[ARM] Better patterns for fp <> predicate vectors
[llvm-complete.git] / lib / Target / AMDGPU / R600InstrInfo.cpp
blobd9e839fe203534d67ebff4350607aad84fc13b24
1 //===-- R600InstrInfo.cpp - R600 Instruction Information ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// R600 Implementation of TargetInstrInfo.
12 //===----------------------------------------------------------------------===//
14 #include "R600InstrInfo.h"
15 #include "AMDGPU.h"
16 #include "AMDGPUInstrInfo.h"
17 #include "AMDGPUSubtarget.h"
18 #include "R600Defines.h"
19 #include "R600FrameLowering.h"
20 #include "R600RegisterInfo.h"
21 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
22 #include "Utils/AMDGPUBaseInfo.h"
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineOperand.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/TargetRegisterInfo.h"
34 #include "llvm/CodeGen/TargetSubtargetInfo.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include <algorithm>
37 #include <cassert>
38 #include <cstdint>
39 #include <cstring>
40 #include <iterator>
41 #include <utility>
42 #include <vector>
44 using namespace llvm;
46 #define GET_INSTRINFO_CTOR_DTOR
47 #include "R600GenDFAPacketizer.inc"
49 #define GET_INSTRINFO_CTOR_DTOR
50 #define GET_INSTRMAP_INFO
51 #define GET_INSTRINFO_NAMED_OPS
52 #include "R600GenInstrInfo.inc"
54 R600InstrInfo::R600InstrInfo(const R600Subtarget &ST)
55 : R600GenInstrInfo(-1, -1), RI(), ST(ST) {}
57 bool R600InstrInfo::isVector(const MachineInstr &MI) const {
58 return get(MI.getOpcode()).TSFlags & R600_InstFlag::VECTOR;
61 void R600InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
62 MachineBasicBlock::iterator MI,
63 const DebugLoc &DL, unsigned DestReg,
64 unsigned SrcReg, bool KillSrc) const {
65 unsigned VectorComponents = 0;
66 if ((R600::R600_Reg128RegClass.contains(DestReg) ||
67 R600::R600_Reg128VerticalRegClass.contains(DestReg)) &&
68 (R600::R600_Reg128RegClass.contains(SrcReg) ||
69 R600::R600_Reg128VerticalRegClass.contains(SrcReg))) {
70 VectorComponents = 4;
71 } else if((R600::R600_Reg64RegClass.contains(DestReg) ||
72 R600::R600_Reg64VerticalRegClass.contains(DestReg)) &&
73 (R600::R600_Reg64RegClass.contains(SrcReg) ||
74 R600::R600_Reg64VerticalRegClass.contains(SrcReg))) {
75 VectorComponents = 2;
78 if (VectorComponents > 0) {
79 for (unsigned I = 0; I < VectorComponents; I++) {
80 unsigned SubRegIndex = AMDGPURegisterInfo::getSubRegFromChannel(I);
81 buildDefaultInstruction(MBB, MI, R600::MOV,
82 RI.getSubReg(DestReg, SubRegIndex),
83 RI.getSubReg(SrcReg, SubRegIndex))
84 .addReg(DestReg,
85 RegState::Define | RegState::Implicit);
87 } else {
88 MachineInstr *NewMI = buildDefaultInstruction(MBB, MI, R600::MOV,
89 DestReg, SrcReg);
90 NewMI->getOperand(getOperandIdx(*NewMI, R600::OpName::src0))
91 .setIsKill(KillSrc);
95 /// \returns true if \p MBBI can be moved into a new basic.
96 bool R600InstrInfo::isLegalToSplitMBBAt(MachineBasicBlock &MBB,
97 MachineBasicBlock::iterator MBBI) const {
98 for (MachineInstr::const_mop_iterator I = MBBI->operands_begin(),
99 E = MBBI->operands_end(); I != E; ++I) {
100 if (I->isReg() && !TargetRegisterInfo::isVirtualRegister(I->getReg()) &&
101 I->isUse() && RI.isPhysRegLiveAcrossClauses(I->getReg()))
102 return false;
104 return true;
107 bool R600InstrInfo::isMov(unsigned Opcode) const {
108 switch(Opcode) {
109 default:
110 return false;
111 case R600::MOV:
112 case R600::MOV_IMM_F32:
113 case R600::MOV_IMM_I32:
114 return true;
118 bool R600InstrInfo::isReductionOp(unsigned Opcode) const {
119 return false;
122 bool R600InstrInfo::isCubeOp(unsigned Opcode) const {
123 switch(Opcode) {
124 default: return false;
125 case R600::CUBE_r600_pseudo:
126 case R600::CUBE_r600_real:
127 case R600::CUBE_eg_pseudo:
128 case R600::CUBE_eg_real:
129 return true;
133 bool R600InstrInfo::isALUInstr(unsigned Opcode) const {
134 unsigned TargetFlags = get(Opcode).TSFlags;
136 return (TargetFlags & R600_InstFlag::ALU_INST);
139 bool R600InstrInfo::hasInstrModifiers(unsigned Opcode) const {
140 unsigned TargetFlags = get(Opcode).TSFlags;
142 return ((TargetFlags & R600_InstFlag::OP1) |
143 (TargetFlags & R600_InstFlag::OP2) |
144 (TargetFlags & R600_InstFlag::OP3));
147 bool R600InstrInfo::isLDSInstr(unsigned Opcode) const {
148 unsigned TargetFlags = get(Opcode).TSFlags;
150 return ((TargetFlags & R600_InstFlag::LDS_1A) |
151 (TargetFlags & R600_InstFlag::LDS_1A1D) |
152 (TargetFlags & R600_InstFlag::LDS_1A2D));
155 bool R600InstrInfo::isLDSRetInstr(unsigned Opcode) const {
156 return isLDSInstr(Opcode) && getOperandIdx(Opcode, R600::OpName::dst) != -1;
159 bool R600InstrInfo::canBeConsideredALU(const MachineInstr &MI) const {
160 if (isALUInstr(MI.getOpcode()))
161 return true;
162 if (isVector(MI) || isCubeOp(MI.getOpcode()))
163 return true;
164 switch (MI.getOpcode()) {
165 case R600::PRED_X:
166 case R600::INTERP_PAIR_XY:
167 case R600::INTERP_PAIR_ZW:
168 case R600::INTERP_VEC_LOAD:
169 case R600::COPY:
170 case R600::DOT_4:
171 return true;
172 default:
173 return false;
177 bool R600InstrInfo::isTransOnly(unsigned Opcode) const {
178 if (ST.hasCaymanISA())
179 return false;
180 return (get(Opcode).getSchedClass() == R600::Sched::TransALU);
183 bool R600InstrInfo::isTransOnly(const MachineInstr &MI) const {
184 return isTransOnly(MI.getOpcode());
187 bool R600InstrInfo::isVectorOnly(unsigned Opcode) const {
188 return (get(Opcode).getSchedClass() == R600::Sched::VecALU);
191 bool R600InstrInfo::isVectorOnly(const MachineInstr &MI) const {
192 return isVectorOnly(MI.getOpcode());
195 bool R600InstrInfo::isExport(unsigned Opcode) const {
196 return (get(Opcode).TSFlags & R600_InstFlag::IS_EXPORT);
199 bool R600InstrInfo::usesVertexCache(unsigned Opcode) const {
200 return ST.hasVertexCache() && IS_VTX(get(Opcode));
203 bool R600InstrInfo::usesVertexCache(const MachineInstr &MI) const {
204 const MachineFunction *MF = MI.getParent()->getParent();
205 return !AMDGPU::isCompute(MF->getFunction().getCallingConv()) &&
206 usesVertexCache(MI.getOpcode());
209 bool R600InstrInfo::usesTextureCache(unsigned Opcode) const {
210 return (!ST.hasVertexCache() && IS_VTX(get(Opcode))) || IS_TEX(get(Opcode));
213 bool R600InstrInfo::usesTextureCache(const MachineInstr &MI) const {
214 const MachineFunction *MF = MI.getParent()->getParent();
215 return (AMDGPU::isCompute(MF->getFunction().getCallingConv()) &&
216 usesVertexCache(MI.getOpcode())) ||
217 usesTextureCache(MI.getOpcode());
220 bool R600InstrInfo::mustBeLastInClause(unsigned Opcode) const {
221 switch (Opcode) {
222 case R600::KILLGT:
223 case R600::GROUP_BARRIER:
224 return true;
225 default:
226 return false;
230 bool R600InstrInfo::usesAddressRegister(MachineInstr &MI) const {
231 return MI.findRegisterUseOperandIdx(R600::AR_X, false, &RI) != -1;
234 bool R600InstrInfo::definesAddressRegister(MachineInstr &MI) const {
235 return MI.findRegisterDefOperandIdx(R600::AR_X, false, false, &RI) != -1;
238 bool R600InstrInfo::readsLDSSrcReg(const MachineInstr &MI) const {
239 if (!isALUInstr(MI.getOpcode())) {
240 return false;
242 for (MachineInstr::const_mop_iterator I = MI.operands_begin(),
243 E = MI.operands_end();
244 I != E; ++I) {
245 if (!I->isReg() || !I->isUse() ||
246 TargetRegisterInfo::isVirtualRegister(I->getReg()))
247 continue;
249 if (R600::R600_LDS_SRC_REGRegClass.contains(I->getReg()))
250 return true;
252 return false;
255 int R600InstrInfo::getSelIdx(unsigned Opcode, unsigned SrcIdx) const {
256 static const unsigned SrcSelTable[][2] = {
257 {R600::OpName::src0, R600::OpName::src0_sel},
258 {R600::OpName::src1, R600::OpName::src1_sel},
259 {R600::OpName::src2, R600::OpName::src2_sel},
260 {R600::OpName::src0_X, R600::OpName::src0_sel_X},
261 {R600::OpName::src0_Y, R600::OpName::src0_sel_Y},
262 {R600::OpName::src0_Z, R600::OpName::src0_sel_Z},
263 {R600::OpName::src0_W, R600::OpName::src0_sel_W},
264 {R600::OpName::src1_X, R600::OpName::src1_sel_X},
265 {R600::OpName::src1_Y, R600::OpName::src1_sel_Y},
266 {R600::OpName::src1_Z, R600::OpName::src1_sel_Z},
267 {R600::OpName::src1_W, R600::OpName::src1_sel_W}
270 for (const auto &Row : SrcSelTable) {
271 if (getOperandIdx(Opcode, Row[0]) == (int)SrcIdx) {
272 return getOperandIdx(Opcode, Row[1]);
275 return -1;
278 SmallVector<std::pair<MachineOperand *, int64_t>, 3>
279 R600InstrInfo::getSrcs(MachineInstr &MI) const {
280 SmallVector<std::pair<MachineOperand *, int64_t>, 3> Result;
282 if (MI.getOpcode() == R600::DOT_4) {
283 static const unsigned OpTable[8][2] = {
284 {R600::OpName::src0_X, R600::OpName::src0_sel_X},
285 {R600::OpName::src0_Y, R600::OpName::src0_sel_Y},
286 {R600::OpName::src0_Z, R600::OpName::src0_sel_Z},
287 {R600::OpName::src0_W, R600::OpName::src0_sel_W},
288 {R600::OpName::src1_X, R600::OpName::src1_sel_X},
289 {R600::OpName::src1_Y, R600::OpName::src1_sel_Y},
290 {R600::OpName::src1_Z, R600::OpName::src1_sel_Z},
291 {R600::OpName::src1_W, R600::OpName::src1_sel_W},
294 for (unsigned j = 0; j < 8; j++) {
295 MachineOperand &MO =
296 MI.getOperand(getOperandIdx(MI.getOpcode(), OpTable[j][0]));
297 unsigned Reg = MO.getReg();
298 if (Reg == R600::ALU_CONST) {
299 MachineOperand &Sel =
300 MI.getOperand(getOperandIdx(MI.getOpcode(), OpTable[j][1]));
301 Result.push_back(std::make_pair(&MO, Sel.getImm()));
302 continue;
306 return Result;
309 static const unsigned OpTable[3][2] = {
310 {R600::OpName::src0, R600::OpName::src0_sel},
311 {R600::OpName::src1, R600::OpName::src1_sel},
312 {R600::OpName::src2, R600::OpName::src2_sel},
315 for (unsigned j = 0; j < 3; j++) {
316 int SrcIdx = getOperandIdx(MI.getOpcode(), OpTable[j][0]);
317 if (SrcIdx < 0)
318 break;
319 MachineOperand &MO = MI.getOperand(SrcIdx);
320 unsigned Reg = MO.getReg();
321 if (Reg == R600::ALU_CONST) {
322 MachineOperand &Sel =
323 MI.getOperand(getOperandIdx(MI.getOpcode(), OpTable[j][1]));
324 Result.push_back(std::make_pair(&MO, Sel.getImm()));
325 continue;
327 if (Reg == R600::ALU_LITERAL_X) {
328 MachineOperand &Operand =
329 MI.getOperand(getOperandIdx(MI.getOpcode(), R600::OpName::literal));
330 if (Operand.isImm()) {
331 Result.push_back(std::make_pair(&MO, Operand.getImm()));
332 continue;
334 assert(Operand.isGlobal());
336 Result.push_back(std::make_pair(&MO, 0));
338 return Result;
341 std::vector<std::pair<int, unsigned>>
342 R600InstrInfo::ExtractSrcs(MachineInstr &MI,
343 const DenseMap<unsigned, unsigned> &PV,
344 unsigned &ConstCount) const {
345 ConstCount = 0;
346 const std::pair<int, unsigned> DummyPair(-1, 0);
347 std::vector<std::pair<int, unsigned>> Result;
348 unsigned i = 0;
349 for (const auto &Src : getSrcs(MI)) {
350 ++i;
351 unsigned Reg = Src.first->getReg();
352 int Index = RI.getEncodingValue(Reg) & 0xff;
353 if (Reg == R600::OQAP) {
354 Result.push_back(std::make_pair(Index, 0U));
356 if (PV.find(Reg) != PV.end()) {
357 // 255 is used to tells its a PS/PV reg
358 Result.push_back(std::make_pair(255, 0U));
359 continue;
361 if (Index > 127) {
362 ConstCount++;
363 Result.push_back(DummyPair);
364 continue;
366 unsigned Chan = RI.getHWRegChan(Reg);
367 Result.push_back(std::make_pair(Index, Chan));
369 for (; i < 3; ++i)
370 Result.push_back(DummyPair);
371 return Result;
374 static std::vector<std::pair<int, unsigned>>
375 Swizzle(std::vector<std::pair<int, unsigned>> Src,
376 R600InstrInfo::BankSwizzle Swz) {
377 if (Src[0] == Src[1])
378 Src[1].first = -1;
379 switch (Swz) {
380 case R600InstrInfo::ALU_VEC_012_SCL_210:
381 break;
382 case R600InstrInfo::ALU_VEC_021_SCL_122:
383 std::swap(Src[1], Src[2]);
384 break;
385 case R600InstrInfo::ALU_VEC_102_SCL_221:
386 std::swap(Src[0], Src[1]);
387 break;
388 case R600InstrInfo::ALU_VEC_120_SCL_212:
389 std::swap(Src[0], Src[1]);
390 std::swap(Src[0], Src[2]);
391 break;
392 case R600InstrInfo::ALU_VEC_201:
393 std::swap(Src[0], Src[2]);
394 std::swap(Src[0], Src[1]);
395 break;
396 case R600InstrInfo::ALU_VEC_210:
397 std::swap(Src[0], Src[2]);
398 break;
400 return Src;
403 static unsigned getTransSwizzle(R600InstrInfo::BankSwizzle Swz, unsigned Op) {
404 assert(Op < 3 && "Out of range swizzle index");
405 switch (Swz) {
406 case R600InstrInfo::ALU_VEC_012_SCL_210: {
407 unsigned Cycles[3] = { 2, 1, 0};
408 return Cycles[Op];
410 case R600InstrInfo::ALU_VEC_021_SCL_122: {
411 unsigned Cycles[3] = { 1, 2, 2};
412 return Cycles[Op];
414 case R600InstrInfo::ALU_VEC_120_SCL_212: {
415 unsigned Cycles[3] = { 2, 1, 2};
416 return Cycles[Op];
418 case R600InstrInfo::ALU_VEC_102_SCL_221: {
419 unsigned Cycles[3] = { 2, 2, 1};
420 return Cycles[Op];
422 default:
423 llvm_unreachable("Wrong Swizzle for Trans Slot");
427 /// returns how many MIs (whose inputs are represented by IGSrcs) can be packed
428 /// in the same Instruction Group while meeting read port limitations given a
429 /// Swz swizzle sequence.
430 unsigned R600InstrInfo::isLegalUpTo(
431 const std::vector<std::vector<std::pair<int, unsigned>>> &IGSrcs,
432 const std::vector<R600InstrInfo::BankSwizzle> &Swz,
433 const std::vector<std::pair<int, unsigned>> &TransSrcs,
434 R600InstrInfo::BankSwizzle TransSwz) const {
435 int Vector[4][3];
436 memset(Vector, -1, sizeof(Vector));
437 for (unsigned i = 0, e = IGSrcs.size(); i < e; i++) {
438 const std::vector<std::pair<int, unsigned>> &Srcs =
439 Swizzle(IGSrcs[i], Swz[i]);
440 for (unsigned j = 0; j < 3; j++) {
441 const std::pair<int, unsigned> &Src = Srcs[j];
442 if (Src.first < 0 || Src.first == 255)
443 continue;
444 if (Src.first == GET_REG_INDEX(RI.getEncodingValue(R600::OQAP))) {
445 if (Swz[i] != R600InstrInfo::ALU_VEC_012_SCL_210 &&
446 Swz[i] != R600InstrInfo::ALU_VEC_021_SCL_122) {
447 // The value from output queue A (denoted by register OQAP) can
448 // only be fetched during the first cycle.
449 return false;
451 // OQAP does not count towards the normal read port restrictions
452 continue;
454 if (Vector[Src.second][j] < 0)
455 Vector[Src.second][j] = Src.first;
456 if (Vector[Src.second][j] != Src.first)
457 return i;
460 // Now check Trans Alu
461 for (unsigned i = 0, e = TransSrcs.size(); i < e; ++i) {
462 const std::pair<int, unsigned> &Src = TransSrcs[i];
463 unsigned Cycle = getTransSwizzle(TransSwz, i);
464 if (Src.first < 0)
465 continue;
466 if (Src.first == 255)
467 continue;
468 if (Vector[Src.second][Cycle] < 0)
469 Vector[Src.second][Cycle] = Src.first;
470 if (Vector[Src.second][Cycle] != Src.first)
471 return IGSrcs.size() - 1;
473 return IGSrcs.size();
476 /// Given a swizzle sequence SwzCandidate and an index Idx, returns the next
477 /// (in lexicographic term) swizzle sequence assuming that all swizzles after
478 /// Idx can be skipped
479 static bool
480 NextPossibleSolution(
481 std::vector<R600InstrInfo::BankSwizzle> &SwzCandidate,
482 unsigned Idx) {
483 assert(Idx < SwzCandidate.size());
484 int ResetIdx = Idx;
485 while (ResetIdx > -1 && SwzCandidate[ResetIdx] == R600InstrInfo::ALU_VEC_210)
486 ResetIdx --;
487 for (unsigned i = ResetIdx + 1, e = SwzCandidate.size(); i < e; i++) {
488 SwzCandidate[i] = R600InstrInfo::ALU_VEC_012_SCL_210;
490 if (ResetIdx == -1)
491 return false;
492 int NextSwizzle = SwzCandidate[ResetIdx] + 1;
493 SwzCandidate[ResetIdx] = (R600InstrInfo::BankSwizzle)NextSwizzle;
494 return true;
497 /// Enumerate all possible Swizzle sequence to find one that can meet all
498 /// read port requirements.
499 bool R600InstrInfo::FindSwizzleForVectorSlot(
500 const std::vector<std::vector<std::pair<int, unsigned>>> &IGSrcs,
501 std::vector<R600InstrInfo::BankSwizzle> &SwzCandidate,
502 const std::vector<std::pair<int, unsigned>> &TransSrcs,
503 R600InstrInfo::BankSwizzle TransSwz) const {
504 unsigned ValidUpTo = 0;
505 do {
506 ValidUpTo = isLegalUpTo(IGSrcs, SwzCandidate, TransSrcs, TransSwz);
507 if (ValidUpTo == IGSrcs.size())
508 return true;
509 } while (NextPossibleSolution(SwzCandidate, ValidUpTo));
510 return false;
513 /// Instructions in Trans slot can't read gpr at cycle 0 if they also read
514 /// a const, and can't read a gpr at cycle 1 if they read 2 const.
515 static bool
516 isConstCompatible(R600InstrInfo::BankSwizzle TransSwz,
517 const std::vector<std::pair<int, unsigned>> &TransOps,
518 unsigned ConstCount) {
519 // TransALU can't read 3 constants
520 if (ConstCount > 2)
521 return false;
522 for (unsigned i = 0, e = TransOps.size(); i < e; ++i) {
523 const std::pair<int, unsigned> &Src = TransOps[i];
524 unsigned Cycle = getTransSwizzle(TransSwz, i);
525 if (Src.first < 0)
526 continue;
527 if (ConstCount > 0 && Cycle == 0)
528 return false;
529 if (ConstCount > 1 && Cycle == 1)
530 return false;
532 return true;
535 bool
536 R600InstrInfo::fitsReadPortLimitations(const std::vector<MachineInstr *> &IG,
537 const DenseMap<unsigned, unsigned> &PV,
538 std::vector<BankSwizzle> &ValidSwizzle,
539 bool isLastAluTrans)
540 const {
541 //Todo : support shared src0 - src1 operand
543 std::vector<std::vector<std::pair<int, unsigned>>> IGSrcs;
544 ValidSwizzle.clear();
545 unsigned ConstCount;
546 BankSwizzle TransBS = ALU_VEC_012_SCL_210;
547 for (unsigned i = 0, e = IG.size(); i < e; ++i) {
548 IGSrcs.push_back(ExtractSrcs(*IG[i], PV, ConstCount));
549 unsigned Op = getOperandIdx(IG[i]->getOpcode(),
550 R600::OpName::bank_swizzle);
551 ValidSwizzle.push_back( (R600InstrInfo::BankSwizzle)
552 IG[i]->getOperand(Op).getImm());
554 std::vector<std::pair<int, unsigned>> TransOps;
555 if (!isLastAluTrans)
556 return FindSwizzleForVectorSlot(IGSrcs, ValidSwizzle, TransOps, TransBS);
558 TransOps = std::move(IGSrcs.back());
559 IGSrcs.pop_back();
560 ValidSwizzle.pop_back();
562 static const R600InstrInfo::BankSwizzle TransSwz[] = {
563 ALU_VEC_012_SCL_210,
564 ALU_VEC_021_SCL_122,
565 ALU_VEC_120_SCL_212,
566 ALU_VEC_102_SCL_221
568 for (unsigned i = 0; i < 4; i++) {
569 TransBS = TransSwz[i];
570 if (!isConstCompatible(TransBS, TransOps, ConstCount))
571 continue;
572 bool Result = FindSwizzleForVectorSlot(IGSrcs, ValidSwizzle, TransOps,
573 TransBS);
574 if (Result) {
575 ValidSwizzle.push_back(TransBS);
576 return true;
580 return false;
583 bool
584 R600InstrInfo::fitsConstReadLimitations(const std::vector<unsigned> &Consts)
585 const {
586 assert (Consts.size() <= 12 && "Too many operands in instructions group");
587 unsigned Pair1 = 0, Pair2 = 0;
588 for (unsigned i = 0, n = Consts.size(); i < n; ++i) {
589 unsigned ReadConstHalf = Consts[i] & 2;
590 unsigned ReadConstIndex = Consts[i] & (~3);
591 unsigned ReadHalfConst = ReadConstIndex | ReadConstHalf;
592 if (!Pair1) {
593 Pair1 = ReadHalfConst;
594 continue;
596 if (Pair1 == ReadHalfConst)
597 continue;
598 if (!Pair2) {
599 Pair2 = ReadHalfConst;
600 continue;
602 if (Pair2 != ReadHalfConst)
603 return false;
605 return true;
608 bool
609 R600InstrInfo::fitsConstReadLimitations(const std::vector<MachineInstr *> &MIs)
610 const {
611 std::vector<unsigned> Consts;
612 SmallSet<int64_t, 4> Literals;
613 for (unsigned i = 0, n = MIs.size(); i < n; i++) {
614 MachineInstr &MI = *MIs[i];
615 if (!isALUInstr(MI.getOpcode()))
616 continue;
618 for (const auto &Src : getSrcs(MI)) {
619 if (Src.first->getReg() == R600::ALU_LITERAL_X)
620 Literals.insert(Src.second);
621 if (Literals.size() > 4)
622 return false;
623 if (Src.first->getReg() == R600::ALU_CONST)
624 Consts.push_back(Src.second);
625 if (R600::R600_KC0RegClass.contains(Src.first->getReg()) ||
626 R600::R600_KC1RegClass.contains(Src.first->getReg())) {
627 unsigned Index = RI.getEncodingValue(Src.first->getReg()) & 0xff;
628 unsigned Chan = RI.getHWRegChan(Src.first->getReg());
629 Consts.push_back((Index << 2) | Chan);
633 return fitsConstReadLimitations(Consts);
636 DFAPacketizer *
637 R600InstrInfo::CreateTargetScheduleState(const TargetSubtargetInfo &STI) const {
638 const InstrItineraryData *II = STI.getInstrItineraryData();
639 return static_cast<const R600Subtarget &>(STI).createDFAPacketizer(II);
642 static bool
643 isPredicateSetter(unsigned Opcode) {
644 switch (Opcode) {
645 case R600::PRED_X:
646 return true;
647 default:
648 return false;
652 static MachineInstr *
653 findFirstPredicateSetterFrom(MachineBasicBlock &MBB,
654 MachineBasicBlock::iterator I) {
655 while (I != MBB.begin()) {
656 --I;
657 MachineInstr &MI = *I;
658 if (isPredicateSetter(MI.getOpcode()))
659 return &MI;
662 return nullptr;
665 static
666 bool isJump(unsigned Opcode) {
667 return Opcode == R600::JUMP || Opcode == R600::JUMP_COND;
670 static bool isBranch(unsigned Opcode) {
671 return Opcode == R600::BRANCH || Opcode == R600::BRANCH_COND_i32 ||
672 Opcode == R600::BRANCH_COND_f32;
675 bool R600InstrInfo::analyzeBranch(MachineBasicBlock &MBB,
676 MachineBasicBlock *&TBB,
677 MachineBasicBlock *&FBB,
678 SmallVectorImpl<MachineOperand> &Cond,
679 bool AllowModify) const {
680 // Most of the following comes from the ARM implementation of AnalyzeBranch
682 // If the block has no terminators, it just falls into the block after it.
683 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
684 if (I == MBB.end())
685 return false;
687 // R600::BRANCH* instructions are only available after isel and are not
688 // handled
689 if (isBranch(I->getOpcode()))
690 return true;
691 if (!isJump(I->getOpcode())) {
692 return false;
695 // Remove successive JUMP
696 while (I != MBB.begin() && std::prev(I)->getOpcode() == R600::JUMP) {
697 MachineBasicBlock::iterator PriorI = std::prev(I);
698 if (AllowModify)
699 I->removeFromParent();
700 I = PriorI;
702 MachineInstr &LastInst = *I;
704 // If there is only one terminator instruction, process it.
705 unsigned LastOpc = LastInst.getOpcode();
706 if (I == MBB.begin() || !isJump((--I)->getOpcode())) {
707 if (LastOpc == R600::JUMP) {
708 TBB = LastInst.getOperand(0).getMBB();
709 return false;
710 } else if (LastOpc == R600::JUMP_COND) {
711 auto predSet = I;
712 while (!isPredicateSetter(predSet->getOpcode())) {
713 predSet = --I;
715 TBB = LastInst.getOperand(0).getMBB();
716 Cond.push_back(predSet->getOperand(1));
717 Cond.push_back(predSet->getOperand(2));
718 Cond.push_back(MachineOperand::CreateReg(R600::PRED_SEL_ONE, false));
719 return false;
721 return true; // Can't handle indirect branch.
724 // Get the instruction before it if it is a terminator.
725 MachineInstr &SecondLastInst = *I;
726 unsigned SecondLastOpc = SecondLastInst.getOpcode();
728 // If the block ends with a B and a Bcc, handle it.
729 if (SecondLastOpc == R600::JUMP_COND && LastOpc == R600::JUMP) {
730 auto predSet = --I;
731 while (!isPredicateSetter(predSet->getOpcode())) {
732 predSet = --I;
734 TBB = SecondLastInst.getOperand(0).getMBB();
735 FBB = LastInst.getOperand(0).getMBB();
736 Cond.push_back(predSet->getOperand(1));
737 Cond.push_back(predSet->getOperand(2));
738 Cond.push_back(MachineOperand::CreateReg(R600::PRED_SEL_ONE, false));
739 return false;
742 // Otherwise, can't handle this.
743 return true;
746 static
747 MachineBasicBlock::iterator FindLastAluClause(MachineBasicBlock &MBB) {
748 for (MachineBasicBlock::reverse_iterator It = MBB.rbegin(), E = MBB.rend();
749 It != E; ++It) {
750 if (It->getOpcode() == R600::CF_ALU ||
751 It->getOpcode() == R600::CF_ALU_PUSH_BEFORE)
752 return It.getReverse();
754 return MBB.end();
757 unsigned R600InstrInfo::insertBranch(MachineBasicBlock &MBB,
758 MachineBasicBlock *TBB,
759 MachineBasicBlock *FBB,
760 ArrayRef<MachineOperand> Cond,
761 const DebugLoc &DL,
762 int *BytesAdded) const {
763 assert(TBB && "insertBranch must not be told to insert a fallthrough");
764 assert(!BytesAdded && "code size not handled");
766 if (!FBB) {
767 if (Cond.empty()) {
768 BuildMI(&MBB, DL, get(R600::JUMP)).addMBB(TBB);
769 return 1;
770 } else {
771 MachineInstr *PredSet = findFirstPredicateSetterFrom(MBB, MBB.end());
772 assert(PredSet && "No previous predicate !");
773 addFlag(*PredSet, 0, MO_FLAG_PUSH);
774 PredSet->getOperand(2).setImm(Cond[1].getImm());
776 BuildMI(&MBB, DL, get(R600::JUMP_COND))
777 .addMBB(TBB)
778 .addReg(R600::PREDICATE_BIT, RegState::Kill);
779 MachineBasicBlock::iterator CfAlu = FindLastAluClause(MBB);
780 if (CfAlu == MBB.end())
781 return 1;
782 assert (CfAlu->getOpcode() == R600::CF_ALU);
783 CfAlu->setDesc(get(R600::CF_ALU_PUSH_BEFORE));
784 return 1;
786 } else {
787 MachineInstr *PredSet = findFirstPredicateSetterFrom(MBB, MBB.end());
788 assert(PredSet && "No previous predicate !");
789 addFlag(*PredSet, 0, MO_FLAG_PUSH);
790 PredSet->getOperand(2).setImm(Cond[1].getImm());
791 BuildMI(&MBB, DL, get(R600::JUMP_COND))
792 .addMBB(TBB)
793 .addReg(R600::PREDICATE_BIT, RegState::Kill);
794 BuildMI(&MBB, DL, get(R600::JUMP)).addMBB(FBB);
795 MachineBasicBlock::iterator CfAlu = FindLastAluClause(MBB);
796 if (CfAlu == MBB.end())
797 return 2;
798 assert (CfAlu->getOpcode() == R600::CF_ALU);
799 CfAlu->setDesc(get(R600::CF_ALU_PUSH_BEFORE));
800 return 2;
804 unsigned R600InstrInfo::removeBranch(MachineBasicBlock &MBB,
805 int *BytesRemoved) const {
806 assert(!BytesRemoved && "code size not handled");
808 // Note : we leave PRED* instructions there.
809 // They may be needed when predicating instructions.
811 MachineBasicBlock::iterator I = MBB.end();
813 if (I == MBB.begin()) {
814 return 0;
816 --I;
817 switch (I->getOpcode()) {
818 default:
819 return 0;
820 case R600::JUMP_COND: {
821 MachineInstr *predSet = findFirstPredicateSetterFrom(MBB, I);
822 clearFlag(*predSet, 0, MO_FLAG_PUSH);
823 I->eraseFromParent();
824 MachineBasicBlock::iterator CfAlu = FindLastAluClause(MBB);
825 if (CfAlu == MBB.end())
826 break;
827 assert (CfAlu->getOpcode() == R600::CF_ALU_PUSH_BEFORE);
828 CfAlu->setDesc(get(R600::CF_ALU));
829 break;
831 case R600::JUMP:
832 I->eraseFromParent();
833 break;
835 I = MBB.end();
837 if (I == MBB.begin()) {
838 return 1;
840 --I;
841 switch (I->getOpcode()) {
842 // FIXME: only one case??
843 default:
844 return 1;
845 case R600::JUMP_COND: {
846 MachineInstr *predSet = findFirstPredicateSetterFrom(MBB, I);
847 clearFlag(*predSet, 0, MO_FLAG_PUSH);
848 I->eraseFromParent();
849 MachineBasicBlock::iterator CfAlu = FindLastAluClause(MBB);
850 if (CfAlu == MBB.end())
851 break;
852 assert (CfAlu->getOpcode() == R600::CF_ALU_PUSH_BEFORE);
853 CfAlu->setDesc(get(R600::CF_ALU));
854 break;
856 case R600::JUMP:
857 I->eraseFromParent();
858 break;
860 return 2;
863 bool R600InstrInfo::isPredicated(const MachineInstr &MI) const {
864 int idx = MI.findFirstPredOperandIdx();
865 if (idx < 0)
866 return false;
868 unsigned Reg = MI.getOperand(idx).getReg();
869 switch (Reg) {
870 default: return false;
871 case R600::PRED_SEL_ONE:
872 case R600::PRED_SEL_ZERO:
873 case R600::PREDICATE_BIT:
874 return true;
878 bool R600InstrInfo::isPredicable(const MachineInstr &MI) const {
879 // XXX: KILL* instructions can be predicated, but they must be the last
880 // instruction in a clause, so this means any instructions after them cannot
881 // be predicated. Until we have proper support for instruction clauses in the
882 // backend, we will mark KILL* instructions as unpredicable.
884 if (MI.getOpcode() == R600::KILLGT) {
885 return false;
886 } else if (MI.getOpcode() == R600::CF_ALU) {
887 // If the clause start in the middle of MBB then the MBB has more
888 // than a single clause, unable to predicate several clauses.
889 if (MI.getParent()->begin() != MachineBasicBlock::const_iterator(MI))
890 return false;
891 // TODO: We don't support KC merging atm
892 return MI.getOperand(3).getImm() == 0 && MI.getOperand(4).getImm() == 0;
893 } else if (isVector(MI)) {
894 return false;
895 } else {
896 return TargetInstrInfo::isPredicable(MI);
900 bool
901 R600InstrInfo::isProfitableToIfCvt(MachineBasicBlock &MBB,
902 unsigned NumCycles,
903 unsigned ExtraPredCycles,
904 BranchProbability Probability) const{
905 return true;
908 bool
909 R600InstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
910 unsigned NumTCycles,
911 unsigned ExtraTCycles,
912 MachineBasicBlock &FMBB,
913 unsigned NumFCycles,
914 unsigned ExtraFCycles,
915 BranchProbability Probability) const {
916 return true;
919 bool
920 R600InstrInfo::isProfitableToDupForIfCvt(MachineBasicBlock &MBB,
921 unsigned NumCycles,
922 BranchProbability Probability)
923 const {
924 return true;
927 bool
928 R600InstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB,
929 MachineBasicBlock &FMBB) const {
930 return false;
933 bool
934 R600InstrInfo::reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
935 MachineOperand &MO = Cond[1];
936 switch (MO.getImm()) {
937 case R600::PRED_SETE_INT:
938 MO.setImm(R600::PRED_SETNE_INT);
939 break;
940 case R600::PRED_SETNE_INT:
941 MO.setImm(R600::PRED_SETE_INT);
942 break;
943 case R600::PRED_SETE:
944 MO.setImm(R600::PRED_SETNE);
945 break;
946 case R600::PRED_SETNE:
947 MO.setImm(R600::PRED_SETE);
948 break;
949 default:
950 return true;
953 MachineOperand &MO2 = Cond[2];
954 switch (MO2.getReg()) {
955 case R600::PRED_SEL_ZERO:
956 MO2.setReg(R600::PRED_SEL_ONE);
957 break;
958 case R600::PRED_SEL_ONE:
959 MO2.setReg(R600::PRED_SEL_ZERO);
960 break;
961 default:
962 return true;
964 return false;
967 bool R600InstrInfo::DefinesPredicate(MachineInstr &MI,
968 std::vector<MachineOperand> &Pred) const {
969 return isPredicateSetter(MI.getOpcode());
972 bool R600InstrInfo::PredicateInstruction(MachineInstr &MI,
973 ArrayRef<MachineOperand> Pred) const {
974 int PIdx = MI.findFirstPredOperandIdx();
976 if (MI.getOpcode() == R600::CF_ALU) {
977 MI.getOperand(8).setImm(0);
978 return true;
981 if (MI.getOpcode() == R600::DOT_4) {
982 MI.getOperand(getOperandIdx(MI, R600::OpName::pred_sel_X))
983 .setReg(Pred[2].getReg());
984 MI.getOperand(getOperandIdx(MI, R600::OpName::pred_sel_Y))
985 .setReg(Pred[2].getReg());
986 MI.getOperand(getOperandIdx(MI, R600::OpName::pred_sel_Z))
987 .setReg(Pred[2].getReg());
988 MI.getOperand(getOperandIdx(MI, R600::OpName::pred_sel_W))
989 .setReg(Pred[2].getReg());
990 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
991 MIB.addReg(R600::PREDICATE_BIT, RegState::Implicit);
992 return true;
995 if (PIdx != -1) {
996 MachineOperand &PMO = MI.getOperand(PIdx);
997 PMO.setReg(Pred[2].getReg());
998 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
999 MIB.addReg(R600::PREDICATE_BIT, RegState::Implicit);
1000 return true;
1003 return false;
1006 unsigned int R600InstrInfo::getPredicationCost(const MachineInstr &) const {
1007 return 2;
1010 unsigned int R600InstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
1011 const MachineInstr &,
1012 unsigned *PredCost) const {
1013 if (PredCost)
1014 *PredCost = 2;
1015 return 2;
1018 unsigned R600InstrInfo::calculateIndirectAddress(unsigned RegIndex,
1019 unsigned Channel) const {
1020 assert(Channel == 0);
1021 return RegIndex;
1024 bool R600InstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
1025 switch (MI.getOpcode()) {
1026 default: {
1027 MachineBasicBlock *MBB = MI.getParent();
1028 int OffsetOpIdx =
1029 R600::getNamedOperandIdx(MI.getOpcode(), R600::OpName::addr);
1030 // addr is a custom operand with multiple MI operands, and only the
1031 // first MI operand is given a name.
1032 int RegOpIdx = OffsetOpIdx + 1;
1033 int ChanOpIdx =
1034 R600::getNamedOperandIdx(MI.getOpcode(), R600::OpName::chan);
1035 if (isRegisterLoad(MI)) {
1036 int DstOpIdx =
1037 R600::getNamedOperandIdx(MI.getOpcode(), R600::OpName::dst);
1038 unsigned RegIndex = MI.getOperand(RegOpIdx).getImm();
1039 unsigned Channel = MI.getOperand(ChanOpIdx).getImm();
1040 unsigned Address = calculateIndirectAddress(RegIndex, Channel);
1041 unsigned OffsetReg = MI.getOperand(OffsetOpIdx).getReg();
1042 if (OffsetReg == R600::INDIRECT_BASE_ADDR) {
1043 buildMovInstr(MBB, MI, MI.getOperand(DstOpIdx).getReg(),
1044 getIndirectAddrRegClass()->getRegister(Address));
1045 } else {
1046 buildIndirectRead(MBB, MI, MI.getOperand(DstOpIdx).getReg(), Address,
1047 OffsetReg);
1049 } else if (isRegisterStore(MI)) {
1050 int ValOpIdx =
1051 R600::getNamedOperandIdx(MI.getOpcode(), R600::OpName::val);
1052 unsigned RegIndex = MI.getOperand(RegOpIdx).getImm();
1053 unsigned Channel = MI.getOperand(ChanOpIdx).getImm();
1054 unsigned Address = calculateIndirectAddress(RegIndex, Channel);
1055 unsigned OffsetReg = MI.getOperand(OffsetOpIdx).getReg();
1056 if (OffsetReg == R600::INDIRECT_BASE_ADDR) {
1057 buildMovInstr(MBB, MI, getIndirectAddrRegClass()->getRegister(Address),
1058 MI.getOperand(ValOpIdx).getReg());
1059 } else {
1060 buildIndirectWrite(MBB, MI, MI.getOperand(ValOpIdx).getReg(),
1061 calculateIndirectAddress(RegIndex, Channel),
1062 OffsetReg);
1064 } else {
1065 return false;
1068 MBB->erase(MI);
1069 return true;
1071 case R600::R600_EXTRACT_ELT_V2:
1072 case R600::R600_EXTRACT_ELT_V4:
1073 buildIndirectRead(MI.getParent(), MI, MI.getOperand(0).getReg(),
1074 RI.getHWRegIndex(MI.getOperand(1).getReg()), // Address
1075 MI.getOperand(2).getReg(),
1076 RI.getHWRegChan(MI.getOperand(1).getReg()));
1077 break;
1078 case R600::R600_INSERT_ELT_V2:
1079 case R600::R600_INSERT_ELT_V4:
1080 buildIndirectWrite(MI.getParent(), MI, MI.getOperand(2).getReg(), // Value
1081 RI.getHWRegIndex(MI.getOperand(1).getReg()), // Address
1082 MI.getOperand(3).getReg(), // Offset
1083 RI.getHWRegChan(MI.getOperand(1).getReg())); // Channel
1084 break;
1086 MI.eraseFromParent();
1087 return true;
1090 void R600InstrInfo::reserveIndirectRegisters(BitVector &Reserved,
1091 const MachineFunction &MF,
1092 const R600RegisterInfo &TRI) const {
1093 const R600Subtarget &ST = MF.getSubtarget<R600Subtarget>();
1094 const R600FrameLowering *TFL = ST.getFrameLowering();
1096 unsigned StackWidth = TFL->getStackWidth(MF);
1097 int End = getIndirectIndexEnd(MF);
1099 if (End == -1)
1100 return;
1102 for (int Index = getIndirectIndexBegin(MF); Index <= End; ++Index) {
1103 for (unsigned Chan = 0; Chan < StackWidth; ++Chan) {
1104 unsigned Reg = R600::R600_TReg32RegClass.getRegister((4 * Index) + Chan);
1105 TRI.reserveRegisterTuples(Reserved, Reg);
1110 const TargetRegisterClass *R600InstrInfo::getIndirectAddrRegClass() const {
1111 return &R600::R600_TReg32_XRegClass;
1114 MachineInstrBuilder R600InstrInfo::buildIndirectWrite(MachineBasicBlock *MBB,
1115 MachineBasicBlock::iterator I,
1116 unsigned ValueReg, unsigned Address,
1117 unsigned OffsetReg) const {
1118 return buildIndirectWrite(MBB, I, ValueReg, Address, OffsetReg, 0);
1121 MachineInstrBuilder R600InstrInfo::buildIndirectWrite(MachineBasicBlock *MBB,
1122 MachineBasicBlock::iterator I,
1123 unsigned ValueReg, unsigned Address,
1124 unsigned OffsetReg,
1125 unsigned AddrChan) const {
1126 unsigned AddrReg;
1127 switch (AddrChan) {
1128 default: llvm_unreachable("Invalid Channel");
1129 case 0: AddrReg = R600::R600_AddrRegClass.getRegister(Address); break;
1130 case 1: AddrReg = R600::R600_Addr_YRegClass.getRegister(Address); break;
1131 case 2: AddrReg = R600::R600_Addr_ZRegClass.getRegister(Address); break;
1132 case 3: AddrReg = R600::R600_Addr_WRegClass.getRegister(Address); break;
1134 MachineInstr *MOVA = buildDefaultInstruction(*MBB, I, R600::MOVA_INT_eg,
1135 R600::AR_X, OffsetReg);
1136 setImmOperand(*MOVA, R600::OpName::write, 0);
1138 MachineInstrBuilder Mov = buildDefaultInstruction(*MBB, I, R600::MOV,
1139 AddrReg, ValueReg)
1140 .addReg(R600::AR_X,
1141 RegState::Implicit | RegState::Kill);
1142 setImmOperand(*Mov, R600::OpName::dst_rel, 1);
1143 return Mov;
1146 MachineInstrBuilder R600InstrInfo::buildIndirectRead(MachineBasicBlock *MBB,
1147 MachineBasicBlock::iterator I,
1148 unsigned ValueReg, unsigned Address,
1149 unsigned OffsetReg) const {
1150 return buildIndirectRead(MBB, I, ValueReg, Address, OffsetReg, 0);
1153 MachineInstrBuilder R600InstrInfo::buildIndirectRead(MachineBasicBlock *MBB,
1154 MachineBasicBlock::iterator I,
1155 unsigned ValueReg, unsigned Address,
1156 unsigned OffsetReg,
1157 unsigned AddrChan) const {
1158 unsigned AddrReg;
1159 switch (AddrChan) {
1160 default: llvm_unreachable("Invalid Channel");
1161 case 0: AddrReg = R600::R600_AddrRegClass.getRegister(Address); break;
1162 case 1: AddrReg = R600::R600_Addr_YRegClass.getRegister(Address); break;
1163 case 2: AddrReg = R600::R600_Addr_ZRegClass.getRegister(Address); break;
1164 case 3: AddrReg = R600::R600_Addr_WRegClass.getRegister(Address); break;
1166 MachineInstr *MOVA = buildDefaultInstruction(*MBB, I, R600::MOVA_INT_eg,
1167 R600::AR_X,
1168 OffsetReg);
1169 setImmOperand(*MOVA, R600::OpName::write, 0);
1170 MachineInstrBuilder Mov = buildDefaultInstruction(*MBB, I, R600::MOV,
1171 ValueReg,
1172 AddrReg)
1173 .addReg(R600::AR_X,
1174 RegState::Implicit | RegState::Kill);
1175 setImmOperand(*Mov, R600::OpName::src0_rel, 1);
1177 return Mov;
1180 int R600InstrInfo::getIndirectIndexBegin(const MachineFunction &MF) const {
1181 const MachineRegisterInfo &MRI = MF.getRegInfo();
1182 const MachineFrameInfo &MFI = MF.getFrameInfo();
1183 int Offset = -1;
1185 if (MFI.getNumObjects() == 0) {
1186 return -1;
1189 if (MRI.livein_empty()) {
1190 return 0;
1193 const TargetRegisterClass *IndirectRC = getIndirectAddrRegClass();
1194 for (std::pair<unsigned, unsigned> LI : MRI.liveins()) {
1195 unsigned Reg = LI.first;
1196 if (TargetRegisterInfo::isVirtualRegister(Reg) ||
1197 !IndirectRC->contains(Reg))
1198 continue;
1200 unsigned RegIndex;
1201 unsigned RegEnd;
1202 for (RegIndex = 0, RegEnd = IndirectRC->getNumRegs(); RegIndex != RegEnd;
1203 ++RegIndex) {
1204 if (IndirectRC->getRegister(RegIndex) == Reg)
1205 break;
1207 Offset = std::max(Offset, (int)RegIndex);
1210 return Offset + 1;
1213 int R600InstrInfo::getIndirectIndexEnd(const MachineFunction &MF) const {
1214 int Offset = 0;
1215 const MachineFrameInfo &MFI = MF.getFrameInfo();
1217 // Variable sized objects are not supported
1218 if (MFI.hasVarSizedObjects()) {
1219 return -1;
1222 if (MFI.getNumObjects() == 0) {
1223 return -1;
1226 const R600Subtarget &ST = MF.getSubtarget<R600Subtarget>();
1227 const R600FrameLowering *TFL = ST.getFrameLowering();
1229 unsigned IgnoredFrameReg;
1230 Offset = TFL->getFrameIndexReference(MF, -1, IgnoredFrameReg);
1232 return getIndirectIndexBegin(MF) + Offset;
1235 unsigned R600InstrInfo::getMaxAlusPerClause() const {
1236 return 115;
1239 MachineInstrBuilder R600InstrInfo::buildDefaultInstruction(MachineBasicBlock &MBB,
1240 MachineBasicBlock::iterator I,
1241 unsigned Opcode,
1242 unsigned DstReg,
1243 unsigned Src0Reg,
1244 unsigned Src1Reg) const {
1245 MachineInstrBuilder MIB = BuildMI(MBB, I, MBB.findDebugLoc(I), get(Opcode),
1246 DstReg); // $dst
1248 if (Src1Reg) {
1249 MIB.addImm(0) // $update_exec_mask
1250 .addImm(0); // $update_predicate
1252 MIB.addImm(1) // $write
1253 .addImm(0) // $omod
1254 .addImm(0) // $dst_rel
1255 .addImm(0) // $dst_clamp
1256 .addReg(Src0Reg) // $src0
1257 .addImm(0) // $src0_neg
1258 .addImm(0) // $src0_rel
1259 .addImm(0) // $src0_abs
1260 .addImm(-1); // $src0_sel
1262 if (Src1Reg) {
1263 MIB.addReg(Src1Reg) // $src1
1264 .addImm(0) // $src1_neg
1265 .addImm(0) // $src1_rel
1266 .addImm(0) // $src1_abs
1267 .addImm(-1); // $src1_sel
1270 //XXX: The r600g finalizer expects this to be 1, once we've moved the
1271 //scheduling to the backend, we can change the default to 0.
1272 MIB.addImm(1) // $last
1273 .addReg(R600::PRED_SEL_OFF) // $pred_sel
1274 .addImm(0) // $literal
1275 .addImm(0); // $bank_swizzle
1277 return MIB;
1280 #define OPERAND_CASE(Label) \
1281 case Label: { \
1282 static const unsigned Ops[] = \
1284 Label##_X, \
1285 Label##_Y, \
1286 Label##_Z, \
1287 Label##_W \
1288 }; \
1289 return Ops[Slot]; \
1292 static unsigned getSlotedOps(unsigned Op, unsigned Slot) {
1293 switch (Op) {
1294 OPERAND_CASE(R600::OpName::update_exec_mask)
1295 OPERAND_CASE(R600::OpName::update_pred)
1296 OPERAND_CASE(R600::OpName::write)
1297 OPERAND_CASE(R600::OpName::omod)
1298 OPERAND_CASE(R600::OpName::dst_rel)
1299 OPERAND_CASE(R600::OpName::clamp)
1300 OPERAND_CASE(R600::OpName::src0)
1301 OPERAND_CASE(R600::OpName::src0_neg)
1302 OPERAND_CASE(R600::OpName::src0_rel)
1303 OPERAND_CASE(R600::OpName::src0_abs)
1304 OPERAND_CASE(R600::OpName::src0_sel)
1305 OPERAND_CASE(R600::OpName::src1)
1306 OPERAND_CASE(R600::OpName::src1_neg)
1307 OPERAND_CASE(R600::OpName::src1_rel)
1308 OPERAND_CASE(R600::OpName::src1_abs)
1309 OPERAND_CASE(R600::OpName::src1_sel)
1310 OPERAND_CASE(R600::OpName::pred_sel)
1311 default:
1312 llvm_unreachable("Wrong Operand");
1316 #undef OPERAND_CASE
1318 MachineInstr *R600InstrInfo::buildSlotOfVectorInstruction(
1319 MachineBasicBlock &MBB, MachineInstr *MI, unsigned Slot, unsigned DstReg)
1320 const {
1321 assert (MI->getOpcode() == R600::DOT_4 && "Not Implemented");
1322 unsigned Opcode;
1323 if (ST.getGeneration() <= AMDGPUSubtarget::R700)
1324 Opcode = R600::DOT4_r600;
1325 else
1326 Opcode = R600::DOT4_eg;
1327 MachineBasicBlock::iterator I = MI;
1328 MachineOperand &Src0 = MI->getOperand(
1329 getOperandIdx(MI->getOpcode(), getSlotedOps(R600::OpName::src0, Slot)));
1330 MachineOperand &Src1 = MI->getOperand(
1331 getOperandIdx(MI->getOpcode(), getSlotedOps(R600::OpName::src1, Slot)));
1332 MachineInstr *MIB = buildDefaultInstruction(
1333 MBB, I, Opcode, DstReg, Src0.getReg(), Src1.getReg());
1334 static const unsigned Operands[14] = {
1335 R600::OpName::update_exec_mask,
1336 R600::OpName::update_pred,
1337 R600::OpName::write,
1338 R600::OpName::omod,
1339 R600::OpName::dst_rel,
1340 R600::OpName::clamp,
1341 R600::OpName::src0_neg,
1342 R600::OpName::src0_rel,
1343 R600::OpName::src0_abs,
1344 R600::OpName::src0_sel,
1345 R600::OpName::src1_neg,
1346 R600::OpName::src1_rel,
1347 R600::OpName::src1_abs,
1348 R600::OpName::src1_sel,
1351 MachineOperand &MO = MI->getOperand(getOperandIdx(MI->getOpcode(),
1352 getSlotedOps(R600::OpName::pred_sel, Slot)));
1353 MIB->getOperand(getOperandIdx(Opcode, R600::OpName::pred_sel))
1354 .setReg(MO.getReg());
1356 for (unsigned i = 0; i < 14; i++) {
1357 MachineOperand &MO = MI->getOperand(
1358 getOperandIdx(MI->getOpcode(), getSlotedOps(Operands[i], Slot)));
1359 assert (MO.isImm());
1360 setImmOperand(*MIB, Operands[i], MO.getImm());
1362 MIB->getOperand(20).setImm(0);
1363 return MIB;
1366 MachineInstr *R600InstrInfo::buildMovImm(MachineBasicBlock &BB,
1367 MachineBasicBlock::iterator I,
1368 unsigned DstReg,
1369 uint64_t Imm) const {
1370 MachineInstr *MovImm = buildDefaultInstruction(BB, I, R600::MOV, DstReg,
1371 R600::ALU_LITERAL_X);
1372 setImmOperand(*MovImm, R600::OpName::literal, Imm);
1373 return MovImm;
1376 MachineInstr *R600InstrInfo::buildMovInstr(MachineBasicBlock *MBB,
1377 MachineBasicBlock::iterator I,
1378 unsigned DstReg, unsigned SrcReg) const {
1379 return buildDefaultInstruction(*MBB, I, R600::MOV, DstReg, SrcReg);
1382 int R600InstrInfo::getOperandIdx(const MachineInstr &MI, unsigned Op) const {
1383 return getOperandIdx(MI.getOpcode(), Op);
1386 int R600InstrInfo::getOperandIdx(unsigned Opcode, unsigned Op) const {
1387 return R600::getNamedOperandIdx(Opcode, Op);
1390 void R600InstrInfo::setImmOperand(MachineInstr &MI, unsigned Op,
1391 int64_t Imm) const {
1392 int Idx = getOperandIdx(MI, Op);
1393 assert(Idx != -1 && "Operand not supported for this instruction.");
1394 assert(MI.getOperand(Idx).isImm());
1395 MI.getOperand(Idx).setImm(Imm);
1398 //===----------------------------------------------------------------------===//
1399 // Instruction flag getters/setters
1400 //===----------------------------------------------------------------------===//
1402 MachineOperand &R600InstrInfo::getFlagOp(MachineInstr &MI, unsigned SrcIdx,
1403 unsigned Flag) const {
1404 unsigned TargetFlags = get(MI.getOpcode()).TSFlags;
1405 int FlagIndex = 0;
1406 if (Flag != 0) {
1407 // If we pass something other than the default value of Flag to this
1408 // function, it means we are want to set a flag on an instruction
1409 // that uses native encoding.
1410 assert(HAS_NATIVE_OPERANDS(TargetFlags));
1411 bool IsOP3 = (TargetFlags & R600_InstFlag::OP3) == R600_InstFlag::OP3;
1412 switch (Flag) {
1413 case MO_FLAG_CLAMP:
1414 FlagIndex = getOperandIdx(MI, R600::OpName::clamp);
1415 break;
1416 case MO_FLAG_MASK:
1417 FlagIndex = getOperandIdx(MI, R600::OpName::write);
1418 break;
1419 case MO_FLAG_NOT_LAST:
1420 case MO_FLAG_LAST:
1421 FlagIndex = getOperandIdx(MI, R600::OpName::last);
1422 break;
1423 case MO_FLAG_NEG:
1424 switch (SrcIdx) {
1425 case 0:
1426 FlagIndex = getOperandIdx(MI, R600::OpName::src0_neg);
1427 break;
1428 case 1:
1429 FlagIndex = getOperandIdx(MI, R600::OpName::src1_neg);
1430 break;
1431 case 2:
1432 FlagIndex = getOperandIdx(MI, R600::OpName::src2_neg);
1433 break;
1435 break;
1437 case MO_FLAG_ABS:
1438 assert(!IsOP3 && "Cannot set absolute value modifier for OP3 "
1439 "instructions.");
1440 (void)IsOP3;
1441 switch (SrcIdx) {
1442 case 0:
1443 FlagIndex = getOperandIdx(MI, R600::OpName::src0_abs);
1444 break;
1445 case 1:
1446 FlagIndex = getOperandIdx(MI, R600::OpName::src1_abs);
1447 break;
1449 break;
1451 default:
1452 FlagIndex = -1;
1453 break;
1455 assert(FlagIndex != -1 && "Flag not supported for this instruction");
1456 } else {
1457 FlagIndex = GET_FLAG_OPERAND_IDX(TargetFlags);
1458 assert(FlagIndex != 0 &&
1459 "Instruction flags not supported for this instruction");
1462 MachineOperand &FlagOp = MI.getOperand(FlagIndex);
1463 assert(FlagOp.isImm());
1464 return FlagOp;
1467 void R600InstrInfo::addFlag(MachineInstr &MI, unsigned Operand,
1468 unsigned Flag) const {
1469 unsigned TargetFlags = get(MI.getOpcode()).TSFlags;
1470 if (Flag == 0) {
1471 return;
1473 if (HAS_NATIVE_OPERANDS(TargetFlags)) {
1474 MachineOperand &FlagOp = getFlagOp(MI, Operand, Flag);
1475 if (Flag == MO_FLAG_NOT_LAST) {
1476 clearFlag(MI, Operand, MO_FLAG_LAST);
1477 } else if (Flag == MO_FLAG_MASK) {
1478 clearFlag(MI, Operand, Flag);
1479 } else {
1480 FlagOp.setImm(1);
1482 } else {
1483 MachineOperand &FlagOp = getFlagOp(MI, Operand);
1484 FlagOp.setImm(FlagOp.getImm() | (Flag << (NUM_MO_FLAGS * Operand)));
1488 void R600InstrInfo::clearFlag(MachineInstr &MI, unsigned Operand,
1489 unsigned Flag) const {
1490 unsigned TargetFlags = get(MI.getOpcode()).TSFlags;
1491 if (HAS_NATIVE_OPERANDS(TargetFlags)) {
1492 MachineOperand &FlagOp = getFlagOp(MI, Operand, Flag);
1493 FlagOp.setImm(0);
1494 } else {
1495 MachineOperand &FlagOp = getFlagOp(MI);
1496 unsigned InstFlags = FlagOp.getImm();
1497 InstFlags &= ~(Flag << (NUM_MO_FLAGS * Operand));
1498 FlagOp.setImm(InstFlags);
1502 unsigned R600InstrInfo::getAddressSpaceForPseudoSourceKind(
1503 unsigned Kind) const {
1504 switch (Kind) {
1505 case PseudoSourceValue::Stack:
1506 case PseudoSourceValue::FixedStack:
1507 return AMDGPUAS::PRIVATE_ADDRESS;
1508 case PseudoSourceValue::ConstantPool:
1509 case PseudoSourceValue::GOT:
1510 case PseudoSourceValue::JumpTable:
1511 case PseudoSourceValue::GlobalValueCallEntry:
1512 case PseudoSourceValue::ExternalSymbolCallEntry:
1513 case PseudoSourceValue::TargetCustom:
1514 return AMDGPUAS::CONSTANT_ADDRESS;
1517 llvm_unreachable("Invalid pseudo source kind");