[ARM] Better patterns for fp <> predicate vectors
[llvm-complete.git] / lib / Target / AMDGPU / AMDGPUPromoteAlloca.cpp
blobe4c9d6685d4ab14d44d49532caf5439fe71e7605
1 //===-- AMDGPUPromoteAlloca.cpp - Promote Allocas -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass eliminates allocas by either converting them into vectors or
10 // by migrating them to local address space.
12 //===----------------------------------------------------------------------===//
14 #include "AMDGPU.h"
15 #include "AMDGPUSubtarget.h"
16 #include "Utils/AMDGPUBaseInfo.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Analysis/CaptureTracking.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/CodeGen/TargetPassConfig.h"
26 #include "llvm/IR/Attributes.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/Constant.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/GlobalValue.h"
34 #include "llvm/IR/GlobalVariable.h"
35 #include "llvm/IR/IRBuilder.h"
36 #include "llvm/IR/Instruction.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/IntrinsicInst.h"
39 #include "llvm/IR/Intrinsics.h"
40 #include "llvm/IR/LLVMContext.h"
41 #include "llvm/IR/Metadata.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/IR/Type.h"
44 #include "llvm/IR/User.h"
45 #include "llvm/IR/Value.h"
46 #include "llvm/Pass.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include "llvm/Support/MathExtras.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include "llvm/Target/TargetMachine.h"
53 #include <algorithm>
54 #include <cassert>
55 #include <cstdint>
56 #include <map>
57 #include <tuple>
58 #include <utility>
59 #include <vector>
61 #define DEBUG_TYPE "amdgpu-promote-alloca"
63 using namespace llvm;
65 namespace {
67 static cl::opt<bool> DisablePromoteAllocaToVector(
68 "disable-promote-alloca-to-vector",
69 cl::desc("Disable promote alloca to vector"),
70 cl::init(false));
72 static cl::opt<bool> DisablePromoteAllocaToLDS(
73 "disable-promote-alloca-to-lds",
74 cl::desc("Disable promote alloca to LDS"),
75 cl::init(false));
77 // FIXME: This can create globals so should be a module pass.
78 class AMDGPUPromoteAlloca : public FunctionPass {
79 private:
80 const TargetMachine *TM;
81 Module *Mod = nullptr;
82 const DataLayout *DL = nullptr;
84 // FIXME: This should be per-kernel.
85 uint32_t LocalMemLimit = 0;
86 uint32_t CurrentLocalMemUsage = 0;
88 bool IsAMDGCN = false;
89 bool IsAMDHSA = false;
91 std::pair<Value *, Value *> getLocalSizeYZ(IRBuilder<> &Builder);
92 Value *getWorkitemID(IRBuilder<> &Builder, unsigned N);
94 /// BaseAlloca is the alloca root the search started from.
95 /// Val may be that alloca or a recursive user of it.
96 bool collectUsesWithPtrTypes(Value *BaseAlloca,
97 Value *Val,
98 std::vector<Value*> &WorkList) const;
100 /// Val is a derived pointer from Alloca. OpIdx0/OpIdx1 are the operand
101 /// indices to an instruction with 2 pointer inputs (e.g. select, icmp).
102 /// Returns true if both operands are derived from the same alloca. Val should
103 /// be the same value as one of the input operands of UseInst.
104 bool binaryOpIsDerivedFromSameAlloca(Value *Alloca, Value *Val,
105 Instruction *UseInst,
106 int OpIdx0, int OpIdx1) const;
108 /// Check whether we have enough local memory for promotion.
109 bool hasSufficientLocalMem(const Function &F);
111 public:
112 static char ID;
114 AMDGPUPromoteAlloca() : FunctionPass(ID) {}
116 bool doInitialization(Module &M) override;
117 bool runOnFunction(Function &F) override;
119 StringRef getPassName() const override { return "AMDGPU Promote Alloca"; }
121 bool handleAlloca(AllocaInst &I, bool SufficientLDS);
123 void getAnalysisUsage(AnalysisUsage &AU) const override {
124 AU.setPreservesCFG();
125 FunctionPass::getAnalysisUsage(AU);
129 } // end anonymous namespace
131 char AMDGPUPromoteAlloca::ID = 0;
133 INITIALIZE_PASS(AMDGPUPromoteAlloca, DEBUG_TYPE,
134 "AMDGPU promote alloca to vector or LDS", false, false)
136 char &llvm::AMDGPUPromoteAllocaID = AMDGPUPromoteAlloca::ID;
138 bool AMDGPUPromoteAlloca::doInitialization(Module &M) {
139 Mod = &M;
140 DL = &Mod->getDataLayout();
142 return false;
145 bool AMDGPUPromoteAlloca::runOnFunction(Function &F) {
146 if (skipFunction(F))
147 return false;
149 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>())
150 TM = &TPC->getTM<TargetMachine>();
151 else
152 return false;
154 const Triple &TT = TM->getTargetTriple();
155 IsAMDGCN = TT.getArch() == Triple::amdgcn;
156 IsAMDHSA = TT.getOS() == Triple::AMDHSA;
158 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(*TM, F);
159 if (!ST.isPromoteAllocaEnabled())
160 return false;
162 bool SufficientLDS = hasSufficientLocalMem(F);
163 bool Changed = false;
164 BasicBlock &EntryBB = *F.begin();
166 SmallVector<AllocaInst *, 16> Allocas;
167 for (Instruction &I : EntryBB) {
168 if (AllocaInst *AI = dyn_cast<AllocaInst>(&I))
169 Allocas.push_back(AI);
172 for (AllocaInst *AI : Allocas) {
173 if (handleAlloca(*AI, SufficientLDS))
174 Changed = true;
177 return Changed;
180 std::pair<Value *, Value *>
181 AMDGPUPromoteAlloca::getLocalSizeYZ(IRBuilder<> &Builder) {
182 const Function &F = *Builder.GetInsertBlock()->getParent();
183 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(*TM, F);
185 if (!IsAMDHSA) {
186 Function *LocalSizeYFn
187 = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_y);
188 Function *LocalSizeZFn
189 = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_z);
191 CallInst *LocalSizeY = Builder.CreateCall(LocalSizeYFn, {});
192 CallInst *LocalSizeZ = Builder.CreateCall(LocalSizeZFn, {});
194 ST.makeLIDRangeMetadata(LocalSizeY);
195 ST.makeLIDRangeMetadata(LocalSizeZ);
197 return std::make_pair(LocalSizeY, LocalSizeZ);
200 // We must read the size out of the dispatch pointer.
201 assert(IsAMDGCN);
203 // We are indexing into this struct, and want to extract the workgroup_size_*
204 // fields.
206 // typedef struct hsa_kernel_dispatch_packet_s {
207 // uint16_t header;
208 // uint16_t setup;
209 // uint16_t workgroup_size_x ;
210 // uint16_t workgroup_size_y;
211 // uint16_t workgroup_size_z;
212 // uint16_t reserved0;
213 // uint32_t grid_size_x ;
214 // uint32_t grid_size_y ;
215 // uint32_t grid_size_z;
217 // uint32_t private_segment_size;
218 // uint32_t group_segment_size;
219 // uint64_t kernel_object;
221 // #ifdef HSA_LARGE_MODEL
222 // void *kernarg_address;
223 // #elif defined HSA_LITTLE_ENDIAN
224 // void *kernarg_address;
225 // uint32_t reserved1;
226 // #else
227 // uint32_t reserved1;
228 // void *kernarg_address;
229 // #endif
230 // uint64_t reserved2;
231 // hsa_signal_t completion_signal; // uint64_t wrapper
232 // } hsa_kernel_dispatch_packet_t
234 Function *DispatchPtrFn
235 = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_dispatch_ptr);
237 CallInst *DispatchPtr = Builder.CreateCall(DispatchPtrFn, {});
238 DispatchPtr->addAttribute(AttributeList::ReturnIndex, Attribute::NoAlias);
239 DispatchPtr->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull);
241 // Size of the dispatch packet struct.
242 DispatchPtr->addDereferenceableAttr(AttributeList::ReturnIndex, 64);
244 Type *I32Ty = Type::getInt32Ty(Mod->getContext());
245 Value *CastDispatchPtr = Builder.CreateBitCast(
246 DispatchPtr, PointerType::get(I32Ty, AMDGPUAS::CONSTANT_ADDRESS));
248 // We could do a single 64-bit load here, but it's likely that the basic
249 // 32-bit and extract sequence is already present, and it is probably easier
250 // to CSE this. The loads should be mergable later anyway.
251 Value *GEPXY = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 1);
252 LoadInst *LoadXY = Builder.CreateAlignedLoad(I32Ty, GEPXY, 4);
254 Value *GEPZU = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 2);
255 LoadInst *LoadZU = Builder.CreateAlignedLoad(I32Ty, GEPZU, 4);
257 MDNode *MD = MDNode::get(Mod->getContext(), None);
258 LoadXY->setMetadata(LLVMContext::MD_invariant_load, MD);
259 LoadZU->setMetadata(LLVMContext::MD_invariant_load, MD);
260 ST.makeLIDRangeMetadata(LoadZU);
262 // Extract y component. Upper half of LoadZU should be zero already.
263 Value *Y = Builder.CreateLShr(LoadXY, 16);
265 return std::make_pair(Y, LoadZU);
268 Value *AMDGPUPromoteAlloca::getWorkitemID(IRBuilder<> &Builder, unsigned N) {
269 const AMDGPUSubtarget &ST =
270 AMDGPUSubtarget::get(*TM, *Builder.GetInsertBlock()->getParent());
271 Intrinsic::ID IntrID = Intrinsic::ID::not_intrinsic;
273 switch (N) {
274 case 0:
275 IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_x
276 : Intrinsic::r600_read_tidig_x;
277 break;
278 case 1:
279 IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_y
280 : Intrinsic::r600_read_tidig_y;
281 break;
283 case 2:
284 IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_z
285 : Intrinsic::r600_read_tidig_z;
286 break;
287 default:
288 llvm_unreachable("invalid dimension");
291 Function *WorkitemIdFn = Intrinsic::getDeclaration(Mod, IntrID);
292 CallInst *CI = Builder.CreateCall(WorkitemIdFn);
293 ST.makeLIDRangeMetadata(CI);
295 return CI;
298 static VectorType *arrayTypeToVecType(ArrayType *ArrayTy) {
299 return VectorType::get(ArrayTy->getElementType(),
300 ArrayTy->getNumElements());
303 static Value *
304 calculateVectorIndex(Value *Ptr,
305 const std::map<GetElementPtrInst *, Value *> &GEPIdx) {
306 GetElementPtrInst *GEP = cast<GetElementPtrInst>(Ptr);
308 auto I = GEPIdx.find(GEP);
309 return I == GEPIdx.end() ? nullptr : I->second;
312 static Value* GEPToVectorIndex(GetElementPtrInst *GEP) {
313 // FIXME we only support simple cases
314 if (GEP->getNumOperands() != 3)
315 return nullptr;
317 ConstantInt *I0 = dyn_cast<ConstantInt>(GEP->getOperand(1));
318 if (!I0 || !I0->isZero())
319 return nullptr;
321 return GEP->getOperand(2);
324 // Not an instruction handled below to turn into a vector.
326 // TODO: Check isTriviallyVectorizable for calls and handle other
327 // instructions.
328 static bool canVectorizeInst(Instruction *Inst, User *User) {
329 switch (Inst->getOpcode()) {
330 case Instruction::Load: {
331 // Currently only handle the case where the Pointer Operand is a GEP.
332 // Also we could not vectorize volatile or atomic loads.
333 LoadInst *LI = cast<LoadInst>(Inst);
334 if (isa<AllocaInst>(User) &&
335 LI->getPointerOperandType() == User->getType() &&
336 isa<VectorType>(LI->getType()))
337 return true;
338 return isa<GetElementPtrInst>(LI->getPointerOperand()) && LI->isSimple();
340 case Instruction::BitCast:
341 return true;
342 case Instruction::Store: {
343 // Must be the stored pointer operand, not a stored value, plus
344 // since it should be canonical form, the User should be a GEP.
345 // Also we could not vectorize volatile or atomic stores.
346 StoreInst *SI = cast<StoreInst>(Inst);
347 if (isa<AllocaInst>(User) &&
348 SI->getPointerOperandType() == User->getType() &&
349 isa<VectorType>(SI->getValueOperand()->getType()))
350 return true;
351 return (SI->getPointerOperand() == User) && isa<GetElementPtrInst>(User) && SI->isSimple();
353 default:
354 return false;
358 static bool tryPromoteAllocaToVector(AllocaInst *Alloca) {
360 if (DisablePromoteAllocaToVector) {
361 LLVM_DEBUG(dbgs() << " Promotion alloca to vector is disabled\n");
362 return false;
365 Type *AT = Alloca->getAllocatedType();
366 SequentialType *AllocaTy = dyn_cast<SequentialType>(AT);
368 LLVM_DEBUG(dbgs() << "Alloca candidate for vectorization\n");
370 // FIXME: There is no reason why we can't support larger arrays, we
371 // are just being conservative for now.
372 // FIXME: We also reject alloca's of the form [ 2 x [ 2 x i32 ]] or equivalent. Potentially these
373 // could also be promoted but we don't currently handle this case
374 if (!AllocaTy ||
375 AllocaTy->getNumElements() > 16 ||
376 AllocaTy->getNumElements() < 2 ||
377 !VectorType::isValidElementType(AllocaTy->getElementType())) {
378 LLVM_DEBUG(dbgs() << " Cannot convert type to vector\n");
379 return false;
382 std::map<GetElementPtrInst*, Value*> GEPVectorIdx;
383 std::vector<Value*> WorkList;
384 for (User *AllocaUser : Alloca->users()) {
385 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(AllocaUser);
386 if (!GEP) {
387 if (!canVectorizeInst(cast<Instruction>(AllocaUser), Alloca))
388 return false;
390 WorkList.push_back(AllocaUser);
391 continue;
394 Value *Index = GEPToVectorIndex(GEP);
396 // If we can't compute a vector index from this GEP, then we can't
397 // promote this alloca to vector.
398 if (!Index) {
399 LLVM_DEBUG(dbgs() << " Cannot compute vector index for GEP " << *GEP
400 << '\n');
401 return false;
404 GEPVectorIdx[GEP] = Index;
405 for (User *GEPUser : AllocaUser->users()) {
406 if (!canVectorizeInst(cast<Instruction>(GEPUser), AllocaUser))
407 return false;
409 WorkList.push_back(GEPUser);
413 VectorType *VectorTy = dyn_cast<VectorType>(AllocaTy);
414 if (!VectorTy)
415 VectorTy = arrayTypeToVecType(cast<ArrayType>(AllocaTy));
417 LLVM_DEBUG(dbgs() << " Converting alloca to vector " << *AllocaTy << " -> "
418 << *VectorTy << '\n');
420 for (Value *V : WorkList) {
421 Instruction *Inst = cast<Instruction>(V);
422 IRBuilder<> Builder(Inst);
423 switch (Inst->getOpcode()) {
424 case Instruction::Load: {
425 if (Inst->getType() == AT)
426 break;
428 Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS);
429 Value *Ptr = cast<LoadInst>(Inst)->getPointerOperand();
430 Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx);
432 Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy);
433 Value *VecValue = Builder.CreateLoad(VectorTy, BitCast);
434 Value *ExtractElement = Builder.CreateExtractElement(VecValue, Index);
435 Inst->replaceAllUsesWith(ExtractElement);
436 Inst->eraseFromParent();
437 break;
439 case Instruction::Store: {
440 StoreInst *SI = cast<StoreInst>(Inst);
441 if (SI->getValueOperand()->getType() == AT)
442 break;
444 Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS);
445 Value *Ptr = SI->getPointerOperand();
446 Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx);
447 Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy);
448 Value *VecValue = Builder.CreateLoad(VectorTy, BitCast);
449 Value *NewVecValue = Builder.CreateInsertElement(VecValue,
450 SI->getValueOperand(),
451 Index);
452 Builder.CreateStore(NewVecValue, BitCast);
453 Inst->eraseFromParent();
454 break;
456 case Instruction::BitCast:
457 case Instruction::AddrSpaceCast:
458 break;
460 default:
461 llvm_unreachable("Inconsistency in instructions promotable to vector");
464 return true;
467 static bool isCallPromotable(CallInst *CI) {
468 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
469 if (!II)
470 return false;
472 switch (II->getIntrinsicID()) {
473 case Intrinsic::memcpy:
474 case Intrinsic::memmove:
475 case Intrinsic::memset:
476 case Intrinsic::lifetime_start:
477 case Intrinsic::lifetime_end:
478 case Intrinsic::invariant_start:
479 case Intrinsic::invariant_end:
480 case Intrinsic::launder_invariant_group:
481 case Intrinsic::strip_invariant_group:
482 case Intrinsic::objectsize:
483 return true;
484 default:
485 return false;
489 bool AMDGPUPromoteAlloca::binaryOpIsDerivedFromSameAlloca(Value *BaseAlloca,
490 Value *Val,
491 Instruction *Inst,
492 int OpIdx0,
493 int OpIdx1) const {
494 // Figure out which operand is the one we might not be promoting.
495 Value *OtherOp = Inst->getOperand(OpIdx0);
496 if (Val == OtherOp)
497 OtherOp = Inst->getOperand(OpIdx1);
499 if (isa<ConstantPointerNull>(OtherOp))
500 return true;
502 Value *OtherObj = GetUnderlyingObject(OtherOp, *DL);
503 if (!isa<AllocaInst>(OtherObj))
504 return false;
506 // TODO: We should be able to replace undefs with the right pointer type.
508 // TODO: If we know the other base object is another promotable
509 // alloca, not necessarily this alloca, we can do this. The
510 // important part is both must have the same address space at
511 // the end.
512 if (OtherObj != BaseAlloca) {
513 LLVM_DEBUG(
514 dbgs() << "Found a binary instruction with another alloca object\n");
515 return false;
518 return true;
521 bool AMDGPUPromoteAlloca::collectUsesWithPtrTypes(
522 Value *BaseAlloca,
523 Value *Val,
524 std::vector<Value*> &WorkList) const {
526 for (User *User : Val->users()) {
527 if (is_contained(WorkList, User))
528 continue;
530 if (CallInst *CI = dyn_cast<CallInst>(User)) {
531 if (!isCallPromotable(CI))
532 return false;
534 WorkList.push_back(User);
535 continue;
538 Instruction *UseInst = cast<Instruction>(User);
539 if (UseInst->getOpcode() == Instruction::PtrToInt)
540 return false;
542 if (LoadInst *LI = dyn_cast<LoadInst>(UseInst)) {
543 if (LI->isVolatile())
544 return false;
546 continue;
549 if (StoreInst *SI = dyn_cast<StoreInst>(UseInst)) {
550 if (SI->isVolatile())
551 return false;
553 // Reject if the stored value is not the pointer operand.
554 if (SI->getPointerOperand() != Val)
555 return false;
556 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UseInst)) {
557 if (RMW->isVolatile())
558 return false;
559 } else if (AtomicCmpXchgInst *CAS = dyn_cast<AtomicCmpXchgInst>(UseInst)) {
560 if (CAS->isVolatile())
561 return false;
564 // Only promote a select if we know that the other select operand
565 // is from another pointer that will also be promoted.
566 if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
567 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, ICmp, 0, 1))
568 return false;
570 // May need to rewrite constant operands.
571 WorkList.push_back(ICmp);
574 if (UseInst->getOpcode() == Instruction::AddrSpaceCast) {
575 // Give up if the pointer may be captured.
576 if (PointerMayBeCaptured(UseInst, true, true))
577 return false;
578 // Don't collect the users of this.
579 WorkList.push_back(User);
580 continue;
583 if (!User->getType()->isPointerTy())
584 continue;
586 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UseInst)) {
587 // Be conservative if an address could be computed outside the bounds of
588 // the alloca.
589 if (!GEP->isInBounds())
590 return false;
593 // Only promote a select if we know that the other select operand is from
594 // another pointer that will also be promoted.
595 if (SelectInst *SI = dyn_cast<SelectInst>(UseInst)) {
596 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, SI, 1, 2))
597 return false;
600 // Repeat for phis.
601 if (PHINode *Phi = dyn_cast<PHINode>(UseInst)) {
602 // TODO: Handle more complex cases. We should be able to replace loops
603 // over arrays.
604 switch (Phi->getNumIncomingValues()) {
605 case 1:
606 break;
607 case 2:
608 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, Phi, 0, 1))
609 return false;
610 break;
611 default:
612 return false;
616 WorkList.push_back(User);
617 if (!collectUsesWithPtrTypes(BaseAlloca, User, WorkList))
618 return false;
621 return true;
624 bool AMDGPUPromoteAlloca::hasSufficientLocalMem(const Function &F) {
626 FunctionType *FTy = F.getFunctionType();
627 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(*TM, F);
629 // If the function has any arguments in the local address space, then it's
630 // possible these arguments require the entire local memory space, so
631 // we cannot use local memory in the pass.
632 for (Type *ParamTy : FTy->params()) {
633 PointerType *PtrTy = dyn_cast<PointerType>(ParamTy);
634 if (PtrTy && PtrTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
635 LocalMemLimit = 0;
636 LLVM_DEBUG(dbgs() << "Function has local memory argument. Promoting to "
637 "local memory disabled.\n");
638 return false;
642 LocalMemLimit = ST.getLocalMemorySize();
643 if (LocalMemLimit == 0)
644 return false;
646 const DataLayout &DL = Mod->getDataLayout();
648 // Check how much local memory is being used by global objects
649 CurrentLocalMemUsage = 0;
650 for (GlobalVariable &GV : Mod->globals()) {
651 if (GV.getType()->getAddressSpace() != AMDGPUAS::LOCAL_ADDRESS)
652 continue;
654 for (const User *U : GV.users()) {
655 const Instruction *Use = dyn_cast<Instruction>(U);
656 if (!Use)
657 continue;
659 if (Use->getParent()->getParent() == &F) {
660 unsigned Align = GV.getAlignment();
661 if (Align == 0)
662 Align = DL.getABITypeAlignment(GV.getValueType());
664 // FIXME: Try to account for padding here. The padding is currently
665 // determined from the inverse order of uses in the function. I'm not
666 // sure if the use list order is in any way connected to this, so the
667 // total reported size is likely incorrect.
668 uint64_t AllocSize = DL.getTypeAllocSize(GV.getValueType());
669 CurrentLocalMemUsage = alignTo(CurrentLocalMemUsage, Align);
670 CurrentLocalMemUsage += AllocSize;
671 break;
676 unsigned MaxOccupancy = ST.getOccupancyWithLocalMemSize(CurrentLocalMemUsage,
679 // Restrict local memory usage so that we don't drastically reduce occupancy,
680 // unless it is already significantly reduced.
682 // TODO: Have some sort of hint or other heuristics to guess occupancy based
683 // on other factors..
684 unsigned OccupancyHint = ST.getWavesPerEU(F).second;
685 if (OccupancyHint == 0)
686 OccupancyHint = 7;
688 // Clamp to max value.
689 OccupancyHint = std::min(OccupancyHint, ST.getMaxWavesPerEU());
691 // Check the hint but ignore it if it's obviously wrong from the existing LDS
692 // usage.
693 MaxOccupancy = std::min(OccupancyHint, MaxOccupancy);
696 // Round up to the next tier of usage.
697 unsigned MaxSizeWithWaveCount
698 = ST.getMaxLocalMemSizeWithWaveCount(MaxOccupancy, F);
700 // Program is possibly broken by using more local mem than available.
701 if (CurrentLocalMemUsage > MaxSizeWithWaveCount)
702 return false;
704 LocalMemLimit = MaxSizeWithWaveCount;
706 LLVM_DEBUG(dbgs() << F.getName() << " uses " << CurrentLocalMemUsage
707 << " bytes of LDS\n"
708 << " Rounding size to " << MaxSizeWithWaveCount
709 << " with a maximum occupancy of " << MaxOccupancy << '\n'
710 << " and " << (LocalMemLimit - CurrentLocalMemUsage)
711 << " available for promotion\n");
713 return true;
716 // FIXME: Should try to pick the most likely to be profitable allocas first.
717 bool AMDGPUPromoteAlloca::handleAlloca(AllocaInst &I, bool SufficientLDS) {
718 // Array allocations are probably not worth handling, since an allocation of
719 // the array type is the canonical form.
720 if (!I.isStaticAlloca() || I.isArrayAllocation())
721 return false;
723 IRBuilder<> Builder(&I);
725 // First try to replace the alloca with a vector
726 Type *AllocaTy = I.getAllocatedType();
728 LLVM_DEBUG(dbgs() << "Trying to promote " << I << '\n');
730 if (tryPromoteAllocaToVector(&I))
731 return true; // Promoted to vector.
733 if (DisablePromoteAllocaToLDS)
734 return false;
736 const Function &ContainingFunction = *I.getParent()->getParent();
737 CallingConv::ID CC = ContainingFunction.getCallingConv();
739 // Don't promote the alloca to LDS for shader calling conventions as the work
740 // item ID intrinsics are not supported for these calling conventions.
741 // Furthermore not all LDS is available for some of the stages.
742 switch (CC) {
743 case CallingConv::AMDGPU_KERNEL:
744 case CallingConv::SPIR_KERNEL:
745 break;
746 default:
747 LLVM_DEBUG(
748 dbgs()
749 << " promote alloca to LDS not supported with calling convention.\n");
750 return false;
753 // Not likely to have sufficient local memory for promotion.
754 if (!SufficientLDS)
755 return false;
757 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(*TM, ContainingFunction);
758 unsigned WorkGroupSize = ST.getFlatWorkGroupSizes(ContainingFunction).second;
760 const DataLayout &DL = Mod->getDataLayout();
762 unsigned Align = I.getAlignment();
763 if (Align == 0)
764 Align = DL.getABITypeAlignment(I.getAllocatedType());
766 // FIXME: This computed padding is likely wrong since it depends on inverse
767 // usage order.
769 // FIXME: It is also possible that if we're allowed to use all of the memory
770 // could could end up using more than the maximum due to alignment padding.
772 uint32_t NewSize = alignTo(CurrentLocalMemUsage, Align);
773 uint32_t AllocSize = WorkGroupSize * DL.getTypeAllocSize(AllocaTy);
774 NewSize += AllocSize;
776 if (NewSize > LocalMemLimit) {
777 LLVM_DEBUG(dbgs() << " " << AllocSize
778 << " bytes of local memory not available to promote\n");
779 return false;
782 CurrentLocalMemUsage = NewSize;
784 std::vector<Value*> WorkList;
786 if (!collectUsesWithPtrTypes(&I, &I, WorkList)) {
787 LLVM_DEBUG(dbgs() << " Do not know how to convert all uses\n");
788 return false;
791 LLVM_DEBUG(dbgs() << "Promoting alloca to local memory\n");
793 Function *F = I.getParent()->getParent();
795 Type *GVTy = ArrayType::get(I.getAllocatedType(), WorkGroupSize);
796 GlobalVariable *GV = new GlobalVariable(
797 *Mod, GVTy, false, GlobalValue::InternalLinkage,
798 UndefValue::get(GVTy),
799 Twine(F->getName()) + Twine('.') + I.getName(),
800 nullptr,
801 GlobalVariable::NotThreadLocal,
802 AMDGPUAS::LOCAL_ADDRESS);
803 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
804 GV->setAlignment(I.getAlignment());
806 Value *TCntY, *TCntZ;
808 std::tie(TCntY, TCntZ) = getLocalSizeYZ(Builder);
809 Value *TIdX = getWorkitemID(Builder, 0);
810 Value *TIdY = getWorkitemID(Builder, 1);
811 Value *TIdZ = getWorkitemID(Builder, 2);
813 Value *Tmp0 = Builder.CreateMul(TCntY, TCntZ, "", true, true);
814 Tmp0 = Builder.CreateMul(Tmp0, TIdX);
815 Value *Tmp1 = Builder.CreateMul(TIdY, TCntZ, "", true, true);
816 Value *TID = Builder.CreateAdd(Tmp0, Tmp1);
817 TID = Builder.CreateAdd(TID, TIdZ);
819 Value *Indices[] = {
820 Constant::getNullValue(Type::getInt32Ty(Mod->getContext())),
824 Value *Offset = Builder.CreateInBoundsGEP(GVTy, GV, Indices);
825 I.mutateType(Offset->getType());
826 I.replaceAllUsesWith(Offset);
827 I.eraseFromParent();
829 for (Value *V : WorkList) {
830 CallInst *Call = dyn_cast<CallInst>(V);
831 if (!Call) {
832 if (ICmpInst *CI = dyn_cast<ICmpInst>(V)) {
833 Value *Src0 = CI->getOperand(0);
834 Type *EltTy = Src0->getType()->getPointerElementType();
835 PointerType *NewTy = PointerType::get(EltTy, AMDGPUAS::LOCAL_ADDRESS);
837 if (isa<ConstantPointerNull>(CI->getOperand(0)))
838 CI->setOperand(0, ConstantPointerNull::get(NewTy));
840 if (isa<ConstantPointerNull>(CI->getOperand(1)))
841 CI->setOperand(1, ConstantPointerNull::get(NewTy));
843 continue;
846 // The operand's value should be corrected on its own and we don't want to
847 // touch the users.
848 if (isa<AddrSpaceCastInst>(V))
849 continue;
851 Type *EltTy = V->getType()->getPointerElementType();
852 PointerType *NewTy = PointerType::get(EltTy, AMDGPUAS::LOCAL_ADDRESS);
854 // FIXME: It doesn't really make sense to try to do this for all
855 // instructions.
856 V->mutateType(NewTy);
858 // Adjust the types of any constant operands.
859 if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
860 if (isa<ConstantPointerNull>(SI->getOperand(1)))
861 SI->setOperand(1, ConstantPointerNull::get(NewTy));
863 if (isa<ConstantPointerNull>(SI->getOperand(2)))
864 SI->setOperand(2, ConstantPointerNull::get(NewTy));
865 } else if (PHINode *Phi = dyn_cast<PHINode>(V)) {
866 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
867 if (isa<ConstantPointerNull>(Phi->getIncomingValue(I)))
868 Phi->setIncomingValue(I, ConstantPointerNull::get(NewTy));
872 continue;
875 IntrinsicInst *Intr = cast<IntrinsicInst>(Call);
876 Builder.SetInsertPoint(Intr);
877 switch (Intr->getIntrinsicID()) {
878 case Intrinsic::lifetime_start:
879 case Intrinsic::lifetime_end:
880 // These intrinsics are for address space 0 only
881 Intr->eraseFromParent();
882 continue;
883 case Intrinsic::memcpy: {
884 MemCpyInst *MemCpy = cast<MemCpyInst>(Intr);
885 Builder.CreateMemCpy(MemCpy->getRawDest(), MemCpy->getDestAlignment(),
886 MemCpy->getRawSource(), MemCpy->getSourceAlignment(),
887 MemCpy->getLength(), MemCpy->isVolatile());
888 Intr->eraseFromParent();
889 continue;
891 case Intrinsic::memmove: {
892 MemMoveInst *MemMove = cast<MemMoveInst>(Intr);
893 Builder.CreateMemMove(MemMove->getRawDest(), MemMove->getDestAlignment(),
894 MemMove->getRawSource(), MemMove->getSourceAlignment(),
895 MemMove->getLength(), MemMove->isVolatile());
896 Intr->eraseFromParent();
897 continue;
899 case Intrinsic::memset: {
900 MemSetInst *MemSet = cast<MemSetInst>(Intr);
901 Builder.CreateMemSet(MemSet->getRawDest(), MemSet->getValue(),
902 MemSet->getLength(), MemSet->getDestAlignment(),
903 MemSet->isVolatile());
904 Intr->eraseFromParent();
905 continue;
907 case Intrinsic::invariant_start:
908 case Intrinsic::invariant_end:
909 case Intrinsic::launder_invariant_group:
910 case Intrinsic::strip_invariant_group:
911 Intr->eraseFromParent();
912 // FIXME: I think the invariant marker should still theoretically apply,
913 // but the intrinsics need to be changed to accept pointers with any
914 // address space.
915 continue;
916 case Intrinsic::objectsize: {
917 Value *Src = Intr->getOperand(0);
918 Type *SrcTy = Src->getType()->getPointerElementType();
919 Function *ObjectSize = Intrinsic::getDeclaration(Mod,
920 Intrinsic::objectsize,
921 { Intr->getType(), PointerType::get(SrcTy, AMDGPUAS::LOCAL_ADDRESS) }
924 CallInst *NewCall = Builder.CreateCall(
925 ObjectSize,
926 {Src, Intr->getOperand(1), Intr->getOperand(2), Intr->getOperand(3)});
927 Intr->replaceAllUsesWith(NewCall);
928 Intr->eraseFromParent();
929 continue;
931 default:
932 Intr->print(errs());
933 llvm_unreachable("Don't know how to promote alloca intrinsic use.");
936 return true;
939 FunctionPass *llvm::createAMDGPUPromoteAlloca() {
940 return new AMDGPUPromoteAlloca();