[ARM] Better patterns for fp <> predicate vectors
[llvm-complete.git] / lib / Target / AMDGPU / AMDGPUTargetMachine.cpp
blob5f0c6a7c5f08f7258195331dd21265f68af28061
1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// The AMDGPU target machine contains all of the hardware specific
11 /// information needed to emit code for R600 and SI GPUs.
13 //===----------------------------------------------------------------------===//
15 #include "AMDGPUTargetMachine.h"
16 #include "AMDGPU.h"
17 #include "AMDGPUAliasAnalysis.h"
18 #include "AMDGPUCallLowering.h"
19 #include "AMDGPUInstructionSelector.h"
20 #include "AMDGPULegalizerInfo.h"
21 #include "AMDGPUMacroFusion.h"
22 #include "AMDGPUTargetObjectFile.h"
23 #include "AMDGPUTargetTransformInfo.h"
24 #include "GCNIterativeScheduler.h"
25 #include "GCNSchedStrategy.h"
26 #include "R600MachineScheduler.h"
27 #include "SIMachineFunctionInfo.h"
28 #include "SIMachineScheduler.h"
29 #include "TargetInfo/AMDGPUTargetInfo.h"
30 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
31 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
32 #include "llvm/CodeGen/GlobalISel/Legalizer.h"
33 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
34 #include "llvm/CodeGen/MIRParser/MIParser.h"
35 #include "llvm/CodeGen/Passes.h"
36 #include "llvm/CodeGen/TargetPassConfig.h"
37 #include "llvm/IR/Attributes.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/LegacyPassManager.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/Compiler.h"
43 #include "llvm/Support/TargetRegistry.h"
44 #include "llvm/Target/TargetLoweringObjectFile.h"
45 #include "llvm/Transforms/IPO.h"
46 #include "llvm/Transforms/IPO/AlwaysInliner.h"
47 #include "llvm/Transforms/IPO/PassManagerBuilder.h"
48 #include "llvm/Transforms/Scalar.h"
49 #include "llvm/Transforms/Scalar/GVN.h"
50 #include "llvm/Transforms/Utils.h"
51 #include "llvm/Transforms/Vectorize.h"
52 #include <memory>
54 using namespace llvm;
56 static cl::opt<bool> EnableR600StructurizeCFG(
57 "r600-ir-structurize",
58 cl::desc("Use StructurizeCFG IR pass"),
59 cl::init(true));
61 static cl::opt<bool> EnableSROA(
62 "amdgpu-sroa",
63 cl::desc("Run SROA after promote alloca pass"),
64 cl::ReallyHidden,
65 cl::init(true));
67 static cl::opt<bool>
68 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden,
69 cl::desc("Run early if-conversion"),
70 cl::init(false));
72 static cl::opt<bool>
73 OptExecMaskPreRA("amdgpu-opt-exec-mask-pre-ra", cl::Hidden,
74 cl::desc("Run pre-RA exec mask optimizations"),
75 cl::init(true));
77 static cl::opt<bool> EnableR600IfConvert(
78 "r600-if-convert",
79 cl::desc("Use if conversion pass"),
80 cl::ReallyHidden,
81 cl::init(true));
83 // Option to disable vectorizer for tests.
84 static cl::opt<bool> EnableLoadStoreVectorizer(
85 "amdgpu-load-store-vectorizer",
86 cl::desc("Enable load store vectorizer"),
87 cl::init(true),
88 cl::Hidden);
90 // Option to control global loads scalarization
91 static cl::opt<bool> ScalarizeGlobal(
92 "amdgpu-scalarize-global-loads",
93 cl::desc("Enable global load scalarization"),
94 cl::init(true),
95 cl::Hidden);
97 // Option to run internalize pass.
98 static cl::opt<bool> InternalizeSymbols(
99 "amdgpu-internalize-symbols",
100 cl::desc("Enable elimination of non-kernel functions and unused globals"),
101 cl::init(false),
102 cl::Hidden);
104 // Option to inline all early.
105 static cl::opt<bool> EarlyInlineAll(
106 "amdgpu-early-inline-all",
107 cl::desc("Inline all functions early"),
108 cl::init(false),
109 cl::Hidden);
111 static cl::opt<bool> EnableSDWAPeephole(
112 "amdgpu-sdwa-peephole",
113 cl::desc("Enable SDWA peepholer"),
114 cl::init(true));
116 static cl::opt<bool> EnableDPPCombine(
117 "amdgpu-dpp-combine",
118 cl::desc("Enable DPP combiner"),
119 cl::init(true));
121 // Enable address space based alias analysis
122 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden,
123 cl::desc("Enable AMDGPU Alias Analysis"),
124 cl::init(true));
126 // Option to run late CFG structurizer
127 static cl::opt<bool, true> LateCFGStructurize(
128 "amdgpu-late-structurize",
129 cl::desc("Enable late CFG structurization"),
130 cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG),
131 cl::Hidden);
133 static cl::opt<bool, true> EnableAMDGPUFunctionCallsOpt(
134 "amdgpu-function-calls",
135 cl::desc("Enable AMDGPU function call support"),
136 cl::location(AMDGPUTargetMachine::EnableFunctionCalls),
137 cl::init(true),
138 cl::Hidden);
140 // Enable lib calls simplifications
141 static cl::opt<bool> EnableLibCallSimplify(
142 "amdgpu-simplify-libcall",
143 cl::desc("Enable amdgpu library simplifications"),
144 cl::init(true),
145 cl::Hidden);
147 static cl::opt<bool> EnableLowerKernelArguments(
148 "amdgpu-ir-lower-kernel-arguments",
149 cl::desc("Lower kernel argument loads in IR pass"),
150 cl::init(true),
151 cl::Hidden);
153 static cl::opt<bool> EnableRegReassign(
154 "amdgpu-reassign-regs",
155 cl::desc("Enable register reassign optimizations on gfx10+"),
156 cl::init(true),
157 cl::Hidden);
159 // Enable atomic optimization
160 static cl::opt<bool> EnableAtomicOptimizations(
161 "amdgpu-atomic-optimizations",
162 cl::desc("Enable atomic optimizations"),
163 cl::init(false),
164 cl::Hidden);
166 // Enable Mode register optimization
167 static cl::opt<bool> EnableSIModeRegisterPass(
168 "amdgpu-mode-register",
169 cl::desc("Enable mode register pass"),
170 cl::init(true),
171 cl::Hidden);
173 // Option is used in lit tests to prevent deadcoding of patterns inspected.
174 static cl::opt<bool>
175 EnableDCEInRA("amdgpu-dce-in-ra",
176 cl::init(true), cl::Hidden,
177 cl::desc("Enable machine DCE inside regalloc"));
179 static cl::opt<bool> EnableScalarIRPasses(
180 "amdgpu-scalar-ir-passes",
181 cl::desc("Enable scalar IR passes"),
182 cl::init(true),
183 cl::Hidden);
185 extern "C" void LLVMInitializeAMDGPUTarget() {
186 // Register the target
187 RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget());
188 RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget());
190 PassRegistry *PR = PassRegistry::getPassRegistry();
191 initializeR600ClauseMergePassPass(*PR);
192 initializeR600ControlFlowFinalizerPass(*PR);
193 initializeR600PacketizerPass(*PR);
194 initializeR600ExpandSpecialInstrsPassPass(*PR);
195 initializeR600VectorRegMergerPass(*PR);
196 initializeGlobalISel(*PR);
197 initializeAMDGPUDAGToDAGISelPass(*PR);
198 initializeGCNDPPCombinePass(*PR);
199 initializeSILowerI1CopiesPass(*PR);
200 initializeSILowerSGPRSpillsPass(*PR);
201 initializeSIFixSGPRCopiesPass(*PR);
202 initializeSIFixVGPRCopiesPass(*PR);
203 initializeSIFixupVectorISelPass(*PR);
204 initializeSIFoldOperandsPass(*PR);
205 initializeSIPeepholeSDWAPass(*PR);
206 initializeSIShrinkInstructionsPass(*PR);
207 initializeSIOptimizeExecMaskingPreRAPass(*PR);
208 initializeSILoadStoreOptimizerPass(*PR);
209 initializeAMDGPUFixFunctionBitcastsPass(*PR);
210 initializeAMDGPUAlwaysInlinePass(*PR);
211 initializeAMDGPUAnnotateKernelFeaturesPass(*PR);
212 initializeAMDGPUAnnotateUniformValuesPass(*PR);
213 initializeAMDGPUArgumentUsageInfoPass(*PR);
214 initializeAMDGPUAtomicOptimizerPass(*PR);
215 initializeAMDGPULowerKernelArgumentsPass(*PR);
216 initializeAMDGPULowerKernelAttributesPass(*PR);
217 initializeAMDGPULowerIntrinsicsPass(*PR);
218 initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR);
219 initializeAMDGPUPromoteAllocaPass(*PR);
220 initializeAMDGPUCodeGenPreparePass(*PR);
221 initializeAMDGPUPropagateAttributesEarlyPass(*PR);
222 initializeAMDGPUPropagateAttributesLatePass(*PR);
223 initializeAMDGPURewriteOutArgumentsPass(*PR);
224 initializeAMDGPUUnifyMetadataPass(*PR);
225 initializeSIAnnotateControlFlowPass(*PR);
226 initializeSIInsertWaitcntsPass(*PR);
227 initializeSIModeRegisterPass(*PR);
228 initializeSIWholeQuadModePass(*PR);
229 initializeSILowerControlFlowPass(*PR);
230 initializeSIInsertSkipsPass(*PR);
231 initializeSIMemoryLegalizerPass(*PR);
232 initializeSIOptimizeExecMaskingPass(*PR);
233 initializeSIPreAllocateWWMRegsPass(*PR);
234 initializeSIFormMemoryClausesPass(*PR);
235 initializeAMDGPUUnifyDivergentExitNodesPass(*PR);
236 initializeAMDGPUAAWrapperPassPass(*PR);
237 initializeAMDGPUExternalAAWrapperPass(*PR);
238 initializeAMDGPUUseNativeCallsPass(*PR);
239 initializeAMDGPUSimplifyLibCallsPass(*PR);
240 initializeAMDGPUInlinerPass(*PR);
241 initializeGCNRegBankReassignPass(*PR);
242 initializeGCNNSAReassignPass(*PR);
245 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
246 return llvm::make_unique<AMDGPUTargetObjectFile>();
249 static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) {
250 return new ScheduleDAGMILive(C, llvm::make_unique<R600SchedStrategy>());
253 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) {
254 return new SIScheduleDAGMI(C);
257 static ScheduleDAGInstrs *
258 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) {
259 ScheduleDAGMILive *DAG =
260 new GCNScheduleDAGMILive(C, make_unique<GCNMaxOccupancySchedStrategy>(C));
261 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
262 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
263 DAG->addMutation(createAMDGPUMacroFusionDAGMutation());
264 return DAG;
267 static ScheduleDAGInstrs *
268 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) {
269 auto DAG = new GCNIterativeScheduler(C,
270 GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY);
271 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
272 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
273 return DAG;
276 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) {
277 return new GCNIterativeScheduler(C,
278 GCNIterativeScheduler::SCHEDULE_MINREGFORCED);
281 static ScheduleDAGInstrs *
282 createIterativeILPMachineScheduler(MachineSchedContext *C) {
283 auto DAG = new GCNIterativeScheduler(C,
284 GCNIterativeScheduler::SCHEDULE_ILP);
285 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
286 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
287 DAG->addMutation(createAMDGPUMacroFusionDAGMutation());
288 return DAG;
291 static MachineSchedRegistry
292 R600SchedRegistry("r600", "Run R600's custom scheduler",
293 createR600MachineScheduler);
295 static MachineSchedRegistry
296 SISchedRegistry("si", "Run SI's custom scheduler",
297 createSIMachineScheduler);
299 static MachineSchedRegistry
300 GCNMaxOccupancySchedRegistry("gcn-max-occupancy",
301 "Run GCN scheduler to maximize occupancy",
302 createGCNMaxOccupancyMachineScheduler);
304 static MachineSchedRegistry
305 IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental",
306 "Run GCN scheduler to maximize occupancy (experimental)",
307 createIterativeGCNMaxOccupancyMachineScheduler);
309 static MachineSchedRegistry
310 GCNMinRegSchedRegistry("gcn-minreg",
311 "Run GCN iterative scheduler for minimal register usage (experimental)",
312 createMinRegScheduler);
314 static MachineSchedRegistry
315 GCNILPSchedRegistry("gcn-ilp",
316 "Run GCN iterative scheduler for ILP scheduling (experimental)",
317 createIterativeILPMachineScheduler);
319 static StringRef computeDataLayout(const Triple &TT) {
320 if (TT.getArch() == Triple::r600) {
321 // 32-bit pointers.
322 return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128"
323 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5";
326 // 32-bit private, local, and region pointers. 64-bit global, constant and
327 // flat, non-integral buffer fat pointers.
328 return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32"
329 "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128"
330 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5"
331 "-ni:7";
334 LLVM_READNONE
335 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) {
336 if (!GPU.empty())
337 return GPU;
339 // Need to default to a target with flat support for HSA.
340 if (TT.getArch() == Triple::amdgcn)
341 return TT.getOS() == Triple::AMDHSA ? "generic-hsa" : "generic";
343 return "r600";
346 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) {
347 // The AMDGPU toolchain only supports generating shared objects, so we
348 // must always use PIC.
349 return Reloc::PIC_;
352 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT,
353 StringRef CPU, StringRef FS,
354 TargetOptions Options,
355 Optional<Reloc::Model> RM,
356 Optional<CodeModel::Model> CM,
357 CodeGenOpt::Level OptLevel)
358 : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU),
359 FS, Options, getEffectiveRelocModel(RM),
360 getEffectiveCodeModel(CM, CodeModel::Small), OptLevel),
361 TLOF(createTLOF(getTargetTriple())) {
362 initAsmInfo();
365 bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false;
366 bool AMDGPUTargetMachine::EnableFunctionCalls = false;
368 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default;
370 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const {
371 Attribute GPUAttr = F.getFnAttribute("target-cpu");
372 return GPUAttr.hasAttribute(Attribute::None) ?
373 getTargetCPU() : GPUAttr.getValueAsString();
376 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const {
377 Attribute FSAttr = F.getFnAttribute("target-features");
379 return FSAttr.hasAttribute(Attribute::None) ?
380 getTargetFeatureString() :
381 FSAttr.getValueAsString();
384 /// Predicate for Internalize pass.
385 static bool mustPreserveGV(const GlobalValue &GV) {
386 if (const Function *F = dyn_cast<Function>(&GV))
387 return F->isDeclaration() || AMDGPU::isEntryFunctionCC(F->getCallingConv());
389 return !GV.use_empty();
392 void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) {
393 Builder.DivergentTarget = true;
395 bool EnableOpt = getOptLevel() > CodeGenOpt::None;
396 bool Internalize = InternalizeSymbols;
397 bool EarlyInline = EarlyInlineAll && EnableOpt && !EnableFunctionCalls;
398 bool AMDGPUAA = EnableAMDGPUAliasAnalysis && EnableOpt;
399 bool LibCallSimplify = EnableLibCallSimplify && EnableOpt;
401 if (EnableFunctionCalls) {
402 delete Builder.Inliner;
403 Builder.Inliner = createAMDGPUFunctionInliningPass();
406 Builder.addExtension(
407 PassManagerBuilder::EP_ModuleOptimizerEarly,
408 [Internalize, EarlyInline, AMDGPUAA, this](const PassManagerBuilder &,
409 legacy::PassManagerBase &PM) {
410 if (AMDGPUAA) {
411 PM.add(createAMDGPUAAWrapperPass());
412 PM.add(createAMDGPUExternalAAWrapperPass());
414 PM.add(createAMDGPUUnifyMetadataPass());
415 PM.add(createAMDGPUPropagateAttributesLatePass(this));
416 if (Internalize) {
417 PM.add(createInternalizePass(mustPreserveGV));
418 PM.add(createGlobalDCEPass());
420 if (EarlyInline)
421 PM.add(createAMDGPUAlwaysInlinePass(false));
424 const auto &Opt = Options;
425 Builder.addExtension(
426 PassManagerBuilder::EP_EarlyAsPossible,
427 [AMDGPUAA, LibCallSimplify, &Opt, this](const PassManagerBuilder &,
428 legacy::PassManagerBase &PM) {
429 if (AMDGPUAA) {
430 PM.add(createAMDGPUAAWrapperPass());
431 PM.add(createAMDGPUExternalAAWrapperPass());
433 PM.add(llvm::createAMDGPUPropagateAttributesEarlyPass(this));
434 PM.add(llvm::createAMDGPUUseNativeCallsPass());
435 if (LibCallSimplify)
436 PM.add(llvm::createAMDGPUSimplifyLibCallsPass(Opt, this));
439 Builder.addExtension(
440 PassManagerBuilder::EP_CGSCCOptimizerLate,
441 [](const PassManagerBuilder &, legacy::PassManagerBase &PM) {
442 // Add infer address spaces pass to the opt pipeline after inlining
443 // but before SROA to increase SROA opportunities.
444 PM.add(createInferAddressSpacesPass());
446 // This should run after inlining to have any chance of doing anything,
447 // and before other cleanup optimizations.
448 PM.add(createAMDGPULowerKernelAttributesPass());
452 //===----------------------------------------------------------------------===//
453 // R600 Target Machine (R600 -> Cayman)
454 //===----------------------------------------------------------------------===//
456 R600TargetMachine::R600TargetMachine(const Target &T, const Triple &TT,
457 StringRef CPU, StringRef FS,
458 TargetOptions Options,
459 Optional<Reloc::Model> RM,
460 Optional<CodeModel::Model> CM,
461 CodeGenOpt::Level OL, bool JIT)
462 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {
463 setRequiresStructuredCFG(true);
465 // Override the default since calls aren't supported for r600.
466 if (EnableFunctionCalls &&
467 EnableAMDGPUFunctionCallsOpt.getNumOccurrences() == 0)
468 EnableFunctionCalls = false;
471 const R600Subtarget *R600TargetMachine::getSubtargetImpl(
472 const Function &F) const {
473 StringRef GPU = getGPUName(F);
474 StringRef FS = getFeatureString(F);
476 SmallString<128> SubtargetKey(GPU);
477 SubtargetKey.append(FS);
479 auto &I = SubtargetMap[SubtargetKey];
480 if (!I) {
481 // This needs to be done before we create a new subtarget since any
482 // creation will depend on the TM and the code generation flags on the
483 // function that reside in TargetOptions.
484 resetTargetOptions(F);
485 I = llvm::make_unique<R600Subtarget>(TargetTriple, GPU, FS, *this);
488 return I.get();
491 TargetTransformInfo
492 R600TargetMachine::getTargetTransformInfo(const Function &F) {
493 return TargetTransformInfo(R600TTIImpl(this, F));
496 //===----------------------------------------------------------------------===//
497 // GCN Target Machine (SI+)
498 //===----------------------------------------------------------------------===//
500 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT,
501 StringRef CPU, StringRef FS,
502 TargetOptions Options,
503 Optional<Reloc::Model> RM,
504 Optional<CodeModel::Model> CM,
505 CodeGenOpt::Level OL, bool JIT)
506 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {}
508 const GCNSubtarget *GCNTargetMachine::getSubtargetImpl(const Function &F) const {
509 StringRef GPU = getGPUName(F);
510 StringRef FS = getFeatureString(F);
512 SmallString<128> SubtargetKey(GPU);
513 SubtargetKey.append(FS);
515 auto &I = SubtargetMap[SubtargetKey];
516 if (!I) {
517 // This needs to be done before we create a new subtarget since any
518 // creation will depend on the TM and the code generation flags on the
519 // function that reside in TargetOptions.
520 resetTargetOptions(F);
521 I = llvm::make_unique<GCNSubtarget>(TargetTriple, GPU, FS, *this);
524 I->setScalarizeGlobalBehavior(ScalarizeGlobal);
526 return I.get();
529 TargetTransformInfo
530 GCNTargetMachine::getTargetTransformInfo(const Function &F) {
531 return TargetTransformInfo(GCNTTIImpl(this, F));
534 //===----------------------------------------------------------------------===//
535 // AMDGPU Pass Setup
536 //===----------------------------------------------------------------------===//
538 namespace {
540 class AMDGPUPassConfig : public TargetPassConfig {
541 public:
542 AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM)
543 : TargetPassConfig(TM, PM) {
544 // Exceptions and StackMaps are not supported, so these passes will never do
545 // anything.
546 disablePass(&StackMapLivenessID);
547 disablePass(&FuncletLayoutID);
550 AMDGPUTargetMachine &getAMDGPUTargetMachine() const {
551 return getTM<AMDGPUTargetMachine>();
554 ScheduleDAGInstrs *
555 createMachineScheduler(MachineSchedContext *C) const override {
556 ScheduleDAGMILive *DAG = createGenericSchedLive(C);
557 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
558 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
559 return DAG;
562 void addEarlyCSEOrGVNPass();
563 void addStraightLineScalarOptimizationPasses();
564 void addIRPasses() override;
565 void addCodeGenPrepare() override;
566 bool addPreISel() override;
567 bool addInstSelector() override;
568 bool addGCPasses() override;
570 std::unique_ptr<CSEConfigBase> getCSEConfig() const override;
573 std::unique_ptr<CSEConfigBase> AMDGPUPassConfig::getCSEConfig() const {
574 return getStandardCSEConfigForOpt(TM->getOptLevel());
577 class R600PassConfig final : public AMDGPUPassConfig {
578 public:
579 R600PassConfig(LLVMTargetMachine &TM, PassManagerBase &PM)
580 : AMDGPUPassConfig(TM, PM) {}
582 ScheduleDAGInstrs *createMachineScheduler(
583 MachineSchedContext *C) const override {
584 return createR600MachineScheduler(C);
587 bool addPreISel() override;
588 bool addInstSelector() override;
589 void addPreRegAlloc() override;
590 void addPreSched2() override;
591 void addPreEmitPass() override;
594 class GCNPassConfig final : public AMDGPUPassConfig {
595 public:
596 GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM)
597 : AMDGPUPassConfig(TM, PM) {
598 // It is necessary to know the register usage of the entire call graph. We
599 // allow calls without EnableAMDGPUFunctionCalls if they are marked
600 // noinline, so this is always required.
601 setRequiresCodeGenSCCOrder(true);
604 GCNTargetMachine &getGCNTargetMachine() const {
605 return getTM<GCNTargetMachine>();
608 ScheduleDAGInstrs *
609 createMachineScheduler(MachineSchedContext *C) const override;
611 bool addPreISel() override;
612 void addMachineSSAOptimization() override;
613 bool addILPOpts() override;
614 bool addInstSelector() override;
615 bool addIRTranslator() override;
616 bool addLegalizeMachineIR() override;
617 bool addRegBankSelect() override;
618 bool addGlobalInstructionSelect() override;
619 void addFastRegAlloc() override;
620 void addOptimizedRegAlloc() override;
621 void addPreRegAlloc() override;
622 bool addPreRewrite() override;
623 void addPostRegAlloc() override;
624 void addPreSched2() override;
625 void addPreEmitPass() override;
628 } // end anonymous namespace
630 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() {
631 if (getOptLevel() == CodeGenOpt::Aggressive)
632 addPass(createGVNPass());
633 else
634 addPass(createEarlyCSEPass());
637 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() {
638 addPass(createLICMPass());
639 addPass(createSeparateConstOffsetFromGEPPass());
640 addPass(createSpeculativeExecutionPass());
641 // ReassociateGEPs exposes more opportunites for SLSR. See
642 // the example in reassociate-geps-and-slsr.ll.
643 addPass(createStraightLineStrengthReducePass());
644 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or
645 // EarlyCSE can reuse.
646 addEarlyCSEOrGVNPass();
647 // Run NaryReassociate after EarlyCSE/GVN to be more effective.
648 addPass(createNaryReassociatePass());
649 // NaryReassociate on GEPs creates redundant common expressions, so run
650 // EarlyCSE after it.
651 addPass(createEarlyCSEPass());
654 void AMDGPUPassConfig::addIRPasses() {
655 const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine();
657 // There is no reason to run these.
658 disablePass(&StackMapLivenessID);
659 disablePass(&FuncletLayoutID);
660 disablePass(&PatchableFunctionID);
662 // This must occur before inlining, as the inliner will not look through
663 // bitcast calls.
664 addPass(createAMDGPUFixFunctionBitcastsPass());
666 // A call to propagate attributes pass in the backend in case opt was not run.
667 addPass(createAMDGPUPropagateAttributesEarlyPass(&TM));
669 addPass(createAtomicExpandPass());
672 addPass(createAMDGPULowerIntrinsicsPass());
674 // Function calls are not supported, so make sure we inline everything.
675 addPass(createAMDGPUAlwaysInlinePass());
676 addPass(createAlwaysInlinerLegacyPass());
677 // We need to add the barrier noop pass, otherwise adding the function
678 // inlining pass will cause all of the PassConfigs passes to be run
679 // one function at a time, which means if we have a nodule with two
680 // functions, then we will generate code for the first function
681 // without ever running any passes on the second.
682 addPass(createBarrierNoopPass());
684 if (TM.getTargetTriple().getArch() == Triple::amdgcn) {
685 // TODO: May want to move later or split into an early and late one.
687 addPass(createAMDGPUCodeGenPreparePass());
690 // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments.
691 if (TM.getTargetTriple().getArch() == Triple::r600)
692 addPass(createR600OpenCLImageTypeLoweringPass());
694 // Replace OpenCL enqueued block function pointers with global variables.
695 addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass());
697 if (TM.getOptLevel() > CodeGenOpt::None) {
698 addPass(createInferAddressSpacesPass());
699 addPass(createAMDGPUPromoteAlloca());
701 if (EnableSROA)
702 addPass(createSROAPass());
704 if (EnableScalarIRPasses)
705 addStraightLineScalarOptimizationPasses();
707 if (EnableAMDGPUAliasAnalysis) {
708 addPass(createAMDGPUAAWrapperPass());
709 addPass(createExternalAAWrapperPass([](Pass &P, Function &,
710 AAResults &AAR) {
711 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>())
712 AAR.addAAResult(WrapperPass->getResult());
713 }));
717 TargetPassConfig::addIRPasses();
719 // EarlyCSE is not always strong enough to clean up what LSR produces. For
720 // example, GVN can combine
722 // %0 = add %a, %b
723 // %1 = add %b, %a
725 // and
727 // %0 = shl nsw %a, 2
728 // %1 = shl %a, 2
730 // but EarlyCSE can do neither of them.
731 if (getOptLevel() != CodeGenOpt::None && EnableScalarIRPasses)
732 addEarlyCSEOrGVNPass();
735 void AMDGPUPassConfig::addCodeGenPrepare() {
736 if (TM->getTargetTriple().getArch() == Triple::amdgcn)
737 addPass(createAMDGPUAnnotateKernelFeaturesPass());
739 if (TM->getTargetTriple().getArch() == Triple::amdgcn &&
740 EnableLowerKernelArguments)
741 addPass(createAMDGPULowerKernelArgumentsPass());
743 addPass(&AMDGPUPerfHintAnalysisID);
745 TargetPassConfig::addCodeGenPrepare();
747 if (EnableLoadStoreVectorizer)
748 addPass(createLoadStoreVectorizerPass());
751 bool AMDGPUPassConfig::addPreISel() {
752 addPass(createLowerSwitchPass());
753 addPass(createFlattenCFGPass());
754 return false;
757 bool AMDGPUPassConfig::addInstSelector() {
758 // Defer the verifier until FinalizeISel.
759 addPass(createAMDGPUISelDag(&getAMDGPUTargetMachine(), getOptLevel()), false);
760 return false;
763 bool AMDGPUPassConfig::addGCPasses() {
764 // Do nothing. GC is not supported.
765 return false;
768 //===----------------------------------------------------------------------===//
769 // R600 Pass Setup
770 //===----------------------------------------------------------------------===//
772 bool R600PassConfig::addPreISel() {
773 AMDGPUPassConfig::addPreISel();
775 if (EnableR600StructurizeCFG)
776 addPass(createStructurizeCFGPass());
777 return false;
780 bool R600PassConfig::addInstSelector() {
781 addPass(createR600ISelDag(&getAMDGPUTargetMachine(), getOptLevel()));
782 return false;
785 void R600PassConfig::addPreRegAlloc() {
786 addPass(createR600VectorRegMerger());
789 void R600PassConfig::addPreSched2() {
790 addPass(createR600EmitClauseMarkers(), false);
791 if (EnableR600IfConvert)
792 addPass(&IfConverterID, false);
793 addPass(createR600ClauseMergePass(), false);
796 void R600PassConfig::addPreEmitPass() {
797 addPass(createAMDGPUCFGStructurizerPass(), false);
798 addPass(createR600ExpandSpecialInstrsPass(), false);
799 addPass(&FinalizeMachineBundlesID, false);
800 addPass(createR600Packetizer(), false);
801 addPass(createR600ControlFlowFinalizer(), false);
804 TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) {
805 return new R600PassConfig(*this, PM);
808 //===----------------------------------------------------------------------===//
809 // GCN Pass Setup
810 //===----------------------------------------------------------------------===//
812 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler(
813 MachineSchedContext *C) const {
814 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>();
815 if (ST.enableSIScheduler())
816 return createSIMachineScheduler(C);
817 return createGCNMaxOccupancyMachineScheduler(C);
820 bool GCNPassConfig::addPreISel() {
821 AMDGPUPassConfig::addPreISel();
823 if (EnableAtomicOptimizations) {
824 addPass(createAMDGPUAtomicOptimizerPass());
827 // FIXME: We need to run a pass to propagate the attributes when calls are
828 // supported.
830 // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit
831 // regions formed by them.
832 addPass(&AMDGPUUnifyDivergentExitNodesID);
833 if (!LateCFGStructurize) {
834 addPass(createStructurizeCFGPass(true)); // true -> SkipUniformRegions
836 addPass(createSinkingPass());
837 addPass(createAMDGPUAnnotateUniformValues());
838 if (!LateCFGStructurize) {
839 addPass(createSIAnnotateControlFlowPass());
841 addPass(createLCSSAPass());
843 return false;
846 void GCNPassConfig::addMachineSSAOptimization() {
847 TargetPassConfig::addMachineSSAOptimization();
849 // We want to fold operands after PeepholeOptimizer has run (or as part of
850 // it), because it will eliminate extra copies making it easier to fold the
851 // real source operand. We want to eliminate dead instructions after, so that
852 // we see fewer uses of the copies. We then need to clean up the dead
853 // instructions leftover after the operands are folded as well.
855 // XXX - Can we get away without running DeadMachineInstructionElim again?
856 addPass(&SIFoldOperandsID);
857 if (EnableDPPCombine)
858 addPass(&GCNDPPCombineID);
859 addPass(&DeadMachineInstructionElimID);
860 addPass(&SILoadStoreOptimizerID);
861 if (EnableSDWAPeephole) {
862 addPass(&SIPeepholeSDWAID);
863 addPass(&EarlyMachineLICMID);
864 addPass(&MachineCSEID);
865 addPass(&SIFoldOperandsID);
866 addPass(&DeadMachineInstructionElimID);
868 addPass(createSIShrinkInstructionsPass());
871 bool GCNPassConfig::addILPOpts() {
872 if (EnableEarlyIfConversion)
873 addPass(&EarlyIfConverterID);
875 TargetPassConfig::addILPOpts();
876 return false;
879 bool GCNPassConfig::addInstSelector() {
880 AMDGPUPassConfig::addInstSelector();
881 addPass(&SIFixSGPRCopiesID);
882 addPass(createSILowerI1CopiesPass());
883 addPass(createSIFixupVectorISelPass());
884 addPass(createSIAddIMGInitPass());
885 // FIXME: Remove this once the phi on CF_END is cleaned up by either removing
886 // LCSSA or other ways.
887 addPass(&UnreachableMachineBlockElimID);
888 return false;
891 bool GCNPassConfig::addIRTranslator() {
892 addPass(new IRTranslator());
893 return false;
896 bool GCNPassConfig::addLegalizeMachineIR() {
897 addPass(new Legalizer());
898 return false;
901 bool GCNPassConfig::addRegBankSelect() {
902 addPass(new RegBankSelect());
903 return false;
906 bool GCNPassConfig::addGlobalInstructionSelect() {
907 addPass(new InstructionSelect());
908 return false;
911 void GCNPassConfig::addPreRegAlloc() {
912 if (LateCFGStructurize) {
913 addPass(createAMDGPUMachineCFGStructurizerPass());
915 addPass(createSIWholeQuadModePass());
918 void GCNPassConfig::addFastRegAlloc() {
919 // FIXME: We have to disable the verifier here because of PHIElimination +
920 // TwoAddressInstructions disabling it.
922 // This must be run immediately after phi elimination and before
923 // TwoAddressInstructions, otherwise the processing of the tied operand of
924 // SI_ELSE will introduce a copy of the tied operand source after the else.
925 insertPass(&PHIEliminationID, &SILowerControlFlowID, false);
927 // This must be run just after RegisterCoalescing.
928 insertPass(&RegisterCoalescerID, &SIPreAllocateWWMRegsID, false);
930 TargetPassConfig::addFastRegAlloc();
933 void GCNPassConfig::addOptimizedRegAlloc() {
934 if (OptExecMaskPreRA) {
935 insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID);
936 insertPass(&SIOptimizeExecMaskingPreRAID, &SIFormMemoryClausesID);
937 } else {
938 insertPass(&MachineSchedulerID, &SIFormMemoryClausesID);
941 // This must be run immediately after phi elimination and before
942 // TwoAddressInstructions, otherwise the processing of the tied operand of
943 // SI_ELSE will introduce a copy of the tied operand source after the else.
944 insertPass(&PHIEliminationID, &SILowerControlFlowID, false);
946 // This must be run just after RegisterCoalescing.
947 insertPass(&RegisterCoalescerID, &SIPreAllocateWWMRegsID, false);
949 if (EnableDCEInRA)
950 insertPass(&RenameIndependentSubregsID, &DeadMachineInstructionElimID);
952 TargetPassConfig::addOptimizedRegAlloc();
955 bool GCNPassConfig::addPreRewrite() {
956 if (EnableRegReassign) {
957 addPass(&GCNNSAReassignID);
958 addPass(&GCNRegBankReassignID);
960 return true;
963 void GCNPassConfig::addPostRegAlloc() {
964 addPass(&SIFixVGPRCopiesID);
965 if (getOptLevel() > CodeGenOpt::None)
966 addPass(&SIOptimizeExecMaskingID);
967 TargetPassConfig::addPostRegAlloc();
969 // Equivalent of PEI for SGPRs.
970 addPass(&SILowerSGPRSpillsID);
973 void GCNPassConfig::addPreSched2() {
976 void GCNPassConfig::addPreEmitPass() {
977 addPass(createSIMemoryLegalizerPass());
978 addPass(createSIInsertWaitcntsPass());
979 addPass(createSIShrinkInstructionsPass());
980 addPass(createSIModeRegisterPass());
982 // The hazard recognizer that runs as part of the post-ra scheduler does not
983 // guarantee to be able handle all hazards correctly. This is because if there
984 // are multiple scheduling regions in a basic block, the regions are scheduled
985 // bottom up, so when we begin to schedule a region we don't know what
986 // instructions were emitted directly before it.
988 // Here we add a stand-alone hazard recognizer pass which can handle all
989 // cases.
991 // FIXME: This stand-alone pass will emit indiv. S_NOP 0, as needed. It would
992 // be better for it to emit S_NOP <N> when possible.
993 addPass(&PostRAHazardRecognizerID);
995 addPass(&SIInsertSkipsPassID);
996 addPass(&BranchRelaxationPassID);
999 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) {
1000 return new GCNPassConfig(*this, PM);
1003 yaml::MachineFunctionInfo *GCNTargetMachine::createDefaultFuncInfoYAML() const {
1004 return new yaml::SIMachineFunctionInfo();
1007 yaml::MachineFunctionInfo *
1008 GCNTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const {
1009 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1010 return new yaml::SIMachineFunctionInfo(*MFI,
1011 *MF.getSubtarget().getRegisterInfo());
1014 bool GCNTargetMachine::parseMachineFunctionInfo(
1015 const yaml::MachineFunctionInfo &MFI_, PerFunctionMIParsingState &PFS,
1016 SMDiagnostic &Error, SMRange &SourceRange) const {
1017 const yaml::SIMachineFunctionInfo &YamlMFI =
1018 reinterpret_cast<const yaml::SIMachineFunctionInfo &>(MFI_);
1019 MachineFunction &MF = PFS.MF;
1020 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1022 MFI->initializeBaseYamlFields(YamlMFI);
1024 auto parseRegister = [&](const yaml::StringValue &RegName, unsigned &RegVal) {
1025 if (parseNamedRegisterReference(PFS, RegVal, RegName.Value, Error)) {
1026 SourceRange = RegName.SourceRange;
1027 return true;
1030 return false;
1033 auto diagnoseRegisterClass = [&](const yaml::StringValue &RegName) {
1034 // Create a diagnostic for a the register string literal.
1035 const MemoryBuffer &Buffer =
1036 *PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID());
1037 Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
1038 RegName.Value.size(), SourceMgr::DK_Error,
1039 "incorrect register class for field", RegName.Value,
1040 None, None);
1041 SourceRange = RegName.SourceRange;
1042 return true;
1045 if (parseRegister(YamlMFI.ScratchRSrcReg, MFI->ScratchRSrcReg) ||
1046 parseRegister(YamlMFI.ScratchWaveOffsetReg, MFI->ScratchWaveOffsetReg) ||
1047 parseRegister(YamlMFI.FrameOffsetReg, MFI->FrameOffsetReg) ||
1048 parseRegister(YamlMFI.StackPtrOffsetReg, MFI->StackPtrOffsetReg))
1049 return true;
1051 if (MFI->ScratchRSrcReg != AMDGPU::PRIVATE_RSRC_REG &&
1052 !AMDGPU::SReg_128RegClass.contains(MFI->ScratchRSrcReg)) {
1053 return diagnoseRegisterClass(YamlMFI.ScratchRSrcReg);
1056 if (MFI->ScratchWaveOffsetReg != AMDGPU::SCRATCH_WAVE_OFFSET_REG &&
1057 !AMDGPU::SGPR_32RegClass.contains(MFI->ScratchWaveOffsetReg)) {
1058 return diagnoseRegisterClass(YamlMFI.ScratchWaveOffsetReg);
1061 if (MFI->FrameOffsetReg != AMDGPU::FP_REG &&
1062 !AMDGPU::SGPR_32RegClass.contains(MFI->FrameOffsetReg)) {
1063 return diagnoseRegisterClass(YamlMFI.FrameOffsetReg);
1066 if (MFI->StackPtrOffsetReg != AMDGPU::SP_REG &&
1067 !AMDGPU::SGPR_32RegClass.contains(MFI->StackPtrOffsetReg)) {
1068 return diagnoseRegisterClass(YamlMFI.StackPtrOffsetReg);
1071 auto parseAndCheckArgument = [&](const Optional<yaml::SIArgument> &A,
1072 const TargetRegisterClass &RC,
1073 ArgDescriptor &Arg, unsigned UserSGPRs,
1074 unsigned SystemSGPRs) {
1075 // Skip parsing if it's not present.
1076 if (!A)
1077 return false;
1079 if (A->IsRegister) {
1080 unsigned Reg;
1081 if (parseNamedRegisterReference(PFS, Reg, A->RegisterName.Value, Error)) {
1082 SourceRange = A->RegisterName.SourceRange;
1083 return true;
1085 if (!RC.contains(Reg))
1086 return diagnoseRegisterClass(A->RegisterName);
1087 Arg = ArgDescriptor::createRegister(Reg);
1088 } else
1089 Arg = ArgDescriptor::createStack(A->StackOffset);
1090 // Check and apply the optional mask.
1091 if (A->Mask)
1092 Arg = ArgDescriptor::createArg(Arg, A->Mask.getValue());
1094 MFI->NumUserSGPRs += UserSGPRs;
1095 MFI->NumSystemSGPRs += SystemSGPRs;
1096 return false;
1099 if (YamlMFI.ArgInfo &&
1100 (parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentBuffer,
1101 AMDGPU::SReg_128RegClass,
1102 MFI->ArgInfo.PrivateSegmentBuffer, 4, 0) ||
1103 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchPtr,
1104 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchPtr,
1105 2, 0) ||
1106 parseAndCheckArgument(YamlMFI.ArgInfo->QueuePtr, AMDGPU::SReg_64RegClass,
1107 MFI->ArgInfo.QueuePtr, 2, 0) ||
1108 parseAndCheckArgument(YamlMFI.ArgInfo->KernargSegmentPtr,
1109 AMDGPU::SReg_64RegClass,
1110 MFI->ArgInfo.KernargSegmentPtr, 2, 0) ||
1111 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchID,
1112 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchID,
1113 2, 0) ||
1114 parseAndCheckArgument(YamlMFI.ArgInfo->FlatScratchInit,
1115 AMDGPU::SReg_64RegClass,
1116 MFI->ArgInfo.FlatScratchInit, 2, 0) ||
1117 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentSize,
1118 AMDGPU::SGPR_32RegClass,
1119 MFI->ArgInfo.PrivateSegmentSize, 0, 0) ||
1120 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDX,
1121 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDX,
1122 0, 1) ||
1123 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDY,
1124 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDY,
1125 0, 1) ||
1126 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDZ,
1127 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDZ,
1128 0, 1) ||
1129 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupInfo,
1130 AMDGPU::SGPR_32RegClass,
1131 MFI->ArgInfo.WorkGroupInfo, 0, 1) ||
1132 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentWaveByteOffset,
1133 AMDGPU::SGPR_32RegClass,
1134 MFI->ArgInfo.PrivateSegmentWaveByteOffset, 0, 1) ||
1135 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitArgPtr,
1136 AMDGPU::SReg_64RegClass,
1137 MFI->ArgInfo.ImplicitArgPtr, 0, 0) ||
1138 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitBufferPtr,
1139 AMDGPU::SReg_64RegClass,
1140 MFI->ArgInfo.ImplicitBufferPtr, 2, 0) ||
1141 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDX,
1142 AMDGPU::VGPR_32RegClass,
1143 MFI->ArgInfo.WorkItemIDX, 0, 0) ||
1144 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDY,
1145 AMDGPU::VGPR_32RegClass,
1146 MFI->ArgInfo.WorkItemIDY, 0, 0) ||
1147 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDZ,
1148 AMDGPU::VGPR_32RegClass,
1149 MFI->ArgInfo.WorkItemIDZ, 0, 0)))
1150 return true;
1152 MFI->Mode.IEEE = YamlMFI.Mode.IEEE;
1153 MFI->Mode.DX10Clamp = YamlMFI.Mode.DX10Clamp;
1155 return false;