of
886 /// the argument before it was split. From this, we deduce that the memory type
887 /// for each individual part is i8. We pass the memory type as LocVT to the
888 /// calling convention analysis function and the register type (Ins[x].VT) as
889 /// the ValVT.
890 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute(
891 CCState &State,
892 const SmallVectorImpl<ISD::InputArg> &Ins) const {
893 const MachineFunction &MF = State.getMachineFunction();
894 const Function &Fn = MF.getFunction();
895 LLVMContext &Ctx = Fn.getParent()->getContext();
896 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(MF);
897 const unsigned ExplicitOffset = ST.getExplicitKernelArgOffset(Fn);
898 CallingConv::ID CC = Fn.getCallingConv();
900 unsigned MaxAlign = 1;
901 uint64_t ExplicitArgOffset = 0;
902 const DataLayout &DL = Fn.getParent()->getDataLayout();
904 unsigned InIndex = 0;
906 for (const Argument &Arg : Fn.args()) {
907 Type *BaseArgTy = Arg.getType();
908 unsigned Align = DL.getABITypeAlignment(BaseArgTy);
909 MaxAlign = std::max(Align, MaxAlign);
910 unsigned AllocSize = DL.getTypeAllocSize(BaseArgTy);
912 uint64_t ArgOffset = alignTo(ExplicitArgOffset, Align) + ExplicitOffset;
913 ExplicitArgOffset = alignTo(ExplicitArgOffset, Align) + AllocSize;
915 // We're basically throwing away everything passed into us and starting over
916 // to get accurate in-memory offsets. The "PartOffset" is completely useless
917 // to us as computed in Ins.
919 // We also need to figure out what type legalization is trying to do to get
920 // the correct memory offsets.
922 SmallVector<EVT, 16> ValueVTs;
923 SmallVector<uint64_t, 16> Offsets;
924 ComputeValueVTs(*this, DL, BaseArgTy, ValueVTs, &Offsets, ArgOffset);
926 for (unsigned Value = 0, NumValues = ValueVTs.size();
927 Value != NumValues; ++Value) {
928 uint64_t BasePartOffset = Offsets[Value];
930 EVT ArgVT = ValueVTs[Value];
931 EVT MemVT = ArgVT;
932 MVT RegisterVT = getRegisterTypeForCallingConv(Ctx, CC, ArgVT);
933 unsigned NumRegs = getNumRegistersForCallingConv(Ctx, CC, ArgVT);
935 if (NumRegs == 1) {
936 // This argument is not split, so the IR type is the memory type.
937 if (ArgVT.isExtended()) {
938 // We have an extended type, like i24, so we should just use the
939 // register type.
940 MemVT = RegisterVT;
941 } else {
942 MemVT = ArgVT;
944 } else if (ArgVT.isVector() && RegisterVT.isVector() &&
945 ArgVT.getScalarType() == RegisterVT.getScalarType()) {
946 assert(ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements());
947 // We have a vector value which has been split into a vector with
948 // the same scalar type, but fewer elements. This should handle
949 // all the floating-point vector types.
950 MemVT = RegisterVT;
951 } else if (ArgVT.isVector() &&
952 ArgVT.getVectorNumElements() == NumRegs) {
953 // This arg has been split so that each element is stored in a separate
954 // register.
955 MemVT = ArgVT.getScalarType();
956 } else if (ArgVT.isExtended()) {
957 // We have an extended type, like i65.
958 MemVT = RegisterVT;
959 } else {
960 unsigned MemoryBits = ArgVT.getStoreSizeInBits() / NumRegs;
961 assert(ArgVT.getStoreSizeInBits() % NumRegs == 0);
962 if (RegisterVT.isInteger()) {
963 MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits);
964 } else if (RegisterVT.isVector()) {
965 assert(!RegisterVT.getScalarType().isFloatingPoint());
966 unsigned NumElements = RegisterVT.getVectorNumElements();
967 assert(MemoryBits % NumElements == 0);
968 // This vector type has been split into another vector type with
969 // a different elements size.
970 EVT ScalarVT = EVT::getIntegerVT(State.getContext(),
971 MemoryBits / NumElements);
972 MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements);
973 } else {
974 llvm_unreachable("cannot deduce memory type.");
978 // Convert one element vectors to scalar.
979 if (MemVT.isVector() && MemVT.getVectorNumElements() == 1)
980 MemVT = MemVT.getScalarType();
982 // Round up vec3/vec5 argument.
983 if (MemVT.isVector() && !MemVT.isPow2VectorType()) {
984 assert(MemVT.getVectorNumElements() == 3 ||
985 MemVT.getVectorNumElements() == 5);
986 MemVT = MemVT.getPow2VectorType(State.getContext());
989 unsigned PartOffset = 0;
990 for (unsigned i = 0; i != NumRegs; ++i) {
991 State.addLoc(CCValAssign::getCustomMem(InIndex++, RegisterVT,
992 BasePartOffset + PartOffset,
993 MemVT.getSimpleVT(),
994 CCValAssign::Full));
995 PartOffset += MemVT.getStoreSize();
1001 SDValue AMDGPUTargetLowering::LowerReturn(
1002 SDValue Chain, CallingConv::ID CallConv,
1003 bool isVarArg,
1004 const SmallVectorImpl<ISD::OutputArg> &Outs,
1005 const SmallVectorImpl<SDValue> &OutVals,
1006 const SDLoc &DL, SelectionDAG &DAG) const {
1007 // FIXME: Fails for r600 tests
1008 //assert(!isVarArg && Outs.empty() && OutVals.empty() &&
1009 // "wave terminate should not have return values");
1010 return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain);
1013 //===---------------------------------------------------------------------===//
1014 // Target specific lowering
1015 //===---------------------------------------------------------------------===//
1017 /// Selects the correct CCAssignFn for a given CallingConvention value.
1018 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC,
1019 bool IsVarArg) {
1020 return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg);
1023 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC,
1024 bool IsVarArg) {
1025 return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg);
1028 SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain,
1029 SelectionDAG &DAG,
1030 MachineFrameInfo &MFI,
1031 int ClobberedFI) const {
1032 SmallVector<SDValue, 8> ArgChains;
1033 int64_t FirstByte = MFI.getObjectOffset(ClobberedFI);
1034 int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1;
1036 // Include the original chain at the beginning of the list. When this is
1037 // used by target LowerCall hooks, this helps legalize find the
1038 // CALLSEQ_BEGIN node.
1039 ArgChains.push_back(Chain);
1041 // Add a chain value for each stack argument corresponding
1042 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
1043 UE = DAG.getEntryNode().getNode()->use_end();
1044 U != UE; ++U) {
1045 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) {
1046 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) {
1047 if (FI->getIndex() < 0) {
1048 int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex());
1049 int64_t InLastByte = InFirstByte;
1050 InLastByte += MFI.getObjectSize(FI->getIndex()) - 1;
1052 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
1053 (FirstByte <= InFirstByte && InFirstByte <= LastByte))
1054 ArgChains.push_back(SDValue(L, 1));
1060 // Build a tokenfactor for all the chains.
1061 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
1064 SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI,
1065 SmallVectorImpl<SDValue> &InVals,
1066 StringRef Reason) const {
1067 SDValue Callee = CLI.Callee;
1068 SelectionDAG &DAG = CLI.DAG;
1070 const Function &Fn = DAG.getMachineFunction().getFunction();
1072 StringRef FuncName("<unknown>");
1074 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee))
1075 FuncName = G->getSymbol();
1076 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1077 FuncName = G->getGlobal()->getName();
1079 DiagnosticInfoUnsupported NoCalls(
1080 Fn, Reason + FuncName, CLI.DL.getDebugLoc());
1081 DAG.getContext()->diagnose(NoCalls);
1083 if (!CLI.IsTailCall) {
1084 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
1085 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
1088 return DAG.getEntryNode();
1091 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI,
1092 SmallVectorImpl<SDValue> &InVals) const {
1093 return lowerUnhandledCall(CLI, InVals, "unsupported call to function ");
1096 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
1097 SelectionDAG &DAG) const {
1098 const Function &Fn = DAG.getMachineFunction().getFunction();
1100 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca",
1101 SDLoc(Op).getDebugLoc());
1102 DAG.getContext()->diagnose(NoDynamicAlloca);
1103 auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)};
1104 return DAG.getMergeValues(Ops, SDLoc());
1107 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op,
1108 SelectionDAG &DAG) const {
1109 switch (Op.getOpcode()) {
1110 default:
1111 Op->print(errs(), &DAG);
1112 llvm_unreachable("Custom lowering code for this"
1113 "instruction is not implemented yet!");
1114 break;
1115 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG);
1116 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
1117 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
1118 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG);
1119 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG);
1120 case ISD::FREM: return LowerFREM(Op, DAG);
1121 case ISD::FCEIL: return LowerFCEIL(Op, DAG);
1122 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG);
1123 case ISD::FRINT: return LowerFRINT(Op, DAG);
1124 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG);
1125 case ISD::FROUND: return LowerFROUND(Op, DAG);
1126 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG);
1127 case ISD::FLOG:
1128 return LowerFLOG(Op, DAG, 1 / AMDGPU_LOG2E_F);
1129 case ISD::FLOG10:
1130 return LowerFLOG(Op, DAG, AMDGPU_LN2_F / AMDGPU_LN10_F);
1131 case ISD::FEXP:
1132 return lowerFEXP(Op, DAG);
1133 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
1134 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
1135 case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG);
1136 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
1137 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG);
1138 case ISD::CTTZ:
1139 case ISD::CTTZ_ZERO_UNDEF:
1140 case ISD::CTLZ:
1141 case ISD::CTLZ_ZERO_UNDEF:
1142 return LowerCTLZ_CTTZ(Op, DAG);
1143 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
1145 return Op;
1148 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N,
1149 SmallVectorImpl<SDValue> &Results,
1150 SelectionDAG &DAG) const {
1151 switch (N->getOpcode()) {
1152 case ISD::SIGN_EXTEND_INREG:
1153 // Different parts of legalization seem to interpret which type of
1154 // sign_extend_inreg is the one to check for custom lowering. The extended
1155 // from type is what really matters, but some places check for custom
1156 // lowering of the result type. This results in trying to use
1157 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do
1158 // nothing here and let the illegal result integer be handled normally.
1159 return;
1160 default:
1161 return;
1165 static bool hasDefinedInitializer(const GlobalValue *GV) {
1166 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
1167 if (!GVar || !GVar->hasInitializer())
1168 return false;
1170 return !isa<UndefValue>(GVar->getInitializer());
1173 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI,
1174 SDValue Op,
1175 SelectionDAG &DAG) const {
1177 const DataLayout &DL = DAG.getDataLayout();
1178 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op);
1179 const GlobalValue *GV = G->getGlobal();
1181 if (G->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
1182 G->getAddressSpace() == AMDGPUAS::REGION_ADDRESS) {
1183 if (!MFI->isEntryFunction()) {
1184 const Function &Fn = DAG.getMachineFunction().getFunction();
1185 DiagnosticInfoUnsupported BadLDSDecl(
1186 Fn, "local memory global used by non-kernel function", SDLoc(Op).getDebugLoc());
1187 DAG.getContext()->diagnose(BadLDSDecl);
1190 // XXX: What does the value of G->getOffset() mean?
1191 assert(G->getOffset() == 0 &&
1192 "Do not know what to do with an non-zero offset");
1194 // TODO: We could emit code to handle the initialization somewhere.
1195 if (!hasDefinedInitializer(GV)) {
1196 unsigned Offset = MFI->allocateLDSGlobal(DL, *GV);
1197 return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType());
1201 const Function &Fn = DAG.getMachineFunction().getFunction();
1202 DiagnosticInfoUnsupported BadInit(
1203 Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc());
1204 DAG.getContext()->diagnose(BadInit);
1205 return SDValue();
1208 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
1209 SelectionDAG &DAG) const {
1210 SmallVector<SDValue, 8> Args;
1212 EVT VT = Op.getValueType();
1213 if (VT == MVT::v4i16 || VT == MVT::v4f16) {
1214 SDLoc SL(Op);
1215 SDValue Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(0));
1216 SDValue Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(1));
1218 SDValue BV = DAG.getBuildVector(MVT::v2i32, SL, { Lo, Hi });
1219 return DAG.getNode(ISD::BITCAST, SL, VT, BV);
1222 for (const SDUse &U : Op->ops())
1223 DAG.ExtractVectorElements(U.get(), Args);
1225 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
1228 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
1229 SelectionDAG &DAG) const {
1231 SmallVector<SDValue, 8> Args;
1232 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1233 EVT VT = Op.getValueType();
1234 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start,
1235 VT.getVectorNumElements());
1237 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
1240 /// Generate Min/Max node
1241 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT,
1242 SDValue LHS, SDValue RHS,
1243 SDValue True, SDValue False,
1244 SDValue CC,
1245 DAGCombinerInfo &DCI) const {
1246 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
1247 return SDValue();
1249 SelectionDAG &DAG = DCI.DAG;
1250 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
1251 switch (CCOpcode) {
1252 case ISD::SETOEQ:
1253 case ISD::SETONE:
1254 case ISD::SETUNE:
1255 case ISD::SETNE:
1256 case ISD::SETUEQ:
1257 case ISD::SETEQ:
1258 case ISD::SETFALSE:
1259 case ISD::SETFALSE2:
1260 case ISD::SETTRUE:
1261 case ISD::SETTRUE2:
1262 case ISD::SETUO:
1263 case ISD::SETO:
1264 break;
1265 case ISD::SETULE:
1266 case ISD::SETULT: {
1267 if (LHS == True)
1268 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1269 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1271 case ISD::SETOLE:
1272 case ISD::SETOLT:
1273 case ISD::SETLE:
1274 case ISD::SETLT: {
1275 // Ordered. Assume ordered for undefined.
1277 // Only do this after legalization to avoid interfering with other combines
1278 // which might occur.
1279 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1280 !DCI.isCalledByLegalizer())
1281 return SDValue();
1283 // We need to permute the operands to get the correct NaN behavior. The
1284 // selected operand is the second one based on the failing compare with NaN,
1285 // so permute it based on the compare type the hardware uses.
1286 if (LHS == True)
1287 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1288 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1290 case ISD::SETUGE:
1291 case ISD::SETUGT: {
1292 if (LHS == True)
1293 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1294 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1296 case ISD::SETGT:
1297 case ISD::SETGE:
1298 case ISD::SETOGE:
1299 case ISD::SETOGT: {
1300 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1301 !DCI.isCalledByLegalizer())
1302 return SDValue();
1304 if (LHS == True)
1305 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1306 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1308 case ISD::SETCC_INVALID:
1309 llvm_unreachable("Invalid setcc condcode!");
1311 return SDValue();
1314 std::pair<SDValue, SDValue>
1315 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const {
1316 SDLoc SL(Op);
1318 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1320 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1321 const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1323 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1324 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1326 return std::make_pair(Lo, Hi);
1329 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const {
1330 SDLoc SL(Op);
1332 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1333 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1334 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1337 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const {
1338 SDLoc SL(Op);
1340 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1341 const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1342 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1345 // Split a vector type into two parts. The first part is a power of two vector.
1346 // The second part is whatever is left over, and is a scalar if it would
1347 // otherwise be a 1-vector.
1348 std::pair<EVT, EVT>
1349 AMDGPUTargetLowering::getSplitDestVTs(const EVT &VT, SelectionDAG &DAG) const {
1350 EVT LoVT, HiVT;
1351 EVT EltVT = VT.getVectorElementType();
1352 unsigned NumElts = VT.getVectorNumElements();
1353 unsigned LoNumElts = PowerOf2Ceil((NumElts + 1) / 2);
1354 LoVT = EVT::getVectorVT(*DAG.getContext(), EltVT, LoNumElts);
1355 HiVT = NumElts - LoNumElts == 1
1356 ? EltVT
1357 : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts - LoNumElts);
1358 return std::make_pair(LoVT, HiVT);
1361 // Split a vector value into two parts of types LoVT and HiVT. HiVT could be
1362 // scalar.
1363 std::pair<SDValue, SDValue>
1364 AMDGPUTargetLowering::splitVector(const SDValue &N, const SDLoc &DL,
1365 const EVT &LoVT, const EVT &HiVT,
1366 SelectionDAG &DAG) const {
1367 assert(LoVT.getVectorNumElements() +
1368 (HiVT.isVector() ? HiVT.getVectorNumElements() : 1) <=
1369 N.getValueType().getVectorNumElements() &&
1370 "More vector elements requested than available!");
1371 auto IdxTy = getVectorIdxTy(DAG.getDataLayout());
1372 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N,
1373 DAG.getConstant(0, DL, IdxTy));
1374 SDValue Hi = DAG.getNode(
1375 HiVT.isVector() ? ISD::EXTRACT_SUBVECTOR : ISD::EXTRACT_VECTOR_ELT, DL,
1376 HiVT, N, DAG.getConstant(LoVT.getVectorNumElements(), DL, IdxTy));
1377 return std::make_pair(Lo, Hi);
1380 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op,
1381 SelectionDAG &DAG) const {
1382 LoadSDNode *Load = cast<LoadSDNode>(Op);
1383 EVT VT = Op.getValueType();
1386 // If this is a 2 element vector, we really want to scalarize and not create
1387 // weird 1 element vectors.
1388 if (VT.getVectorNumElements() == 2)
1389 return scalarizeVectorLoad(Load, DAG);
1391 SDValue BasePtr = Load->getBasePtr();
1392 EVT MemVT = Load->getMemoryVT();
1393 SDLoc SL(Op);
1395 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
1397 EVT LoVT, HiVT;
1398 EVT LoMemVT, HiMemVT;
1399 SDValue Lo, Hi;
1401 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG);
1402 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG);
1403 std::tie(Lo, Hi) = splitVector(Op, SL, LoVT, HiVT, DAG);
1405 unsigned Size = LoMemVT.getStoreSize();
1406 unsigned BaseAlign = Load->getAlignment();
1407 unsigned HiAlign = MinAlign(BaseAlign, Size);
1409 SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT,
1410 Load->getChain(), BasePtr, SrcValue, LoMemVT,
1411 BaseAlign, Load->getMemOperand()->getFlags());
1412 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, Size);
1413 SDValue HiLoad =
1414 DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(),
1415 HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()),
1416 HiMemVT, HiAlign, Load->getMemOperand()->getFlags());
1418 auto IdxTy = getVectorIdxTy(DAG.getDataLayout());
1419 SDValue Join;
1420 if (LoVT == HiVT) {
1421 // This is the case that the vector is power of two so was evenly split.
1422 Join = DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad);
1423 } else {
1424 Join = DAG.getNode(ISD::INSERT_SUBVECTOR, SL, VT, DAG.getUNDEF(VT), LoLoad,
1425 DAG.getConstant(0, SL, IdxTy));
1426 Join = DAG.getNode(HiVT.isVector() ? ISD::INSERT_SUBVECTOR
1427 : ISD::INSERT_VECTOR_ELT,
1428 SL, VT, Join, HiLoad,
1429 DAG.getConstant(LoVT.getVectorNumElements(), SL, IdxTy));
1432 SDValue Ops[] = {Join, DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
1433 LoLoad.getValue(1), HiLoad.getValue(1))};
1435 return DAG.getMergeValues(Ops, SL);
1438 // Widen a vector load from vec3 to vec4.
1439 SDValue AMDGPUTargetLowering::WidenVectorLoad(SDValue Op,
1440 SelectionDAG &DAG) const {
1441 LoadSDNode *Load = cast<LoadSDNode>(Op);
1442 EVT VT = Op.getValueType();
1443 assert(VT.getVectorNumElements() == 3);
1444 SDValue BasePtr = Load->getBasePtr();
1445 EVT MemVT = Load->getMemoryVT();
1446 SDLoc SL(Op);
1447 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
1448 unsigned BaseAlign = Load->getAlignment();
1450 EVT WideVT =
1451 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4);
1452 EVT WideMemVT =
1453 EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 4);
1454 SDValue WideLoad = DAG.getExtLoad(
1455 Load->getExtensionType(), SL, WideVT, Load->getChain(), BasePtr, SrcValue,
1456 WideMemVT, BaseAlign, Load->getMemOperand()->getFlags());
1457 return DAG.getMergeValues(
1458 {DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, VT, WideLoad,
1459 DAG.getConstant(0, SL, getVectorIdxTy(DAG.getDataLayout()))),
1460 WideLoad.getValue(1)},
1461 SL);
1464 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op,
1465 SelectionDAG &DAG) const {
1466 StoreSDNode *Store = cast<StoreSDNode>(Op);
1467 SDValue Val = Store->getValue();
1468 EVT VT = Val.getValueType();
1470 // If this is a 2 element vector, we really want to scalarize and not create
1471 // weird 1 element vectors.
1472 if (VT.getVectorNumElements() == 2)
1473 return scalarizeVectorStore(Store, DAG);
1475 EVT MemVT = Store->getMemoryVT();
1476 SDValue Chain = Store->getChain();
1477 SDValue BasePtr = Store->getBasePtr();
1478 SDLoc SL(Op);
1480 EVT LoVT, HiVT;
1481 EVT LoMemVT, HiMemVT;
1482 SDValue Lo, Hi;
1484 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG);
1485 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG);
1486 std::tie(Lo, Hi) = splitVector(Val, SL, LoVT, HiVT, DAG);
1488 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize());
1490 const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo();
1491 unsigned BaseAlign = Store->getAlignment();
1492 unsigned Size = LoMemVT.getStoreSize();
1493 unsigned HiAlign = MinAlign(BaseAlign, Size);
1495 SDValue LoStore =
1496 DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign,
1497 Store->getMemOperand()->getFlags());
1498 SDValue HiStore =
1499 DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size),
1500 HiMemVT, HiAlign, Store->getMemOperand()->getFlags());
1502 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore);
1505 // This is a shortcut for integer division because we have fast i32<->f32
1506 // conversions, and fast f32 reciprocal instructions. The fractional part of a
1507 // float is enough to accurately represent up to a 24-bit signed integer.
1508 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG,
1509 bool Sign) const {
1510 SDLoc DL(Op);
1511 EVT VT = Op.getValueType();
1512 SDValue LHS = Op.getOperand(0);
1513 SDValue RHS = Op.getOperand(1);
1514 MVT IntVT = MVT::i32;
1515 MVT FltVT = MVT::f32;
1517 unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS);
1518 if (LHSSignBits < 9)
1519 return SDValue();
1521 unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS);
1522 if (RHSSignBits < 9)
1523 return SDValue();
1525 unsigned BitSize = VT.getSizeInBits();
1526 unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
1527 unsigned DivBits = BitSize - SignBits;
1528 if (Sign)
1529 ++DivBits;
1531 ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP;
1532 ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT;
1534 SDValue jq = DAG.getConstant(1, DL, IntVT);
1536 if (Sign) {
1537 // char|short jq = ia ^ ib;
1538 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS);
1540 // jq = jq >> (bitsize - 2)
1541 jq = DAG.getNode(ISD::SRA, DL, VT, jq,
1542 DAG.getConstant(BitSize - 2, DL, VT));
1544 // jq = jq | 0x1
1545 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT));
1548 // int ia = (int)LHS;
1549 SDValue ia = LHS;
1551 // int ib, (int)RHS;
1552 SDValue ib = RHS;
1554 // float fa = (float)ia;
1555 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia);
1557 // float fb = (float)ib;
1558 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib);
1560 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT,
1561 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb));
1563 // fq = trunc(fq);
1564 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq);
1566 // float fqneg = -fq;
1567 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq);
1569 // float fr = mad(fqneg, fb, fa);
1570 unsigned OpCode = Subtarget->hasFP32Denormals() ?
1571 (unsigned)AMDGPUISD::FMAD_FTZ :
1572 (unsigned)ISD::FMAD;
1573 SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa);
1575 // int iq = (int)fq;
1576 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq);
1578 // fr = fabs(fr);
1579 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr);
1581 // fb = fabs(fb);
1582 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb);
1584 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
1586 // int cv = fr >= fb;
1587 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE);
1589 // jq = (cv ? jq : 0);
1590 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT));
1592 // dst = iq + jq;
1593 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq);
1595 // Rem needs compensation, it's easier to recompute it
1596 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS);
1597 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem);
1599 // Truncate to number of bits this divide really is.
1600 if (Sign) {
1601 SDValue InRegSize
1602 = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits));
1603 Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize);
1604 Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize);
1605 } else {
1606 SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT);
1607 Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask);
1608 Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask);
1611 return DAG.getMergeValues({ Div, Rem }, DL);
1614 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op,
1615 SelectionDAG &DAG,
1616 SmallVectorImpl<SDValue> &Results) const {
1617 SDLoc DL(Op);
1618 EVT VT = Op.getValueType();
1620 assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64");
1622 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1624 SDValue One = DAG.getConstant(1, DL, HalfVT);
1625 SDValue Zero = DAG.getConstant(0, DL, HalfVT);
1627 //HiLo split
1628 SDValue LHS = Op.getOperand(0);
1629 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
1630 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One);
1632 SDValue RHS = Op.getOperand(1);
1633 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
1634 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One);
1636 if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) &&
1637 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) {
1639 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
1640 LHS_Lo, RHS_Lo);
1642 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero});
1643 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero});
1645 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV));
1646 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM));
1647 return;
1650 if (isTypeLegal(MVT::i64)) {
1651 // Compute denominator reciprocal.
1652 unsigned FMAD = Subtarget->hasFP32Denormals() ?
1653 (unsigned)AMDGPUISD::FMAD_FTZ :
1654 (unsigned)ISD::FMAD;
1656 SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo);
1657 SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi);
1658 SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi,
1659 DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32),
1660 Cvt_Lo);
1661 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1);
1662 SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp,
1663 DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32));
1664 SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1,
1665 DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32));
1666 SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2);
1667 SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc,
1668 DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32),
1669 Mul1);
1670 SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2);
1671 SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc);
1672 SDValue Rcp64 = DAG.getBitcast(VT,
1673 DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi}));
1675 SDValue Zero64 = DAG.getConstant(0, DL, VT);
1676 SDValue One64 = DAG.getConstant(1, DL, VT);
1677 SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1);
1678 SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1);
1680 SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS);
1681 SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64);
1682 SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1);
1683 SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1,
1684 Zero);
1685 SDValue Mulhi1_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1,
1686 One);
1688 SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo,
1689 Mulhi1_Lo, Zero1);
1690 SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi,
1691 Mulhi1_Hi, Add1_Lo.getValue(1));
1692 SDValue Add1_HiNc = DAG.getNode(ISD::ADD, DL, HalfVT, Rcp_Hi, Mulhi1_Hi);
1693 SDValue Add1 = DAG.getBitcast(VT,
1694 DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi}));
1696 SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1);
1697 SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2);
1698 SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2,
1699 Zero);
1700 SDValue Mulhi2_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2,
1701 One);
1703 SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo,
1704 Mulhi2_Lo, Zero1);
1705 SDValue Add2_HiC = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_HiNc,
1706 Mulhi2_Hi, Add1_Lo.getValue(1));
1707 SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add2_HiC,
1708 Zero, Add2_Lo.getValue(1));
1709 SDValue Add2 = DAG.getBitcast(VT,
1710 DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi}));
1711 SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2);
1713 SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3);
1715 SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero);
1716 SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One);
1717 SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo,
1718 Mul3_Lo, Zero1);
1719 SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi,
1720 Mul3_Hi, Sub1_Lo.getValue(1));
1721 SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi);
1722 SDValue Sub1 = DAG.getBitcast(VT,
1723 DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi}));
1725 SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT);
1726 SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero,
1727 ISD::SETUGE);
1728 SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero,
1729 ISD::SETUGE);
1730 SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ);
1732 // TODO: Here and below portions of the code can be enclosed into if/endif.
1733 // Currently control flow is unconditional and we have 4 selects after
1734 // potential endif to substitute PHIs.
1736 // if C3 != 0 ...
1737 SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo,
1738 RHS_Lo, Zero1);
1739 SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi,
1740 RHS_Hi, Sub1_Lo.getValue(1));
1741 SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi,
1742 Zero, Sub2_Lo.getValue(1));
1743 SDValue Sub2 = DAG.getBitcast(VT,
1744 DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi}));
1746 SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64);
1748 SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero,
1749 ISD::SETUGE);
1750 SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero,
1751 ISD::SETUGE);
1752 SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ);
1754 // if (C6 != 0)
1755 SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64);
1757 SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo,
1758 RHS_Lo, Zero1);
1759 SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi,
1760 RHS_Hi, Sub2_Lo.getValue(1));
1761 SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi,
1762 Zero, Sub3_Lo.getValue(1));
1763 SDValue Sub3 = DAG.getBitcast(VT,
1764 DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi}));
1766 // endif C6
1767 // endif C3
1769 SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE);
1770 SDValue Div = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE);
1772 SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE);
1773 SDValue Rem = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE);
1775 Results.push_back(Div);
1776 Results.push_back(Rem);
1778 return;
1781 // r600 expandion.
1782 // Get Speculative values
1783 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo);
1784 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo);
1786 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ);
1787 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero});
1788 REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM);
1790 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ);
1791 SDValue DIV_Lo = Zero;
1793 const unsigned halfBitWidth = HalfVT.getSizeInBits();
1795 for (unsigned i = 0; i < halfBitWidth; ++i) {
1796 const unsigned bitPos = halfBitWidth - i - 1;
1797 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT);
1798 // Get value of high bit
1799 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS);
1800 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One);
1801 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit);
1803 // Shift
1804 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT));
1805 // Add LHS high bit
1806 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit);
1808 SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT);
1809 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE);
1811 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT);
1813 // Update REM
1814 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS);
1815 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE);
1818 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi});
1819 DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV);
1820 Results.push_back(DIV);
1821 Results.push_back(REM);
1824 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op,
1825 SelectionDAG &DAG) const {
1826 SDLoc DL(Op);
1827 EVT VT = Op.getValueType();
1829 if (VT == MVT::i64) {
1830 SmallVector<SDValue, 2> Results;
1831 LowerUDIVREM64(Op, DAG, Results);
1832 return DAG.getMergeValues(Results, DL);
1835 if (VT == MVT::i32) {
1836 if (SDValue Res = LowerDIVREM24(Op, DAG, false))
1837 return Res;
1840 SDValue Num = Op.getOperand(0);
1841 SDValue Den = Op.getOperand(1);
1843 // RCP = URECIP(Den) = 2^32 / Den + e
1844 // e is rounding error.
1845 SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den);
1847 // RCP_LO = mul(RCP, Den) */
1848 SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den);
1850 // RCP_HI = mulhu (RCP, Den) */
1851 SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den);
1853 // NEG_RCP_LO = -RCP_LO
1854 SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
1855 RCP_LO);
1857 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO)
1858 SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
1859 NEG_RCP_LO, RCP_LO,
1860 ISD::SETEQ);
1861 // Calculate the rounding error from the URECIP instruction
1862 // E = mulhu(ABS_RCP_LO, RCP)
1863 SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP);
1865 // RCP_A_E = RCP + E
1866 SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E);
1868 // RCP_S_E = RCP - E
1869 SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E);
1871 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E)
1872 SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
1873 RCP_A_E, RCP_S_E,
1874 ISD::SETEQ);
1875 // Quotient = mulhu(Tmp0, Num)
1876 SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num);
1878 // Num_S_Remainder = Quotient * Den
1879 SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den);
1881 // Remainder = Num - Num_S_Remainder
1882 SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder);
1884 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0)
1885 SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den,
1886 DAG.getConstant(-1, DL, VT),
1887 DAG.getConstant(0, DL, VT),
1888 ISD::SETUGE);
1889 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0)
1890 SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num,
1891 Num_S_Remainder,
1892 DAG.getConstant(-1, DL, VT),
1893 DAG.getConstant(0, DL, VT),
1894 ISD::SETUGE);
1895 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero
1896 SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den,
1897 Remainder_GE_Zero);
1899 // Calculate Division result:
1901 // Quotient_A_One = Quotient + 1
1902 SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient,
1903 DAG.getConstant(1, DL, VT));
1905 // Quotient_S_One = Quotient - 1
1906 SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient,
1907 DAG.getConstant(1, DL, VT));
1909 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One)
1910 SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
1911 Quotient, Quotient_A_One, ISD::SETEQ);
1913 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div)
1914 Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
1915 Quotient_S_One, Div, ISD::SETEQ);
1917 // Calculate Rem result:
1919 // Remainder_S_Den = Remainder - Den
1920 SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den);
1922 // Remainder_A_Den = Remainder + Den
1923 SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den);
1925 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den)
1926 SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
1927 Remainder, Remainder_S_Den, ISD::SETEQ);
1929 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem)
1930 Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
1931 Remainder_A_Den, Rem, ISD::SETEQ);
1932 SDValue Ops[2] = {
1933 Div,
1936 return DAG.getMergeValues(Ops, DL);
1939 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op,
1940 SelectionDAG &DAG) const {
1941 SDLoc DL(Op);
1942 EVT VT = Op.getValueType();
1944 SDValue LHS = Op.getOperand(0);
1945 SDValue RHS = Op.getOperand(1);
1947 SDValue Zero = DAG.getConstant(0, DL, VT);
1948 SDValue NegOne = DAG.getConstant(-1, DL, VT);
1950 if (VT == MVT::i32) {
1951 if (SDValue Res = LowerDIVREM24(Op, DAG, true))
1952 return Res;
1955 if (VT == MVT::i64 &&
1956 DAG.ComputeNumSignBits(LHS) > 32 &&
1957 DAG.ComputeNumSignBits(RHS) > 32) {
1958 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1960 //HiLo split
1961 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
1962 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
1963 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
1964 LHS_Lo, RHS_Lo);
1965 SDValue Res[2] = {
1966 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)),
1967 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1))
1969 return DAG.getMergeValues(Res, DL);
1972 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT);
1973 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT);
1974 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign);
1975 SDValue RSign = LHSign; // Remainder sign is the same as LHS
1977 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign);
1978 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign);
1980 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign);
1981 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign);
1983 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS);
1984 SDValue Rem = Div.getValue(1);
1986 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign);
1987 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign);
1989 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign);
1990 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign);
1992 SDValue Res[2] = {
1993 Div,
1996 return DAG.getMergeValues(Res, DL);
1999 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y))
2000 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const {
2001 SDLoc SL(Op);
2002 EVT VT = Op.getValueType();
2003 SDValue X = Op.getOperand(0);
2004 SDValue Y = Op.getOperand(1);
2006 // TODO: Should this propagate fast-math-flags?
2008 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y);
2009 SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div);
2010 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y);
2012 return DAG.getNode(ISD::FSUB, SL, VT, X, Mul);
2015 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const {
2016 SDLoc SL(Op);
2017 SDValue Src = Op.getOperand(0);
2019 // result = trunc(src)
2020 // if (src > 0.0 && src != result)
2021 // result += 1.0
2023 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2025 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
2026 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
2028 EVT SetCCVT =
2029 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2031 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT);
2032 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
2033 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
2035 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero);
2036 // TODO: Should this propagate fast-math-flags?
2037 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
2040 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL,
2041 SelectionDAG &DAG) {
2042 const unsigned FractBits = 52;
2043 const unsigned ExpBits = 11;
2045 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
2047 DAG.getConstant(FractBits - 32, SL, MVT::i32),
2048 DAG.getConstant(ExpBits, SL, MVT::i32));
2049 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart,
2050 DAG.getConstant(1023, SL, MVT::i32));
2052 return Exp;
2055 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const {
2056 SDLoc SL(Op);
2057 SDValue Src = Op.getOperand(0);
2059 assert(Op.getValueType() == MVT::f64);
2061 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2062 const SDValue One = DAG.getConstant(1, SL, MVT::i32);
2064 SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2066 // Extract the upper half, since this is where we will find the sign and
2067 // exponent.
2068 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One);
2070 SDValue Exp = extractF64Exponent(Hi, SL, DAG);
2072 const unsigned FractBits = 52;
2074 // Extract the sign bit.
2075 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32);
2076 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask);
2078 // Extend back to 64-bits.
2079 SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit});
2080 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64);
2082 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src);
2083 const SDValue FractMask
2084 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64);
2086 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp);
2087 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64);
2088 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not);
2090 EVT SetCCVT =
2091 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
2093 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32);
2095 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
2096 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
2098 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0);
2099 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1);
2101 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2);
2104 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const {
2105 SDLoc SL(Op);
2106 SDValue Src = Op.getOperand(0);
2108 assert(Op.getValueType() == MVT::f64);
2110 APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52");
2111 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64);
2112 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src);
2114 // TODO: Should this propagate fast-math-flags?
2116 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign);
2117 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign);
2119 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src);
2121 APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51");
2122 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64);
2124 EVT SetCCVT =
2125 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2126 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT);
2128 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2);
2131 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const {
2132 // FNEARBYINT and FRINT are the same, except in their handling of FP
2133 // exceptions. Those aren't really meaningful for us, and OpenCL only has
2134 // rint, so just treat them as equivalent.
2135 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0));
2138 // XXX - May require not supporting f32 denormals?
2140 // Don't handle v2f16. The extra instructions to scalarize and repack around the
2141 // compare and vselect end up producing worse code than scalarizing the whole
2142 // operation.
2143 SDValue AMDGPUTargetLowering::LowerFROUND32_16(SDValue Op, SelectionDAG &DAG) const {
2144 SDLoc SL(Op);
2145 SDValue X = Op.getOperand(0);
2146 EVT VT = Op.getValueType();
2148 SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X);
2150 // TODO: Should this propagate fast-math-flags?
2152 SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T);
2154 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff);
2156 const SDValue Zero = DAG.getConstantFP(0.0, SL, VT);
2157 const SDValue One = DAG.getConstantFP(1.0, SL, VT);
2158 const SDValue Half = DAG.getConstantFP(0.5, SL, VT);
2160 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X);
2162 EVT SetCCVT =
2163 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
2165 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE);
2167 SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero);
2169 return DAG.getNode(ISD::FADD, SL, VT, T, Sel);
2172 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const {
2173 SDLoc SL(Op);
2174 SDValue X = Op.getOperand(0);
2176 SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X);
2178 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2179 const SDValue One = DAG.getConstant(1, SL, MVT::i32);
2180 const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32);
2181 const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32);
2182 EVT SetCCVT =
2183 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
2185 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
2187 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One);
2189 SDValue Exp = extractF64Exponent(Hi, SL, DAG);
2191 const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL,
2192 MVT::i64);
2194 SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp);
2195 SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64,
2196 DAG.getConstant(INT64_C(0x0008000000000000), SL,
2197 MVT::i64),
2198 Exp);
2200 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M);
2201 SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT,
2202 DAG.getConstant(0, SL, MVT::i64), Tmp0,
2203 ISD::SETNE);
2205 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1,
2206 D, DAG.getConstant(0, SL, MVT::i64));
2207 SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2);
2209 K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64));
2210 K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K);
2212 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
2213 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
2214 SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ);
2216 SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64,
2217 ExpEqNegOne,
2218 DAG.getConstantFP(1.0, SL, MVT::f64),
2219 DAG.getConstantFP(0.0, SL, MVT::f64));
2221 SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X);
2223 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K);
2224 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K);
2226 return K;
2229 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const {
2230 EVT VT = Op.getValueType();
2232 if (VT == MVT::f32 || VT == MVT::f16)
2233 return LowerFROUND32_16(Op, DAG);
2235 if (VT == MVT::f64)
2236 return LowerFROUND64(Op, DAG);
2238 llvm_unreachable("unhandled type");
2241 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const {
2242 SDLoc SL(Op);
2243 SDValue Src = Op.getOperand(0);
2245 // result = trunc(src);
2246 // if (src < 0.0 && src != result)
2247 // result += -1.0.
2249 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2251 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
2252 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64);
2254 EVT SetCCVT =
2255 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2257 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT);
2258 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
2259 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
2261 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero);
2262 // TODO: Should this propagate fast-math-flags?
2263 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
2266 SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG,
2267 double Log2BaseInverted) const {
2268 EVT VT = Op.getValueType();
2270 SDLoc SL(Op);
2271 SDValue Operand = Op.getOperand(0);
2272 SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand);
2273 SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT);
2275 return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand);
2278 // Return M_LOG2E of appropriate type
2279 static SDValue getLog2EVal(SelectionDAG &DAG, const SDLoc &SL, EVT VT) {
2280 switch (VT.getScalarType().getSimpleVT().SimpleTy) {
2281 case MVT::f32:
2282 return DAG.getConstantFP(1.44269504088896340735992468100189214f, SL, VT);
2283 case MVT::f16:
2284 return DAG.getConstantFP(
2285 APFloat(APFloat::IEEEhalf(), "1.44269504088896340735992468100189214"),
2286 SL, VT);
2287 case MVT::f64:
2288 return DAG.getConstantFP(
2289 APFloat(APFloat::IEEEdouble(), "0x1.71547652b82fep+0"), SL, VT);
2290 default:
2291 llvm_unreachable("unsupported fp type");
2295 // exp2(M_LOG2E_F * f);
2296 SDValue AMDGPUTargetLowering::lowerFEXP(SDValue Op, SelectionDAG &DAG) const {
2297 EVT VT = Op.getValueType();
2298 SDLoc SL(Op);
2299 SDValue Src = Op.getOperand(0);
2301 const SDValue K = getLog2EVal(DAG, SL, VT);
2302 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Src, K, Op->getFlags());
2303 return DAG.getNode(ISD::FEXP2, SL, VT, Mul, Op->getFlags());
2306 static bool isCtlzOpc(unsigned Opc) {
2307 return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF;
2310 static bool isCttzOpc(unsigned Opc) {
2311 return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF;
2314 SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const {
2315 SDLoc SL(Op);
2316 SDValue Src = Op.getOperand(0);
2317 bool ZeroUndef = Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF ||
2318 Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF;
2320 unsigned ISDOpc, NewOpc;
2321 if (isCtlzOpc(Op.getOpcode())) {
2322 ISDOpc = ISD::CTLZ_ZERO_UNDEF;
2323 NewOpc = AMDGPUISD::FFBH_U32;
2324 } else if (isCttzOpc(Op.getOpcode())) {
2325 ISDOpc = ISD::CTTZ_ZERO_UNDEF;
2326 NewOpc = AMDGPUISD::FFBL_B32;
2327 } else
2328 llvm_unreachable("Unexpected OPCode!!!");
2331 if (ZeroUndef && Src.getValueType() == MVT::i32)
2332 return DAG.getNode(NewOpc, SL, MVT::i32, Src);
2334 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2336 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2337 const SDValue One = DAG.getConstant(1, SL, MVT::i32);
2339 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
2340 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
2342 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
2343 *DAG.getContext(), MVT::i32);
2345 SDValue HiOrLo = isCtlzOpc(Op.getOpcode()) ? Hi : Lo;
2346 SDValue Hi0orLo0 = DAG.getSetCC(SL, SetCCVT, HiOrLo, Zero, ISD::SETEQ);
2348 SDValue OprLo = DAG.getNode(ISDOpc, SL, MVT::i32, Lo);
2349 SDValue OprHi = DAG.getNode(ISDOpc, SL, MVT::i32, Hi);
2351 const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32);
2352 SDValue Add, NewOpr;
2353 if (isCtlzOpc(Op.getOpcode())) {
2354 Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprLo, Bits32);
2355 // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x))
2356 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprHi);
2357 } else {
2358 Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprHi, Bits32);
2359 // cttz(x) = lo_32(x) == 0 ? cttz(hi_32(x)) + 32 : cttz(lo_32(x))
2360 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprLo);
2363 if (!ZeroUndef) {
2364 // Test if the full 64-bit input is zero.
2366 // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32,
2367 // which we probably don't want.
2368 SDValue LoOrHi = isCtlzOpc(Op.getOpcode()) ? Lo : Hi;
2369 SDValue Lo0OrHi0 = DAG.getSetCC(SL, SetCCVT, LoOrHi, Zero, ISD::SETEQ);
2370 SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0OrHi0, Hi0orLo0);
2372 // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction
2373 // with the same cycles, otherwise it is slower.
2374 // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src,
2375 // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ);
2377 const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32);
2379 // The instruction returns -1 for 0 input, but the defined intrinsic
2380 // behavior is to return the number of bits.
2381 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32,
2382 SrcIsZero, Bits32, NewOpr);
2385 return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr);
2388 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG,
2389 bool Signed) const {
2390 // Unsigned
2391 // cul2f(ulong u)
2393 // uint lz = clz(u);
2394 // uint e = (u != 0) ? 127U + 63U - lz : 0;
2395 // u = (u << lz) & 0x7fffffffffffffffUL;
2396 // ulong t = u & 0xffffffffffUL;
2397 // uint v = (e << 23) | (uint)(u >> 40);
2398 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
2399 // return as_float(v + r);
2401 // Signed
2402 // cl2f(long l)
2404 // long s = l >> 63;
2405 // float r = cul2f((l + s) ^ s);
2406 // return s ? -r : r;
2409 SDLoc SL(Op);
2410 SDValue Src = Op.getOperand(0);
2411 SDValue L = Src;
2413 SDValue S;
2414 if (Signed) {
2415 const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64);
2416 S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit);
2418 SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S);
2419 L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S);
2422 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
2423 *DAG.getContext(), MVT::f32);
2426 SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32);
2427 SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64);
2428 SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L);
2429 LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ);
2431 SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32);
2432 SDValue E = DAG.getSelect(SL, MVT::i32,
2433 DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE),
2434 DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ),
2435 ZeroI32);
2437 SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64,
2438 DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ),
2439 DAG.getConstant((-1ULL) >> 1, SL, MVT::i64));
2441 SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U,
2442 DAG.getConstant(0xffffffffffULL, SL, MVT::i64));
2444 SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64,
2445 U, DAG.getConstant(40, SL, MVT::i64));
2447 SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32,
2448 DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)),
2449 DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, UShl));
2451 SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64);
2452 SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT);
2453 SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ);
2455 SDValue One = DAG.getConstant(1, SL, MVT::i32);
2457 SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One);
2459 SDValue R = DAG.getSelect(SL, MVT::i32,
2460 RCmp,
2461 One,
2462 DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32));
2463 R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R);
2464 R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R);
2466 if (!Signed)
2467 return R;
2469 SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R);
2470 return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R);
2473 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG,
2474 bool Signed) const {
2475 SDLoc SL(Op);
2476 SDValue Src = Op.getOperand(0);
2478 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2480 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
2481 DAG.getConstant(0, SL, MVT::i32));
2482 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
2483 DAG.getConstant(1, SL, MVT::i32));
2485 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP,
2486 SL, MVT::f64, Hi);
2488 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo);
2490 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi,
2491 DAG.getConstant(32, SL, MVT::i32));
2492 // TODO: Should this propagate fast-math-flags?
2493 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo);
2496 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op,
2497 SelectionDAG &DAG) const {
2498 assert(Op.getOperand(0).getValueType() == MVT::i64 &&
2499 "operation should be legal");
2501 // TODO: Factor out code common with LowerSINT_TO_FP.
2503 EVT DestVT = Op.getValueType();
2504 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
2505 SDLoc DL(Op);
2506 SDValue Src = Op.getOperand(0);
2508 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
2509 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
2510 SDValue FPRound =
2511 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
2513 return FPRound;
2516 if (DestVT == MVT::f32)
2517 return LowerINT_TO_FP32(Op, DAG, false);
2519 assert(DestVT == MVT::f64);
2520 return LowerINT_TO_FP64(Op, DAG, false);
2523 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op,
2524 SelectionDAG &DAG) const {
2525 assert(Op.getOperand(0).getValueType() == MVT::i64 &&
2526 "operation should be legal");
2528 // TODO: Factor out code common with LowerUINT_TO_FP.
2530 EVT DestVT = Op.getValueType();
2531 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
2532 SDLoc DL(Op);
2533 SDValue Src = Op.getOperand(0);
2535 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
2536 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
2537 SDValue FPRound =
2538 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
2540 return FPRound;
2543 if (DestVT == MVT::f32)
2544 return LowerINT_TO_FP32(Op, DAG, true);
2546 assert(DestVT == MVT::f64);
2547 return LowerINT_TO_FP64(Op, DAG, true);
2550 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG,
2551 bool Signed) const {
2552 SDLoc SL(Op);
2554 SDValue Src = Op.getOperand(0);
2556 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2558 SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL,
2559 MVT::f64);
2560 SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL,
2561 MVT::f64);
2562 // TODO: Should this propagate fast-math-flags?
2563 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0);
2565 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul);
2568 SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc);
2570 SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL,
2571 MVT::i32, FloorMul);
2572 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma);
2574 SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi});
2576 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result);
2579 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const {
2580 SDLoc DL(Op);
2581 SDValue N0 = Op.getOperand(0);
2583 // Convert to target node to get known bits
2584 if (N0.getValueType() == MVT::f32)
2585 return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0);
2587 if (getTargetMachine().Options.UnsafeFPMath) {
2588 // There is a generic expand for FP_TO_FP16 with unsafe fast math.
2589 return SDValue();
2592 assert(N0.getSimpleValueType() == MVT::f64);
2594 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
2595 const unsigned ExpMask = 0x7ff;
2596 const unsigned ExpBiasf64 = 1023;
2597 const unsigned ExpBiasf16 = 15;
2598 SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
2599 SDValue One = DAG.getConstant(1, DL, MVT::i32);
2600 SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0);
2601 SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U,
2602 DAG.getConstant(32, DL, MVT::i64));
2603 UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32);
2604 U = DAG.getZExtOrTrunc(U, DL, MVT::i32);
2605 SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2606 DAG.getConstant(20, DL, MVT::i64));
2607 E = DAG.getNode(ISD::AND, DL, MVT::i32, E,
2608 DAG.getConstant(ExpMask, DL, MVT::i32));
2609 // Subtract the fp64 exponent bias (1023) to get the real exponent and
2610 // add the f16 bias (15) to get the biased exponent for the f16 format.
2611 E = DAG.getNode(ISD::ADD, DL, MVT::i32, E,
2612 DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32));
2614 SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2615 DAG.getConstant(8, DL, MVT::i32));
2616 M = DAG.getNode(ISD::AND, DL, MVT::i32, M,
2617 DAG.getConstant(0xffe, DL, MVT::i32));
2619 SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH,
2620 DAG.getConstant(0x1ff, DL, MVT::i32));
2621 MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U);
2623 SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ);
2624 M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set);
2626 // (M != 0 ? 0x0200 : 0) | 0x7c00;
2627 SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32,
2628 DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32),
2629 Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32));
2631 // N = M | (E << 12);
2632 SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M,
2633 DAG.getNode(ISD::SHL, DL, MVT::i32, E,
2634 DAG.getConstant(12, DL, MVT::i32)));
2636 // B = clamp(1-E, 0, 13);
2637 SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32,
2638 One, E);
2639 SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero);
2640 B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B,
2641 DAG.getConstant(13, DL, MVT::i32));
2643 SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M,
2644 DAG.getConstant(0x1000, DL, MVT::i32));
2646 SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B);
2647 SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B);
2648 SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE);
2649 D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1);
2651 SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT);
2652 SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V,
2653 DAG.getConstant(0x7, DL, MVT::i32));
2654 V = DAG.getNode(ISD::SRL, DL, MVT::i32, V,
2655 DAG.getConstant(2, DL, MVT::i32));
2656 SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32),
2657 One, Zero, ISD::SETEQ);
2658 SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32),
2659 One, Zero, ISD::SETGT);
2660 V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1);
2661 V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1);
2663 V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32),
2664 DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT);
2665 V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32),
2666 I, V, ISD::SETEQ);
2668 // Extract the sign bit.
2669 SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2670 DAG.getConstant(16, DL, MVT::i32));
2671 Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign,
2672 DAG.getConstant(0x8000, DL, MVT::i32));
2674 V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V);
2675 return DAG.getZExtOrTrunc(V, DL, Op.getValueType());
2678 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op,
2679 SelectionDAG &DAG) const {
2680 SDValue Src = Op.getOperand(0);
2682 // TODO: Factor out code common with LowerFP_TO_UINT.
2684 EVT SrcVT = Src.getValueType();
2685 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) {
2686 SDLoc DL(Op);
2688 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src);
2689 SDValue FpToInt32 =
2690 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend);
2692 return FpToInt32;
2695 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
2696 return LowerFP64_TO_INT(Op, DAG, true);
2698 return SDValue();
2701 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op,
2702 SelectionDAG &DAG) const {
2703 SDValue Src = Op.getOperand(0);
2705 // TODO: Factor out code common with LowerFP_TO_SINT.
2707 EVT SrcVT = Src.getValueType();
2708 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) {
2709 SDLoc DL(Op);
2711 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src);
2712 SDValue FpToInt32 =
2713 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend);
2715 return FpToInt32;
2718 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
2719 return LowerFP64_TO_INT(Op, DAG, false);
2721 return SDValue();
2724 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
2725 SelectionDAG &DAG) const {
2726 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2727 MVT VT = Op.getSimpleValueType();
2728 MVT ScalarVT = VT.getScalarType();
2730 assert(VT.isVector());
2732 SDValue Src = Op.getOperand(0);
2733 SDLoc DL(Op);
2735 // TODO: Don't scalarize on Evergreen?
2736 unsigned NElts = VT.getVectorNumElements();
2737 SmallVector<SDValue, 8> Args;
2738 DAG.ExtractVectorElements(Src, Args, 0, NElts);
2740 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType());
2741 for (unsigned I = 0; I < NElts; ++I)
2742 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp);
2744 return DAG.getBuildVector(VT, DL, Args);
2747 //===----------------------------------------------------------------------===//
2748 // Custom DAG optimizations
2749 //===----------------------------------------------------------------------===//
2751 static bool isU24(SDValue Op, SelectionDAG &DAG) {
2752 return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24;
2755 static bool isI24(SDValue Op, SelectionDAG &DAG) {
2756 EVT VT = Op.getValueType();
2757 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated
2758 // as unsigned 24-bit values.
2759 AMDGPUTargetLowering::numBitsSigned(Op, DAG) < 24;
2762 static SDValue simplifyI24(SDNode *Node24,
2763 TargetLowering::DAGCombinerInfo &DCI) {
2764 SelectionDAG &DAG = DCI.DAG;
2765 SDValue LHS = Node24->getOperand(0);
2766 SDValue RHS = Node24->getOperand(1);
2768 APInt Demanded = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 24);
2770 // First try to simplify using GetDemandedBits which allows the operands to
2771 // have other uses, but will only perform simplifications that involve
2772 // bypassing some nodes for this user.
2773 SDValue DemandedLHS = DAG.GetDemandedBits(LHS, Demanded);
2774 SDValue DemandedRHS = DAG.GetDemandedBits(RHS, Demanded);
2775 if (DemandedLHS || DemandedRHS)
2776 return DAG.getNode(Node24->getOpcode(), SDLoc(Node24), Node24->getVTList(),
2777 DemandedLHS ? DemandedLHS : LHS,
2778 DemandedRHS ? DemandedRHS : RHS);
2780 // Now try SimplifyDemandedBits which can simplify the nodes used by our
2781 // operands if this node is the only user.
2782 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2783 if (TLI.SimplifyDemandedBits(LHS, Demanded, DCI))
2784 return SDValue(Node24, 0);
2785 if (TLI.SimplifyDemandedBits(RHS, Demanded, DCI))
2786 return SDValue(Node24, 0);
2788 return SDValue();
2791 template <typename IntTy>
2792 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset,
2793 uint32_t Width, const SDLoc &DL) {
2794 if (Width + Offset < 32) {
2795 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width);
2796 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width);
2797 return DAG.getConstant(Result, DL, MVT::i32);
2800 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32);
2803 static bool hasVolatileUser(SDNode *Val) {
2804 for (SDNode *U : Val->uses()) {
2805 if (MemSDNode *M = dyn_cast<MemSDNode>(U)) {
2806 if (M->isVolatile())
2807 return true;
2811 return false;
2814 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const {
2815 // i32 vectors are the canonical memory type.
2816 if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT))
2817 return false;
2819 if (!VT.isByteSized())
2820 return false;
2822 unsigned Size = VT.getStoreSize();
2824 if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector())
2825 return false;
2827 if (Size == 3 || (Size > 4 && (Size % 4 != 0)))
2828 return false;
2830 return true;
2833 // Find a load or store from corresponding pattern root.
2834 // Roots may be build_vector, bitconvert or their combinations.
2835 static MemSDNode* findMemSDNode(SDNode *N) {
2836 N = AMDGPUTargetLowering::stripBitcast(SDValue(N,0)).getNode();
2837 if (MemSDNode *MN = dyn_cast<MemSDNode>(N))
2838 return MN;
2839 assert(isa<BuildVectorSDNode>(N));
2840 for (SDValue V : N->op_values())
2841 if (MemSDNode *MN =
2842 dyn_cast<MemSDNode>(AMDGPUTargetLowering::stripBitcast(V)))
2843 return MN;
2844 llvm_unreachable("cannot find MemSDNode in the pattern!");
2847 bool AMDGPUTargetLowering::SelectFlatOffset(bool IsSigned,
2848 SelectionDAG &DAG,
2849 SDNode *N,
2850 SDValue Addr,
2851 SDValue &VAddr,
2852 SDValue &Offset,
2853 SDValue &SLC) const {
2854 const GCNSubtarget &ST =
2855 DAG.getMachineFunction().getSubtarget<GCNSubtarget>();
2856 int64_t OffsetVal = 0;
2858 if (ST.hasFlatInstOffsets() &&
2859 (!ST.hasFlatSegmentOffsetBug() ||
2860 findMemSDNode(N)->getAddressSpace() != AMDGPUAS::FLAT_ADDRESS) &&
2861 DAG.isBaseWithConstantOffset(Addr)) {
2862 SDValue N0 = Addr.getOperand(0);
2863 SDValue N1 = Addr.getOperand(1);
2864 int64_t COffsetVal = cast<ConstantSDNode>(N1)->getSExtValue();
2866 const SIInstrInfo *TII = ST.getInstrInfo();
2867 if (TII->isLegalFLATOffset(COffsetVal, findMemSDNode(N)->getAddressSpace(),
2868 IsSigned)) {
2869 Addr = N0;
2870 OffsetVal = COffsetVal;
2874 VAddr = Addr;
2875 Offset = DAG.getTargetConstant(OffsetVal, SDLoc(), MVT::i16);
2876 SLC = DAG.getTargetConstant(0, SDLoc(), MVT::i1);
2878 return true;
2881 // Replace load of an illegal type with a store of a bitcast to a friendlier
2882 // type.
2883 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N,
2884 DAGCombinerInfo &DCI) const {
2885 if (!DCI.isBeforeLegalize())
2886 return SDValue();
2888 LoadSDNode *LN = cast<LoadSDNode>(N);
2889 if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN))
2890 return SDValue();
2892 SDLoc SL(N);
2893 SelectionDAG &DAG = DCI.DAG;
2894 EVT VT = LN->getMemoryVT();
2896 unsigned Size = VT.getStoreSize();
2897 unsigned Align = LN->getAlignment();
2898 if (Align < Size && isTypeLegal(VT)) {
2899 bool IsFast;
2900 unsigned AS = LN->getAddressSpace();
2902 // Expand unaligned loads earlier than legalization. Due to visitation order
2903 // problems during legalization, the emitted instructions to pack and unpack
2904 // the bytes again are not eliminated in the case of an unaligned copy.
2905 if (!allowsMisalignedMemoryAccesses(
2906 VT, AS, Align, LN->getMemOperand()->getFlags(), &IsFast)) {
2907 if (VT.isVector())
2908 return scalarizeVectorLoad(LN, DAG);
2910 SDValue Ops[2];
2911 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG);
2912 return DAG.getMergeValues(Ops, SDLoc(N));
2915 if (!IsFast)
2916 return SDValue();
2919 if (!shouldCombineMemoryType(VT))
2920 return SDValue();
2922 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
2924 SDValue NewLoad
2925 = DAG.getLoad(NewVT, SL, LN->getChain(),
2926 LN->getBasePtr(), LN->getMemOperand());
2928 SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad);
2929 DCI.CombineTo(N, BC, NewLoad.getValue(1));
2930 return SDValue(N, 0);
2933 // Replace store of an illegal type with a store of a bitcast to a friendlier
2934 // type.
2935 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N,
2936 DAGCombinerInfo &DCI) const {
2937 if (!DCI.isBeforeLegalize())
2938 return SDValue();
2940 StoreSDNode *SN = cast<StoreSDNode>(N);
2941 if (SN->isVolatile() || !ISD::isNormalStore(SN))
2942 return SDValue();
2944 EVT VT = SN->getMemoryVT();
2945 unsigned Size = VT.getStoreSize();
2947 SDLoc SL(N);
2948 SelectionDAG &DAG = DCI.DAG;
2949 unsigned Align = SN->getAlignment();
2950 if (Align < Size && isTypeLegal(VT)) {
2951 bool IsFast;
2952 unsigned AS = SN->getAddressSpace();
2954 // Expand unaligned stores earlier than legalization. Due to visitation
2955 // order problems during legalization, the emitted instructions to pack and
2956 // unpack the bytes again are not eliminated in the case of an unaligned
2957 // copy.
2958 if (!allowsMisalignedMemoryAccesses(
2959 VT, AS, Align, SN->getMemOperand()->getFlags(), &IsFast)) {
2960 if (VT.isVector())
2961 return scalarizeVectorStore(SN, DAG);
2963 return expandUnalignedStore(SN, DAG);
2966 if (!IsFast)
2967 return SDValue();
2970 if (!shouldCombineMemoryType(VT))
2971 return SDValue();
2973 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
2974 SDValue Val = SN->getValue();
2976 //DCI.AddToWorklist(Val.getNode());
2978 bool OtherUses = !Val.hasOneUse();
2979 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val);
2980 if (OtherUses) {
2981 SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal);
2982 DAG.ReplaceAllUsesOfValueWith(Val, CastBack);
2985 return DAG.getStore(SN->getChain(), SL, CastVal,
2986 SN->getBasePtr(), SN->getMemOperand());
2989 // FIXME: This should go in generic DAG combiner with an isTruncateFree check,
2990 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU
2991 // issues.
2992 SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N,
2993 DAGCombinerInfo &DCI) const {
2994 SelectionDAG &DAG = DCI.DAG;
2995 SDValue N0 = N->getOperand(0);
2997 // (vt2 (assertzext (truncate vt0:x), vt1)) ->
2998 // (vt2 (truncate (assertzext vt0:x, vt1)))
2999 if (N0.getOpcode() == ISD::TRUNCATE) {
3000 SDValue N1 = N->getOperand(1);
3001 EVT ExtVT = cast<VTSDNode>(N1)->getVT();
3002 SDLoc SL(N);
3004 SDValue Src = N0.getOperand(0);
3005 EVT SrcVT = Src.getValueType();
3006 if (SrcVT.bitsGE(ExtVT)) {
3007 SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1);
3008 return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg);
3012 return SDValue();
3014 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the
3015 /// binary operation \p Opc to it with the corresponding constant operands.
3016 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl(
3017 DAGCombinerInfo &DCI, const SDLoc &SL,
3018 unsigned Opc, SDValue LHS,
3019 uint32_t ValLo, uint32_t ValHi) const {
3020 SelectionDAG &DAG = DCI.DAG;
3021 SDValue Lo, Hi;
3022 std::tie(Lo, Hi) = split64BitValue(LHS, DAG);
3024 SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32);
3025 SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32);
3027 SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS);
3028 SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS);
3030 // Re-visit the ands. It's possible we eliminated one of them and it could
3031 // simplify the vector.
3032 DCI.AddToWorklist(Lo.getNode());
3033 DCI.AddToWorklist(Hi.getNode());
3035 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd});
3036 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
3039 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N,
3040 DAGCombinerInfo &DCI) const {
3041 EVT VT = N->getValueType(0);
3043 ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3044 if (!RHS)
3045 return SDValue();
3047 SDValue LHS = N->getOperand(0);
3048 unsigned RHSVal = RHS->getZExtValue();
3049 if (!RHSVal)
3050 return LHS;
3052 SDLoc SL(N);
3053 SelectionDAG &DAG = DCI.DAG;
3055 switch (LHS->getOpcode()) {
3056 default:
3057 break;
3058 case ISD::ZERO_EXTEND:
3059 case ISD::SIGN_EXTEND:
3060 case ISD::ANY_EXTEND: {
3061 SDValue X = LHS->getOperand(0);
3063 if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 &&
3064 isOperationLegal(ISD::BUILD_VECTOR, MVT::v2i16)) {
3065 // Prefer build_vector as the canonical form if packed types are legal.
3066 // (shl ([asz]ext i16:x), 16 -> build_vector 0, x
3067 SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL,
3068 { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) });
3069 return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec);
3072 // shl (ext x) => zext (shl x), if shift does not overflow int
3073 if (VT != MVT::i64)
3074 break;
3075 KnownBits Known = DAG.computeKnownBits(X);
3076 unsigned LZ = Known.countMinLeadingZeros();
3077 if (LZ < RHSVal)
3078 break;
3079 EVT XVT = X.getValueType();
3080 SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0));
3081 return DAG.getZExtOrTrunc(Shl, SL, VT);
3085 if (VT != MVT::i64)
3086 return SDValue();
3088 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32))
3090 // On some subtargets, 64-bit shift is a quarter rate instruction. In the
3091 // common case, splitting this into a move and a 32-bit shift is faster and
3092 // the same code size.
3093 if (RHSVal < 32)
3094 return SDValue();
3096 SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32);
3098 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS);
3099 SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt);
3101 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
3103 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift});
3104 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
3107 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N,
3108 DAGCombinerInfo &DCI) const {
3109 if (N->getValueType(0) != MVT::i64)
3110 return SDValue();
3112 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3113 if (!RHS)
3114 return SDValue();
3116 SelectionDAG &DAG = DCI.DAG;
3117 SDLoc SL(N);
3118 unsigned RHSVal = RHS->getZExtValue();
3120 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31)
3121 if (RHSVal == 32) {
3122 SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
3123 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
3124 DAG.getConstant(31, SL, MVT::i32));
3126 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift});
3127 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
3130 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31)
3131 if (RHSVal == 63) {
3132 SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
3133 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
3134 DAG.getConstant(31, SL, MVT::i32));
3135 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift});
3136 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
3139 return SDValue();
3142 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N,
3143 DAGCombinerInfo &DCI) const {
3144 auto *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3145 if (!RHS)
3146 return SDValue();
3148 EVT VT = N->getValueType(0);
3149 SDValue LHS = N->getOperand(0);
3150 unsigned ShiftAmt = RHS->getZExtValue();
3151 SelectionDAG &DAG = DCI.DAG;
3152 SDLoc SL(N);
3154 // fold (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1)
3155 // this improves the ability to match BFE patterns in isel.
3156 if (LHS.getOpcode() == ISD::AND) {
3157 if (auto *Mask = dyn_cast<ConstantSDNode>(LHS.getOperand(1))) {
3158 if (Mask->getAPIntValue().isShiftedMask() &&
3159 Mask->getAPIntValue().countTrailingZeros() == ShiftAmt) {
3160 return DAG.getNode(
3161 ISD::AND, SL, VT,
3162 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(0), N->getOperand(1)),
3163 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(1), N->getOperand(1)));
3168 if (VT != MVT::i64)
3169 return SDValue();
3171 if (ShiftAmt < 32)
3172 return SDValue();
3174 // srl i64:x, C for C >= 32
3175 // =>
3176 // build_pair (srl hi_32(x), C - 32), 0
3177 SDValue One = DAG.getConstant(1, SL, MVT::i32);
3178 SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
3180 SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, LHS);
3181 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecOp, One);
3183 SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32);
3184 SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst);
3186 SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero});
3188 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair);
3191 SDValue AMDGPUTargetLowering::performTruncateCombine(
3192 SDNode *N, DAGCombinerInfo &DCI) const {
3193 SDLoc SL(N);
3194 SelectionDAG &DAG = DCI.DAG;
3195 EVT VT = N->getValueType(0);
3196 SDValue Src = N->getOperand(0);
3198 // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x)
3199 if (Src.getOpcode() == ISD::BITCAST && !VT.isVector()) {
3200 SDValue Vec = Src.getOperand(0);
3201 if (Vec.getOpcode() == ISD::BUILD_VECTOR) {
3202 SDValue Elt0 = Vec.getOperand(0);
3203 EVT EltVT = Elt0.getValueType();
3204 if (VT.getSizeInBits() <= EltVT.getSizeInBits()) {
3205 if (EltVT.isFloatingPoint()) {
3206 Elt0 = DAG.getNode(ISD::BITCAST, SL,
3207 EltVT.changeTypeToInteger(), Elt0);
3210 return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0);
3215 // Equivalent of above for accessing the high element of a vector as an
3216 // integer operation.
3217 // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y)
3218 if (Src.getOpcode() == ISD::SRL && !VT.isVector()) {
3219 if (auto K = isConstOrConstSplat(Src.getOperand(1))) {
3220 if (2 * K->getZExtValue() == Src.getValueType().getScalarSizeInBits()) {
3221 SDValue BV = stripBitcast(Src.getOperand(0));
3222 if (BV.getOpcode() == ISD::BUILD_VECTOR &&
3223 BV.getValueType().getVectorNumElements() == 2) {
3224 SDValue SrcElt = BV.getOperand(1);
3225 EVT SrcEltVT = SrcElt.getValueType();
3226 if (SrcEltVT.isFloatingPoint()) {
3227 SrcElt = DAG.getNode(ISD::BITCAST, SL,
3228 SrcEltVT.changeTypeToInteger(), SrcElt);
3231 return DAG.getNode(ISD::TRUNCATE, SL, VT, SrcElt);
3237 // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit.
3239 // i16 (trunc (srl i64:x, K)), K <= 16 ->
3240 // i16 (trunc (srl (i32 (trunc x), K)))
3241 if (VT.getScalarSizeInBits() < 32) {
3242 EVT SrcVT = Src.getValueType();
3243 if (SrcVT.getScalarSizeInBits() > 32 &&
3244 (Src.getOpcode() == ISD::SRL ||
3245 Src.getOpcode() == ISD::SRA ||
3246 Src.getOpcode() == ISD::SHL)) {
3247 SDValue Amt = Src.getOperand(1);
3248 KnownBits Known = DAG.computeKnownBits(Amt);
3249 unsigned Size = VT.getScalarSizeInBits();
3250 if ((Known.isConstant() && Known.getConstant().ule(Size)) ||
3251 (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size))) {
3252 EVT MidVT = VT.isVector() ?
3253 EVT::getVectorVT(*DAG.getContext(), MVT::i32,
3254 VT.getVectorNumElements()) : MVT::i32;
3256 EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout());
3257 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT,
3258 Src.getOperand(0));
3259 DCI.AddToWorklist(Trunc.getNode());
3261 if (Amt.getValueType() != NewShiftVT) {
3262 Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT);
3263 DCI.AddToWorklist(Amt.getNode());
3266 SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT,
3267 Trunc, Amt);
3268 return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift);
3273 return SDValue();
3276 // We need to specifically handle i64 mul here to avoid unnecessary conversion
3277 // instructions. If we only match on the legalized i64 mul expansion,
3278 // SimplifyDemandedBits will be unable to remove them because there will be
3279 // multiple uses due to the separate mul + mulh[su].
3280 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL,
3281 SDValue N0, SDValue N1, unsigned Size, bool Signed) {
3282 if (Size <= 32) {
3283 unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
3284 return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1);
3287 // Because we want to eliminate extension instructions before the
3288 // operation, we need to create a single user here (i.e. not the separate
3289 // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it.
3291 unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24;
3293 SDValue Mul = DAG.getNode(MulOpc, SL,
3294 DAG.getVTList(MVT::i32, MVT::i32), N0, N1);
3296 return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64,
3297 Mul.getValue(0), Mul.getValue(1));
3300 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N,
3301 DAGCombinerInfo &DCI) const {
3302 EVT VT = N->getValueType(0);
3304 unsigned Size = VT.getSizeInBits();
3305 if (VT.isVector() || Size > 64)
3306 return SDValue();
3308 // There are i16 integer mul/mad.
3309 if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16))
3310 return SDValue();
3312 SelectionDAG &DAG = DCI.DAG;
3313 SDLoc DL(N);
3315 SDValue N0 = N->getOperand(0);
3316 SDValue N1 = N->getOperand(1);
3318 // SimplifyDemandedBits has the annoying habit of turning useful zero_extends
3319 // in the source into any_extends if the result of the mul is truncated. Since
3320 // we can assume the high bits are whatever we want, use the underlying value
3321 // to avoid the unknown high bits from interfering.
3322 if (N0.getOpcode() == ISD::ANY_EXTEND)
3323 N0 = N0.getOperand(0);
3325 if (N1.getOpcode() == ISD::ANY_EXTEND)
3326 N1 = N1.getOperand(0);
3328 SDValue Mul;
3330 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) {
3331 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
3332 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
3333 Mul = getMul24(DAG, DL, N0, N1, Size, false);
3334 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) {
3335 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
3336 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
3337 Mul = getMul24(DAG, DL, N0, N1, Size, true);
3338 } else {
3339 return SDValue();
3342 // We need to use sext even for MUL_U24, because MUL_U24 is used
3343 // for signed multiply of 8 and 16-bit types.
3344 return DAG.getSExtOrTrunc(Mul, DL, VT);
3347 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N,
3348 DAGCombinerInfo &DCI) const {
3349 EVT VT = N->getValueType(0);
3351 if (!Subtarget->hasMulI24() || VT.isVector())
3352 return SDValue();
3354 SelectionDAG &DAG = DCI.DAG;
3355 SDLoc DL(N);
3357 SDValue N0 = N->getOperand(0);
3358 SDValue N1 = N->getOperand(1);
3360 if (!isI24(N0, DAG) || !isI24(N1, DAG))
3361 return SDValue();
3363 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
3364 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
3366 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1);
3367 DCI.AddToWorklist(Mulhi.getNode());
3368 return DAG.getSExtOrTrunc(Mulhi, DL, VT);
3371 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N,
3372 DAGCombinerInfo &DCI) const {
3373 EVT VT = N->getValueType(0);
3375 if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32)
3376 return SDValue();
3378 SelectionDAG &DAG = DCI.DAG;
3379 SDLoc DL(N);
3381 SDValue N0 = N->getOperand(0);
3382 SDValue N1 = N->getOperand(1);
3384 if (!isU24(N0, DAG) || !isU24(N1, DAG))
3385 return SDValue();
3387 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
3388 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
3390 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1);
3391 DCI.AddToWorklist(Mulhi.getNode());
3392 return DAG.getZExtOrTrunc(Mulhi, DL, VT);
3395 SDValue AMDGPUTargetLowering::performMulLoHi24Combine(
3396 SDNode *N, DAGCombinerInfo &DCI) const {
3397 SelectionDAG &DAG = DCI.DAG;
3399 // Simplify demanded bits before splitting into multiple users.
3400 if (SDValue V = simplifyI24(N, DCI))
3401 return V;
3403 SDValue N0 = N->getOperand(0);
3404 SDValue N1 = N->getOperand(1);
3406 bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24);
3408 unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
3409 unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24;
3411 SDLoc SL(N);
3413 SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1);
3414 SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1);
3415 return DAG.getMergeValues({ MulLo, MulHi }, SL);
3418 static bool isNegativeOne(SDValue Val) {
3419 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val))
3420 return C->isAllOnesValue();
3421 return false;
3424 SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG,
3425 SDValue Op,
3426 const SDLoc &DL,
3427 unsigned Opc) const {
3428 EVT VT = Op.getValueType();
3429 EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT);
3430 if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() &&
3431 LegalVT != MVT::i16))
3432 return SDValue();
3434 if (VT != MVT::i32)
3435 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op);
3437 SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op);
3438 if (VT != MVT::i32)
3439 FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX);
3441 return FFBX;
3444 // The native instructions return -1 on 0 input. Optimize out a select that
3445 // produces -1 on 0.
3447 // TODO: If zero is not undef, we could also do this if the output is compared
3448 // against the bitwidth.
3450 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly.
3451 SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond,
3452 SDValue LHS, SDValue RHS,
3453 DAGCombinerInfo &DCI) const {
3454 ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
3455 if (!CmpRhs || !CmpRhs->isNullValue())
3456 return SDValue();
3458 SelectionDAG &DAG = DCI.DAG;
3459 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
3460 SDValue CmpLHS = Cond.getOperand(0);
3462 unsigned Opc = isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 :
3463 AMDGPUISD::FFBH_U32;
3465 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x
3466 // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x
3467 if (CCOpcode == ISD::SETEQ &&
3468 (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) &&
3469 RHS.getOperand(0) == CmpLHS &&
3470 isNegativeOne(LHS)) {
3471 return getFFBX_U32(DAG, CmpLHS, SL, Opc);
3474 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x
3475 // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x
3476 if (CCOpcode == ISD::SETNE &&
3477 (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) &&
3478 LHS.getOperand(0) == CmpLHS &&
3479 isNegativeOne(RHS)) {
3480 return getFFBX_U32(DAG, CmpLHS, SL, Opc);
3483 return SDValue();
3486 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI,
3487 unsigned Op,
3488 const SDLoc &SL,
3489 SDValue Cond,
3490 SDValue N1,
3491 SDValue N2) {
3492 SelectionDAG &DAG = DCI.DAG;
3493 EVT VT = N1.getValueType();
3495 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond,
3496 N1.getOperand(0), N2.getOperand(0));
3497 DCI.AddToWorklist(NewSelect.getNode());
3498 return DAG.getNode(Op, SL, VT, NewSelect);
3501 // Pull a free FP operation out of a select so it may fold into uses.
3503 // select c, (fneg x), (fneg y) -> fneg (select c, x, y)
3504 // select c, (fneg x), k -> fneg (select c, x, (fneg k))
3506 // select c, (fabs x), (fabs y) -> fabs (select c, x, y)
3507 // select c, (fabs x), +k -> fabs (select c, x, k)
3508 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI,
3509 SDValue N) {
3510 SelectionDAG &DAG = DCI.DAG;
3511 SDValue Cond = N.getOperand(0);
3512 SDValue LHS = N.getOperand(1);
3513 SDValue RHS = N.getOperand(2);
3515 EVT VT = N.getValueType();
3516 if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) ||
3517 (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) {
3518 return distributeOpThroughSelect(DCI, LHS.getOpcode(),
3519 SDLoc(N), Cond, LHS, RHS);
3522 bool Inv = false;
3523 if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) {
3524 std::swap(LHS, RHS);
3525 Inv = true;
3528 // TODO: Support vector constants.
3529 ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
3530 if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) {
3531 SDLoc SL(N);
3532 // If one side is an fneg/fabs and the other is a constant, we can push the
3533 // fneg/fabs down. If it's an fabs, the constant needs to be non-negative.
3534 SDValue NewLHS = LHS.getOperand(0);
3535 SDValue NewRHS = RHS;
3537 // Careful: if the neg can be folded up, don't try to pull it back down.
3538 bool ShouldFoldNeg = true;
3540 if (NewLHS.hasOneUse()) {
3541 unsigned Opc = NewLHS.getOpcode();
3542 if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc))
3543 ShouldFoldNeg = false;
3544 if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL)
3545 ShouldFoldNeg = false;
3548 if (ShouldFoldNeg) {
3549 if (LHS.getOpcode() == ISD::FNEG)
3550 NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3551 else if (CRHS->isNegative())
3552 return SDValue();
3554 if (Inv)
3555 std::swap(NewLHS, NewRHS);
3557 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT,
3558 Cond, NewLHS, NewRHS);
3559 DCI.AddToWorklist(NewSelect.getNode());
3560 return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect);
3564 return SDValue();
3568 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N,
3569 DAGCombinerInfo &DCI) const {
3570 if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0)))
3571 return Folded;
3573 SDValue Cond = N->getOperand(0);
3574 if (Cond.getOpcode() != ISD::SETCC)
3575 return SDValue();
3577 EVT VT = N->getValueType(0);
3578 SDValue LHS = Cond.getOperand(0);
3579 SDValue RHS = Cond.getOperand(1);
3580 SDValue CC = Cond.getOperand(2);
3582 SDValue True = N->getOperand(1);
3583 SDValue False = N->getOperand(2);
3585 if (Cond.hasOneUse()) { // TODO: Look for multiple select uses.
3586 SelectionDAG &DAG = DCI.DAG;
3587 if (DAG.isConstantValueOfAnyType(True) &&
3588 !DAG.isConstantValueOfAnyType(False)) {
3589 // Swap cmp + select pair to move constant to false input.
3590 // This will allow using VOPC cndmasks more often.
3591 // select (setcc x, y), k, x -> select (setccinv x, y), x, k
3593 SDLoc SL(N);
3594 ISD::CondCode NewCC = getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
3595 LHS.getValueType().isInteger());
3597 SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC);
3598 return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True);
3601 if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) {
3602 SDValue MinMax
3603 = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI);
3604 // Revisit this node so we can catch min3/max3/med3 patterns.
3605 //DCI.AddToWorklist(MinMax.getNode());
3606 return MinMax;
3610 // There's no reason to not do this if the condition has other uses.
3611 return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI);
3614 static bool isInv2Pi(const APFloat &APF) {
3615 static const APFloat KF16(APFloat::IEEEhalf(), APInt(16, 0x3118));
3616 static const APFloat KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983));
3617 static const APFloat KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882));
3619 return APF.bitwiseIsEqual(KF16) ||
3620 APF.bitwiseIsEqual(KF32) ||
3621 APF.bitwiseIsEqual(KF64);
3624 // 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an
3625 // additional cost to negate them.
3626 bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N) const {
3627 if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) {
3628 if (C->isZero() && !C->isNegative())
3629 return true;
3631 if (Subtarget->hasInv2PiInlineImm() && isInv2Pi(C->getValueAPF()))
3632 return true;
3635 return false;
3638 static unsigned inverseMinMax(unsigned Opc) {
3639 switch (Opc) {
3640 case ISD::FMAXNUM:
3641 return ISD::FMINNUM;
3642 case ISD::FMINNUM:
3643 return ISD::FMAXNUM;
3644 case ISD::FMAXNUM_IEEE:
3645 return ISD::FMINNUM_IEEE;
3646 case ISD::FMINNUM_IEEE:
3647 return ISD::FMAXNUM_IEEE;
3648 case AMDGPUISD::FMAX_LEGACY:
3649 return AMDGPUISD::FMIN_LEGACY;
3650 case AMDGPUISD::FMIN_LEGACY:
3651 return AMDGPUISD::FMAX_LEGACY;
3652 default:
3653 llvm_unreachable("invalid min/max opcode");
3657 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N,
3658 DAGCombinerInfo &DCI) const {
3659 SelectionDAG &DAG = DCI.DAG;
3660 SDValue N0 = N->getOperand(0);
3661 EVT VT = N->getValueType(0);
3663 unsigned Opc = N0.getOpcode();
3665 // If the input has multiple uses and we can either fold the negate down, or
3666 // the other uses cannot, give up. This both prevents unprofitable
3667 // transformations and infinite loops: we won't repeatedly try to fold around
3668 // a negate that has no 'good' form.
3669 if (N0.hasOneUse()) {
3670 // This may be able to fold into the source, but at a code size cost. Don't
3671 // fold if the fold into the user is free.
3672 if (allUsesHaveSourceMods(N, 0))
3673 return SDValue();
3674 } else {
3675 if (fnegFoldsIntoOp(Opc) &&
3676 (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode())))
3677 return SDValue();
3680 SDLoc SL(N);
3681 switch (Opc) {
3682 case ISD::FADD: {
3683 if (!mayIgnoreSignedZero(N0))
3684 return SDValue();
3686 // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y))
3687 SDValue LHS = N0.getOperand(0);
3688 SDValue RHS = N0.getOperand(1);
3690 if (LHS.getOpcode() != ISD::FNEG)
3691 LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
3692 else
3693 LHS = LHS.getOperand(0);
3695 if (RHS.getOpcode() != ISD::FNEG)
3696 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3697 else
3698 RHS = RHS.getOperand(0);
3700 SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags());
3701 if (Res.getOpcode() != ISD::FADD)
3702 return SDValue(); // Op got folded away.
3703 if (!N0.hasOneUse())
3704 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3705 return Res;
3707 case ISD::FMUL:
3708 case AMDGPUISD::FMUL_LEGACY: {
3709 // (fneg (fmul x, y)) -> (fmul x, (fneg y))
3710 // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y))
3711 SDValue LHS = N0.getOperand(0);
3712 SDValue RHS = N0.getOperand(1);
3714 if (LHS.getOpcode() == ISD::FNEG)
3715 LHS = LHS.getOperand(0);
3716 else if (RHS.getOpcode() == ISD::FNEG)
3717 RHS = RHS.getOperand(0);
3718 else
3719 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3721 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags());
3722 if (Res.getOpcode() != Opc)
3723 return SDValue(); // Op got folded away.
3724 if (!N0.hasOneUse())
3725 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3726 return Res;
3728 case ISD::FMA:
3729 case ISD::FMAD: {
3730 if (!mayIgnoreSignedZero(N0))
3731 return SDValue();
3733 // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z))
3734 SDValue LHS = N0.getOperand(0);
3735 SDValue MHS = N0.getOperand(1);
3736 SDValue RHS = N0.getOperand(2);
3738 if (LHS.getOpcode() == ISD::FNEG)
3739 LHS = LHS.getOperand(0);
3740 else if (MHS.getOpcode() == ISD::FNEG)
3741 MHS = MHS.getOperand(0);
3742 else
3743 MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS);
3745 if (RHS.getOpcode() != ISD::FNEG)
3746 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3747 else
3748 RHS = RHS.getOperand(0);
3750 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS);
3751 if (Res.getOpcode() != Opc)
3752 return SDValue(); // Op got folded away.
3753 if (!N0.hasOneUse())
3754 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3755 return Res;
3757 case ISD::FMAXNUM:
3758 case ISD::FMINNUM:
3759 case ISD::FMAXNUM_IEEE:
3760 case ISD::FMINNUM_IEEE:
3761 case AMDGPUISD::FMAX_LEGACY:
3762 case AMDGPUISD::FMIN_LEGACY: {
3763 // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y)
3764 // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y)
3765 // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y)
3766 // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y)
3768 SDValue LHS = N0.getOperand(0);
3769 SDValue RHS = N0.getOperand(1);
3771 // 0 doesn't have a negated inline immediate.
3772 // TODO: This constant check should be generalized to other operations.
3773 if (isConstantCostlierToNegate(RHS))
3774 return SDValue();
3776 SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
3777 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3778 unsigned Opposite = inverseMinMax(Opc);
3780 SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags());
3781 if (Res.getOpcode() != Opposite)
3782 return SDValue(); // Op got folded away.
3783 if (!N0.hasOneUse())
3784 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3785 return Res;
3787 case AMDGPUISD::FMED3: {
3788 SDValue Ops[3];
3789 for (unsigned I = 0; I < 3; ++I)
3790 Ops[I] = DAG.getNode(ISD::FNEG, SL, VT, N0->getOperand(I), N0->getFlags());
3792 SDValue Res = DAG.getNode(AMDGPUISD::FMED3, SL, VT, Ops, N0->getFlags());
3793 if (Res.getOpcode() != AMDGPUISD::FMED3)
3794 return SDValue(); // Op got folded away.
3795 if (!N0.hasOneUse())
3796 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3797 return Res;
3799 case ISD::FP_EXTEND:
3800 case ISD::FTRUNC:
3801 case ISD::FRINT:
3802 case ISD::FNEARBYINT: // XXX - Should fround be handled?
3803 case ISD::FSIN:
3804 case ISD::FCANONICALIZE:
3805 case AMDGPUISD::RCP:
3806 case AMDGPUISD::RCP_LEGACY:
3807 case AMDGPUISD::RCP_IFLAG:
3808 case AMDGPUISD::SIN_HW: {
3809 SDValue CvtSrc = N0.getOperand(0);
3810 if (CvtSrc.getOpcode() == ISD::FNEG) {
3811 // (fneg (fp_extend (fneg x))) -> (fp_extend x)
3812 // (fneg (rcp (fneg x))) -> (rcp x)
3813 return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0));
3816 if (!N0.hasOneUse())
3817 return SDValue();
3819 // (fneg (fp_extend x)) -> (fp_extend (fneg x))
3820 // (fneg (rcp x)) -> (rcp (fneg x))
3821 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
3822 return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags());
3824 case ISD::FP_ROUND: {
3825 SDValue CvtSrc = N0.getOperand(0);
3827 if (CvtSrc.getOpcode() == ISD::FNEG) {
3828 // (fneg (fp_round (fneg x))) -> (fp_round x)
3829 return DAG.getNode(ISD::FP_ROUND, SL, VT,
3830 CvtSrc.getOperand(0), N0.getOperand(1));
3833 if (!N0.hasOneUse())
3834 return SDValue();
3836 // (fneg (fp_round x)) -> (fp_round (fneg x))
3837 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
3838 return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1));
3840 case ISD::FP16_TO_FP: {
3841 // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal
3842 // f16, but legalization of f16 fneg ends up pulling it out of the source.
3843 // Put the fneg back as a legal source operation that can be matched later.
3844 SDLoc SL(N);
3846 SDValue Src = N0.getOperand(0);
3847 EVT SrcVT = Src.getValueType();
3849 // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000)
3850 SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src,
3851 DAG.getConstant(0x8000, SL, SrcVT));
3852 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg);
3854 default:
3855 return SDValue();
3859 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N,
3860 DAGCombinerInfo &DCI) const {
3861 SelectionDAG &DAG = DCI.DAG;
3862 SDValue N0 = N->getOperand(0);
3864 if (!N0.hasOneUse())
3865 return SDValue();
3867 switch (N0.getOpcode()) {
3868 case ISD::FP16_TO_FP: {
3869 assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal");
3870 SDLoc SL(N);
3871 SDValue Src = N0.getOperand(0);
3872 EVT SrcVT = Src.getValueType();
3874 // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff)
3875 SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src,
3876 DAG.getConstant(0x7fff, SL, SrcVT));
3877 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs);
3879 default:
3880 return SDValue();
3884 SDValue AMDGPUTargetLowering::performRcpCombine(SDNode *N,
3885 DAGCombinerInfo &DCI) const {
3886 const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
3887 if (!CFP)
3888 return SDValue();
3890 // XXX - Should this flush denormals?
3891 const APFloat &Val = CFP->getValueAPF();
3892 APFloat One(Val.getSemantics(), "1.0");
3893 return DCI.DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0));
3896 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N,
3897 DAGCombinerInfo &DCI) const {
3898 SelectionDAG &DAG = DCI.DAG;
3899 SDLoc DL(N);
3901 switch(N->getOpcode()) {
3902 default:
3903 break;
3904 case ISD::BITCAST: {
3905 EVT DestVT = N->getValueType(0);
3907 // Push casts through vector builds. This helps avoid emitting a large
3908 // number of copies when materializing floating point vector constants.
3910 // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) =>
3911 // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y))
3912 if (DestVT.isVector()) {
3913 SDValue Src = N->getOperand(0);
3914 if (Src.getOpcode() == ISD::BUILD_VECTOR) {
3915 EVT SrcVT = Src.getValueType();
3916 unsigned NElts = DestVT.getVectorNumElements();
3918 if (SrcVT.getVectorNumElements() == NElts) {
3919 EVT DestEltVT = DestVT.getVectorElementType();
3921 SmallVector<SDValue, 8> CastedElts;
3922 SDLoc SL(N);
3923 for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) {
3924 SDValue Elt = Src.getOperand(I);
3925 CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt));
3928 return DAG.getBuildVector(DestVT, SL, CastedElts);
3933 if (DestVT.getSizeInBits() != 64 && !DestVT.isVector())
3934 break;
3936 // Fold bitcasts of constants.
3938 // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k)
3939 // TODO: Generalize and move to DAGCombiner
3940 SDValue Src = N->getOperand(0);
3941 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) {
3942 if (Src.getValueType() == MVT::i64) {
3943 SDLoc SL(N);
3944 uint64_t CVal = C->getZExtValue();
3945 SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
3946 DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
3947 DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
3948 return DAG.getNode(ISD::BITCAST, SL, DestVT, BV);
3952 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) {
3953 const APInt &Val = C->getValueAPF().bitcastToAPInt();
3954 SDLoc SL(N);
3955 uint64_t CVal = Val.getZExtValue();
3956 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
3957 DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
3958 DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
3960 return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec);
3963 break;
3965 case ISD::SHL: {
3966 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
3967 break;
3969 return performShlCombine(N, DCI);
3971 case ISD::SRL: {
3972 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
3973 break;
3975 return performSrlCombine(N, DCI);
3977 case ISD::SRA: {
3978 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
3979 break;
3981 return performSraCombine(N, DCI);
3983 case ISD::TRUNCATE:
3984 return performTruncateCombine(N, DCI);
3985 case ISD::MUL:
3986 return performMulCombine(N, DCI);
3987 case ISD::MULHS:
3988 return performMulhsCombine(N, DCI);
3989 case ISD::MULHU:
3990 return performMulhuCombine(N, DCI);
3991 case AMDGPUISD::MUL_I24:
3992 case AMDGPUISD::MUL_U24:
3993 case AMDGPUISD::MULHI_I24:
3994 case AMDGPUISD::MULHI_U24: {
3995 if (SDValue V = simplifyI24(N, DCI))
3996 return V;
3997 return SDValue();
3999 case AMDGPUISD::MUL_LOHI_I24:
4000 case AMDGPUISD::MUL_LOHI_U24:
4001 return performMulLoHi24Combine(N, DCI);
4002 case ISD::SELECT:
4003 return performSelectCombine(N, DCI);
4004 case ISD::FNEG:
4005 return performFNegCombine(N, DCI);
4006 case ISD::FABS:
4007 return performFAbsCombine(N, DCI);
4008 case AMDGPUISD::BFE_I32:
4009 case AMDGPUISD::BFE_U32: {
4010 assert(!N->getValueType(0).isVector() &&
4011 "Vector handling of BFE not implemented");
4012 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
4013 if (!Width)
4014 break;
4016 uint32_t WidthVal = Width->getZExtValue() & 0x1f;
4017 if (WidthVal == 0)
4018 return DAG.getConstant(0, DL, MVT::i32);
4020 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
4021 if (!Offset)
4022 break;
4024 SDValue BitsFrom = N->getOperand(0);
4025 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f;
4027 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32;
4029 if (OffsetVal == 0) {
4030 // This is already sign / zero extended, so try to fold away extra BFEs.
4031 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal);
4033 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom);
4034 if (OpSignBits >= SignBits)
4035 return BitsFrom;
4037 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal);
4038 if (Signed) {
4039 // This is a sign_extend_inreg. Replace it to take advantage of existing
4040 // DAG Combines. If not eliminated, we will match back to BFE during
4041 // selection.
4043 // TODO: The sext_inreg of extended types ends, although we can could
4044 // handle them in a single BFE.
4045 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom,
4046 DAG.getValueType(SmallVT));
4049 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT);
4052 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) {
4053 if (Signed) {
4054 return constantFoldBFE<int32_t>(DAG,
4055 CVal->getSExtValue(),
4056 OffsetVal,
4057 WidthVal,
4058 DL);
4061 return constantFoldBFE<uint32_t>(DAG,
4062 CVal->getZExtValue(),
4063 OffsetVal,
4064 WidthVal,
4065 DL);
4068 if ((OffsetVal + WidthVal) >= 32 &&
4069 !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) {
4070 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32);
4071 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32,
4072 BitsFrom, ShiftVal);
4075 if (BitsFrom.hasOneUse()) {
4076 APInt Demanded = APInt::getBitsSet(32,
4077 OffsetVal,
4078 OffsetVal + WidthVal);
4080 KnownBits Known;
4081 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
4082 !DCI.isBeforeLegalizeOps());
4083 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4084 if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) ||
4085 TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) {
4086 DCI.CommitTargetLoweringOpt(TLO);
4090 break;
4092 case ISD::LOAD:
4093 return performLoadCombine(N, DCI);
4094 case ISD::STORE:
4095 return performStoreCombine(N, DCI);
4096 case AMDGPUISD::RCP:
4097 case AMDGPUISD::RCP_IFLAG:
4098 return performRcpCombine(N, DCI);
4099 case ISD::AssertZext:
4100 case ISD::AssertSext:
4101 return performAssertSZExtCombine(N, DCI);
4103 return SDValue();
4106 //===----------------------------------------------------------------------===//
4107 // Helper functions
4108 //===----------------------------------------------------------------------===//
4110 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
4111 const TargetRegisterClass *RC,
4112 unsigned Reg, EVT VT,
4113 const SDLoc &SL,
4114 bool RawReg) const {
4115 MachineFunction &MF = DAG.getMachineFunction();
4116 MachineRegisterInfo &MRI = MF.getRegInfo();
4117 unsigned VReg;
4119 if (!MRI.isLiveIn(Reg)) {
4120 VReg = MRI.createVirtualRegister(RC);
4121 MRI.addLiveIn(Reg, VReg);
4122 } else {
4123 VReg = MRI.getLiveInVirtReg(Reg);
4126 if (RawReg)
4127 return DAG.getRegister(VReg, VT);
4129 return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT);
4132 SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG,
4133 EVT VT,
4134 const SDLoc &SL,
4135 int64_t Offset) const {
4136 MachineFunction &MF = DAG.getMachineFunction();
4137 MachineFrameInfo &MFI = MF.getFrameInfo();
4139 int FI = MFI.CreateFixedObject(VT.getStoreSize(), Offset, true);
4140 auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset);
4141 SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32);
4143 return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, 4,
4144 MachineMemOperand::MODereferenceable |
4145 MachineMemOperand::MOInvariant);
4148 SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG,
4149 const SDLoc &SL,
4150 SDValue Chain,
4151 SDValue ArgVal,
4152 int64_t Offset) const {
4153 MachineFunction &MF = DAG.getMachineFunction();
4154 MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset);
4156 SDValue Ptr = DAG.getConstant(Offset, SL, MVT::i32);
4157 SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, 4,
4158 MachineMemOperand::MODereferenceable);
4159 return Store;
4162 SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG,
4163 const TargetRegisterClass *RC,
4164 EVT VT, const SDLoc &SL,
4165 const ArgDescriptor &Arg) const {
4166 assert(Arg && "Attempting to load missing argument");
4168 SDValue V = Arg.isRegister() ?
4169 CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL) :
4170 loadStackInputValue(DAG, VT, SL, Arg.getStackOffset());
4172 if (!Arg.isMasked())
4173 return V;
4175 unsigned Mask = Arg.getMask();
4176 unsigned Shift = countTrailingZeros<unsigned>(Mask);
4177 V = DAG.getNode(ISD::SRL, SL, VT, V,
4178 DAG.getShiftAmountConstant(Shift, VT, SL));
4179 return DAG.getNode(ISD::AND, SL, VT, V,
4180 DAG.getConstant(Mask >> Shift, SL, VT));
4183 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset(
4184 const MachineFunction &MF, const ImplicitParameter Param) const {
4185 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>();
4186 const AMDGPUSubtarget &ST =
4187 AMDGPUSubtarget::get(getTargetMachine(), MF.getFunction());
4188 unsigned ExplicitArgOffset = ST.getExplicitKernelArgOffset(MF.getFunction());
4189 unsigned Alignment = ST.getAlignmentForImplicitArgPtr();
4190 uint64_t ArgOffset = alignTo(MFI->getExplicitKernArgSize(), Alignment) +
4191 ExplicitArgOffset;
4192 switch (Param) {
4193 case GRID_DIM:
4194 return ArgOffset;
4195 case GRID_OFFSET:
4196 return ArgOffset + 4;
4198 llvm_unreachable("unexpected implicit parameter type");
4201 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node;
4203 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const {
4204 switch ((AMDGPUISD::NodeType)Opcode) {
4205 case AMDGPUISD::FIRST_NUMBER: break;
4206 // AMDIL DAG nodes
4207 NODE_NAME_CASE(UMUL);
4208 NODE_NAME_CASE(BRANCH_COND);
4210 // AMDGPU DAG nodes
4211 NODE_NAME_CASE(IF)
4212 NODE_NAME_CASE(ELSE)
4213 NODE_NAME_CASE(LOOP)
4214 NODE_NAME_CASE(CALL)
4215 NODE_NAME_CASE(TC_RETURN)
4216 NODE_NAME_CASE(TRAP)
4217 NODE_NAME_CASE(RET_FLAG)
4218 NODE_NAME_CASE(RETURN_TO_EPILOG)
4219 NODE_NAME_CASE(ENDPGM)
4220 NODE_NAME_CASE(DWORDADDR)
4221 NODE_NAME_CASE(FRACT)
4222 NODE_NAME_CASE(SETCC)
4223 NODE_NAME_CASE(SETREG)
4224 NODE_NAME_CASE(FMA_W_CHAIN)
4225 NODE_NAME_CASE(FMUL_W_CHAIN)
4226 NODE_NAME_CASE(CLAMP)
4227 NODE_NAME_CASE(COS_HW)
4228 NODE_NAME_CASE(SIN_HW)
4229 NODE_NAME_CASE(FMAX_LEGACY)
4230 NODE_NAME_CASE(FMIN_LEGACY)
4231 NODE_NAME_CASE(FMAX3)
4232 NODE_NAME_CASE(SMAX3)
4233 NODE_NAME_CASE(UMAX3)
4234 NODE_NAME_CASE(FMIN3)
4235 NODE_NAME_CASE(SMIN3)
4236 NODE_NAME_CASE(UMIN3)
4237 NODE_NAME_CASE(FMED3)
4238 NODE_NAME_CASE(SMED3)
4239 NODE_NAME_CASE(UMED3)
4240 NODE_NAME_CASE(FDOT2)
4241 NODE_NAME_CASE(URECIP)
4242 NODE_NAME_CASE(DIV_SCALE)
4243 NODE_NAME_CASE(DIV_FMAS)
4244 NODE_NAME_CASE(DIV_FIXUP)
4245 NODE_NAME_CASE(FMAD_FTZ)
4246 NODE_NAME_CASE(TRIG_PREOP)
4247 NODE_NAME_CASE(RCP)
4248 NODE_NAME_CASE(RSQ)
4249 NODE_NAME_CASE(RCP_LEGACY)
4250 NODE_NAME_CASE(RSQ_LEGACY)
4251 NODE_NAME_CASE(RCP_IFLAG)
4252 NODE_NAME_CASE(FMUL_LEGACY)
4253 NODE_NAME_CASE(RSQ_CLAMP)
4254 NODE_NAME_CASE(LDEXP)
4255 NODE_NAME_CASE(FP_CLASS)
4256 NODE_NAME_CASE(DOT4)
4257 NODE_NAME_CASE(CARRY)
4258 NODE_NAME_CASE(BORROW)
4259 NODE_NAME_CASE(BFE_U32)
4260 NODE_NAME_CASE(BFE_I32)
4261 NODE_NAME_CASE(BFI)
4262 NODE_NAME_CASE(BFM)
4263 NODE_NAME_CASE(FFBH_U32)
4264 NODE_NAME_CASE(FFBH_I32)
4265 NODE_NAME_CASE(FFBL_B32)
4266 NODE_NAME_CASE(MUL_U24)
4267 NODE_NAME_CASE(MUL_I24)
4268 NODE_NAME_CASE(MULHI_U24)
4269 NODE_NAME_CASE(MULHI_I24)
4270 NODE_NAME_CASE(MUL_LOHI_U24)
4271 NODE_NAME_CASE(MUL_LOHI_I24)
4272 NODE_NAME_CASE(MAD_U24)
4273 NODE_NAME_CASE(MAD_I24)
4274 NODE_NAME_CASE(MAD_I64_I32)
4275 NODE_NAME_CASE(MAD_U64_U32)
4276 NODE_NAME_CASE(PERM)
4277 NODE_NAME_CASE(TEXTURE_FETCH)
4278 NODE_NAME_CASE(EXPORT)
4279 NODE_NAME_CASE(EXPORT_DONE)
4280 NODE_NAME_CASE(R600_EXPORT)
4281 NODE_NAME_CASE(CONST_ADDRESS)
4282 NODE_NAME_CASE(REGISTER_LOAD)
4283 NODE_NAME_CASE(REGISTER_STORE)
4284 NODE_NAME_CASE(SAMPLE)
4285 NODE_NAME_CASE(SAMPLEB)
4286 NODE_NAME_CASE(SAMPLED)
4287 NODE_NAME_CASE(SAMPLEL)
4288 NODE_NAME_CASE(CVT_F32_UBYTE0)
4289 NODE_NAME_CASE(CVT_F32_UBYTE1)
4290 NODE_NAME_CASE(CVT_F32_UBYTE2)
4291 NODE_NAME_CASE(CVT_F32_UBYTE3)
4292 NODE_NAME_CASE(CVT_PKRTZ_F16_F32)
4293 NODE_NAME_CASE(CVT_PKNORM_I16_F32)
4294 NODE_NAME_CASE(CVT_PKNORM_U16_F32)
4295 NODE_NAME_CASE(CVT_PK_I16_I32)
4296 NODE_NAME_CASE(CVT_PK_U16_U32)
4297 NODE_NAME_CASE(FP_TO_FP16)
4298 NODE_NAME_CASE(FP16_ZEXT)
4299 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR)
4300 NODE_NAME_CASE(CONST_DATA_PTR)
4301 NODE_NAME_CASE(PC_ADD_REL_OFFSET)
4302 NODE_NAME_CASE(LDS)
4303 NODE_NAME_CASE(KILL)
4304 NODE_NAME_CASE(DUMMY_CHAIN)
4305 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break;
4306 NODE_NAME_CASE(INIT_EXEC)
4307 NODE_NAME_CASE(INIT_EXEC_FROM_INPUT)
4308 NODE_NAME_CASE(SENDMSG)
4309 NODE_NAME_CASE(SENDMSGHALT)
4310 NODE_NAME_CASE(INTERP_MOV)
4311 NODE_NAME_CASE(INTERP_P1)
4312 NODE_NAME_CASE(INTERP_P2)
4313 NODE_NAME_CASE(INTERP_P1LL_F16)
4314 NODE_NAME_CASE(INTERP_P1LV_F16)
4315 NODE_NAME_CASE(INTERP_P2_F16)
4316 NODE_NAME_CASE(LOAD_D16_HI)
4317 NODE_NAME_CASE(LOAD_D16_LO)
4318 NODE_NAME_CASE(LOAD_D16_HI_I8)
4319 NODE_NAME_CASE(LOAD_D16_HI_U8)
4320 NODE_NAME_CASE(LOAD_D16_LO_I8)
4321 NODE_NAME_CASE(LOAD_D16_LO_U8)
4322 NODE_NAME_CASE(STORE_MSKOR)
4323 NODE_NAME_CASE(LOAD_CONSTANT)
4324 NODE_NAME_CASE(TBUFFER_STORE_FORMAT)
4325 NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16)
4326 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT)
4327 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16)
4328 NODE_NAME_CASE(DS_ORDERED_COUNT)
4329 NODE_NAME_CASE(ATOMIC_CMP_SWAP)
4330 NODE_NAME_CASE(ATOMIC_INC)
4331 NODE_NAME_CASE(ATOMIC_DEC)
4332 NODE_NAME_CASE(ATOMIC_LOAD_FMIN)
4333 NODE_NAME_CASE(ATOMIC_LOAD_FMAX)
4334 NODE_NAME_CASE(BUFFER_LOAD)
4335 NODE_NAME_CASE(BUFFER_LOAD_UBYTE)
4336 NODE_NAME_CASE(BUFFER_LOAD_USHORT)
4337 NODE_NAME_CASE(BUFFER_LOAD_BYTE)
4338 NODE_NAME_CASE(BUFFER_LOAD_SHORT)
4339 NODE_NAME_CASE(BUFFER_LOAD_FORMAT)
4340 NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16)
4341 NODE_NAME_CASE(SBUFFER_LOAD)
4342 NODE_NAME_CASE(BUFFER_STORE)
4343 NODE_NAME_CASE(BUFFER_STORE_BYTE)
4344 NODE_NAME_CASE(BUFFER_STORE_SHORT)
4345 NODE_NAME_CASE(BUFFER_STORE_FORMAT)
4346 NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16)
4347 NODE_NAME_CASE(BUFFER_ATOMIC_SWAP)
4348 NODE_NAME_CASE(BUFFER_ATOMIC_ADD)
4349 NODE_NAME_CASE(BUFFER_ATOMIC_SUB)
4350 NODE_NAME_CASE(BUFFER_ATOMIC_SMIN)
4351 NODE_NAME_CASE(BUFFER_ATOMIC_UMIN)
4352 NODE_NAME_CASE(BUFFER_ATOMIC_SMAX)
4353 NODE_NAME_CASE(BUFFER_ATOMIC_UMAX)
4354 NODE_NAME_CASE(BUFFER_ATOMIC_AND)
4355 NODE_NAME_CASE(BUFFER_ATOMIC_OR)
4356 NODE_NAME_CASE(BUFFER_ATOMIC_XOR)
4357 NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP)
4358 NODE_NAME_CASE(BUFFER_ATOMIC_FADD)
4359 NODE_NAME_CASE(BUFFER_ATOMIC_PK_FADD)
4360 NODE_NAME_CASE(ATOMIC_FADD)
4361 NODE_NAME_CASE(ATOMIC_PK_FADD)
4363 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break;
4365 return nullptr;
4368 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand,
4369 SelectionDAG &DAG, int Enabled,
4370 int &RefinementSteps,
4371 bool &UseOneConstNR,
4372 bool Reciprocal) const {
4373 EVT VT = Operand.getValueType();
4375 if (VT == MVT::f32) {
4376 RefinementSteps = 0;
4377 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand);
4380 // TODO: There is also f64 rsq instruction, but the documentation is less
4381 // clear on its precision.
4383 return SDValue();
4386 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand,
4387 SelectionDAG &DAG, int Enabled,
4388 int &RefinementSteps) const {
4389 EVT VT = Operand.getValueType();
4391 if (VT == MVT::f32) {
4392 // Reciprocal, < 1 ulp error.
4394 // This reciprocal approximation converges to < 0.5 ulp error with one
4395 // newton rhapson performed with two fused multiple adds (FMAs).
4397 RefinementSteps = 0;
4398 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand);
4401 // TODO: There is also f64 rcp instruction, but the documentation is less
4402 // clear on its precision.
4404 return SDValue();
4407 void AMDGPUTargetLowering::computeKnownBitsForTargetNode(
4408 const SDValue Op, KnownBits &Known,
4409 const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const {
4411 Known.resetAll(); // Don't know anything.
4413 unsigned Opc = Op.getOpcode();
4415 switch (Opc) {
4416 default:
4417 break;
4418 case AMDGPUISD::CARRY:
4419 case AMDGPUISD::BORROW: {
4420 Known.Zero = APInt::getHighBitsSet(32, 31);
4421 break;
4424 case AMDGPUISD::BFE_I32:
4425 case AMDGPUISD::BFE_U32: {
4426 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4427 if (!CWidth)
4428 return;
4430 uint32_t Width = CWidth->getZExtValue() & 0x1f;
4432 if (Opc == AMDGPUISD::BFE_U32)
4433 Known.Zero = APInt::getHighBitsSet(32, 32 - Width);
4435 break;
4437 case AMDGPUISD::FP_TO_FP16:
4438 case AMDGPUISD::FP16_ZEXT: {
4439 unsigned BitWidth = Known.getBitWidth();
4441 // High bits are zero.
4442 Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
4443 break;
4445 case AMDGPUISD::MUL_U24:
4446 case AMDGPUISD::MUL_I24: {
4447 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
4448 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1);
4449 unsigned TrailZ = LHSKnown.countMinTrailingZeros() +
4450 RHSKnown.countMinTrailingZeros();
4451 Known.Zero.setLowBits(std::min(TrailZ, 32u));
4453 // Truncate to 24 bits.
4454 LHSKnown = LHSKnown.trunc(24);
4455 RHSKnown = RHSKnown.trunc(24);
4457 bool Negative = false;
4458 if (Opc == AMDGPUISD::MUL_I24) {
4459 unsigned LHSValBits = 24 - LHSKnown.countMinSignBits();
4460 unsigned RHSValBits = 24 - RHSKnown.countMinSignBits();
4461 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u);
4462 if (MaxValBits >= 32)
4463 break;
4464 bool LHSNegative = LHSKnown.isNegative();
4465 bool LHSPositive = LHSKnown.isNonNegative();
4466 bool RHSNegative = RHSKnown.isNegative();
4467 bool RHSPositive = RHSKnown.isNonNegative();
4468 if ((!LHSNegative && !LHSPositive) || (!RHSNegative && !RHSPositive))
4469 break;
4470 Negative = (LHSNegative && RHSPositive) || (LHSPositive && RHSNegative);
4471 if (Negative)
4472 Known.One.setHighBits(32 - MaxValBits);
4473 else
4474 Known.Zero.setHighBits(32 - MaxValBits);
4475 } else {
4476 unsigned LHSValBits = 24 - LHSKnown.countMinLeadingZeros();
4477 unsigned RHSValBits = 24 - RHSKnown.countMinLeadingZeros();
4478 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u);
4479 if (MaxValBits >= 32)
4480 break;
4481 Known.Zero.setHighBits(32 - MaxValBits);
4483 break;
4485 case AMDGPUISD::PERM: {
4486 ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4487 if (!CMask)
4488 return;
4490 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
4491 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1);
4492 unsigned Sel = CMask->getZExtValue();
4494 for (unsigned I = 0; I < 32; I += 8) {
4495 unsigned SelBits = Sel & 0xff;
4496 if (SelBits < 4) {
4497 SelBits *= 8;
4498 Known.One |= ((RHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I;
4499 Known.Zero |= ((RHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I;
4500 } else if (SelBits < 7) {
4501 SelBits = (SelBits & 3) * 8;
4502 Known.One |= ((LHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I;
4503 Known.Zero |= ((LHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I;
4504 } else if (SelBits == 0x0c) {
4505 Known.Zero |= 0xFFull << I;
4506 } else if (SelBits > 0x0c) {
4507 Known.One |= 0xFFull << I;
4509 Sel >>= 8;
4511 break;
4513 case AMDGPUISD::BUFFER_LOAD_UBYTE: {
4514 Known.Zero.setHighBits(24);
4515 break;
4517 case AMDGPUISD::BUFFER_LOAD_USHORT: {
4518 Known.Zero.setHighBits(16);
4519 break;
4521 case AMDGPUISD::LDS: {
4522 auto GA = cast<GlobalAddressSDNode>(Op.getOperand(0).getNode());
4523 unsigned Align = GA->getGlobal()->getAlignment();
4525 Known.Zero.setHighBits(16);
4526 if (Align)
4527 Known.Zero.setLowBits(Log2_32(Align));
4528 break;
4530 case ISD::INTRINSIC_WO_CHAIN: {
4531 unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4532 switch (IID) {
4533 case Intrinsic::amdgcn_mbcnt_lo:
4534 case Intrinsic::amdgcn_mbcnt_hi: {
4535 const GCNSubtarget &ST =
4536 DAG.getMachineFunction().getSubtarget<GCNSubtarget>();
4537 // These return at most the wavefront size - 1.
4538 unsigned Size = Op.getValueType().getSizeInBits();
4539 Known.Zero.setHighBits(Size - ST.getWavefrontSizeLog2());
4540 break;
4542 default:
4543 break;
4549 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode(
4550 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
4551 unsigned Depth) const {
4552 switch (Op.getOpcode()) {
4553 case AMDGPUISD::BFE_I32: {
4554 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4555 if (!Width)
4556 return 1;
4558 unsigned SignBits = 32 - Width->getZExtValue() + 1;
4559 if (!isNullConstant(Op.getOperand(1)))
4560 return SignBits;
4562 // TODO: Could probably figure something out with non-0 offsets.
4563 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4564 return std::max(SignBits, Op0SignBits);
4567 case AMDGPUISD::BFE_U32: {
4568 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4569 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1;
4572 case AMDGPUISD::CARRY:
4573 case AMDGPUISD::BORROW:
4574 return 31;
4575 case AMDGPUISD::BUFFER_LOAD_BYTE:
4576 return 25;
4577 case AMDGPUISD::BUFFER_LOAD_SHORT:
4578 return 17;
4579 case AMDGPUISD::BUFFER_LOAD_UBYTE:
4580 return 24;
4581 case AMDGPUISD::BUFFER_LOAD_USHORT:
4582 return 16;
4583 case AMDGPUISD::FP_TO_FP16:
4584 case AMDGPUISD::FP16_ZEXT:
4585 return 16;
4586 default:
4587 return 1;
4591 bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
4592 const SelectionDAG &DAG,
4593 bool SNaN,
4594 unsigned Depth) const {
4595 unsigned Opcode = Op.getOpcode();
4596 switch (Opcode) {
4597 case AMDGPUISD::FMIN_LEGACY:
4598 case AMDGPUISD::FMAX_LEGACY: {
4599 if (SNaN)
4600 return true;
4602 // TODO: Can check no nans on one of the operands for each one, but which
4603 // one?
4604 return false;
4606 case AMDGPUISD::FMUL_LEGACY:
4607 case AMDGPUISD::CVT_PKRTZ_F16_F32: {
4608 if (SNaN)
4609 return true;
4610 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4611 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4613 case AMDGPUISD::FMED3:
4614 case AMDGPUISD::FMIN3:
4615 case AMDGPUISD::FMAX3:
4616 case AMDGPUISD::FMAD_FTZ: {
4617 if (SNaN)
4618 return true;
4619 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4620 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4621 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4623 case AMDGPUISD::CVT_F32_UBYTE0:
4624 case AMDGPUISD::CVT_F32_UBYTE1:
4625 case AMDGPUISD::CVT_F32_UBYTE2:
4626 case AMDGPUISD::CVT_F32_UBYTE3:
4627 return true;
4629 case AMDGPUISD::RCP:
4630 case AMDGPUISD::RSQ:
4631 case AMDGPUISD::RCP_LEGACY:
4632 case AMDGPUISD::RSQ_LEGACY:
4633 case AMDGPUISD::RSQ_CLAMP: {
4634 if (SNaN)
4635 return true;
4637 // TODO: Need is known positive check.
4638 return false;
4640 case AMDGPUISD::LDEXP:
4641 case AMDGPUISD::FRACT: {
4642 if (SNaN)
4643 return true;
4644 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4646 case AMDGPUISD::DIV_SCALE:
4647 case AMDGPUISD::DIV_FMAS:
4648 case AMDGPUISD::DIV_FIXUP:
4649 case AMDGPUISD::TRIG_PREOP:
4650 // TODO: Refine on operands.
4651 return SNaN;
4652 case AMDGPUISD::SIN_HW:
4653 case AMDGPUISD::COS_HW: {
4654 // TODO: Need check for infinity
4655 return SNaN;
4657 case ISD::INTRINSIC_WO_CHAIN: {
4658 unsigned IntrinsicID
4659 = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4660 // TODO: Handle more intrinsics
4661 switch (IntrinsicID) {
4662 case Intrinsic::amdgcn_cubeid:
4663 return true;
4665 case Intrinsic::amdgcn_frexp_mant: {
4666 if (SNaN)
4667 return true;
4668 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4670 case Intrinsic::amdgcn_cvt_pkrtz: {
4671 if (SNaN)
4672 return true;
4673 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4674 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4676 case Intrinsic::amdgcn_fdot2:
4677 // TODO: Refine on operand
4678 return SNaN;
4679 default:
4680 return false;
4683 default:
4684 return false;
4688 TargetLowering::AtomicExpansionKind
4689 AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
4690 switch (RMW->getOperation()) {
4691 case AtomicRMWInst::Nand:
4692 case AtomicRMWInst::FAdd:
4693 case AtomicRMWInst::FSub:
4694 return AtomicExpansionKind::CmpXChg;
4695 default:
4696 return AtomicExpansionKind::None;