[ARM] Better patterns for fp <> predicate vectors
[llvm-complete.git] / lib / Target / AMDGPU / AMDGPULibCalls.cpp
blobce0a9db7c7f413c2329b14bc3d9589d2e6718876
1 //===- AMDGPULibCalls.cpp -------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file does AMD library function optimizations.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "amdgpu-simplifylib"
16 #include "AMDGPU.h"
17 #include "AMDGPULibFunc.h"
18 #include "AMDGPUSubtarget.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/Loads.h"
21 #include "llvm/ADT/StringSet.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/Intrinsics.h"
27 #include "llvm/IR/IRBuilder.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/Module.h"
31 #include "llvm/IR/ValueSymbolTable.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Target/TargetMachine.h"
35 #include "llvm/Target/TargetOptions.h"
36 #include <vector>
37 #include <cmath>
39 using namespace llvm;
41 static cl::opt<bool> EnablePreLink("amdgpu-prelink",
42 cl::desc("Enable pre-link mode optimizations"),
43 cl::init(false),
44 cl::Hidden);
46 static cl::list<std::string> UseNative("amdgpu-use-native",
47 cl::desc("Comma separated list of functions to replace with native, or all"),
48 cl::CommaSeparated, cl::ValueOptional,
49 cl::Hidden);
51 #define MATH_PI 3.14159265358979323846264338327950288419716939937511
52 #define MATH_E 2.71828182845904523536028747135266249775724709369996
53 #define MATH_SQRT2 1.41421356237309504880168872420969807856967187537695
55 #define MATH_LOG2E 1.4426950408889634073599246810018921374266459541529859
56 #define MATH_LOG10E 0.4342944819032518276511289189166050822943970058036665
57 // Value of log2(10)
58 #define MATH_LOG2_10 3.3219280948873623478703194294893901758648313930245806
59 // Value of 1 / log2(10)
60 #define MATH_RLOG2_10 0.3010299956639811952137388947244930267681898814621085
61 // Value of 1 / M_LOG2E_F = 1 / log2(e)
62 #define MATH_RLOG2_E 0.6931471805599453094172321214581765680755001343602552
64 namespace llvm {
66 class AMDGPULibCalls {
67 private:
69 typedef llvm::AMDGPULibFunc FuncInfo;
71 const TargetMachine *TM;
73 // -fuse-native.
74 bool AllNative = false;
76 bool useNativeFunc(const StringRef F) const;
78 // Return a pointer (pointer expr) to the function if function defintion with
79 // "FuncName" exists. It may create a new function prototype in pre-link mode.
80 FunctionCallee getFunction(Module *M, const FuncInfo &fInfo);
82 // Replace a normal function with its native version.
83 bool replaceWithNative(CallInst *CI, const FuncInfo &FInfo);
85 bool parseFunctionName(const StringRef& FMangledName,
86 FuncInfo *FInfo=nullptr /*out*/);
88 bool TDOFold(CallInst *CI, const FuncInfo &FInfo);
90 /* Specialized optimizations */
92 // recip (half or native)
93 bool fold_recip(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
95 // divide (half or native)
96 bool fold_divide(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
98 // pow/powr/pown
99 bool fold_pow(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
101 // rootn
102 bool fold_rootn(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
104 // fma/mad
105 bool fold_fma_mad(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
107 // -fuse-native for sincos
108 bool sincosUseNative(CallInst *aCI, const FuncInfo &FInfo);
110 // evaluate calls if calls' arguments are constants.
111 bool evaluateScalarMathFunc(FuncInfo &FInfo, double& Res0,
112 double& Res1, Constant *copr0, Constant *copr1, Constant *copr2);
113 bool evaluateCall(CallInst *aCI, FuncInfo &FInfo);
115 // exp
116 bool fold_exp(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
118 // exp2
119 bool fold_exp2(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
121 // exp10
122 bool fold_exp10(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
124 // log
125 bool fold_log(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
127 // log2
128 bool fold_log2(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
130 // log10
131 bool fold_log10(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
133 // sqrt
134 bool fold_sqrt(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
136 // sin/cos
137 bool fold_sincos(CallInst * CI, IRBuilder<> &B, AliasAnalysis * AA);
139 // __read_pipe/__write_pipe
140 bool fold_read_write_pipe(CallInst *CI, IRBuilder<> &B, FuncInfo &FInfo);
142 // llvm.amdgcn.wavefrontsize
143 bool fold_wavefrontsize(CallInst *CI, IRBuilder<> &B);
145 // Get insertion point at entry.
146 BasicBlock::iterator getEntryIns(CallInst * UI);
147 // Insert an Alloc instruction.
148 AllocaInst* insertAlloca(CallInst * UI, IRBuilder<> &B, const char *prefix);
149 // Get a scalar native builtin signle argument FP function
150 FunctionCallee getNativeFunction(Module *M, const FuncInfo &FInfo);
152 protected:
153 CallInst *CI;
155 bool isUnsafeMath(const CallInst *CI) const;
157 void replaceCall(Value *With) {
158 CI->replaceAllUsesWith(With);
159 CI->eraseFromParent();
162 public:
163 AMDGPULibCalls(const TargetMachine *TM_ = nullptr) : TM(TM_) {}
165 bool fold(CallInst *CI, AliasAnalysis *AA = nullptr);
167 void initNativeFuncs();
169 // Replace a normal math function call with that native version
170 bool useNative(CallInst *CI);
173 } // end llvm namespace
175 namespace {
177 class AMDGPUSimplifyLibCalls : public FunctionPass {
179 const TargetOptions Options;
181 AMDGPULibCalls Simplifier;
183 public:
184 static char ID; // Pass identification
186 AMDGPUSimplifyLibCalls(const TargetOptions &Opt = TargetOptions(),
187 const TargetMachine *TM = nullptr)
188 : FunctionPass(ID), Options(Opt), Simplifier(TM) {
189 initializeAMDGPUSimplifyLibCallsPass(*PassRegistry::getPassRegistry());
192 void getAnalysisUsage(AnalysisUsage &AU) const override {
193 AU.addRequired<AAResultsWrapperPass>();
196 bool runOnFunction(Function &M) override;
199 class AMDGPUUseNativeCalls : public FunctionPass {
201 AMDGPULibCalls Simplifier;
203 public:
204 static char ID; // Pass identification
206 AMDGPUUseNativeCalls() : FunctionPass(ID) {
207 initializeAMDGPUUseNativeCallsPass(*PassRegistry::getPassRegistry());
208 Simplifier.initNativeFuncs();
211 bool runOnFunction(Function &F) override;
214 } // end anonymous namespace.
216 char AMDGPUSimplifyLibCalls::ID = 0;
217 char AMDGPUUseNativeCalls::ID = 0;
219 INITIALIZE_PASS_BEGIN(AMDGPUSimplifyLibCalls, "amdgpu-simplifylib",
220 "Simplify well-known AMD library calls", false, false)
221 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
222 INITIALIZE_PASS_END(AMDGPUSimplifyLibCalls, "amdgpu-simplifylib",
223 "Simplify well-known AMD library calls", false, false)
225 INITIALIZE_PASS(AMDGPUUseNativeCalls, "amdgpu-usenative",
226 "Replace builtin math calls with that native versions.",
227 false, false)
229 template <typename IRB>
230 static CallInst *CreateCallEx(IRB &B, FunctionCallee Callee, Value *Arg,
231 const Twine &Name = "") {
232 CallInst *R = B.CreateCall(Callee, Arg, Name);
233 if (Function *F = dyn_cast<Function>(Callee.getCallee()))
234 R->setCallingConv(F->getCallingConv());
235 return R;
238 template <typename IRB>
239 static CallInst *CreateCallEx2(IRB &B, FunctionCallee Callee, Value *Arg1,
240 Value *Arg2, const Twine &Name = "") {
241 CallInst *R = B.CreateCall(Callee, {Arg1, Arg2}, Name);
242 if (Function *F = dyn_cast<Function>(Callee.getCallee()))
243 R->setCallingConv(F->getCallingConv());
244 return R;
247 // Data structures for table-driven optimizations.
248 // FuncTbl works for both f32 and f64 functions with 1 input argument
250 struct TableEntry {
251 double result;
252 double input;
255 /* a list of {result, input} */
256 static const TableEntry tbl_acos[] = {
257 {MATH_PI/2.0, 0.0},
258 {MATH_PI/2.0, -0.0},
259 {0.0, 1.0},
260 {MATH_PI, -1.0}
262 static const TableEntry tbl_acosh[] = {
263 {0.0, 1.0}
265 static const TableEntry tbl_acospi[] = {
266 {0.5, 0.0},
267 {0.5, -0.0},
268 {0.0, 1.0},
269 {1.0, -1.0}
271 static const TableEntry tbl_asin[] = {
272 {0.0, 0.0},
273 {-0.0, -0.0},
274 {MATH_PI/2.0, 1.0},
275 {-MATH_PI/2.0, -1.0}
277 static const TableEntry tbl_asinh[] = {
278 {0.0, 0.0},
279 {-0.0, -0.0}
281 static const TableEntry tbl_asinpi[] = {
282 {0.0, 0.0},
283 {-0.0, -0.0},
284 {0.5, 1.0},
285 {-0.5, -1.0}
287 static const TableEntry tbl_atan[] = {
288 {0.0, 0.0},
289 {-0.0, -0.0},
290 {MATH_PI/4.0, 1.0},
291 {-MATH_PI/4.0, -1.0}
293 static const TableEntry tbl_atanh[] = {
294 {0.0, 0.0},
295 {-0.0, -0.0}
297 static const TableEntry tbl_atanpi[] = {
298 {0.0, 0.0},
299 {-0.0, -0.0},
300 {0.25, 1.0},
301 {-0.25, -1.0}
303 static const TableEntry tbl_cbrt[] = {
304 {0.0, 0.0},
305 {-0.0, -0.0},
306 {1.0, 1.0},
307 {-1.0, -1.0},
309 static const TableEntry tbl_cos[] = {
310 {1.0, 0.0},
311 {1.0, -0.0}
313 static const TableEntry tbl_cosh[] = {
314 {1.0, 0.0},
315 {1.0, -0.0}
317 static const TableEntry tbl_cospi[] = {
318 {1.0, 0.0},
319 {1.0, -0.0}
321 static const TableEntry tbl_erfc[] = {
322 {1.0, 0.0},
323 {1.0, -0.0}
325 static const TableEntry tbl_erf[] = {
326 {0.0, 0.0},
327 {-0.0, -0.0}
329 static const TableEntry tbl_exp[] = {
330 {1.0, 0.0},
331 {1.0, -0.0},
332 {MATH_E, 1.0}
334 static const TableEntry tbl_exp2[] = {
335 {1.0, 0.0},
336 {1.0, -0.0},
337 {2.0, 1.0}
339 static const TableEntry tbl_exp10[] = {
340 {1.0, 0.0},
341 {1.0, -0.0},
342 {10.0, 1.0}
344 static const TableEntry tbl_expm1[] = {
345 {0.0, 0.0},
346 {-0.0, -0.0}
348 static const TableEntry tbl_log[] = {
349 {0.0, 1.0},
350 {1.0, MATH_E}
352 static const TableEntry tbl_log2[] = {
353 {0.0, 1.0},
354 {1.0, 2.0}
356 static const TableEntry tbl_log10[] = {
357 {0.0, 1.0},
358 {1.0, 10.0}
360 static const TableEntry tbl_rsqrt[] = {
361 {1.0, 1.0},
362 {1.0/MATH_SQRT2, 2.0}
364 static const TableEntry tbl_sin[] = {
365 {0.0, 0.0},
366 {-0.0, -0.0}
368 static const TableEntry tbl_sinh[] = {
369 {0.0, 0.0},
370 {-0.0, -0.0}
372 static const TableEntry tbl_sinpi[] = {
373 {0.0, 0.0},
374 {-0.0, -0.0}
376 static const TableEntry tbl_sqrt[] = {
377 {0.0, 0.0},
378 {1.0, 1.0},
379 {MATH_SQRT2, 2.0}
381 static const TableEntry tbl_tan[] = {
382 {0.0, 0.0},
383 {-0.0, -0.0}
385 static const TableEntry tbl_tanh[] = {
386 {0.0, 0.0},
387 {-0.0, -0.0}
389 static const TableEntry tbl_tanpi[] = {
390 {0.0, 0.0},
391 {-0.0, -0.0}
393 static const TableEntry tbl_tgamma[] = {
394 {1.0, 1.0},
395 {1.0, 2.0},
396 {2.0, 3.0},
397 {6.0, 4.0}
400 static bool HasNative(AMDGPULibFunc::EFuncId id) {
401 switch(id) {
402 case AMDGPULibFunc::EI_DIVIDE:
403 case AMDGPULibFunc::EI_COS:
404 case AMDGPULibFunc::EI_EXP:
405 case AMDGPULibFunc::EI_EXP2:
406 case AMDGPULibFunc::EI_EXP10:
407 case AMDGPULibFunc::EI_LOG:
408 case AMDGPULibFunc::EI_LOG2:
409 case AMDGPULibFunc::EI_LOG10:
410 case AMDGPULibFunc::EI_POWR:
411 case AMDGPULibFunc::EI_RECIP:
412 case AMDGPULibFunc::EI_RSQRT:
413 case AMDGPULibFunc::EI_SIN:
414 case AMDGPULibFunc::EI_SINCOS:
415 case AMDGPULibFunc::EI_SQRT:
416 case AMDGPULibFunc::EI_TAN:
417 return true;
418 default:;
420 return false;
423 struct TableRef {
424 size_t size;
425 const TableEntry *table; // variable size: from 0 to (size - 1)
427 TableRef() : size(0), table(nullptr) {}
429 template <size_t N>
430 TableRef(const TableEntry (&tbl)[N]) : size(N), table(&tbl[0]) {}
433 static TableRef getOptTable(AMDGPULibFunc::EFuncId id) {
434 switch(id) {
435 case AMDGPULibFunc::EI_ACOS: return TableRef(tbl_acos);
436 case AMDGPULibFunc::EI_ACOSH: return TableRef(tbl_acosh);
437 case AMDGPULibFunc::EI_ACOSPI: return TableRef(tbl_acospi);
438 case AMDGPULibFunc::EI_ASIN: return TableRef(tbl_asin);
439 case AMDGPULibFunc::EI_ASINH: return TableRef(tbl_asinh);
440 case AMDGPULibFunc::EI_ASINPI: return TableRef(tbl_asinpi);
441 case AMDGPULibFunc::EI_ATAN: return TableRef(tbl_atan);
442 case AMDGPULibFunc::EI_ATANH: return TableRef(tbl_atanh);
443 case AMDGPULibFunc::EI_ATANPI: return TableRef(tbl_atanpi);
444 case AMDGPULibFunc::EI_CBRT: return TableRef(tbl_cbrt);
445 case AMDGPULibFunc::EI_NCOS:
446 case AMDGPULibFunc::EI_COS: return TableRef(tbl_cos);
447 case AMDGPULibFunc::EI_COSH: return TableRef(tbl_cosh);
448 case AMDGPULibFunc::EI_COSPI: return TableRef(tbl_cospi);
449 case AMDGPULibFunc::EI_ERFC: return TableRef(tbl_erfc);
450 case AMDGPULibFunc::EI_ERF: return TableRef(tbl_erf);
451 case AMDGPULibFunc::EI_EXP: return TableRef(tbl_exp);
452 case AMDGPULibFunc::EI_NEXP2:
453 case AMDGPULibFunc::EI_EXP2: return TableRef(tbl_exp2);
454 case AMDGPULibFunc::EI_EXP10: return TableRef(tbl_exp10);
455 case AMDGPULibFunc::EI_EXPM1: return TableRef(tbl_expm1);
456 case AMDGPULibFunc::EI_LOG: return TableRef(tbl_log);
457 case AMDGPULibFunc::EI_NLOG2:
458 case AMDGPULibFunc::EI_LOG2: return TableRef(tbl_log2);
459 case AMDGPULibFunc::EI_LOG10: return TableRef(tbl_log10);
460 case AMDGPULibFunc::EI_NRSQRT:
461 case AMDGPULibFunc::EI_RSQRT: return TableRef(tbl_rsqrt);
462 case AMDGPULibFunc::EI_NSIN:
463 case AMDGPULibFunc::EI_SIN: return TableRef(tbl_sin);
464 case AMDGPULibFunc::EI_SINH: return TableRef(tbl_sinh);
465 case AMDGPULibFunc::EI_SINPI: return TableRef(tbl_sinpi);
466 case AMDGPULibFunc::EI_NSQRT:
467 case AMDGPULibFunc::EI_SQRT: return TableRef(tbl_sqrt);
468 case AMDGPULibFunc::EI_TAN: return TableRef(tbl_tan);
469 case AMDGPULibFunc::EI_TANH: return TableRef(tbl_tanh);
470 case AMDGPULibFunc::EI_TANPI: return TableRef(tbl_tanpi);
471 case AMDGPULibFunc::EI_TGAMMA: return TableRef(tbl_tgamma);
472 default:;
474 return TableRef();
477 static inline int getVecSize(const AMDGPULibFunc& FInfo) {
478 return FInfo.getLeads()[0].VectorSize;
481 static inline AMDGPULibFunc::EType getArgType(const AMDGPULibFunc& FInfo) {
482 return (AMDGPULibFunc::EType)FInfo.getLeads()[0].ArgType;
485 FunctionCallee AMDGPULibCalls::getFunction(Module *M, const FuncInfo &fInfo) {
486 // If we are doing PreLinkOpt, the function is external. So it is safe to
487 // use getOrInsertFunction() at this stage.
489 return EnablePreLink ? AMDGPULibFunc::getOrInsertFunction(M, fInfo)
490 : AMDGPULibFunc::getFunction(M, fInfo);
493 bool AMDGPULibCalls::parseFunctionName(const StringRef& FMangledName,
494 FuncInfo *FInfo) {
495 return AMDGPULibFunc::parse(FMangledName, *FInfo);
498 bool AMDGPULibCalls::isUnsafeMath(const CallInst *CI) const {
499 if (auto Op = dyn_cast<FPMathOperator>(CI))
500 if (Op->isFast())
501 return true;
502 const Function *F = CI->getParent()->getParent();
503 Attribute Attr = F->getFnAttribute("unsafe-fp-math");
504 return Attr.getValueAsString() == "true";
507 bool AMDGPULibCalls::useNativeFunc(const StringRef F) const {
508 return AllNative ||
509 std::find(UseNative.begin(), UseNative.end(), F) != UseNative.end();
512 void AMDGPULibCalls::initNativeFuncs() {
513 AllNative = useNativeFunc("all") ||
514 (UseNative.getNumOccurrences() && UseNative.size() == 1 &&
515 UseNative.begin()->empty());
518 bool AMDGPULibCalls::sincosUseNative(CallInst *aCI, const FuncInfo &FInfo) {
519 bool native_sin = useNativeFunc("sin");
520 bool native_cos = useNativeFunc("cos");
522 if (native_sin && native_cos) {
523 Module *M = aCI->getModule();
524 Value *opr0 = aCI->getArgOperand(0);
526 AMDGPULibFunc nf;
527 nf.getLeads()[0].ArgType = FInfo.getLeads()[0].ArgType;
528 nf.getLeads()[0].VectorSize = FInfo.getLeads()[0].VectorSize;
530 nf.setPrefix(AMDGPULibFunc::NATIVE);
531 nf.setId(AMDGPULibFunc::EI_SIN);
532 FunctionCallee sinExpr = getFunction(M, nf);
534 nf.setPrefix(AMDGPULibFunc::NATIVE);
535 nf.setId(AMDGPULibFunc::EI_COS);
536 FunctionCallee cosExpr = getFunction(M, nf);
537 if (sinExpr && cosExpr) {
538 Value *sinval = CallInst::Create(sinExpr, opr0, "splitsin", aCI);
539 Value *cosval = CallInst::Create(cosExpr, opr0, "splitcos", aCI);
540 new StoreInst(cosval, aCI->getArgOperand(1), aCI);
542 DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI
543 << " with native version of sin/cos");
545 replaceCall(sinval);
546 return true;
549 return false;
552 bool AMDGPULibCalls::useNative(CallInst *aCI) {
553 CI = aCI;
554 Function *Callee = aCI->getCalledFunction();
556 FuncInfo FInfo;
557 if (!parseFunctionName(Callee->getName(), &FInfo) || !FInfo.isMangled() ||
558 FInfo.getPrefix() != AMDGPULibFunc::NOPFX ||
559 getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId()) ||
560 !(AllNative || useNativeFunc(FInfo.getName()))) {
561 return false;
564 if (FInfo.getId() == AMDGPULibFunc::EI_SINCOS)
565 return sincosUseNative(aCI, FInfo);
567 FInfo.setPrefix(AMDGPULibFunc::NATIVE);
568 FunctionCallee F = getFunction(aCI->getModule(), FInfo);
569 if (!F)
570 return false;
572 aCI->setCalledFunction(F);
573 DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI
574 << " with native version");
575 return true;
578 // Clang emits call of __read_pipe_2 or __read_pipe_4 for OpenCL read_pipe
579 // builtin, with appended type size and alignment arguments, where 2 or 4
580 // indicates the original number of arguments. The library has optimized version
581 // of __read_pipe_2/__read_pipe_4 when the type size and alignment has the same
582 // power of 2 value. This function transforms __read_pipe_2 to __read_pipe_2_N
583 // for such cases where N is the size in bytes of the type (N = 1, 2, 4, 8, ...,
584 // 128). The same for __read_pipe_4, write_pipe_2, and write_pipe_4.
585 bool AMDGPULibCalls::fold_read_write_pipe(CallInst *CI, IRBuilder<> &B,
586 FuncInfo &FInfo) {
587 auto *Callee = CI->getCalledFunction();
588 if (!Callee->isDeclaration())
589 return false;
591 assert(Callee->hasName() && "Invalid read_pipe/write_pipe function");
592 auto *M = Callee->getParent();
593 auto &Ctx = M->getContext();
594 std::string Name = Callee->getName();
595 auto NumArg = CI->getNumArgOperands();
596 if (NumArg != 4 && NumArg != 6)
597 return false;
598 auto *PacketSize = CI->getArgOperand(NumArg - 2);
599 auto *PacketAlign = CI->getArgOperand(NumArg - 1);
600 if (!isa<ConstantInt>(PacketSize) || !isa<ConstantInt>(PacketAlign))
601 return false;
602 unsigned Size = cast<ConstantInt>(PacketSize)->getZExtValue();
603 unsigned Align = cast<ConstantInt>(PacketAlign)->getZExtValue();
604 if (Size != Align || !isPowerOf2_32(Size))
605 return false;
607 Type *PtrElemTy;
608 if (Size <= 8)
609 PtrElemTy = Type::getIntNTy(Ctx, Size * 8);
610 else
611 PtrElemTy = VectorType::get(Type::getInt64Ty(Ctx), Size / 8);
612 unsigned PtrArgLoc = CI->getNumArgOperands() - 3;
613 auto PtrArg = CI->getArgOperand(PtrArgLoc);
614 unsigned PtrArgAS = PtrArg->getType()->getPointerAddressSpace();
615 auto *PtrTy = llvm::PointerType::get(PtrElemTy, PtrArgAS);
617 SmallVector<llvm::Type *, 6> ArgTys;
618 for (unsigned I = 0; I != PtrArgLoc; ++I)
619 ArgTys.push_back(CI->getArgOperand(I)->getType());
620 ArgTys.push_back(PtrTy);
622 Name = Name + "_" + std::to_string(Size);
623 auto *FTy = FunctionType::get(Callee->getReturnType(),
624 ArrayRef<Type *>(ArgTys), false);
625 AMDGPULibFunc NewLibFunc(Name, FTy);
626 FunctionCallee F = AMDGPULibFunc::getOrInsertFunction(M, NewLibFunc);
627 if (!F)
628 return false;
630 auto *BCast = B.CreatePointerCast(PtrArg, PtrTy);
631 SmallVector<Value *, 6> Args;
632 for (unsigned I = 0; I != PtrArgLoc; ++I)
633 Args.push_back(CI->getArgOperand(I));
634 Args.push_back(BCast);
636 auto *NCI = B.CreateCall(F, Args);
637 NCI->setAttributes(CI->getAttributes());
638 CI->replaceAllUsesWith(NCI);
639 CI->dropAllReferences();
640 CI->eraseFromParent();
642 return true;
645 // This function returns false if no change; return true otherwise.
646 bool AMDGPULibCalls::fold(CallInst *CI, AliasAnalysis *AA) {
647 this->CI = CI;
648 Function *Callee = CI->getCalledFunction();
650 // Ignore indirect calls.
651 if (Callee == 0) return false;
653 BasicBlock *BB = CI->getParent();
654 LLVMContext &Context = CI->getParent()->getContext();
655 IRBuilder<> B(Context);
657 // Set the builder to the instruction after the call.
658 B.SetInsertPoint(BB, CI->getIterator());
660 // Copy fast flags from the original call.
661 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(CI))
662 B.setFastMathFlags(FPOp->getFastMathFlags());
664 switch (Callee->getIntrinsicID()) {
665 default:
666 break;
667 case Intrinsic::amdgcn_wavefrontsize:
668 return !EnablePreLink && fold_wavefrontsize(CI, B);
671 FuncInfo FInfo;
672 if (!parseFunctionName(Callee->getName(), &FInfo))
673 return false;
675 // Further check the number of arguments to see if they match.
676 if (CI->getNumArgOperands() != FInfo.getNumArgs())
677 return false;
679 if (TDOFold(CI, FInfo))
680 return true;
682 // Under unsafe-math, evaluate calls if possible.
683 // According to Brian Sumner, we can do this for all f32 function calls
684 // using host's double function calls.
685 if (isUnsafeMath(CI) && evaluateCall(CI, FInfo))
686 return true;
688 // Specilized optimizations for each function call
689 switch (FInfo.getId()) {
690 case AMDGPULibFunc::EI_RECIP:
691 // skip vector function
692 assert ((FInfo.getPrefix() == AMDGPULibFunc::NATIVE ||
693 FInfo.getPrefix() == AMDGPULibFunc::HALF) &&
694 "recip must be an either native or half function");
695 return (getVecSize(FInfo) != 1) ? false : fold_recip(CI, B, FInfo);
697 case AMDGPULibFunc::EI_DIVIDE:
698 // skip vector function
699 assert ((FInfo.getPrefix() == AMDGPULibFunc::NATIVE ||
700 FInfo.getPrefix() == AMDGPULibFunc::HALF) &&
701 "divide must be an either native or half function");
702 return (getVecSize(FInfo) != 1) ? false : fold_divide(CI, B, FInfo);
704 case AMDGPULibFunc::EI_POW:
705 case AMDGPULibFunc::EI_POWR:
706 case AMDGPULibFunc::EI_POWN:
707 return fold_pow(CI, B, FInfo);
709 case AMDGPULibFunc::EI_ROOTN:
710 // skip vector function
711 return (getVecSize(FInfo) != 1) ? false : fold_rootn(CI, B, FInfo);
713 case AMDGPULibFunc::EI_FMA:
714 case AMDGPULibFunc::EI_MAD:
715 case AMDGPULibFunc::EI_NFMA:
716 // skip vector function
717 return (getVecSize(FInfo) != 1) ? false : fold_fma_mad(CI, B, FInfo);
719 case AMDGPULibFunc::EI_SQRT:
720 return isUnsafeMath(CI) && fold_sqrt(CI, B, FInfo);
721 case AMDGPULibFunc::EI_COS:
722 case AMDGPULibFunc::EI_SIN:
723 if ((getArgType(FInfo) == AMDGPULibFunc::F32 ||
724 getArgType(FInfo) == AMDGPULibFunc::F64)
725 && (FInfo.getPrefix() == AMDGPULibFunc::NOPFX))
726 return fold_sincos(CI, B, AA);
728 break;
729 case AMDGPULibFunc::EI_READ_PIPE_2:
730 case AMDGPULibFunc::EI_READ_PIPE_4:
731 case AMDGPULibFunc::EI_WRITE_PIPE_2:
732 case AMDGPULibFunc::EI_WRITE_PIPE_4:
733 return fold_read_write_pipe(CI, B, FInfo);
735 default:
736 break;
739 return false;
742 bool AMDGPULibCalls::TDOFold(CallInst *CI, const FuncInfo &FInfo) {
743 // Table-Driven optimization
744 const TableRef tr = getOptTable(FInfo.getId());
745 if (tr.size==0)
746 return false;
748 int const sz = (int)tr.size;
749 const TableEntry * const ftbl = tr.table;
750 Value *opr0 = CI->getArgOperand(0);
752 if (getVecSize(FInfo) > 1) {
753 if (ConstantDataVector *CV = dyn_cast<ConstantDataVector>(opr0)) {
754 SmallVector<double, 0> DVal;
755 for (int eltNo = 0; eltNo < getVecSize(FInfo); ++eltNo) {
756 ConstantFP *eltval = dyn_cast<ConstantFP>(
757 CV->getElementAsConstant((unsigned)eltNo));
758 assert(eltval && "Non-FP arguments in math function!");
759 bool found = false;
760 for (int i=0; i < sz; ++i) {
761 if (eltval->isExactlyValue(ftbl[i].input)) {
762 DVal.push_back(ftbl[i].result);
763 found = true;
764 break;
767 if (!found) {
768 // This vector constants not handled yet.
769 return false;
772 LLVMContext &context = CI->getParent()->getParent()->getContext();
773 Constant *nval;
774 if (getArgType(FInfo) == AMDGPULibFunc::F32) {
775 SmallVector<float, 0> FVal;
776 for (unsigned i = 0; i < DVal.size(); ++i) {
777 FVal.push_back((float)DVal[i]);
779 ArrayRef<float> tmp(FVal);
780 nval = ConstantDataVector::get(context, tmp);
781 } else { // F64
782 ArrayRef<double> tmp(DVal);
783 nval = ConstantDataVector::get(context, tmp);
785 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n");
786 replaceCall(nval);
787 return true;
789 } else {
790 // Scalar version
791 if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) {
792 for (int i = 0; i < sz; ++i) {
793 if (CF->isExactlyValue(ftbl[i].input)) {
794 Value *nval = ConstantFP::get(CF->getType(), ftbl[i].result);
795 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n");
796 replaceCall(nval);
797 return true;
803 return false;
806 bool AMDGPULibCalls::replaceWithNative(CallInst *CI, const FuncInfo &FInfo) {
807 Module *M = CI->getModule();
808 if (getArgType(FInfo) != AMDGPULibFunc::F32 ||
809 FInfo.getPrefix() != AMDGPULibFunc::NOPFX ||
810 !HasNative(FInfo.getId()))
811 return false;
813 AMDGPULibFunc nf = FInfo;
814 nf.setPrefix(AMDGPULibFunc::NATIVE);
815 if (FunctionCallee FPExpr = getFunction(M, nf)) {
816 LLVM_DEBUG(dbgs() << "AMDIC: " << *CI << " ---> ");
818 CI->setCalledFunction(FPExpr);
820 LLVM_DEBUG(dbgs() << *CI << '\n');
822 return true;
824 return false;
827 // [native_]half_recip(c) ==> 1.0/c
828 bool AMDGPULibCalls::fold_recip(CallInst *CI, IRBuilder<> &B,
829 const FuncInfo &FInfo) {
830 Value *opr0 = CI->getArgOperand(0);
831 if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) {
832 // Just create a normal div. Later, InstCombine will be able
833 // to compute the divide into a constant (avoid check float infinity
834 // or subnormal at this point).
835 Value *nval = B.CreateFDiv(ConstantFP::get(CF->getType(), 1.0),
836 opr0,
837 "recip2div");
838 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n");
839 replaceCall(nval);
840 return true;
842 return false;
845 // [native_]half_divide(x, c) ==> x/c
846 bool AMDGPULibCalls::fold_divide(CallInst *CI, IRBuilder<> &B,
847 const FuncInfo &FInfo) {
848 Value *opr0 = CI->getArgOperand(0);
849 Value *opr1 = CI->getArgOperand(1);
850 ConstantFP *CF0 = dyn_cast<ConstantFP>(opr0);
851 ConstantFP *CF1 = dyn_cast<ConstantFP>(opr1);
853 if ((CF0 && CF1) || // both are constants
854 (CF1 && (getArgType(FInfo) == AMDGPULibFunc::F32)))
855 // CF1 is constant && f32 divide
857 Value *nval1 = B.CreateFDiv(ConstantFP::get(opr1->getType(), 1.0),
858 opr1, "__div2recip");
859 Value *nval = B.CreateFMul(opr0, nval1, "__div2mul");
860 replaceCall(nval);
861 return true;
863 return false;
866 namespace llvm {
867 static double log2(double V) {
868 #if _XOPEN_SOURCE >= 600 || defined(_ISOC99_SOURCE) || _POSIX_C_SOURCE >= 200112L
869 return ::log2(V);
870 #else
871 return log(V) / 0.693147180559945309417;
872 #endif
876 bool AMDGPULibCalls::fold_pow(CallInst *CI, IRBuilder<> &B,
877 const FuncInfo &FInfo) {
878 assert((FInfo.getId() == AMDGPULibFunc::EI_POW ||
879 FInfo.getId() == AMDGPULibFunc::EI_POWR ||
880 FInfo.getId() == AMDGPULibFunc::EI_POWN) &&
881 "fold_pow: encounter a wrong function call");
883 Value *opr0, *opr1;
884 ConstantFP *CF;
885 ConstantInt *CINT;
886 ConstantAggregateZero *CZero;
887 Type *eltType;
889 opr0 = CI->getArgOperand(0);
890 opr1 = CI->getArgOperand(1);
891 CZero = dyn_cast<ConstantAggregateZero>(opr1);
892 if (getVecSize(FInfo) == 1) {
893 eltType = opr0->getType();
894 CF = dyn_cast<ConstantFP>(opr1);
895 CINT = dyn_cast<ConstantInt>(opr1);
896 } else {
897 VectorType *VTy = dyn_cast<VectorType>(opr0->getType());
898 assert(VTy && "Oprand of vector function should be of vectortype");
899 eltType = VTy->getElementType();
900 ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr1);
902 // Now, only Handle vector const whose elements have the same value.
903 CF = CDV ? dyn_cast_or_null<ConstantFP>(CDV->getSplatValue()) : nullptr;
904 CINT = CDV ? dyn_cast_or_null<ConstantInt>(CDV->getSplatValue()) : nullptr;
907 // No unsafe math , no constant argument, do nothing
908 if (!isUnsafeMath(CI) && !CF && !CINT && !CZero)
909 return false;
911 // 0x1111111 means that we don't do anything for this call.
912 int ci_opr1 = (CINT ? (int)CINT->getSExtValue() : 0x1111111);
914 if ((CF && CF->isZero()) || (CINT && ci_opr1 == 0) || CZero) {
915 // pow/powr/pown(x, 0) == 1
916 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1\n");
917 Constant *cnval = ConstantFP::get(eltType, 1.0);
918 if (getVecSize(FInfo) > 1) {
919 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
921 replaceCall(cnval);
922 return true;
924 if ((CF && CF->isExactlyValue(1.0)) || (CINT && ci_opr1 == 1)) {
925 // pow/powr/pown(x, 1.0) = x
926 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << "\n");
927 replaceCall(opr0);
928 return true;
930 if ((CF && CF->isExactlyValue(2.0)) || (CINT && ci_opr1 == 2)) {
931 // pow/powr/pown(x, 2.0) = x*x
932 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " * " << *opr0
933 << "\n");
934 Value *nval = B.CreateFMul(opr0, opr0, "__pow2");
935 replaceCall(nval);
936 return true;
938 if ((CF && CF->isExactlyValue(-1.0)) || (CINT && ci_opr1 == -1)) {
939 // pow/powr/pown(x, -1.0) = 1.0/x
940 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1 / " << *opr0 << "\n");
941 Constant *cnval = ConstantFP::get(eltType, 1.0);
942 if (getVecSize(FInfo) > 1) {
943 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
945 Value *nval = B.CreateFDiv(cnval, opr0, "__powrecip");
946 replaceCall(nval);
947 return true;
950 Module *M = CI->getModule();
951 if (CF && (CF->isExactlyValue(0.5) || CF->isExactlyValue(-0.5))) {
952 // pow[r](x, [-]0.5) = sqrt(x)
953 bool issqrt = CF->isExactlyValue(0.5);
954 if (FunctionCallee FPExpr =
955 getFunction(M, AMDGPULibFunc(issqrt ? AMDGPULibFunc::EI_SQRT
956 : AMDGPULibFunc::EI_RSQRT,
957 FInfo))) {
958 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> "
959 << FInfo.getName().c_str() << "(" << *opr0 << ")\n");
960 Value *nval = CreateCallEx(B,FPExpr, opr0, issqrt ? "__pow2sqrt"
961 : "__pow2rsqrt");
962 replaceCall(nval);
963 return true;
967 if (!isUnsafeMath(CI))
968 return false;
970 // Unsafe Math optimization
972 // Remember that ci_opr1 is set if opr1 is integral
973 if (CF) {
974 double dval = (getArgType(FInfo) == AMDGPULibFunc::F32)
975 ? (double)CF->getValueAPF().convertToFloat()
976 : CF->getValueAPF().convertToDouble();
977 int ival = (int)dval;
978 if ((double)ival == dval) {
979 ci_opr1 = ival;
980 } else
981 ci_opr1 = 0x11111111;
984 // pow/powr/pown(x, c) = [1/](x*x*..x); where
985 // trunc(c) == c && the number of x == c && |c| <= 12
986 unsigned abs_opr1 = (ci_opr1 < 0) ? -ci_opr1 : ci_opr1;
987 if (abs_opr1 <= 12) {
988 Constant *cnval;
989 Value *nval;
990 if (abs_opr1 == 0) {
991 cnval = ConstantFP::get(eltType, 1.0);
992 if (getVecSize(FInfo) > 1) {
993 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
995 nval = cnval;
996 } else {
997 Value *valx2 = nullptr;
998 nval = nullptr;
999 while (abs_opr1 > 0) {
1000 valx2 = valx2 ? B.CreateFMul(valx2, valx2, "__powx2") : opr0;
1001 if (abs_opr1 & 1) {
1002 nval = nval ? B.CreateFMul(nval, valx2, "__powprod") : valx2;
1004 abs_opr1 >>= 1;
1008 if (ci_opr1 < 0) {
1009 cnval = ConstantFP::get(eltType, 1.0);
1010 if (getVecSize(FInfo) > 1) {
1011 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
1013 nval = B.CreateFDiv(cnval, nval, "__1powprod");
1015 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> "
1016 << ((ci_opr1 < 0) ? "1/prod(" : "prod(") << *opr0
1017 << ")\n");
1018 replaceCall(nval);
1019 return true;
1022 // powr ---> exp2(y * log2(x))
1023 // pown/pow ---> powr(fabs(x), y) | (x & ((int)y << 31))
1024 FunctionCallee ExpExpr =
1025 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_EXP2, FInfo));
1026 if (!ExpExpr)
1027 return false;
1029 bool needlog = false;
1030 bool needabs = false;
1031 bool needcopysign = false;
1032 Constant *cnval = nullptr;
1033 if (getVecSize(FInfo) == 1) {
1034 CF = dyn_cast<ConstantFP>(opr0);
1036 if (CF) {
1037 double V = (getArgType(FInfo) == AMDGPULibFunc::F32)
1038 ? (double)CF->getValueAPF().convertToFloat()
1039 : CF->getValueAPF().convertToDouble();
1041 V = log2(std::abs(V));
1042 cnval = ConstantFP::get(eltType, V);
1043 needcopysign = (FInfo.getId() != AMDGPULibFunc::EI_POWR) &&
1044 CF->isNegative();
1045 } else {
1046 needlog = true;
1047 needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR &&
1048 (!CF || CF->isNegative());
1050 } else {
1051 ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr0);
1053 if (!CDV) {
1054 needlog = true;
1055 needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR;
1056 } else {
1057 assert ((int)CDV->getNumElements() == getVecSize(FInfo) &&
1058 "Wrong vector size detected");
1060 SmallVector<double, 0> DVal;
1061 for (int i=0; i < getVecSize(FInfo); ++i) {
1062 double V = (getArgType(FInfo) == AMDGPULibFunc::F32)
1063 ? (double)CDV->getElementAsFloat(i)
1064 : CDV->getElementAsDouble(i);
1065 if (V < 0.0) needcopysign = true;
1066 V = log2(std::abs(V));
1067 DVal.push_back(V);
1069 if (getArgType(FInfo) == AMDGPULibFunc::F32) {
1070 SmallVector<float, 0> FVal;
1071 for (unsigned i=0; i < DVal.size(); ++i) {
1072 FVal.push_back((float)DVal[i]);
1074 ArrayRef<float> tmp(FVal);
1075 cnval = ConstantDataVector::get(M->getContext(), tmp);
1076 } else {
1077 ArrayRef<double> tmp(DVal);
1078 cnval = ConstantDataVector::get(M->getContext(), tmp);
1083 if (needcopysign && (FInfo.getId() == AMDGPULibFunc::EI_POW)) {
1084 // We cannot handle corner cases for a general pow() function, give up
1085 // unless y is a constant integral value. Then proceed as if it were pown.
1086 if (getVecSize(FInfo) == 1) {
1087 if (const ConstantFP *CF = dyn_cast<ConstantFP>(opr1)) {
1088 double y = (getArgType(FInfo) == AMDGPULibFunc::F32)
1089 ? (double)CF->getValueAPF().convertToFloat()
1090 : CF->getValueAPF().convertToDouble();
1091 if (y != (double)(int64_t)y)
1092 return false;
1093 } else
1094 return false;
1095 } else {
1096 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr1)) {
1097 for (int i=0; i < getVecSize(FInfo); ++i) {
1098 double y = (getArgType(FInfo) == AMDGPULibFunc::F32)
1099 ? (double)CDV->getElementAsFloat(i)
1100 : CDV->getElementAsDouble(i);
1101 if (y != (double)(int64_t)y)
1102 return false;
1104 } else
1105 return false;
1109 Value *nval;
1110 if (needabs) {
1111 FunctionCallee AbsExpr =
1112 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_FABS, FInfo));
1113 if (!AbsExpr)
1114 return false;
1115 nval = CreateCallEx(B, AbsExpr, opr0, "__fabs");
1116 } else {
1117 nval = cnval ? cnval : opr0;
1119 if (needlog) {
1120 FunctionCallee LogExpr =
1121 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_LOG2, FInfo));
1122 if (!LogExpr)
1123 return false;
1124 nval = CreateCallEx(B,LogExpr, nval, "__log2");
1127 if (FInfo.getId() == AMDGPULibFunc::EI_POWN) {
1128 // convert int(32) to fp(f32 or f64)
1129 opr1 = B.CreateSIToFP(opr1, nval->getType(), "pownI2F");
1131 nval = B.CreateFMul(opr1, nval, "__ylogx");
1132 nval = CreateCallEx(B,ExpExpr, nval, "__exp2");
1134 if (needcopysign) {
1135 Value *opr_n;
1136 Type* rTy = opr0->getType();
1137 Type* nTyS = eltType->isDoubleTy() ? B.getInt64Ty() : B.getInt32Ty();
1138 Type *nTy = nTyS;
1139 if (const VectorType *vTy = dyn_cast<VectorType>(rTy))
1140 nTy = VectorType::get(nTyS, vTy->getNumElements());
1141 unsigned size = nTy->getScalarSizeInBits();
1142 opr_n = CI->getArgOperand(1);
1143 if (opr_n->getType()->isIntegerTy())
1144 opr_n = B.CreateZExtOrBitCast(opr_n, nTy, "__ytou");
1145 else
1146 opr_n = B.CreateFPToSI(opr1, nTy, "__ytou");
1148 Value *sign = B.CreateShl(opr_n, size-1, "__yeven");
1149 sign = B.CreateAnd(B.CreateBitCast(opr0, nTy), sign, "__pow_sign");
1150 nval = B.CreateOr(B.CreateBitCast(nval, nTy), sign);
1151 nval = B.CreateBitCast(nval, opr0->getType());
1154 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> "
1155 << "exp2(" << *opr1 << " * log2(" << *opr0 << "))\n");
1156 replaceCall(nval);
1158 return true;
1161 bool AMDGPULibCalls::fold_rootn(CallInst *CI, IRBuilder<> &B,
1162 const FuncInfo &FInfo) {
1163 Value *opr0 = CI->getArgOperand(0);
1164 Value *opr1 = CI->getArgOperand(1);
1166 ConstantInt *CINT = dyn_cast<ConstantInt>(opr1);
1167 if (!CINT) {
1168 return false;
1170 int ci_opr1 = (int)CINT->getSExtValue();
1171 if (ci_opr1 == 1) { // rootn(x, 1) = x
1172 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << "\n");
1173 replaceCall(opr0);
1174 return true;
1176 if (ci_opr1 == 2) { // rootn(x, 2) = sqrt(x)
1177 std::vector<const Type*> ParamsTys;
1178 ParamsTys.push_back(opr0->getType());
1179 Module *M = CI->getModule();
1180 if (FunctionCallee FPExpr =
1181 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_SQRT, FInfo))) {
1182 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> sqrt(" << *opr0 << ")\n");
1183 Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2sqrt");
1184 replaceCall(nval);
1185 return true;
1187 } else if (ci_opr1 == 3) { // rootn(x, 3) = cbrt(x)
1188 Module *M = CI->getModule();
1189 if (FunctionCallee FPExpr =
1190 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_CBRT, FInfo))) {
1191 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> cbrt(" << *opr0 << ")\n");
1192 Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2cbrt");
1193 replaceCall(nval);
1194 return true;
1196 } else if (ci_opr1 == -1) { // rootn(x, -1) = 1.0/x
1197 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1.0 / " << *opr0 << "\n");
1198 Value *nval = B.CreateFDiv(ConstantFP::get(opr0->getType(), 1.0),
1199 opr0,
1200 "__rootn2div");
1201 replaceCall(nval);
1202 return true;
1203 } else if (ci_opr1 == -2) { // rootn(x, -2) = rsqrt(x)
1204 std::vector<const Type*> ParamsTys;
1205 ParamsTys.push_back(opr0->getType());
1206 Module *M = CI->getModule();
1207 if (FunctionCallee FPExpr =
1208 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_RSQRT, FInfo))) {
1209 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> rsqrt(" << *opr0
1210 << ")\n");
1211 Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2rsqrt");
1212 replaceCall(nval);
1213 return true;
1216 return false;
1219 bool AMDGPULibCalls::fold_fma_mad(CallInst *CI, IRBuilder<> &B,
1220 const FuncInfo &FInfo) {
1221 Value *opr0 = CI->getArgOperand(0);
1222 Value *opr1 = CI->getArgOperand(1);
1223 Value *opr2 = CI->getArgOperand(2);
1225 ConstantFP *CF0 = dyn_cast<ConstantFP>(opr0);
1226 ConstantFP *CF1 = dyn_cast<ConstantFP>(opr1);
1227 if ((CF0 && CF0->isZero()) || (CF1 && CF1->isZero())) {
1228 // fma/mad(a, b, c) = c if a=0 || b=0
1229 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr2 << "\n");
1230 replaceCall(opr2);
1231 return true;
1233 if (CF0 && CF0->isExactlyValue(1.0f)) {
1234 // fma/mad(a, b, c) = b+c if a=1
1235 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr1 << " + " << *opr2
1236 << "\n");
1237 Value *nval = B.CreateFAdd(opr1, opr2, "fmaadd");
1238 replaceCall(nval);
1239 return true;
1241 if (CF1 && CF1->isExactlyValue(1.0f)) {
1242 // fma/mad(a, b, c) = a+c if b=1
1243 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " + " << *opr2
1244 << "\n");
1245 Value *nval = B.CreateFAdd(opr0, opr2, "fmaadd");
1246 replaceCall(nval);
1247 return true;
1249 if (ConstantFP *CF = dyn_cast<ConstantFP>(opr2)) {
1250 if (CF->isZero()) {
1251 // fma/mad(a, b, c) = a*b if c=0
1252 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " * "
1253 << *opr1 << "\n");
1254 Value *nval = B.CreateFMul(opr0, opr1, "fmamul");
1255 replaceCall(nval);
1256 return true;
1260 return false;
1263 // Get a scalar native builtin signle argument FP function
1264 FunctionCallee AMDGPULibCalls::getNativeFunction(Module *M,
1265 const FuncInfo &FInfo) {
1266 if (getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId()))
1267 return nullptr;
1268 FuncInfo nf = FInfo;
1269 nf.setPrefix(AMDGPULibFunc::NATIVE);
1270 return getFunction(M, nf);
1273 // fold sqrt -> native_sqrt (x)
1274 bool AMDGPULibCalls::fold_sqrt(CallInst *CI, IRBuilder<> &B,
1275 const FuncInfo &FInfo) {
1276 if (getArgType(FInfo) == AMDGPULibFunc::F32 && (getVecSize(FInfo) == 1) &&
1277 (FInfo.getPrefix() != AMDGPULibFunc::NATIVE)) {
1278 if (FunctionCallee FPExpr = getNativeFunction(
1279 CI->getModule(), AMDGPULibFunc(AMDGPULibFunc::EI_SQRT, FInfo))) {
1280 Value *opr0 = CI->getArgOperand(0);
1281 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> "
1282 << "sqrt(" << *opr0 << ")\n");
1283 Value *nval = CreateCallEx(B,FPExpr, opr0, "__sqrt");
1284 replaceCall(nval);
1285 return true;
1288 return false;
1291 // fold sin, cos -> sincos.
1292 bool AMDGPULibCalls::fold_sincos(CallInst *CI, IRBuilder<> &B,
1293 AliasAnalysis *AA) {
1294 AMDGPULibFunc fInfo;
1295 if (!AMDGPULibFunc::parse(CI->getCalledFunction()->getName(), fInfo))
1296 return false;
1298 assert(fInfo.getId() == AMDGPULibFunc::EI_SIN ||
1299 fInfo.getId() == AMDGPULibFunc::EI_COS);
1300 bool const isSin = fInfo.getId() == AMDGPULibFunc::EI_SIN;
1302 Value *CArgVal = CI->getArgOperand(0);
1303 BasicBlock * const CBB = CI->getParent();
1305 int const MaxScan = 30;
1307 { // fold in load value.
1308 LoadInst *LI = dyn_cast<LoadInst>(CArgVal);
1309 if (LI && LI->getParent() == CBB) {
1310 BasicBlock::iterator BBI = LI->getIterator();
1311 Value *AvailableVal = FindAvailableLoadedValue(LI, CBB, BBI, MaxScan, AA);
1312 if (AvailableVal) {
1313 CArgVal->replaceAllUsesWith(AvailableVal);
1314 if (CArgVal->getNumUses() == 0)
1315 LI->eraseFromParent();
1316 CArgVal = CI->getArgOperand(0);
1321 Module *M = CI->getModule();
1322 fInfo.setId(isSin ? AMDGPULibFunc::EI_COS : AMDGPULibFunc::EI_SIN);
1323 std::string const PairName = fInfo.mangle();
1325 CallInst *UI = nullptr;
1326 for (User* U : CArgVal->users()) {
1327 CallInst *XI = dyn_cast_or_null<CallInst>(U);
1328 if (!XI || XI == CI || XI->getParent() != CBB)
1329 continue;
1331 Function *UCallee = XI->getCalledFunction();
1332 if (!UCallee || !UCallee->getName().equals(PairName))
1333 continue;
1335 BasicBlock::iterator BBI = CI->getIterator();
1336 if (BBI == CI->getParent()->begin())
1337 break;
1338 --BBI;
1339 for (int I = MaxScan; I > 0 && BBI != CBB->begin(); --BBI, --I) {
1340 if (cast<Instruction>(BBI) == XI) {
1341 UI = XI;
1342 break;
1345 if (UI) break;
1348 if (!UI) return false;
1350 // Merge the sin and cos.
1352 // for OpenCL 2.0 we have only generic implementation of sincos
1353 // function.
1354 AMDGPULibFunc nf(AMDGPULibFunc::EI_SINCOS, fInfo);
1355 nf.getLeads()[0].PtrKind = AMDGPULibFunc::getEPtrKindFromAddrSpace(AMDGPUAS::FLAT_ADDRESS);
1356 FunctionCallee Fsincos = getFunction(M, nf);
1357 if (!Fsincos) return false;
1359 BasicBlock::iterator ItOld = B.GetInsertPoint();
1360 AllocaInst *Alloc = insertAlloca(UI, B, "__sincos_");
1361 B.SetInsertPoint(UI);
1363 Value *P = Alloc;
1364 Type *PTy = Fsincos.getFunctionType()->getParamType(1);
1365 // The allocaInst allocates the memory in private address space. This need
1366 // to be bitcasted to point to the address space of cos pointer type.
1367 // In OpenCL 2.0 this is generic, while in 1.2 that is private.
1368 if (PTy->getPointerAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS)
1369 P = B.CreateAddrSpaceCast(Alloc, PTy);
1370 CallInst *Call = CreateCallEx2(B, Fsincos, UI->getArgOperand(0), P);
1372 LLVM_DEBUG(errs() << "AMDIC: fold_sincos (" << *CI << ", " << *UI << ") with "
1373 << *Call << "\n");
1375 if (!isSin) { // CI->cos, UI->sin
1376 B.SetInsertPoint(&*ItOld);
1377 UI->replaceAllUsesWith(&*Call);
1378 Instruction *Reload = B.CreateLoad(Alloc->getAllocatedType(), Alloc);
1379 CI->replaceAllUsesWith(Reload);
1380 UI->eraseFromParent();
1381 CI->eraseFromParent();
1382 } else { // CI->sin, UI->cos
1383 Instruction *Reload = B.CreateLoad(Alloc->getAllocatedType(), Alloc);
1384 UI->replaceAllUsesWith(Reload);
1385 CI->replaceAllUsesWith(Call);
1386 UI->eraseFromParent();
1387 CI->eraseFromParent();
1389 return true;
1392 bool AMDGPULibCalls::fold_wavefrontsize(CallInst *CI, IRBuilder<> &B) {
1393 if (!TM)
1394 return false;
1396 StringRef CPU = TM->getTargetCPU();
1397 StringRef Features = TM->getTargetFeatureString();
1398 if ((CPU.empty() || CPU.equals_lower("generic")) &&
1399 (Features.empty() ||
1400 Features.find_lower("wavefrontsize") == StringRef::npos))
1401 return false;
1403 Function *F = CI->getParent()->getParent();
1404 const GCNSubtarget &ST = TM->getSubtarget<GCNSubtarget>(*F);
1405 unsigned N = ST.getWavefrontSize();
1407 LLVM_DEBUG(errs() << "AMDIC: fold_wavefrontsize (" << *CI << ") with "
1408 << N << "\n");
1410 CI->replaceAllUsesWith(ConstantInt::get(B.getInt32Ty(), N));
1411 CI->eraseFromParent();
1412 return true;
1415 // Get insertion point at entry.
1416 BasicBlock::iterator AMDGPULibCalls::getEntryIns(CallInst * UI) {
1417 Function * Func = UI->getParent()->getParent();
1418 BasicBlock * BB = &Func->getEntryBlock();
1419 assert(BB && "Entry block not found!");
1420 BasicBlock::iterator ItNew = BB->begin();
1421 return ItNew;
1424 // Insert a AllocsInst at the beginning of function entry block.
1425 AllocaInst* AMDGPULibCalls::insertAlloca(CallInst *UI, IRBuilder<> &B,
1426 const char *prefix) {
1427 BasicBlock::iterator ItNew = getEntryIns(UI);
1428 Function *UCallee = UI->getCalledFunction();
1429 Type *RetType = UCallee->getReturnType();
1430 B.SetInsertPoint(&*ItNew);
1431 AllocaInst *Alloc = B.CreateAlloca(RetType, 0,
1432 std::string(prefix) + UI->getName());
1433 Alloc->setAlignment(UCallee->getParent()->getDataLayout()
1434 .getTypeAllocSize(RetType));
1435 return Alloc;
1438 bool AMDGPULibCalls::evaluateScalarMathFunc(FuncInfo &FInfo,
1439 double& Res0, double& Res1,
1440 Constant *copr0, Constant *copr1,
1441 Constant *copr2) {
1442 // By default, opr0/opr1/opr3 holds values of float/double type.
1443 // If they are not float/double, each function has to its
1444 // operand separately.
1445 double opr0=0.0, opr1=0.0, opr2=0.0;
1446 ConstantFP *fpopr0 = dyn_cast_or_null<ConstantFP>(copr0);
1447 ConstantFP *fpopr1 = dyn_cast_or_null<ConstantFP>(copr1);
1448 ConstantFP *fpopr2 = dyn_cast_or_null<ConstantFP>(copr2);
1449 if (fpopr0) {
1450 opr0 = (getArgType(FInfo) == AMDGPULibFunc::F64)
1451 ? fpopr0->getValueAPF().convertToDouble()
1452 : (double)fpopr0->getValueAPF().convertToFloat();
1455 if (fpopr1) {
1456 opr1 = (getArgType(FInfo) == AMDGPULibFunc::F64)
1457 ? fpopr1->getValueAPF().convertToDouble()
1458 : (double)fpopr1->getValueAPF().convertToFloat();
1461 if (fpopr2) {
1462 opr2 = (getArgType(FInfo) == AMDGPULibFunc::F64)
1463 ? fpopr2->getValueAPF().convertToDouble()
1464 : (double)fpopr2->getValueAPF().convertToFloat();
1467 switch (FInfo.getId()) {
1468 default : return false;
1470 case AMDGPULibFunc::EI_ACOS:
1471 Res0 = acos(opr0);
1472 return true;
1474 case AMDGPULibFunc::EI_ACOSH:
1475 // acosh(x) == log(x + sqrt(x*x - 1))
1476 Res0 = log(opr0 + sqrt(opr0*opr0 - 1.0));
1477 return true;
1479 case AMDGPULibFunc::EI_ACOSPI:
1480 Res0 = acos(opr0) / MATH_PI;
1481 return true;
1483 case AMDGPULibFunc::EI_ASIN:
1484 Res0 = asin(opr0);
1485 return true;
1487 case AMDGPULibFunc::EI_ASINH:
1488 // asinh(x) == log(x + sqrt(x*x + 1))
1489 Res0 = log(opr0 + sqrt(opr0*opr0 + 1.0));
1490 return true;
1492 case AMDGPULibFunc::EI_ASINPI:
1493 Res0 = asin(opr0) / MATH_PI;
1494 return true;
1496 case AMDGPULibFunc::EI_ATAN:
1497 Res0 = atan(opr0);
1498 return true;
1500 case AMDGPULibFunc::EI_ATANH:
1501 // atanh(x) == (log(x+1) - log(x-1))/2;
1502 Res0 = (log(opr0 + 1.0) - log(opr0 - 1.0))/2.0;
1503 return true;
1505 case AMDGPULibFunc::EI_ATANPI:
1506 Res0 = atan(opr0) / MATH_PI;
1507 return true;
1509 case AMDGPULibFunc::EI_CBRT:
1510 Res0 = (opr0 < 0.0) ? -pow(-opr0, 1.0/3.0) : pow(opr0, 1.0/3.0);
1511 return true;
1513 case AMDGPULibFunc::EI_COS:
1514 Res0 = cos(opr0);
1515 return true;
1517 case AMDGPULibFunc::EI_COSH:
1518 Res0 = cosh(opr0);
1519 return true;
1521 case AMDGPULibFunc::EI_COSPI:
1522 Res0 = cos(MATH_PI * opr0);
1523 return true;
1525 case AMDGPULibFunc::EI_EXP:
1526 Res0 = exp(opr0);
1527 return true;
1529 case AMDGPULibFunc::EI_EXP2:
1530 Res0 = pow(2.0, opr0);
1531 return true;
1533 case AMDGPULibFunc::EI_EXP10:
1534 Res0 = pow(10.0, opr0);
1535 return true;
1537 case AMDGPULibFunc::EI_EXPM1:
1538 Res0 = exp(opr0) - 1.0;
1539 return true;
1541 case AMDGPULibFunc::EI_LOG:
1542 Res0 = log(opr0);
1543 return true;
1545 case AMDGPULibFunc::EI_LOG2:
1546 Res0 = log(opr0) / log(2.0);
1547 return true;
1549 case AMDGPULibFunc::EI_LOG10:
1550 Res0 = log(opr0) / log(10.0);
1551 return true;
1553 case AMDGPULibFunc::EI_RSQRT:
1554 Res0 = 1.0 / sqrt(opr0);
1555 return true;
1557 case AMDGPULibFunc::EI_SIN:
1558 Res0 = sin(opr0);
1559 return true;
1561 case AMDGPULibFunc::EI_SINH:
1562 Res0 = sinh(opr0);
1563 return true;
1565 case AMDGPULibFunc::EI_SINPI:
1566 Res0 = sin(MATH_PI * opr0);
1567 return true;
1569 case AMDGPULibFunc::EI_SQRT:
1570 Res0 = sqrt(opr0);
1571 return true;
1573 case AMDGPULibFunc::EI_TAN:
1574 Res0 = tan(opr0);
1575 return true;
1577 case AMDGPULibFunc::EI_TANH:
1578 Res0 = tanh(opr0);
1579 return true;
1581 case AMDGPULibFunc::EI_TANPI:
1582 Res0 = tan(MATH_PI * opr0);
1583 return true;
1585 case AMDGPULibFunc::EI_RECIP:
1586 Res0 = 1.0 / opr0;
1587 return true;
1589 // two-arg functions
1590 case AMDGPULibFunc::EI_DIVIDE:
1591 Res0 = opr0 / opr1;
1592 return true;
1594 case AMDGPULibFunc::EI_POW:
1595 case AMDGPULibFunc::EI_POWR:
1596 Res0 = pow(opr0, opr1);
1597 return true;
1599 case AMDGPULibFunc::EI_POWN: {
1600 if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) {
1601 double val = (double)iopr1->getSExtValue();
1602 Res0 = pow(opr0, val);
1603 return true;
1605 return false;
1608 case AMDGPULibFunc::EI_ROOTN: {
1609 if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) {
1610 double val = (double)iopr1->getSExtValue();
1611 Res0 = pow(opr0, 1.0 / val);
1612 return true;
1614 return false;
1617 // with ptr arg
1618 case AMDGPULibFunc::EI_SINCOS:
1619 Res0 = sin(opr0);
1620 Res1 = cos(opr0);
1621 return true;
1623 // three-arg functions
1624 case AMDGPULibFunc::EI_FMA:
1625 case AMDGPULibFunc::EI_MAD:
1626 Res0 = opr0 * opr1 + opr2;
1627 return true;
1630 return false;
1633 bool AMDGPULibCalls::evaluateCall(CallInst *aCI, FuncInfo &FInfo) {
1634 int numArgs = (int)aCI->getNumArgOperands();
1635 if (numArgs > 3)
1636 return false;
1638 Constant *copr0 = nullptr;
1639 Constant *copr1 = nullptr;
1640 Constant *copr2 = nullptr;
1641 if (numArgs > 0) {
1642 if ((copr0 = dyn_cast<Constant>(aCI->getArgOperand(0))) == nullptr)
1643 return false;
1646 if (numArgs > 1) {
1647 if ((copr1 = dyn_cast<Constant>(aCI->getArgOperand(1))) == nullptr) {
1648 if (FInfo.getId() != AMDGPULibFunc::EI_SINCOS)
1649 return false;
1653 if (numArgs > 2) {
1654 if ((copr2 = dyn_cast<Constant>(aCI->getArgOperand(2))) == nullptr)
1655 return false;
1658 // At this point, all arguments to aCI are constants.
1660 // max vector size is 16, and sincos will generate two results.
1661 double DVal0[16], DVal1[16];
1662 bool hasTwoResults = (FInfo.getId() == AMDGPULibFunc::EI_SINCOS);
1663 if (getVecSize(FInfo) == 1) {
1664 if (!evaluateScalarMathFunc(FInfo, DVal0[0],
1665 DVal1[0], copr0, copr1, copr2)) {
1666 return false;
1668 } else {
1669 ConstantDataVector *CDV0 = dyn_cast_or_null<ConstantDataVector>(copr0);
1670 ConstantDataVector *CDV1 = dyn_cast_or_null<ConstantDataVector>(copr1);
1671 ConstantDataVector *CDV2 = dyn_cast_or_null<ConstantDataVector>(copr2);
1672 for (int i=0; i < getVecSize(FInfo); ++i) {
1673 Constant *celt0 = CDV0 ? CDV0->getElementAsConstant(i) : nullptr;
1674 Constant *celt1 = CDV1 ? CDV1->getElementAsConstant(i) : nullptr;
1675 Constant *celt2 = CDV2 ? CDV2->getElementAsConstant(i) : nullptr;
1676 if (!evaluateScalarMathFunc(FInfo, DVal0[i],
1677 DVal1[i], celt0, celt1, celt2)) {
1678 return false;
1683 LLVMContext &context = CI->getParent()->getParent()->getContext();
1684 Constant *nval0, *nval1;
1685 if (getVecSize(FInfo) == 1) {
1686 nval0 = ConstantFP::get(CI->getType(), DVal0[0]);
1687 if (hasTwoResults)
1688 nval1 = ConstantFP::get(CI->getType(), DVal1[0]);
1689 } else {
1690 if (getArgType(FInfo) == AMDGPULibFunc::F32) {
1691 SmallVector <float, 0> FVal0, FVal1;
1692 for (int i=0; i < getVecSize(FInfo); ++i)
1693 FVal0.push_back((float)DVal0[i]);
1694 ArrayRef<float> tmp0(FVal0);
1695 nval0 = ConstantDataVector::get(context, tmp0);
1696 if (hasTwoResults) {
1697 for (int i=0; i < getVecSize(FInfo); ++i)
1698 FVal1.push_back((float)DVal1[i]);
1699 ArrayRef<float> tmp1(FVal1);
1700 nval1 = ConstantDataVector::get(context, tmp1);
1702 } else {
1703 ArrayRef<double> tmp0(DVal0);
1704 nval0 = ConstantDataVector::get(context, tmp0);
1705 if (hasTwoResults) {
1706 ArrayRef<double> tmp1(DVal1);
1707 nval1 = ConstantDataVector::get(context, tmp1);
1712 if (hasTwoResults) {
1713 // sincos
1714 assert(FInfo.getId() == AMDGPULibFunc::EI_SINCOS &&
1715 "math function with ptr arg not supported yet");
1716 new StoreInst(nval1, aCI->getArgOperand(1), aCI);
1719 replaceCall(nval0);
1720 return true;
1723 // Public interface to the Simplify LibCalls pass.
1724 FunctionPass *llvm::createAMDGPUSimplifyLibCallsPass(const TargetOptions &Opt,
1725 const TargetMachine *TM) {
1726 return new AMDGPUSimplifyLibCalls(Opt, TM);
1729 FunctionPass *llvm::createAMDGPUUseNativeCallsPass() {
1730 return new AMDGPUUseNativeCalls();
1733 static bool setFastFlags(Function &F, const TargetOptions &Options) {
1734 AttrBuilder B;
1736 if (Options.UnsafeFPMath || Options.NoInfsFPMath)
1737 B.addAttribute("no-infs-fp-math", "true");
1738 if (Options.UnsafeFPMath || Options.NoNaNsFPMath)
1739 B.addAttribute("no-nans-fp-math", "true");
1740 if (Options.UnsafeFPMath) {
1741 B.addAttribute("less-precise-fpmad", "true");
1742 B.addAttribute("unsafe-fp-math", "true");
1745 if (!B.hasAttributes())
1746 return false;
1748 F.addAttributes(AttributeList::FunctionIndex, B);
1750 return true;
1753 bool AMDGPUSimplifyLibCalls::runOnFunction(Function &F) {
1754 if (skipFunction(F))
1755 return false;
1757 bool Changed = false;
1758 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1760 LLVM_DEBUG(dbgs() << "AMDIC: process function ";
1761 F.printAsOperand(dbgs(), false, F.getParent()); dbgs() << '\n';);
1763 if (!EnablePreLink)
1764 Changed |= setFastFlags(F, Options);
1766 for (auto &BB : F) {
1767 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) {
1768 // Ignore non-calls.
1769 CallInst *CI = dyn_cast<CallInst>(I);
1770 ++I;
1771 if (!CI) continue;
1773 // Ignore indirect calls.
1774 Function *Callee = CI->getCalledFunction();
1775 if (Callee == 0) continue;
1777 LLVM_DEBUG(dbgs() << "AMDIC: try folding " << *CI << "\n";
1778 dbgs().flush());
1779 if(Simplifier.fold(CI, AA))
1780 Changed = true;
1783 return Changed;
1786 bool AMDGPUUseNativeCalls::runOnFunction(Function &F) {
1787 if (skipFunction(F) || UseNative.empty())
1788 return false;
1790 bool Changed = false;
1791 for (auto &BB : F) {
1792 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) {
1793 // Ignore non-calls.
1794 CallInst *CI = dyn_cast<CallInst>(I);
1795 ++I;
1796 if (!CI) continue;
1798 // Ignore indirect calls.
1799 Function *Callee = CI->getCalledFunction();
1800 if (Callee == 0) continue;
1802 if(Simplifier.useNative(CI))
1803 Changed = true;
1806 return Changed;