1 //===- ARMISelLowering.cpp - ARM DAG Lowering Implementation --------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the interfaces that ARM uses to lower LLVM code into a
12 //===----------------------------------------------------------------------===//
14 #include "ARMISelLowering.h"
15 #include "ARMBaseInstrInfo.h"
16 #include "ARMBaseRegisterInfo.h"
17 #include "ARMCallingConv.h"
18 #include "ARMConstantPoolValue.h"
19 #include "ARMMachineFunctionInfo.h"
20 #include "ARMPerfectShuffle.h"
21 #include "ARMRegisterInfo.h"
22 #include "ARMSelectionDAGInfo.h"
23 #include "ARMSubtarget.h"
24 #include "MCTargetDesc/ARMAddressingModes.h"
25 #include "MCTargetDesc/ARMBaseInfo.h"
26 #include "Utils/ARMBaseInfo.h"
27 #include "llvm/ADT/APFloat.h"
28 #include "llvm/ADT/APInt.h"
29 #include "llvm/ADT/ArrayRef.h"
30 #include "llvm/ADT/BitVector.h"
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/STLExtras.h"
33 #include "llvm/ADT/SmallPtrSet.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/ADT/StringExtras.h"
37 #include "llvm/ADT/StringRef.h"
38 #include "llvm/ADT/StringSwitch.h"
39 #include "llvm/ADT/Triple.h"
40 #include "llvm/ADT/Twine.h"
41 #include "llvm/Analysis/VectorUtils.h"
42 #include "llvm/CodeGen/CallingConvLower.h"
43 #include "llvm/CodeGen/ISDOpcodes.h"
44 #include "llvm/CodeGen/IntrinsicLowering.h"
45 #include "llvm/CodeGen/MachineBasicBlock.h"
46 #include "llvm/CodeGen/MachineConstantPool.h"
47 #include "llvm/CodeGen/MachineFrameInfo.h"
48 #include "llvm/CodeGen/MachineFunction.h"
49 #include "llvm/CodeGen/MachineInstr.h"
50 #include "llvm/CodeGen/MachineInstrBuilder.h"
51 #include "llvm/CodeGen/MachineJumpTableInfo.h"
52 #include "llvm/CodeGen/MachineMemOperand.h"
53 #include "llvm/CodeGen/MachineOperand.h"
54 #include "llvm/CodeGen/MachineRegisterInfo.h"
55 #include "llvm/CodeGen/RuntimeLibcalls.h"
56 #include "llvm/CodeGen/SelectionDAG.h"
57 #include "llvm/CodeGen/SelectionDAGNodes.h"
58 #include "llvm/CodeGen/TargetInstrInfo.h"
59 #include "llvm/CodeGen/TargetLowering.h"
60 #include "llvm/CodeGen/TargetOpcodes.h"
61 #include "llvm/CodeGen/TargetRegisterInfo.h"
62 #include "llvm/CodeGen/TargetSubtargetInfo.h"
63 #include "llvm/CodeGen/ValueTypes.h"
64 #include "llvm/IR/Attributes.h"
65 #include "llvm/IR/CallingConv.h"
66 #include "llvm/IR/Constant.h"
67 #include "llvm/IR/Constants.h"
68 #include "llvm/IR/DataLayout.h"
69 #include "llvm/IR/DebugLoc.h"
70 #include "llvm/IR/DerivedTypes.h"
71 #include "llvm/IR/Function.h"
72 #include "llvm/IR/GlobalAlias.h"
73 #include "llvm/IR/GlobalValue.h"
74 #include "llvm/IR/GlobalVariable.h"
75 #include "llvm/IR/IRBuilder.h"
76 #include "llvm/IR/InlineAsm.h"
77 #include "llvm/IR/Instruction.h"
78 #include "llvm/IR/Instructions.h"
79 #include "llvm/IR/IntrinsicInst.h"
80 #include "llvm/IR/Intrinsics.h"
81 #include "llvm/IR/Module.h"
82 #include "llvm/IR/PatternMatch.h"
83 #include "llvm/IR/Type.h"
84 #include "llvm/IR/User.h"
85 #include "llvm/IR/Value.h"
86 #include "llvm/MC/MCInstrDesc.h"
87 #include "llvm/MC/MCInstrItineraries.h"
88 #include "llvm/MC/MCRegisterInfo.h"
89 #include "llvm/MC/MCSchedule.h"
90 #include "llvm/Support/AtomicOrdering.h"
91 #include "llvm/Support/BranchProbability.h"
92 #include "llvm/Support/Casting.h"
93 #include "llvm/Support/CodeGen.h"
94 #include "llvm/Support/CommandLine.h"
95 #include "llvm/Support/Compiler.h"
96 #include "llvm/Support/Debug.h"
97 #include "llvm/Support/ErrorHandling.h"
98 #include "llvm/Support/KnownBits.h"
99 #include "llvm/Support/MachineValueType.h"
100 #include "llvm/Support/MathExtras.h"
101 #include "llvm/Support/raw_ostream.h"
102 #include "llvm/Target/TargetMachine.h"
103 #include "llvm/Target/TargetOptions.h"
115 using namespace llvm
;
116 using namespace llvm::PatternMatch
;
118 #define DEBUG_TYPE "arm-isel"
120 STATISTIC(NumTailCalls
, "Number of tail calls");
121 STATISTIC(NumMovwMovt
, "Number of GAs materialized with movw + movt");
122 STATISTIC(NumLoopByVals
, "Number of loops generated for byval arguments");
123 STATISTIC(NumConstpoolPromoted
,
124 "Number of constants with their storage promoted into constant pools");
127 ARMInterworking("arm-interworking", cl::Hidden
,
128 cl::desc("Enable / disable ARM interworking (for debugging only)"),
131 static cl::opt
<bool> EnableConstpoolPromotion(
132 "arm-promote-constant", cl::Hidden
,
133 cl::desc("Enable / disable promotion of unnamed_addr constants into "
135 cl::init(false)); // FIXME: set to true by default once PR32780 is fixed
136 static cl::opt
<unsigned> ConstpoolPromotionMaxSize(
137 "arm-promote-constant-max-size", cl::Hidden
,
138 cl::desc("Maximum size of constant to promote into a constant pool"),
140 static cl::opt
<unsigned> ConstpoolPromotionMaxTotal(
141 "arm-promote-constant-max-total", cl::Hidden
,
142 cl::desc("Maximum size of ALL constants to promote into a constant pool"),
145 // The APCS parameter registers.
146 static const MCPhysReg GPRArgRegs
[] = {
147 ARM::R0
, ARM::R1
, ARM::R2
, ARM::R3
150 void ARMTargetLowering::addTypeForNEON(MVT VT
, MVT PromotedLdStVT
,
151 MVT PromotedBitwiseVT
) {
152 if (VT
!= PromotedLdStVT
) {
153 setOperationAction(ISD::LOAD
, VT
, Promote
);
154 AddPromotedToType (ISD::LOAD
, VT
, PromotedLdStVT
);
156 setOperationAction(ISD::STORE
, VT
, Promote
);
157 AddPromotedToType (ISD::STORE
, VT
, PromotedLdStVT
);
160 MVT ElemTy
= VT
.getVectorElementType();
161 if (ElemTy
!= MVT::f64
)
162 setOperationAction(ISD::SETCC
, VT
, Custom
);
163 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
164 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
165 if (ElemTy
== MVT::i32
) {
166 setOperationAction(ISD::SINT_TO_FP
, VT
, Custom
);
167 setOperationAction(ISD::UINT_TO_FP
, VT
, Custom
);
168 setOperationAction(ISD::FP_TO_SINT
, VT
, Custom
);
169 setOperationAction(ISD::FP_TO_UINT
, VT
, Custom
);
171 setOperationAction(ISD::SINT_TO_FP
, VT
, Expand
);
172 setOperationAction(ISD::UINT_TO_FP
, VT
, Expand
);
173 setOperationAction(ISD::FP_TO_SINT
, VT
, Expand
);
174 setOperationAction(ISD::FP_TO_UINT
, VT
, Expand
);
176 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
177 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
178 setOperationAction(ISD::CONCAT_VECTORS
, VT
, Legal
);
179 setOperationAction(ISD::EXTRACT_SUBVECTOR
, VT
, Legal
);
180 setOperationAction(ISD::SELECT
, VT
, Expand
);
181 setOperationAction(ISD::SELECT_CC
, VT
, Expand
);
182 setOperationAction(ISD::VSELECT
, VT
, Expand
);
183 setOperationAction(ISD::SIGN_EXTEND_INREG
, VT
, Expand
);
184 if (VT
.isInteger()) {
185 setOperationAction(ISD::SHL
, VT
, Custom
);
186 setOperationAction(ISD::SRA
, VT
, Custom
);
187 setOperationAction(ISD::SRL
, VT
, Custom
);
190 // Promote all bit-wise operations.
191 if (VT
.isInteger() && VT
!= PromotedBitwiseVT
) {
192 setOperationAction(ISD::AND
, VT
, Promote
);
193 AddPromotedToType (ISD::AND
, VT
, PromotedBitwiseVT
);
194 setOperationAction(ISD::OR
, VT
, Promote
);
195 AddPromotedToType (ISD::OR
, VT
, PromotedBitwiseVT
);
196 setOperationAction(ISD::XOR
, VT
, Promote
);
197 AddPromotedToType (ISD::XOR
, VT
, PromotedBitwiseVT
);
200 // Neon does not support vector divide/remainder operations.
201 setOperationAction(ISD::SDIV
, VT
, Expand
);
202 setOperationAction(ISD::UDIV
, VT
, Expand
);
203 setOperationAction(ISD::FDIV
, VT
, Expand
);
204 setOperationAction(ISD::SREM
, VT
, Expand
);
205 setOperationAction(ISD::UREM
, VT
, Expand
);
206 setOperationAction(ISD::FREM
, VT
, Expand
);
208 if (!VT
.isFloatingPoint() &&
209 VT
!= MVT::v2i64
&& VT
!= MVT::v1i64
)
210 for (auto Opcode
: {ISD::ABS
, ISD::SMIN
, ISD::SMAX
, ISD::UMIN
, ISD::UMAX
})
211 setOperationAction(Opcode
, VT
, Legal
);
214 void ARMTargetLowering::addDRTypeForNEON(MVT VT
) {
215 addRegisterClass(VT
, &ARM::DPRRegClass
);
216 addTypeForNEON(VT
, MVT::f64
, MVT::v2i32
);
219 void ARMTargetLowering::addQRTypeForNEON(MVT VT
) {
220 addRegisterClass(VT
, &ARM::DPairRegClass
);
221 addTypeForNEON(VT
, MVT::v2f64
, MVT::v4i32
);
224 void ARMTargetLowering::setAllExpand(MVT VT
) {
225 for (unsigned Opc
= 0; Opc
< ISD::BUILTIN_OP_END
; ++Opc
)
226 setOperationAction(Opc
, VT
, Expand
);
228 // We support these really simple operations even on types where all
229 // the actual arithmetic has to be broken down into simpler
230 // operations or turned into library calls.
231 setOperationAction(ISD::BITCAST
, VT
, Legal
);
232 setOperationAction(ISD::LOAD
, VT
, Legal
);
233 setOperationAction(ISD::STORE
, VT
, Legal
);
234 setOperationAction(ISD::UNDEF
, VT
, Legal
);
237 void ARMTargetLowering::addAllExtLoads(const MVT From
, const MVT To
,
238 LegalizeAction Action
) {
239 setLoadExtAction(ISD::EXTLOAD
, From
, To
, Action
);
240 setLoadExtAction(ISD::ZEXTLOAD
, From
, To
, Action
);
241 setLoadExtAction(ISD::SEXTLOAD
, From
, To
, Action
);
244 void ARMTargetLowering::addMVEVectorTypes(bool HasMVEFP
) {
245 const MVT IntTypes
[] = { MVT::v16i8
, MVT::v8i16
, MVT::v4i32
};
247 for (auto VT
: IntTypes
) {
248 addRegisterClass(VT
, &ARM::QPRRegClass
);
249 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
250 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
251 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
252 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
253 setOperationAction(ISD::SHL
, VT
, Custom
);
254 setOperationAction(ISD::SRA
, VT
, Custom
);
255 setOperationAction(ISD::SRL
, VT
, Custom
);
256 setOperationAction(ISD::SMIN
, VT
, Legal
);
257 setOperationAction(ISD::SMAX
, VT
, Legal
);
258 setOperationAction(ISD::UMIN
, VT
, Legal
);
259 setOperationAction(ISD::UMAX
, VT
, Legal
);
260 setOperationAction(ISD::ABS
, VT
, Legal
);
261 setOperationAction(ISD::SETCC
, VT
, Custom
);
263 // No native support for these.
264 setOperationAction(ISD::UDIV
, VT
, Expand
);
265 setOperationAction(ISD::SDIV
, VT
, Expand
);
266 setOperationAction(ISD::UREM
, VT
, Expand
);
267 setOperationAction(ISD::SREM
, VT
, Expand
);
270 setOperationAction(ISD::SINT_TO_FP
, VT
, Expand
);
271 setOperationAction(ISD::UINT_TO_FP
, VT
, Expand
);
272 setOperationAction(ISD::FP_TO_SINT
, VT
, Expand
);
273 setOperationAction(ISD::FP_TO_UINT
, VT
, Expand
);
277 const MVT FloatTypes
[] = { MVT::v8f16
, MVT::v4f32
};
278 for (auto VT
: FloatTypes
) {
279 addRegisterClass(VT
, &ARM::QPRRegClass
);
283 // These are legal or custom whether we have MVE.fp or not
284 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
285 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
286 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
.getVectorElementType(), Custom
);
287 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
288 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
289 setOperationAction(ISD::BUILD_VECTOR
, VT
.getVectorElementType(), Custom
);
290 setOperationAction(ISD::SCALAR_TO_VECTOR
, VT
, Legal
);
291 setOperationAction(ISD::SETCC
, VT
, Custom
);
294 setOperationAction(ISD::FMINNUM
, VT
, Legal
);
295 setOperationAction(ISD::FMAXNUM
, VT
, Legal
);
296 setOperationAction(ISD::FROUND
, VT
, Legal
);
298 // No native support for these.
299 setOperationAction(ISD::FDIV
, VT
, Expand
);
300 setOperationAction(ISD::FREM
, VT
, Expand
);
301 setOperationAction(ISD::FSQRT
, VT
, Expand
);
302 setOperationAction(ISD::FSIN
, VT
, Expand
);
303 setOperationAction(ISD::FCOS
, VT
, Expand
);
304 setOperationAction(ISD::FPOW
, VT
, Expand
);
305 setOperationAction(ISD::FLOG
, VT
, Expand
);
306 setOperationAction(ISD::FLOG2
, VT
, Expand
);
307 setOperationAction(ISD::FLOG10
, VT
, Expand
);
308 setOperationAction(ISD::FEXP
, VT
, Expand
);
309 setOperationAction(ISD::FEXP2
, VT
, Expand
);
310 setOperationAction(ISD::FNEARBYINT
, VT
, Expand
);
314 // We 'support' these types up to bitcast/load/store level, regardless of
315 // MVE integer-only / float support. Only doing FP data processing on the FP
316 // vector types is inhibited at integer-only level.
317 const MVT LongTypes
[] = { MVT::v2i64
, MVT::v2f64
};
318 for (auto VT
: LongTypes
) {
319 addRegisterClass(VT
, &ARM::QPRRegClass
);
321 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
322 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
323 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
325 // We can do bitwise operations on v2i64 vectors
326 setOperationAction(ISD::AND
, MVT::v2i64
, Legal
);
327 setOperationAction(ISD::OR
, MVT::v2i64
, Legal
);
328 setOperationAction(ISD::XOR
, MVT::v2i64
, Legal
);
330 // It is legal to extload from v4i8 to v4i16 or v4i32.
331 addAllExtLoads(MVT::v8i16
, MVT::v8i8
, Legal
);
332 addAllExtLoads(MVT::v4i32
, MVT::v4i16
, Legal
);
333 addAllExtLoads(MVT::v4i32
, MVT::v4i8
, Legal
);
335 // Some truncating stores are legal too.
336 setTruncStoreAction(MVT::v4i32
, MVT::v4i16
, Legal
);
337 setTruncStoreAction(MVT::v4i32
, MVT::v4i8
, Legal
);
338 setTruncStoreAction(MVT::v8i16
, MVT::v8i8
, Legal
);
341 const MVT pTypes
[] = {MVT::v16i1
, MVT::v8i1
, MVT::v4i1
};
342 for (auto VT
: pTypes
) {
343 addRegisterClass(VT
, &ARM::VCCRRegClass
);
344 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
345 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
346 setOperationAction(ISD::EXTRACT_SUBVECTOR
, VT
, Custom
);
347 setOperationAction(ISD::CONCAT_VECTORS
, VT
, Custom
);
348 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
349 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
350 setOperationAction(ISD::SETCC
, VT
, Custom
);
351 setOperationAction(ISD::SCALAR_TO_VECTOR
, VT
, Expand
);
355 ARMTargetLowering::ARMTargetLowering(const TargetMachine
&TM
,
356 const ARMSubtarget
&STI
)
357 : TargetLowering(TM
), Subtarget(&STI
) {
358 RegInfo
= Subtarget
->getRegisterInfo();
359 Itins
= Subtarget
->getInstrItineraryData();
361 setBooleanContents(ZeroOrOneBooleanContent
);
362 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent
);
364 if (!Subtarget
->isTargetDarwin() && !Subtarget
->isTargetIOS() &&
365 !Subtarget
->isTargetWatchOS()) {
366 bool IsHFTarget
= TM
.Options
.FloatABIType
== FloatABI::Hard
;
367 for (int LCID
= 0; LCID
< RTLIB::UNKNOWN_LIBCALL
; ++LCID
)
368 setLibcallCallingConv(static_cast<RTLIB::Libcall
>(LCID
),
369 IsHFTarget
? CallingConv::ARM_AAPCS_VFP
370 : CallingConv::ARM_AAPCS
);
373 if (Subtarget
->isTargetMachO()) {
374 // Uses VFP for Thumb libfuncs if available.
375 if (Subtarget
->isThumb() && Subtarget
->hasVFP2Base() &&
376 Subtarget
->hasARMOps() && !Subtarget
->useSoftFloat()) {
377 static const struct {
378 const RTLIB::Libcall Op
;
379 const char * const Name
;
380 const ISD::CondCode Cond
;
382 // Single-precision floating-point arithmetic.
383 { RTLIB::ADD_F32
, "__addsf3vfp", ISD::SETCC_INVALID
},
384 { RTLIB::SUB_F32
, "__subsf3vfp", ISD::SETCC_INVALID
},
385 { RTLIB::MUL_F32
, "__mulsf3vfp", ISD::SETCC_INVALID
},
386 { RTLIB::DIV_F32
, "__divsf3vfp", ISD::SETCC_INVALID
},
388 // Double-precision floating-point arithmetic.
389 { RTLIB::ADD_F64
, "__adddf3vfp", ISD::SETCC_INVALID
},
390 { RTLIB::SUB_F64
, "__subdf3vfp", ISD::SETCC_INVALID
},
391 { RTLIB::MUL_F64
, "__muldf3vfp", ISD::SETCC_INVALID
},
392 { RTLIB::DIV_F64
, "__divdf3vfp", ISD::SETCC_INVALID
},
394 // Single-precision comparisons.
395 { RTLIB::OEQ_F32
, "__eqsf2vfp", ISD::SETNE
},
396 { RTLIB::UNE_F32
, "__nesf2vfp", ISD::SETNE
},
397 { RTLIB::OLT_F32
, "__ltsf2vfp", ISD::SETNE
},
398 { RTLIB::OLE_F32
, "__lesf2vfp", ISD::SETNE
},
399 { RTLIB::OGE_F32
, "__gesf2vfp", ISD::SETNE
},
400 { RTLIB::OGT_F32
, "__gtsf2vfp", ISD::SETNE
},
401 { RTLIB::UO_F32
, "__unordsf2vfp", ISD::SETNE
},
402 { RTLIB::O_F32
, "__unordsf2vfp", ISD::SETEQ
},
404 // Double-precision comparisons.
405 { RTLIB::OEQ_F64
, "__eqdf2vfp", ISD::SETNE
},
406 { RTLIB::UNE_F64
, "__nedf2vfp", ISD::SETNE
},
407 { RTLIB::OLT_F64
, "__ltdf2vfp", ISD::SETNE
},
408 { RTLIB::OLE_F64
, "__ledf2vfp", ISD::SETNE
},
409 { RTLIB::OGE_F64
, "__gedf2vfp", ISD::SETNE
},
410 { RTLIB::OGT_F64
, "__gtdf2vfp", ISD::SETNE
},
411 { RTLIB::UO_F64
, "__unorddf2vfp", ISD::SETNE
},
412 { RTLIB::O_F64
, "__unorddf2vfp", ISD::SETEQ
},
414 // Floating-point to integer conversions.
415 // i64 conversions are done via library routines even when generating VFP
416 // instructions, so use the same ones.
417 { RTLIB::FPTOSINT_F64_I32
, "__fixdfsivfp", ISD::SETCC_INVALID
},
418 { RTLIB::FPTOUINT_F64_I32
, "__fixunsdfsivfp", ISD::SETCC_INVALID
},
419 { RTLIB::FPTOSINT_F32_I32
, "__fixsfsivfp", ISD::SETCC_INVALID
},
420 { RTLIB::FPTOUINT_F32_I32
, "__fixunssfsivfp", ISD::SETCC_INVALID
},
422 // Conversions between floating types.
423 { RTLIB::FPROUND_F64_F32
, "__truncdfsf2vfp", ISD::SETCC_INVALID
},
424 { RTLIB::FPEXT_F32_F64
, "__extendsfdf2vfp", ISD::SETCC_INVALID
},
426 // Integer to floating-point conversions.
427 // i64 conversions are done via library routines even when generating VFP
428 // instructions, so use the same ones.
429 // FIXME: There appears to be some naming inconsistency in ARM libgcc:
430 // e.g., __floatunsidf vs. __floatunssidfvfp.
431 { RTLIB::SINTTOFP_I32_F64
, "__floatsidfvfp", ISD::SETCC_INVALID
},
432 { RTLIB::UINTTOFP_I32_F64
, "__floatunssidfvfp", ISD::SETCC_INVALID
},
433 { RTLIB::SINTTOFP_I32_F32
, "__floatsisfvfp", ISD::SETCC_INVALID
},
434 { RTLIB::UINTTOFP_I32_F32
, "__floatunssisfvfp", ISD::SETCC_INVALID
},
437 for (const auto &LC
: LibraryCalls
) {
438 setLibcallName(LC
.Op
, LC
.Name
);
439 if (LC
.Cond
!= ISD::SETCC_INVALID
)
440 setCmpLibcallCC(LC
.Op
, LC
.Cond
);
445 // These libcalls are not available in 32-bit.
446 setLibcallName(RTLIB::SHL_I128
, nullptr);
447 setLibcallName(RTLIB::SRL_I128
, nullptr);
448 setLibcallName(RTLIB::SRA_I128
, nullptr);
451 if (Subtarget
->isAAPCS_ABI() &&
452 (Subtarget
->isTargetAEABI() || Subtarget
->isTargetGNUAEABI() ||
453 Subtarget
->isTargetMuslAEABI() || Subtarget
->isTargetAndroid())) {
454 static const struct {
455 const RTLIB::Libcall Op
;
456 const char * const Name
;
457 const CallingConv::ID CC
;
458 const ISD::CondCode Cond
;
460 // Double-precision floating-point arithmetic helper functions
461 // RTABI chapter 4.1.2, Table 2
462 { RTLIB::ADD_F64
, "__aeabi_dadd", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
463 { RTLIB::DIV_F64
, "__aeabi_ddiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
464 { RTLIB::MUL_F64
, "__aeabi_dmul", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
465 { RTLIB::SUB_F64
, "__aeabi_dsub", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
467 // Double-precision floating-point comparison helper functions
468 // RTABI chapter 4.1.2, Table 3
469 { RTLIB::OEQ_F64
, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS
, ISD::SETNE
},
470 { RTLIB::UNE_F64
, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS
, ISD::SETEQ
},
471 { RTLIB::OLT_F64
, "__aeabi_dcmplt", CallingConv::ARM_AAPCS
, ISD::SETNE
},
472 { RTLIB::OLE_F64
, "__aeabi_dcmple", CallingConv::ARM_AAPCS
, ISD::SETNE
},
473 { RTLIB::OGE_F64
, "__aeabi_dcmpge", CallingConv::ARM_AAPCS
, ISD::SETNE
},
474 { RTLIB::OGT_F64
, "__aeabi_dcmpgt", CallingConv::ARM_AAPCS
, ISD::SETNE
},
475 { RTLIB::UO_F64
, "__aeabi_dcmpun", CallingConv::ARM_AAPCS
, ISD::SETNE
},
476 { RTLIB::O_F64
, "__aeabi_dcmpun", CallingConv::ARM_AAPCS
, ISD::SETEQ
},
478 // Single-precision floating-point arithmetic helper functions
479 // RTABI chapter 4.1.2, Table 4
480 { RTLIB::ADD_F32
, "__aeabi_fadd", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
481 { RTLIB::DIV_F32
, "__aeabi_fdiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
482 { RTLIB::MUL_F32
, "__aeabi_fmul", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
483 { RTLIB::SUB_F32
, "__aeabi_fsub", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
485 // Single-precision floating-point comparison helper functions
486 // RTABI chapter 4.1.2, Table 5
487 { RTLIB::OEQ_F32
, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS
, ISD::SETNE
},
488 { RTLIB::UNE_F32
, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS
, ISD::SETEQ
},
489 { RTLIB::OLT_F32
, "__aeabi_fcmplt", CallingConv::ARM_AAPCS
, ISD::SETNE
},
490 { RTLIB::OLE_F32
, "__aeabi_fcmple", CallingConv::ARM_AAPCS
, ISD::SETNE
},
491 { RTLIB::OGE_F32
, "__aeabi_fcmpge", CallingConv::ARM_AAPCS
, ISD::SETNE
},
492 { RTLIB::OGT_F32
, "__aeabi_fcmpgt", CallingConv::ARM_AAPCS
, ISD::SETNE
},
493 { RTLIB::UO_F32
, "__aeabi_fcmpun", CallingConv::ARM_AAPCS
, ISD::SETNE
},
494 { RTLIB::O_F32
, "__aeabi_fcmpun", CallingConv::ARM_AAPCS
, ISD::SETEQ
},
496 // Floating-point to integer conversions.
497 // RTABI chapter 4.1.2, Table 6
498 { RTLIB::FPTOSINT_F64_I32
, "__aeabi_d2iz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
499 { RTLIB::FPTOUINT_F64_I32
, "__aeabi_d2uiz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
500 { RTLIB::FPTOSINT_F64_I64
, "__aeabi_d2lz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
501 { RTLIB::FPTOUINT_F64_I64
, "__aeabi_d2ulz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
502 { RTLIB::FPTOSINT_F32_I32
, "__aeabi_f2iz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
503 { RTLIB::FPTOUINT_F32_I32
, "__aeabi_f2uiz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
504 { RTLIB::FPTOSINT_F32_I64
, "__aeabi_f2lz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
505 { RTLIB::FPTOUINT_F32_I64
, "__aeabi_f2ulz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
507 // Conversions between floating types.
508 // RTABI chapter 4.1.2, Table 7
509 { RTLIB::FPROUND_F64_F32
, "__aeabi_d2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
510 { RTLIB::FPROUND_F64_F16
, "__aeabi_d2h", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
511 { RTLIB::FPEXT_F32_F64
, "__aeabi_f2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
513 // Integer to floating-point conversions.
514 // RTABI chapter 4.1.2, Table 8
515 { RTLIB::SINTTOFP_I32_F64
, "__aeabi_i2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
516 { RTLIB::UINTTOFP_I32_F64
, "__aeabi_ui2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
517 { RTLIB::SINTTOFP_I64_F64
, "__aeabi_l2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
518 { RTLIB::UINTTOFP_I64_F64
, "__aeabi_ul2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
519 { RTLIB::SINTTOFP_I32_F32
, "__aeabi_i2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
520 { RTLIB::UINTTOFP_I32_F32
, "__aeabi_ui2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
521 { RTLIB::SINTTOFP_I64_F32
, "__aeabi_l2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
522 { RTLIB::UINTTOFP_I64_F32
, "__aeabi_ul2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
524 // Long long helper functions
525 // RTABI chapter 4.2, Table 9
526 { RTLIB::MUL_I64
, "__aeabi_lmul", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
527 { RTLIB::SHL_I64
, "__aeabi_llsl", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
528 { RTLIB::SRL_I64
, "__aeabi_llsr", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
529 { RTLIB::SRA_I64
, "__aeabi_lasr", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
531 // Integer division functions
532 // RTABI chapter 4.3.1
533 { RTLIB::SDIV_I8
, "__aeabi_idiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
534 { RTLIB::SDIV_I16
, "__aeabi_idiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
535 { RTLIB::SDIV_I32
, "__aeabi_idiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
536 { RTLIB::SDIV_I64
, "__aeabi_ldivmod", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
537 { RTLIB::UDIV_I8
, "__aeabi_uidiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
538 { RTLIB::UDIV_I16
, "__aeabi_uidiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
539 { RTLIB::UDIV_I32
, "__aeabi_uidiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
540 { RTLIB::UDIV_I64
, "__aeabi_uldivmod", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
543 for (const auto &LC
: LibraryCalls
) {
544 setLibcallName(LC
.Op
, LC
.Name
);
545 setLibcallCallingConv(LC
.Op
, LC
.CC
);
546 if (LC
.Cond
!= ISD::SETCC_INVALID
)
547 setCmpLibcallCC(LC
.Op
, LC
.Cond
);
550 // EABI dependent RTLIB
551 if (TM
.Options
.EABIVersion
== EABI::EABI4
||
552 TM
.Options
.EABIVersion
== EABI::EABI5
) {
553 static const struct {
554 const RTLIB::Libcall Op
;
555 const char *const Name
;
556 const CallingConv::ID CC
;
557 const ISD::CondCode Cond
;
558 } MemOpsLibraryCalls
[] = {
560 // RTABI chapter 4.3.4
561 { RTLIB::MEMCPY
, "__aeabi_memcpy", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
562 { RTLIB::MEMMOVE
, "__aeabi_memmove", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
563 { RTLIB::MEMSET
, "__aeabi_memset", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
566 for (const auto &LC
: MemOpsLibraryCalls
) {
567 setLibcallName(LC
.Op
, LC
.Name
);
568 setLibcallCallingConv(LC
.Op
, LC
.CC
);
569 if (LC
.Cond
!= ISD::SETCC_INVALID
)
570 setCmpLibcallCC(LC
.Op
, LC
.Cond
);
575 if (Subtarget
->isTargetWindows()) {
576 static const struct {
577 const RTLIB::Libcall Op
;
578 const char * const Name
;
579 const CallingConv::ID CC
;
581 { RTLIB::FPTOSINT_F32_I64
, "__stoi64", CallingConv::ARM_AAPCS_VFP
},
582 { RTLIB::FPTOSINT_F64_I64
, "__dtoi64", CallingConv::ARM_AAPCS_VFP
},
583 { RTLIB::FPTOUINT_F32_I64
, "__stou64", CallingConv::ARM_AAPCS_VFP
},
584 { RTLIB::FPTOUINT_F64_I64
, "__dtou64", CallingConv::ARM_AAPCS_VFP
},
585 { RTLIB::SINTTOFP_I64_F32
, "__i64tos", CallingConv::ARM_AAPCS_VFP
},
586 { RTLIB::SINTTOFP_I64_F64
, "__i64tod", CallingConv::ARM_AAPCS_VFP
},
587 { RTLIB::UINTTOFP_I64_F32
, "__u64tos", CallingConv::ARM_AAPCS_VFP
},
588 { RTLIB::UINTTOFP_I64_F64
, "__u64tod", CallingConv::ARM_AAPCS_VFP
},
591 for (const auto &LC
: LibraryCalls
) {
592 setLibcallName(LC
.Op
, LC
.Name
);
593 setLibcallCallingConv(LC
.Op
, LC
.CC
);
597 // Use divmod compiler-rt calls for iOS 5.0 and later.
598 if (Subtarget
->isTargetMachO() &&
599 !(Subtarget
->isTargetIOS() &&
600 Subtarget
->getTargetTriple().isOSVersionLT(5, 0))) {
601 setLibcallName(RTLIB::SDIVREM_I32
, "__divmodsi4");
602 setLibcallName(RTLIB::UDIVREM_I32
, "__udivmodsi4");
605 // The half <-> float conversion functions are always soft-float on
606 // non-watchos platforms, but are needed for some targets which use a
607 // hard-float calling convention by default.
608 if (!Subtarget
->isTargetWatchABI()) {
609 if (Subtarget
->isAAPCS_ABI()) {
610 setLibcallCallingConv(RTLIB::FPROUND_F32_F16
, CallingConv::ARM_AAPCS
);
611 setLibcallCallingConv(RTLIB::FPROUND_F64_F16
, CallingConv::ARM_AAPCS
);
612 setLibcallCallingConv(RTLIB::FPEXT_F16_F32
, CallingConv::ARM_AAPCS
);
614 setLibcallCallingConv(RTLIB::FPROUND_F32_F16
, CallingConv::ARM_APCS
);
615 setLibcallCallingConv(RTLIB::FPROUND_F64_F16
, CallingConv::ARM_APCS
);
616 setLibcallCallingConv(RTLIB::FPEXT_F16_F32
, CallingConv::ARM_APCS
);
620 // In EABI, these functions have an __aeabi_ prefix, but in GNUEABI they have
621 // a __gnu_ prefix (which is the default).
622 if (Subtarget
->isTargetAEABI()) {
623 static const struct {
624 const RTLIB::Libcall Op
;
625 const char * const Name
;
626 const CallingConv::ID CC
;
628 { RTLIB::FPROUND_F32_F16
, "__aeabi_f2h", CallingConv::ARM_AAPCS
},
629 { RTLIB::FPROUND_F64_F16
, "__aeabi_d2h", CallingConv::ARM_AAPCS
},
630 { RTLIB::FPEXT_F16_F32
, "__aeabi_h2f", CallingConv::ARM_AAPCS
},
633 for (const auto &LC
: LibraryCalls
) {
634 setLibcallName(LC
.Op
, LC
.Name
);
635 setLibcallCallingConv(LC
.Op
, LC
.CC
);
639 if (Subtarget
->isThumb1Only())
640 addRegisterClass(MVT::i32
, &ARM::tGPRRegClass
);
642 addRegisterClass(MVT::i32
, &ARM::GPRRegClass
);
644 if (!Subtarget
->useSoftFloat() && !Subtarget
->isThumb1Only() &&
645 Subtarget
->hasFPRegs()) {
646 addRegisterClass(MVT::f32
, &ARM::SPRRegClass
);
647 addRegisterClass(MVT::f64
, &ARM::DPRRegClass
);
648 if (!Subtarget
->hasVFP2Base())
649 setAllExpand(MVT::f32
);
650 if (!Subtarget
->hasFP64())
651 setAllExpand(MVT::f64
);
654 if (Subtarget
->hasFullFP16()) {
655 addRegisterClass(MVT::f16
, &ARM::HPRRegClass
);
656 setOperationAction(ISD::BITCAST
, MVT::i16
, Custom
);
657 setOperationAction(ISD::BITCAST
, MVT::i32
, Custom
);
658 setOperationAction(ISD::BITCAST
, MVT::f16
, Custom
);
660 setOperationAction(ISD::FMINNUM
, MVT::f16
, Legal
);
661 setOperationAction(ISD::FMAXNUM
, MVT::f16
, Legal
);
664 for (MVT VT
: MVT::vector_valuetypes()) {
665 for (MVT InnerVT
: MVT::vector_valuetypes()) {
666 setTruncStoreAction(VT
, InnerVT
, Expand
);
667 addAllExtLoads(VT
, InnerVT
, Expand
);
670 setOperationAction(ISD::MULHS
, VT
, Expand
);
671 setOperationAction(ISD::SMUL_LOHI
, VT
, Expand
);
672 setOperationAction(ISD::MULHU
, VT
, Expand
);
673 setOperationAction(ISD::UMUL_LOHI
, VT
, Expand
);
675 setOperationAction(ISD::BSWAP
, VT
, Expand
);
678 setOperationAction(ISD::ConstantFP
, MVT::f32
, Custom
);
679 setOperationAction(ISD::ConstantFP
, MVT::f64
, Custom
);
681 setOperationAction(ISD::READ_REGISTER
, MVT::i64
, Custom
);
682 setOperationAction(ISD::WRITE_REGISTER
, MVT::i64
, Custom
);
684 if (Subtarget
->hasMVEIntegerOps())
685 addMVEVectorTypes(Subtarget
->hasMVEFloatOps());
687 // Combine low-overhead loop intrinsics so that we can lower i1 types.
688 if (Subtarget
->hasLOB()) {
689 setTargetDAGCombine(ISD::BRCOND
);
690 setTargetDAGCombine(ISD::BR_CC
);
693 if (Subtarget
->hasNEON()) {
694 addDRTypeForNEON(MVT::v2f32
);
695 addDRTypeForNEON(MVT::v8i8
);
696 addDRTypeForNEON(MVT::v4i16
);
697 addDRTypeForNEON(MVT::v2i32
);
698 addDRTypeForNEON(MVT::v1i64
);
700 addQRTypeForNEON(MVT::v4f32
);
701 addQRTypeForNEON(MVT::v2f64
);
702 addQRTypeForNEON(MVT::v16i8
);
703 addQRTypeForNEON(MVT::v8i16
);
704 addQRTypeForNEON(MVT::v4i32
);
705 addQRTypeForNEON(MVT::v2i64
);
707 if (Subtarget
->hasFullFP16()) {
708 addQRTypeForNEON(MVT::v8f16
);
709 addDRTypeForNEON(MVT::v4f16
);
713 if (Subtarget
->hasMVEIntegerOps() || Subtarget
->hasNEON()) {
714 // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
715 // none of Neon, MVE or VFP supports any arithmetic operations on it.
716 setOperationAction(ISD::FADD
, MVT::v2f64
, Expand
);
717 setOperationAction(ISD::FSUB
, MVT::v2f64
, Expand
);
718 setOperationAction(ISD::FMUL
, MVT::v2f64
, Expand
);
719 // FIXME: Code duplication: FDIV and FREM are expanded always, see
720 // ARMTargetLowering::addTypeForNEON method for details.
721 setOperationAction(ISD::FDIV
, MVT::v2f64
, Expand
);
722 setOperationAction(ISD::FREM
, MVT::v2f64
, Expand
);
723 // FIXME: Create unittest.
724 // In another words, find a way when "copysign" appears in DAG with vector
726 setOperationAction(ISD::FCOPYSIGN
, MVT::v2f64
, Expand
);
727 // FIXME: Code duplication: SETCC has custom operation action, see
728 // ARMTargetLowering::addTypeForNEON method for details.
729 setOperationAction(ISD::SETCC
, MVT::v2f64
, Expand
);
730 // FIXME: Create unittest for FNEG and for FABS.
731 setOperationAction(ISD::FNEG
, MVT::v2f64
, Expand
);
732 setOperationAction(ISD::FABS
, MVT::v2f64
, Expand
);
733 setOperationAction(ISD::FSQRT
, MVT::v2f64
, Expand
);
734 setOperationAction(ISD::FSIN
, MVT::v2f64
, Expand
);
735 setOperationAction(ISD::FCOS
, MVT::v2f64
, Expand
);
736 setOperationAction(ISD::FPOW
, MVT::v2f64
, Expand
);
737 setOperationAction(ISD::FLOG
, MVT::v2f64
, Expand
);
738 setOperationAction(ISD::FLOG2
, MVT::v2f64
, Expand
);
739 setOperationAction(ISD::FLOG10
, MVT::v2f64
, Expand
);
740 setOperationAction(ISD::FEXP
, MVT::v2f64
, Expand
);
741 setOperationAction(ISD::FEXP2
, MVT::v2f64
, Expand
);
742 // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
743 setOperationAction(ISD::FCEIL
, MVT::v2f64
, Expand
);
744 setOperationAction(ISD::FTRUNC
, MVT::v2f64
, Expand
);
745 setOperationAction(ISD::FRINT
, MVT::v2f64
, Expand
);
746 setOperationAction(ISD::FNEARBYINT
, MVT::v2f64
, Expand
);
747 setOperationAction(ISD::FFLOOR
, MVT::v2f64
, Expand
);
748 setOperationAction(ISD::FMA
, MVT::v2f64
, Expand
);
751 if (Subtarget
->hasNEON()) {
752 // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
753 // supported for v4f32.
754 setOperationAction(ISD::FSQRT
, MVT::v4f32
, Expand
);
755 setOperationAction(ISD::FSIN
, MVT::v4f32
, Expand
);
756 setOperationAction(ISD::FCOS
, MVT::v4f32
, Expand
);
757 setOperationAction(ISD::FPOW
, MVT::v4f32
, Expand
);
758 setOperationAction(ISD::FLOG
, MVT::v4f32
, Expand
);
759 setOperationAction(ISD::FLOG2
, MVT::v4f32
, Expand
);
760 setOperationAction(ISD::FLOG10
, MVT::v4f32
, Expand
);
761 setOperationAction(ISD::FEXP
, MVT::v4f32
, Expand
);
762 setOperationAction(ISD::FEXP2
, MVT::v4f32
, Expand
);
763 setOperationAction(ISD::FCEIL
, MVT::v4f32
, Expand
);
764 setOperationAction(ISD::FTRUNC
, MVT::v4f32
, Expand
);
765 setOperationAction(ISD::FRINT
, MVT::v4f32
, Expand
);
766 setOperationAction(ISD::FNEARBYINT
, MVT::v4f32
, Expand
);
767 setOperationAction(ISD::FFLOOR
, MVT::v4f32
, Expand
);
769 // Mark v2f32 intrinsics.
770 setOperationAction(ISD::FSQRT
, MVT::v2f32
, Expand
);
771 setOperationAction(ISD::FSIN
, MVT::v2f32
, Expand
);
772 setOperationAction(ISD::FCOS
, MVT::v2f32
, Expand
);
773 setOperationAction(ISD::FPOW
, MVT::v2f32
, Expand
);
774 setOperationAction(ISD::FLOG
, MVT::v2f32
, Expand
);
775 setOperationAction(ISD::FLOG2
, MVT::v2f32
, Expand
);
776 setOperationAction(ISD::FLOG10
, MVT::v2f32
, Expand
);
777 setOperationAction(ISD::FEXP
, MVT::v2f32
, Expand
);
778 setOperationAction(ISD::FEXP2
, MVT::v2f32
, Expand
);
779 setOperationAction(ISD::FCEIL
, MVT::v2f32
, Expand
);
780 setOperationAction(ISD::FTRUNC
, MVT::v2f32
, Expand
);
781 setOperationAction(ISD::FRINT
, MVT::v2f32
, Expand
);
782 setOperationAction(ISD::FNEARBYINT
, MVT::v2f32
, Expand
);
783 setOperationAction(ISD::FFLOOR
, MVT::v2f32
, Expand
);
785 // Neon does not support some operations on v1i64 and v2i64 types.
786 setOperationAction(ISD::MUL
, MVT::v1i64
, Expand
);
787 // Custom handling for some quad-vector types to detect VMULL.
788 setOperationAction(ISD::MUL
, MVT::v8i16
, Custom
);
789 setOperationAction(ISD::MUL
, MVT::v4i32
, Custom
);
790 setOperationAction(ISD::MUL
, MVT::v2i64
, Custom
);
791 // Custom handling for some vector types to avoid expensive expansions
792 setOperationAction(ISD::SDIV
, MVT::v4i16
, Custom
);
793 setOperationAction(ISD::SDIV
, MVT::v8i8
, Custom
);
794 setOperationAction(ISD::UDIV
, MVT::v4i16
, Custom
);
795 setOperationAction(ISD::UDIV
, MVT::v8i8
, Custom
);
796 // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
797 // a destination type that is wider than the source, and nor does
798 // it have a FP_TO_[SU]INT instruction with a narrower destination than
800 setOperationAction(ISD::SINT_TO_FP
, MVT::v4i16
, Custom
);
801 setOperationAction(ISD::SINT_TO_FP
, MVT::v8i16
, Custom
);
802 setOperationAction(ISD::UINT_TO_FP
, MVT::v4i16
, Custom
);
803 setOperationAction(ISD::UINT_TO_FP
, MVT::v8i16
, Custom
);
804 setOperationAction(ISD::FP_TO_UINT
, MVT::v4i16
, Custom
);
805 setOperationAction(ISD::FP_TO_UINT
, MVT::v8i16
, Custom
);
806 setOperationAction(ISD::FP_TO_SINT
, MVT::v4i16
, Custom
);
807 setOperationAction(ISD::FP_TO_SINT
, MVT::v8i16
, Custom
);
809 setOperationAction(ISD::FP_ROUND
, MVT::v2f32
, Expand
);
810 setOperationAction(ISD::FP_EXTEND
, MVT::v2f64
, Expand
);
812 // NEON does not have single instruction CTPOP for vectors with element
813 // types wider than 8-bits. However, custom lowering can leverage the
814 // v8i8/v16i8 vcnt instruction.
815 setOperationAction(ISD::CTPOP
, MVT::v2i32
, Custom
);
816 setOperationAction(ISD::CTPOP
, MVT::v4i32
, Custom
);
817 setOperationAction(ISD::CTPOP
, MVT::v4i16
, Custom
);
818 setOperationAction(ISD::CTPOP
, MVT::v8i16
, Custom
);
819 setOperationAction(ISD::CTPOP
, MVT::v1i64
, Custom
);
820 setOperationAction(ISD::CTPOP
, MVT::v2i64
, Custom
);
822 setOperationAction(ISD::CTLZ
, MVT::v1i64
, Expand
);
823 setOperationAction(ISD::CTLZ
, MVT::v2i64
, Expand
);
825 // NEON does not have single instruction CTTZ for vectors.
826 setOperationAction(ISD::CTTZ
, MVT::v8i8
, Custom
);
827 setOperationAction(ISD::CTTZ
, MVT::v4i16
, Custom
);
828 setOperationAction(ISD::CTTZ
, MVT::v2i32
, Custom
);
829 setOperationAction(ISD::CTTZ
, MVT::v1i64
, Custom
);
831 setOperationAction(ISD::CTTZ
, MVT::v16i8
, Custom
);
832 setOperationAction(ISD::CTTZ
, MVT::v8i16
, Custom
);
833 setOperationAction(ISD::CTTZ
, MVT::v4i32
, Custom
);
834 setOperationAction(ISD::CTTZ
, MVT::v2i64
, Custom
);
836 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v8i8
, Custom
);
837 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v4i16
, Custom
);
838 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v2i32
, Custom
);
839 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v1i64
, Custom
);
841 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v16i8
, Custom
);
842 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v8i16
, Custom
);
843 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v4i32
, Custom
);
844 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v2i64
, Custom
);
846 // NEON only has FMA instructions as of VFP4.
847 if (!Subtarget
->hasVFP4Base()) {
848 setOperationAction(ISD::FMA
, MVT::v2f32
, Expand
);
849 setOperationAction(ISD::FMA
, MVT::v4f32
, Expand
);
852 setTargetDAGCombine(ISD::INTRINSIC_VOID
);
853 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN
);
854 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN
);
855 setTargetDAGCombine(ISD::SHL
);
856 setTargetDAGCombine(ISD::SRL
);
857 setTargetDAGCombine(ISD::SRA
);
858 setTargetDAGCombine(ISD::SIGN_EXTEND
);
859 setTargetDAGCombine(ISD::ZERO_EXTEND
);
860 setTargetDAGCombine(ISD::ANY_EXTEND
);
861 setTargetDAGCombine(ISD::STORE
);
862 setTargetDAGCombine(ISD::FP_TO_SINT
);
863 setTargetDAGCombine(ISD::FP_TO_UINT
);
864 setTargetDAGCombine(ISD::FDIV
);
865 setTargetDAGCombine(ISD::LOAD
);
867 // It is legal to extload from v4i8 to v4i16 or v4i32.
868 for (MVT Ty
: {MVT::v8i8
, MVT::v4i8
, MVT::v2i8
, MVT::v4i16
, MVT::v2i16
,
870 for (MVT VT
: MVT::integer_vector_valuetypes()) {
871 setLoadExtAction(ISD::EXTLOAD
, VT
, Ty
, Legal
);
872 setLoadExtAction(ISD::ZEXTLOAD
, VT
, Ty
, Legal
);
873 setLoadExtAction(ISD::SEXTLOAD
, VT
, Ty
, Legal
);
878 if (Subtarget
->hasNEON() || Subtarget
->hasMVEIntegerOps()) {
879 setTargetDAGCombine(ISD::BUILD_VECTOR
);
880 setTargetDAGCombine(ISD::VECTOR_SHUFFLE
);
881 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT
);
884 if (!Subtarget
->hasFP64()) {
885 // When targeting a floating-point unit with only single-precision
886 // operations, f64 is legal for the few double-precision instructions which
887 // are present However, no double-precision operations other than moves,
888 // loads and stores are provided by the hardware.
889 setOperationAction(ISD::FADD
, MVT::f64
, Expand
);
890 setOperationAction(ISD::FSUB
, MVT::f64
, Expand
);
891 setOperationAction(ISD::FMUL
, MVT::f64
, Expand
);
892 setOperationAction(ISD::FMA
, MVT::f64
, Expand
);
893 setOperationAction(ISD::FDIV
, MVT::f64
, Expand
);
894 setOperationAction(ISD::FREM
, MVT::f64
, Expand
);
895 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Expand
);
896 setOperationAction(ISD::FGETSIGN
, MVT::f64
, Expand
);
897 setOperationAction(ISD::FNEG
, MVT::f64
, Expand
);
898 setOperationAction(ISD::FABS
, MVT::f64
, Expand
);
899 setOperationAction(ISD::FSQRT
, MVT::f64
, Expand
);
900 setOperationAction(ISD::FSIN
, MVT::f64
, Expand
);
901 setOperationAction(ISD::FCOS
, MVT::f64
, Expand
);
902 setOperationAction(ISD::FPOW
, MVT::f64
, Expand
);
903 setOperationAction(ISD::FLOG
, MVT::f64
, Expand
);
904 setOperationAction(ISD::FLOG2
, MVT::f64
, Expand
);
905 setOperationAction(ISD::FLOG10
, MVT::f64
, Expand
);
906 setOperationAction(ISD::FEXP
, MVT::f64
, Expand
);
907 setOperationAction(ISD::FEXP2
, MVT::f64
, Expand
);
908 setOperationAction(ISD::FCEIL
, MVT::f64
, Expand
);
909 setOperationAction(ISD::FTRUNC
, MVT::f64
, Expand
);
910 setOperationAction(ISD::FRINT
, MVT::f64
, Expand
);
911 setOperationAction(ISD::FNEARBYINT
, MVT::f64
, Expand
);
912 setOperationAction(ISD::FFLOOR
, MVT::f64
, Expand
);
913 setOperationAction(ISD::SINT_TO_FP
, MVT::i32
, Custom
);
914 setOperationAction(ISD::UINT_TO_FP
, MVT::i32
, Custom
);
915 setOperationAction(ISD::FP_TO_SINT
, MVT::i32
, Custom
);
916 setOperationAction(ISD::FP_TO_UINT
, MVT::i32
, Custom
);
917 setOperationAction(ISD::FP_TO_SINT
, MVT::f64
, Custom
);
918 setOperationAction(ISD::FP_TO_UINT
, MVT::f64
, Custom
);
919 setOperationAction(ISD::FP_ROUND
, MVT::f32
, Custom
);
922 if (!Subtarget
->hasFP64() || !Subtarget
->hasFPARMv8Base()){
923 setOperationAction(ISD::FP_EXTEND
, MVT::f64
, Custom
);
924 setOperationAction(ISD::FP_ROUND
, MVT::f16
, Custom
);
927 if (!Subtarget
->hasFP16())
928 setOperationAction(ISD::FP_EXTEND
, MVT::f32
, Custom
);
930 if (!Subtarget
->hasFP64())
931 setOperationAction(ISD::FP_ROUND
, MVT::f32
, Custom
);
933 computeRegisterProperties(Subtarget
->getRegisterInfo());
935 // ARM does not have floating-point extending loads.
936 for (MVT VT
: MVT::fp_valuetypes()) {
937 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::f32
, Expand
);
938 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::f16
, Expand
);
941 // ... or truncating stores
942 setTruncStoreAction(MVT::f64
, MVT::f32
, Expand
);
943 setTruncStoreAction(MVT::f32
, MVT::f16
, Expand
);
944 setTruncStoreAction(MVT::f64
, MVT::f16
, Expand
);
946 // ARM does not have i1 sign extending load.
947 for (MVT VT
: MVT::integer_valuetypes())
948 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::i1
, Promote
);
950 // ARM supports all 4 flavors of integer indexed load / store.
951 if (!Subtarget
->isThumb1Only()) {
952 for (unsigned im
= (unsigned)ISD::PRE_INC
;
953 im
!= (unsigned)ISD::LAST_INDEXED_MODE
; ++im
) {
954 setIndexedLoadAction(im
, MVT::i1
, Legal
);
955 setIndexedLoadAction(im
, MVT::i8
, Legal
);
956 setIndexedLoadAction(im
, MVT::i16
, Legal
);
957 setIndexedLoadAction(im
, MVT::i32
, Legal
);
958 setIndexedStoreAction(im
, MVT::i1
, Legal
);
959 setIndexedStoreAction(im
, MVT::i8
, Legal
);
960 setIndexedStoreAction(im
, MVT::i16
, Legal
);
961 setIndexedStoreAction(im
, MVT::i32
, Legal
);
964 // Thumb-1 has limited post-inc load/store support - LDM r0!, {r1}.
965 setIndexedLoadAction(ISD::POST_INC
, MVT::i32
, Legal
);
966 setIndexedStoreAction(ISD::POST_INC
, MVT::i32
, Legal
);
969 setOperationAction(ISD::SADDO
, MVT::i32
, Custom
);
970 setOperationAction(ISD::UADDO
, MVT::i32
, Custom
);
971 setOperationAction(ISD::SSUBO
, MVT::i32
, Custom
);
972 setOperationAction(ISD::USUBO
, MVT::i32
, Custom
);
974 setOperationAction(ISD::ADDCARRY
, MVT::i32
, Custom
);
975 setOperationAction(ISD::SUBCARRY
, MVT::i32
, Custom
);
977 // i64 operation support.
978 setOperationAction(ISD::MUL
, MVT::i64
, Expand
);
979 setOperationAction(ISD::MULHU
, MVT::i32
, Expand
);
980 if (Subtarget
->isThumb1Only()) {
981 setOperationAction(ISD::UMUL_LOHI
, MVT::i32
, Expand
);
982 setOperationAction(ISD::SMUL_LOHI
, MVT::i32
, Expand
);
984 if (Subtarget
->isThumb1Only() || !Subtarget
->hasV6Ops()
985 || (Subtarget
->isThumb2() && !Subtarget
->hasDSP()))
986 setOperationAction(ISD::MULHS
, MVT::i32
, Expand
);
988 setOperationAction(ISD::SHL_PARTS
, MVT::i32
, Custom
);
989 setOperationAction(ISD::SRA_PARTS
, MVT::i32
, Custom
);
990 setOperationAction(ISD::SRL_PARTS
, MVT::i32
, Custom
);
991 setOperationAction(ISD::SRL
, MVT::i64
, Custom
);
992 setOperationAction(ISD::SRA
, MVT::i64
, Custom
);
993 setOperationAction(ISD::INTRINSIC_WO_CHAIN
, MVT::i64
, Custom
);
995 // MVE lowers 64 bit shifts to lsll and lsrl
996 // assuming that ISD::SRL and SRA of i64 are already marked custom
997 if (Subtarget
->hasMVEIntegerOps())
998 setOperationAction(ISD::SHL
, MVT::i64
, Custom
);
1000 // Expand to __aeabi_l{lsl,lsr,asr} calls for Thumb1.
1001 if (Subtarget
->isThumb1Only()) {
1002 setOperationAction(ISD::SHL_PARTS
, MVT::i32
, Expand
);
1003 setOperationAction(ISD::SRA_PARTS
, MVT::i32
, Expand
);
1004 setOperationAction(ISD::SRL_PARTS
, MVT::i32
, Expand
);
1007 if (!Subtarget
->isThumb1Only() && Subtarget
->hasV6T2Ops())
1008 setOperationAction(ISD::BITREVERSE
, MVT::i32
, Legal
);
1010 // ARM does not have ROTL.
1011 setOperationAction(ISD::ROTL
, MVT::i32
, Expand
);
1012 for (MVT VT
: MVT::vector_valuetypes()) {
1013 setOperationAction(ISD::ROTL
, VT
, Expand
);
1014 setOperationAction(ISD::ROTR
, VT
, Expand
);
1016 setOperationAction(ISD::CTTZ
, MVT::i32
, Custom
);
1017 setOperationAction(ISD::CTPOP
, MVT::i32
, Expand
);
1018 if (!Subtarget
->hasV5TOps() || Subtarget
->isThumb1Only()) {
1019 setOperationAction(ISD::CTLZ
, MVT::i32
, Expand
);
1020 setOperationAction(ISD::CTLZ_ZERO_UNDEF
, MVT::i32
, LibCall
);
1023 // @llvm.readcyclecounter requires the Performance Monitors extension.
1024 // Default to the 0 expansion on unsupported platforms.
1025 // FIXME: Technically there are older ARM CPUs that have
1026 // implementation-specific ways of obtaining this information.
1027 if (Subtarget
->hasPerfMon())
1028 setOperationAction(ISD::READCYCLECOUNTER
, MVT::i64
, Custom
);
1030 // Only ARMv6 has BSWAP.
1031 if (!Subtarget
->hasV6Ops())
1032 setOperationAction(ISD::BSWAP
, MVT::i32
, Expand
);
1034 bool hasDivide
= Subtarget
->isThumb() ? Subtarget
->hasDivideInThumbMode()
1035 : Subtarget
->hasDivideInARMMode();
1037 // These are expanded into libcalls if the cpu doesn't have HW divider.
1038 setOperationAction(ISD::SDIV
, MVT::i32
, LibCall
);
1039 setOperationAction(ISD::UDIV
, MVT::i32
, LibCall
);
1042 if (Subtarget
->isTargetWindows() && !Subtarget
->hasDivideInThumbMode()) {
1043 setOperationAction(ISD::SDIV
, MVT::i32
, Custom
);
1044 setOperationAction(ISD::UDIV
, MVT::i32
, Custom
);
1046 setOperationAction(ISD::SDIV
, MVT::i64
, Custom
);
1047 setOperationAction(ISD::UDIV
, MVT::i64
, Custom
);
1050 setOperationAction(ISD::SREM
, MVT::i32
, Expand
);
1051 setOperationAction(ISD::UREM
, MVT::i32
, Expand
);
1053 // Register based DivRem for AEABI (RTABI 4.2)
1054 if (Subtarget
->isTargetAEABI() || Subtarget
->isTargetAndroid() ||
1055 Subtarget
->isTargetGNUAEABI() || Subtarget
->isTargetMuslAEABI() ||
1056 Subtarget
->isTargetWindows()) {
1057 setOperationAction(ISD::SREM
, MVT::i64
, Custom
);
1058 setOperationAction(ISD::UREM
, MVT::i64
, Custom
);
1059 HasStandaloneRem
= false;
1061 if (Subtarget
->isTargetWindows()) {
1063 const RTLIB::Libcall Op
;
1064 const char * const Name
;
1065 const CallingConv::ID CC
;
1066 } LibraryCalls
[] = {
1067 { RTLIB::SDIVREM_I8
, "__rt_sdiv", CallingConv::ARM_AAPCS
},
1068 { RTLIB::SDIVREM_I16
, "__rt_sdiv", CallingConv::ARM_AAPCS
},
1069 { RTLIB::SDIVREM_I32
, "__rt_sdiv", CallingConv::ARM_AAPCS
},
1070 { RTLIB::SDIVREM_I64
, "__rt_sdiv64", CallingConv::ARM_AAPCS
},
1072 { RTLIB::UDIVREM_I8
, "__rt_udiv", CallingConv::ARM_AAPCS
},
1073 { RTLIB::UDIVREM_I16
, "__rt_udiv", CallingConv::ARM_AAPCS
},
1074 { RTLIB::UDIVREM_I32
, "__rt_udiv", CallingConv::ARM_AAPCS
},
1075 { RTLIB::UDIVREM_I64
, "__rt_udiv64", CallingConv::ARM_AAPCS
},
1078 for (const auto &LC
: LibraryCalls
) {
1079 setLibcallName(LC
.Op
, LC
.Name
);
1080 setLibcallCallingConv(LC
.Op
, LC
.CC
);
1084 const RTLIB::Libcall Op
;
1085 const char * const Name
;
1086 const CallingConv::ID CC
;
1087 } LibraryCalls
[] = {
1088 { RTLIB::SDIVREM_I8
, "__aeabi_idivmod", CallingConv::ARM_AAPCS
},
1089 { RTLIB::SDIVREM_I16
, "__aeabi_idivmod", CallingConv::ARM_AAPCS
},
1090 { RTLIB::SDIVREM_I32
, "__aeabi_idivmod", CallingConv::ARM_AAPCS
},
1091 { RTLIB::SDIVREM_I64
, "__aeabi_ldivmod", CallingConv::ARM_AAPCS
},
1093 { RTLIB::UDIVREM_I8
, "__aeabi_uidivmod", CallingConv::ARM_AAPCS
},
1094 { RTLIB::UDIVREM_I16
, "__aeabi_uidivmod", CallingConv::ARM_AAPCS
},
1095 { RTLIB::UDIVREM_I32
, "__aeabi_uidivmod", CallingConv::ARM_AAPCS
},
1096 { RTLIB::UDIVREM_I64
, "__aeabi_uldivmod", CallingConv::ARM_AAPCS
},
1099 for (const auto &LC
: LibraryCalls
) {
1100 setLibcallName(LC
.Op
, LC
.Name
);
1101 setLibcallCallingConv(LC
.Op
, LC
.CC
);
1105 setOperationAction(ISD::SDIVREM
, MVT::i32
, Custom
);
1106 setOperationAction(ISD::UDIVREM
, MVT::i32
, Custom
);
1107 setOperationAction(ISD::SDIVREM
, MVT::i64
, Custom
);
1108 setOperationAction(ISD::UDIVREM
, MVT::i64
, Custom
);
1110 setOperationAction(ISD::SDIVREM
, MVT::i32
, Expand
);
1111 setOperationAction(ISD::UDIVREM
, MVT::i32
, Expand
);
1114 if (Subtarget
->isTargetWindows() && Subtarget
->getTargetTriple().isOSMSVCRT())
1115 for (auto &VT
: {MVT::f32
, MVT::f64
})
1116 setOperationAction(ISD::FPOWI
, VT
, Custom
);
1118 setOperationAction(ISD::GlobalAddress
, MVT::i32
, Custom
);
1119 setOperationAction(ISD::ConstantPool
, MVT::i32
, Custom
);
1120 setOperationAction(ISD::GlobalTLSAddress
, MVT::i32
, Custom
);
1121 setOperationAction(ISD::BlockAddress
, MVT::i32
, Custom
);
1123 setOperationAction(ISD::TRAP
, MVT::Other
, Legal
);
1124 setOperationAction(ISD::DEBUGTRAP
, MVT::Other
, Legal
);
1126 // Use the default implementation.
1127 setOperationAction(ISD::VASTART
, MVT::Other
, Custom
);
1128 setOperationAction(ISD::VAARG
, MVT::Other
, Expand
);
1129 setOperationAction(ISD::VACOPY
, MVT::Other
, Expand
);
1130 setOperationAction(ISD::VAEND
, MVT::Other
, Expand
);
1131 setOperationAction(ISD::STACKSAVE
, MVT::Other
, Expand
);
1132 setOperationAction(ISD::STACKRESTORE
, MVT::Other
, Expand
);
1134 if (Subtarget
->isTargetWindows())
1135 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i32
, Custom
);
1137 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i32
, Expand
);
1139 // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
1140 // the default expansion.
1141 InsertFencesForAtomic
= false;
1142 if (Subtarget
->hasAnyDataBarrier() &&
1143 (!Subtarget
->isThumb() || Subtarget
->hasV8MBaselineOps())) {
1144 // ATOMIC_FENCE needs custom lowering; the others should have been expanded
1145 // to ldrex/strex loops already.
1146 setOperationAction(ISD::ATOMIC_FENCE
, MVT::Other
, Custom
);
1147 if (!Subtarget
->isThumb() || !Subtarget
->isMClass())
1148 setOperationAction(ISD::ATOMIC_CMP_SWAP
, MVT::i64
, Custom
);
1150 // On v8, we have particularly efficient implementations of atomic fences
1151 // if they can be combined with nearby atomic loads and stores.
1152 if (!Subtarget
->hasAcquireRelease() ||
1153 getTargetMachine().getOptLevel() == 0) {
1154 // Automatically insert fences (dmb ish) around ATOMIC_SWAP etc.
1155 InsertFencesForAtomic
= true;
1158 // If there's anything we can use as a barrier, go through custom lowering
1159 // for ATOMIC_FENCE.
1160 // If target has DMB in thumb, Fences can be inserted.
1161 if (Subtarget
->hasDataBarrier())
1162 InsertFencesForAtomic
= true;
1164 setOperationAction(ISD::ATOMIC_FENCE
, MVT::Other
,
1165 Subtarget
->hasAnyDataBarrier() ? Custom
: Expand
);
1167 // Set them all for expansion, which will force libcalls.
1168 setOperationAction(ISD::ATOMIC_CMP_SWAP
, MVT::i32
, Expand
);
1169 setOperationAction(ISD::ATOMIC_SWAP
, MVT::i32
, Expand
);
1170 setOperationAction(ISD::ATOMIC_LOAD_ADD
, MVT::i32
, Expand
);
1171 setOperationAction(ISD::ATOMIC_LOAD_SUB
, MVT::i32
, Expand
);
1172 setOperationAction(ISD::ATOMIC_LOAD_AND
, MVT::i32
, Expand
);
1173 setOperationAction(ISD::ATOMIC_LOAD_OR
, MVT::i32
, Expand
);
1174 setOperationAction(ISD::ATOMIC_LOAD_XOR
, MVT::i32
, Expand
);
1175 setOperationAction(ISD::ATOMIC_LOAD_NAND
, MVT::i32
, Expand
);
1176 setOperationAction(ISD::ATOMIC_LOAD_MIN
, MVT::i32
, Expand
);
1177 setOperationAction(ISD::ATOMIC_LOAD_MAX
, MVT::i32
, Expand
);
1178 setOperationAction(ISD::ATOMIC_LOAD_UMIN
, MVT::i32
, Expand
);
1179 setOperationAction(ISD::ATOMIC_LOAD_UMAX
, MVT::i32
, Expand
);
1180 // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
1181 // Unordered/Monotonic case.
1182 if (!InsertFencesForAtomic
) {
1183 setOperationAction(ISD::ATOMIC_LOAD
, MVT::i32
, Custom
);
1184 setOperationAction(ISD::ATOMIC_STORE
, MVT::i32
, Custom
);
1188 setOperationAction(ISD::PREFETCH
, MVT::Other
, Custom
);
1190 // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
1191 if (!Subtarget
->hasV6Ops()) {
1192 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i16
, Expand
);
1193 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i8
, Expand
);
1195 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i1
, Expand
);
1197 if (!Subtarget
->useSoftFloat() && Subtarget
->hasFPRegs() &&
1198 !Subtarget
->isThumb1Only()) {
1199 // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
1200 // iff target supports vfp2.
1201 setOperationAction(ISD::BITCAST
, MVT::i64
, Custom
);
1202 setOperationAction(ISD::FLT_ROUNDS_
, MVT::i32
, Custom
);
1205 // We want to custom lower some of our intrinsics.
1206 setOperationAction(ISD::INTRINSIC_WO_CHAIN
, MVT::Other
, Custom
);
1207 setOperationAction(ISD::EH_SJLJ_SETJMP
, MVT::i32
, Custom
);
1208 setOperationAction(ISD::EH_SJLJ_LONGJMP
, MVT::Other
, Custom
);
1209 setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH
, MVT::Other
, Custom
);
1210 if (Subtarget
->useSjLjEH())
1211 setLibcallName(RTLIB::UNWIND_RESUME
, "_Unwind_SjLj_Resume");
1213 setOperationAction(ISD::SETCC
, MVT::i32
, Expand
);
1214 setOperationAction(ISD::SETCC
, MVT::f32
, Expand
);
1215 setOperationAction(ISD::SETCC
, MVT::f64
, Expand
);
1216 setOperationAction(ISD::SELECT
, MVT::i32
, Custom
);
1217 setOperationAction(ISD::SELECT
, MVT::f32
, Custom
);
1218 setOperationAction(ISD::SELECT
, MVT::f64
, Custom
);
1219 setOperationAction(ISD::SELECT_CC
, MVT::i32
, Custom
);
1220 setOperationAction(ISD::SELECT_CC
, MVT::f32
, Custom
);
1221 setOperationAction(ISD::SELECT_CC
, MVT::f64
, Custom
);
1222 if (Subtarget
->hasFullFP16()) {
1223 setOperationAction(ISD::SETCC
, MVT::f16
, Expand
);
1224 setOperationAction(ISD::SELECT
, MVT::f16
, Custom
);
1225 setOperationAction(ISD::SELECT_CC
, MVT::f16
, Custom
);
1228 setOperationAction(ISD::SETCCCARRY
, MVT::i32
, Custom
);
1230 setOperationAction(ISD::BRCOND
, MVT::Other
, Custom
);
1231 setOperationAction(ISD::BR_CC
, MVT::i32
, Custom
);
1232 if (Subtarget
->hasFullFP16())
1233 setOperationAction(ISD::BR_CC
, MVT::f16
, Custom
);
1234 setOperationAction(ISD::BR_CC
, MVT::f32
, Custom
);
1235 setOperationAction(ISD::BR_CC
, MVT::f64
, Custom
);
1236 setOperationAction(ISD::BR_JT
, MVT::Other
, Custom
);
1238 // We don't support sin/cos/fmod/copysign/pow
1239 setOperationAction(ISD::FSIN
, MVT::f64
, Expand
);
1240 setOperationAction(ISD::FSIN
, MVT::f32
, Expand
);
1241 setOperationAction(ISD::FCOS
, MVT::f32
, Expand
);
1242 setOperationAction(ISD::FCOS
, MVT::f64
, Expand
);
1243 setOperationAction(ISD::FSINCOS
, MVT::f64
, Expand
);
1244 setOperationAction(ISD::FSINCOS
, MVT::f32
, Expand
);
1245 setOperationAction(ISD::FREM
, MVT::f64
, Expand
);
1246 setOperationAction(ISD::FREM
, MVT::f32
, Expand
);
1247 if (!Subtarget
->useSoftFloat() && Subtarget
->hasVFP2Base() &&
1248 !Subtarget
->isThumb1Only()) {
1249 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Custom
);
1250 setOperationAction(ISD::FCOPYSIGN
, MVT::f32
, Custom
);
1252 setOperationAction(ISD::FPOW
, MVT::f64
, Expand
);
1253 setOperationAction(ISD::FPOW
, MVT::f32
, Expand
);
1255 if (!Subtarget
->hasVFP4Base()) {
1256 setOperationAction(ISD::FMA
, MVT::f64
, Expand
);
1257 setOperationAction(ISD::FMA
, MVT::f32
, Expand
);
1260 // Various VFP goodness
1261 if (!Subtarget
->useSoftFloat() && !Subtarget
->isThumb1Only()) {
1262 // FP-ARMv8 adds f64 <-> f16 conversion. Before that it should be expanded.
1263 if (!Subtarget
->hasFPARMv8Base() || !Subtarget
->hasFP64()) {
1264 setOperationAction(ISD::FP16_TO_FP
, MVT::f64
, Expand
);
1265 setOperationAction(ISD::FP_TO_FP16
, MVT::f64
, Expand
);
1268 // fp16 is a special v7 extension that adds f16 <-> f32 conversions.
1269 if (!Subtarget
->hasFP16()) {
1270 setOperationAction(ISD::FP16_TO_FP
, MVT::f32
, Expand
);
1271 setOperationAction(ISD::FP_TO_FP16
, MVT::f32
, Expand
);
1275 // Use __sincos_stret if available.
1276 if (getLibcallName(RTLIB::SINCOS_STRET_F32
) != nullptr &&
1277 getLibcallName(RTLIB::SINCOS_STRET_F64
) != nullptr) {
1278 setOperationAction(ISD::FSINCOS
, MVT::f64
, Custom
);
1279 setOperationAction(ISD::FSINCOS
, MVT::f32
, Custom
);
1282 // FP-ARMv8 implements a lot of rounding-like FP operations.
1283 if (Subtarget
->hasFPARMv8Base()) {
1284 setOperationAction(ISD::FFLOOR
, MVT::f32
, Legal
);
1285 setOperationAction(ISD::FCEIL
, MVT::f32
, Legal
);
1286 setOperationAction(ISD::FROUND
, MVT::f32
, Legal
);
1287 setOperationAction(ISD::FTRUNC
, MVT::f32
, Legal
);
1288 setOperationAction(ISD::FNEARBYINT
, MVT::f32
, Legal
);
1289 setOperationAction(ISD::FRINT
, MVT::f32
, Legal
);
1290 setOperationAction(ISD::FMINNUM
, MVT::f32
, Legal
);
1291 setOperationAction(ISD::FMAXNUM
, MVT::f32
, Legal
);
1292 if (Subtarget
->hasNEON()) {
1293 setOperationAction(ISD::FMINNUM
, MVT::v2f32
, Legal
);
1294 setOperationAction(ISD::FMAXNUM
, MVT::v2f32
, Legal
);
1295 setOperationAction(ISD::FMINNUM
, MVT::v4f32
, Legal
);
1296 setOperationAction(ISD::FMAXNUM
, MVT::v4f32
, Legal
);
1299 if (Subtarget
->hasFP64()) {
1300 setOperationAction(ISD::FFLOOR
, MVT::f64
, Legal
);
1301 setOperationAction(ISD::FCEIL
, MVT::f64
, Legal
);
1302 setOperationAction(ISD::FROUND
, MVT::f64
, Legal
);
1303 setOperationAction(ISD::FTRUNC
, MVT::f64
, Legal
);
1304 setOperationAction(ISD::FNEARBYINT
, MVT::f64
, Legal
);
1305 setOperationAction(ISD::FRINT
, MVT::f64
, Legal
);
1306 setOperationAction(ISD::FMINNUM
, MVT::f64
, Legal
);
1307 setOperationAction(ISD::FMAXNUM
, MVT::f64
, Legal
);
1311 // FP16 often need to be promoted to call lib functions
1312 if (Subtarget
->hasFullFP16()) {
1313 setOperationAction(ISD::FREM
, MVT::f16
, Promote
);
1314 setOperationAction(ISD::FCOPYSIGN
, MVT::f16
, Expand
);
1315 setOperationAction(ISD::FSIN
, MVT::f16
, Promote
);
1316 setOperationAction(ISD::FCOS
, MVT::f16
, Promote
);
1317 setOperationAction(ISD::FSINCOS
, MVT::f16
, Promote
);
1318 setOperationAction(ISD::FPOWI
, MVT::f16
, Promote
);
1319 setOperationAction(ISD::FPOW
, MVT::f16
, Promote
);
1320 setOperationAction(ISD::FEXP
, MVT::f16
, Promote
);
1321 setOperationAction(ISD::FEXP2
, MVT::f16
, Promote
);
1322 setOperationAction(ISD::FLOG
, MVT::f16
, Promote
);
1323 setOperationAction(ISD::FLOG10
, MVT::f16
, Promote
);
1324 setOperationAction(ISD::FLOG2
, MVT::f16
, Promote
);
1326 setOperationAction(ISD::FROUND
, MVT::f16
, Legal
);
1329 if (Subtarget
->hasNEON()) {
1330 // vmin and vmax aren't available in a scalar form, so we use
1331 // a NEON instruction with an undef lane instead.
1332 setOperationAction(ISD::FMINIMUM
, MVT::f16
, Legal
);
1333 setOperationAction(ISD::FMAXIMUM
, MVT::f16
, Legal
);
1334 setOperationAction(ISD::FMINIMUM
, MVT::f32
, Legal
);
1335 setOperationAction(ISD::FMAXIMUM
, MVT::f32
, Legal
);
1336 setOperationAction(ISD::FMINIMUM
, MVT::v2f32
, Legal
);
1337 setOperationAction(ISD::FMAXIMUM
, MVT::v2f32
, Legal
);
1338 setOperationAction(ISD::FMINIMUM
, MVT::v4f32
, Legal
);
1339 setOperationAction(ISD::FMAXIMUM
, MVT::v4f32
, Legal
);
1341 if (Subtarget
->hasFullFP16()) {
1342 setOperationAction(ISD::FMINNUM
, MVT::v4f16
, Legal
);
1343 setOperationAction(ISD::FMAXNUM
, MVT::v4f16
, Legal
);
1344 setOperationAction(ISD::FMINNUM
, MVT::v8f16
, Legal
);
1345 setOperationAction(ISD::FMAXNUM
, MVT::v8f16
, Legal
);
1347 setOperationAction(ISD::FMINIMUM
, MVT::v4f16
, Legal
);
1348 setOperationAction(ISD::FMAXIMUM
, MVT::v4f16
, Legal
);
1349 setOperationAction(ISD::FMINIMUM
, MVT::v8f16
, Legal
);
1350 setOperationAction(ISD::FMAXIMUM
, MVT::v8f16
, Legal
);
1354 // We have target-specific dag combine patterns for the following nodes:
1355 // ARMISD::VMOVRRD - No need to call setTargetDAGCombine
1356 setTargetDAGCombine(ISD::ADD
);
1357 setTargetDAGCombine(ISD::SUB
);
1358 setTargetDAGCombine(ISD::MUL
);
1359 setTargetDAGCombine(ISD::AND
);
1360 setTargetDAGCombine(ISD::OR
);
1361 setTargetDAGCombine(ISD::XOR
);
1363 if (Subtarget
->hasV6Ops())
1364 setTargetDAGCombine(ISD::SRL
);
1365 if (Subtarget
->isThumb1Only())
1366 setTargetDAGCombine(ISD::SHL
);
1368 setStackPointerRegisterToSaveRestore(ARM::SP
);
1370 if (Subtarget
->useSoftFloat() || Subtarget
->isThumb1Only() ||
1371 !Subtarget
->hasVFP2Base() || Subtarget
->hasMinSize())
1372 setSchedulingPreference(Sched::RegPressure
);
1374 setSchedulingPreference(Sched::Hybrid
);
1376 //// temporary - rewrite interface to use type
1377 MaxStoresPerMemset
= 8;
1378 MaxStoresPerMemsetOptSize
= 4;
1379 MaxStoresPerMemcpy
= 4; // For @llvm.memcpy -> sequence of stores
1380 MaxStoresPerMemcpyOptSize
= 2;
1381 MaxStoresPerMemmove
= 4; // For @llvm.memmove -> sequence of stores
1382 MaxStoresPerMemmoveOptSize
= 2;
1384 // On ARM arguments smaller than 4 bytes are extended, so all arguments
1385 // are at least 4 bytes aligned.
1386 setMinStackArgumentAlignment(4);
1388 // Prefer likely predicted branches to selects on out-of-order cores.
1389 PredictableSelectIsExpensive
= Subtarget
->getSchedModel().isOutOfOrder();
1391 setPrefLoopAlignment(Subtarget
->getPrefLoopAlignment());
1393 setMinFunctionAlignment(Subtarget
->isThumb() ? 1 : 2);
1395 if (Subtarget
->isThumb() || Subtarget
->isThumb2())
1396 setTargetDAGCombine(ISD::ABS
);
1399 bool ARMTargetLowering::useSoftFloat() const {
1400 return Subtarget
->useSoftFloat();
1403 // FIXME: It might make sense to define the representative register class as the
1404 // nearest super-register that has a non-null superset. For example, DPR_VFP2 is
1405 // a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
1406 // SPR's representative would be DPR_VFP2. This should work well if register
1407 // pressure tracking were modified such that a register use would increment the
1408 // pressure of the register class's representative and all of it's super
1409 // classes' representatives transitively. We have not implemented this because
1410 // of the difficulty prior to coalescing of modeling operand register classes
1411 // due to the common occurrence of cross class copies and subregister insertions
1413 std::pair
<const TargetRegisterClass
*, uint8_t>
1414 ARMTargetLowering::findRepresentativeClass(const TargetRegisterInfo
*TRI
,
1416 const TargetRegisterClass
*RRC
= nullptr;
1418 switch (VT
.SimpleTy
) {
1420 return TargetLowering::findRepresentativeClass(TRI
, VT
);
1421 // Use DPR as representative register class for all floating point
1422 // and vector types. Since there are 32 SPR registers and 32 DPR registers so
1423 // the cost is 1 for both f32 and f64.
1424 case MVT::f32
: case MVT::f64
: case MVT::v8i8
: case MVT::v4i16
:
1425 case MVT::v2i32
: case MVT::v1i64
: case MVT::v2f32
:
1426 RRC
= &ARM::DPRRegClass
;
1427 // When NEON is used for SP, only half of the register file is available
1428 // because operations that define both SP and DP results will be constrained
1429 // to the VFP2 class (D0-D15). We currently model this constraint prior to
1430 // coalescing by double-counting the SP regs. See the FIXME above.
1431 if (Subtarget
->useNEONForSinglePrecisionFP())
1434 case MVT::v16i8
: case MVT::v8i16
: case MVT::v4i32
: case MVT::v2i64
:
1435 case MVT::v4f32
: case MVT::v2f64
:
1436 RRC
= &ARM::DPRRegClass
;
1440 RRC
= &ARM::DPRRegClass
;
1444 RRC
= &ARM::DPRRegClass
;
1448 return std::make_pair(RRC
, Cost
);
1451 const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode
) const {
1452 switch ((ARMISD::NodeType
)Opcode
) {
1453 case ARMISD::FIRST_NUMBER
: break;
1454 case ARMISD::Wrapper
: return "ARMISD::Wrapper";
1455 case ARMISD::WrapperPIC
: return "ARMISD::WrapperPIC";
1456 case ARMISD::WrapperJT
: return "ARMISD::WrapperJT";
1457 case ARMISD::COPY_STRUCT_BYVAL
: return "ARMISD::COPY_STRUCT_BYVAL";
1458 case ARMISD::CALL
: return "ARMISD::CALL";
1459 case ARMISD::CALL_PRED
: return "ARMISD::CALL_PRED";
1460 case ARMISD::CALL_NOLINK
: return "ARMISD::CALL_NOLINK";
1461 case ARMISD::BRCOND
: return "ARMISD::BRCOND";
1462 case ARMISD::BR_JT
: return "ARMISD::BR_JT";
1463 case ARMISD::BR2_JT
: return "ARMISD::BR2_JT";
1464 case ARMISD::RET_FLAG
: return "ARMISD::RET_FLAG";
1465 case ARMISD::INTRET_FLAG
: return "ARMISD::INTRET_FLAG";
1466 case ARMISD::PIC_ADD
: return "ARMISD::PIC_ADD";
1467 case ARMISD::CMP
: return "ARMISD::CMP";
1468 case ARMISD::CMN
: return "ARMISD::CMN";
1469 case ARMISD::CMPZ
: return "ARMISD::CMPZ";
1470 case ARMISD::CMPFP
: return "ARMISD::CMPFP";
1471 case ARMISD::CMPFPw0
: return "ARMISD::CMPFPw0";
1472 case ARMISD::BCC_i64
: return "ARMISD::BCC_i64";
1473 case ARMISD::FMSTAT
: return "ARMISD::FMSTAT";
1475 case ARMISD::CMOV
: return "ARMISD::CMOV";
1476 case ARMISD::SUBS
: return "ARMISD::SUBS";
1478 case ARMISD::SSAT
: return "ARMISD::SSAT";
1479 case ARMISD::USAT
: return "ARMISD::USAT";
1481 case ARMISD::ASRL
: return "ARMISD::ASRL";
1482 case ARMISD::LSRL
: return "ARMISD::LSRL";
1483 case ARMISD::LSLL
: return "ARMISD::LSLL";
1485 case ARMISD::SRL_FLAG
: return "ARMISD::SRL_FLAG";
1486 case ARMISD::SRA_FLAG
: return "ARMISD::SRA_FLAG";
1487 case ARMISD::RRX
: return "ARMISD::RRX";
1489 case ARMISD::ADDC
: return "ARMISD::ADDC";
1490 case ARMISD::ADDE
: return "ARMISD::ADDE";
1491 case ARMISD::SUBC
: return "ARMISD::SUBC";
1492 case ARMISD::SUBE
: return "ARMISD::SUBE";
1494 case ARMISD::VMOVRRD
: return "ARMISD::VMOVRRD";
1495 case ARMISD::VMOVDRR
: return "ARMISD::VMOVDRR";
1496 case ARMISD::VMOVhr
: return "ARMISD::VMOVhr";
1497 case ARMISD::VMOVrh
: return "ARMISD::VMOVrh";
1498 case ARMISD::VMOVSR
: return "ARMISD::VMOVSR";
1500 case ARMISD::EH_SJLJ_SETJMP
: return "ARMISD::EH_SJLJ_SETJMP";
1501 case ARMISD::EH_SJLJ_LONGJMP
: return "ARMISD::EH_SJLJ_LONGJMP";
1502 case ARMISD::EH_SJLJ_SETUP_DISPATCH
: return "ARMISD::EH_SJLJ_SETUP_DISPATCH";
1504 case ARMISD::TC_RETURN
: return "ARMISD::TC_RETURN";
1506 case ARMISD::THREAD_POINTER
:return "ARMISD::THREAD_POINTER";
1508 case ARMISD::DYN_ALLOC
: return "ARMISD::DYN_ALLOC";
1510 case ARMISD::MEMBARRIER_MCR
: return "ARMISD::MEMBARRIER_MCR";
1512 case ARMISD::PRELOAD
: return "ARMISD::PRELOAD";
1514 case ARMISD::WIN__CHKSTK
: return "ARMISD::WIN__CHKSTK";
1515 case ARMISD::WIN__DBZCHK
: return "ARMISD::WIN__DBZCHK";
1517 case ARMISD::PREDICATE_CAST
: return "ARMISD::PREDICATE_CAST";
1518 case ARMISD::VCMP
: return "ARMISD::VCMP";
1519 case ARMISD::VCMPZ
: return "ARMISD::VCMPZ";
1520 case ARMISD::VTST
: return "ARMISD::VTST";
1522 case ARMISD::VSHLs
: return "ARMISD::VSHLs";
1523 case ARMISD::VSHLu
: return "ARMISD::VSHLu";
1524 case ARMISD::VSHLIMM
: return "ARMISD::VSHLIMM";
1525 case ARMISD::VSHRsIMM
: return "ARMISD::VSHRsIMM";
1526 case ARMISD::VSHRuIMM
: return "ARMISD::VSHRuIMM";
1527 case ARMISD::VRSHRsIMM
: return "ARMISD::VRSHRsIMM";
1528 case ARMISD::VRSHRuIMM
: return "ARMISD::VRSHRuIMM";
1529 case ARMISD::VRSHRNIMM
: return "ARMISD::VRSHRNIMM";
1530 case ARMISD::VQSHLsIMM
: return "ARMISD::VQSHLsIMM";
1531 case ARMISD::VQSHLuIMM
: return "ARMISD::VQSHLuIMM";
1532 case ARMISD::VQSHLsuIMM
: return "ARMISD::VQSHLsuIMM";
1533 case ARMISD::VQSHRNsIMM
: return "ARMISD::VQSHRNsIMM";
1534 case ARMISD::VQSHRNuIMM
: return "ARMISD::VQSHRNuIMM";
1535 case ARMISD::VQSHRNsuIMM
: return "ARMISD::VQSHRNsuIMM";
1536 case ARMISD::VQRSHRNsIMM
: return "ARMISD::VQRSHRNsIMM";
1537 case ARMISD::VQRSHRNuIMM
: return "ARMISD::VQRSHRNuIMM";
1538 case ARMISD::VQRSHRNsuIMM
: return "ARMISD::VQRSHRNsuIMM";
1539 case ARMISD::VSLIIMM
: return "ARMISD::VSLIIMM";
1540 case ARMISD::VSRIIMM
: return "ARMISD::VSRIIMM";
1541 case ARMISD::VGETLANEu
: return "ARMISD::VGETLANEu";
1542 case ARMISD::VGETLANEs
: return "ARMISD::VGETLANEs";
1543 case ARMISD::VMOVIMM
: return "ARMISD::VMOVIMM";
1544 case ARMISD::VMVNIMM
: return "ARMISD::VMVNIMM";
1545 case ARMISD::VMOVFPIMM
: return "ARMISD::VMOVFPIMM";
1546 case ARMISD::VDUP
: return "ARMISD::VDUP";
1547 case ARMISD::VDUPLANE
: return "ARMISD::VDUPLANE";
1548 case ARMISD::VEXT
: return "ARMISD::VEXT";
1549 case ARMISD::VREV64
: return "ARMISD::VREV64";
1550 case ARMISD::VREV32
: return "ARMISD::VREV32";
1551 case ARMISD::VREV16
: return "ARMISD::VREV16";
1552 case ARMISD::VZIP
: return "ARMISD::VZIP";
1553 case ARMISD::VUZP
: return "ARMISD::VUZP";
1554 case ARMISD::VTRN
: return "ARMISD::VTRN";
1555 case ARMISD::VTBL1
: return "ARMISD::VTBL1";
1556 case ARMISD::VTBL2
: return "ARMISD::VTBL2";
1557 case ARMISD::VMULLs
: return "ARMISD::VMULLs";
1558 case ARMISD::VMULLu
: return "ARMISD::VMULLu";
1559 case ARMISD::UMAAL
: return "ARMISD::UMAAL";
1560 case ARMISD::UMLAL
: return "ARMISD::UMLAL";
1561 case ARMISD::SMLAL
: return "ARMISD::SMLAL";
1562 case ARMISD::SMLALBB
: return "ARMISD::SMLALBB";
1563 case ARMISD::SMLALBT
: return "ARMISD::SMLALBT";
1564 case ARMISD::SMLALTB
: return "ARMISD::SMLALTB";
1565 case ARMISD::SMLALTT
: return "ARMISD::SMLALTT";
1566 case ARMISD::SMULWB
: return "ARMISD::SMULWB";
1567 case ARMISD::SMULWT
: return "ARMISD::SMULWT";
1568 case ARMISD::SMLALD
: return "ARMISD::SMLALD";
1569 case ARMISD::SMLALDX
: return "ARMISD::SMLALDX";
1570 case ARMISD::SMLSLD
: return "ARMISD::SMLSLD";
1571 case ARMISD::SMLSLDX
: return "ARMISD::SMLSLDX";
1572 case ARMISD::SMMLAR
: return "ARMISD::SMMLAR";
1573 case ARMISD::SMMLSR
: return "ARMISD::SMMLSR";
1574 case ARMISD::BUILD_VECTOR
: return "ARMISD::BUILD_VECTOR";
1575 case ARMISD::BFI
: return "ARMISD::BFI";
1576 case ARMISD::VORRIMM
: return "ARMISD::VORRIMM";
1577 case ARMISD::VBICIMM
: return "ARMISD::VBICIMM";
1578 case ARMISD::VBSL
: return "ARMISD::VBSL";
1579 case ARMISD::MEMCPY
: return "ARMISD::MEMCPY";
1580 case ARMISD::VLD1DUP
: return "ARMISD::VLD1DUP";
1581 case ARMISD::VLD2DUP
: return "ARMISD::VLD2DUP";
1582 case ARMISD::VLD3DUP
: return "ARMISD::VLD3DUP";
1583 case ARMISD::VLD4DUP
: return "ARMISD::VLD4DUP";
1584 case ARMISD::VLD1_UPD
: return "ARMISD::VLD1_UPD";
1585 case ARMISD::VLD2_UPD
: return "ARMISD::VLD2_UPD";
1586 case ARMISD::VLD3_UPD
: return "ARMISD::VLD3_UPD";
1587 case ARMISD::VLD4_UPD
: return "ARMISD::VLD4_UPD";
1588 case ARMISD::VLD2LN_UPD
: return "ARMISD::VLD2LN_UPD";
1589 case ARMISD::VLD3LN_UPD
: return "ARMISD::VLD3LN_UPD";
1590 case ARMISD::VLD4LN_UPD
: return "ARMISD::VLD4LN_UPD";
1591 case ARMISD::VLD1DUP_UPD
: return "ARMISD::VLD1DUP_UPD";
1592 case ARMISD::VLD2DUP_UPD
: return "ARMISD::VLD2DUP_UPD";
1593 case ARMISD::VLD3DUP_UPD
: return "ARMISD::VLD3DUP_UPD";
1594 case ARMISD::VLD4DUP_UPD
: return "ARMISD::VLD4DUP_UPD";
1595 case ARMISD::VST1_UPD
: return "ARMISD::VST1_UPD";
1596 case ARMISD::VST2_UPD
: return "ARMISD::VST2_UPD";
1597 case ARMISD::VST3_UPD
: return "ARMISD::VST3_UPD";
1598 case ARMISD::VST4_UPD
: return "ARMISD::VST4_UPD";
1599 case ARMISD::VST2LN_UPD
: return "ARMISD::VST2LN_UPD";
1600 case ARMISD::VST3LN_UPD
: return "ARMISD::VST3LN_UPD";
1601 case ARMISD::VST4LN_UPD
: return "ARMISD::VST4LN_UPD";
1602 case ARMISD::WLS
: return "ARMISD::WLS";
1603 case ARMISD::LE
: return "ARMISD::LE";
1604 case ARMISD::LOOP_DEC
: return "ARMISD::LOOP_DEC";
1609 EVT
ARMTargetLowering::getSetCCResultType(const DataLayout
&DL
, LLVMContext
&,
1612 return getPointerTy(DL
);
1614 // MVE has a predicate register.
1615 if (Subtarget
->hasMVEIntegerOps() &&
1616 (VT
== MVT::v4i32
|| VT
== MVT::v8i16
|| VT
== MVT::v16i8
))
1617 return MVT::getVectorVT(MVT::i1
, VT
.getVectorElementCount());
1618 return VT
.changeVectorElementTypeToInteger();
1621 /// getRegClassFor - Return the register class that should be used for the
1622 /// specified value type.
1623 const TargetRegisterClass
*
1624 ARMTargetLowering::getRegClassFor(MVT VT
, bool isDivergent
) const {
1626 // Map v4i64 to QQ registers but do not make the type legal. Similarly map
1627 // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
1628 // load / store 4 to 8 consecutive NEON D registers, or 2 to 4 consecutive
1630 if (Subtarget
->hasNEON() || Subtarget
->hasMVEIntegerOps()) {
1631 if (VT
== MVT::v4i64
)
1632 return &ARM::QQPRRegClass
;
1633 if (VT
== MVT::v8i64
)
1634 return &ARM::QQQQPRRegClass
;
1636 return TargetLowering::getRegClassFor(VT
);
1639 // memcpy, and other memory intrinsics, typically tries to use LDM/STM if the
1640 // source/dest is aligned and the copy size is large enough. We therefore want
1641 // to align such objects passed to memory intrinsics.
1642 bool ARMTargetLowering::shouldAlignPointerArgs(CallInst
*CI
, unsigned &MinSize
,
1643 unsigned &PrefAlign
) const {
1644 if (!isa
<MemIntrinsic
>(CI
))
1647 // On ARM11 onwards (excluding M class) 8-byte aligned LDM is typically 1
1648 // cycle faster than 4-byte aligned LDM.
1649 PrefAlign
= (Subtarget
->hasV6Ops() && !Subtarget
->isMClass() ? 8 : 4);
1653 // Create a fast isel object.
1655 ARMTargetLowering::createFastISel(FunctionLoweringInfo
&funcInfo
,
1656 const TargetLibraryInfo
*libInfo
) const {
1657 return ARM::createFastISel(funcInfo
, libInfo
);
1660 Sched::Preference
ARMTargetLowering::getSchedulingPreference(SDNode
*N
) const {
1661 unsigned NumVals
= N
->getNumValues();
1663 return Sched::RegPressure
;
1665 for (unsigned i
= 0; i
!= NumVals
; ++i
) {
1666 EVT VT
= N
->getValueType(i
);
1667 if (VT
== MVT::Glue
|| VT
== MVT::Other
)
1669 if (VT
.isFloatingPoint() || VT
.isVector())
1673 if (!N
->isMachineOpcode())
1674 return Sched::RegPressure
;
1676 // Load are scheduled for latency even if there instruction itinerary
1677 // is not available.
1678 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
1679 const MCInstrDesc
&MCID
= TII
->get(N
->getMachineOpcode());
1681 if (MCID
.getNumDefs() == 0)
1682 return Sched::RegPressure
;
1683 if (!Itins
->isEmpty() &&
1684 Itins
->getOperandCycle(MCID
.getSchedClass(), 0) > 2)
1687 return Sched::RegPressure
;
1690 //===----------------------------------------------------------------------===//
1692 //===----------------------------------------------------------------------===//
1694 static bool isSRL16(const SDValue
&Op
) {
1695 if (Op
.getOpcode() != ISD::SRL
)
1697 if (auto Const
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1)))
1698 return Const
->getZExtValue() == 16;
1702 static bool isSRA16(const SDValue
&Op
) {
1703 if (Op
.getOpcode() != ISD::SRA
)
1705 if (auto Const
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1)))
1706 return Const
->getZExtValue() == 16;
1710 static bool isSHL16(const SDValue
&Op
) {
1711 if (Op
.getOpcode() != ISD::SHL
)
1713 if (auto Const
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1)))
1714 return Const
->getZExtValue() == 16;
1718 // Check for a signed 16-bit value. We special case SRA because it makes it
1719 // more simple when also looking for SRAs that aren't sign extending a
1720 // smaller value. Without the check, we'd need to take extra care with
1721 // checking order for some operations.
1722 static bool isS16(const SDValue
&Op
, SelectionDAG
&DAG
) {
1724 return isSHL16(Op
.getOperand(0));
1725 return DAG
.ComputeNumSignBits(Op
) == 17;
1728 /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
1729 static ARMCC::CondCodes
IntCCToARMCC(ISD::CondCode CC
) {
1731 default: llvm_unreachable("Unknown condition code!");
1732 case ISD::SETNE
: return ARMCC::NE
;
1733 case ISD::SETEQ
: return ARMCC::EQ
;
1734 case ISD::SETGT
: return ARMCC::GT
;
1735 case ISD::SETGE
: return ARMCC::GE
;
1736 case ISD::SETLT
: return ARMCC::LT
;
1737 case ISD::SETLE
: return ARMCC::LE
;
1738 case ISD::SETUGT
: return ARMCC::HI
;
1739 case ISD::SETUGE
: return ARMCC::HS
;
1740 case ISD::SETULT
: return ARMCC::LO
;
1741 case ISD::SETULE
: return ARMCC::LS
;
1745 /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
1746 static void FPCCToARMCC(ISD::CondCode CC
, ARMCC::CondCodes
&CondCode
,
1747 ARMCC::CondCodes
&CondCode2
, bool &InvalidOnQNaN
) {
1748 CondCode2
= ARMCC::AL
;
1749 InvalidOnQNaN
= true;
1751 default: llvm_unreachable("Unknown FP condition!");
1754 CondCode
= ARMCC::EQ
;
1755 InvalidOnQNaN
= false;
1758 case ISD::SETOGT
: CondCode
= ARMCC::GT
; break;
1760 case ISD::SETOGE
: CondCode
= ARMCC::GE
; break;
1761 case ISD::SETOLT
: CondCode
= ARMCC::MI
; break;
1762 case ISD::SETOLE
: CondCode
= ARMCC::LS
; break;
1764 CondCode
= ARMCC::MI
;
1765 CondCode2
= ARMCC::GT
;
1766 InvalidOnQNaN
= false;
1768 case ISD::SETO
: CondCode
= ARMCC::VC
; break;
1769 case ISD::SETUO
: CondCode
= ARMCC::VS
; break;
1771 CondCode
= ARMCC::EQ
;
1772 CondCode2
= ARMCC::VS
;
1773 InvalidOnQNaN
= false;
1775 case ISD::SETUGT
: CondCode
= ARMCC::HI
; break;
1776 case ISD::SETUGE
: CondCode
= ARMCC::PL
; break;
1778 case ISD::SETULT
: CondCode
= ARMCC::LT
; break;
1780 case ISD::SETULE
: CondCode
= ARMCC::LE
; break;
1783 CondCode
= ARMCC::NE
;
1784 InvalidOnQNaN
= false;
1789 //===----------------------------------------------------------------------===//
1790 // Calling Convention Implementation
1791 //===----------------------------------------------------------------------===//
1793 /// getEffectiveCallingConv - Get the effective calling convention, taking into
1794 /// account presence of floating point hardware and calling convention
1795 /// limitations, such as support for variadic functions.
1797 ARMTargetLowering::getEffectiveCallingConv(CallingConv::ID CC
,
1798 bool isVarArg
) const {
1801 report_fatal_error("Unsupported calling convention");
1802 case CallingConv::ARM_AAPCS
:
1803 case CallingConv::ARM_APCS
:
1804 case CallingConv::GHC
:
1806 case CallingConv::PreserveMost
:
1807 return CallingConv::PreserveMost
;
1808 case CallingConv::ARM_AAPCS_VFP
:
1809 case CallingConv::Swift
:
1810 return isVarArg
? CallingConv::ARM_AAPCS
: CallingConv::ARM_AAPCS_VFP
;
1811 case CallingConv::C
:
1812 if (!Subtarget
->isAAPCS_ABI())
1813 return CallingConv::ARM_APCS
;
1814 else if (Subtarget
->hasVFP2Base() && !Subtarget
->isThumb1Only() &&
1815 getTargetMachine().Options
.FloatABIType
== FloatABI::Hard
&&
1817 return CallingConv::ARM_AAPCS_VFP
;
1819 return CallingConv::ARM_AAPCS
;
1820 case CallingConv::Fast
:
1821 case CallingConv::CXX_FAST_TLS
:
1822 if (!Subtarget
->isAAPCS_ABI()) {
1823 if (Subtarget
->hasVFP2Base() && !Subtarget
->isThumb1Only() && !isVarArg
)
1824 return CallingConv::Fast
;
1825 return CallingConv::ARM_APCS
;
1826 } else if (Subtarget
->hasVFP2Base() &&
1827 !Subtarget
->isThumb1Only() && !isVarArg
)
1828 return CallingConv::ARM_AAPCS_VFP
;
1830 return CallingConv::ARM_AAPCS
;
1834 CCAssignFn
*ARMTargetLowering::CCAssignFnForCall(CallingConv::ID CC
,
1835 bool isVarArg
) const {
1836 return CCAssignFnForNode(CC
, false, isVarArg
);
1839 CCAssignFn
*ARMTargetLowering::CCAssignFnForReturn(CallingConv::ID CC
,
1840 bool isVarArg
) const {
1841 return CCAssignFnForNode(CC
, true, isVarArg
);
1844 /// CCAssignFnForNode - Selects the correct CCAssignFn for the given
1845 /// CallingConvention.
1846 CCAssignFn
*ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC
,
1848 bool isVarArg
) const {
1849 switch (getEffectiveCallingConv(CC
, isVarArg
)) {
1851 report_fatal_error("Unsupported calling convention");
1852 case CallingConv::ARM_APCS
:
1853 return (Return
? RetCC_ARM_APCS
: CC_ARM_APCS
);
1854 case CallingConv::ARM_AAPCS
:
1855 return (Return
? RetCC_ARM_AAPCS
: CC_ARM_AAPCS
);
1856 case CallingConv::ARM_AAPCS_VFP
:
1857 return (Return
? RetCC_ARM_AAPCS_VFP
: CC_ARM_AAPCS_VFP
);
1858 case CallingConv::Fast
:
1859 return (Return
? RetFastCC_ARM_APCS
: FastCC_ARM_APCS
);
1860 case CallingConv::GHC
:
1861 return (Return
? RetCC_ARM_APCS
: CC_ARM_APCS_GHC
);
1862 case CallingConv::PreserveMost
:
1863 return (Return
? RetCC_ARM_AAPCS
: CC_ARM_AAPCS
);
1867 /// LowerCallResult - Lower the result values of a call into the
1868 /// appropriate copies out of appropriate physical registers.
1869 SDValue
ARMTargetLowering::LowerCallResult(
1870 SDValue Chain
, SDValue InFlag
, CallingConv::ID CallConv
, bool isVarArg
,
1871 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
1872 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
, bool isThisReturn
,
1873 SDValue ThisVal
) const {
1874 // Assign locations to each value returned by this call.
1875 SmallVector
<CCValAssign
, 16> RVLocs
;
1876 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), RVLocs
,
1878 CCInfo
.AnalyzeCallResult(Ins
, CCAssignFnForReturn(CallConv
, isVarArg
));
1880 // Copy all of the result registers out of their specified physreg.
1881 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
) {
1882 CCValAssign VA
= RVLocs
[i
];
1884 // Pass 'this' value directly from the argument to return value, to avoid
1885 // reg unit interference
1886 if (i
== 0 && isThisReturn
) {
1887 assert(!VA
.needsCustom() && VA
.getLocVT() == MVT::i32
&&
1888 "unexpected return calling convention register assignment");
1889 InVals
.push_back(ThisVal
);
1894 if (VA
.needsCustom()) {
1895 // Handle f64 or half of a v2f64.
1896 SDValue Lo
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), MVT::i32
,
1898 Chain
= Lo
.getValue(1);
1899 InFlag
= Lo
.getValue(2);
1900 VA
= RVLocs
[++i
]; // skip ahead to next loc
1901 SDValue Hi
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), MVT::i32
,
1903 Chain
= Hi
.getValue(1);
1904 InFlag
= Hi
.getValue(2);
1905 if (!Subtarget
->isLittle())
1907 Val
= DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Lo
, Hi
);
1909 if (VA
.getLocVT() == MVT::v2f64
) {
1910 SDValue Vec
= DAG
.getNode(ISD::UNDEF
, dl
, MVT::v2f64
);
1911 Vec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
, Vec
, Val
,
1912 DAG
.getConstant(0, dl
, MVT::i32
));
1914 VA
= RVLocs
[++i
]; // skip ahead to next loc
1915 Lo
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), MVT::i32
, InFlag
);
1916 Chain
= Lo
.getValue(1);
1917 InFlag
= Lo
.getValue(2);
1918 VA
= RVLocs
[++i
]; // skip ahead to next loc
1919 Hi
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), MVT::i32
, InFlag
);
1920 Chain
= Hi
.getValue(1);
1921 InFlag
= Hi
.getValue(2);
1922 if (!Subtarget
->isLittle())
1924 Val
= DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Lo
, Hi
);
1925 Val
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
, Vec
, Val
,
1926 DAG
.getConstant(1, dl
, MVT::i32
));
1929 Val
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), VA
.getLocVT(),
1931 Chain
= Val
.getValue(1);
1932 InFlag
= Val
.getValue(2);
1935 switch (VA
.getLocInfo()) {
1936 default: llvm_unreachable("Unknown loc info!");
1937 case CCValAssign::Full
: break;
1938 case CCValAssign::BCvt
:
1939 Val
= DAG
.getNode(ISD::BITCAST
, dl
, VA
.getValVT(), Val
);
1943 InVals
.push_back(Val
);
1949 /// LowerMemOpCallTo - Store the argument to the stack.
1950 SDValue
ARMTargetLowering::LowerMemOpCallTo(SDValue Chain
, SDValue StackPtr
,
1951 SDValue Arg
, const SDLoc
&dl
,
1953 const CCValAssign
&VA
,
1954 ISD::ArgFlagsTy Flags
) const {
1955 unsigned LocMemOffset
= VA
.getLocMemOffset();
1956 SDValue PtrOff
= DAG
.getIntPtrConstant(LocMemOffset
, dl
);
1957 PtrOff
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(DAG
.getDataLayout()),
1959 return DAG
.getStore(
1960 Chain
, dl
, Arg
, PtrOff
,
1961 MachinePointerInfo::getStack(DAG
.getMachineFunction(), LocMemOffset
));
1964 void ARMTargetLowering::PassF64ArgInRegs(const SDLoc
&dl
, SelectionDAG
&DAG
,
1965 SDValue Chain
, SDValue
&Arg
,
1966 RegsToPassVector
&RegsToPass
,
1967 CCValAssign
&VA
, CCValAssign
&NextVA
,
1969 SmallVectorImpl
<SDValue
> &MemOpChains
,
1970 ISD::ArgFlagsTy Flags
) const {
1971 SDValue fmrrd
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
1972 DAG
.getVTList(MVT::i32
, MVT::i32
), Arg
);
1973 unsigned id
= Subtarget
->isLittle() ? 0 : 1;
1974 RegsToPass
.push_back(std::make_pair(VA
.getLocReg(), fmrrd
.getValue(id
)));
1976 if (NextVA
.isRegLoc())
1977 RegsToPass
.push_back(std::make_pair(NextVA
.getLocReg(), fmrrd
.getValue(1-id
)));
1979 assert(NextVA
.isMemLoc());
1980 if (!StackPtr
.getNode())
1981 StackPtr
= DAG
.getCopyFromReg(Chain
, dl
, ARM::SP
,
1982 getPointerTy(DAG
.getDataLayout()));
1984 MemOpChains
.push_back(LowerMemOpCallTo(Chain
, StackPtr
, fmrrd
.getValue(1-id
),
1990 /// LowerCall - Lowering a call into a callseq_start <-
1991 /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
1994 ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo
&CLI
,
1995 SmallVectorImpl
<SDValue
> &InVals
) const {
1996 SelectionDAG
&DAG
= CLI
.DAG
;
1998 SmallVectorImpl
<ISD::OutputArg
> &Outs
= CLI
.Outs
;
1999 SmallVectorImpl
<SDValue
> &OutVals
= CLI
.OutVals
;
2000 SmallVectorImpl
<ISD::InputArg
> &Ins
= CLI
.Ins
;
2001 SDValue Chain
= CLI
.Chain
;
2002 SDValue Callee
= CLI
.Callee
;
2003 bool &isTailCall
= CLI
.IsTailCall
;
2004 CallingConv::ID CallConv
= CLI
.CallConv
;
2005 bool doesNotRet
= CLI
.DoesNotReturn
;
2006 bool isVarArg
= CLI
.IsVarArg
;
2008 MachineFunction
&MF
= DAG
.getMachineFunction();
2009 bool isStructRet
= (Outs
.empty()) ? false : Outs
[0].Flags
.isSRet();
2010 bool isThisReturn
= false;
2011 auto Attr
= MF
.getFunction().getFnAttribute("disable-tail-calls");
2012 bool PreferIndirect
= false;
2014 // Disable tail calls if they're not supported.
2015 if (!Subtarget
->supportsTailCall() || Attr
.getValueAsString() == "true")
2018 if (isa
<GlobalAddressSDNode
>(Callee
)) {
2019 // If we're optimizing for minimum size and the function is called three or
2020 // more times in this block, we can improve codesize by calling indirectly
2021 // as BLXr has a 16-bit encoding.
2022 auto *GV
= cast
<GlobalAddressSDNode
>(Callee
)->getGlobal();
2024 auto *BB
= CLI
.CS
.getParent();
2025 PreferIndirect
= Subtarget
->isThumb() && Subtarget
->hasMinSize() &&
2026 count_if(GV
->users(), [&BB
](const User
*U
) {
2027 return isa
<Instruction
>(U
) &&
2028 cast
<Instruction
>(U
)->getParent() == BB
;
2033 // Check if it's really possible to do a tail call.
2034 isTailCall
= IsEligibleForTailCallOptimization(
2035 Callee
, CallConv
, isVarArg
, isStructRet
,
2036 MF
.getFunction().hasStructRetAttr(), Outs
, OutVals
, Ins
, DAG
,
2038 if (!isTailCall
&& CLI
.CS
&& CLI
.CS
.isMustTailCall())
2039 report_fatal_error("failed to perform tail call elimination on a call "
2040 "site marked musttail");
2041 // We don't support GuaranteedTailCallOpt for ARM, only automatically
2042 // detected sibcalls.
2047 // Analyze operands of the call, assigning locations to each operand.
2048 SmallVector
<CCValAssign
, 16> ArgLocs
;
2049 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), ArgLocs
,
2051 CCInfo
.AnalyzeCallOperands(Outs
, CCAssignFnForCall(CallConv
, isVarArg
));
2053 // Get a count of how many bytes are to be pushed on the stack.
2054 unsigned NumBytes
= CCInfo
.getNextStackOffset();
2057 // For tail calls, memory operands are available in our caller's stack.
2060 // Adjust the stack pointer for the new arguments...
2061 // These operations are automatically eliminated by the prolog/epilog pass
2062 Chain
= DAG
.getCALLSEQ_START(Chain
, NumBytes
, 0, dl
);
2066 DAG
.getCopyFromReg(Chain
, dl
, ARM::SP
, getPointerTy(DAG
.getDataLayout()));
2068 RegsToPassVector RegsToPass
;
2069 SmallVector
<SDValue
, 8> MemOpChains
;
2071 // Walk the register/memloc assignments, inserting copies/loads. In the case
2072 // of tail call optimization, arguments are handled later.
2073 for (unsigned i
= 0, realArgIdx
= 0, e
= ArgLocs
.size();
2075 ++i
, ++realArgIdx
) {
2076 CCValAssign
&VA
= ArgLocs
[i
];
2077 SDValue Arg
= OutVals
[realArgIdx
];
2078 ISD::ArgFlagsTy Flags
= Outs
[realArgIdx
].Flags
;
2079 bool isByVal
= Flags
.isByVal();
2081 // Promote the value if needed.
2082 switch (VA
.getLocInfo()) {
2083 default: llvm_unreachable("Unknown loc info!");
2084 case CCValAssign::Full
: break;
2085 case CCValAssign::SExt
:
2086 Arg
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, VA
.getLocVT(), Arg
);
2088 case CCValAssign::ZExt
:
2089 Arg
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VA
.getLocVT(), Arg
);
2091 case CCValAssign::AExt
:
2092 Arg
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, VA
.getLocVT(), Arg
);
2094 case CCValAssign::BCvt
:
2095 Arg
= DAG
.getNode(ISD::BITCAST
, dl
, VA
.getLocVT(), Arg
);
2099 // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
2100 if (VA
.needsCustom()) {
2101 if (VA
.getLocVT() == MVT::v2f64
) {
2102 SDValue Op0
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
, Arg
,
2103 DAG
.getConstant(0, dl
, MVT::i32
));
2104 SDValue Op1
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
, Arg
,
2105 DAG
.getConstant(1, dl
, MVT::i32
));
2107 PassF64ArgInRegs(dl
, DAG
, Chain
, Op0
, RegsToPass
,
2108 VA
, ArgLocs
[++i
], StackPtr
, MemOpChains
, Flags
);
2110 VA
= ArgLocs
[++i
]; // skip ahead to next loc
2111 if (VA
.isRegLoc()) {
2112 PassF64ArgInRegs(dl
, DAG
, Chain
, Op1
, RegsToPass
,
2113 VA
, ArgLocs
[++i
], StackPtr
, MemOpChains
, Flags
);
2115 assert(VA
.isMemLoc());
2117 MemOpChains
.push_back(LowerMemOpCallTo(Chain
, StackPtr
, Op1
,
2118 dl
, DAG
, VA
, Flags
));
2121 PassF64ArgInRegs(dl
, DAG
, Chain
, Arg
, RegsToPass
, VA
, ArgLocs
[++i
],
2122 StackPtr
, MemOpChains
, Flags
);
2124 } else if (VA
.isRegLoc()) {
2125 if (realArgIdx
== 0 && Flags
.isReturned() && !Flags
.isSwiftSelf() &&
2126 Outs
[0].VT
== MVT::i32
) {
2127 assert(VA
.getLocVT() == MVT::i32
&&
2128 "unexpected calling convention register assignment");
2129 assert(!Ins
.empty() && Ins
[0].VT
== MVT::i32
&&
2130 "unexpected use of 'returned'");
2131 isThisReturn
= true;
2133 RegsToPass
.push_back(std::make_pair(VA
.getLocReg(), Arg
));
2134 } else if (isByVal
) {
2135 assert(VA
.isMemLoc());
2136 unsigned offset
= 0;
2138 // True if this byval aggregate will be split between registers
2140 unsigned ByValArgsCount
= CCInfo
.getInRegsParamsCount();
2141 unsigned CurByValIdx
= CCInfo
.getInRegsParamsProcessed();
2143 if (CurByValIdx
< ByValArgsCount
) {
2145 unsigned RegBegin
, RegEnd
;
2146 CCInfo
.getInRegsParamInfo(CurByValIdx
, RegBegin
, RegEnd
);
2149 DAG
.getTargetLoweringInfo().getPointerTy(DAG
.getDataLayout());
2151 for (i
= 0, j
= RegBegin
; j
< RegEnd
; i
++, j
++) {
2152 SDValue Const
= DAG
.getConstant(4*i
, dl
, MVT::i32
);
2153 SDValue AddArg
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, Arg
, Const
);
2154 SDValue Load
= DAG
.getLoad(PtrVT
, dl
, Chain
, AddArg
,
2155 MachinePointerInfo(),
2156 DAG
.InferPtrAlignment(AddArg
));
2157 MemOpChains
.push_back(Load
.getValue(1));
2158 RegsToPass
.push_back(std::make_pair(j
, Load
));
2161 // If parameter size outsides register area, "offset" value
2162 // helps us to calculate stack slot for remained part properly.
2163 offset
= RegEnd
- RegBegin
;
2165 CCInfo
.nextInRegsParam();
2168 if (Flags
.getByValSize() > 4*offset
) {
2169 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
2170 unsigned LocMemOffset
= VA
.getLocMemOffset();
2171 SDValue StkPtrOff
= DAG
.getIntPtrConstant(LocMemOffset
, dl
);
2172 SDValue Dst
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, StackPtr
, StkPtrOff
);
2173 SDValue SrcOffset
= DAG
.getIntPtrConstant(4*offset
, dl
);
2174 SDValue Src
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, Arg
, SrcOffset
);
2175 SDValue SizeNode
= DAG
.getConstant(Flags
.getByValSize() - 4*offset
, dl
,
2177 SDValue AlignNode
= DAG
.getConstant(Flags
.getByValAlign(), dl
,
2180 SDVTList VTs
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
2181 SDValue Ops
[] = { Chain
, Dst
, Src
, SizeNode
, AlignNode
};
2182 MemOpChains
.push_back(DAG
.getNode(ARMISD::COPY_STRUCT_BYVAL
, dl
, VTs
,
2185 } else if (!isTailCall
) {
2186 assert(VA
.isMemLoc());
2188 MemOpChains
.push_back(LowerMemOpCallTo(Chain
, StackPtr
, Arg
,
2189 dl
, DAG
, VA
, Flags
));
2193 if (!MemOpChains
.empty())
2194 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, MemOpChains
);
2196 // Build a sequence of copy-to-reg nodes chained together with token chain
2197 // and flag operands which copy the outgoing args into the appropriate regs.
2199 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
) {
2200 Chain
= DAG
.getCopyToReg(Chain
, dl
, RegsToPass
[i
].first
,
2201 RegsToPass
[i
].second
, InFlag
);
2202 InFlag
= Chain
.getValue(1);
2205 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2206 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2207 // node so that legalize doesn't hack it.
2208 bool isDirect
= false;
2210 const TargetMachine
&TM
= getTargetMachine();
2211 const Module
*Mod
= MF
.getFunction().getParent();
2212 const GlobalValue
*GV
= nullptr;
2213 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
))
2214 GV
= G
->getGlobal();
2216 !TM
.shouldAssumeDSOLocal(*Mod
, GV
) && Subtarget
->isTargetMachO();
2218 bool isARMFunc
= !Subtarget
->isThumb() || (isStub
&& !Subtarget
->isMClass());
2219 bool isLocalARMFunc
= false;
2220 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
2221 auto PtrVt
= getPointerTy(DAG
.getDataLayout());
2223 if (Subtarget
->genLongCalls()) {
2224 assert((!isPositionIndependent() || Subtarget
->isTargetWindows()) &&
2225 "long-calls codegen is not position independent!");
2226 // Handle a global address or an external symbol. If it's not one of
2227 // those, the target's already in a register, so we don't need to do
2229 if (isa
<GlobalAddressSDNode
>(Callee
)) {
2230 // Create a constant pool entry for the callee address
2231 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
2232 ARMConstantPoolValue
*CPV
=
2233 ARMConstantPoolConstant::Create(GV
, ARMPCLabelIndex
, ARMCP::CPValue
, 0);
2235 // Get the address of the callee into a register
2236 SDValue CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVt
, 4);
2237 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
2238 Callee
= DAG
.getLoad(
2239 PtrVt
, dl
, DAG
.getEntryNode(), CPAddr
,
2240 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
2241 } else if (ExternalSymbolSDNode
*S
=dyn_cast
<ExternalSymbolSDNode
>(Callee
)) {
2242 const char *Sym
= S
->getSymbol();
2244 // Create a constant pool entry for the callee address
2245 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
2246 ARMConstantPoolValue
*CPV
=
2247 ARMConstantPoolSymbol::Create(*DAG
.getContext(), Sym
,
2248 ARMPCLabelIndex
, 0);
2249 // Get the address of the callee into a register
2250 SDValue CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVt
, 4);
2251 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
2252 Callee
= DAG
.getLoad(
2253 PtrVt
, dl
, DAG
.getEntryNode(), CPAddr
,
2254 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
2256 } else if (isa
<GlobalAddressSDNode
>(Callee
)) {
2257 if (!PreferIndirect
) {
2259 bool isDef
= GV
->isStrongDefinitionForLinker();
2261 // ARM call to a local ARM function is predicable.
2262 isLocalARMFunc
= !Subtarget
->isThumb() && (isDef
|| !ARMInterworking
);
2263 // tBX takes a register source operand.
2264 if (isStub
&& Subtarget
->isThumb1Only() && !Subtarget
->hasV5TOps()) {
2265 assert(Subtarget
->isTargetMachO() && "WrapperPIC use on non-MachO?");
2266 Callee
= DAG
.getNode(
2267 ARMISD::WrapperPIC
, dl
, PtrVt
,
2268 DAG
.getTargetGlobalAddress(GV
, dl
, PtrVt
, 0, ARMII::MO_NONLAZY
));
2269 Callee
= DAG
.getLoad(
2270 PtrVt
, dl
, DAG
.getEntryNode(), Callee
,
2271 MachinePointerInfo::getGOT(DAG
.getMachineFunction()),
2272 /* Alignment = */ 0, MachineMemOperand::MODereferenceable
|
2273 MachineMemOperand::MOInvariant
);
2274 } else if (Subtarget
->isTargetCOFF()) {
2275 assert(Subtarget
->isTargetWindows() &&
2276 "Windows is the only supported COFF target");
2277 unsigned TargetFlags
= GV
->hasDLLImportStorageClass()
2278 ? ARMII::MO_DLLIMPORT
2279 : ARMII::MO_NO_FLAG
;
2280 Callee
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVt
, /*offset=*/0,
2282 if (GV
->hasDLLImportStorageClass())
2284 DAG
.getLoad(PtrVt
, dl
, DAG
.getEntryNode(),
2285 DAG
.getNode(ARMISD::Wrapper
, dl
, PtrVt
, Callee
),
2286 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
2288 Callee
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVt
, 0, 0);
2291 } else if (ExternalSymbolSDNode
*S
= dyn_cast
<ExternalSymbolSDNode
>(Callee
)) {
2293 // tBX takes a register source operand.
2294 const char *Sym
= S
->getSymbol();
2295 if (isARMFunc
&& Subtarget
->isThumb1Only() && !Subtarget
->hasV5TOps()) {
2296 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
2297 ARMConstantPoolValue
*CPV
=
2298 ARMConstantPoolSymbol::Create(*DAG
.getContext(), Sym
,
2299 ARMPCLabelIndex
, 4);
2300 SDValue CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVt
, 4);
2301 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
2302 Callee
= DAG
.getLoad(
2303 PtrVt
, dl
, DAG
.getEntryNode(), CPAddr
,
2304 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
2305 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, dl
, MVT::i32
);
2306 Callee
= DAG
.getNode(ARMISD::PIC_ADD
, dl
, PtrVt
, Callee
, PICLabel
);
2308 Callee
= DAG
.getTargetExternalSymbol(Sym
, PtrVt
, 0);
2312 // FIXME: handle tail calls differently.
2314 if (Subtarget
->isThumb()) {
2315 if ((!isDirect
|| isARMFunc
) && !Subtarget
->hasV5TOps())
2316 CallOpc
= ARMISD::CALL_NOLINK
;
2318 CallOpc
= ARMISD::CALL
;
2320 if (!isDirect
&& !Subtarget
->hasV5TOps())
2321 CallOpc
= ARMISD::CALL_NOLINK
;
2322 else if (doesNotRet
&& isDirect
&& Subtarget
->hasRetAddrStack() &&
2323 // Emit regular call when code size is the priority
2324 !Subtarget
->hasMinSize())
2325 // "mov lr, pc; b _foo" to avoid confusing the RSP
2326 CallOpc
= ARMISD::CALL_NOLINK
;
2328 CallOpc
= isLocalARMFunc
? ARMISD::CALL_PRED
: ARMISD::CALL
;
2331 std::vector
<SDValue
> Ops
;
2332 Ops
.push_back(Chain
);
2333 Ops
.push_back(Callee
);
2335 // Add argument registers to the end of the list so that they are known live
2337 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
)
2338 Ops
.push_back(DAG
.getRegister(RegsToPass
[i
].first
,
2339 RegsToPass
[i
].second
.getValueType()));
2341 // Add a register mask operand representing the call-preserved registers.
2343 const uint32_t *Mask
;
2344 const ARMBaseRegisterInfo
*ARI
= Subtarget
->getRegisterInfo();
2346 // For 'this' returns, use the R0-preserving mask if applicable
2347 Mask
= ARI
->getThisReturnPreservedMask(MF
, CallConv
);
2349 // Set isThisReturn to false if the calling convention is not one that
2350 // allows 'returned' to be modeled in this way, so LowerCallResult does
2351 // not try to pass 'this' straight through
2352 isThisReturn
= false;
2353 Mask
= ARI
->getCallPreservedMask(MF
, CallConv
);
2356 Mask
= ARI
->getCallPreservedMask(MF
, CallConv
);
2358 assert(Mask
&& "Missing call preserved mask for calling convention");
2359 Ops
.push_back(DAG
.getRegisterMask(Mask
));
2362 if (InFlag
.getNode())
2363 Ops
.push_back(InFlag
);
2365 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
2367 MF
.getFrameInfo().setHasTailCall();
2368 return DAG
.getNode(ARMISD::TC_RETURN
, dl
, NodeTys
, Ops
);
2371 // Returns a chain and a flag for retval copy to use.
2372 Chain
= DAG
.getNode(CallOpc
, dl
, NodeTys
, Ops
);
2373 InFlag
= Chain
.getValue(1);
2375 Chain
= DAG
.getCALLSEQ_END(Chain
, DAG
.getIntPtrConstant(NumBytes
, dl
, true),
2376 DAG
.getIntPtrConstant(0, dl
, true), InFlag
, dl
);
2378 InFlag
= Chain
.getValue(1);
2380 // Handle result values, copying them out of physregs into vregs that we
2382 return LowerCallResult(Chain
, InFlag
, CallConv
, isVarArg
, Ins
, dl
, DAG
,
2383 InVals
, isThisReturn
,
2384 isThisReturn
? OutVals
[0] : SDValue());
2387 /// HandleByVal - Every parameter *after* a byval parameter is passed
2388 /// on the stack. Remember the next parameter register to allocate,
2389 /// and then confiscate the rest of the parameter registers to insure
2391 void ARMTargetLowering::HandleByVal(CCState
*State
, unsigned &Size
,
2392 unsigned Align
) const {
2393 // Byval (as with any stack) slots are always at least 4 byte aligned.
2394 Align
= std::max(Align
, 4U);
2396 unsigned Reg
= State
->AllocateReg(GPRArgRegs
);
2400 unsigned AlignInRegs
= Align
/ 4;
2401 unsigned Waste
= (ARM::R4
- Reg
) % AlignInRegs
;
2402 for (unsigned i
= 0; i
< Waste
; ++i
)
2403 Reg
= State
->AllocateReg(GPRArgRegs
);
2408 unsigned Excess
= 4 * (ARM::R4
- Reg
);
2410 // Special case when NSAA != SP and parameter size greater than size of
2411 // all remained GPR regs. In that case we can't split parameter, we must
2412 // send it to stack. We also must set NCRN to R4, so waste all
2413 // remained registers.
2414 const unsigned NSAAOffset
= State
->getNextStackOffset();
2415 if (NSAAOffset
!= 0 && Size
> Excess
) {
2416 while (State
->AllocateReg(GPRArgRegs
))
2421 // First register for byval parameter is the first register that wasn't
2422 // allocated before this method call, so it would be "reg".
2423 // If parameter is small enough to be saved in range [reg, r4), then
2424 // the end (first after last) register would be reg + param-size-in-regs,
2425 // else parameter would be splitted between registers and stack,
2426 // end register would be r4 in this case.
2427 unsigned ByValRegBegin
= Reg
;
2428 unsigned ByValRegEnd
= std::min
<unsigned>(Reg
+ Size
/ 4, ARM::R4
);
2429 State
->addInRegsParamInfo(ByValRegBegin
, ByValRegEnd
);
2430 // Note, first register is allocated in the beginning of function already,
2431 // allocate remained amount of registers we need.
2432 for (unsigned i
= Reg
+ 1; i
!= ByValRegEnd
; ++i
)
2433 State
->AllocateReg(GPRArgRegs
);
2434 // A byval parameter that is split between registers and memory needs its
2435 // size truncated here.
2436 // In the case where the entire structure fits in registers, we set the
2437 // size in memory to zero.
2438 Size
= std::max
<int>(Size
- Excess
, 0);
2441 /// MatchingStackOffset - Return true if the given stack call argument is
2442 /// already available in the same position (relatively) of the caller's
2443 /// incoming argument stack.
2445 bool MatchingStackOffset(SDValue Arg
, unsigned Offset
, ISD::ArgFlagsTy Flags
,
2446 MachineFrameInfo
&MFI
, const MachineRegisterInfo
*MRI
,
2447 const TargetInstrInfo
*TII
) {
2448 unsigned Bytes
= Arg
.getValueSizeInBits() / 8;
2449 int FI
= std::numeric_limits
<int>::max();
2450 if (Arg
.getOpcode() == ISD::CopyFromReg
) {
2451 unsigned VR
= cast
<RegisterSDNode
>(Arg
.getOperand(1))->getReg();
2452 if (!TargetRegisterInfo::isVirtualRegister(VR
))
2454 MachineInstr
*Def
= MRI
->getVRegDef(VR
);
2457 if (!Flags
.isByVal()) {
2458 if (!TII
->isLoadFromStackSlot(*Def
, FI
))
2463 } else if (LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(Arg
)) {
2464 if (Flags
.isByVal())
2465 // ByVal argument is passed in as a pointer but it's now being
2466 // dereferenced. e.g.
2467 // define @foo(%struct.X* %A) {
2468 // tail call @bar(%struct.X* byval %A)
2471 SDValue Ptr
= Ld
->getBasePtr();
2472 FrameIndexSDNode
*FINode
= dyn_cast
<FrameIndexSDNode
>(Ptr
);
2475 FI
= FINode
->getIndex();
2479 assert(FI
!= std::numeric_limits
<int>::max());
2480 if (!MFI
.isFixedObjectIndex(FI
))
2482 return Offset
== MFI
.getObjectOffset(FI
) && Bytes
== MFI
.getObjectSize(FI
);
2485 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
2486 /// for tail call optimization. Targets which want to do tail call
2487 /// optimization should implement this function.
2488 bool ARMTargetLowering::IsEligibleForTailCallOptimization(
2489 SDValue Callee
, CallingConv::ID CalleeCC
, bool isVarArg
,
2490 bool isCalleeStructRet
, bool isCallerStructRet
,
2491 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
2492 const SmallVectorImpl
<SDValue
> &OutVals
,
2493 const SmallVectorImpl
<ISD::InputArg
> &Ins
, SelectionDAG
&DAG
,
2494 const bool isIndirect
) const {
2495 MachineFunction
&MF
= DAG
.getMachineFunction();
2496 const Function
&CallerF
= MF
.getFunction();
2497 CallingConv::ID CallerCC
= CallerF
.getCallingConv();
2499 assert(Subtarget
->supportsTailCall());
2501 // Indirect tail calls cannot be optimized for Thumb1 if the args
2502 // to the call take up r0-r3. The reason is that there are no legal registers
2503 // left to hold the pointer to the function to be called.
2504 if (Subtarget
->isThumb1Only() && Outs
.size() >= 4 &&
2505 (!isa
<GlobalAddressSDNode
>(Callee
.getNode()) || isIndirect
))
2508 // Look for obvious safe cases to perform tail call optimization that do not
2509 // require ABI changes. This is what gcc calls sibcall.
2511 // Exception-handling functions need a special set of instructions to indicate
2512 // a return to the hardware. Tail-calling another function would probably
2514 if (CallerF
.hasFnAttribute("interrupt"))
2517 // Also avoid sibcall optimization if either caller or callee uses struct
2518 // return semantics.
2519 if (isCalleeStructRet
|| isCallerStructRet
)
2522 // Externally-defined functions with weak linkage should not be
2523 // tail-called on ARM when the OS does not support dynamic
2524 // pre-emption of symbols, as the AAELF spec requires normal calls
2525 // to undefined weak functions to be replaced with a NOP or jump to the
2526 // next instruction. The behaviour of branch instructions in this
2527 // situation (as used for tail calls) is implementation-defined, so we
2528 // cannot rely on the linker replacing the tail call with a return.
2529 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
)) {
2530 const GlobalValue
*GV
= G
->getGlobal();
2531 const Triple
&TT
= getTargetMachine().getTargetTriple();
2532 if (GV
->hasExternalWeakLinkage() &&
2533 (!TT
.isOSWindows() || TT
.isOSBinFormatELF() || TT
.isOSBinFormatMachO()))
2537 // Check that the call results are passed in the same way.
2538 LLVMContext
&C
= *DAG
.getContext();
2539 if (!CCState::resultsCompatible(CalleeCC
, CallerCC
, MF
, C
, Ins
,
2540 CCAssignFnForReturn(CalleeCC
, isVarArg
),
2541 CCAssignFnForReturn(CallerCC
, isVarArg
)))
2543 // The callee has to preserve all registers the caller needs to preserve.
2544 const ARMBaseRegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
2545 const uint32_t *CallerPreserved
= TRI
->getCallPreservedMask(MF
, CallerCC
);
2546 if (CalleeCC
!= CallerCC
) {
2547 const uint32_t *CalleePreserved
= TRI
->getCallPreservedMask(MF
, CalleeCC
);
2548 if (!TRI
->regmaskSubsetEqual(CallerPreserved
, CalleePreserved
))
2552 // If Caller's vararg or byval argument has been split between registers and
2553 // stack, do not perform tail call, since part of the argument is in caller's
2555 const ARMFunctionInfo
*AFI_Caller
= MF
.getInfo
<ARMFunctionInfo
>();
2556 if (AFI_Caller
->getArgRegsSaveSize())
2559 // If the callee takes no arguments then go on to check the results of the
2561 if (!Outs
.empty()) {
2562 // Check if stack adjustment is needed. For now, do not do this if any
2563 // argument is passed on the stack.
2564 SmallVector
<CCValAssign
, 16> ArgLocs
;
2565 CCState
CCInfo(CalleeCC
, isVarArg
, MF
, ArgLocs
, C
);
2566 CCInfo
.AnalyzeCallOperands(Outs
, CCAssignFnForCall(CalleeCC
, isVarArg
));
2567 if (CCInfo
.getNextStackOffset()) {
2568 // Check if the arguments are already laid out in the right way as
2569 // the caller's fixed stack objects.
2570 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
2571 const MachineRegisterInfo
*MRI
= &MF
.getRegInfo();
2572 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
2573 for (unsigned i
= 0, realArgIdx
= 0, e
= ArgLocs
.size();
2575 ++i
, ++realArgIdx
) {
2576 CCValAssign
&VA
= ArgLocs
[i
];
2577 EVT RegVT
= VA
.getLocVT();
2578 SDValue Arg
= OutVals
[realArgIdx
];
2579 ISD::ArgFlagsTy Flags
= Outs
[realArgIdx
].Flags
;
2580 if (VA
.getLocInfo() == CCValAssign::Indirect
)
2582 if (VA
.needsCustom()) {
2583 // f64 and vector types are split into multiple registers or
2584 // register/stack-slot combinations. The types will not match
2585 // the registers; give up on memory f64 refs until we figure
2586 // out what to do about this.
2589 if (!ArgLocs
[++i
].isRegLoc())
2591 if (RegVT
== MVT::v2f64
) {
2592 if (!ArgLocs
[++i
].isRegLoc())
2594 if (!ArgLocs
[++i
].isRegLoc())
2597 } else if (!VA
.isRegLoc()) {
2598 if (!MatchingStackOffset(Arg
, VA
.getLocMemOffset(), Flags
,
2605 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
2606 if (!parametersInCSRMatch(MRI
, CallerPreserved
, ArgLocs
, OutVals
))
2614 ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv
,
2615 MachineFunction
&MF
, bool isVarArg
,
2616 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
2617 LLVMContext
&Context
) const {
2618 SmallVector
<CCValAssign
, 16> RVLocs
;
2619 CCState
CCInfo(CallConv
, isVarArg
, MF
, RVLocs
, Context
);
2620 return CCInfo
.CheckReturn(Outs
, CCAssignFnForReturn(CallConv
, isVarArg
));
2623 static SDValue
LowerInterruptReturn(SmallVectorImpl
<SDValue
> &RetOps
,
2624 const SDLoc
&DL
, SelectionDAG
&DAG
) {
2625 const MachineFunction
&MF
= DAG
.getMachineFunction();
2626 const Function
&F
= MF
.getFunction();
2628 StringRef IntKind
= F
.getFnAttribute("interrupt").getValueAsString();
2630 // See ARM ARM v7 B1.8.3. On exception entry LR is set to a possibly offset
2631 // version of the "preferred return address". These offsets affect the return
2632 // instruction if this is a return from PL1 without hypervisor extensions.
2633 // IRQ/FIQ: +4 "subs pc, lr, #4"
2634 // SWI: 0 "subs pc, lr, #0"
2635 // ABORT: +4 "subs pc, lr, #4"
2636 // UNDEF: +4/+2 "subs pc, lr, #0"
2637 // UNDEF varies depending on where the exception came from ARM or Thumb
2638 // mode. Alongside GCC, we throw our hands up in disgust and pretend it's 0.
2641 if (IntKind
== "" || IntKind
== "IRQ" || IntKind
== "FIQ" ||
2644 else if (IntKind
== "SWI" || IntKind
== "UNDEF")
2647 report_fatal_error("Unsupported interrupt attribute. If present, value "
2648 "must be one of: IRQ, FIQ, SWI, ABORT or UNDEF");
2650 RetOps
.insert(RetOps
.begin() + 1,
2651 DAG
.getConstant(LROffset
, DL
, MVT::i32
, false));
2653 return DAG
.getNode(ARMISD::INTRET_FLAG
, DL
, MVT::Other
, RetOps
);
2657 ARMTargetLowering::LowerReturn(SDValue Chain
, CallingConv::ID CallConv
,
2659 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
2660 const SmallVectorImpl
<SDValue
> &OutVals
,
2661 const SDLoc
&dl
, SelectionDAG
&DAG
) const {
2662 // CCValAssign - represent the assignment of the return value to a location.
2663 SmallVector
<CCValAssign
, 16> RVLocs
;
2665 // CCState - Info about the registers and stack slots.
2666 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), RVLocs
,
2669 // Analyze outgoing return values.
2670 CCInfo
.AnalyzeReturn(Outs
, CCAssignFnForReturn(CallConv
, isVarArg
));
2673 SmallVector
<SDValue
, 4> RetOps
;
2674 RetOps
.push_back(Chain
); // Operand #0 = Chain (updated below)
2675 bool isLittleEndian
= Subtarget
->isLittle();
2677 MachineFunction
&MF
= DAG
.getMachineFunction();
2678 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
2679 AFI
->setReturnRegsCount(RVLocs
.size());
2681 // Copy the result values into the output registers.
2682 for (unsigned i
= 0, realRVLocIdx
= 0;
2684 ++i
, ++realRVLocIdx
) {
2685 CCValAssign
&VA
= RVLocs
[i
];
2686 assert(VA
.isRegLoc() && "Can only return in registers!");
2688 SDValue Arg
= OutVals
[realRVLocIdx
];
2689 bool ReturnF16
= false;
2691 if (Subtarget
->hasFullFP16() && Subtarget
->isTargetHardFloat()) {
2692 // Half-precision return values can be returned like this:
2694 // t11 f16 = fadd ...
2695 // t12: i16 = bitcast t11
2696 // t13: i32 = zero_extend t12
2697 // t14: f32 = bitcast t13 <~~~~~~~ Arg
2699 // to avoid code generation for bitcasts, we simply set Arg to the node
2700 // that produces the f16 value, t11 in this case.
2702 if (Arg
.getValueType() == MVT::f32
&& Arg
.getOpcode() == ISD::BITCAST
) {
2703 SDValue ZE
= Arg
.getOperand(0);
2704 if (ZE
.getOpcode() == ISD::ZERO_EXTEND
&& ZE
.getValueType() == MVT::i32
) {
2705 SDValue BC
= ZE
.getOperand(0);
2706 if (BC
.getOpcode() == ISD::BITCAST
&& BC
.getValueType() == MVT::i16
) {
2707 Arg
= BC
.getOperand(0);
2714 switch (VA
.getLocInfo()) {
2715 default: llvm_unreachable("Unknown loc info!");
2716 case CCValAssign::Full
: break;
2717 case CCValAssign::BCvt
:
2719 Arg
= DAG
.getNode(ISD::BITCAST
, dl
, VA
.getLocVT(), Arg
);
2723 if (VA
.needsCustom()) {
2724 if (VA
.getLocVT() == MVT::v2f64
) {
2725 // Extract the first half and return it in two registers.
2726 SDValue Half
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
, Arg
,
2727 DAG
.getConstant(0, dl
, MVT::i32
));
2728 SDValue HalfGPRs
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
2729 DAG
.getVTList(MVT::i32
, MVT::i32
), Half
);
2731 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(),
2732 HalfGPRs
.getValue(isLittleEndian
? 0 : 1),
2734 Flag
= Chain
.getValue(1);
2735 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(), VA
.getLocVT()));
2736 VA
= RVLocs
[++i
]; // skip ahead to next loc
2737 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(),
2738 HalfGPRs
.getValue(isLittleEndian
? 1 : 0),
2740 Flag
= Chain
.getValue(1);
2741 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(), VA
.getLocVT()));
2742 VA
= RVLocs
[++i
]; // skip ahead to next loc
2744 // Extract the 2nd half and fall through to handle it as an f64 value.
2745 Arg
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
, Arg
,
2746 DAG
.getConstant(1, dl
, MVT::i32
));
2748 // Legalize ret f64 -> ret 2 x i32. We always have fmrrd if f64 is
2750 SDValue fmrrd
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
2751 DAG
.getVTList(MVT::i32
, MVT::i32
), Arg
);
2752 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(),
2753 fmrrd
.getValue(isLittleEndian
? 0 : 1),
2755 Flag
= Chain
.getValue(1);
2756 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(), VA
.getLocVT()));
2757 VA
= RVLocs
[++i
]; // skip ahead to next loc
2758 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(),
2759 fmrrd
.getValue(isLittleEndian
? 1 : 0),
2762 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(), Arg
, Flag
);
2764 // Guarantee that all emitted copies are
2765 // stuck together, avoiding something bad.
2766 Flag
= Chain
.getValue(1);
2767 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(),
2768 ReturnF16
? MVT::f16
: VA
.getLocVT()));
2770 const ARMBaseRegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
2771 const MCPhysReg
*I
=
2772 TRI
->getCalleeSavedRegsViaCopy(&DAG
.getMachineFunction());
2775 if (ARM::GPRRegClass
.contains(*I
))
2776 RetOps
.push_back(DAG
.getRegister(*I
, MVT::i32
));
2777 else if (ARM::DPRRegClass
.contains(*I
))
2778 RetOps
.push_back(DAG
.getRegister(*I
, MVT::getFloatingPointVT(64)));
2780 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2784 // Update chain and glue.
2787 RetOps
.push_back(Flag
);
2789 // CPUs which aren't M-class use a special sequence to return from
2790 // exceptions (roughly, any instruction setting pc and cpsr simultaneously,
2791 // though we use "subs pc, lr, #N").
2793 // M-class CPUs actually use a normal return sequence with a special
2794 // (hardware-provided) value in LR, so the normal code path works.
2795 if (DAG
.getMachineFunction().getFunction().hasFnAttribute("interrupt") &&
2796 !Subtarget
->isMClass()) {
2797 if (Subtarget
->isThumb1Only())
2798 report_fatal_error("interrupt attribute is not supported in Thumb1");
2799 return LowerInterruptReturn(RetOps
, dl
, DAG
);
2802 return DAG
.getNode(ARMISD::RET_FLAG
, dl
, MVT::Other
, RetOps
);
2805 bool ARMTargetLowering::isUsedByReturnOnly(SDNode
*N
, SDValue
&Chain
) const {
2806 if (N
->getNumValues() != 1)
2808 if (!N
->hasNUsesOfValue(1, 0))
2811 SDValue TCChain
= Chain
;
2812 SDNode
*Copy
= *N
->use_begin();
2813 if (Copy
->getOpcode() == ISD::CopyToReg
) {
2814 // If the copy has a glue operand, we conservatively assume it isn't safe to
2815 // perform a tail call.
2816 if (Copy
->getOperand(Copy
->getNumOperands()-1).getValueType() == MVT::Glue
)
2818 TCChain
= Copy
->getOperand(0);
2819 } else if (Copy
->getOpcode() == ARMISD::VMOVRRD
) {
2820 SDNode
*VMov
= Copy
;
2821 // f64 returned in a pair of GPRs.
2822 SmallPtrSet
<SDNode
*, 2> Copies
;
2823 for (SDNode::use_iterator UI
= VMov
->use_begin(), UE
= VMov
->use_end();
2825 if (UI
->getOpcode() != ISD::CopyToReg
)
2829 if (Copies
.size() > 2)
2832 for (SDNode::use_iterator UI
= VMov
->use_begin(), UE
= VMov
->use_end();
2834 SDValue UseChain
= UI
->getOperand(0);
2835 if (Copies
.count(UseChain
.getNode()))
2839 // We are at the top of this chain.
2840 // If the copy has a glue operand, we conservatively assume it
2841 // isn't safe to perform a tail call.
2842 if (UI
->getOperand(UI
->getNumOperands()-1).getValueType() == MVT::Glue
)
2848 } else if (Copy
->getOpcode() == ISD::BITCAST
) {
2849 // f32 returned in a single GPR.
2850 if (!Copy
->hasOneUse())
2852 Copy
= *Copy
->use_begin();
2853 if (Copy
->getOpcode() != ISD::CopyToReg
|| !Copy
->hasNUsesOfValue(1, 0))
2855 // If the copy has a glue operand, we conservatively assume it isn't safe to
2856 // perform a tail call.
2857 if (Copy
->getOperand(Copy
->getNumOperands()-1).getValueType() == MVT::Glue
)
2859 TCChain
= Copy
->getOperand(0);
2864 bool HasRet
= false;
2865 for (SDNode::use_iterator UI
= Copy
->use_begin(), UE
= Copy
->use_end();
2867 if (UI
->getOpcode() != ARMISD::RET_FLAG
&&
2868 UI
->getOpcode() != ARMISD::INTRET_FLAG
)
2880 bool ARMTargetLowering::mayBeEmittedAsTailCall(const CallInst
*CI
) const {
2881 if (!Subtarget
->supportsTailCall())
2885 CI
->getParent()->getParent()->getFnAttribute("disable-tail-calls");
2886 if (!CI
->isTailCall() || Attr
.getValueAsString() == "true")
2892 // Trying to write a 64 bit value so need to split into two 32 bit values first,
2893 // and pass the lower and high parts through.
2894 static SDValue
LowerWRITE_REGISTER(SDValue Op
, SelectionDAG
&DAG
) {
2896 SDValue WriteValue
= Op
->getOperand(2);
2898 // This function is only supposed to be called for i64 type argument.
2899 assert(WriteValue
.getValueType() == MVT::i64
2900 && "LowerWRITE_REGISTER called for non-i64 type argument.");
2902 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, WriteValue
,
2903 DAG
.getConstant(0, DL
, MVT::i32
));
2904 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, WriteValue
,
2905 DAG
.getConstant(1, DL
, MVT::i32
));
2906 SDValue Ops
[] = { Op
->getOperand(0), Op
->getOperand(1), Lo
, Hi
};
2907 return DAG
.getNode(ISD::WRITE_REGISTER
, DL
, MVT::Other
, Ops
);
2910 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
2911 // their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
2912 // one of the above mentioned nodes. It has to be wrapped because otherwise
2913 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
2914 // be used to form addressing mode. These wrapped nodes will be selected
2916 SDValue
ARMTargetLowering::LowerConstantPool(SDValue Op
,
2917 SelectionDAG
&DAG
) const {
2918 EVT PtrVT
= Op
.getValueType();
2919 // FIXME there is no actual debug info here
2921 ConstantPoolSDNode
*CP
= cast
<ConstantPoolSDNode
>(Op
);
2924 // When generating execute-only code Constant Pools must be promoted to the
2925 // global data section. It's a bit ugly that we can't share them across basic
2926 // blocks, but this way we guarantee that execute-only behaves correct with
2927 // position-independent addressing modes.
2928 if (Subtarget
->genExecuteOnly()) {
2929 auto AFI
= DAG
.getMachineFunction().getInfo
<ARMFunctionInfo
>();
2930 auto T
= const_cast<Type
*>(CP
->getType());
2931 auto C
= const_cast<Constant
*>(CP
->getConstVal());
2932 auto M
= const_cast<Module
*>(DAG
.getMachineFunction().
2933 getFunction().getParent());
2934 auto GV
= new GlobalVariable(
2935 *M
, T
, /*isConstant=*/true, GlobalVariable::InternalLinkage
, C
,
2936 Twine(DAG
.getDataLayout().getPrivateGlobalPrefix()) + "CP" +
2937 Twine(DAG
.getMachineFunction().getFunctionNumber()) + "_" +
2938 Twine(AFI
->createPICLabelUId())
2940 SDValue GA
= DAG
.getTargetGlobalAddress(dyn_cast
<GlobalValue
>(GV
),
2942 return LowerGlobalAddress(GA
, DAG
);
2945 if (CP
->isMachineConstantPoolEntry())
2946 Res
= DAG
.getTargetConstantPool(CP
->getMachineCPVal(), PtrVT
,
2947 CP
->getAlignment());
2949 Res
= DAG
.getTargetConstantPool(CP
->getConstVal(), PtrVT
,
2950 CP
->getAlignment());
2951 return DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, Res
);
2954 unsigned ARMTargetLowering::getJumpTableEncoding() const {
2955 return MachineJumpTableInfo::EK_Inline
;
2958 SDValue
ARMTargetLowering::LowerBlockAddress(SDValue Op
,
2959 SelectionDAG
&DAG
) const {
2960 MachineFunction
&MF
= DAG
.getMachineFunction();
2961 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
2962 unsigned ARMPCLabelIndex
= 0;
2964 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
2965 const BlockAddress
*BA
= cast
<BlockAddressSDNode
>(Op
)->getBlockAddress();
2967 bool IsPositionIndependent
= isPositionIndependent() || Subtarget
->isROPI();
2968 if (!IsPositionIndependent
) {
2969 CPAddr
= DAG
.getTargetConstantPool(BA
, PtrVT
, 4);
2971 unsigned PCAdj
= Subtarget
->isThumb() ? 4 : 8;
2972 ARMPCLabelIndex
= AFI
->createPICLabelUId();
2973 ARMConstantPoolValue
*CPV
=
2974 ARMConstantPoolConstant::Create(BA
, ARMPCLabelIndex
,
2975 ARMCP::CPBlockAddress
, PCAdj
);
2976 CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
2978 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, DL
, PtrVT
, CPAddr
);
2979 SDValue Result
= DAG
.getLoad(
2980 PtrVT
, DL
, DAG
.getEntryNode(), CPAddr
,
2981 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
2982 if (!IsPositionIndependent
)
2984 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, DL
, MVT::i32
);
2985 return DAG
.getNode(ARMISD::PIC_ADD
, DL
, PtrVT
, Result
, PICLabel
);
2988 /// Convert a TLS address reference into the correct sequence of loads
2989 /// and calls to compute the variable's address for Darwin, and return an
2990 /// SDValue containing the final node.
2992 /// Darwin only has one TLS scheme which must be capable of dealing with the
2993 /// fully general situation, in the worst case. This means:
2994 /// + "extern __thread" declaration.
2995 /// + Defined in a possibly unknown dynamic library.
2997 /// The general system is that each __thread variable has a [3 x i32] descriptor
2998 /// which contains information used by the runtime to calculate the address. The
2999 /// only part of this the compiler needs to know about is the first word, which
3000 /// contains a function pointer that must be called with the address of the
3001 /// entire descriptor in "r0".
3003 /// Since this descriptor may be in a different unit, in general access must
3004 /// proceed along the usual ARM rules. A common sequence to produce is:
3006 /// movw rT1, :lower16:_var$non_lazy_ptr
3007 /// movt rT1, :upper16:_var$non_lazy_ptr
3011 /// [...address now in r0...]
3013 ARMTargetLowering::LowerGlobalTLSAddressDarwin(SDValue Op
,
3014 SelectionDAG
&DAG
) const {
3015 assert(Subtarget
->isTargetDarwin() &&
3016 "This function expects a Darwin target");
3019 // First step is to get the address of the actua global symbol. This is where
3020 // the TLS descriptor lives.
3021 SDValue DescAddr
= LowerGlobalAddressDarwin(Op
, DAG
);
3023 // The first entry in the descriptor is a function pointer that we must call
3024 // to obtain the address of the variable.
3025 SDValue Chain
= DAG
.getEntryNode();
3026 SDValue FuncTLVGet
= DAG
.getLoad(
3027 MVT::i32
, DL
, Chain
, DescAddr
,
3028 MachinePointerInfo::getGOT(DAG
.getMachineFunction()),
3029 /* Alignment = */ 4,
3030 MachineMemOperand::MONonTemporal
| MachineMemOperand::MODereferenceable
|
3031 MachineMemOperand::MOInvariant
);
3032 Chain
= FuncTLVGet
.getValue(1);
3034 MachineFunction
&F
= DAG
.getMachineFunction();
3035 MachineFrameInfo
&MFI
= F
.getFrameInfo();
3036 MFI
.setAdjustsStack(true);
3038 // TLS calls preserve all registers except those that absolutely must be
3039 // trashed: R0 (it takes an argument), LR (it's a call) and CPSR (let's not be
3042 getTargetMachine().getSubtargetImpl(F
.getFunction())->getRegisterInfo();
3043 auto ARI
= static_cast<const ARMRegisterInfo
*>(TRI
);
3044 const uint32_t *Mask
= ARI
->getTLSCallPreservedMask(DAG
.getMachineFunction());
3046 // Finally, we can make the call. This is just a degenerate version of a
3047 // normal AArch64 call node: r0 takes the address of the descriptor, and
3048 // returns the address of the variable in this thread.
3049 Chain
= DAG
.getCopyToReg(Chain
, DL
, ARM::R0
, DescAddr
, SDValue());
3051 DAG
.getNode(ARMISD::CALL
, DL
, DAG
.getVTList(MVT::Other
, MVT::Glue
),
3052 Chain
, FuncTLVGet
, DAG
.getRegister(ARM::R0
, MVT::i32
),
3053 DAG
.getRegisterMask(Mask
), Chain
.getValue(1));
3054 return DAG
.getCopyFromReg(Chain
, DL
, ARM::R0
, MVT::i32
, Chain
.getValue(1));
3058 ARMTargetLowering::LowerGlobalTLSAddressWindows(SDValue Op
,
3059 SelectionDAG
&DAG
) const {
3060 assert(Subtarget
->isTargetWindows() && "Windows specific TLS lowering");
3062 SDValue Chain
= DAG
.getEntryNode();
3063 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3066 // Load the current TEB (thread environment block)
3067 SDValue Ops
[] = {Chain
,
3068 DAG
.getConstant(Intrinsic::arm_mrc
, DL
, MVT::i32
),
3069 DAG
.getConstant(15, DL
, MVT::i32
),
3070 DAG
.getConstant(0, DL
, MVT::i32
),
3071 DAG
.getConstant(13, DL
, MVT::i32
),
3072 DAG
.getConstant(0, DL
, MVT::i32
),
3073 DAG
.getConstant(2, DL
, MVT::i32
)};
3074 SDValue CurrentTEB
= DAG
.getNode(ISD::INTRINSIC_W_CHAIN
, DL
,
3075 DAG
.getVTList(MVT::i32
, MVT::Other
), Ops
);
3077 SDValue TEB
= CurrentTEB
.getValue(0);
3078 Chain
= CurrentTEB
.getValue(1);
3080 // Load the ThreadLocalStoragePointer from the TEB
3081 // A pointer to the TLS array is located at offset 0x2c from the TEB.
3083 DAG
.getNode(ISD::ADD
, DL
, PtrVT
, TEB
, DAG
.getIntPtrConstant(0x2c, DL
));
3084 TLSArray
= DAG
.getLoad(PtrVT
, DL
, Chain
, TLSArray
, MachinePointerInfo());
3086 // The pointer to the thread's TLS data area is at the TLS Index scaled by 4
3087 // offset into the TLSArray.
3089 // Load the TLS index from the C runtime
3091 DAG
.getTargetExternalSymbol("_tls_index", PtrVT
, ARMII::MO_NO_FLAG
);
3092 TLSIndex
= DAG
.getNode(ARMISD::Wrapper
, DL
, PtrVT
, TLSIndex
);
3093 TLSIndex
= DAG
.getLoad(PtrVT
, DL
, Chain
, TLSIndex
, MachinePointerInfo());
3095 SDValue Slot
= DAG
.getNode(ISD::SHL
, DL
, PtrVT
, TLSIndex
,
3096 DAG
.getConstant(2, DL
, MVT::i32
));
3097 SDValue TLS
= DAG
.getLoad(PtrVT
, DL
, Chain
,
3098 DAG
.getNode(ISD::ADD
, DL
, PtrVT
, TLSArray
, Slot
),
3099 MachinePointerInfo());
3101 // Get the offset of the start of the .tls section (section base)
3102 const auto *GA
= cast
<GlobalAddressSDNode
>(Op
);
3103 auto *CPV
= ARMConstantPoolConstant::Create(GA
->getGlobal(), ARMCP::SECREL
);
3104 SDValue Offset
= DAG
.getLoad(
3105 PtrVT
, DL
, Chain
, DAG
.getNode(ARMISD::Wrapper
, DL
, MVT::i32
,
3106 DAG
.getTargetConstantPool(CPV
, PtrVT
, 4)),
3107 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3109 return DAG
.getNode(ISD::ADD
, DL
, PtrVT
, TLS
, Offset
);
3112 // Lower ISD::GlobalTLSAddress using the "general dynamic" model
3114 ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode
*GA
,
3115 SelectionDAG
&DAG
) const {
3117 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3118 unsigned char PCAdj
= Subtarget
->isThumb() ? 4 : 8;
3119 MachineFunction
&MF
= DAG
.getMachineFunction();
3120 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3121 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
3122 ARMConstantPoolValue
*CPV
=
3123 ARMConstantPoolConstant::Create(GA
->getGlobal(), ARMPCLabelIndex
,
3124 ARMCP::CPValue
, PCAdj
, ARMCP::TLSGD
, true);
3125 SDValue Argument
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3126 Argument
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, Argument
);
3127 Argument
= DAG
.getLoad(
3128 PtrVT
, dl
, DAG
.getEntryNode(), Argument
,
3129 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3130 SDValue Chain
= Argument
.getValue(1);
3132 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, dl
, MVT::i32
);
3133 Argument
= DAG
.getNode(ARMISD::PIC_ADD
, dl
, PtrVT
, Argument
, PICLabel
);
3135 // call __tls_get_addr.
3138 Entry
.Node
= Argument
;
3139 Entry
.Ty
= (Type
*) Type::getInt32Ty(*DAG
.getContext());
3140 Args
.push_back(Entry
);
3142 // FIXME: is there useful debug info available here?
3143 TargetLowering::CallLoweringInfo
CLI(DAG
);
3144 CLI
.setDebugLoc(dl
).setChain(Chain
).setLibCallee(
3145 CallingConv::C
, Type::getInt32Ty(*DAG
.getContext()),
3146 DAG
.getExternalSymbol("__tls_get_addr", PtrVT
), std::move(Args
));
3148 std::pair
<SDValue
, SDValue
> CallResult
= LowerCallTo(CLI
);
3149 return CallResult
.first
;
3152 // Lower ISD::GlobalTLSAddress using the "initial exec" or
3153 // "local exec" model.
3155 ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode
*GA
,
3157 TLSModel::Model model
) const {
3158 const GlobalValue
*GV
= GA
->getGlobal();
3161 SDValue Chain
= DAG
.getEntryNode();
3162 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3163 // Get the Thread Pointer
3164 SDValue ThreadPointer
= DAG
.getNode(ARMISD::THREAD_POINTER
, dl
, PtrVT
);
3166 if (model
== TLSModel::InitialExec
) {
3167 MachineFunction
&MF
= DAG
.getMachineFunction();
3168 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3169 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
3170 // Initial exec model.
3171 unsigned char PCAdj
= Subtarget
->isThumb() ? 4 : 8;
3172 ARMConstantPoolValue
*CPV
=
3173 ARMConstantPoolConstant::Create(GA
->getGlobal(), ARMPCLabelIndex
,
3174 ARMCP::CPValue
, PCAdj
, ARMCP::GOTTPOFF
,
3176 Offset
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3177 Offset
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, Offset
);
3178 Offset
= DAG
.getLoad(
3179 PtrVT
, dl
, Chain
, Offset
,
3180 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3181 Chain
= Offset
.getValue(1);
3183 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, dl
, MVT::i32
);
3184 Offset
= DAG
.getNode(ARMISD::PIC_ADD
, dl
, PtrVT
, Offset
, PICLabel
);
3186 Offset
= DAG
.getLoad(
3187 PtrVT
, dl
, Chain
, Offset
,
3188 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3191 assert(model
== TLSModel::LocalExec
);
3192 ARMConstantPoolValue
*CPV
=
3193 ARMConstantPoolConstant::Create(GV
, ARMCP::TPOFF
);
3194 Offset
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3195 Offset
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, Offset
);
3196 Offset
= DAG
.getLoad(
3197 PtrVT
, dl
, Chain
, Offset
,
3198 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3201 // The address of the thread local variable is the add of the thread
3202 // pointer with the offset of the variable.
3203 return DAG
.getNode(ISD::ADD
, dl
, PtrVT
, ThreadPointer
, Offset
);
3207 ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op
, SelectionDAG
&DAG
) const {
3208 GlobalAddressSDNode
*GA
= cast
<GlobalAddressSDNode
>(Op
);
3209 if (DAG
.getTarget().useEmulatedTLS())
3210 return LowerToTLSEmulatedModel(GA
, DAG
);
3212 if (Subtarget
->isTargetDarwin())
3213 return LowerGlobalTLSAddressDarwin(Op
, DAG
);
3215 if (Subtarget
->isTargetWindows())
3216 return LowerGlobalTLSAddressWindows(Op
, DAG
);
3218 // TODO: implement the "local dynamic" model
3219 assert(Subtarget
->isTargetELF() && "Only ELF implemented here");
3220 TLSModel::Model model
= getTargetMachine().getTLSModel(GA
->getGlobal());
3223 case TLSModel::GeneralDynamic
:
3224 case TLSModel::LocalDynamic
:
3225 return LowerToTLSGeneralDynamicModel(GA
, DAG
);
3226 case TLSModel::InitialExec
:
3227 case TLSModel::LocalExec
:
3228 return LowerToTLSExecModels(GA
, DAG
, model
);
3230 llvm_unreachable("bogus TLS model");
3233 /// Return true if all users of V are within function F, looking through
3235 static bool allUsersAreInFunction(const Value
*V
, const Function
*F
) {
3236 SmallVector
<const User
*,4> Worklist
;
3237 for (auto *U
: V
->users())
3238 Worklist
.push_back(U
);
3239 while (!Worklist
.empty()) {
3240 auto *U
= Worklist
.pop_back_val();
3241 if (isa
<ConstantExpr
>(U
)) {
3242 for (auto *UU
: U
->users())
3243 Worklist
.push_back(UU
);
3247 auto *I
= dyn_cast
<Instruction
>(U
);
3248 if (!I
|| I
->getParent()->getParent() != F
)
3254 static SDValue
promoteToConstantPool(const ARMTargetLowering
*TLI
,
3255 const GlobalValue
*GV
, SelectionDAG
&DAG
,
3256 EVT PtrVT
, const SDLoc
&dl
) {
3257 // If we're creating a pool entry for a constant global with unnamed address,
3258 // and the global is small enough, we can emit it inline into the constant pool
3259 // to save ourselves an indirection.
3261 // This is a win if the constant is only used in one function (so it doesn't
3262 // need to be duplicated) or duplicating the constant wouldn't increase code
3263 // size (implying the constant is no larger than 4 bytes).
3264 const Function
&F
= DAG
.getMachineFunction().getFunction();
3266 // We rely on this decision to inline being idemopotent and unrelated to the
3267 // use-site. We know that if we inline a variable at one use site, we'll
3268 // inline it elsewhere too (and reuse the constant pool entry). Fast-isel
3269 // doesn't know about this optimization, so bail out if it's enabled else
3270 // we could decide to inline here (and thus never emit the GV) but require
3271 // the GV from fast-isel generated code.
3272 if (!EnableConstpoolPromotion
||
3273 DAG
.getMachineFunction().getTarget().Options
.EnableFastISel
)
3276 auto *GVar
= dyn_cast
<GlobalVariable
>(GV
);
3277 if (!GVar
|| !GVar
->hasInitializer() ||
3278 !GVar
->isConstant() || !GVar
->hasGlobalUnnamedAddr() ||
3279 !GVar
->hasLocalLinkage())
3282 // If we inline a value that contains relocations, we move the relocations
3283 // from .data to .text. This is not allowed in position-independent code.
3284 auto *Init
= GVar
->getInitializer();
3285 if ((TLI
->isPositionIndependent() || TLI
->getSubtarget()->isROPI()) &&
3286 Init
->needsRelocation())
3289 // The constant islands pass can only really deal with alignment requests
3290 // <= 4 bytes and cannot pad constants itself. Therefore we cannot promote
3291 // any type wanting greater alignment requirements than 4 bytes. We also
3292 // can only promote constants that are multiples of 4 bytes in size or
3293 // are paddable to a multiple of 4. Currently we only try and pad constants
3294 // that are strings for simplicity.
3295 auto *CDAInit
= dyn_cast
<ConstantDataArray
>(Init
);
3296 unsigned Size
= DAG
.getDataLayout().getTypeAllocSize(Init
->getType());
3297 unsigned Align
= DAG
.getDataLayout().getPreferredAlignment(GVar
);
3298 unsigned RequiredPadding
= 4 - (Size
% 4);
3299 bool PaddingPossible
=
3300 RequiredPadding
== 4 || (CDAInit
&& CDAInit
->isString());
3301 if (!PaddingPossible
|| Align
> 4 || Size
> ConstpoolPromotionMaxSize
||
3305 unsigned PaddedSize
= Size
+ ((RequiredPadding
== 4) ? 0 : RequiredPadding
);
3306 MachineFunction
&MF
= DAG
.getMachineFunction();
3307 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3309 // We can't bloat the constant pool too much, else the ConstantIslands pass
3310 // may fail to converge. If we haven't promoted this global yet (it may have
3311 // multiple uses), and promoting it would increase the constant pool size (Sz
3312 // > 4), ensure we have space to do so up to MaxTotal.
3313 if (!AFI
->getGlobalsPromotedToConstantPool().count(GVar
) && Size
> 4)
3314 if (AFI
->getPromotedConstpoolIncrease() + PaddedSize
- 4 >=
3315 ConstpoolPromotionMaxTotal
)
3318 // This is only valid if all users are in a single function; we can't clone
3319 // the constant in general. The LLVM IR unnamed_addr allows merging
3320 // constants, but not cloning them.
3322 // We could potentially allow cloning if we could prove all uses of the
3323 // constant in the current function don't care about the address, like
3324 // printf format strings. But that isn't implemented for now.
3325 if (!allUsersAreInFunction(GVar
, &F
))
3328 // We're going to inline this global. Pad it out if needed.
3329 if (RequiredPadding
!= 4) {
3330 StringRef S
= CDAInit
->getAsString();
3332 SmallVector
<uint8_t,16> V(S
.size());
3333 std::copy(S
.bytes_begin(), S
.bytes_end(), V
.begin());
3334 while (RequiredPadding
--)
3336 Init
= ConstantDataArray::get(*DAG
.getContext(), V
);
3339 auto CPVal
= ARMConstantPoolConstant::Create(GVar
, Init
);
3341 DAG
.getTargetConstantPool(CPVal
, PtrVT
, /*Align=*/4);
3342 if (!AFI
->getGlobalsPromotedToConstantPool().count(GVar
)) {
3343 AFI
->markGlobalAsPromotedToConstantPool(GVar
);
3344 AFI
->setPromotedConstpoolIncrease(AFI
->getPromotedConstpoolIncrease() +
3347 ++NumConstpoolPromoted
;
3348 return DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
3351 bool ARMTargetLowering::isReadOnly(const GlobalValue
*GV
) const {
3352 if (const GlobalAlias
*GA
= dyn_cast
<GlobalAlias
>(GV
))
3353 if (!(GV
= GA
->getBaseObject()))
3355 if (const auto *V
= dyn_cast
<GlobalVariable
>(GV
))
3356 return V
->isConstant();
3357 return isa
<Function
>(GV
);
3360 SDValue
ARMTargetLowering::LowerGlobalAddress(SDValue Op
,
3361 SelectionDAG
&DAG
) const {
3362 switch (Subtarget
->getTargetTriple().getObjectFormat()) {
3363 default: llvm_unreachable("unknown object format");
3365 return LowerGlobalAddressWindows(Op
, DAG
);
3367 return LowerGlobalAddressELF(Op
, DAG
);
3369 return LowerGlobalAddressDarwin(Op
, DAG
);
3373 SDValue
ARMTargetLowering::LowerGlobalAddressELF(SDValue Op
,
3374 SelectionDAG
&DAG
) const {
3375 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3377 const GlobalValue
*GV
= cast
<GlobalAddressSDNode
>(Op
)->getGlobal();
3378 const TargetMachine
&TM
= getTargetMachine();
3379 bool IsRO
= isReadOnly(GV
);
3381 // promoteToConstantPool only if not generating XO text section
3382 if (TM
.shouldAssumeDSOLocal(*GV
->getParent(), GV
) && !Subtarget
->genExecuteOnly())
3383 if (SDValue V
= promoteToConstantPool(this, GV
, DAG
, PtrVT
, dl
))
3386 if (isPositionIndependent()) {
3387 bool UseGOT_PREL
= !TM
.shouldAssumeDSOLocal(*GV
->getParent(), GV
);
3388 SDValue G
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
, 0,
3389 UseGOT_PREL
? ARMII::MO_GOT
: 0);
3390 SDValue Result
= DAG
.getNode(ARMISD::WrapperPIC
, dl
, PtrVT
, G
);
3393 DAG
.getLoad(PtrVT
, dl
, DAG
.getEntryNode(), Result
,
3394 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
3396 } else if (Subtarget
->isROPI() && IsRO
) {
3398 SDValue G
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
);
3399 SDValue Result
= DAG
.getNode(ARMISD::WrapperPIC
, dl
, PtrVT
, G
);
3401 } else if (Subtarget
->isRWPI() && !IsRO
) {
3404 if (Subtarget
->useMovt()) {
3406 SDValue G
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
, 0, ARMII::MO_SBREL
);
3407 RelAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, PtrVT
, G
);
3408 } else { // use literal pool for address constant
3409 ARMConstantPoolValue
*CPV
=
3410 ARMConstantPoolConstant::Create(GV
, ARMCP::SBREL
);
3411 SDValue CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3412 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
3413 RelAddr
= DAG
.getLoad(
3414 PtrVT
, dl
, DAG
.getEntryNode(), CPAddr
,
3415 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3417 SDValue SB
= DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, ARM::R9
, PtrVT
);
3418 SDValue Result
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, SB
, RelAddr
);
3422 // If we have T2 ops, we can materialize the address directly via movt/movw
3423 // pair. This is always cheaper.
3424 if (Subtarget
->useMovt()) {
3426 // FIXME: Once remat is capable of dealing with instructions with register
3427 // operands, expand this into two nodes.
3428 return DAG
.getNode(ARMISD::Wrapper
, dl
, PtrVT
,
3429 DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
));
3431 SDValue CPAddr
= DAG
.getTargetConstantPool(GV
, PtrVT
, 4);
3432 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
3434 PtrVT
, dl
, DAG
.getEntryNode(), CPAddr
,
3435 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3439 SDValue
ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op
,
3440 SelectionDAG
&DAG
) const {
3441 assert(!Subtarget
->isROPI() && !Subtarget
->isRWPI() &&
3442 "ROPI/RWPI not currently supported for Darwin");
3443 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3445 const GlobalValue
*GV
= cast
<GlobalAddressSDNode
>(Op
)->getGlobal();
3447 if (Subtarget
->useMovt())
3450 // FIXME: Once remat is capable of dealing with instructions with register
3451 // operands, expand this into multiple nodes
3453 isPositionIndependent() ? ARMISD::WrapperPIC
: ARMISD::Wrapper
;
3455 SDValue G
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
, 0, ARMII::MO_NONLAZY
);
3456 SDValue Result
= DAG
.getNode(Wrapper
, dl
, PtrVT
, G
);
3458 if (Subtarget
->isGVIndirectSymbol(GV
))
3459 Result
= DAG
.getLoad(PtrVT
, dl
, DAG
.getEntryNode(), Result
,
3460 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
3464 SDValue
ARMTargetLowering::LowerGlobalAddressWindows(SDValue Op
,
3465 SelectionDAG
&DAG
) const {
3466 assert(Subtarget
->isTargetWindows() && "non-Windows COFF is not supported");
3467 assert(Subtarget
->useMovt() &&
3468 "Windows on ARM expects to use movw/movt");
3469 assert(!Subtarget
->isROPI() && !Subtarget
->isRWPI() &&
3470 "ROPI/RWPI not currently supported for Windows");
3472 const TargetMachine
&TM
= getTargetMachine();
3473 const GlobalValue
*GV
= cast
<GlobalAddressSDNode
>(Op
)->getGlobal();
3474 ARMII::TOF TargetFlags
= ARMII::MO_NO_FLAG
;
3475 if (GV
->hasDLLImportStorageClass())
3476 TargetFlags
= ARMII::MO_DLLIMPORT
;
3477 else if (!TM
.shouldAssumeDSOLocal(*GV
->getParent(), GV
))
3478 TargetFlags
= ARMII::MO_COFFSTUB
;
3479 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3485 // FIXME: Once remat is capable of dealing with instructions with register
3486 // operands, expand this into two nodes.
3487 Result
= DAG
.getNode(ARMISD::Wrapper
, DL
, PtrVT
,
3488 DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, /*offset=*/0,
3490 if (TargetFlags
& (ARMII::MO_DLLIMPORT
| ARMII::MO_COFFSTUB
))
3491 Result
= DAG
.getLoad(PtrVT
, DL
, DAG
.getEntryNode(), Result
,
3492 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
3497 ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op
, SelectionDAG
&DAG
) const {
3499 SDValue Val
= DAG
.getConstant(0, dl
, MVT::i32
);
3500 return DAG
.getNode(ARMISD::EH_SJLJ_SETJMP
, dl
,
3501 DAG
.getVTList(MVT::i32
, MVT::Other
), Op
.getOperand(0),
3502 Op
.getOperand(1), Val
);
3506 ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op
, SelectionDAG
&DAG
) const {
3508 return DAG
.getNode(ARMISD::EH_SJLJ_LONGJMP
, dl
, MVT::Other
, Op
.getOperand(0),
3509 Op
.getOperand(1), DAG
.getConstant(0, dl
, MVT::i32
));
3512 SDValue
ARMTargetLowering::LowerEH_SJLJ_SETUP_DISPATCH(SDValue Op
,
3513 SelectionDAG
&DAG
) const {
3515 return DAG
.getNode(ARMISD::EH_SJLJ_SETUP_DISPATCH
, dl
, MVT::Other
,
3520 ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op
, SelectionDAG
&DAG
,
3521 const ARMSubtarget
*Subtarget
) const {
3522 unsigned IntNo
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
3525 default: return SDValue(); // Don't custom lower most intrinsics.
3526 case Intrinsic::thread_pointer
: {
3527 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3528 return DAG
.getNode(ARMISD::THREAD_POINTER
, dl
, PtrVT
);
3530 case Intrinsic::eh_sjlj_lsda
: {
3531 MachineFunction
&MF
= DAG
.getMachineFunction();
3532 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3533 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
3534 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3536 bool IsPositionIndependent
= isPositionIndependent();
3537 unsigned PCAdj
= IsPositionIndependent
? (Subtarget
->isThumb() ? 4 : 8) : 0;
3538 ARMConstantPoolValue
*CPV
=
3539 ARMConstantPoolConstant::Create(&MF
.getFunction(), ARMPCLabelIndex
,
3540 ARMCP::CPLSDA
, PCAdj
);
3541 CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3542 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
3543 SDValue Result
= DAG
.getLoad(
3544 PtrVT
, dl
, DAG
.getEntryNode(), CPAddr
,
3545 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3547 if (IsPositionIndependent
) {
3548 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, dl
, MVT::i32
);
3549 Result
= DAG
.getNode(ARMISD::PIC_ADD
, dl
, PtrVT
, Result
, PICLabel
);
3553 case Intrinsic::arm_neon_vabs
:
3554 return DAG
.getNode(ISD::ABS
, SDLoc(Op
), Op
.getValueType(),
3556 case Intrinsic::arm_neon_vmulls
:
3557 case Intrinsic::arm_neon_vmullu
: {
3558 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vmulls
)
3559 ? ARMISD::VMULLs
: ARMISD::VMULLu
;
3560 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
3561 Op
.getOperand(1), Op
.getOperand(2));
3563 case Intrinsic::arm_neon_vminnm
:
3564 case Intrinsic::arm_neon_vmaxnm
: {
3565 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vminnm
)
3566 ? ISD::FMINNUM
: ISD::FMAXNUM
;
3567 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
3568 Op
.getOperand(1), Op
.getOperand(2));
3570 case Intrinsic::arm_neon_vminu
:
3571 case Intrinsic::arm_neon_vmaxu
: {
3572 if (Op
.getValueType().isFloatingPoint())
3574 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vminu
)
3575 ? ISD::UMIN
: ISD::UMAX
;
3576 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
3577 Op
.getOperand(1), Op
.getOperand(2));
3579 case Intrinsic::arm_neon_vmins
:
3580 case Intrinsic::arm_neon_vmaxs
: {
3581 // v{min,max}s is overloaded between signed integers and floats.
3582 if (!Op
.getValueType().isFloatingPoint()) {
3583 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vmins
)
3584 ? ISD::SMIN
: ISD::SMAX
;
3585 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
3586 Op
.getOperand(1), Op
.getOperand(2));
3588 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vmins
)
3589 ? ISD::FMINIMUM
: ISD::FMAXIMUM
;
3590 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
3591 Op
.getOperand(1), Op
.getOperand(2));
3593 case Intrinsic::arm_neon_vtbl1
:
3594 return DAG
.getNode(ARMISD::VTBL1
, SDLoc(Op
), Op
.getValueType(),
3595 Op
.getOperand(1), Op
.getOperand(2));
3596 case Intrinsic::arm_neon_vtbl2
:
3597 return DAG
.getNode(ARMISD::VTBL2
, SDLoc(Op
), Op
.getValueType(),
3598 Op
.getOperand(1), Op
.getOperand(2), Op
.getOperand(3));
3602 static SDValue
LowerATOMIC_FENCE(SDValue Op
, SelectionDAG
&DAG
,
3603 const ARMSubtarget
*Subtarget
) {
3605 ConstantSDNode
*SSIDNode
= cast
<ConstantSDNode
>(Op
.getOperand(2));
3606 auto SSID
= static_cast<SyncScope::ID
>(SSIDNode
->getZExtValue());
3607 if (SSID
== SyncScope::SingleThread
)
3610 if (!Subtarget
->hasDataBarrier()) {
3611 // Some ARMv6 cpus can support data barriers with an mcr instruction.
3612 // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
3614 assert(Subtarget
->hasV6Ops() && !Subtarget
->isThumb() &&
3615 "Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!");
3616 return DAG
.getNode(ARMISD::MEMBARRIER_MCR
, dl
, MVT::Other
, Op
.getOperand(0),
3617 DAG
.getConstant(0, dl
, MVT::i32
));
3620 ConstantSDNode
*OrdN
= cast
<ConstantSDNode
>(Op
.getOperand(1));
3621 AtomicOrdering Ord
= static_cast<AtomicOrdering
>(OrdN
->getZExtValue());
3622 ARM_MB::MemBOpt Domain
= ARM_MB::ISH
;
3623 if (Subtarget
->isMClass()) {
3624 // Only a full system barrier exists in the M-class architectures.
3625 Domain
= ARM_MB::SY
;
3626 } else if (Subtarget
->preferISHSTBarriers() &&
3627 Ord
== AtomicOrdering::Release
) {
3628 // Swift happens to implement ISHST barriers in a way that's compatible with
3629 // Release semantics but weaker than ISH so we'd be fools not to use
3630 // it. Beware: other processors probably don't!
3631 Domain
= ARM_MB::ISHST
;
3634 return DAG
.getNode(ISD::INTRINSIC_VOID
, dl
, MVT::Other
, Op
.getOperand(0),
3635 DAG
.getConstant(Intrinsic::arm_dmb
, dl
, MVT::i32
),
3636 DAG
.getConstant(Domain
, dl
, MVT::i32
));
3639 static SDValue
LowerPREFETCH(SDValue Op
, SelectionDAG
&DAG
,
3640 const ARMSubtarget
*Subtarget
) {
3641 // ARM pre v5TE and Thumb1 does not have preload instructions.
3642 if (!(Subtarget
->isThumb2() ||
3643 (!Subtarget
->isThumb1Only() && Subtarget
->hasV5TEOps())))
3644 // Just preserve the chain.
3645 return Op
.getOperand(0);
3648 unsigned isRead
= ~cast
<ConstantSDNode
>(Op
.getOperand(2))->getZExtValue() & 1;
3650 (!Subtarget
->hasV7Ops() || !Subtarget
->hasMPExtension()))
3651 // ARMv7 with MP extension has PLDW.
3652 return Op
.getOperand(0);
3654 unsigned isData
= cast
<ConstantSDNode
>(Op
.getOperand(4))->getZExtValue();
3655 if (Subtarget
->isThumb()) {
3657 isRead
= ~isRead
& 1;
3658 isData
= ~isData
& 1;
3661 return DAG
.getNode(ARMISD::PRELOAD
, dl
, MVT::Other
, Op
.getOperand(0),
3662 Op
.getOperand(1), DAG
.getConstant(isRead
, dl
, MVT::i32
),
3663 DAG
.getConstant(isData
, dl
, MVT::i32
));
3666 static SDValue
LowerVASTART(SDValue Op
, SelectionDAG
&DAG
) {
3667 MachineFunction
&MF
= DAG
.getMachineFunction();
3668 ARMFunctionInfo
*FuncInfo
= MF
.getInfo
<ARMFunctionInfo
>();
3670 // vastart just stores the address of the VarArgsFrameIndex slot into the
3671 // memory location argument.
3673 EVT PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy(DAG
.getDataLayout());
3674 SDValue FR
= DAG
.getFrameIndex(FuncInfo
->getVarArgsFrameIndex(), PtrVT
);
3675 const Value
*SV
= cast
<SrcValueSDNode
>(Op
.getOperand(2))->getValue();
3676 return DAG
.getStore(Op
.getOperand(0), dl
, FR
, Op
.getOperand(1),
3677 MachinePointerInfo(SV
));
3680 SDValue
ARMTargetLowering::GetF64FormalArgument(CCValAssign
&VA
,
3681 CCValAssign
&NextVA
,
3684 const SDLoc
&dl
) const {
3685 MachineFunction
&MF
= DAG
.getMachineFunction();
3686 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3688 const TargetRegisterClass
*RC
;
3689 if (AFI
->isThumb1OnlyFunction())
3690 RC
= &ARM::tGPRRegClass
;
3692 RC
= &ARM::GPRRegClass
;
3694 // Transform the arguments stored in physical registers into virtual ones.
3695 unsigned Reg
= MF
.addLiveIn(VA
.getLocReg(), RC
);
3696 SDValue ArgValue
= DAG
.getCopyFromReg(Root
, dl
, Reg
, MVT::i32
);
3699 if (NextVA
.isMemLoc()) {
3700 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3701 int FI
= MFI
.CreateFixedObject(4, NextVA
.getLocMemOffset(), true);
3703 // Create load node to retrieve arguments from the stack.
3704 SDValue FIN
= DAG
.getFrameIndex(FI
, getPointerTy(DAG
.getDataLayout()));
3705 ArgValue2
= DAG
.getLoad(
3706 MVT::i32
, dl
, Root
, FIN
,
3707 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), FI
));
3709 Reg
= MF
.addLiveIn(NextVA
.getLocReg(), RC
);
3710 ArgValue2
= DAG
.getCopyFromReg(Root
, dl
, Reg
, MVT::i32
);
3712 if (!Subtarget
->isLittle())
3713 std::swap (ArgValue
, ArgValue2
);
3714 return DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, ArgValue
, ArgValue2
);
3717 // The remaining GPRs hold either the beginning of variable-argument
3718 // data, or the beginning of an aggregate passed by value (usually
3719 // byval). Either way, we allocate stack slots adjacent to the data
3720 // provided by our caller, and store the unallocated registers there.
3721 // If this is a variadic function, the va_list pointer will begin with
3722 // these values; otherwise, this reassembles a (byval) structure that
3723 // was split between registers and memory.
3724 // Return: The frame index registers were stored into.
3725 int ARMTargetLowering::StoreByValRegs(CCState
&CCInfo
, SelectionDAG
&DAG
,
3726 const SDLoc
&dl
, SDValue
&Chain
,
3727 const Value
*OrigArg
,
3728 unsigned InRegsParamRecordIdx
,
3729 int ArgOffset
, unsigned ArgSize
) const {
3730 // Currently, two use-cases possible:
3731 // Case #1. Non-var-args function, and we meet first byval parameter.
3732 // Setup first unallocated register as first byval register;
3733 // eat all remained registers
3734 // (these two actions are performed by HandleByVal method).
3735 // Then, here, we initialize stack frame with
3736 // "store-reg" instructions.
3737 // Case #2. Var-args function, that doesn't contain byval parameters.
3738 // The same: eat all remained unallocated registers,
3739 // initialize stack frame.
3741 MachineFunction
&MF
= DAG
.getMachineFunction();
3742 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3743 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3744 unsigned RBegin
, REnd
;
3745 if (InRegsParamRecordIdx
< CCInfo
.getInRegsParamsCount()) {
3746 CCInfo
.getInRegsParamInfo(InRegsParamRecordIdx
, RBegin
, REnd
);
3748 unsigned RBeginIdx
= CCInfo
.getFirstUnallocated(GPRArgRegs
);
3749 RBegin
= RBeginIdx
== 4 ? (unsigned)ARM::R4
: GPRArgRegs
[RBeginIdx
];
3754 ArgOffset
= -4 * (ARM::R4
- RBegin
);
3756 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
3757 int FrameIndex
= MFI
.CreateFixedObject(ArgSize
, ArgOffset
, false);
3758 SDValue FIN
= DAG
.getFrameIndex(FrameIndex
, PtrVT
);
3760 SmallVector
<SDValue
, 4> MemOps
;
3761 const TargetRegisterClass
*RC
=
3762 AFI
->isThumb1OnlyFunction() ? &ARM::tGPRRegClass
: &ARM::GPRRegClass
;
3764 for (unsigned Reg
= RBegin
, i
= 0; Reg
< REnd
; ++Reg
, ++i
) {
3765 unsigned VReg
= MF
.addLiveIn(Reg
, RC
);
3766 SDValue Val
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, MVT::i32
);
3767 SDValue Store
= DAG
.getStore(Val
.getValue(1), dl
, Val
, FIN
,
3768 MachinePointerInfo(OrigArg
, 4 * i
));
3769 MemOps
.push_back(Store
);
3770 FIN
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, FIN
, DAG
.getConstant(4, dl
, PtrVT
));
3773 if (!MemOps
.empty())
3774 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, MemOps
);
3778 // Setup stack frame, the va_list pointer will start from.
3779 void ARMTargetLowering::VarArgStyleRegisters(CCState
&CCInfo
, SelectionDAG
&DAG
,
3780 const SDLoc
&dl
, SDValue
&Chain
,
3782 unsigned TotalArgRegsSaveSize
,
3783 bool ForceMutable
) const {
3784 MachineFunction
&MF
= DAG
.getMachineFunction();
3785 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3787 // Try to store any remaining integer argument regs
3788 // to their spots on the stack so that they may be loaded by dereferencing
3789 // the result of va_next.
3790 // If there is no regs to be stored, just point address after last
3791 // argument passed via stack.
3792 int FrameIndex
= StoreByValRegs(CCInfo
, DAG
, dl
, Chain
, nullptr,
3793 CCInfo
.getInRegsParamsCount(),
3794 CCInfo
.getNextStackOffset(),
3795 std::max(4U, TotalArgRegsSaveSize
));
3796 AFI
->setVarArgsFrameIndex(FrameIndex
);
3799 SDValue
ARMTargetLowering::LowerFormalArguments(
3800 SDValue Chain
, CallingConv::ID CallConv
, bool isVarArg
,
3801 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
3802 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
) const {
3803 MachineFunction
&MF
= DAG
.getMachineFunction();
3804 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3806 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3808 // Assign locations to all of the incoming arguments.
3809 SmallVector
<CCValAssign
, 16> ArgLocs
;
3810 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), ArgLocs
,
3812 CCInfo
.AnalyzeFormalArguments(Ins
, CCAssignFnForCall(CallConv
, isVarArg
));
3814 SmallVector
<SDValue
, 16> ArgValues
;
3816 Function::const_arg_iterator CurOrigArg
= MF
.getFunction().arg_begin();
3817 unsigned CurArgIdx
= 0;
3819 // Initially ArgRegsSaveSize is zero.
3820 // Then we increase this value each time we meet byval parameter.
3821 // We also increase this value in case of varargs function.
3822 AFI
->setArgRegsSaveSize(0);
3824 // Calculate the amount of stack space that we need to allocate to store
3825 // byval and variadic arguments that are passed in registers.
3826 // We need to know this before we allocate the first byval or variadic
3827 // argument, as they will be allocated a stack slot below the CFA (Canonical
3828 // Frame Address, the stack pointer at entry to the function).
3829 unsigned ArgRegBegin
= ARM::R4
;
3830 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
3831 if (CCInfo
.getInRegsParamsProcessed() >= CCInfo
.getInRegsParamsCount())
3834 CCValAssign
&VA
= ArgLocs
[i
];
3835 unsigned Index
= VA
.getValNo();
3836 ISD::ArgFlagsTy Flags
= Ins
[Index
].Flags
;
3837 if (!Flags
.isByVal())
3840 assert(VA
.isMemLoc() && "unexpected byval pointer in reg");
3841 unsigned RBegin
, REnd
;
3842 CCInfo
.getInRegsParamInfo(CCInfo
.getInRegsParamsProcessed(), RBegin
, REnd
);
3843 ArgRegBegin
= std::min(ArgRegBegin
, RBegin
);
3845 CCInfo
.nextInRegsParam();
3847 CCInfo
.rewindByValRegsInfo();
3849 int lastInsIndex
= -1;
3850 if (isVarArg
&& MFI
.hasVAStart()) {
3851 unsigned RegIdx
= CCInfo
.getFirstUnallocated(GPRArgRegs
);
3852 if (RegIdx
!= array_lengthof(GPRArgRegs
))
3853 ArgRegBegin
= std::min(ArgRegBegin
, (unsigned)GPRArgRegs
[RegIdx
]);
3856 unsigned TotalArgRegsSaveSize
= 4 * (ARM::R4
- ArgRegBegin
);
3857 AFI
->setArgRegsSaveSize(TotalArgRegsSaveSize
);
3858 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
3860 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
3861 CCValAssign
&VA
= ArgLocs
[i
];
3862 if (Ins
[VA
.getValNo()].isOrigArg()) {
3863 std::advance(CurOrigArg
,
3864 Ins
[VA
.getValNo()].getOrigArgIndex() - CurArgIdx
);
3865 CurArgIdx
= Ins
[VA
.getValNo()].getOrigArgIndex();
3867 // Arguments stored in registers.
3868 if (VA
.isRegLoc()) {
3869 EVT RegVT
= VA
.getLocVT();
3871 if (VA
.needsCustom()) {
3872 // f64 and vector types are split up into multiple registers or
3873 // combinations of registers and stack slots.
3874 if (VA
.getLocVT() == MVT::v2f64
) {
3875 SDValue ArgValue1
= GetF64FormalArgument(VA
, ArgLocs
[++i
],
3877 VA
= ArgLocs
[++i
]; // skip ahead to next loc
3879 if (VA
.isMemLoc()) {
3880 int FI
= MFI
.CreateFixedObject(8, VA
.getLocMemOffset(), true);
3881 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrVT
);
3882 ArgValue2
= DAG
.getLoad(MVT::f64
, dl
, Chain
, FIN
,
3883 MachinePointerInfo::getFixedStack(
3884 DAG
.getMachineFunction(), FI
));
3886 ArgValue2
= GetF64FormalArgument(VA
, ArgLocs
[++i
],
3889 ArgValue
= DAG
.getNode(ISD::UNDEF
, dl
, MVT::v2f64
);
3890 ArgValue
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
,
3891 ArgValue
, ArgValue1
,
3892 DAG
.getIntPtrConstant(0, dl
));
3893 ArgValue
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
,
3894 ArgValue
, ArgValue2
,
3895 DAG
.getIntPtrConstant(1, dl
));
3897 ArgValue
= GetF64FormalArgument(VA
, ArgLocs
[++i
], Chain
, DAG
, dl
);
3899 const TargetRegisterClass
*RC
;
3902 if (RegVT
== MVT::f16
)
3903 RC
= &ARM::HPRRegClass
;
3904 else if (RegVT
== MVT::f32
)
3905 RC
= &ARM::SPRRegClass
;
3906 else if (RegVT
== MVT::f64
|| RegVT
== MVT::v4f16
)
3907 RC
= &ARM::DPRRegClass
;
3908 else if (RegVT
== MVT::v2f64
|| RegVT
== MVT::v8f16
)
3909 RC
= &ARM::QPRRegClass
;
3910 else if (RegVT
== MVT::i32
)
3911 RC
= AFI
->isThumb1OnlyFunction() ? &ARM::tGPRRegClass
3912 : &ARM::GPRRegClass
;
3914 llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
3916 // Transform the arguments in physical registers into virtual ones.
3917 unsigned Reg
= MF
.addLiveIn(VA
.getLocReg(), RC
);
3918 ArgValue
= DAG
.getCopyFromReg(Chain
, dl
, Reg
, RegVT
);
3920 // If this value is passed in r0 and has the returned attribute (e.g.
3921 // C++ 'structors), record this fact for later use.
3922 if (VA
.getLocReg() == ARM::R0
&& Ins
[VA
.getValNo()].Flags
.isReturned()) {
3923 AFI
->setPreservesR0();
3927 // If this is an 8 or 16-bit value, it is really passed promoted
3928 // to 32 bits. Insert an assert[sz]ext to capture this, then
3929 // truncate to the right size.
3930 switch (VA
.getLocInfo()) {
3931 default: llvm_unreachable("Unknown loc info!");
3932 case CCValAssign::Full
: break;
3933 case CCValAssign::BCvt
:
3934 ArgValue
= DAG
.getNode(ISD::BITCAST
, dl
, VA
.getValVT(), ArgValue
);
3936 case CCValAssign::SExt
:
3937 ArgValue
= DAG
.getNode(ISD::AssertSext
, dl
, RegVT
, ArgValue
,
3938 DAG
.getValueType(VA
.getValVT()));
3939 ArgValue
= DAG
.getNode(ISD::TRUNCATE
, dl
, VA
.getValVT(), ArgValue
);
3941 case CCValAssign::ZExt
:
3942 ArgValue
= DAG
.getNode(ISD::AssertZext
, dl
, RegVT
, ArgValue
,
3943 DAG
.getValueType(VA
.getValVT()));
3944 ArgValue
= DAG
.getNode(ISD::TRUNCATE
, dl
, VA
.getValVT(), ArgValue
);
3948 InVals
.push_back(ArgValue
);
3949 } else { // VA.isRegLoc()
3951 assert(VA
.isMemLoc());
3952 assert(VA
.getValVT() != MVT::i64
&& "i64 should already be lowered");
3954 int index
= VA
.getValNo();
3956 // Some Ins[] entries become multiple ArgLoc[] entries.
3957 // Process them only once.
3958 if (index
!= lastInsIndex
)
3960 ISD::ArgFlagsTy Flags
= Ins
[index
].Flags
;
3961 // FIXME: For now, all byval parameter objects are marked mutable.
3962 // This can be changed with more analysis.
3963 // In case of tail call optimization mark all arguments mutable.
3964 // Since they could be overwritten by lowering of arguments in case of
3966 if (Flags
.isByVal()) {
3967 assert(Ins
[index
].isOrigArg() &&
3968 "Byval arguments cannot be implicit");
3969 unsigned CurByValIndex
= CCInfo
.getInRegsParamsProcessed();
3971 int FrameIndex
= StoreByValRegs(
3972 CCInfo
, DAG
, dl
, Chain
, &*CurOrigArg
, CurByValIndex
,
3973 VA
.getLocMemOffset(), Flags
.getByValSize());
3974 InVals
.push_back(DAG
.getFrameIndex(FrameIndex
, PtrVT
));
3975 CCInfo
.nextInRegsParam();
3977 unsigned FIOffset
= VA
.getLocMemOffset();
3978 int FI
= MFI
.CreateFixedObject(VA
.getLocVT().getSizeInBits()/8,
3981 // Create load nodes to retrieve arguments from the stack.
3982 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrVT
);
3983 InVals
.push_back(DAG
.getLoad(VA
.getValVT(), dl
, Chain
, FIN
,
3984 MachinePointerInfo::getFixedStack(
3985 DAG
.getMachineFunction(), FI
)));
3987 lastInsIndex
= index
;
3993 if (isVarArg
&& MFI
.hasVAStart())
3994 VarArgStyleRegisters(CCInfo
, DAG
, dl
, Chain
,
3995 CCInfo
.getNextStackOffset(),
3996 TotalArgRegsSaveSize
);
3998 AFI
->setArgumentStackSize(CCInfo
.getNextStackOffset());
4003 /// isFloatingPointZero - Return true if this is +0.0.
4004 static bool isFloatingPointZero(SDValue Op
) {
4005 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(Op
))
4006 return CFP
->getValueAPF().isPosZero();
4007 else if (ISD::isEXTLoad(Op
.getNode()) || ISD::isNON_EXTLoad(Op
.getNode())) {
4008 // Maybe this has already been legalized into the constant pool?
4009 if (Op
.getOperand(1).getOpcode() == ARMISD::Wrapper
) {
4010 SDValue WrapperOp
= Op
.getOperand(1).getOperand(0);
4011 if (ConstantPoolSDNode
*CP
= dyn_cast
<ConstantPoolSDNode
>(WrapperOp
))
4012 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(CP
->getConstVal()))
4013 return CFP
->getValueAPF().isPosZero();
4015 } else if (Op
->getOpcode() == ISD::BITCAST
&&
4016 Op
->getValueType(0) == MVT::f64
) {
4017 // Handle (ISD::BITCAST (ARMISD::VMOVIMM (ISD::TargetConstant 0)) MVT::f64)
4018 // created by LowerConstantFP().
4019 SDValue BitcastOp
= Op
->getOperand(0);
4020 if (BitcastOp
->getOpcode() == ARMISD::VMOVIMM
&&
4021 isNullConstant(BitcastOp
->getOperand(0)))
4027 /// Returns appropriate ARM CMP (cmp) and corresponding condition code for
4028 /// the given operands.
4029 SDValue
ARMTargetLowering::getARMCmp(SDValue LHS
, SDValue RHS
, ISD::CondCode CC
,
4030 SDValue
&ARMcc
, SelectionDAG
&DAG
,
4031 const SDLoc
&dl
) const {
4032 if (ConstantSDNode
*RHSC
= dyn_cast
<ConstantSDNode
>(RHS
.getNode())) {
4033 unsigned C
= RHSC
->getZExtValue();
4034 if (!isLegalICmpImmediate((int32_t)C
)) {
4035 // Constant does not fit, try adjusting it by one.
4040 if (C
!= 0x80000000 && isLegalICmpImmediate(C
-1)) {
4041 CC
= (CC
== ISD::SETLT
) ? ISD::SETLE
: ISD::SETGT
;
4042 RHS
= DAG
.getConstant(C
- 1, dl
, MVT::i32
);
4047 if (C
!= 0 && isLegalICmpImmediate(C
-1)) {
4048 CC
= (CC
== ISD::SETULT
) ? ISD::SETULE
: ISD::SETUGT
;
4049 RHS
= DAG
.getConstant(C
- 1, dl
, MVT::i32
);
4054 if (C
!= 0x7fffffff && isLegalICmpImmediate(C
+1)) {
4055 CC
= (CC
== ISD::SETLE
) ? ISD::SETLT
: ISD::SETGE
;
4056 RHS
= DAG
.getConstant(C
+ 1, dl
, MVT::i32
);
4061 if (C
!= 0xffffffff && isLegalICmpImmediate(C
+1)) {
4062 CC
= (CC
== ISD::SETULE
) ? ISD::SETULT
: ISD::SETUGE
;
4063 RHS
= DAG
.getConstant(C
+ 1, dl
, MVT::i32
);
4068 } else if ((ARM_AM::getShiftOpcForNode(LHS
.getOpcode()) != ARM_AM::no_shift
) &&
4069 (ARM_AM::getShiftOpcForNode(RHS
.getOpcode()) == ARM_AM::no_shift
)) {
4070 // In ARM and Thumb-2, the compare instructions can shift their second
4072 CC
= ISD::getSetCCSwappedOperands(CC
);
4073 std::swap(LHS
, RHS
);
4076 ARMCC::CondCodes CondCode
= IntCCToARMCC(CC
);
4078 // If the RHS is a constant zero then the V (overflow) flag will never be
4079 // set. This can allow us to simplify GE to PL or LT to MI, which can be
4080 // simpler for other passes (like the peephole optimiser) to deal with.
4081 if (isNullConstant(RHS
)) {
4085 CondCode
= ARMCC::PL
;
4088 CondCode
= ARMCC::MI
;
4093 ARMISD::NodeType CompareType
;
4096 CompareType
= ARMISD::CMP
;
4101 CompareType
= ARMISD::CMPZ
;
4104 ARMcc
= DAG
.getConstant(CondCode
, dl
, MVT::i32
);
4105 return DAG
.getNode(CompareType
, dl
, MVT::Glue
, LHS
, RHS
);
4108 /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
4109 SDValue
ARMTargetLowering::getVFPCmp(SDValue LHS
, SDValue RHS
,
4110 SelectionDAG
&DAG
, const SDLoc
&dl
,
4111 bool InvalidOnQNaN
) const {
4112 assert(Subtarget
->hasFP64() || RHS
.getValueType() != MVT::f64
);
4114 SDValue C
= DAG
.getConstant(InvalidOnQNaN
, dl
, MVT::i32
);
4115 if (!isFloatingPointZero(RHS
))
4116 Cmp
= DAG
.getNode(ARMISD::CMPFP
, dl
, MVT::Glue
, LHS
, RHS
, C
);
4118 Cmp
= DAG
.getNode(ARMISD::CMPFPw0
, dl
, MVT::Glue
, LHS
, C
);
4119 return DAG
.getNode(ARMISD::FMSTAT
, dl
, MVT::Glue
, Cmp
);
4122 /// duplicateCmp - Glue values can have only one use, so this function
4123 /// duplicates a comparison node.
4125 ARMTargetLowering::duplicateCmp(SDValue Cmp
, SelectionDAG
&DAG
) const {
4126 unsigned Opc
= Cmp
.getOpcode();
4128 if (Opc
== ARMISD::CMP
|| Opc
== ARMISD::CMPZ
)
4129 return DAG
.getNode(Opc
, DL
, MVT::Glue
, Cmp
.getOperand(0),Cmp
.getOperand(1));
4131 assert(Opc
== ARMISD::FMSTAT
&& "unexpected comparison operation");
4132 Cmp
= Cmp
.getOperand(0);
4133 Opc
= Cmp
.getOpcode();
4134 if (Opc
== ARMISD::CMPFP
)
4135 Cmp
= DAG
.getNode(Opc
, DL
, MVT::Glue
, Cmp
.getOperand(0),
4136 Cmp
.getOperand(1), Cmp
.getOperand(2));
4138 assert(Opc
== ARMISD::CMPFPw0
&& "unexpected operand of FMSTAT");
4139 Cmp
= DAG
.getNode(Opc
, DL
, MVT::Glue
, Cmp
.getOperand(0),
4142 return DAG
.getNode(ARMISD::FMSTAT
, DL
, MVT::Glue
, Cmp
);
4145 // This function returns three things: the arithmetic computation itself
4146 // (Value), a comparison (OverflowCmp), and a condition code (ARMcc). The
4147 // comparison and the condition code define the case in which the arithmetic
4148 // computation *does not* overflow.
4149 std::pair
<SDValue
, SDValue
>
4150 ARMTargetLowering::getARMXALUOOp(SDValue Op
, SelectionDAG
&DAG
,
4151 SDValue
&ARMcc
) const {
4152 assert(Op
.getValueType() == MVT::i32
&& "Unsupported value type");
4154 SDValue Value
, OverflowCmp
;
4155 SDValue LHS
= Op
.getOperand(0);
4156 SDValue RHS
= Op
.getOperand(1);
4159 // FIXME: We are currently always generating CMPs because we don't support
4160 // generating CMN through the backend. This is not as good as the natural
4161 // CMP case because it causes a register dependency and cannot be folded
4164 switch (Op
.getOpcode()) {
4166 llvm_unreachable("Unknown overflow instruction!");
4168 ARMcc
= DAG
.getConstant(ARMCC::VC
, dl
, MVT::i32
);
4169 Value
= DAG
.getNode(ISD::ADD
, dl
, Op
.getValueType(), LHS
, RHS
);
4170 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, Value
, LHS
);
4173 ARMcc
= DAG
.getConstant(ARMCC::HS
, dl
, MVT::i32
);
4174 // We use ADDC here to correspond to its use in LowerUnsignedALUO.
4175 // We do not use it in the USUBO case as Value may not be used.
4176 Value
= DAG
.getNode(ARMISD::ADDC
, dl
,
4177 DAG
.getVTList(Op
.getValueType(), MVT::i32
), LHS
, RHS
)
4179 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, Value
, LHS
);
4182 ARMcc
= DAG
.getConstant(ARMCC::VC
, dl
, MVT::i32
);
4183 Value
= DAG
.getNode(ISD::SUB
, dl
, Op
.getValueType(), LHS
, RHS
);
4184 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, LHS
, RHS
);
4187 ARMcc
= DAG
.getConstant(ARMCC::HS
, dl
, MVT::i32
);
4188 Value
= DAG
.getNode(ISD::SUB
, dl
, Op
.getValueType(), LHS
, RHS
);
4189 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, LHS
, RHS
);
4192 // We generate a UMUL_LOHI and then check if the high word is 0.
4193 ARMcc
= DAG
.getConstant(ARMCC::EQ
, dl
, MVT::i32
);
4194 Value
= DAG
.getNode(ISD::UMUL_LOHI
, dl
,
4195 DAG
.getVTList(Op
.getValueType(), Op
.getValueType()),
4197 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, Value
.getValue(1),
4198 DAG
.getConstant(0, dl
, MVT::i32
));
4199 Value
= Value
.getValue(0); // We only want the low 32 bits for the result.
4202 // We generate a SMUL_LOHI and then check if all the bits of the high word
4203 // are the same as the sign bit of the low word.
4204 ARMcc
= DAG
.getConstant(ARMCC::EQ
, dl
, MVT::i32
);
4205 Value
= DAG
.getNode(ISD::SMUL_LOHI
, dl
,
4206 DAG
.getVTList(Op
.getValueType(), Op
.getValueType()),
4208 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, Value
.getValue(1),
4209 DAG
.getNode(ISD::SRA
, dl
, Op
.getValueType(),
4211 DAG
.getConstant(31, dl
, MVT::i32
)));
4212 Value
= Value
.getValue(0); // We only want the low 32 bits for the result.
4216 return std::make_pair(Value
, OverflowCmp
);
4220 ARMTargetLowering::LowerSignedALUO(SDValue Op
, SelectionDAG
&DAG
) const {
4221 // Let legalize expand this if it isn't a legal type yet.
4222 if (!DAG
.getTargetLoweringInfo().isTypeLegal(Op
.getValueType()))
4225 SDValue Value
, OverflowCmp
;
4227 std::tie(Value
, OverflowCmp
) = getARMXALUOOp(Op
, DAG
, ARMcc
);
4228 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4230 // We use 0 and 1 as false and true values.
4231 SDValue TVal
= DAG
.getConstant(1, dl
, MVT::i32
);
4232 SDValue FVal
= DAG
.getConstant(0, dl
, MVT::i32
);
4233 EVT VT
= Op
.getValueType();
4235 SDValue Overflow
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, TVal
, FVal
,
4236 ARMcc
, CCR
, OverflowCmp
);
4238 SDVTList VTs
= DAG
.getVTList(Op
.getValueType(), MVT::i32
);
4239 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, VTs
, Value
, Overflow
);
4242 static SDValue
ConvertBooleanCarryToCarryFlag(SDValue BoolCarry
,
4243 SelectionDAG
&DAG
) {
4244 SDLoc
DL(BoolCarry
);
4245 EVT CarryVT
= BoolCarry
.getValueType();
4247 // This converts the boolean value carry into the carry flag by doing
4248 // ARMISD::SUBC Carry, 1
4249 SDValue Carry
= DAG
.getNode(ARMISD::SUBC
, DL
,
4250 DAG
.getVTList(CarryVT
, MVT::i32
),
4251 BoolCarry
, DAG
.getConstant(1, DL
, CarryVT
));
4252 return Carry
.getValue(1);
4255 static SDValue
ConvertCarryFlagToBooleanCarry(SDValue Flags
, EVT VT
,
4256 SelectionDAG
&DAG
) {
4259 // Now convert the carry flag into a boolean carry. We do this
4260 // using ARMISD:ADDE 0, 0, Carry
4261 return DAG
.getNode(ARMISD::ADDE
, DL
, DAG
.getVTList(VT
, MVT::i32
),
4262 DAG
.getConstant(0, DL
, MVT::i32
),
4263 DAG
.getConstant(0, DL
, MVT::i32
), Flags
);
4266 SDValue
ARMTargetLowering::LowerUnsignedALUO(SDValue Op
,
4267 SelectionDAG
&DAG
) const {
4268 // Let legalize expand this if it isn't a legal type yet.
4269 if (!DAG
.getTargetLoweringInfo().isTypeLegal(Op
.getValueType()))
4272 SDValue LHS
= Op
.getOperand(0);
4273 SDValue RHS
= Op
.getOperand(1);
4276 EVT VT
= Op
.getValueType();
4277 SDVTList VTs
= DAG
.getVTList(VT
, MVT::i32
);
4280 switch (Op
.getOpcode()) {
4282 llvm_unreachable("Unknown overflow instruction!");
4284 Value
= DAG
.getNode(ARMISD::ADDC
, dl
, VTs
, LHS
, RHS
);
4285 // Convert the carry flag into a boolean value.
4286 Overflow
= ConvertCarryFlagToBooleanCarry(Value
.getValue(1), VT
, DAG
);
4289 Value
= DAG
.getNode(ARMISD::SUBC
, dl
, VTs
, LHS
, RHS
);
4290 // Convert the carry flag into a boolean value.
4291 Overflow
= ConvertCarryFlagToBooleanCarry(Value
.getValue(1), VT
, DAG
);
4292 // ARMISD::SUBC returns 0 when we have to borrow, so make it an overflow
4293 // value. So compute 1 - C.
4294 Overflow
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
4295 DAG
.getConstant(1, dl
, MVT::i32
), Overflow
);
4300 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, VTs
, Value
, Overflow
);
4303 SDValue
ARMTargetLowering::LowerSELECT(SDValue Op
, SelectionDAG
&DAG
) const {
4304 SDValue Cond
= Op
.getOperand(0);
4305 SDValue SelectTrue
= Op
.getOperand(1);
4306 SDValue SelectFalse
= Op
.getOperand(2);
4308 unsigned Opc
= Cond
.getOpcode();
4310 if (Cond
.getResNo() == 1 &&
4311 (Opc
== ISD::SADDO
|| Opc
== ISD::UADDO
|| Opc
== ISD::SSUBO
||
4312 Opc
== ISD::USUBO
)) {
4313 if (!DAG
.getTargetLoweringInfo().isTypeLegal(Cond
->getValueType(0)))
4316 SDValue Value
, OverflowCmp
;
4318 std::tie(Value
, OverflowCmp
) = getARMXALUOOp(Cond
, DAG
, ARMcc
);
4319 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4320 EVT VT
= Op
.getValueType();
4322 return getCMOV(dl
, VT
, SelectTrue
, SelectFalse
, ARMcc
, CCR
,
4328 // (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
4329 // (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
4331 if (Cond
.getOpcode() == ARMISD::CMOV
&& Cond
.hasOneUse()) {
4332 const ConstantSDNode
*CMOVTrue
=
4333 dyn_cast
<ConstantSDNode
>(Cond
.getOperand(0));
4334 const ConstantSDNode
*CMOVFalse
=
4335 dyn_cast
<ConstantSDNode
>(Cond
.getOperand(1));
4337 if (CMOVTrue
&& CMOVFalse
) {
4338 unsigned CMOVTrueVal
= CMOVTrue
->getZExtValue();
4339 unsigned CMOVFalseVal
= CMOVFalse
->getZExtValue();
4343 if (CMOVTrueVal
== 1 && CMOVFalseVal
== 0) {
4345 False
= SelectFalse
;
4346 } else if (CMOVTrueVal
== 0 && CMOVFalseVal
== 1) {
4351 if (True
.getNode() && False
.getNode()) {
4352 EVT VT
= Op
.getValueType();
4353 SDValue ARMcc
= Cond
.getOperand(2);
4354 SDValue CCR
= Cond
.getOperand(3);
4355 SDValue Cmp
= duplicateCmp(Cond
.getOperand(4), DAG
);
4356 assert(True
.getValueType() == VT
);
4357 return getCMOV(dl
, VT
, True
, False
, ARMcc
, CCR
, Cmp
, DAG
);
4362 // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
4363 // undefined bits before doing a full-word comparison with zero.
4364 Cond
= DAG
.getNode(ISD::AND
, dl
, Cond
.getValueType(), Cond
,
4365 DAG
.getConstant(1, dl
, Cond
.getValueType()));
4367 return DAG
.getSelectCC(dl
, Cond
,
4368 DAG
.getConstant(0, dl
, Cond
.getValueType()),
4369 SelectTrue
, SelectFalse
, ISD::SETNE
);
4372 static void checkVSELConstraints(ISD::CondCode CC
, ARMCC::CondCodes
&CondCode
,
4373 bool &swpCmpOps
, bool &swpVselOps
) {
4374 // Start by selecting the GE condition code for opcodes that return true for
4376 if (CC
== ISD::SETUGE
|| CC
== ISD::SETOGE
|| CC
== ISD::SETOLE
||
4377 CC
== ISD::SETULE
|| CC
== ISD::SETGE
|| CC
== ISD::SETLE
)
4378 CondCode
= ARMCC::GE
;
4380 // and GT for opcodes that return false for 'equality'.
4381 else if (CC
== ISD::SETUGT
|| CC
== ISD::SETOGT
|| CC
== ISD::SETOLT
||
4382 CC
== ISD::SETULT
|| CC
== ISD::SETGT
|| CC
== ISD::SETLT
)
4383 CondCode
= ARMCC::GT
;
4385 // Since we are constrained to GE/GT, if the opcode contains 'less', we need
4386 // to swap the compare operands.
4387 if (CC
== ISD::SETOLE
|| CC
== ISD::SETULE
|| CC
== ISD::SETOLT
||
4388 CC
== ISD::SETULT
|| CC
== ISD::SETLE
|| CC
== ISD::SETLT
)
4391 // Both GT and GE are ordered comparisons, and return false for 'unordered'.
4392 // If we have an unordered opcode, we need to swap the operands to the VSEL
4393 // instruction (effectively negating the condition).
4395 // This also has the effect of swapping which one of 'less' or 'greater'
4396 // returns true, so we also swap the compare operands. It also switches
4397 // whether we return true for 'equality', so we compensate by picking the
4398 // opposite condition code to our original choice.
4399 if (CC
== ISD::SETULE
|| CC
== ISD::SETULT
|| CC
== ISD::SETUGE
||
4400 CC
== ISD::SETUGT
) {
4401 swpCmpOps
= !swpCmpOps
;
4402 swpVselOps
= !swpVselOps
;
4403 CondCode
= CondCode
== ARMCC::GT
? ARMCC::GE
: ARMCC::GT
;
4406 // 'ordered' is 'anything but unordered', so use the VS condition code and
4407 // swap the VSEL operands.
4408 if (CC
== ISD::SETO
) {
4409 CondCode
= ARMCC::VS
;
4413 // 'unordered or not equal' is 'anything but equal', so use the EQ condition
4414 // code and swap the VSEL operands. Also do this if we don't care about the
4416 if (CC
== ISD::SETUNE
|| CC
== ISD::SETNE
) {
4417 CondCode
= ARMCC::EQ
;
4422 SDValue
ARMTargetLowering::getCMOV(const SDLoc
&dl
, EVT VT
, SDValue FalseVal
,
4423 SDValue TrueVal
, SDValue ARMcc
, SDValue CCR
,
4424 SDValue Cmp
, SelectionDAG
&DAG
) const {
4425 if (!Subtarget
->hasFP64() && VT
== MVT::f64
) {
4426 FalseVal
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
4427 DAG
.getVTList(MVT::i32
, MVT::i32
), FalseVal
);
4428 TrueVal
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
4429 DAG
.getVTList(MVT::i32
, MVT::i32
), TrueVal
);
4431 SDValue TrueLow
= TrueVal
.getValue(0);
4432 SDValue TrueHigh
= TrueVal
.getValue(1);
4433 SDValue FalseLow
= FalseVal
.getValue(0);
4434 SDValue FalseHigh
= FalseVal
.getValue(1);
4436 SDValue Low
= DAG
.getNode(ARMISD::CMOV
, dl
, MVT::i32
, FalseLow
, TrueLow
,
4438 SDValue High
= DAG
.getNode(ARMISD::CMOV
, dl
, MVT::i32
, FalseHigh
, TrueHigh
,
4439 ARMcc
, CCR
, duplicateCmp(Cmp
, DAG
));
4441 return DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Low
, High
);
4443 return DAG
.getNode(ARMISD::CMOV
, dl
, VT
, FalseVal
, TrueVal
, ARMcc
, CCR
,
4448 static bool isGTorGE(ISD::CondCode CC
) {
4449 return CC
== ISD::SETGT
|| CC
== ISD::SETGE
;
4452 static bool isLTorLE(ISD::CondCode CC
) {
4453 return CC
== ISD::SETLT
|| CC
== ISD::SETLE
;
4456 // See if a conditional (LHS CC RHS ? TrueVal : FalseVal) is lower-saturating.
4457 // All of these conditions (and their <= and >= counterparts) will do:
4462 static bool isLowerSaturate(const SDValue LHS
, const SDValue RHS
,
4463 const SDValue TrueVal
, const SDValue FalseVal
,
4464 const ISD::CondCode CC
, const SDValue K
) {
4465 return (isGTorGE(CC
) &&
4466 ((K
== LHS
&& K
== TrueVal
) || (K
== RHS
&& K
== FalseVal
))) ||
4468 ((K
== RHS
&& K
== TrueVal
) || (K
== LHS
&& K
== FalseVal
)));
4471 // Similar to isLowerSaturate(), but checks for upper-saturating conditions.
4472 static bool isUpperSaturate(const SDValue LHS
, const SDValue RHS
,
4473 const SDValue TrueVal
, const SDValue FalseVal
,
4474 const ISD::CondCode CC
, const SDValue K
) {
4475 return (isGTorGE(CC
) &&
4476 ((K
== RHS
&& K
== TrueVal
) || (K
== LHS
&& K
== FalseVal
))) ||
4478 ((K
== LHS
&& K
== TrueVal
) || (K
== RHS
&& K
== FalseVal
)));
4481 // Check if two chained conditionals could be converted into SSAT or USAT.
4483 // SSAT can replace a set of two conditional selectors that bound a number to an
4484 // interval of type [k, ~k] when k + 1 is a power of 2. Here are some examples:
4486 // x < -k ? -k : (x > k ? k : x)
4487 // x < -k ? -k : (x < k ? x : k)
4488 // x > -k ? (x > k ? k : x) : -k
4489 // x < k ? (x < -k ? -k : x) : k
4492 // USAT works similarily to SSAT but bounds on the interval [0, k] where k + 1 is
4495 // It returns true if the conversion can be done, false otherwise.
4496 // Additionally, the variable is returned in parameter V, the constant in K and
4497 // usat is set to true if the conditional represents an unsigned saturation
4498 static bool isSaturatingConditional(const SDValue
&Op
, SDValue
&V
,
4499 uint64_t &K
, bool &usat
) {
4500 SDValue LHS1
= Op
.getOperand(0);
4501 SDValue RHS1
= Op
.getOperand(1);
4502 SDValue TrueVal1
= Op
.getOperand(2);
4503 SDValue FalseVal1
= Op
.getOperand(3);
4504 ISD::CondCode CC1
= cast
<CondCodeSDNode
>(Op
.getOperand(4))->get();
4506 const SDValue Op2
= isa
<ConstantSDNode
>(TrueVal1
) ? FalseVal1
: TrueVal1
;
4507 if (Op2
.getOpcode() != ISD::SELECT_CC
)
4510 SDValue LHS2
= Op2
.getOperand(0);
4511 SDValue RHS2
= Op2
.getOperand(1);
4512 SDValue TrueVal2
= Op2
.getOperand(2);
4513 SDValue FalseVal2
= Op2
.getOperand(3);
4514 ISD::CondCode CC2
= cast
<CondCodeSDNode
>(Op2
.getOperand(4))->get();
4516 // Find out which are the constants and which are the variables
4517 // in each conditional
4518 SDValue
*K1
= isa
<ConstantSDNode
>(LHS1
) ? &LHS1
: isa
<ConstantSDNode
>(RHS1
)
4521 SDValue
*K2
= isa
<ConstantSDNode
>(LHS2
) ? &LHS2
: isa
<ConstantSDNode
>(RHS2
)
4524 SDValue K2Tmp
= isa
<ConstantSDNode
>(TrueVal2
) ? TrueVal2
: FalseVal2
;
4525 SDValue V1Tmp
= (K1
&& *K1
== LHS1
) ? RHS1
: LHS1
;
4526 SDValue V2Tmp
= (K2
&& *K2
== LHS2
) ? RHS2
: LHS2
;
4527 SDValue V2
= (K2Tmp
== TrueVal2
) ? FalseVal2
: TrueVal2
;
4529 // We must detect cases where the original operations worked with 16- or
4530 // 8-bit values. In such case, V2Tmp != V2 because the comparison operations
4531 // must work with sign-extended values but the select operations return
4532 // the original non-extended value.
4533 SDValue V2TmpReg
= V2Tmp
;
4534 if (V2Tmp
->getOpcode() == ISD::SIGN_EXTEND_INREG
)
4535 V2TmpReg
= V2Tmp
->getOperand(0);
4537 // Check that the registers and the constants have the correct values
4538 // in both conditionals
4539 if (!K1
|| !K2
|| *K1
== Op2
|| *K2
!= K2Tmp
|| V1Tmp
!= V2Tmp
||
4543 // Figure out which conditional is saturating the lower/upper bound.
4544 const SDValue
*LowerCheckOp
=
4545 isLowerSaturate(LHS1
, RHS1
, TrueVal1
, FalseVal1
, CC1
, *K1
)
4547 : isLowerSaturate(LHS2
, RHS2
, TrueVal2
, FalseVal2
, CC2
, *K2
)
4550 const SDValue
*UpperCheckOp
=
4551 isUpperSaturate(LHS1
, RHS1
, TrueVal1
, FalseVal1
, CC1
, *K1
)
4553 : isUpperSaturate(LHS2
, RHS2
, TrueVal2
, FalseVal2
, CC2
, *K2
)
4557 if (!UpperCheckOp
|| !LowerCheckOp
|| LowerCheckOp
== UpperCheckOp
)
4560 // Check that the constant in the lower-bound check is
4561 // the opposite of the constant in the upper-bound check
4562 // in 1's complement.
4563 int64_t Val1
= cast
<ConstantSDNode
>(*K1
)->getSExtValue();
4564 int64_t Val2
= cast
<ConstantSDNode
>(*K2
)->getSExtValue();
4565 int64_t PosVal
= std::max(Val1
, Val2
);
4566 int64_t NegVal
= std::min(Val1
, Val2
);
4568 if (((Val1
> Val2
&& UpperCheckOp
== &Op
) ||
4569 (Val1
< Val2
&& UpperCheckOp
== &Op2
)) &&
4570 isPowerOf2_64(PosVal
+ 1)) {
4572 // Handle the difference between USAT (unsigned) and SSAT (signed) saturation
4575 else if (NegVal
== 0)
4581 K
= (uint64_t)PosVal
; // At this point, PosVal is guaranteed to be positive
4589 // Check if a condition of the type x < k ? k : x can be converted into a
4590 // bit operation instead of conditional moves.
4591 // Currently this is allowed given:
4592 // - The conditions and values match up
4593 // - k is 0 or -1 (all ones)
4594 // This function will not check the last condition, thats up to the caller
4595 // It returns true if the transformation can be made, and in such case
4596 // returns x in V, and k in SatK.
4597 static bool isLowerSaturatingConditional(const SDValue
&Op
, SDValue
&V
,
4600 SDValue LHS
= Op
.getOperand(0);
4601 SDValue RHS
= Op
.getOperand(1);
4602 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(4))->get();
4603 SDValue TrueVal
= Op
.getOperand(2);
4604 SDValue FalseVal
= Op
.getOperand(3);
4606 SDValue
*K
= isa
<ConstantSDNode
>(LHS
) ? &LHS
: isa
<ConstantSDNode
>(RHS
)
4610 // No constant operation in comparison, early out
4614 SDValue KTmp
= isa
<ConstantSDNode
>(TrueVal
) ? TrueVal
: FalseVal
;
4615 V
= (KTmp
== TrueVal
) ? FalseVal
: TrueVal
;
4616 SDValue VTmp
= (K
&& *K
== LHS
) ? RHS
: LHS
;
4618 // If the constant on left and right side, or variable on left and right,
4619 // does not match, early out
4620 if (*K
!= KTmp
|| V
!= VTmp
)
4623 if (isLowerSaturate(LHS
, RHS
, TrueVal
, FalseVal
, CC
, *K
)) {
4631 bool ARMTargetLowering::isUnsupportedFloatingType(EVT VT
) const {
4633 return !Subtarget
->hasVFP2Base();
4635 return !Subtarget
->hasFP64();
4637 return !Subtarget
->hasFullFP16();
4641 SDValue
ARMTargetLowering::LowerSELECT_CC(SDValue Op
, SelectionDAG
&DAG
) const {
4642 EVT VT
= Op
.getValueType();
4645 // Try to convert two saturating conditional selects into a single SSAT
4647 uint64_t SatConstant
;
4649 if (((!Subtarget
->isThumb() && Subtarget
->hasV6Ops()) || Subtarget
->isThumb2()) &&
4650 isSaturatingConditional(Op
, SatValue
, SatConstant
, SatUSat
)) {
4652 return DAG
.getNode(ARMISD::USAT
, dl
, VT
, SatValue
,
4653 DAG
.getConstant(countTrailingOnes(SatConstant
), dl
, VT
));
4655 return DAG
.getNode(ARMISD::SSAT
, dl
, VT
, SatValue
,
4656 DAG
.getConstant(countTrailingOnes(SatConstant
), dl
, VT
));
4659 // Try to convert expressions of the form x < k ? k : x (and similar forms)
4660 // into more efficient bit operations, which is possible when k is 0 or -1
4661 // On ARM and Thumb-2 which have flexible operand 2 this will result in
4662 // single instructions. On Thumb the shift and the bit operation will be two
4664 // Only allow this transformation on full-width (32-bit) operations
4665 SDValue LowerSatConstant
;
4666 if (VT
== MVT::i32
&&
4667 isLowerSaturatingConditional(Op
, SatValue
, LowerSatConstant
)) {
4668 SDValue ShiftV
= DAG
.getNode(ISD::SRA
, dl
, VT
, SatValue
,
4669 DAG
.getConstant(31, dl
, VT
));
4670 if (isNullConstant(LowerSatConstant
)) {
4671 SDValue NotShiftV
= DAG
.getNode(ISD::XOR
, dl
, VT
, ShiftV
,
4672 DAG
.getAllOnesConstant(dl
, VT
));
4673 return DAG
.getNode(ISD::AND
, dl
, VT
, SatValue
, NotShiftV
);
4674 } else if (isAllOnesConstant(LowerSatConstant
))
4675 return DAG
.getNode(ISD::OR
, dl
, VT
, SatValue
, ShiftV
);
4678 SDValue LHS
= Op
.getOperand(0);
4679 SDValue RHS
= Op
.getOperand(1);
4680 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(4))->get();
4681 SDValue TrueVal
= Op
.getOperand(2);
4682 SDValue FalseVal
= Op
.getOperand(3);
4684 if (isUnsupportedFloatingType(LHS
.getValueType())) {
4685 DAG
.getTargetLoweringInfo().softenSetCCOperands(
4686 DAG
, LHS
.getValueType(), LHS
, RHS
, CC
, dl
);
4688 // If softenSetCCOperands only returned one value, we should compare it to
4690 if (!RHS
.getNode()) {
4691 RHS
= DAG
.getConstant(0, dl
, LHS
.getValueType());
4696 if (LHS
.getValueType() == MVT::i32
) {
4697 // Try to generate VSEL on ARMv8.
4698 // The VSEL instruction can't use all the usual ARM condition
4699 // codes: it only has two bits to select the condition code, so it's
4700 // constrained to use only GE, GT, VS and EQ.
4702 // To implement all the various ISD::SETXXX opcodes, we sometimes need to
4703 // swap the operands of the previous compare instruction (effectively
4704 // inverting the compare condition, swapping 'less' and 'greater') and
4705 // sometimes need to swap the operands to the VSEL (which inverts the
4706 // condition in the sense of firing whenever the previous condition didn't)
4707 if (Subtarget
->hasFPARMv8Base() && (TrueVal
.getValueType() == MVT::f16
||
4708 TrueVal
.getValueType() == MVT::f32
||
4709 TrueVal
.getValueType() == MVT::f64
)) {
4710 ARMCC::CondCodes CondCode
= IntCCToARMCC(CC
);
4711 if (CondCode
== ARMCC::LT
|| CondCode
== ARMCC::LE
||
4712 CondCode
== ARMCC::VC
|| CondCode
== ARMCC::NE
) {
4713 CC
= ISD::getSetCCInverse(CC
, true);
4714 std::swap(TrueVal
, FalseVal
);
4719 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4720 SDValue Cmp
= getARMCmp(LHS
, RHS
, CC
, ARMcc
, DAG
, dl
);
4721 // Choose GE over PL, which vsel does now support
4722 if (cast
<ConstantSDNode
>(ARMcc
)->getZExtValue() == ARMCC::PL
)
4723 ARMcc
= DAG
.getConstant(ARMCC::GE
, dl
, MVT::i32
);
4724 return getCMOV(dl
, VT
, FalseVal
, TrueVal
, ARMcc
, CCR
, Cmp
, DAG
);
4727 ARMCC::CondCodes CondCode
, CondCode2
;
4729 FPCCToARMCC(CC
, CondCode
, CondCode2
, InvalidOnQNaN
);
4731 // Normalize the fp compare. If RHS is zero we prefer to keep it there so we
4732 // match CMPFPw0 instead of CMPFP, though we don't do this for f16 because we
4733 // must use VSEL (limited condition codes), due to not having conditional f16
4735 if (Subtarget
->hasFPARMv8Base() &&
4736 !(isFloatingPointZero(RHS
) && TrueVal
.getValueType() != MVT::f16
) &&
4737 (TrueVal
.getValueType() == MVT::f16
||
4738 TrueVal
.getValueType() == MVT::f32
||
4739 TrueVal
.getValueType() == MVT::f64
)) {
4740 bool swpCmpOps
= false;
4741 bool swpVselOps
= false;
4742 checkVSELConstraints(CC
, CondCode
, swpCmpOps
, swpVselOps
);
4744 if (CondCode
== ARMCC::GT
|| CondCode
== ARMCC::GE
||
4745 CondCode
== ARMCC::VS
|| CondCode
== ARMCC::EQ
) {
4747 std::swap(LHS
, RHS
);
4749 std::swap(TrueVal
, FalseVal
);
4753 SDValue ARMcc
= DAG
.getConstant(CondCode
, dl
, MVT::i32
);
4754 SDValue Cmp
= getVFPCmp(LHS
, RHS
, DAG
, dl
, InvalidOnQNaN
);
4755 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4756 SDValue Result
= getCMOV(dl
, VT
, FalseVal
, TrueVal
, ARMcc
, CCR
, Cmp
, DAG
);
4757 if (CondCode2
!= ARMCC::AL
) {
4758 SDValue ARMcc2
= DAG
.getConstant(CondCode2
, dl
, MVT::i32
);
4759 // FIXME: Needs another CMP because flag can have but one use.
4760 SDValue Cmp2
= getVFPCmp(LHS
, RHS
, DAG
, dl
, InvalidOnQNaN
);
4761 Result
= getCMOV(dl
, VT
, Result
, TrueVal
, ARMcc2
, CCR
, Cmp2
, DAG
);
4766 /// canChangeToInt - Given the fp compare operand, return true if it is suitable
4767 /// to morph to an integer compare sequence.
4768 static bool canChangeToInt(SDValue Op
, bool &SeenZero
,
4769 const ARMSubtarget
*Subtarget
) {
4770 SDNode
*N
= Op
.getNode();
4771 if (!N
->hasOneUse())
4772 // Otherwise it requires moving the value from fp to integer registers.
4774 if (!N
->getNumValues())
4776 EVT VT
= Op
.getValueType();
4777 if (VT
!= MVT::f32
&& !Subtarget
->isFPBrccSlow())
4778 // f32 case is generally profitable. f64 case only makes sense when vcmpe +
4779 // vmrs are very slow, e.g. cortex-a8.
4782 if (isFloatingPointZero(Op
)) {
4786 return ISD::isNormalLoad(N
);
4789 static SDValue
bitcastf32Toi32(SDValue Op
, SelectionDAG
&DAG
) {
4790 if (isFloatingPointZero(Op
))
4791 return DAG
.getConstant(0, SDLoc(Op
), MVT::i32
);
4793 if (LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(Op
))
4794 return DAG
.getLoad(MVT::i32
, SDLoc(Op
), Ld
->getChain(), Ld
->getBasePtr(),
4795 Ld
->getPointerInfo(), Ld
->getAlignment(),
4796 Ld
->getMemOperand()->getFlags());
4798 llvm_unreachable("Unknown VFP cmp argument!");
4801 static void expandf64Toi32(SDValue Op
, SelectionDAG
&DAG
,
4802 SDValue
&RetVal1
, SDValue
&RetVal2
) {
4805 if (isFloatingPointZero(Op
)) {
4806 RetVal1
= DAG
.getConstant(0, dl
, MVT::i32
);
4807 RetVal2
= DAG
.getConstant(0, dl
, MVT::i32
);
4811 if (LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(Op
)) {
4812 SDValue Ptr
= Ld
->getBasePtr();
4814 DAG
.getLoad(MVT::i32
, dl
, Ld
->getChain(), Ptr
, Ld
->getPointerInfo(),
4815 Ld
->getAlignment(), Ld
->getMemOperand()->getFlags());
4817 EVT PtrType
= Ptr
.getValueType();
4818 unsigned NewAlign
= MinAlign(Ld
->getAlignment(), 4);
4819 SDValue NewPtr
= DAG
.getNode(ISD::ADD
, dl
,
4820 PtrType
, Ptr
, DAG
.getConstant(4, dl
, PtrType
));
4821 RetVal2
= DAG
.getLoad(MVT::i32
, dl
, Ld
->getChain(), NewPtr
,
4822 Ld
->getPointerInfo().getWithOffset(4), NewAlign
,
4823 Ld
->getMemOperand()->getFlags());
4827 llvm_unreachable("Unknown VFP cmp argument!");
4830 /// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
4831 /// f32 and even f64 comparisons to integer ones.
4833 ARMTargetLowering::OptimizeVFPBrcond(SDValue Op
, SelectionDAG
&DAG
) const {
4834 SDValue Chain
= Op
.getOperand(0);
4835 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(1))->get();
4836 SDValue LHS
= Op
.getOperand(2);
4837 SDValue RHS
= Op
.getOperand(3);
4838 SDValue Dest
= Op
.getOperand(4);
4841 bool LHSSeenZero
= false;
4842 bool LHSOk
= canChangeToInt(LHS
, LHSSeenZero
, Subtarget
);
4843 bool RHSSeenZero
= false;
4844 bool RHSOk
= canChangeToInt(RHS
, RHSSeenZero
, Subtarget
);
4845 if (LHSOk
&& RHSOk
&& (LHSSeenZero
|| RHSSeenZero
)) {
4846 // If unsafe fp math optimization is enabled and there are no other uses of
4847 // the CMP operands, and the condition code is EQ or NE, we can optimize it
4848 // to an integer comparison.
4849 if (CC
== ISD::SETOEQ
)
4851 else if (CC
== ISD::SETUNE
)
4854 SDValue Mask
= DAG
.getConstant(0x7fffffff, dl
, MVT::i32
);
4856 if (LHS
.getValueType() == MVT::f32
) {
4857 LHS
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
,
4858 bitcastf32Toi32(LHS
, DAG
), Mask
);
4859 RHS
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
,
4860 bitcastf32Toi32(RHS
, DAG
), Mask
);
4861 SDValue Cmp
= getARMCmp(LHS
, RHS
, CC
, ARMcc
, DAG
, dl
);
4862 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4863 return DAG
.getNode(ARMISD::BRCOND
, dl
, MVT::Other
,
4864 Chain
, Dest
, ARMcc
, CCR
, Cmp
);
4869 expandf64Toi32(LHS
, DAG
, LHS1
, LHS2
);
4870 expandf64Toi32(RHS
, DAG
, RHS1
, RHS2
);
4871 LHS2
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, LHS2
, Mask
);
4872 RHS2
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, RHS2
, Mask
);
4873 ARMCC::CondCodes CondCode
= IntCCToARMCC(CC
);
4874 ARMcc
= DAG
.getConstant(CondCode
, dl
, MVT::i32
);
4875 SDVTList VTList
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
4876 SDValue Ops
[] = { Chain
, ARMcc
, LHS1
, LHS2
, RHS1
, RHS2
, Dest
};
4877 return DAG
.getNode(ARMISD::BCC_i64
, dl
, VTList
, Ops
);
4883 SDValue
ARMTargetLowering::LowerBRCOND(SDValue Op
, SelectionDAG
&DAG
) const {
4884 SDValue Chain
= Op
.getOperand(0);
4885 SDValue Cond
= Op
.getOperand(1);
4886 SDValue Dest
= Op
.getOperand(2);
4889 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
4891 unsigned Opc
= Cond
.getOpcode();
4892 bool OptimizeMul
= (Opc
== ISD::SMULO
|| Opc
== ISD::UMULO
) &&
4893 !Subtarget
->isThumb1Only();
4894 if (Cond
.getResNo() == 1 &&
4895 (Opc
== ISD::SADDO
|| Opc
== ISD::UADDO
|| Opc
== ISD::SSUBO
||
4896 Opc
== ISD::USUBO
|| OptimizeMul
)) {
4897 // Only lower legal XALUO ops.
4898 if (!DAG
.getTargetLoweringInfo().isTypeLegal(Cond
->getValueType(0)))
4901 // The actual operation with overflow check.
4902 SDValue Value
, OverflowCmp
;
4904 std::tie(Value
, OverflowCmp
) = getARMXALUOOp(Cond
, DAG
, ARMcc
);
4906 // Reverse the condition code.
4907 ARMCC::CondCodes CondCode
=
4908 (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(ARMcc
)->getZExtValue();
4909 CondCode
= ARMCC::getOppositeCondition(CondCode
);
4910 ARMcc
= DAG
.getConstant(CondCode
, SDLoc(ARMcc
), MVT::i32
);
4911 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4913 return DAG
.getNode(ARMISD::BRCOND
, dl
, MVT::Other
, Chain
, Dest
, ARMcc
, CCR
,
4920 SDValue
ARMTargetLowering::LowerBR_CC(SDValue Op
, SelectionDAG
&DAG
) const {
4921 SDValue Chain
= Op
.getOperand(0);
4922 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(1))->get();
4923 SDValue LHS
= Op
.getOperand(2);
4924 SDValue RHS
= Op
.getOperand(3);
4925 SDValue Dest
= Op
.getOperand(4);
4928 if (isUnsupportedFloatingType(LHS
.getValueType())) {
4929 DAG
.getTargetLoweringInfo().softenSetCCOperands(
4930 DAG
, LHS
.getValueType(), LHS
, RHS
, CC
, dl
);
4932 // If softenSetCCOperands only returned one value, we should compare it to
4934 if (!RHS
.getNode()) {
4935 RHS
= DAG
.getConstant(0, dl
, LHS
.getValueType());
4940 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
4942 unsigned Opc
= LHS
.getOpcode();
4943 bool OptimizeMul
= (Opc
== ISD::SMULO
|| Opc
== ISD::UMULO
) &&
4944 !Subtarget
->isThumb1Only();
4945 if (LHS
.getResNo() == 1 && (isOneConstant(RHS
) || isNullConstant(RHS
)) &&
4946 (Opc
== ISD::SADDO
|| Opc
== ISD::UADDO
|| Opc
== ISD::SSUBO
||
4947 Opc
== ISD::USUBO
|| OptimizeMul
) &&
4948 (CC
== ISD::SETEQ
|| CC
== ISD::SETNE
)) {
4949 // Only lower legal XALUO ops.
4950 if (!DAG
.getTargetLoweringInfo().isTypeLegal(LHS
->getValueType(0)))
4953 // The actual operation with overflow check.
4954 SDValue Value
, OverflowCmp
;
4956 std::tie(Value
, OverflowCmp
) = getARMXALUOOp(LHS
.getValue(0), DAG
, ARMcc
);
4958 if ((CC
== ISD::SETNE
) != isOneConstant(RHS
)) {
4959 // Reverse the condition code.
4960 ARMCC::CondCodes CondCode
=
4961 (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(ARMcc
)->getZExtValue();
4962 CondCode
= ARMCC::getOppositeCondition(CondCode
);
4963 ARMcc
= DAG
.getConstant(CondCode
, SDLoc(ARMcc
), MVT::i32
);
4965 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4967 return DAG
.getNode(ARMISD::BRCOND
, dl
, MVT::Other
, Chain
, Dest
, ARMcc
, CCR
,
4971 if (LHS
.getValueType() == MVT::i32
) {
4973 SDValue Cmp
= getARMCmp(LHS
, RHS
, CC
, ARMcc
, DAG
, dl
);
4974 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4975 return DAG
.getNode(ARMISD::BRCOND
, dl
, MVT::Other
,
4976 Chain
, Dest
, ARMcc
, CCR
, Cmp
);
4979 if (getTargetMachine().Options
.UnsafeFPMath
&&
4980 (CC
== ISD::SETEQ
|| CC
== ISD::SETOEQ
||
4981 CC
== ISD::SETNE
|| CC
== ISD::SETUNE
)) {
4982 if (SDValue Result
= OptimizeVFPBrcond(Op
, DAG
))
4986 ARMCC::CondCodes CondCode
, CondCode2
;
4988 FPCCToARMCC(CC
, CondCode
, CondCode2
, InvalidOnQNaN
);
4990 SDValue ARMcc
= DAG
.getConstant(CondCode
, dl
, MVT::i32
);
4991 SDValue Cmp
= getVFPCmp(LHS
, RHS
, DAG
, dl
, InvalidOnQNaN
);
4992 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4993 SDVTList VTList
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
4994 SDValue Ops
[] = { Chain
, Dest
, ARMcc
, CCR
, Cmp
};
4995 SDValue Res
= DAG
.getNode(ARMISD::BRCOND
, dl
, VTList
, Ops
);
4996 if (CondCode2
!= ARMCC::AL
) {
4997 ARMcc
= DAG
.getConstant(CondCode2
, dl
, MVT::i32
);
4998 SDValue Ops
[] = { Res
, Dest
, ARMcc
, CCR
, Res
.getValue(1) };
4999 Res
= DAG
.getNode(ARMISD::BRCOND
, dl
, VTList
, Ops
);
5004 SDValue
ARMTargetLowering::LowerBR_JT(SDValue Op
, SelectionDAG
&DAG
) const {
5005 SDValue Chain
= Op
.getOperand(0);
5006 SDValue Table
= Op
.getOperand(1);
5007 SDValue Index
= Op
.getOperand(2);
5010 EVT PTy
= getPointerTy(DAG
.getDataLayout());
5011 JumpTableSDNode
*JT
= cast
<JumpTableSDNode
>(Table
);
5012 SDValue JTI
= DAG
.getTargetJumpTable(JT
->getIndex(), PTy
);
5013 Table
= DAG
.getNode(ARMISD::WrapperJT
, dl
, MVT::i32
, JTI
);
5014 Index
= DAG
.getNode(ISD::MUL
, dl
, PTy
, Index
, DAG
.getConstant(4, dl
, PTy
));
5015 SDValue Addr
= DAG
.getNode(ISD::ADD
, dl
, PTy
, Table
, Index
);
5016 if (Subtarget
->isThumb2() || (Subtarget
->hasV8MBaselineOps() && Subtarget
->isThumb())) {
5017 // Thumb2 and ARMv8-M use a two-level jump. That is, it jumps into the jump table
5018 // which does another jump to the destination. This also makes it easier
5019 // to translate it to TBB / TBH later (Thumb2 only).
5020 // FIXME: This might not work if the function is extremely large.
5021 return DAG
.getNode(ARMISD::BR2_JT
, dl
, MVT::Other
, Chain
,
5022 Addr
, Op
.getOperand(2), JTI
);
5024 if (isPositionIndependent() || Subtarget
->isROPI()) {
5026 DAG
.getLoad((EVT
)MVT::i32
, dl
, Chain
, Addr
,
5027 MachinePointerInfo::getJumpTable(DAG
.getMachineFunction()));
5028 Chain
= Addr
.getValue(1);
5029 Addr
= DAG
.getNode(ISD::ADD
, dl
, PTy
, Table
, Addr
);
5030 return DAG
.getNode(ARMISD::BR_JT
, dl
, MVT::Other
, Chain
, Addr
, JTI
);
5033 DAG
.getLoad(PTy
, dl
, Chain
, Addr
,
5034 MachinePointerInfo::getJumpTable(DAG
.getMachineFunction()));
5035 Chain
= Addr
.getValue(1);
5036 return DAG
.getNode(ARMISD::BR_JT
, dl
, MVT::Other
, Chain
, Addr
, JTI
);
5040 static SDValue
LowerVectorFP_TO_INT(SDValue Op
, SelectionDAG
&DAG
) {
5041 EVT VT
= Op
.getValueType();
5044 if (Op
.getValueType().getVectorElementType() == MVT::i32
) {
5045 if (Op
.getOperand(0).getValueType().getVectorElementType() == MVT::f32
)
5047 return DAG
.UnrollVectorOp(Op
.getNode());
5050 const bool HasFullFP16
=
5051 static_cast<const ARMSubtarget
&>(DAG
.getSubtarget()).hasFullFP16();
5054 const EVT OpTy
= Op
.getOperand(0).getValueType();
5055 if (OpTy
== MVT::v4f32
)
5057 else if (OpTy
== MVT::v4f16
&& HasFullFP16
)
5059 else if (OpTy
== MVT::v8f16
&& HasFullFP16
)
5062 llvm_unreachable("Invalid type for custom lowering!");
5064 if (VT
!= MVT::v4i16
&& VT
!= MVT::v8i16
)
5065 return DAG
.UnrollVectorOp(Op
.getNode());
5067 Op
= DAG
.getNode(Op
.getOpcode(), dl
, NewTy
, Op
.getOperand(0));
5068 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, Op
);
5071 SDValue
ARMTargetLowering::LowerFP_TO_INT(SDValue Op
, SelectionDAG
&DAG
) const {
5072 EVT VT
= Op
.getValueType();
5074 return LowerVectorFP_TO_INT(Op
, DAG
);
5075 if (isUnsupportedFloatingType(Op
.getOperand(0).getValueType())) {
5077 if (Op
.getOpcode() == ISD::FP_TO_SINT
)
5078 LC
= RTLIB::getFPTOSINT(Op
.getOperand(0).getValueType(),
5081 LC
= RTLIB::getFPTOUINT(Op
.getOperand(0).getValueType(),
5083 return makeLibCall(DAG
, LC
, Op
.getValueType(), Op
.getOperand(0),
5084 /*isSigned*/ false, SDLoc(Op
)).first
;
5090 static SDValue
LowerVectorINT_TO_FP(SDValue Op
, SelectionDAG
&DAG
) {
5091 EVT VT
= Op
.getValueType();
5094 if (Op
.getOperand(0).getValueType().getVectorElementType() == MVT::i32
) {
5095 if (VT
.getVectorElementType() == MVT::f32
)
5097 return DAG
.UnrollVectorOp(Op
.getNode());
5100 assert((Op
.getOperand(0).getValueType() == MVT::v4i16
||
5101 Op
.getOperand(0).getValueType() == MVT::v8i16
) &&
5102 "Invalid type for custom lowering!");
5104 const bool HasFullFP16
=
5105 static_cast<const ARMSubtarget
&>(DAG
.getSubtarget()).hasFullFP16();
5108 if (VT
== MVT::v4f32
)
5109 DestVecType
= MVT::v4i32
;
5110 else if (VT
== MVT::v4f16
&& HasFullFP16
)
5111 DestVecType
= MVT::v4i16
;
5112 else if (VT
== MVT::v8f16
&& HasFullFP16
)
5113 DestVecType
= MVT::v8i16
;
5115 return DAG
.UnrollVectorOp(Op
.getNode());
5119 switch (Op
.getOpcode()) {
5120 default: llvm_unreachable("Invalid opcode!");
5121 case ISD::SINT_TO_FP
:
5122 CastOpc
= ISD::SIGN_EXTEND
;
5123 Opc
= ISD::SINT_TO_FP
;
5125 case ISD::UINT_TO_FP
:
5126 CastOpc
= ISD::ZERO_EXTEND
;
5127 Opc
= ISD::UINT_TO_FP
;
5131 Op
= DAG
.getNode(CastOpc
, dl
, DestVecType
, Op
.getOperand(0));
5132 return DAG
.getNode(Opc
, dl
, VT
, Op
);
5135 SDValue
ARMTargetLowering::LowerINT_TO_FP(SDValue Op
, SelectionDAG
&DAG
) const {
5136 EVT VT
= Op
.getValueType();
5138 return LowerVectorINT_TO_FP(Op
, DAG
);
5139 if (isUnsupportedFloatingType(VT
)) {
5141 if (Op
.getOpcode() == ISD::SINT_TO_FP
)
5142 LC
= RTLIB::getSINTTOFP(Op
.getOperand(0).getValueType(),
5145 LC
= RTLIB::getUINTTOFP(Op
.getOperand(0).getValueType(),
5147 return makeLibCall(DAG
, LC
, Op
.getValueType(), Op
.getOperand(0),
5148 /*isSigned*/ false, SDLoc(Op
)).first
;
5154 SDValue
ARMTargetLowering::LowerFCOPYSIGN(SDValue Op
, SelectionDAG
&DAG
) const {
5155 // Implement fcopysign with a fabs and a conditional fneg.
5156 SDValue Tmp0
= Op
.getOperand(0);
5157 SDValue Tmp1
= Op
.getOperand(1);
5159 EVT VT
= Op
.getValueType();
5160 EVT SrcVT
= Tmp1
.getValueType();
5161 bool InGPR
= Tmp0
.getOpcode() == ISD::BITCAST
||
5162 Tmp0
.getOpcode() == ARMISD::VMOVDRR
;
5163 bool UseNEON
= !InGPR
&& Subtarget
->hasNEON();
5166 // Use VBSL to copy the sign bit.
5167 unsigned EncodedVal
= ARM_AM::createVMOVModImm(0x6, 0x80);
5168 SDValue Mask
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, MVT::v2i32
,
5169 DAG
.getTargetConstant(EncodedVal
, dl
, MVT::i32
));
5170 EVT OpVT
= (VT
== MVT::f32
) ? MVT::v2i32
: MVT::v1i64
;
5172 Mask
= DAG
.getNode(ARMISD::VSHLIMM
, dl
, OpVT
,
5173 DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, Mask
),
5174 DAG
.getConstant(32, dl
, MVT::i32
));
5175 else /*if (VT == MVT::f32)*/
5176 Tmp0
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v2f32
, Tmp0
);
5177 if (SrcVT
== MVT::f32
) {
5178 Tmp1
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v2f32
, Tmp1
);
5180 Tmp1
= DAG
.getNode(ARMISD::VSHLIMM
, dl
, OpVT
,
5181 DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, Tmp1
),
5182 DAG
.getConstant(32, dl
, MVT::i32
));
5183 } else if (VT
== MVT::f32
)
5184 Tmp1
= DAG
.getNode(ARMISD::VSHRuIMM
, dl
, MVT::v1i64
,
5185 DAG
.getNode(ISD::BITCAST
, dl
, MVT::v1i64
, Tmp1
),
5186 DAG
.getConstant(32, dl
, MVT::i32
));
5187 Tmp0
= DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, Tmp0
);
5188 Tmp1
= DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, Tmp1
);
5190 SDValue AllOnes
= DAG
.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0xff),
5192 AllOnes
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, MVT::v8i8
, AllOnes
);
5193 SDValue MaskNot
= DAG
.getNode(ISD::XOR
, dl
, OpVT
, Mask
,
5194 DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, AllOnes
));
5196 SDValue Res
= DAG
.getNode(ISD::OR
, dl
, OpVT
,
5197 DAG
.getNode(ISD::AND
, dl
, OpVT
, Tmp1
, Mask
),
5198 DAG
.getNode(ISD::AND
, dl
, OpVT
, Tmp0
, MaskNot
));
5199 if (VT
== MVT::f32
) {
5200 Res
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v2f32
, Res
);
5201 Res
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f32
, Res
,
5202 DAG
.getConstant(0, dl
, MVT::i32
));
5204 Res
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, Res
);
5210 // Bitcast operand 1 to i32.
5211 if (SrcVT
== MVT::f64
)
5212 Tmp1
= DAG
.getNode(ARMISD::VMOVRRD
, dl
, DAG
.getVTList(MVT::i32
, MVT::i32
),
5214 Tmp1
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, Tmp1
);
5216 // Or in the signbit with integer operations.
5217 SDValue Mask1
= DAG
.getConstant(0x80000000, dl
, MVT::i32
);
5218 SDValue Mask2
= DAG
.getConstant(0x7fffffff, dl
, MVT::i32
);
5219 Tmp1
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, Tmp1
, Mask1
);
5220 if (VT
== MVT::f32
) {
5221 Tmp0
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
,
5222 DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, Tmp0
), Mask2
);
5223 return DAG
.getNode(ISD::BITCAST
, dl
, MVT::f32
,
5224 DAG
.getNode(ISD::OR
, dl
, MVT::i32
, Tmp0
, Tmp1
));
5227 // f64: Or the high part with signbit and then combine two parts.
5228 Tmp0
= DAG
.getNode(ARMISD::VMOVRRD
, dl
, DAG
.getVTList(MVT::i32
, MVT::i32
),
5230 SDValue Lo
= Tmp0
.getValue(0);
5231 SDValue Hi
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, Tmp0
.getValue(1), Mask2
);
5232 Hi
= DAG
.getNode(ISD::OR
, dl
, MVT::i32
, Hi
, Tmp1
);
5233 return DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Lo
, Hi
);
5236 SDValue
ARMTargetLowering::LowerRETURNADDR(SDValue Op
, SelectionDAG
&DAG
) const{
5237 MachineFunction
&MF
= DAG
.getMachineFunction();
5238 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
5239 MFI
.setReturnAddressIsTaken(true);
5241 if (verifyReturnAddressArgumentIsConstant(Op
, DAG
))
5244 EVT VT
= Op
.getValueType();
5246 unsigned Depth
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
5248 SDValue FrameAddr
= LowerFRAMEADDR(Op
, DAG
);
5249 SDValue Offset
= DAG
.getConstant(4, dl
, MVT::i32
);
5250 return DAG
.getLoad(VT
, dl
, DAG
.getEntryNode(),
5251 DAG
.getNode(ISD::ADD
, dl
, VT
, FrameAddr
, Offset
),
5252 MachinePointerInfo());
5255 // Return LR, which contains the return address. Mark it an implicit live-in.
5256 unsigned Reg
= MF
.addLiveIn(ARM::LR
, getRegClassFor(MVT::i32
));
5257 return DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, Reg
, VT
);
5260 SDValue
ARMTargetLowering::LowerFRAMEADDR(SDValue Op
, SelectionDAG
&DAG
) const {
5261 const ARMBaseRegisterInfo
&ARI
=
5262 *static_cast<const ARMBaseRegisterInfo
*>(RegInfo
);
5263 MachineFunction
&MF
= DAG
.getMachineFunction();
5264 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
5265 MFI
.setFrameAddressIsTaken(true);
5267 EVT VT
= Op
.getValueType();
5268 SDLoc
dl(Op
); // FIXME probably not meaningful
5269 unsigned Depth
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
5270 unsigned FrameReg
= ARI
.getFrameRegister(MF
);
5271 SDValue FrameAddr
= DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, FrameReg
, VT
);
5273 FrameAddr
= DAG
.getLoad(VT
, dl
, DAG
.getEntryNode(), FrameAddr
,
5274 MachinePointerInfo());
5278 // FIXME? Maybe this could be a TableGen attribute on some registers and
5279 // this table could be generated automatically from RegInfo.
5280 unsigned ARMTargetLowering::getRegisterByName(const char* RegName
, EVT VT
,
5281 SelectionDAG
&DAG
) const {
5282 unsigned Reg
= StringSwitch
<unsigned>(RegName
)
5283 .Case("sp", ARM::SP
)
5287 report_fatal_error(Twine("Invalid register name \""
5288 + StringRef(RegName
) + "\"."));
5291 // Result is 64 bit value so split into two 32 bit values and return as a
5293 static void ExpandREAD_REGISTER(SDNode
*N
, SmallVectorImpl
<SDValue
> &Results
,
5294 SelectionDAG
&DAG
) {
5297 // This function is only supposed to be called for i64 type destination.
5298 assert(N
->getValueType(0) == MVT::i64
5299 && "ExpandREAD_REGISTER called for non-i64 type result.");
5301 SDValue Read
= DAG
.getNode(ISD::READ_REGISTER
, DL
,
5302 DAG
.getVTList(MVT::i32
, MVT::i32
, MVT::Other
),
5306 Results
.push_back(DAG
.getNode(ISD::BUILD_PAIR
, DL
, MVT::i64
, Read
.getValue(0),
5308 Results
.push_back(Read
.getOperand(0));
5311 /// \p BC is a bitcast that is about to be turned into a VMOVDRR.
5312 /// When \p DstVT, the destination type of \p BC, is on the vector
5313 /// register bank and the source of bitcast, \p Op, operates on the same bank,
5314 /// it might be possible to combine them, such that everything stays on the
5315 /// vector register bank.
5316 /// \p return The node that would replace \p BT, if the combine
5318 static SDValue
CombineVMOVDRRCandidateWithVecOp(const SDNode
*BC
,
5319 SelectionDAG
&DAG
) {
5320 SDValue Op
= BC
->getOperand(0);
5321 EVT DstVT
= BC
->getValueType(0);
5323 // The only vector instruction that can produce a scalar (remember,
5324 // since the bitcast was about to be turned into VMOVDRR, the source
5325 // type is i64) from a vector is EXTRACT_VECTOR_ELT.
5326 // Moreover, we can do this combine only if there is one use.
5327 // Finally, if the destination type is not a vector, there is not
5328 // much point on forcing everything on the vector bank.
5329 if (!DstVT
.isVector() || Op
.getOpcode() != ISD::EXTRACT_VECTOR_ELT
||
5333 // If the index is not constant, we will introduce an additional
5334 // multiply that will stick.
5335 // Give up in that case.
5336 ConstantSDNode
*Index
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
5339 unsigned DstNumElt
= DstVT
.getVectorNumElements();
5341 // Compute the new index.
5342 const APInt
&APIntIndex
= Index
->getAPIntValue();
5343 APInt
NewIndex(APIntIndex
.getBitWidth(), DstNumElt
);
5344 NewIndex
*= APIntIndex
;
5345 // Check if the new constant index fits into i32.
5346 if (NewIndex
.getBitWidth() > 32)
5349 // vMTy bitcast(i64 extractelt vNi64 src, i32 index) ->
5350 // vMTy extractsubvector vNxMTy (bitcast vNi64 src), i32 index*M)
5352 SDValue ExtractSrc
= Op
.getOperand(0);
5353 EVT VecVT
= EVT::getVectorVT(
5354 *DAG
.getContext(), DstVT
.getScalarType(),
5355 ExtractSrc
.getValueType().getVectorNumElements() * DstNumElt
);
5356 SDValue BitCast
= DAG
.getNode(ISD::BITCAST
, dl
, VecVT
, ExtractSrc
);
5357 return DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DstVT
, BitCast
,
5358 DAG
.getConstant(NewIndex
.getZExtValue(), dl
, MVT::i32
));
5361 /// ExpandBITCAST - If the target supports VFP, this function is called to
5362 /// expand a bit convert where either the source or destination type is i64 to
5363 /// use a VMOVDRR or VMOVRRD node. This should not be done when the non-i64
5364 /// operand type is illegal (e.g., v2f32 for a target that doesn't support
5365 /// vectors), since the legalizer won't know what to do with that.
5366 static SDValue
ExpandBITCAST(SDNode
*N
, SelectionDAG
&DAG
,
5367 const ARMSubtarget
*Subtarget
) {
5368 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
5370 SDValue Op
= N
->getOperand(0);
5372 // This function is only supposed to be called for i64 types, either as the
5373 // source or destination of the bit convert.
5374 EVT SrcVT
= Op
.getValueType();
5375 EVT DstVT
= N
->getValueType(0);
5376 const bool HasFullFP16
= Subtarget
->hasFullFP16();
5378 if (SrcVT
== MVT::f32
&& DstVT
== MVT::i32
) {
5379 // FullFP16: half values are passed in S-registers, and we don't
5380 // need any of the bitcast and moves:
5382 // t2: f32,ch = CopyFromReg t0, Register:f32 %0
5383 // t5: i32 = bitcast t2
5384 // t18: f16 = ARMISD::VMOVhr t5
5385 if (Op
.getOpcode() != ISD::CopyFromReg
||
5386 Op
.getValueType() != MVT::f32
)
5389 auto Move
= N
->use_begin();
5390 if (Move
->getOpcode() != ARMISD::VMOVhr
)
5393 SDValue Ops
[] = { Op
.getOperand(0), Op
.getOperand(1) };
5394 SDValue Copy
= DAG
.getNode(ISD::CopyFromReg
, SDLoc(Op
), MVT::f16
, Ops
);
5395 DAG
.ReplaceAllUsesWith(*Move
, &Copy
);
5399 if (SrcVT
== MVT::i16
&& DstVT
== MVT::f16
) {
5402 // SoftFP: read half-precision arguments:
5405 // t7: i16 = truncate t2 <~~~~ Op
5406 // t8: f16 = bitcast t7 <~~~~ N
5408 if (Op
.getOperand(0).getValueType() == MVT::i32
)
5409 return DAG
.getNode(ARMISD::VMOVhr
, SDLoc(Op
),
5410 MVT::f16
, Op
.getOperand(0));
5415 // Half-precision return values
5416 if (SrcVT
== MVT::f16
&& DstVT
== MVT::i16
) {
5420 // t11: f16 = fadd t8, t10
5421 // t12: i16 = bitcast t11 <~~~ SDNode N
5422 // t13: i32 = zero_extend t12
5423 // t16: ch,glue = CopyToReg t0, Register:i32 %r0, t13
5424 // t17: ch = ARMISD::RET_FLAG t16, Register:i32 %r0, t16:1
5426 // transform this into:
5428 // t20: i32 = ARMISD::VMOVrh t11
5429 // t16: ch,glue = CopyToReg t0, Register:i32 %r0, t20
5431 auto ZeroExtend
= N
->use_begin();
5432 if (N
->use_size() != 1 || ZeroExtend
->getOpcode() != ISD::ZERO_EXTEND
||
5433 ZeroExtend
->getValueType(0) != MVT::i32
)
5436 auto Copy
= ZeroExtend
->use_begin();
5437 if (Copy
->getOpcode() == ISD::CopyToReg
&&
5438 Copy
->use_begin()->getOpcode() == ARMISD::RET_FLAG
) {
5439 SDValue Cvt
= DAG
.getNode(ARMISD::VMOVrh
, SDLoc(Op
), MVT::i32
, Op
);
5440 DAG
.ReplaceAllUsesWith(*ZeroExtend
, &Cvt
);
5446 if (!(SrcVT
== MVT::i64
|| DstVT
== MVT::i64
))
5449 // Turn i64->f64 into VMOVDRR.
5450 if (SrcVT
== MVT::i64
&& TLI
.isTypeLegal(DstVT
)) {
5451 // Do not force values to GPRs (this is what VMOVDRR does for the inputs)
5452 // if we can combine the bitcast with its source.
5453 if (SDValue Val
= CombineVMOVDRRCandidateWithVecOp(N
, DAG
))
5456 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, Op
,
5457 DAG
.getConstant(0, dl
, MVT::i32
));
5458 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, Op
,
5459 DAG
.getConstant(1, dl
, MVT::i32
));
5460 return DAG
.getNode(ISD::BITCAST
, dl
, DstVT
,
5461 DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Lo
, Hi
));
5464 // Turn f64->i64 into VMOVRRD.
5465 if (DstVT
== MVT::i64
&& TLI
.isTypeLegal(SrcVT
)) {
5467 if (DAG
.getDataLayout().isBigEndian() && SrcVT
.isVector() &&
5468 SrcVT
.getVectorNumElements() > 1)
5469 Cvt
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
5470 DAG
.getVTList(MVT::i32
, MVT::i32
),
5471 DAG
.getNode(ARMISD::VREV64
, dl
, SrcVT
, Op
));
5473 Cvt
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
5474 DAG
.getVTList(MVT::i32
, MVT::i32
), Op
);
5475 // Merge the pieces into a single i64 value.
5476 return DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, Cvt
, Cvt
.getValue(1));
5482 /// getZeroVector - Returns a vector of specified type with all zero elements.
5483 /// Zero vectors are used to represent vector negation and in those cases
5484 /// will be implemented with the NEON VNEG instruction. However, VNEG does
5485 /// not support i64 elements, so sometimes the zero vectors will need to be
5486 /// explicitly constructed. Regardless, use a canonical VMOV to create the
5488 static SDValue
getZeroVector(EVT VT
, SelectionDAG
&DAG
, const SDLoc
&dl
) {
5489 assert(VT
.isVector() && "Expected a vector type");
5490 // The canonical modified immediate encoding of a zero vector is....0!
5491 SDValue EncodedVal
= DAG
.getTargetConstant(0, dl
, MVT::i32
);
5492 EVT VmovVT
= VT
.is128BitVector() ? MVT::v4i32
: MVT::v2i32
;
5493 SDValue Vmov
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VmovVT
, EncodedVal
);
5494 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vmov
);
5497 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
5498 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
5499 SDValue
ARMTargetLowering::LowerShiftRightParts(SDValue Op
,
5500 SelectionDAG
&DAG
) const {
5501 assert(Op
.getNumOperands() == 3 && "Not a double-shift!");
5502 EVT VT
= Op
.getValueType();
5503 unsigned VTBits
= VT
.getSizeInBits();
5505 SDValue ShOpLo
= Op
.getOperand(0);
5506 SDValue ShOpHi
= Op
.getOperand(1);
5507 SDValue ShAmt
= Op
.getOperand(2);
5509 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5510 unsigned Opc
= (Op
.getOpcode() == ISD::SRA_PARTS
) ? ISD::SRA
: ISD::SRL
;
5512 assert(Op
.getOpcode() == ISD::SRA_PARTS
|| Op
.getOpcode() == ISD::SRL_PARTS
);
5514 SDValue RevShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
5515 DAG
.getConstant(VTBits
, dl
, MVT::i32
), ShAmt
);
5516 SDValue Tmp1
= DAG
.getNode(ISD::SRL
, dl
, VT
, ShOpLo
, ShAmt
);
5517 SDValue ExtraShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
, ShAmt
,
5518 DAG
.getConstant(VTBits
, dl
, MVT::i32
));
5519 SDValue Tmp2
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpHi
, RevShAmt
);
5520 SDValue LoSmallShift
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp1
, Tmp2
);
5521 SDValue LoBigShift
= DAG
.getNode(Opc
, dl
, VT
, ShOpHi
, ExtraShAmt
);
5522 SDValue CmpLo
= getARMCmp(ExtraShAmt
, DAG
.getConstant(0, dl
, MVT::i32
),
5523 ISD::SETGE
, ARMcc
, DAG
, dl
);
5524 SDValue Lo
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, LoSmallShift
, LoBigShift
,
5527 SDValue HiSmallShift
= DAG
.getNode(Opc
, dl
, VT
, ShOpHi
, ShAmt
);
5528 SDValue HiBigShift
= Opc
== ISD::SRA
5529 ? DAG
.getNode(Opc
, dl
, VT
, ShOpHi
,
5530 DAG
.getConstant(VTBits
- 1, dl
, VT
))
5531 : DAG
.getConstant(0, dl
, VT
);
5532 SDValue CmpHi
= getARMCmp(ExtraShAmt
, DAG
.getConstant(0, dl
, MVT::i32
),
5533 ISD::SETGE
, ARMcc
, DAG
, dl
);
5534 SDValue Hi
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, HiSmallShift
, HiBigShift
,
5537 SDValue Ops
[2] = { Lo
, Hi
};
5538 return DAG
.getMergeValues(Ops
, dl
);
5541 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
5542 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
5543 SDValue
ARMTargetLowering::LowerShiftLeftParts(SDValue Op
,
5544 SelectionDAG
&DAG
) const {
5545 assert(Op
.getNumOperands() == 3 && "Not a double-shift!");
5546 EVT VT
= Op
.getValueType();
5547 unsigned VTBits
= VT
.getSizeInBits();
5549 SDValue ShOpLo
= Op
.getOperand(0);
5550 SDValue ShOpHi
= Op
.getOperand(1);
5551 SDValue ShAmt
= Op
.getOperand(2);
5553 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5555 assert(Op
.getOpcode() == ISD::SHL_PARTS
);
5556 SDValue RevShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
5557 DAG
.getConstant(VTBits
, dl
, MVT::i32
), ShAmt
);
5558 SDValue Tmp1
= DAG
.getNode(ISD::SRL
, dl
, VT
, ShOpLo
, RevShAmt
);
5559 SDValue Tmp2
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpHi
, ShAmt
);
5560 SDValue HiSmallShift
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp1
, Tmp2
);
5562 SDValue ExtraShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
, ShAmt
,
5563 DAG
.getConstant(VTBits
, dl
, MVT::i32
));
5564 SDValue HiBigShift
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpLo
, ExtraShAmt
);
5565 SDValue CmpHi
= getARMCmp(ExtraShAmt
, DAG
.getConstant(0, dl
, MVT::i32
),
5566 ISD::SETGE
, ARMcc
, DAG
, dl
);
5567 SDValue Hi
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, HiSmallShift
, HiBigShift
,
5570 SDValue CmpLo
= getARMCmp(ExtraShAmt
, DAG
.getConstant(0, dl
, MVT::i32
),
5571 ISD::SETGE
, ARMcc
, DAG
, dl
);
5572 SDValue LoSmallShift
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpLo
, ShAmt
);
5573 SDValue Lo
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, LoSmallShift
,
5574 DAG
.getConstant(0, dl
, VT
), ARMcc
, CCR
, CmpLo
);
5576 SDValue Ops
[2] = { Lo
, Hi
};
5577 return DAG
.getMergeValues(Ops
, dl
);
5580 SDValue
ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op
,
5581 SelectionDAG
&DAG
) const {
5582 // The rounding mode is in bits 23:22 of the FPSCR.
5583 // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
5584 // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
5585 // so that the shift + and get folded into a bitfield extract.
5587 SDValue Ops
[] = { DAG
.getEntryNode(),
5588 DAG
.getConstant(Intrinsic::arm_get_fpscr
, dl
, MVT::i32
) };
5590 SDValue FPSCR
= DAG
.getNode(ISD::INTRINSIC_W_CHAIN
, dl
, MVT::i32
, Ops
);
5591 SDValue FltRounds
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, FPSCR
,
5592 DAG
.getConstant(1U << 22, dl
, MVT::i32
));
5593 SDValue RMODE
= DAG
.getNode(ISD::SRL
, dl
, MVT::i32
, FltRounds
,
5594 DAG
.getConstant(22, dl
, MVT::i32
));
5595 return DAG
.getNode(ISD::AND
, dl
, MVT::i32
, RMODE
,
5596 DAG
.getConstant(3, dl
, MVT::i32
));
5599 static SDValue
LowerCTTZ(SDNode
*N
, SelectionDAG
&DAG
,
5600 const ARMSubtarget
*ST
) {
5602 EVT VT
= N
->getValueType(0);
5603 if (VT
.isVector()) {
5604 assert(ST
->hasNEON());
5606 // Compute the least significant set bit: LSB = X & -X
5607 SDValue X
= N
->getOperand(0);
5608 SDValue NX
= DAG
.getNode(ISD::SUB
, dl
, VT
, getZeroVector(VT
, DAG
, dl
), X
);
5609 SDValue LSB
= DAG
.getNode(ISD::AND
, dl
, VT
, X
, NX
);
5611 EVT ElemTy
= VT
.getVectorElementType();
5613 if (ElemTy
== MVT::i8
) {
5614 // Compute with: cttz(x) = ctpop(lsb - 1)
5615 SDValue One
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VT
,
5616 DAG
.getTargetConstant(1, dl
, ElemTy
));
5617 SDValue Bits
= DAG
.getNode(ISD::SUB
, dl
, VT
, LSB
, One
);
5618 return DAG
.getNode(ISD::CTPOP
, dl
, VT
, Bits
);
5621 if ((ElemTy
== MVT::i16
|| ElemTy
== MVT::i32
) &&
5622 (N
->getOpcode() == ISD::CTTZ_ZERO_UNDEF
)) {
5623 // Compute with: cttz(x) = (width - 1) - ctlz(lsb), if x != 0
5624 unsigned NumBits
= ElemTy
.getSizeInBits();
5625 SDValue WidthMinus1
=
5626 DAG
.getNode(ARMISD::VMOVIMM
, dl
, VT
,
5627 DAG
.getTargetConstant(NumBits
- 1, dl
, ElemTy
));
5628 SDValue CTLZ
= DAG
.getNode(ISD::CTLZ
, dl
, VT
, LSB
);
5629 return DAG
.getNode(ISD::SUB
, dl
, VT
, WidthMinus1
, CTLZ
);
5632 // Compute with: cttz(x) = ctpop(lsb - 1)
5636 if (ElemTy
== MVT::i64
) {
5637 // Load constant 0xffff'ffff'ffff'ffff to register.
5638 SDValue FF
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VT
,
5639 DAG
.getTargetConstant(0x1eff, dl
, MVT::i32
));
5640 Bits
= DAG
.getNode(ISD::ADD
, dl
, VT
, LSB
, FF
);
5642 SDValue One
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VT
,
5643 DAG
.getTargetConstant(1, dl
, ElemTy
));
5644 Bits
= DAG
.getNode(ISD::SUB
, dl
, VT
, LSB
, One
);
5646 return DAG
.getNode(ISD::CTPOP
, dl
, VT
, Bits
);
5649 if (!ST
->hasV6T2Ops())
5652 SDValue rbit
= DAG
.getNode(ISD::BITREVERSE
, dl
, VT
, N
->getOperand(0));
5653 return DAG
.getNode(ISD::CTLZ
, dl
, VT
, rbit
);
5656 static SDValue
LowerCTPOP(SDNode
*N
, SelectionDAG
&DAG
,
5657 const ARMSubtarget
*ST
) {
5658 EVT VT
= N
->getValueType(0);
5661 assert(ST
->hasNEON() && "Custom ctpop lowering requires NEON.");
5662 assert((VT
== MVT::v1i64
|| VT
== MVT::v2i64
|| VT
== MVT::v2i32
||
5663 VT
== MVT::v4i32
|| VT
== MVT::v4i16
|| VT
== MVT::v8i16
) &&
5664 "Unexpected type for custom ctpop lowering");
5666 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
5667 EVT VT8Bit
= VT
.is64BitVector() ? MVT::v8i8
: MVT::v16i8
;
5668 SDValue Res
= DAG
.getBitcast(VT8Bit
, N
->getOperand(0));
5669 Res
= DAG
.getNode(ISD::CTPOP
, DL
, VT8Bit
, Res
);
5671 // Widen v8i8/v16i8 CTPOP result to VT by repeatedly widening pairwise adds.
5672 unsigned EltSize
= 8;
5673 unsigned NumElts
= VT
.is64BitVector() ? 8 : 16;
5674 while (EltSize
!= VT
.getScalarSizeInBits()) {
5675 SmallVector
<SDValue
, 8> Ops
;
5676 Ops
.push_back(DAG
.getConstant(Intrinsic::arm_neon_vpaddlu
, DL
,
5677 TLI
.getPointerTy(DAG
.getDataLayout())));
5682 MVT WidenVT
= MVT::getVectorVT(MVT::getIntegerVT(EltSize
), NumElts
);
5683 Res
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, WidenVT
, Ops
);
5689 /// Getvshiftimm - Check if this is a valid build_vector for the immediate
5690 /// operand of a vector shift operation, where all the elements of the
5691 /// build_vector must have the same constant integer value.
5692 static bool getVShiftImm(SDValue Op
, unsigned ElementBits
, int64_t &Cnt
) {
5693 // Ignore bit_converts.
5694 while (Op
.getOpcode() == ISD::BITCAST
)
5695 Op
= Op
.getOperand(0);
5696 BuildVectorSDNode
*BVN
= dyn_cast
<BuildVectorSDNode
>(Op
.getNode());
5697 APInt SplatBits
, SplatUndef
;
5698 unsigned SplatBitSize
;
5701 !BVN
->isConstantSplat(SplatBits
, SplatUndef
, SplatBitSize
, HasAnyUndefs
,
5703 SplatBitSize
> ElementBits
)
5705 Cnt
= SplatBits
.getSExtValue();
5709 /// isVShiftLImm - Check if this is a valid build_vector for the immediate
5710 /// operand of a vector shift left operation. That value must be in the range:
5711 /// 0 <= Value < ElementBits for a left shift; or
5712 /// 0 <= Value <= ElementBits for a long left shift.
5713 static bool isVShiftLImm(SDValue Op
, EVT VT
, bool isLong
, int64_t &Cnt
) {
5714 assert(VT
.isVector() && "vector shift count is not a vector type");
5715 int64_t ElementBits
= VT
.getScalarSizeInBits();
5716 if (!getVShiftImm(Op
, ElementBits
, Cnt
))
5718 return (Cnt
>= 0 && (isLong
? Cnt
- 1 : Cnt
) < ElementBits
);
5721 /// isVShiftRImm - Check if this is a valid build_vector for the immediate
5722 /// operand of a vector shift right operation. For a shift opcode, the value
5723 /// is positive, but for an intrinsic the value count must be negative. The
5724 /// absolute value must be in the range:
5725 /// 1 <= |Value| <= ElementBits for a right shift; or
5726 /// 1 <= |Value| <= ElementBits/2 for a narrow right shift.
5727 static bool isVShiftRImm(SDValue Op
, EVT VT
, bool isNarrow
, bool isIntrinsic
,
5729 assert(VT
.isVector() && "vector shift count is not a vector type");
5730 int64_t ElementBits
= VT
.getScalarSizeInBits();
5731 if (!getVShiftImm(Op
, ElementBits
, Cnt
))
5734 return (Cnt
>= 1 && Cnt
<= (isNarrow
? ElementBits
/ 2 : ElementBits
));
5735 if (Cnt
>= -(isNarrow
? ElementBits
/ 2 : ElementBits
) && Cnt
<= -1) {
5742 static SDValue
LowerShift(SDNode
*N
, SelectionDAG
&DAG
,
5743 const ARMSubtarget
*ST
) {
5744 EVT VT
= N
->getValueType(0);
5751 // We essentially have two forms here. Shift by an immediate and shift by a
5752 // vector register (there are also shift by a gpr, but that is just handled
5753 // with a tablegen pattern). We cannot easily match shift by an immediate in
5754 // tablegen so we do that here and generate a VSHLIMM/VSHRsIMM/VSHRuIMM.
5755 // For shifting by a vector, we don't have VSHR, only VSHL (which can be
5756 // signed or unsigned, and a negative shift indicates a shift right).
5757 if (N
->getOpcode() == ISD::SHL
) {
5758 if (isVShiftLImm(N
->getOperand(1), VT
, false, Cnt
))
5759 return DAG
.getNode(ARMISD::VSHLIMM
, dl
, VT
, N
->getOperand(0),
5760 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
5761 return DAG
.getNode(ARMISD::VSHLu
, dl
, VT
, N
->getOperand(0),
5765 assert((N
->getOpcode() == ISD::SRA
|| N
->getOpcode() == ISD::SRL
) &&
5766 "unexpected vector shift opcode");
5768 if (isVShiftRImm(N
->getOperand(1), VT
, false, false, Cnt
)) {
5769 unsigned VShiftOpc
=
5770 (N
->getOpcode() == ISD::SRA
? ARMISD::VSHRsIMM
: ARMISD::VSHRuIMM
);
5771 return DAG
.getNode(VShiftOpc
, dl
, VT
, N
->getOperand(0),
5772 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
5775 // Other right shifts we don't have operations for (we use a shift left by a
5776 // negative number).
5777 EVT ShiftVT
= N
->getOperand(1).getValueType();
5778 SDValue NegatedCount
= DAG
.getNode(
5779 ISD::SUB
, dl
, ShiftVT
, getZeroVector(ShiftVT
, DAG
, dl
), N
->getOperand(1));
5780 unsigned VShiftOpc
=
5781 (N
->getOpcode() == ISD::SRA
? ARMISD::VSHLs
: ARMISD::VSHLu
);
5782 return DAG
.getNode(VShiftOpc
, dl
, VT
, N
->getOperand(0), NegatedCount
);
5785 static SDValue
Expand64BitShift(SDNode
*N
, SelectionDAG
&DAG
,
5786 const ARMSubtarget
*ST
) {
5787 EVT VT
= N
->getValueType(0);
5790 // We can get here for a node like i32 = ISD::SHL i32, i64
5794 assert((N
->getOpcode() == ISD::SRL
|| N
->getOpcode() == ISD::SRA
||
5795 N
->getOpcode() == ISD::SHL
) &&
5796 "Unknown shift to lower!");
5798 unsigned ShOpc
= N
->getOpcode();
5799 if (ST
->hasMVEIntegerOps()) {
5800 SDValue ShAmt
= N
->getOperand(1);
5801 unsigned ShPartsOpc
= ARMISD::LSLL
;
5802 ConstantSDNode
*Con
= dyn_cast
<ConstantSDNode
>(ShAmt
);
5804 // If the shift amount is greater than 32 then do the default optimisation
5805 if (Con
&& Con
->getZExtValue() > 32)
5808 // Extract the lower 32 bits of the shift amount if it's an i64
5809 if (ShAmt
->getValueType(0) == MVT::i64
)
5810 ShAmt
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, ShAmt
,
5811 DAG
.getConstant(0, dl
, MVT::i32
));
5813 if (ShOpc
== ISD::SRL
) {
5815 // There is no t2LSRLr instruction so negate and perform an lsll if the
5816 // shift amount is in a register, emulating a right shift.
5817 ShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
5818 DAG
.getConstant(0, dl
, MVT::i32
), ShAmt
);
5820 // Else generate an lsrl on the immediate shift amount
5821 ShPartsOpc
= ARMISD::LSRL
;
5822 } else if (ShOpc
== ISD::SRA
)
5823 ShPartsOpc
= ARMISD::ASRL
;
5825 // Lower 32 bits of the destination/source
5826 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(0),
5827 DAG
.getConstant(0, dl
, MVT::i32
));
5828 // Upper 32 bits of the destination/source
5829 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(0),
5830 DAG
.getConstant(1, dl
, MVT::i32
));
5832 // Generate the shift operation as computed above
5833 Lo
= DAG
.getNode(ShPartsOpc
, dl
, DAG
.getVTList(MVT::i32
, MVT::i32
), Lo
, Hi
,
5835 // The upper 32 bits come from the second return value of lsll
5836 Hi
= SDValue(Lo
.getNode(), 1);
5837 return DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, Lo
, Hi
);
5840 // We only lower SRA, SRL of 1 here, all others use generic lowering.
5841 if (!isOneConstant(N
->getOperand(1)) || N
->getOpcode() == ISD::SHL
)
5844 // If we are in thumb mode, we don't have RRX.
5845 if (ST
->isThumb1Only())
5848 // Okay, we have a 64-bit SRA or SRL of 1. Lower this to an RRX expr.
5849 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(0),
5850 DAG
.getConstant(0, dl
, MVT::i32
));
5851 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(0),
5852 DAG
.getConstant(1, dl
, MVT::i32
));
5854 // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
5855 // captures the result into a carry flag.
5856 unsigned Opc
= N
->getOpcode() == ISD::SRL
? ARMISD::SRL_FLAG
:ARMISD::SRA_FLAG
;
5857 Hi
= DAG
.getNode(Opc
, dl
, DAG
.getVTList(MVT::i32
, MVT::Glue
), Hi
);
5859 // The low part is an ARMISD::RRX operand, which shifts the carry in.
5860 Lo
= DAG
.getNode(ARMISD::RRX
, dl
, MVT::i32
, Lo
, Hi
.getValue(1));
5862 // Merge the pieces into a single i64 value.
5863 return DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, Lo
, Hi
);
5866 static SDValue
LowerVSETCC(SDValue Op
, SelectionDAG
&DAG
,
5867 const ARMSubtarget
*ST
) {
5868 bool Invert
= false;
5870 unsigned Opc
= ARMCC::AL
;
5872 SDValue Op0
= Op
.getOperand(0);
5873 SDValue Op1
= Op
.getOperand(1);
5874 SDValue CC
= Op
.getOperand(2);
5875 EVT VT
= Op
.getValueType();
5876 ISD::CondCode SetCCOpcode
= cast
<CondCodeSDNode
>(CC
)->get();
5881 CmpVT
= Op0
.getValueType().changeVectorElementTypeToInteger();
5883 assert(ST
->hasMVEIntegerOps() &&
5884 "No hardware support for integer vector comparison!");
5886 if (Op
.getValueType().getVectorElementType() != MVT::i1
)
5889 // Make sure we expand floating point setcc to scalar if we do not have
5890 // mve.fp, so that we can handle them from there.
5891 if (Op0
.getValueType().isFloatingPoint() && !ST
->hasMVEFloatOps())
5897 if (Op0
.getValueType().getVectorElementType() == MVT::i64
&&
5898 (SetCCOpcode
== ISD::SETEQ
|| SetCCOpcode
== ISD::SETNE
)) {
5899 // Special-case integer 64-bit equality comparisons. They aren't legal,
5900 // but they can be lowered with a few vector instructions.
5901 unsigned CmpElements
= CmpVT
.getVectorNumElements() * 2;
5902 EVT SplitVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::i32
, CmpElements
);
5903 SDValue CastOp0
= DAG
.getNode(ISD::BITCAST
, dl
, SplitVT
, Op0
);
5904 SDValue CastOp1
= DAG
.getNode(ISD::BITCAST
, dl
, SplitVT
, Op1
);
5905 SDValue Cmp
= DAG
.getNode(ISD::SETCC
, dl
, SplitVT
, CastOp0
, CastOp1
,
5906 DAG
.getCondCode(ISD::SETEQ
));
5907 SDValue Reversed
= DAG
.getNode(ARMISD::VREV64
, dl
, SplitVT
, Cmp
);
5908 SDValue Merged
= DAG
.getNode(ISD::AND
, dl
, SplitVT
, Cmp
, Reversed
);
5909 Merged
= DAG
.getNode(ISD::BITCAST
, dl
, CmpVT
, Merged
);
5910 if (SetCCOpcode
== ISD::SETNE
)
5911 Merged
= DAG
.getNOT(dl
, Merged
, CmpVT
);
5912 Merged
= DAG
.getSExtOrTrunc(Merged
, dl
, VT
);
5916 if (CmpVT
.getVectorElementType() == MVT::i64
)
5917 // 64-bit comparisons are not legal in general.
5920 if (Op1
.getValueType().isFloatingPoint()) {
5921 switch (SetCCOpcode
) {
5922 default: llvm_unreachable("Illegal FP comparison");
5925 if (ST
->hasMVEFloatOps()) {
5926 Opc
= ARMCC::NE
; break;
5928 Invert
= true; LLVM_FALLTHROUGH
;
5931 case ISD::SETEQ
: Opc
= ARMCC::EQ
; break;
5933 case ISD::SETLT
: Swap
= true; LLVM_FALLTHROUGH
;
5935 case ISD::SETGT
: Opc
= ARMCC::GT
; break;
5937 case ISD::SETLE
: Swap
= true; LLVM_FALLTHROUGH
;
5939 case ISD::SETGE
: Opc
= ARMCC::GE
; break;
5940 case ISD::SETUGE
: Swap
= true; LLVM_FALLTHROUGH
;
5941 case ISD::SETULE
: Invert
= true; Opc
= ARMCC::GT
; break;
5942 case ISD::SETUGT
: Swap
= true; LLVM_FALLTHROUGH
;
5943 case ISD::SETULT
: Invert
= true; Opc
= ARMCC::GE
; break;
5944 case ISD::SETUEQ
: Invert
= true; LLVM_FALLTHROUGH
;
5946 // Expand this to (OLT | OGT).
5947 SDValue TmpOp0
= DAG
.getNode(ARMISD::VCMP
, dl
, CmpVT
, Op1
, Op0
,
5948 DAG
.getConstant(ARMCC::GT
, dl
, MVT::i32
));
5949 SDValue TmpOp1
= DAG
.getNode(ARMISD::VCMP
, dl
, CmpVT
, Op0
, Op1
,
5950 DAG
.getConstant(ARMCC::GT
, dl
, MVT::i32
));
5951 SDValue Result
= DAG
.getNode(ISD::OR
, dl
, CmpVT
, TmpOp0
, TmpOp1
);
5953 Result
= DAG
.getNOT(dl
, Result
, VT
);
5956 case ISD::SETUO
: Invert
= true; LLVM_FALLTHROUGH
;
5958 // Expand this to (OLT | OGE).
5959 SDValue TmpOp0
= DAG
.getNode(ARMISD::VCMP
, dl
, CmpVT
, Op1
, Op0
,
5960 DAG
.getConstant(ARMCC::GT
, dl
, MVT::i32
));
5961 SDValue TmpOp1
= DAG
.getNode(ARMISD::VCMP
, dl
, CmpVT
, Op0
, Op1
,
5962 DAG
.getConstant(ARMCC::GE
, dl
, MVT::i32
));
5963 SDValue Result
= DAG
.getNode(ISD::OR
, dl
, CmpVT
, TmpOp0
, TmpOp1
);
5965 Result
= DAG
.getNOT(dl
, Result
, VT
);
5970 // Integer comparisons.
5971 switch (SetCCOpcode
) {
5972 default: llvm_unreachable("Illegal integer comparison");
5974 if (ST
->hasMVEIntegerOps()) {
5975 Opc
= ARMCC::NE
; break;
5977 Invert
= true; LLVM_FALLTHROUGH
;
5979 case ISD::SETEQ
: Opc
= ARMCC::EQ
; break;
5980 case ISD::SETLT
: Swap
= true; LLVM_FALLTHROUGH
;
5981 case ISD::SETGT
: Opc
= ARMCC::GT
; break;
5982 case ISD::SETLE
: Swap
= true; LLVM_FALLTHROUGH
;
5983 case ISD::SETGE
: Opc
= ARMCC::GE
; break;
5984 case ISD::SETULT
: Swap
= true; LLVM_FALLTHROUGH
;
5985 case ISD::SETUGT
: Opc
= ARMCC::HI
; break;
5986 case ISD::SETULE
: Swap
= true; LLVM_FALLTHROUGH
;
5987 case ISD::SETUGE
: Opc
= ARMCC::HS
; break;
5990 // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
5991 if (ST
->hasNEON() && Opc
== ARMCC::EQ
) {
5993 if (ISD::isBuildVectorAllZeros(Op1
.getNode()))
5995 else if (ISD::isBuildVectorAllZeros(Op0
.getNode()))
5998 // Ignore bitconvert.
5999 if (AndOp
.getNode() && AndOp
.getOpcode() == ISD::BITCAST
)
6000 AndOp
= AndOp
.getOperand(0);
6002 if (AndOp
.getNode() && AndOp
.getOpcode() == ISD::AND
) {
6003 Op0
= DAG
.getNode(ISD::BITCAST
, dl
, CmpVT
, AndOp
.getOperand(0));
6004 Op1
= DAG
.getNode(ISD::BITCAST
, dl
, CmpVT
, AndOp
.getOperand(1));
6005 SDValue Result
= DAG
.getNode(ARMISD::VTST
, dl
, CmpVT
, Op0
, Op1
);
6007 Result
= DAG
.getNOT(dl
, Result
, VT
);
6014 std::swap(Op0
, Op1
);
6016 // If one of the operands is a constant vector zero, attempt to fold the
6017 // comparison to a specialized compare-against-zero form.
6019 if (ISD::isBuildVectorAllZeros(Op1
.getNode()))
6021 else if (ISD::isBuildVectorAllZeros(Op0
.getNode())) {
6022 if (Opc
== ARMCC::GE
)
6024 else if (Opc
== ARMCC::GT
)
6030 if (SingleOp
.getNode()) {
6031 Result
= DAG
.getNode(ARMISD::VCMPZ
, dl
, CmpVT
, SingleOp
,
6032 DAG
.getConstant(Opc
, dl
, MVT::i32
));
6034 Result
= DAG
.getNode(ARMISD::VCMP
, dl
, CmpVT
, Op0
, Op1
,
6035 DAG
.getConstant(Opc
, dl
, MVT::i32
));
6038 Result
= DAG
.getSExtOrTrunc(Result
, dl
, VT
);
6041 Result
= DAG
.getNOT(dl
, Result
, VT
);
6046 static SDValue
LowerSETCCCARRY(SDValue Op
, SelectionDAG
&DAG
) {
6047 SDValue LHS
= Op
.getOperand(0);
6048 SDValue RHS
= Op
.getOperand(1);
6049 SDValue Carry
= Op
.getOperand(2);
6050 SDValue Cond
= Op
.getOperand(3);
6053 assert(LHS
.getSimpleValueType().isInteger() && "SETCCCARRY is integer only.");
6055 // ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
6056 // have to invert the carry first.
6057 Carry
= DAG
.getNode(ISD::SUB
, DL
, MVT::i32
,
6058 DAG
.getConstant(1, DL
, MVT::i32
), Carry
);
6059 // This converts the boolean value carry into the carry flag.
6060 Carry
= ConvertBooleanCarryToCarryFlag(Carry
, DAG
);
6062 SDVTList VTs
= DAG
.getVTList(LHS
.getValueType(), MVT::i32
);
6063 SDValue Cmp
= DAG
.getNode(ARMISD::SUBE
, DL
, VTs
, LHS
, RHS
, Carry
);
6065 SDValue FVal
= DAG
.getConstant(0, DL
, MVT::i32
);
6066 SDValue TVal
= DAG
.getConstant(1, DL
, MVT::i32
);
6067 SDValue ARMcc
= DAG
.getConstant(
6068 IntCCToARMCC(cast
<CondCodeSDNode
>(Cond
)->get()), DL
, MVT::i32
);
6069 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
6070 SDValue Chain
= DAG
.getCopyToReg(DAG
.getEntryNode(), DL
, ARM::CPSR
,
6071 Cmp
.getValue(1), SDValue());
6072 return DAG
.getNode(ARMISD::CMOV
, DL
, Op
.getValueType(), FVal
, TVal
, ARMcc
,
6073 CCR
, Chain
.getValue(1));
6076 /// isVMOVModifiedImm - Check if the specified splat value corresponds to a
6077 /// valid vector constant for a NEON or MVE instruction with a "modified
6078 /// immediate" operand (e.g., VMOV). If so, return the encoded value.
6079 static SDValue
isVMOVModifiedImm(uint64_t SplatBits
, uint64_t SplatUndef
,
6080 unsigned SplatBitSize
, SelectionDAG
&DAG
,
6081 const SDLoc
&dl
, EVT
&VT
, bool is128Bits
,
6082 VMOVModImmType type
) {
6083 unsigned OpCmode
, Imm
;
6085 // SplatBitSize is set to the smallest size that splats the vector, so a
6086 // zero vector will always have SplatBitSize == 8. However, NEON modified
6087 // immediate instructions others than VMOV do not support the 8-bit encoding
6088 // of a zero vector, and the default encoding of zero is supposed to be the
6093 switch (SplatBitSize
) {
6095 if (type
!= VMOVModImm
)
6097 // Any 1-byte value is OK. Op=0, Cmode=1110.
6098 assert((SplatBits
& ~0xff) == 0 && "one byte splat value is too big");
6101 VT
= is128Bits
? MVT::v16i8
: MVT::v8i8
;
6105 // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
6106 VT
= is128Bits
? MVT::v8i16
: MVT::v4i16
;
6107 if ((SplatBits
& ~0xff) == 0) {
6108 // Value = 0x00nn: Op=x, Cmode=100x.
6113 if ((SplatBits
& ~0xff00) == 0) {
6114 // Value = 0xnn00: Op=x, Cmode=101x.
6116 Imm
= SplatBits
>> 8;
6122 // NEON's 32-bit VMOV supports splat values where:
6123 // * only one byte is nonzero, or
6124 // * the least significant byte is 0xff and the second byte is nonzero, or
6125 // * the least significant 2 bytes are 0xff and the third is nonzero.
6126 VT
= is128Bits
? MVT::v4i32
: MVT::v2i32
;
6127 if ((SplatBits
& ~0xff) == 0) {
6128 // Value = 0x000000nn: Op=x, Cmode=000x.
6133 if ((SplatBits
& ~0xff00) == 0) {
6134 // Value = 0x0000nn00: Op=x, Cmode=001x.
6136 Imm
= SplatBits
>> 8;
6139 if ((SplatBits
& ~0xff0000) == 0) {
6140 // Value = 0x00nn0000: Op=x, Cmode=010x.
6142 Imm
= SplatBits
>> 16;
6145 if ((SplatBits
& ~0xff000000) == 0) {
6146 // Value = 0xnn000000: Op=x, Cmode=011x.
6148 Imm
= SplatBits
>> 24;
6152 // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
6153 if (type
== OtherModImm
) return SDValue();
6155 if ((SplatBits
& ~0xffff) == 0 &&
6156 ((SplatBits
| SplatUndef
) & 0xff) == 0xff) {
6157 // Value = 0x0000nnff: Op=x, Cmode=1100.
6159 Imm
= SplatBits
>> 8;
6163 // cmode == 0b1101 is not supported for MVE VMVN
6164 if (type
== MVEVMVNModImm
)
6167 if ((SplatBits
& ~0xffffff) == 0 &&
6168 ((SplatBits
| SplatUndef
) & 0xffff) == 0xffff) {
6169 // Value = 0x00nnffff: Op=x, Cmode=1101.
6171 Imm
= SplatBits
>> 16;
6175 // Note: there are a few 32-bit splat values (specifically: 00ffff00,
6176 // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
6177 // VMOV.I32. A (very) minor optimization would be to replicate the value
6178 // and fall through here to test for a valid 64-bit splat. But, then the
6179 // caller would also need to check and handle the change in size.
6183 if (type
!= VMOVModImm
)
6185 // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
6186 uint64_t BitMask
= 0xff;
6188 unsigned ImmMask
= 1;
6190 for (int ByteNum
= 0; ByteNum
< 8; ++ByteNum
) {
6191 if (((SplatBits
| SplatUndef
) & BitMask
) == BitMask
) {
6194 } else if ((SplatBits
& BitMask
) != 0) {
6201 if (DAG
.getDataLayout().isBigEndian())
6202 // swap higher and lower 32 bit word
6203 Imm
= ((Imm
& 0xf) << 4) | ((Imm
& 0xf0) >> 4);
6205 // Op=1, Cmode=1110.
6207 VT
= is128Bits
? MVT::v2i64
: MVT::v1i64
;
6212 llvm_unreachable("unexpected size for isVMOVModifiedImm");
6215 unsigned EncodedVal
= ARM_AM::createVMOVModImm(OpCmode
, Imm
);
6216 return DAG
.getTargetConstant(EncodedVal
, dl
, MVT::i32
);
6219 SDValue
ARMTargetLowering::LowerConstantFP(SDValue Op
, SelectionDAG
&DAG
,
6220 const ARMSubtarget
*ST
) const {
6221 EVT VT
= Op
.getValueType();
6222 bool IsDouble
= (VT
== MVT::f64
);
6223 ConstantFPSDNode
*CFP
= cast
<ConstantFPSDNode
>(Op
);
6224 const APFloat
&FPVal
= CFP
->getValueAPF();
6226 // Prevent floating-point constants from using literal loads
6227 // when execute-only is enabled.
6228 if (ST
->genExecuteOnly()) {
6229 // If we can represent the constant as an immediate, don't lower it
6230 if (isFPImmLegal(FPVal
, VT
))
6232 // Otherwise, construct as integer, and move to float register
6233 APInt INTVal
= FPVal
.bitcastToAPInt();
6235 switch (VT
.getSimpleVT().SimpleTy
) {
6237 llvm_unreachable("Unknown floating point type!");
6240 SDValue Lo
= DAG
.getConstant(INTVal
.trunc(32), DL
, MVT::i32
);
6241 SDValue Hi
= DAG
.getConstant(INTVal
.lshr(32).trunc(32), DL
, MVT::i32
);
6242 if (!ST
->isLittle())
6244 return DAG
.getNode(ARMISD::VMOVDRR
, DL
, MVT::f64
, Lo
, Hi
);
6247 return DAG
.getNode(ARMISD::VMOVSR
, DL
, VT
,
6248 DAG
.getConstant(INTVal
, DL
, MVT::i32
));
6252 if (!ST
->hasVFP3Base())
6255 // Use the default (constant pool) lowering for double constants when we have
6257 if (IsDouble
&& !Subtarget
->hasFP64())
6260 // Try splatting with a VMOV.f32...
6261 int ImmVal
= IsDouble
? ARM_AM::getFP64Imm(FPVal
) : ARM_AM::getFP32Imm(FPVal
);
6264 if (IsDouble
|| !ST
->useNEONForSinglePrecisionFP()) {
6265 // We have code in place to select a valid ConstantFP already, no need to
6270 // It's a float and we are trying to use NEON operations where
6271 // possible. Lower it to a splat followed by an extract.
6273 SDValue NewVal
= DAG
.getTargetConstant(ImmVal
, DL
, MVT::i32
);
6274 SDValue VecConstant
= DAG
.getNode(ARMISD::VMOVFPIMM
, DL
, MVT::v2f32
,
6276 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, MVT::f32
, VecConstant
,
6277 DAG
.getConstant(0, DL
, MVT::i32
));
6280 // The rest of our options are NEON only, make sure that's allowed before
6282 if (!ST
->hasNEON() || (!IsDouble
&& !ST
->useNEONForSinglePrecisionFP()))
6286 uint64_t iVal
= FPVal
.bitcastToAPInt().getZExtValue();
6288 // It wouldn't really be worth bothering for doubles except for one very
6289 // important value, which does happen to match: 0.0. So make sure we don't do
6291 if (IsDouble
&& (iVal
& 0xffffffff) != (iVal
>> 32))
6294 // Try a VMOV.i32 (FIXME: i8, i16, or i64 could work too).
6295 SDValue NewVal
= isVMOVModifiedImm(iVal
& 0xffffffffU
, 0, 32, DAG
, SDLoc(Op
),
6296 VMovVT
, false, VMOVModImm
);
6297 if (NewVal
!= SDValue()) {
6299 SDValue VecConstant
= DAG
.getNode(ARMISD::VMOVIMM
, DL
, VMovVT
,
6302 return DAG
.getNode(ISD::BITCAST
, DL
, MVT::f64
, VecConstant
);
6304 // It's a float: cast and extract a vector element.
6305 SDValue VecFConstant
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::v2f32
,
6307 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, MVT::f32
, VecFConstant
,
6308 DAG
.getConstant(0, DL
, MVT::i32
));
6311 // Finally, try a VMVN.i32
6312 NewVal
= isVMOVModifiedImm(~iVal
& 0xffffffffU
, 0, 32, DAG
, SDLoc(Op
), VMovVT
,
6314 if (NewVal
!= SDValue()) {
6316 SDValue VecConstant
= DAG
.getNode(ARMISD::VMVNIMM
, DL
, VMovVT
, NewVal
);
6319 return DAG
.getNode(ISD::BITCAST
, DL
, MVT::f64
, VecConstant
);
6321 // It's a float: cast and extract a vector element.
6322 SDValue VecFConstant
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::v2f32
,
6324 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, MVT::f32
, VecFConstant
,
6325 DAG
.getConstant(0, DL
, MVT::i32
));
6331 // check if an VEXT instruction can handle the shuffle mask when the
6332 // vector sources of the shuffle are the same.
6333 static bool isSingletonVEXTMask(ArrayRef
<int> M
, EVT VT
, unsigned &Imm
) {
6334 unsigned NumElts
= VT
.getVectorNumElements();
6336 // Assume that the first shuffle index is not UNDEF. Fail if it is.
6342 // If this is a VEXT shuffle, the immediate value is the index of the first
6343 // element. The other shuffle indices must be the successive elements after
6345 unsigned ExpectedElt
= Imm
;
6346 for (unsigned i
= 1; i
< NumElts
; ++i
) {
6347 // Increment the expected index. If it wraps around, just follow it
6348 // back to index zero and keep going.
6350 if (ExpectedElt
== NumElts
)
6353 if (M
[i
] < 0) continue; // ignore UNDEF indices
6354 if (ExpectedElt
!= static_cast<unsigned>(M
[i
]))
6361 static bool isVEXTMask(ArrayRef
<int> M
, EVT VT
,
6362 bool &ReverseVEXT
, unsigned &Imm
) {
6363 unsigned NumElts
= VT
.getVectorNumElements();
6364 ReverseVEXT
= false;
6366 // Assume that the first shuffle index is not UNDEF. Fail if it is.
6372 // If this is a VEXT shuffle, the immediate value is the index of the first
6373 // element. The other shuffle indices must be the successive elements after
6375 unsigned ExpectedElt
= Imm
;
6376 for (unsigned i
= 1; i
< NumElts
; ++i
) {
6377 // Increment the expected index. If it wraps around, it may still be
6378 // a VEXT but the source vectors must be swapped.
6380 if (ExpectedElt
== NumElts
* 2) {
6385 if (M
[i
] < 0) continue; // ignore UNDEF indices
6386 if (ExpectedElt
!= static_cast<unsigned>(M
[i
]))
6390 // Adjust the index value if the source operands will be swapped.
6397 /// isVREVMask - Check if a vector shuffle corresponds to a VREV
6398 /// instruction with the specified blocksize. (The order of the elements
6399 /// within each block of the vector is reversed.)
6400 static bool isVREVMask(ArrayRef
<int> M
, EVT VT
, unsigned BlockSize
) {
6401 assert((BlockSize
==16 || BlockSize
==32 || BlockSize
==64) &&
6402 "Only possible block sizes for VREV are: 16, 32, 64");
6404 unsigned EltSz
= VT
.getScalarSizeInBits();
6408 unsigned NumElts
= VT
.getVectorNumElements();
6409 unsigned BlockElts
= M
[0] + 1;
6410 // If the first shuffle index is UNDEF, be optimistic.
6412 BlockElts
= BlockSize
/ EltSz
;
6414 if (BlockSize
<= EltSz
|| BlockSize
!= BlockElts
* EltSz
)
6417 for (unsigned i
= 0; i
< NumElts
; ++i
) {
6418 if (M
[i
] < 0) continue; // ignore UNDEF indices
6419 if ((unsigned) M
[i
] != (i
- i
%BlockElts
) + (BlockElts
- 1 - i
%BlockElts
))
6426 static bool isVTBLMask(ArrayRef
<int> M
, EVT VT
) {
6427 // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
6428 // range, then 0 is placed into the resulting vector. So pretty much any mask
6429 // of 8 elements can work here.
6430 return VT
== MVT::v8i8
&& M
.size() == 8;
6433 static unsigned SelectPairHalf(unsigned Elements
, ArrayRef
<int> Mask
,
6435 if (Mask
.size() == Elements
* 2)
6436 return Index
/ Elements
;
6437 return Mask
[Index
] == 0 ? 0 : 1;
6440 // Checks whether the shuffle mask represents a vector transpose (VTRN) by
6441 // checking that pairs of elements in the shuffle mask represent the same index
6442 // in each vector, incrementing the expected index by 2 at each step.
6443 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 2, 6]
6444 // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,c,g}
6446 // WhichResult gives the offset for each element in the mask based on which
6447 // of the two results it belongs to.
6449 // The transpose can be represented either as:
6450 // result1 = shufflevector v1, v2, result1_shuffle_mask
6451 // result2 = shufflevector v1, v2, result2_shuffle_mask
6452 // where v1/v2 and the shuffle masks have the same number of elements
6453 // (here WhichResult (see below) indicates which result is being checked)
6456 // results = shufflevector v1, v2, shuffle_mask
6457 // where both results are returned in one vector and the shuffle mask has twice
6458 // as many elements as v1/v2 (here WhichResult will always be 0 if true) here we
6459 // want to check the low half and high half of the shuffle mask as if it were
6461 static bool isVTRNMask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
) {
6462 unsigned EltSz
= VT
.getScalarSizeInBits();
6466 unsigned NumElts
= VT
.getVectorNumElements();
6467 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6470 // If the mask is twice as long as the input vector then we need to check the
6471 // upper and lower parts of the mask with a matching value for WhichResult
6472 // FIXME: A mask with only even values will be rejected in case the first
6473 // element is undefined, e.g. [-1, 4, 2, 6] will be rejected, because only
6474 // M[0] is used to determine WhichResult
6475 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6476 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6477 for (unsigned j
= 0; j
< NumElts
; j
+= 2) {
6478 if ((M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != j
+ WhichResult
) ||
6479 (M
[i
+j
+1] >= 0 && (unsigned) M
[i
+j
+1] != j
+ NumElts
+ WhichResult
))
6484 if (M
.size() == NumElts
*2)
6490 /// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
6491 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6492 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
6493 static bool isVTRN_v_undef_Mask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
){
6494 unsigned EltSz
= VT
.getScalarSizeInBits();
6498 unsigned NumElts
= VT
.getVectorNumElements();
6499 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6502 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6503 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6504 for (unsigned j
= 0; j
< NumElts
; j
+= 2) {
6505 if ((M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != j
+ WhichResult
) ||
6506 (M
[i
+j
+1] >= 0 && (unsigned) M
[i
+j
+1] != j
+ WhichResult
))
6511 if (M
.size() == NumElts
*2)
6517 // Checks whether the shuffle mask represents a vector unzip (VUZP) by checking
6518 // that the mask elements are either all even and in steps of size 2 or all odd
6519 // and in steps of size 2.
6520 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 2, 4, 6]
6521 // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,c,e,g}
6523 // Requires similar checks to that of isVTRNMask with
6524 // respect the how results are returned.
6525 static bool isVUZPMask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
) {
6526 unsigned EltSz
= VT
.getScalarSizeInBits();
6530 unsigned NumElts
= VT
.getVectorNumElements();
6531 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6534 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6535 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6536 for (unsigned j
= 0; j
< NumElts
; ++j
) {
6537 if (M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != 2 * j
+ WhichResult
)
6542 if (M
.size() == NumElts
*2)
6545 // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6546 if (VT
.is64BitVector() && EltSz
== 32)
6552 /// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
6553 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6554 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
6555 static bool isVUZP_v_undef_Mask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
){
6556 unsigned EltSz
= VT
.getScalarSizeInBits();
6560 unsigned NumElts
= VT
.getVectorNumElements();
6561 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6564 unsigned Half
= NumElts
/ 2;
6565 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6566 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6567 for (unsigned j
= 0; j
< NumElts
; j
+= Half
) {
6568 unsigned Idx
= WhichResult
;
6569 for (unsigned k
= 0; k
< Half
; ++k
) {
6570 int MIdx
= M
[i
+ j
+ k
];
6571 if (MIdx
>= 0 && (unsigned) MIdx
!= Idx
)
6578 if (M
.size() == NumElts
*2)
6581 // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6582 if (VT
.is64BitVector() && EltSz
== 32)
6588 // Checks whether the shuffle mask represents a vector zip (VZIP) by checking
6589 // that pairs of elements of the shufflemask represent the same index in each
6590 // vector incrementing sequentially through the vectors.
6591 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 1, 5]
6592 // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,b,f}
6594 // Requires similar checks to that of isVTRNMask with respect the how results
6596 static bool isVZIPMask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
) {
6597 unsigned EltSz
= VT
.getScalarSizeInBits();
6601 unsigned NumElts
= VT
.getVectorNumElements();
6602 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6605 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6606 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6607 unsigned Idx
= WhichResult
* NumElts
/ 2;
6608 for (unsigned j
= 0; j
< NumElts
; j
+= 2) {
6609 if ((M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != Idx
) ||
6610 (M
[i
+j
+1] >= 0 && (unsigned) M
[i
+j
+1] != Idx
+ NumElts
))
6616 if (M
.size() == NumElts
*2)
6619 // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6620 if (VT
.is64BitVector() && EltSz
== 32)
6626 /// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
6627 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6628 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
6629 static bool isVZIP_v_undef_Mask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
){
6630 unsigned EltSz
= VT
.getScalarSizeInBits();
6634 unsigned NumElts
= VT
.getVectorNumElements();
6635 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6638 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6639 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6640 unsigned Idx
= WhichResult
* NumElts
/ 2;
6641 for (unsigned j
= 0; j
< NumElts
; j
+= 2) {
6642 if ((M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != Idx
) ||
6643 (M
[i
+j
+1] >= 0 && (unsigned) M
[i
+j
+1] != Idx
))
6649 if (M
.size() == NumElts
*2)
6652 // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6653 if (VT
.is64BitVector() && EltSz
== 32)
6659 /// Check if \p ShuffleMask is a NEON two-result shuffle (VZIP, VUZP, VTRN),
6660 /// and return the corresponding ARMISD opcode if it is, or 0 if it isn't.
6661 static unsigned isNEONTwoResultShuffleMask(ArrayRef
<int> ShuffleMask
, EVT VT
,
6662 unsigned &WhichResult
,
6665 if (isVTRNMask(ShuffleMask
, VT
, WhichResult
))
6666 return ARMISD::VTRN
;
6667 if (isVUZPMask(ShuffleMask
, VT
, WhichResult
))
6668 return ARMISD::VUZP
;
6669 if (isVZIPMask(ShuffleMask
, VT
, WhichResult
))
6670 return ARMISD::VZIP
;
6673 if (isVTRN_v_undef_Mask(ShuffleMask
, VT
, WhichResult
))
6674 return ARMISD::VTRN
;
6675 if (isVUZP_v_undef_Mask(ShuffleMask
, VT
, WhichResult
))
6676 return ARMISD::VUZP
;
6677 if (isVZIP_v_undef_Mask(ShuffleMask
, VT
, WhichResult
))
6678 return ARMISD::VZIP
;
6683 /// \return true if this is a reverse operation on an vector.
6684 static bool isReverseMask(ArrayRef
<int> M
, EVT VT
) {
6685 unsigned NumElts
= VT
.getVectorNumElements();
6686 // Make sure the mask has the right size.
6687 if (NumElts
!= M
.size())
6690 // Look for <15, ..., 3, -1, 1, 0>.
6691 for (unsigned i
= 0; i
!= NumElts
; ++i
)
6692 if (M
[i
] >= 0 && M
[i
] != (int) (NumElts
- 1 - i
))
6698 // If N is an integer constant that can be moved into a register in one
6699 // instruction, return an SDValue of such a constant (will become a MOV
6700 // instruction). Otherwise return null.
6701 static SDValue
IsSingleInstrConstant(SDValue N
, SelectionDAG
&DAG
,
6702 const ARMSubtarget
*ST
, const SDLoc
&dl
) {
6704 if (!isa
<ConstantSDNode
>(N
))
6706 Val
= cast
<ConstantSDNode
>(N
)->getZExtValue();
6708 if (ST
->isThumb1Only()) {
6709 if (Val
<= 255 || ~Val
<= 255)
6710 return DAG
.getConstant(Val
, dl
, MVT::i32
);
6712 if (ARM_AM::getSOImmVal(Val
) != -1 || ARM_AM::getSOImmVal(~Val
) != -1)
6713 return DAG
.getConstant(Val
, dl
, MVT::i32
);
6718 static SDValue
LowerBUILD_VECTOR_i1(SDValue Op
, SelectionDAG
&DAG
,
6719 const ARMSubtarget
*ST
) {
6721 EVT VT
= Op
.getValueType();
6723 assert(ST
->hasMVEIntegerOps() && "LowerBUILD_VECTOR_i1 called without MVE!");
6725 unsigned NumElts
= VT
.getVectorNumElements();
6727 unsigned BitsPerBool
;
6731 } else if (NumElts
== 8) {
6734 } else if (NumElts
== 16) {
6740 // First create base with bits set where known
6741 unsigned Bits32
= 0;
6742 for (unsigned i
= 0; i
< NumElts
; ++i
) {
6743 SDValue V
= Op
.getOperand(i
);
6744 if (!isa
<ConstantSDNode
>(V
) && !V
.isUndef())
6746 bool BitSet
= V
.isUndef() ? false : cast
<ConstantSDNode
>(V
)->getZExtValue();
6748 Bits32
|= BoolMask
<< (i
* BitsPerBool
);
6751 // Add in unknown nodes
6752 // FIXME: Handle splats of the same value better.
6753 SDValue Base
= DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, VT
,
6754 DAG
.getConstant(Bits32
, dl
, MVT::i32
));
6755 for (unsigned i
= 0; i
< NumElts
; ++i
) {
6756 SDValue V
= Op
.getOperand(i
);
6757 if (isa
<ConstantSDNode
>(V
) || V
.isUndef())
6759 Base
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, Base
, V
,
6760 DAG
.getConstant(i
, dl
, MVT::i32
));
6766 // If this is a case we can't handle, return null and let the default
6767 // expansion code take care of it.
6768 SDValue
ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op
, SelectionDAG
&DAG
,
6769 const ARMSubtarget
*ST
) const {
6770 BuildVectorSDNode
*BVN
= cast
<BuildVectorSDNode
>(Op
.getNode());
6772 EVT VT
= Op
.getValueType();
6774 if (ST
->hasMVEIntegerOps() && VT
.getScalarSizeInBits() == 1)
6775 return LowerBUILD_VECTOR_i1(Op
, DAG
, ST
);
6777 APInt SplatBits
, SplatUndef
;
6778 unsigned SplatBitSize
;
6780 if (BVN
->isConstantSplat(SplatBits
, SplatUndef
, SplatBitSize
, HasAnyUndefs
)) {
6781 if (SplatUndef
.isAllOnesValue())
6782 return DAG
.getUNDEF(VT
);
6784 if ((ST
->hasNEON() && SplatBitSize
<= 64) ||
6785 (ST
->hasMVEIntegerOps() && SplatBitSize
<= 32)) {
6786 // Check if an immediate VMOV works.
6788 SDValue Val
= isVMOVModifiedImm(SplatBits
.getZExtValue(),
6789 SplatUndef
.getZExtValue(), SplatBitSize
,
6790 DAG
, dl
, VmovVT
, VT
.is128BitVector(),
6793 if (Val
.getNode()) {
6794 SDValue Vmov
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VmovVT
, Val
);
6795 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vmov
);
6798 // Try an immediate VMVN.
6799 uint64_t NegatedImm
= (~SplatBits
).getZExtValue();
6800 Val
= isVMOVModifiedImm(
6801 NegatedImm
, SplatUndef
.getZExtValue(), SplatBitSize
,
6802 DAG
, dl
, VmovVT
, VT
.is128BitVector(),
6803 ST
->hasMVEIntegerOps() ? MVEVMVNModImm
: VMVNModImm
);
6804 if (Val
.getNode()) {
6805 SDValue Vmov
= DAG
.getNode(ARMISD::VMVNIMM
, dl
, VmovVT
, Val
);
6806 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vmov
);
6809 // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
6810 if ((VT
== MVT::v2f32
|| VT
== MVT::v4f32
) && SplatBitSize
== 32) {
6811 int ImmVal
= ARM_AM::getFP32Imm(SplatBits
);
6813 SDValue Val
= DAG
.getTargetConstant(ImmVal
, dl
, MVT::i32
);
6814 return DAG
.getNode(ARMISD::VMOVFPIMM
, dl
, VT
, Val
);
6820 // Scan through the operands to see if only one value is used.
6822 // As an optimisation, even if more than one value is used it may be more
6823 // profitable to splat with one value then change some lanes.
6825 // Heuristically we decide to do this if the vector has a "dominant" value,
6826 // defined as splatted to more than half of the lanes.
6827 unsigned NumElts
= VT
.getVectorNumElements();
6828 bool isOnlyLowElement
= true;
6829 bool usesOnlyOneValue
= true;
6830 bool hasDominantValue
= false;
6831 bool isConstant
= true;
6833 // Map of the number of times a particular SDValue appears in the
6835 DenseMap
<SDValue
, unsigned> ValueCounts
;
6837 for (unsigned i
= 0; i
< NumElts
; ++i
) {
6838 SDValue V
= Op
.getOperand(i
);
6842 isOnlyLowElement
= false;
6843 if (!isa
<ConstantFPSDNode
>(V
) && !isa
<ConstantSDNode
>(V
))
6846 ValueCounts
.insert(std::make_pair(V
, 0));
6847 unsigned &Count
= ValueCounts
[V
];
6849 // Is this value dominant? (takes up more than half of the lanes)
6850 if (++Count
> (NumElts
/ 2)) {
6851 hasDominantValue
= true;
6855 if (ValueCounts
.size() != 1)
6856 usesOnlyOneValue
= false;
6857 if (!Value
.getNode() && !ValueCounts
.empty())
6858 Value
= ValueCounts
.begin()->first
;
6860 if (ValueCounts
.empty())
6861 return DAG
.getUNDEF(VT
);
6863 // Loads are better lowered with insert_vector_elt/ARMISD::BUILD_VECTOR.
6864 // Keep going if we are hitting this case.
6865 if (isOnlyLowElement
&& !ISD::isNormalLoad(Value
.getNode()))
6866 return DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Value
);
6868 unsigned EltSize
= VT
.getScalarSizeInBits();
6870 // Use VDUP for non-constant splats. For f32 constant splats, reduce to
6871 // i32 and try again.
6872 if (hasDominantValue
&& EltSize
<= 32) {
6876 // If we are VDUPing a value that comes directly from a vector, that will
6877 // cause an unnecessary move to and from a GPR, where instead we could
6878 // just use VDUPLANE. We can only do this if the lane being extracted
6879 // is at a constant index, as the VDUP from lane instructions only have
6880 // constant-index forms.
6881 ConstantSDNode
*constIndex
;
6882 if (Value
->getOpcode() == ISD::EXTRACT_VECTOR_ELT
&&
6883 (constIndex
= dyn_cast
<ConstantSDNode
>(Value
->getOperand(1)))) {
6884 // We need to create a new undef vector to use for the VDUPLANE if the
6885 // size of the vector from which we get the value is different than the
6886 // size of the vector that we need to create. We will insert the element
6887 // such that the register coalescer will remove unnecessary copies.
6888 if (VT
!= Value
->getOperand(0).getValueType()) {
6889 unsigned index
= constIndex
->getAPIntValue().getLimitedValue() %
6890 VT
.getVectorNumElements();
6891 N
= DAG
.getNode(ARMISD::VDUPLANE
, dl
, VT
,
6892 DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, DAG
.getUNDEF(VT
),
6893 Value
, DAG
.getConstant(index
, dl
, MVT::i32
)),
6894 DAG
.getConstant(index
, dl
, MVT::i32
));
6896 N
= DAG
.getNode(ARMISD::VDUPLANE
, dl
, VT
,
6897 Value
->getOperand(0), Value
->getOperand(1));
6899 N
= DAG
.getNode(ARMISD::VDUP
, dl
, VT
, Value
);
6901 if (!usesOnlyOneValue
) {
6902 // The dominant value was splatted as 'N', but we now have to insert
6903 // all differing elements.
6904 for (unsigned I
= 0; I
< NumElts
; ++I
) {
6905 if (Op
.getOperand(I
) == Value
)
6907 SmallVector
<SDValue
, 3> Ops
;
6909 Ops
.push_back(Op
.getOperand(I
));
6910 Ops
.push_back(DAG
.getConstant(I
, dl
, MVT::i32
));
6911 N
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, Ops
);
6916 if (VT
.getVectorElementType().isFloatingPoint()) {
6917 SmallVector
<SDValue
, 8> Ops
;
6918 MVT FVT
= VT
.getVectorElementType().getSimpleVT();
6919 assert(FVT
== MVT::f32
|| FVT
== MVT::f16
);
6920 MVT IVT
= (FVT
== MVT::f32
) ? MVT::i32
: MVT::i16
;
6921 for (unsigned i
= 0; i
< NumElts
; ++i
)
6922 Ops
.push_back(DAG
.getNode(ISD::BITCAST
, dl
, IVT
,
6924 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), IVT
, NumElts
);
6925 SDValue Val
= DAG
.getBuildVector(VecVT
, dl
, Ops
);
6926 Val
= LowerBUILD_VECTOR(Val
, DAG
, ST
);
6928 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Val
);
6930 if (usesOnlyOneValue
) {
6931 SDValue Val
= IsSingleInstrConstant(Value
, DAG
, ST
, dl
);
6932 if (isConstant
&& Val
.getNode())
6933 return DAG
.getNode(ARMISD::VDUP
, dl
, VT
, Val
);
6937 // If all elements are constants and the case above didn't get hit, fall back
6938 // to the default expansion, which will generate a load from the constant
6943 // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
6945 SDValue shuffle
= ReconstructShuffle(Op
, DAG
);
6946 if (shuffle
!= SDValue())
6950 if (ST
->hasNEON() && VT
.is128BitVector() && VT
!= MVT::v2f64
&& VT
!= MVT::v4f32
) {
6951 // If we haven't found an efficient lowering, try splitting a 128-bit vector
6952 // into two 64-bit vectors; we might discover a better way to lower it.
6953 SmallVector
<SDValue
, 64> Ops(Op
->op_begin(), Op
->op_begin() + NumElts
);
6954 EVT ExtVT
= VT
.getVectorElementType();
6955 EVT HVT
= EVT::getVectorVT(*DAG
.getContext(), ExtVT
, NumElts
/ 2);
6957 DAG
.getBuildVector(HVT
, dl
, makeArrayRef(&Ops
[0], NumElts
/ 2));
6958 if (Lower
.getOpcode() == ISD::BUILD_VECTOR
)
6959 Lower
= LowerBUILD_VECTOR(Lower
, DAG
, ST
);
6960 SDValue Upper
= DAG
.getBuildVector(
6961 HVT
, dl
, makeArrayRef(&Ops
[NumElts
/ 2], NumElts
/ 2));
6962 if (Upper
.getOpcode() == ISD::BUILD_VECTOR
)
6963 Upper
= LowerBUILD_VECTOR(Upper
, DAG
, ST
);
6965 return DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, VT
, Lower
, Upper
);
6968 // Vectors with 32- or 64-bit elements can be built by directly assigning
6969 // the subregisters. Lower it to an ARMISD::BUILD_VECTOR so the operands
6970 // will be legalized.
6971 if (EltSize
>= 32) {
6972 // Do the expansion with floating-point types, since that is what the VFP
6973 // registers are defined to use, and since i64 is not legal.
6974 EVT EltVT
= EVT::getFloatingPointVT(EltSize
);
6975 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), EltVT
, NumElts
);
6976 SmallVector
<SDValue
, 8> Ops
;
6977 for (unsigned i
= 0; i
< NumElts
; ++i
)
6978 Ops
.push_back(DAG
.getNode(ISD::BITCAST
, dl
, EltVT
, Op
.getOperand(i
)));
6979 SDValue Val
= DAG
.getNode(ARMISD::BUILD_VECTOR
, dl
, VecVT
, Ops
);
6980 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Val
);
6983 // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
6984 // know the default expansion would otherwise fall back on something even
6985 // worse. For a vector with one or two non-undef values, that's
6986 // scalar_to_vector for the elements followed by a shuffle (provided the
6987 // shuffle is valid for the target) and materialization element by element
6988 // on the stack followed by a load for everything else.
6989 if (!isConstant
&& !usesOnlyOneValue
) {
6990 SDValue Vec
= DAG
.getUNDEF(VT
);
6991 for (unsigned i
= 0 ; i
< NumElts
; ++i
) {
6992 SDValue V
= Op
.getOperand(i
);
6995 SDValue LaneIdx
= DAG
.getConstant(i
, dl
, MVT::i32
);
6996 Vec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, Vec
, V
, LaneIdx
);
7004 // Gather data to see if the operation can be modelled as a
7005 // shuffle in combination with VEXTs.
7006 SDValue
ARMTargetLowering::ReconstructShuffle(SDValue Op
,
7007 SelectionDAG
&DAG
) const {
7008 assert(Op
.getOpcode() == ISD::BUILD_VECTOR
&& "Unknown opcode!");
7010 EVT VT
= Op
.getValueType();
7011 unsigned NumElts
= VT
.getVectorNumElements();
7013 struct ShuffleSourceInfo
{
7015 unsigned MinElt
= std::numeric_limits
<unsigned>::max();
7016 unsigned MaxElt
= 0;
7018 // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
7019 // be compatible with the shuffle we intend to construct. As a result
7020 // ShuffleVec will be some sliding window into the original Vec.
7023 // Code should guarantee that element i in Vec starts at element "WindowBase
7024 // + i * WindowScale in ShuffleVec".
7026 int WindowScale
= 1;
7028 ShuffleSourceInfo(SDValue Vec
) : Vec(Vec
), ShuffleVec(Vec
) {}
7030 bool operator ==(SDValue OtherVec
) { return Vec
== OtherVec
; }
7033 // First gather all vectors used as an immediate source for this BUILD_VECTOR
7035 SmallVector
<ShuffleSourceInfo
, 2> Sources
;
7036 for (unsigned i
= 0; i
< NumElts
; ++i
) {
7037 SDValue V
= Op
.getOperand(i
);
7040 else if (V
.getOpcode() != ISD::EXTRACT_VECTOR_ELT
) {
7041 // A shuffle can only come from building a vector from various
7042 // elements of other vectors.
7044 } else if (!isa
<ConstantSDNode
>(V
.getOperand(1))) {
7045 // Furthermore, shuffles require a constant mask, whereas extractelts
7046 // accept variable indices.
7050 // Add this element source to the list if it's not already there.
7051 SDValue SourceVec
= V
.getOperand(0);
7052 auto Source
= llvm::find(Sources
, SourceVec
);
7053 if (Source
== Sources
.end())
7054 Source
= Sources
.insert(Sources
.end(), ShuffleSourceInfo(SourceVec
));
7056 // Update the minimum and maximum lane number seen.
7057 unsigned EltNo
= cast
<ConstantSDNode
>(V
.getOperand(1))->getZExtValue();
7058 Source
->MinElt
= std::min(Source
->MinElt
, EltNo
);
7059 Source
->MaxElt
= std::max(Source
->MaxElt
, EltNo
);
7062 // Currently only do something sane when at most two source vectors
7064 if (Sources
.size() > 2)
7067 // Find out the smallest element size among result and two sources, and use
7068 // it as element size to build the shuffle_vector.
7069 EVT SmallestEltTy
= VT
.getVectorElementType();
7070 for (auto &Source
: Sources
) {
7071 EVT SrcEltTy
= Source
.Vec
.getValueType().getVectorElementType();
7072 if (SrcEltTy
.bitsLT(SmallestEltTy
))
7073 SmallestEltTy
= SrcEltTy
;
7075 unsigned ResMultiplier
=
7076 VT
.getScalarSizeInBits() / SmallestEltTy
.getSizeInBits();
7077 NumElts
= VT
.getSizeInBits() / SmallestEltTy
.getSizeInBits();
7078 EVT ShuffleVT
= EVT::getVectorVT(*DAG
.getContext(), SmallestEltTy
, NumElts
);
7080 // If the source vector is too wide or too narrow, we may nevertheless be able
7081 // to construct a compatible shuffle either by concatenating it with UNDEF or
7082 // extracting a suitable range of elements.
7083 for (auto &Src
: Sources
) {
7084 EVT SrcVT
= Src
.ShuffleVec
.getValueType();
7086 if (SrcVT
.getSizeInBits() == VT
.getSizeInBits())
7089 // This stage of the search produces a source with the same element type as
7090 // the original, but with a total width matching the BUILD_VECTOR output.
7091 EVT EltVT
= SrcVT
.getVectorElementType();
7092 unsigned NumSrcElts
= VT
.getSizeInBits() / EltVT
.getSizeInBits();
7093 EVT DestVT
= EVT::getVectorVT(*DAG
.getContext(), EltVT
, NumSrcElts
);
7095 if (SrcVT
.getSizeInBits() < VT
.getSizeInBits()) {
7096 if (2 * SrcVT
.getSizeInBits() != VT
.getSizeInBits())
7098 // We can pad out the smaller vector for free, so if it's part of a
7101 DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, DestVT
, Src
.ShuffleVec
,
7102 DAG
.getUNDEF(Src
.ShuffleVec
.getValueType()));
7106 if (SrcVT
.getSizeInBits() != 2 * VT
.getSizeInBits())
7109 if (Src
.MaxElt
- Src
.MinElt
>= NumSrcElts
) {
7110 // Span too large for a VEXT to cope
7114 if (Src
.MinElt
>= NumSrcElts
) {
7115 // The extraction can just take the second half
7117 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
7118 DAG
.getConstant(NumSrcElts
, dl
, MVT::i32
));
7119 Src
.WindowBase
= -NumSrcElts
;
7120 } else if (Src
.MaxElt
< NumSrcElts
) {
7121 // The extraction can just take the first half
7123 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
7124 DAG
.getConstant(0, dl
, MVT::i32
));
7126 // An actual VEXT is needed
7128 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
7129 DAG
.getConstant(0, dl
, MVT::i32
));
7131 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
7132 DAG
.getConstant(NumSrcElts
, dl
, MVT::i32
));
7134 Src
.ShuffleVec
= DAG
.getNode(ARMISD::VEXT
, dl
, DestVT
, VEXTSrc1
,
7136 DAG
.getConstant(Src
.MinElt
, dl
, MVT::i32
));
7137 Src
.WindowBase
= -Src
.MinElt
;
7141 // Another possible incompatibility occurs from the vector element types. We
7142 // can fix this by bitcasting the source vectors to the same type we intend
7144 for (auto &Src
: Sources
) {
7145 EVT SrcEltTy
= Src
.ShuffleVec
.getValueType().getVectorElementType();
7146 if (SrcEltTy
== SmallestEltTy
)
7148 assert(ShuffleVT
.getVectorElementType() == SmallestEltTy
);
7149 Src
.ShuffleVec
= DAG
.getNode(ISD::BITCAST
, dl
, ShuffleVT
, Src
.ShuffleVec
);
7150 Src
.WindowScale
= SrcEltTy
.getSizeInBits() / SmallestEltTy
.getSizeInBits();
7151 Src
.WindowBase
*= Src
.WindowScale
;
7154 // Final sanity check before we try to actually produce a shuffle.
7155 LLVM_DEBUG(for (auto Src
7157 assert(Src
.ShuffleVec
.getValueType() == ShuffleVT
););
7159 // The stars all align, our next step is to produce the mask for the shuffle.
7160 SmallVector
<int, 8> Mask(ShuffleVT
.getVectorNumElements(), -1);
7161 int BitsPerShuffleLane
= ShuffleVT
.getScalarSizeInBits();
7162 for (unsigned i
= 0; i
< VT
.getVectorNumElements(); ++i
) {
7163 SDValue Entry
= Op
.getOperand(i
);
7164 if (Entry
.isUndef())
7167 auto Src
= llvm::find(Sources
, Entry
.getOperand(0));
7168 int EltNo
= cast
<ConstantSDNode
>(Entry
.getOperand(1))->getSExtValue();
7170 // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
7171 // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
7173 EVT OrigEltTy
= Entry
.getOperand(0).getValueType().getVectorElementType();
7174 int BitsDefined
= std::min(OrigEltTy
.getSizeInBits(),
7175 VT
.getScalarSizeInBits());
7176 int LanesDefined
= BitsDefined
/ BitsPerShuffleLane
;
7178 // This source is expected to fill ResMultiplier lanes of the final shuffle,
7179 // starting at the appropriate offset.
7180 int *LaneMask
= &Mask
[i
* ResMultiplier
];
7182 int ExtractBase
= EltNo
* Src
->WindowScale
+ Src
->WindowBase
;
7183 ExtractBase
+= NumElts
* (Src
- Sources
.begin());
7184 for (int j
= 0; j
< LanesDefined
; ++j
)
7185 LaneMask
[j
] = ExtractBase
+ j
;
7188 // Final check before we try to produce nonsense...
7189 if (!isShuffleMaskLegal(Mask
, ShuffleVT
))
7192 // We can't handle more than two sources. This should have already
7193 // been checked before this point.
7194 assert(Sources
.size() <= 2 && "Too many sources!");
7196 SDValue ShuffleOps
[] = { DAG
.getUNDEF(ShuffleVT
), DAG
.getUNDEF(ShuffleVT
) };
7197 for (unsigned i
= 0; i
< Sources
.size(); ++i
)
7198 ShuffleOps
[i
] = Sources
[i
].ShuffleVec
;
7200 SDValue Shuffle
= DAG
.getVectorShuffle(ShuffleVT
, dl
, ShuffleOps
[0],
7201 ShuffleOps
[1], Mask
);
7202 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Shuffle
);
7205 enum ShuffleOpCodes
{
7206 OP_COPY
= 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
7215 OP_VUZPL
, // VUZP, left result
7216 OP_VUZPR
, // VUZP, right result
7217 OP_VZIPL
, // VZIP, left result
7218 OP_VZIPR
, // VZIP, right result
7219 OP_VTRNL
, // VTRN, left result
7220 OP_VTRNR
// VTRN, right result
7223 static bool isLegalMVEShuffleOp(unsigned PFEntry
) {
7224 unsigned OpNum
= (PFEntry
>> 26) & 0x0F;
7237 /// isShuffleMaskLegal - Targets can use this to indicate that they only
7238 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
7239 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
7240 /// are assumed to be legal.
7241 bool ARMTargetLowering::isShuffleMaskLegal(ArrayRef
<int> M
, EVT VT
) const {
7242 if (VT
.getVectorNumElements() == 4 &&
7243 (VT
.is128BitVector() || VT
.is64BitVector())) {
7244 unsigned PFIndexes
[4];
7245 for (unsigned i
= 0; i
!= 4; ++i
) {
7249 PFIndexes
[i
] = M
[i
];
7252 // Compute the index in the perfect shuffle table.
7253 unsigned PFTableIndex
=
7254 PFIndexes
[0]*9*9*9+PFIndexes
[1]*9*9+PFIndexes
[2]*9+PFIndexes
[3];
7255 unsigned PFEntry
= PerfectShuffleTable
[PFTableIndex
];
7256 unsigned Cost
= (PFEntry
>> 30);
7258 if (Cost
<= 4 && (Subtarget
->hasNEON() || isLegalMVEShuffleOp(PFEntry
)))
7262 bool ReverseVEXT
, isV_UNDEF
;
7263 unsigned Imm
, WhichResult
;
7265 unsigned EltSize
= VT
.getScalarSizeInBits();
7266 if (EltSize
>= 32 ||
7267 ShuffleVectorSDNode::isSplatMask(&M
[0], VT
) ||
7268 isVREVMask(M
, VT
, 64) ||
7269 isVREVMask(M
, VT
, 32) ||
7270 isVREVMask(M
, VT
, 16))
7272 else if (Subtarget
->hasNEON() &&
7273 (isVEXTMask(M
, VT
, ReverseVEXT
, Imm
) ||
7274 isVTBLMask(M
, VT
) ||
7275 isNEONTwoResultShuffleMask(M
, VT
, WhichResult
, isV_UNDEF
)))
7277 else if (Subtarget
->hasNEON() && (VT
== MVT::v8i16
|| VT
== MVT::v16i8
) &&
7278 isReverseMask(M
, VT
))
7284 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
7285 /// the specified operations to build the shuffle.
7286 static SDValue
GeneratePerfectShuffle(unsigned PFEntry
, SDValue LHS
,
7287 SDValue RHS
, SelectionDAG
&DAG
,
7289 unsigned OpNum
= (PFEntry
>> 26) & 0x0F;
7290 unsigned LHSID
= (PFEntry
>> 13) & ((1 << 13)-1);
7291 unsigned RHSID
= (PFEntry
>> 0) & ((1 << 13)-1);
7293 if (OpNum
== OP_COPY
) {
7294 if (LHSID
== (1*9+2)*9+3) return LHS
;
7295 assert(LHSID
== ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
7299 SDValue OpLHS
, OpRHS
;
7300 OpLHS
= GeneratePerfectShuffle(PerfectShuffleTable
[LHSID
], LHS
, RHS
, DAG
, dl
);
7301 OpRHS
= GeneratePerfectShuffle(PerfectShuffleTable
[RHSID
], LHS
, RHS
, DAG
, dl
);
7302 EVT VT
= OpLHS
.getValueType();
7305 default: llvm_unreachable("Unknown shuffle opcode!");
7307 // VREV divides the vector in half and swaps within the half.
7308 if (VT
.getVectorElementType() == MVT::i32
||
7309 VT
.getVectorElementType() == MVT::f32
)
7310 return DAG
.getNode(ARMISD::VREV64
, dl
, VT
, OpLHS
);
7311 // vrev <4 x i16> -> VREV32
7312 if (VT
.getVectorElementType() == MVT::i16
)
7313 return DAG
.getNode(ARMISD::VREV32
, dl
, VT
, OpLHS
);
7314 // vrev <4 x i8> -> VREV16
7315 assert(VT
.getVectorElementType() == MVT::i8
);
7316 return DAG
.getNode(ARMISD::VREV16
, dl
, VT
, OpLHS
);
7321 return DAG
.getNode(ARMISD::VDUPLANE
, dl
, VT
,
7322 OpLHS
, DAG
.getConstant(OpNum
-OP_VDUP0
, dl
, MVT::i32
));
7326 return DAG
.getNode(ARMISD::VEXT
, dl
, VT
,
7328 DAG
.getConstant(OpNum
- OP_VEXT1
+ 1, dl
, MVT::i32
));
7331 return DAG
.getNode(ARMISD::VUZP
, dl
, DAG
.getVTList(VT
, VT
),
7332 OpLHS
, OpRHS
).getValue(OpNum
-OP_VUZPL
);
7335 return DAG
.getNode(ARMISD::VZIP
, dl
, DAG
.getVTList(VT
, VT
),
7336 OpLHS
, OpRHS
).getValue(OpNum
-OP_VZIPL
);
7339 return DAG
.getNode(ARMISD::VTRN
, dl
, DAG
.getVTList(VT
, VT
),
7340 OpLHS
, OpRHS
).getValue(OpNum
-OP_VTRNL
);
7344 static SDValue
LowerVECTOR_SHUFFLEv8i8(SDValue Op
,
7345 ArrayRef
<int> ShuffleMask
,
7346 SelectionDAG
&DAG
) {
7347 // Check to see if we can use the VTBL instruction.
7348 SDValue V1
= Op
.getOperand(0);
7349 SDValue V2
= Op
.getOperand(1);
7352 SmallVector
<SDValue
, 8> VTBLMask
;
7353 for (ArrayRef
<int>::iterator
7354 I
= ShuffleMask
.begin(), E
= ShuffleMask
.end(); I
!= E
; ++I
)
7355 VTBLMask
.push_back(DAG
.getConstant(*I
, DL
, MVT::i32
));
7357 if (V2
.getNode()->isUndef())
7358 return DAG
.getNode(ARMISD::VTBL1
, DL
, MVT::v8i8
, V1
,
7359 DAG
.getBuildVector(MVT::v8i8
, DL
, VTBLMask
));
7361 return DAG
.getNode(ARMISD::VTBL2
, DL
, MVT::v8i8
, V1
, V2
,
7362 DAG
.getBuildVector(MVT::v8i8
, DL
, VTBLMask
));
7365 static SDValue
LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op
,
7366 SelectionDAG
&DAG
) {
7368 SDValue OpLHS
= Op
.getOperand(0);
7369 EVT VT
= OpLHS
.getValueType();
7371 assert((VT
== MVT::v8i16
|| VT
== MVT::v16i8
) &&
7372 "Expect an v8i16/v16i8 type");
7373 OpLHS
= DAG
.getNode(ARMISD::VREV64
, DL
, VT
, OpLHS
);
7374 // For a v16i8 type: After the VREV, we have got <8, ...15, 8, ..., 0>. Now,
7375 // extract the first 8 bytes into the top double word and the last 8 bytes
7376 // into the bottom double word. The v8i16 case is similar.
7377 unsigned ExtractNum
= (VT
== MVT::v16i8
) ? 8 : 4;
7378 return DAG
.getNode(ARMISD::VEXT
, DL
, VT
, OpLHS
, OpLHS
,
7379 DAG
.getConstant(ExtractNum
, DL
, MVT::i32
));
7382 static EVT
getVectorTyFromPredicateVector(EVT VT
) {
7383 switch (VT
.getSimpleVT().SimpleTy
) {
7391 llvm_unreachable("Unexpected vector predicate type");
7395 static SDValue
PromoteMVEPredVector(SDLoc dl
, SDValue Pred
, EVT VT
,
7396 SelectionDAG
&DAG
) {
7397 // Converting from boolean predicates to integers involves creating a vector
7398 // of all ones or all zeroes and selecting the lanes based upon the real
7401 DAG
.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0xff), dl
, MVT::i32
);
7402 AllOnes
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, MVT::v16i8
, AllOnes
);
7405 DAG
.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0x0), dl
, MVT::i32
);
7406 AllZeroes
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, MVT::v16i8
, AllZeroes
);
7408 // Get full vector type from predicate type
7409 EVT NewVT
= getVectorTyFromPredicateVector(VT
);
7412 // If the real predicate is an v8i1 or v4i1 (not v16i1) then we need to recast
7413 // this to a v16i1. This cannot be done with an ordinary bitcast because the
7414 // sizes are not the same. We have to use a MVE specific PREDICATE_CAST node,
7415 // since we know in hardware the sizes are really the same.
7416 if (VT
!= MVT::v16i1
)
7417 RecastV1
= DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, MVT::v16i1
, Pred
);
7421 // Select either all ones or zeroes depending upon the real predicate bits.
7422 SDValue PredAsVector
=
7423 DAG
.getNode(ISD::VSELECT
, dl
, MVT::v16i8
, RecastV1
, AllOnes
, AllZeroes
);
7425 // Recast our new predicate-as-integer v16i8 vector into something
7426 // appropriate for the shuffle, i.e. v4i32 for a real v4i1 predicate.
7427 return DAG
.getNode(ISD::BITCAST
, dl
, NewVT
, PredAsVector
);
7430 static SDValue
LowerVECTOR_SHUFFLE_i1(SDValue Op
, SelectionDAG
&DAG
,
7431 const ARMSubtarget
*ST
) {
7432 EVT VT
= Op
.getValueType();
7433 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(Op
.getNode());
7434 ArrayRef
<int> ShuffleMask
= SVN
->getMask();
7436 assert(ST
->hasMVEIntegerOps() &&
7437 "No support for vector shuffle of boolean predicates");
7439 SDValue V1
= Op
.getOperand(0);
7441 if (isReverseMask(ShuffleMask
, VT
)) {
7442 SDValue cast
= DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, MVT::i32
, V1
);
7443 SDValue rbit
= DAG
.getNode(ISD::BITREVERSE
, dl
, MVT::i32
, cast
);
7444 SDValue srl
= DAG
.getNode(ISD::SRL
, dl
, MVT::i32
, rbit
,
7445 DAG
.getConstant(16, dl
, MVT::i32
));
7446 return DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, VT
, srl
);
7449 // Until we can come up with optimised cases for every single vector
7450 // shuffle in existence we have chosen the least painful strategy. This is
7451 // to essentially promote the boolean predicate to a 8-bit integer, where
7452 // each predicate represents a byte. Then we fall back on a normal integer
7453 // vector shuffle and convert the result back into a predicate vector. In
7454 // many cases the generated code might be even better than scalar code
7455 // operating on bits. Just imagine trying to shuffle 8 arbitrary 2-bit
7456 // fields in a register into 8 other arbitrary 2-bit fields!
7457 SDValue PredAsVector
= PromoteMVEPredVector(dl
, V1
, VT
, DAG
);
7458 EVT NewVT
= PredAsVector
.getValueType();
7461 SDValue Shuffled
= DAG
.getVectorShuffle(NewVT
, dl
, PredAsVector
,
7462 DAG
.getUNDEF(NewVT
), ShuffleMask
);
7464 // Now return the result of comparing the shuffled vector with zero,
7465 // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
7466 return DAG
.getNode(ARMISD::VCMPZ
, dl
, VT
, Shuffled
,
7467 DAG
.getConstant(ARMCC::NE
, dl
, MVT::i32
));
7470 static SDValue
LowerVECTOR_SHUFFLE(SDValue Op
, SelectionDAG
&DAG
,
7471 const ARMSubtarget
*ST
) {
7472 SDValue V1
= Op
.getOperand(0);
7473 SDValue V2
= Op
.getOperand(1);
7475 EVT VT
= Op
.getValueType();
7476 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(Op
.getNode());
7477 unsigned EltSize
= VT
.getScalarSizeInBits();
7479 if (ST
->hasMVEIntegerOps() && EltSize
== 1)
7480 return LowerVECTOR_SHUFFLE_i1(Op
, DAG
, ST
);
7482 // Convert shuffles that are directly supported on NEON to target-specific
7483 // DAG nodes, instead of keeping them as shuffles and matching them again
7484 // during code selection. This is more efficient and avoids the possibility
7485 // of inconsistencies between legalization and selection.
7486 // FIXME: floating-point vectors should be canonicalized to integer vectors
7487 // of the same time so that they get CSEd properly.
7488 ArrayRef
<int> ShuffleMask
= SVN
->getMask();
7490 if (EltSize
<= 32) {
7491 if (SVN
->isSplat()) {
7492 int Lane
= SVN
->getSplatIndex();
7493 // If this is undef splat, generate it via "just" vdup, if possible.
7494 if (Lane
== -1) Lane
= 0;
7496 // Test if V1 is a SCALAR_TO_VECTOR.
7497 if (Lane
== 0 && V1
.getOpcode() == ISD::SCALAR_TO_VECTOR
) {
7498 return DAG
.getNode(ARMISD::VDUP
, dl
, VT
, V1
.getOperand(0));
7500 // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
7501 // (and probably will turn into a SCALAR_TO_VECTOR once legalization
7503 if (Lane
== 0 && V1
.getOpcode() == ISD::BUILD_VECTOR
&&
7504 !isa
<ConstantSDNode
>(V1
.getOperand(0))) {
7505 bool IsScalarToVector
= true;
7506 for (unsigned i
= 1, e
= V1
.getNumOperands(); i
!= e
; ++i
)
7507 if (!V1
.getOperand(i
).isUndef()) {
7508 IsScalarToVector
= false;
7511 if (IsScalarToVector
)
7512 return DAG
.getNode(ARMISD::VDUP
, dl
, VT
, V1
.getOperand(0));
7514 return DAG
.getNode(ARMISD::VDUPLANE
, dl
, VT
, V1
,
7515 DAG
.getConstant(Lane
, dl
, MVT::i32
));
7518 bool ReverseVEXT
= false;
7520 if (ST
->hasNEON() && isVEXTMask(ShuffleMask
, VT
, ReverseVEXT
, Imm
)) {
7523 return DAG
.getNode(ARMISD::VEXT
, dl
, VT
, V1
, V2
,
7524 DAG
.getConstant(Imm
, dl
, MVT::i32
));
7527 if (isVREVMask(ShuffleMask
, VT
, 64))
7528 return DAG
.getNode(ARMISD::VREV64
, dl
, VT
, V1
);
7529 if (isVREVMask(ShuffleMask
, VT
, 32))
7530 return DAG
.getNode(ARMISD::VREV32
, dl
, VT
, V1
);
7531 if (isVREVMask(ShuffleMask
, VT
, 16))
7532 return DAG
.getNode(ARMISD::VREV16
, dl
, VT
, V1
);
7534 if (ST
->hasNEON() && V2
->isUndef() && isSingletonVEXTMask(ShuffleMask
, VT
, Imm
)) {
7535 return DAG
.getNode(ARMISD::VEXT
, dl
, VT
, V1
, V1
,
7536 DAG
.getConstant(Imm
, dl
, MVT::i32
));
7539 // Check for Neon shuffles that modify both input vectors in place.
7540 // If both results are used, i.e., if there are two shuffles with the same
7541 // source operands and with masks corresponding to both results of one of
7542 // these operations, DAG memoization will ensure that a single node is
7543 // used for both shuffles.
7544 unsigned WhichResult
= 0;
7545 bool isV_UNDEF
= false;
7546 if (ST
->hasNEON()) {
7547 if (unsigned ShuffleOpc
= isNEONTwoResultShuffleMask(
7548 ShuffleMask
, VT
, WhichResult
, isV_UNDEF
)) {
7551 return DAG
.getNode(ShuffleOpc
, dl
, DAG
.getVTList(VT
, VT
), V1
, V2
)
7552 .getValue(WhichResult
);
7556 // Also check for these shuffles through CONCAT_VECTORS: we canonicalize
7557 // shuffles that produce a result larger than their operands with:
7558 // shuffle(concat(v1, undef), concat(v2, undef))
7560 // shuffle(concat(v1, v2), undef)
7561 // because we can access quad vectors (see PerformVECTOR_SHUFFLECombine).
7563 // This is useful in the general case, but there are special cases where
7564 // native shuffles produce larger results: the two-result ops.
7566 // Look through the concat when lowering them:
7567 // shuffle(concat(v1, v2), undef)
7569 // concat(VZIP(v1, v2):0, :1)
7571 if (ST
->hasNEON() && V1
->getOpcode() == ISD::CONCAT_VECTORS
&& V2
->isUndef()) {
7572 SDValue SubV1
= V1
->getOperand(0);
7573 SDValue SubV2
= V1
->getOperand(1);
7574 EVT SubVT
= SubV1
.getValueType();
7576 // We expect these to have been canonicalized to -1.
7577 assert(llvm::all_of(ShuffleMask
, [&](int i
) {
7578 return i
< (int)VT
.getVectorNumElements();
7579 }) && "Unexpected shuffle index into UNDEF operand!");
7581 if (unsigned ShuffleOpc
= isNEONTwoResultShuffleMask(
7582 ShuffleMask
, SubVT
, WhichResult
, isV_UNDEF
)) {
7585 assert((WhichResult
== 0) &&
7586 "In-place shuffle of concat can only have one result!");
7587 SDValue Res
= DAG
.getNode(ShuffleOpc
, dl
, DAG
.getVTList(SubVT
, SubVT
),
7589 return DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, VT
, Res
.getValue(0),
7595 // If the shuffle is not directly supported and it has 4 elements, use
7596 // the PerfectShuffle-generated table to synthesize it from other shuffles.
7597 unsigned NumElts
= VT
.getVectorNumElements();
7599 unsigned PFIndexes
[4];
7600 for (unsigned i
= 0; i
!= 4; ++i
) {
7601 if (ShuffleMask
[i
] < 0)
7604 PFIndexes
[i
] = ShuffleMask
[i
];
7607 // Compute the index in the perfect shuffle table.
7608 unsigned PFTableIndex
=
7609 PFIndexes
[0]*9*9*9+PFIndexes
[1]*9*9+PFIndexes
[2]*9+PFIndexes
[3];
7610 unsigned PFEntry
= PerfectShuffleTable
[PFTableIndex
];
7611 unsigned Cost
= (PFEntry
>> 30);
7615 return GeneratePerfectShuffle(PFEntry
, V1
, V2
, DAG
, dl
);
7616 else if (isLegalMVEShuffleOp(PFEntry
)) {
7617 unsigned LHSID
= (PFEntry
>> 13) & ((1 << 13)-1);
7618 unsigned RHSID
= (PFEntry
>> 0) & ((1 << 13)-1);
7619 unsigned PFEntryLHS
= PerfectShuffleTable
[LHSID
];
7620 unsigned PFEntryRHS
= PerfectShuffleTable
[RHSID
];
7621 if (isLegalMVEShuffleOp(PFEntryLHS
) && isLegalMVEShuffleOp(PFEntryRHS
))
7622 return GeneratePerfectShuffle(PFEntry
, V1
, V2
, DAG
, dl
);
7627 // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
7628 if (EltSize
>= 32) {
7629 // Do the expansion with floating-point types, since that is what the VFP
7630 // registers are defined to use, and since i64 is not legal.
7631 EVT EltVT
= EVT::getFloatingPointVT(EltSize
);
7632 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), EltVT
, NumElts
);
7633 V1
= DAG
.getNode(ISD::BITCAST
, dl
, VecVT
, V1
);
7634 V2
= DAG
.getNode(ISD::BITCAST
, dl
, VecVT
, V2
);
7635 SmallVector
<SDValue
, 8> Ops
;
7636 for (unsigned i
= 0; i
< NumElts
; ++i
) {
7637 if (ShuffleMask
[i
] < 0)
7638 Ops
.push_back(DAG
.getUNDEF(EltVT
));
7640 Ops
.push_back(DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, EltVT
,
7641 ShuffleMask
[i
] < (int)NumElts
? V1
: V2
,
7642 DAG
.getConstant(ShuffleMask
[i
] & (NumElts
-1),
7645 SDValue Val
= DAG
.getNode(ARMISD::BUILD_VECTOR
, dl
, VecVT
, Ops
);
7646 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Val
);
7649 if (ST
->hasNEON() && (VT
== MVT::v8i16
|| VT
== MVT::v16i8
) && isReverseMask(ShuffleMask
, VT
))
7650 return LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(Op
, DAG
);
7652 if (ST
->hasNEON() && VT
== MVT::v8i8
)
7653 if (SDValue NewOp
= LowerVECTOR_SHUFFLEv8i8(Op
, ShuffleMask
, DAG
))
7659 static SDValue
LowerINSERT_VECTOR_ELT_i1(SDValue Op
, SelectionDAG
&DAG
,
7660 const ARMSubtarget
*ST
) {
7661 EVT VecVT
= Op
.getOperand(0).getValueType();
7664 assert(ST
->hasMVEIntegerOps() &&
7665 "LowerINSERT_VECTOR_ELT_i1 called without MVE!");
7668 DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, MVT::i32
, Op
->getOperand(0));
7669 unsigned Lane
= cast
<ConstantSDNode
>(Op
.getOperand(2))->getZExtValue();
7670 unsigned LaneWidth
=
7671 getVectorTyFromPredicateVector(VecVT
).getScalarSizeInBits() / 8;
7672 unsigned Mask
= ((1 << LaneWidth
) - 1) << Lane
* LaneWidth
;
7673 SDValue Ext
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
, MVT::i32
,
7674 Op
.getOperand(1), DAG
.getValueType(MVT::i1
));
7675 SDValue BFI
= DAG
.getNode(ARMISD::BFI
, dl
, MVT::i32
, Conv
, Ext
,
7676 DAG
.getConstant(~Mask
, dl
, MVT::i32
));
7677 return DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, Op
.getValueType(), BFI
);
7680 SDValue
ARMTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op
,
7681 SelectionDAG
&DAG
) const {
7682 // INSERT_VECTOR_ELT is legal only for immediate indexes.
7683 SDValue Lane
= Op
.getOperand(2);
7684 if (!isa
<ConstantSDNode
>(Lane
))
7687 SDValue Elt
= Op
.getOperand(1);
7688 EVT EltVT
= Elt
.getValueType();
7690 if (Subtarget
->hasMVEIntegerOps() &&
7691 Op
.getValueType().getScalarSizeInBits() == 1)
7692 return LowerINSERT_VECTOR_ELT_i1(Op
, DAG
, Subtarget
);
7694 if (getTypeAction(*DAG
.getContext(), EltVT
) ==
7695 TargetLowering::TypePromoteFloat
) {
7696 // INSERT_VECTOR_ELT doesn't want f16 operands promoting to f32,
7697 // but the type system will try to do that if we don't intervene.
7698 // Reinterpret any such vector-element insertion as one with the
7699 // corresponding integer types.
7703 EVT IEltVT
= MVT::getIntegerVT(EltVT
.getScalarSizeInBits());
7704 assert(getTypeAction(*DAG
.getContext(), IEltVT
) !=
7705 TargetLowering::TypePromoteFloat
);
7707 SDValue VecIn
= Op
.getOperand(0);
7708 EVT VecVT
= VecIn
.getValueType();
7709 EVT IVecVT
= EVT::getVectorVT(*DAG
.getContext(), IEltVT
,
7710 VecVT
.getVectorNumElements());
7712 SDValue IElt
= DAG
.getNode(ISD::BITCAST
, dl
, IEltVT
, Elt
);
7713 SDValue IVecIn
= DAG
.getNode(ISD::BITCAST
, dl
, IVecVT
, VecIn
);
7714 SDValue IVecOut
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, IVecVT
,
7715 IVecIn
, IElt
, Lane
);
7716 return DAG
.getNode(ISD::BITCAST
, dl
, VecVT
, IVecOut
);
7722 static SDValue
LowerEXTRACT_VECTOR_ELT_i1(SDValue Op
, SelectionDAG
&DAG
,
7723 const ARMSubtarget
*ST
) {
7724 EVT VecVT
= Op
.getOperand(0).getValueType();
7727 assert(ST
->hasMVEIntegerOps() &&
7728 "LowerINSERT_VECTOR_ELT_i1 called without MVE!");
7731 DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, MVT::i32
, Op
->getOperand(0));
7732 unsigned Lane
= cast
<ConstantSDNode
>(Op
.getOperand(1))->getZExtValue();
7733 unsigned LaneWidth
=
7734 getVectorTyFromPredicateVector(VecVT
).getScalarSizeInBits() / 8;
7735 SDValue Shift
= DAG
.getNode(ISD::SRL
, dl
, MVT::i32
, Conv
,
7736 DAG
.getConstant(Lane
* LaneWidth
, dl
, MVT::i32
));
7740 static SDValue
LowerEXTRACT_VECTOR_ELT(SDValue Op
, SelectionDAG
&DAG
,
7741 const ARMSubtarget
*ST
) {
7742 // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
7743 SDValue Lane
= Op
.getOperand(1);
7744 if (!isa
<ConstantSDNode
>(Lane
))
7747 SDValue Vec
= Op
.getOperand(0);
7748 EVT VT
= Vec
.getValueType();
7750 if (ST
->hasMVEIntegerOps() && VT
.getScalarSizeInBits() == 1)
7751 return LowerEXTRACT_VECTOR_ELT_i1(Op
, DAG
, ST
);
7753 if (Op
.getValueType() == MVT::i32
&& Vec
.getScalarValueSizeInBits() < 32) {
7755 return DAG
.getNode(ARMISD::VGETLANEu
, dl
, MVT::i32
, Vec
, Lane
);
7761 static SDValue
LowerCONCAT_VECTORS_i1(SDValue Op
, SelectionDAG
&DAG
,
7762 const ARMSubtarget
*ST
) {
7763 SDValue V1
= Op
.getOperand(0);
7764 SDValue V2
= Op
.getOperand(1);
7766 EVT VT
= Op
.getValueType();
7767 EVT Op1VT
= V1
.getValueType();
7768 EVT Op2VT
= V2
.getValueType();
7769 unsigned NumElts
= VT
.getVectorNumElements();
7771 assert(Op1VT
== Op2VT
&& "Operand types don't match!");
7772 assert(VT
.getScalarSizeInBits() == 1 &&
7773 "Unexpected custom CONCAT_VECTORS lowering");
7774 assert(ST
->hasMVEIntegerOps() &&
7775 "CONCAT_VECTORS lowering only supported for MVE");
7777 SDValue NewV1
= PromoteMVEPredVector(dl
, V1
, Op1VT
, DAG
);
7778 SDValue NewV2
= PromoteMVEPredVector(dl
, V2
, Op2VT
, DAG
);
7780 // We now have Op1 + Op2 promoted to vectors of integers, where v8i1 gets
7781 // promoted to v8i16, etc.
7783 MVT ElType
= getVectorTyFromPredicateVector(VT
).getScalarType().getSimpleVT();
7785 // Extract the vector elements from Op1 and Op2 one by one and truncate them
7786 // to be the right size for the destination. For example, if Op1 is v4i1 then
7787 // the promoted vector is v4i32. The result of concatentation gives a v8i1,
7788 // which when promoted is v8i16. That means each i32 element from Op1 needs
7789 // truncating to i16 and inserting in the result.
7790 EVT ConcatVT
= MVT::getVectorVT(ElType
, NumElts
);
7791 SDValue ConVec
= DAG
.getNode(ISD::UNDEF
, dl
, ConcatVT
);
7792 auto ExractInto
= [&DAG
, &dl
](SDValue NewV
, SDValue ConVec
, unsigned &j
) {
7793 EVT NewVT
= NewV
.getValueType();
7794 EVT ConcatVT
= ConVec
.getValueType();
7795 for (unsigned i
= 0, e
= NewVT
.getVectorNumElements(); i
< e
; i
++, j
++) {
7796 SDValue Elt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i32
, NewV
,
7797 DAG
.getIntPtrConstant(i
, dl
));
7798 ConVec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, ConcatVT
, ConVec
, Elt
,
7799 DAG
.getConstant(j
, dl
, MVT::i32
));
7804 ConVec
= ExractInto(NewV1
, ConVec
, j
);
7805 ConVec
= ExractInto(NewV2
, ConVec
, j
);
7807 // Now return the result of comparing the subvector with zero,
7808 // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
7809 return DAG
.getNode(ARMISD::VCMPZ
, dl
, VT
, ConVec
,
7810 DAG
.getConstant(ARMCC::NE
, dl
, MVT::i32
));
7813 static SDValue
LowerCONCAT_VECTORS(SDValue Op
, SelectionDAG
&DAG
,
7814 const ARMSubtarget
*ST
) {
7815 EVT VT
= Op
->getValueType(0);
7816 if (ST
->hasMVEIntegerOps() && VT
.getScalarSizeInBits() == 1)
7817 return LowerCONCAT_VECTORS_i1(Op
, DAG
, ST
);
7819 // The only time a CONCAT_VECTORS operation can have legal types is when
7820 // two 64-bit vectors are concatenated to a 128-bit vector.
7821 assert(Op
.getValueType().is128BitVector() && Op
.getNumOperands() == 2 &&
7822 "unexpected CONCAT_VECTORS");
7824 SDValue Val
= DAG
.getUNDEF(MVT::v2f64
);
7825 SDValue Op0
= Op
.getOperand(0);
7826 SDValue Op1
= Op
.getOperand(1);
7828 Val
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
, Val
,
7829 DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, Op0
),
7830 DAG
.getIntPtrConstant(0, dl
));
7832 Val
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
, Val
,
7833 DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, Op1
),
7834 DAG
.getIntPtrConstant(1, dl
));
7835 return DAG
.getNode(ISD::BITCAST
, dl
, Op
.getValueType(), Val
);
7838 static SDValue
LowerEXTRACT_SUBVECTOR(SDValue Op
, SelectionDAG
&DAG
,
7839 const ARMSubtarget
*ST
) {
7840 SDValue V1
= Op
.getOperand(0);
7841 SDValue V2
= Op
.getOperand(1);
7843 EVT VT
= Op
.getValueType();
7844 EVT Op1VT
= V1
.getValueType();
7845 unsigned NumElts
= VT
.getVectorNumElements();
7846 unsigned Index
= cast
<ConstantSDNode
>(V2
)->getZExtValue();
7848 assert(VT
.getScalarSizeInBits() == 1 &&
7849 "Unexpected custom EXTRACT_SUBVECTOR lowering");
7850 assert(ST
->hasMVEIntegerOps() &&
7851 "EXTRACT_SUBVECTOR lowering only supported for MVE");
7853 SDValue NewV1
= PromoteMVEPredVector(dl
, V1
, Op1VT
, DAG
);
7855 // We now have Op1 promoted to a vector of integers, where v8i1 gets
7856 // promoted to v8i16, etc.
7858 MVT ElType
= getVectorTyFromPredicateVector(VT
).getScalarType().getSimpleVT();
7860 EVT SubVT
= MVT::getVectorVT(ElType
, NumElts
);
7861 SDValue SubVec
= DAG
.getNode(ISD::UNDEF
, dl
, SubVT
);
7862 for (unsigned i
= Index
, j
= 0; i
< (Index
+ NumElts
); i
++, j
++) {
7863 SDValue Elt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i32
, NewV1
,
7864 DAG
.getIntPtrConstant(i
, dl
));
7865 SubVec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, SubVT
, SubVec
, Elt
,
7866 DAG
.getConstant(j
, dl
, MVT::i32
));
7869 // Now return the result of comparing the subvector with zero,
7870 // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
7871 return DAG
.getNode(ARMISD::VCMPZ
, dl
, VT
, SubVec
,
7872 DAG
.getConstant(ARMCC::NE
, dl
, MVT::i32
));
7875 /// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
7876 /// element has been zero/sign-extended, depending on the isSigned parameter,
7877 /// from an integer type half its size.
7878 static bool isExtendedBUILD_VECTOR(SDNode
*N
, SelectionDAG
&DAG
,
7880 // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
7881 EVT VT
= N
->getValueType(0);
7882 if (VT
== MVT::v2i64
&& N
->getOpcode() == ISD::BITCAST
) {
7883 SDNode
*BVN
= N
->getOperand(0).getNode();
7884 if (BVN
->getValueType(0) != MVT::v4i32
||
7885 BVN
->getOpcode() != ISD::BUILD_VECTOR
)
7887 unsigned LoElt
= DAG
.getDataLayout().isBigEndian() ? 1 : 0;
7888 unsigned HiElt
= 1 - LoElt
;
7889 ConstantSDNode
*Lo0
= dyn_cast
<ConstantSDNode
>(BVN
->getOperand(LoElt
));
7890 ConstantSDNode
*Hi0
= dyn_cast
<ConstantSDNode
>(BVN
->getOperand(HiElt
));
7891 ConstantSDNode
*Lo1
= dyn_cast
<ConstantSDNode
>(BVN
->getOperand(LoElt
+2));
7892 ConstantSDNode
*Hi1
= dyn_cast
<ConstantSDNode
>(BVN
->getOperand(HiElt
+2));
7893 if (!Lo0
|| !Hi0
|| !Lo1
|| !Hi1
)
7896 if (Hi0
->getSExtValue() == Lo0
->getSExtValue() >> 32 &&
7897 Hi1
->getSExtValue() == Lo1
->getSExtValue() >> 32)
7900 if (Hi0
->isNullValue() && Hi1
->isNullValue())
7906 if (N
->getOpcode() != ISD::BUILD_VECTOR
)
7909 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
7910 SDNode
*Elt
= N
->getOperand(i
).getNode();
7911 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Elt
)) {
7912 unsigned EltSize
= VT
.getScalarSizeInBits();
7913 unsigned HalfSize
= EltSize
/ 2;
7915 if (!isIntN(HalfSize
, C
->getSExtValue()))
7918 if (!isUIntN(HalfSize
, C
->getZExtValue()))
7929 /// isSignExtended - Check if a node is a vector value that is sign-extended
7930 /// or a constant BUILD_VECTOR with sign-extended elements.
7931 static bool isSignExtended(SDNode
*N
, SelectionDAG
&DAG
) {
7932 if (N
->getOpcode() == ISD::SIGN_EXTEND
|| ISD::isSEXTLoad(N
))
7934 if (isExtendedBUILD_VECTOR(N
, DAG
, true))
7939 /// isZeroExtended - Check if a node is a vector value that is zero-extended
7940 /// or a constant BUILD_VECTOR with zero-extended elements.
7941 static bool isZeroExtended(SDNode
*N
, SelectionDAG
&DAG
) {
7942 if (N
->getOpcode() == ISD::ZERO_EXTEND
|| ISD::isZEXTLoad(N
))
7944 if (isExtendedBUILD_VECTOR(N
, DAG
, false))
7949 static EVT
getExtensionTo64Bits(const EVT
&OrigVT
) {
7950 if (OrigVT
.getSizeInBits() >= 64)
7953 assert(OrigVT
.isSimple() && "Expecting a simple value type");
7955 MVT::SimpleValueType OrigSimpleTy
= OrigVT
.getSimpleVT().SimpleTy
;
7956 switch (OrigSimpleTy
) {
7957 default: llvm_unreachable("Unexpected Vector Type");
7966 /// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total
7967 /// value size to 64 bits. We need a 64-bit D register as an operand to VMULL.
7968 /// We insert the required extension here to get the vector to fill a D register.
7969 static SDValue
AddRequiredExtensionForVMULL(SDValue N
, SelectionDAG
&DAG
,
7972 unsigned ExtOpcode
) {
7973 // The vector originally had a size of OrigTy. It was then extended to ExtTy.
7974 // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
7975 // 64-bits we need to insert a new extension so that it will be 64-bits.
7976 assert(ExtTy
.is128BitVector() && "Unexpected extension size");
7977 if (OrigTy
.getSizeInBits() >= 64)
7980 // Must extend size to at least 64 bits to be used as an operand for VMULL.
7981 EVT NewVT
= getExtensionTo64Bits(OrigTy
);
7983 return DAG
.getNode(ExtOpcode
, SDLoc(N
), NewVT
, N
);
7986 /// SkipLoadExtensionForVMULL - return a load of the original vector size that
7987 /// does not do any sign/zero extension. If the original vector is less
7988 /// than 64 bits, an appropriate extension will be added after the load to
7989 /// reach a total size of 64 bits. We have to add the extension separately
7990 /// because ARM does not have a sign/zero extending load for vectors.
7991 static SDValue
SkipLoadExtensionForVMULL(LoadSDNode
*LD
, SelectionDAG
& DAG
) {
7992 EVT ExtendedTy
= getExtensionTo64Bits(LD
->getMemoryVT());
7994 // The load already has the right type.
7995 if (ExtendedTy
== LD
->getMemoryVT())
7996 return DAG
.getLoad(LD
->getMemoryVT(), SDLoc(LD
), LD
->getChain(),
7997 LD
->getBasePtr(), LD
->getPointerInfo(),
7998 LD
->getAlignment(), LD
->getMemOperand()->getFlags());
8000 // We need to create a zextload/sextload. We cannot just create a load
8001 // followed by a zext/zext node because LowerMUL is also run during normal
8002 // operation legalization where we can't create illegal types.
8003 return DAG
.getExtLoad(LD
->getExtensionType(), SDLoc(LD
), ExtendedTy
,
8004 LD
->getChain(), LD
->getBasePtr(), LD
->getPointerInfo(),
8005 LD
->getMemoryVT(), LD
->getAlignment(),
8006 LD
->getMemOperand()->getFlags());
8009 /// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND,
8010 /// extending load, or BUILD_VECTOR with extended elements, return the
8011 /// unextended value. The unextended vector should be 64 bits so that it can
8012 /// be used as an operand to a VMULL instruction. If the original vector size
8013 /// before extension is less than 64 bits we add a an extension to resize
8014 /// the vector to 64 bits.
8015 static SDValue
SkipExtensionForVMULL(SDNode
*N
, SelectionDAG
&DAG
) {
8016 if (N
->getOpcode() == ISD::SIGN_EXTEND
|| N
->getOpcode() == ISD::ZERO_EXTEND
)
8017 return AddRequiredExtensionForVMULL(N
->getOperand(0), DAG
,
8018 N
->getOperand(0)->getValueType(0),
8022 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
8023 assert((ISD::isSEXTLoad(LD
) || ISD::isZEXTLoad(LD
)) &&
8024 "Expected extending load");
8026 SDValue newLoad
= SkipLoadExtensionForVMULL(LD
, DAG
);
8027 DAG
.ReplaceAllUsesOfValueWith(SDValue(LD
, 1), newLoad
.getValue(1));
8028 unsigned Opcode
= ISD::isSEXTLoad(LD
) ? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
;
8030 DAG
.getNode(Opcode
, SDLoc(newLoad
), LD
->getValueType(0), newLoad
);
8031 DAG
.ReplaceAllUsesOfValueWith(SDValue(LD
, 0), extLoad
);
8036 // Otherwise, the value must be a BUILD_VECTOR. For v2i64, it will
8037 // have been legalized as a BITCAST from v4i32.
8038 if (N
->getOpcode() == ISD::BITCAST
) {
8039 SDNode
*BVN
= N
->getOperand(0).getNode();
8040 assert(BVN
->getOpcode() == ISD::BUILD_VECTOR
&&
8041 BVN
->getValueType(0) == MVT::v4i32
&& "expected v4i32 BUILD_VECTOR");
8042 unsigned LowElt
= DAG
.getDataLayout().isBigEndian() ? 1 : 0;
8043 return DAG
.getBuildVector(
8044 MVT::v2i32
, SDLoc(N
),
8045 {BVN
->getOperand(LowElt
), BVN
->getOperand(LowElt
+ 2)});
8047 // Construct a new BUILD_VECTOR with elements truncated to half the size.
8048 assert(N
->getOpcode() == ISD::BUILD_VECTOR
&& "expected BUILD_VECTOR");
8049 EVT VT
= N
->getValueType(0);
8050 unsigned EltSize
= VT
.getScalarSizeInBits() / 2;
8051 unsigned NumElts
= VT
.getVectorNumElements();
8052 MVT TruncVT
= MVT::getIntegerVT(EltSize
);
8053 SmallVector
<SDValue
, 8> Ops
;
8055 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
8056 ConstantSDNode
*C
= cast
<ConstantSDNode
>(N
->getOperand(i
));
8057 const APInt
&CInt
= C
->getAPIntValue();
8058 // Element types smaller than 32 bits are not legal, so use i32 elements.
8059 // The values are implicitly truncated so sext vs. zext doesn't matter.
8060 Ops
.push_back(DAG
.getConstant(CInt
.zextOrTrunc(32), dl
, MVT::i32
));
8062 return DAG
.getBuildVector(MVT::getVectorVT(TruncVT
, NumElts
), dl
, Ops
);
8065 static bool isAddSubSExt(SDNode
*N
, SelectionDAG
&DAG
) {
8066 unsigned Opcode
= N
->getOpcode();
8067 if (Opcode
== ISD::ADD
|| Opcode
== ISD::SUB
) {
8068 SDNode
*N0
= N
->getOperand(0).getNode();
8069 SDNode
*N1
= N
->getOperand(1).getNode();
8070 return N0
->hasOneUse() && N1
->hasOneUse() &&
8071 isSignExtended(N0
, DAG
) && isSignExtended(N1
, DAG
);
8076 static bool isAddSubZExt(SDNode
*N
, SelectionDAG
&DAG
) {
8077 unsigned Opcode
= N
->getOpcode();
8078 if (Opcode
== ISD::ADD
|| Opcode
== ISD::SUB
) {
8079 SDNode
*N0
= N
->getOperand(0).getNode();
8080 SDNode
*N1
= N
->getOperand(1).getNode();
8081 return N0
->hasOneUse() && N1
->hasOneUse() &&
8082 isZeroExtended(N0
, DAG
) && isZeroExtended(N1
, DAG
);
8087 static SDValue
LowerMUL(SDValue Op
, SelectionDAG
&DAG
) {
8088 // Multiplications are only custom-lowered for 128-bit vectors so that
8089 // VMULL can be detected. Otherwise v2i64 multiplications are not legal.
8090 EVT VT
= Op
.getValueType();
8091 assert(VT
.is128BitVector() && VT
.isInteger() &&
8092 "unexpected type for custom-lowering ISD::MUL");
8093 SDNode
*N0
= Op
.getOperand(0).getNode();
8094 SDNode
*N1
= Op
.getOperand(1).getNode();
8095 unsigned NewOpc
= 0;
8097 bool isN0SExt
= isSignExtended(N0
, DAG
);
8098 bool isN1SExt
= isSignExtended(N1
, DAG
);
8099 if (isN0SExt
&& isN1SExt
)
8100 NewOpc
= ARMISD::VMULLs
;
8102 bool isN0ZExt
= isZeroExtended(N0
, DAG
);
8103 bool isN1ZExt
= isZeroExtended(N1
, DAG
);
8104 if (isN0ZExt
&& isN1ZExt
)
8105 NewOpc
= ARMISD::VMULLu
;
8106 else if (isN1SExt
|| isN1ZExt
) {
8107 // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
8108 // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
8109 if (isN1SExt
&& isAddSubSExt(N0
, DAG
)) {
8110 NewOpc
= ARMISD::VMULLs
;
8112 } else if (isN1ZExt
&& isAddSubZExt(N0
, DAG
)) {
8113 NewOpc
= ARMISD::VMULLu
;
8115 } else if (isN0ZExt
&& isAddSubZExt(N1
, DAG
)) {
8117 NewOpc
= ARMISD::VMULLu
;
8123 if (VT
== MVT::v2i64
)
8124 // Fall through to expand this. It is not legal.
8127 // Other vector multiplications are legal.
8132 // Legalize to a VMULL instruction.
8135 SDValue Op1
= SkipExtensionForVMULL(N1
, DAG
);
8137 Op0
= SkipExtensionForVMULL(N0
, DAG
);
8138 assert(Op0
.getValueType().is64BitVector() &&
8139 Op1
.getValueType().is64BitVector() &&
8140 "unexpected types for extended operands to VMULL");
8141 return DAG
.getNode(NewOpc
, DL
, VT
, Op0
, Op1
);
8144 // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
8145 // isel lowering to take advantage of no-stall back to back vmul + vmla.
8152 SDValue N00
= SkipExtensionForVMULL(N0
->getOperand(0).getNode(), DAG
);
8153 SDValue N01
= SkipExtensionForVMULL(N0
->getOperand(1).getNode(), DAG
);
8154 EVT Op1VT
= Op1
.getValueType();
8155 return DAG
.getNode(N0
->getOpcode(), DL
, VT
,
8156 DAG
.getNode(NewOpc
, DL
, VT
,
8157 DAG
.getNode(ISD::BITCAST
, DL
, Op1VT
, N00
), Op1
),
8158 DAG
.getNode(NewOpc
, DL
, VT
,
8159 DAG
.getNode(ISD::BITCAST
, DL
, Op1VT
, N01
), Op1
));
8162 static SDValue
LowerSDIV_v4i8(SDValue X
, SDValue Y
, const SDLoc
&dl
,
8163 SelectionDAG
&DAG
) {
8164 // TODO: Should this propagate fast-math-flags?
8167 // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
8168 // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
8169 X
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v4i32
, X
);
8170 Y
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v4i32
, Y
);
8171 X
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, X
);
8172 Y
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, Y
);
8173 // Get reciprocal estimate.
8174 // float4 recip = vrecpeq_f32(yf);
8175 Y
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8176 DAG
.getConstant(Intrinsic::arm_neon_vrecpe
, dl
, MVT::i32
),
8178 // Because char has a smaller range than uchar, we can actually get away
8179 // without any newton steps. This requires that we use a weird bias
8180 // of 0xb000, however (again, this has been exhaustively tested).
8181 // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
8182 X
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, X
, Y
);
8183 X
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4i32
, X
);
8184 Y
= DAG
.getConstant(0xb000, dl
, MVT::v4i32
);
8185 X
= DAG
.getNode(ISD::ADD
, dl
, MVT::v4i32
, X
, Y
);
8186 X
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4f32
, X
);
8187 // Convert back to short.
8188 X
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::v4i32
, X
);
8189 X
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::v4i16
, X
);
8193 static SDValue
LowerSDIV_v4i16(SDValue N0
, SDValue N1
, const SDLoc
&dl
,
8194 SelectionDAG
&DAG
) {
8195 // TODO: Should this propagate fast-math-flags?
8198 // Convert to float.
8199 // float4 yf = vcvt_f32_s32(vmovl_s16(y));
8200 // float4 xf = vcvt_f32_s32(vmovl_s16(x));
8201 N0
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v4i32
, N0
);
8202 N1
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v4i32
, N1
);
8203 N0
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, N0
);
8204 N1
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, N1
);
8206 // Use reciprocal estimate and one refinement step.
8207 // float4 recip = vrecpeq_f32(yf);
8208 // recip *= vrecpsq_f32(yf, recip);
8209 N2
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8210 DAG
.getConstant(Intrinsic::arm_neon_vrecpe
, dl
, MVT::i32
),
8212 N1
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8213 DAG
.getConstant(Intrinsic::arm_neon_vrecps
, dl
, MVT::i32
),
8215 N2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N1
, N2
);
8216 // Because short has a smaller range than ushort, we can actually get away
8217 // with only a single newton step. This requires that we use a weird bias
8218 // of 89, however (again, this has been exhaustively tested).
8219 // float4 result = as_float4(as_int4(xf*recip) + 0x89);
8220 N0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N0
, N2
);
8221 N0
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4i32
, N0
);
8222 N1
= DAG
.getConstant(0x89, dl
, MVT::v4i32
);
8223 N0
= DAG
.getNode(ISD::ADD
, dl
, MVT::v4i32
, N0
, N1
);
8224 N0
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4f32
, N0
);
8225 // Convert back to integer and return.
8226 // return vmovn_s32(vcvt_s32_f32(result));
8227 N0
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::v4i32
, N0
);
8228 N0
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::v4i16
, N0
);
8232 static SDValue
LowerSDIV(SDValue Op
, SelectionDAG
&DAG
,
8233 const ARMSubtarget
*ST
) {
8234 EVT VT
= Op
.getValueType();
8235 assert((VT
== MVT::v4i16
|| VT
== MVT::v8i8
) &&
8236 "unexpected type for custom-lowering ISD::SDIV");
8239 SDValue N0
= Op
.getOperand(0);
8240 SDValue N1
= Op
.getOperand(1);
8243 if (VT
== MVT::v8i8
) {
8244 N0
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v8i16
, N0
);
8245 N1
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v8i16
, N1
);
8247 N2
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N0
,
8248 DAG
.getIntPtrConstant(4, dl
));
8249 N3
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N1
,
8250 DAG
.getIntPtrConstant(4, dl
));
8251 N0
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N0
,
8252 DAG
.getIntPtrConstant(0, dl
));
8253 N1
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N1
,
8254 DAG
.getIntPtrConstant(0, dl
));
8256 N0
= LowerSDIV_v4i8(N0
, N1
, dl
, DAG
); // v4i16
8257 N2
= LowerSDIV_v4i8(N2
, N3
, dl
, DAG
); // v4i16
8259 N0
= DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, MVT::v8i16
, N0
, N2
);
8260 N0
= LowerCONCAT_VECTORS(N0
, DAG
, ST
);
8262 N0
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::v8i8
, N0
);
8265 return LowerSDIV_v4i16(N0
, N1
, dl
, DAG
);
8268 static SDValue
LowerUDIV(SDValue Op
, SelectionDAG
&DAG
,
8269 const ARMSubtarget
*ST
) {
8270 // TODO: Should this propagate fast-math-flags?
8271 EVT VT
= Op
.getValueType();
8272 assert((VT
== MVT::v4i16
|| VT
== MVT::v8i8
) &&
8273 "unexpected type for custom-lowering ISD::UDIV");
8276 SDValue N0
= Op
.getOperand(0);
8277 SDValue N1
= Op
.getOperand(1);
8280 if (VT
== MVT::v8i8
) {
8281 N0
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::v8i16
, N0
);
8282 N1
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::v8i16
, N1
);
8284 N2
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N0
,
8285 DAG
.getIntPtrConstant(4, dl
));
8286 N3
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N1
,
8287 DAG
.getIntPtrConstant(4, dl
));
8288 N0
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N0
,
8289 DAG
.getIntPtrConstant(0, dl
));
8290 N1
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N1
,
8291 DAG
.getIntPtrConstant(0, dl
));
8293 N0
= LowerSDIV_v4i16(N0
, N1
, dl
, DAG
); // v4i16
8294 N2
= LowerSDIV_v4i16(N2
, N3
, dl
, DAG
); // v4i16
8296 N0
= DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, MVT::v8i16
, N0
, N2
);
8297 N0
= LowerCONCAT_VECTORS(N0
, DAG
, ST
);
8299 N0
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v8i8
,
8300 DAG
.getConstant(Intrinsic::arm_neon_vqmovnsu
, dl
,
8306 // v4i16 sdiv ... Convert to float.
8307 // float4 yf = vcvt_f32_s32(vmovl_u16(y));
8308 // float4 xf = vcvt_f32_s32(vmovl_u16(x));
8309 N0
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::v4i32
, N0
);
8310 N1
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::v4i32
, N1
);
8311 N0
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, N0
);
8312 SDValue BN1
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, N1
);
8314 // Use reciprocal estimate and two refinement steps.
8315 // float4 recip = vrecpeq_f32(yf);
8316 // recip *= vrecpsq_f32(yf, recip);
8317 // recip *= vrecpsq_f32(yf, recip);
8318 N2
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8319 DAG
.getConstant(Intrinsic::arm_neon_vrecpe
, dl
, MVT::i32
),
8321 N1
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8322 DAG
.getConstant(Intrinsic::arm_neon_vrecps
, dl
, MVT::i32
),
8324 N2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N1
, N2
);
8325 N1
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8326 DAG
.getConstant(Intrinsic::arm_neon_vrecps
, dl
, MVT::i32
),
8328 N2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N1
, N2
);
8329 // Simply multiplying by the reciprocal estimate can leave us a few ulps
8330 // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
8331 // and that it will never cause us to return an answer too large).
8332 // float4 result = as_float4(as_int4(xf*recip) + 2);
8333 N0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N0
, N2
);
8334 N0
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4i32
, N0
);
8335 N1
= DAG
.getConstant(2, dl
, MVT::v4i32
);
8336 N0
= DAG
.getNode(ISD::ADD
, dl
, MVT::v4i32
, N0
, N1
);
8337 N0
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4f32
, N0
);
8338 // Convert back to integer and return.
8339 // return vmovn_u32(vcvt_s32_f32(result));
8340 N0
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::v4i32
, N0
);
8341 N0
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::v4i16
, N0
);
8345 static SDValue
LowerADDSUBCARRY(SDValue Op
, SelectionDAG
&DAG
) {
8346 SDNode
*N
= Op
.getNode();
8347 EVT VT
= N
->getValueType(0);
8348 SDVTList VTs
= DAG
.getVTList(VT
, MVT::i32
);
8350 SDValue Carry
= Op
.getOperand(2);
8355 if (Op
.getOpcode() == ISD::ADDCARRY
) {
8356 // This converts the boolean value carry into the carry flag.
8357 Carry
= ConvertBooleanCarryToCarryFlag(Carry
, DAG
);
8359 // Do the addition proper using the carry flag we wanted.
8360 Result
= DAG
.getNode(ARMISD::ADDE
, DL
, VTs
, Op
.getOperand(0),
8361 Op
.getOperand(1), Carry
);
8363 // Now convert the carry flag into a boolean value.
8364 Carry
= ConvertCarryFlagToBooleanCarry(Result
.getValue(1), VT
, DAG
);
8366 // ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
8367 // have to invert the carry first.
8368 Carry
= DAG
.getNode(ISD::SUB
, DL
, MVT::i32
,
8369 DAG
.getConstant(1, DL
, MVT::i32
), Carry
);
8370 // This converts the boolean value carry into the carry flag.
8371 Carry
= ConvertBooleanCarryToCarryFlag(Carry
, DAG
);
8373 // Do the subtraction proper using the carry flag we wanted.
8374 Result
= DAG
.getNode(ARMISD::SUBE
, DL
, VTs
, Op
.getOperand(0),
8375 Op
.getOperand(1), Carry
);
8377 // Now convert the carry flag into a boolean value.
8378 Carry
= ConvertCarryFlagToBooleanCarry(Result
.getValue(1), VT
, DAG
);
8379 // But the carry returned by ARMISD::SUBE is not a borrow as expected
8380 // by ISD::SUBCARRY, so compute 1 - C.
8381 Carry
= DAG
.getNode(ISD::SUB
, DL
, MVT::i32
,
8382 DAG
.getConstant(1, DL
, MVT::i32
), Carry
);
8385 // Return both values.
8386 return DAG
.getNode(ISD::MERGE_VALUES
, DL
, N
->getVTList(), Result
, Carry
);
8389 SDValue
ARMTargetLowering::LowerFSINCOS(SDValue Op
, SelectionDAG
&DAG
) const {
8390 assert(Subtarget
->isTargetDarwin());
8392 // For iOS, we want to call an alternative entry point: __sincos_stret,
8393 // return values are passed via sret.
8395 SDValue Arg
= Op
.getOperand(0);
8396 EVT ArgVT
= Arg
.getValueType();
8397 Type
*ArgTy
= ArgVT
.getTypeForEVT(*DAG
.getContext());
8398 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
8400 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
8401 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
8403 // Pair of floats / doubles used to pass the result.
8404 Type
*RetTy
= StructType::get(ArgTy
, ArgTy
);
8405 auto &DL
= DAG
.getDataLayout();
8408 bool ShouldUseSRet
= Subtarget
->isAPCS_ABI();
8410 if (ShouldUseSRet
) {
8411 // Create stack object for sret.
8412 const uint64_t ByteSize
= DL
.getTypeAllocSize(RetTy
);
8413 const unsigned StackAlign
= DL
.getPrefTypeAlignment(RetTy
);
8414 int FrameIdx
= MFI
.CreateStackObject(ByteSize
, StackAlign
, false);
8415 SRet
= DAG
.getFrameIndex(FrameIdx
, TLI
.getPointerTy(DL
));
8419 Entry
.Ty
= RetTy
->getPointerTo();
8420 Entry
.IsSExt
= false;
8421 Entry
.IsZExt
= false;
8422 Entry
.IsSRet
= true;
8423 Args
.push_back(Entry
);
8424 RetTy
= Type::getVoidTy(*DAG
.getContext());
8430 Entry
.IsSExt
= false;
8431 Entry
.IsZExt
= false;
8432 Args
.push_back(Entry
);
8435 (ArgVT
== MVT::f64
) ? RTLIB::SINCOS_STRET_F64
: RTLIB::SINCOS_STRET_F32
;
8436 const char *LibcallName
= getLibcallName(LC
);
8437 CallingConv::ID CC
= getLibcallCallingConv(LC
);
8438 SDValue Callee
= DAG
.getExternalSymbol(LibcallName
, getPointerTy(DL
));
8440 TargetLowering::CallLoweringInfo
CLI(DAG
);
8442 .setChain(DAG
.getEntryNode())
8443 .setCallee(CC
, RetTy
, Callee
, std::move(Args
))
8444 .setDiscardResult(ShouldUseSRet
);
8445 std::pair
<SDValue
, SDValue
> CallResult
= LowerCallTo(CLI
);
8448 return CallResult
.first
;
8451 DAG
.getLoad(ArgVT
, dl
, CallResult
.second
, SRet
, MachinePointerInfo());
8453 // Address of cos field.
8454 SDValue Add
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, SRet
,
8455 DAG
.getIntPtrConstant(ArgVT
.getStoreSize(), dl
));
8457 DAG
.getLoad(ArgVT
, dl
, LoadSin
.getValue(1), Add
, MachinePointerInfo());
8459 SDVTList Tys
= DAG
.getVTList(ArgVT
, ArgVT
);
8460 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, Tys
,
8461 LoadSin
.getValue(0), LoadCos
.getValue(0));
8464 SDValue
ARMTargetLowering::LowerWindowsDIVLibCall(SDValue Op
, SelectionDAG
&DAG
,
8466 SDValue
&Chain
) const {
8467 EVT VT
= Op
.getValueType();
8468 assert((VT
== MVT::i32
|| VT
== MVT::i64
) &&
8469 "unexpected type for custom lowering DIV");
8472 const auto &DL
= DAG
.getDataLayout();
8473 const auto &TLI
= DAG
.getTargetLoweringInfo();
8475 const char *Name
= nullptr;
8477 Name
= (VT
== MVT::i32
) ? "__rt_sdiv" : "__rt_sdiv64";
8479 Name
= (VT
== MVT::i32
) ? "__rt_udiv" : "__rt_udiv64";
8481 SDValue ES
= DAG
.getExternalSymbol(Name
, TLI
.getPointerTy(DL
));
8483 ARMTargetLowering::ArgListTy Args
;
8485 for (auto AI
: {1, 0}) {
8487 Arg
.Node
= Op
.getOperand(AI
);
8488 Arg
.Ty
= Arg
.Node
.getValueType().getTypeForEVT(*DAG
.getContext());
8489 Args
.push_back(Arg
);
8492 CallLoweringInfo
CLI(DAG
);
8495 .setCallee(CallingConv::ARM_AAPCS_VFP
, VT
.getTypeForEVT(*DAG
.getContext()),
8496 ES
, std::move(Args
));
8498 return LowerCallTo(CLI
).first
;
8501 // This is a code size optimisation: return the original SDIV node to
8502 // DAGCombiner when we don't want to expand SDIV into a sequence of
8503 // instructions, and an empty node otherwise which will cause the
8504 // SDIV to be expanded in DAGCombine.
8506 ARMTargetLowering::BuildSDIVPow2(SDNode
*N
, const APInt
&Divisor
,
8508 SmallVectorImpl
<SDNode
*> &Created
) const {
8509 // TODO: Support SREM
8510 if (N
->getOpcode() != ISD::SDIV
)
8513 const auto &ST
= static_cast<const ARMSubtarget
&>(DAG
.getSubtarget());
8514 const bool MinSize
= ST
.hasMinSize();
8515 const bool HasDivide
= ST
.isThumb() ? ST
.hasDivideInThumbMode()
8516 : ST
.hasDivideInARMMode();
8518 // Don't touch vector types; rewriting this may lead to scalarizing
8520 if (N
->getOperand(0).getValueType().isVector())
8523 // Bail if MinSize is not set, and also for both ARM and Thumb mode we need
8524 // hwdiv support for this to be really profitable.
8525 if (!(MinSize
&& HasDivide
))
8528 // ARM mode is a bit simpler than Thumb: we can handle large power
8529 // of 2 immediates with 1 mov instruction; no further checks required,
8530 // just return the sdiv node.
8532 return SDValue(N
, 0);
8534 // In Thumb mode, immediates larger than 128 need a wide 4-byte MOV,
8535 // and thus lose the code size benefits of a MOVS that requires only 2.
8536 // TargetTransformInfo and 'getIntImmCodeSizeCost' could be helpful here,
8537 // but as it's doing exactly this, it's not worth the trouble to get TTI.
8538 if (Divisor
.sgt(128))
8541 return SDValue(N
, 0);
8544 SDValue
ARMTargetLowering::LowerDIV_Windows(SDValue Op
, SelectionDAG
&DAG
,
8545 bool Signed
) const {
8546 assert(Op
.getValueType() == MVT::i32
&&
8547 "unexpected type for custom lowering DIV");
8550 SDValue DBZCHK
= DAG
.getNode(ARMISD::WIN__DBZCHK
, dl
, MVT::Other
,
8551 DAG
.getEntryNode(), Op
.getOperand(1));
8553 return LowerWindowsDIVLibCall(Op
, DAG
, Signed
, DBZCHK
);
8556 static SDValue
WinDBZCheckDenominator(SelectionDAG
&DAG
, SDNode
*N
, SDValue InChain
) {
8558 SDValue Op
= N
->getOperand(1);
8559 if (N
->getValueType(0) == MVT::i32
)
8560 return DAG
.getNode(ARMISD::WIN__DBZCHK
, DL
, MVT::Other
, InChain
, Op
);
8561 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, Op
,
8562 DAG
.getConstant(0, DL
, MVT::i32
));
8563 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, Op
,
8564 DAG
.getConstant(1, DL
, MVT::i32
));
8565 return DAG
.getNode(ARMISD::WIN__DBZCHK
, DL
, MVT::Other
, InChain
,
8566 DAG
.getNode(ISD::OR
, DL
, MVT::i32
, Lo
, Hi
));
8569 void ARMTargetLowering::ExpandDIV_Windows(
8570 SDValue Op
, SelectionDAG
&DAG
, bool Signed
,
8571 SmallVectorImpl
<SDValue
> &Results
) const {
8572 const auto &DL
= DAG
.getDataLayout();
8573 const auto &TLI
= DAG
.getTargetLoweringInfo();
8575 assert(Op
.getValueType() == MVT::i64
&&
8576 "unexpected type for custom lowering DIV");
8579 SDValue DBZCHK
= WinDBZCheckDenominator(DAG
, Op
.getNode(), DAG
.getEntryNode());
8581 SDValue Result
= LowerWindowsDIVLibCall(Op
, DAG
, Signed
, DBZCHK
);
8583 SDValue Lower
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i32
, Result
);
8584 SDValue Upper
= DAG
.getNode(ISD::SRL
, dl
, MVT::i64
, Result
,
8585 DAG
.getConstant(32, dl
, TLI
.getPointerTy(DL
)));
8586 Upper
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i32
, Upper
);
8588 Results
.push_back(Lower
);
8589 Results
.push_back(Upper
);
8592 static SDValue
LowerAtomicLoadStore(SDValue Op
, SelectionDAG
&DAG
) {
8593 if (isStrongerThanMonotonic(cast
<AtomicSDNode
>(Op
)->getOrdering()))
8594 // Acquire/Release load/store is not legal for targets without a dmb or
8595 // equivalent available.
8598 // Monotonic load/store is legal for all targets.
8602 static void ReplaceREADCYCLECOUNTER(SDNode
*N
,
8603 SmallVectorImpl
<SDValue
> &Results
,
8605 const ARMSubtarget
*Subtarget
) {
8607 // Under Power Management extensions, the cycle-count is:
8608 // mrc p15, #0, <Rt>, c9, c13, #0
8609 SDValue Ops
[] = { N
->getOperand(0), // Chain
8610 DAG
.getConstant(Intrinsic::arm_mrc
, DL
, MVT::i32
),
8611 DAG
.getConstant(15, DL
, MVT::i32
),
8612 DAG
.getConstant(0, DL
, MVT::i32
),
8613 DAG
.getConstant(9, DL
, MVT::i32
),
8614 DAG
.getConstant(13, DL
, MVT::i32
),
8615 DAG
.getConstant(0, DL
, MVT::i32
)
8618 SDValue Cycles32
= DAG
.getNode(ISD::INTRINSIC_W_CHAIN
, DL
,
8619 DAG
.getVTList(MVT::i32
, MVT::Other
), Ops
);
8620 Results
.push_back(DAG
.getNode(ISD::BUILD_PAIR
, DL
, MVT::i64
, Cycles32
,
8621 DAG
.getConstant(0, DL
, MVT::i32
)));
8622 Results
.push_back(Cycles32
.getValue(1));
8625 static SDValue
createGPRPairNode(SelectionDAG
&DAG
, SDValue V
) {
8626 SDLoc
dl(V
.getNode());
8627 SDValue VLo
= DAG
.getAnyExtOrTrunc(V
, dl
, MVT::i32
);
8628 SDValue VHi
= DAG
.getAnyExtOrTrunc(
8629 DAG
.getNode(ISD::SRL
, dl
, MVT::i64
, V
, DAG
.getConstant(32, dl
, MVT::i32
)),
8631 bool isBigEndian
= DAG
.getDataLayout().isBigEndian();
8633 std::swap (VLo
, VHi
);
8635 DAG
.getTargetConstant(ARM::GPRPairRegClassID
, dl
, MVT::i32
);
8636 SDValue SubReg0
= DAG
.getTargetConstant(ARM::gsub_0
, dl
, MVT::i32
);
8637 SDValue SubReg1
= DAG
.getTargetConstant(ARM::gsub_1
, dl
, MVT::i32
);
8638 const SDValue Ops
[] = { RegClass
, VLo
, SubReg0
, VHi
, SubReg1
};
8640 DAG
.getMachineNode(TargetOpcode::REG_SEQUENCE
, dl
, MVT::Untyped
, Ops
), 0);
8643 static void ReplaceCMP_SWAP_64Results(SDNode
*N
,
8644 SmallVectorImpl
<SDValue
> & Results
,
8645 SelectionDAG
&DAG
) {
8646 assert(N
->getValueType(0) == MVT::i64
&&
8647 "AtomicCmpSwap on types less than 64 should be legal");
8648 SDValue Ops
[] = {N
->getOperand(1),
8649 createGPRPairNode(DAG
, N
->getOperand(2)),
8650 createGPRPairNode(DAG
, N
->getOperand(3)),
8652 SDNode
*CmpSwap
= DAG
.getMachineNode(
8653 ARM::CMP_SWAP_64
, SDLoc(N
),
8654 DAG
.getVTList(MVT::Untyped
, MVT::i32
, MVT::Other
), Ops
);
8656 MachineMemOperand
*MemOp
= cast
<MemSDNode
>(N
)->getMemOperand();
8657 DAG
.setNodeMemRefs(cast
<MachineSDNode
>(CmpSwap
), {MemOp
});
8659 bool isBigEndian
= DAG
.getDataLayout().isBigEndian();
8662 DAG
.getTargetExtractSubreg(isBigEndian
? ARM::gsub_1
: ARM::gsub_0
,
8663 SDLoc(N
), MVT::i32
, SDValue(CmpSwap
, 0)));
8665 DAG
.getTargetExtractSubreg(isBigEndian
? ARM::gsub_0
: ARM::gsub_1
,
8666 SDLoc(N
), MVT::i32
, SDValue(CmpSwap
, 0)));
8667 Results
.push_back(SDValue(CmpSwap
, 2));
8670 static SDValue
LowerFPOWI(SDValue Op
, const ARMSubtarget
&Subtarget
,
8671 SelectionDAG
&DAG
) {
8672 const auto &TLI
= DAG
.getTargetLoweringInfo();
8674 assert(Subtarget
.getTargetTriple().isOSMSVCRT() &&
8675 "Custom lowering is MSVCRT specific!");
8678 SDValue Val
= Op
.getOperand(0);
8679 MVT Ty
= Val
->getSimpleValueType(0);
8680 SDValue Exponent
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, Ty
, Op
.getOperand(1));
8681 SDValue Callee
= DAG
.getExternalSymbol(Ty
== MVT::f32
? "powf" : "pow",
8682 TLI
.getPointerTy(DAG
.getDataLayout()));
8684 TargetLowering::ArgListTy Args
;
8685 TargetLowering::ArgListEntry Entry
;
8688 Entry
.Ty
= Val
.getValueType().getTypeForEVT(*DAG
.getContext());
8689 Entry
.IsZExt
= true;
8690 Args
.push_back(Entry
);
8692 Entry
.Node
= Exponent
;
8693 Entry
.Ty
= Exponent
.getValueType().getTypeForEVT(*DAG
.getContext());
8694 Entry
.IsZExt
= true;
8695 Args
.push_back(Entry
);
8697 Type
*LCRTy
= Val
.getValueType().getTypeForEVT(*DAG
.getContext());
8699 // In the in-chain to the call is the entry node If we are emitting a
8700 // tailcall, the chain will be mutated if the node has a non-entry input
8702 SDValue InChain
= DAG
.getEntryNode();
8703 SDValue TCChain
= InChain
;
8705 const Function
&F
= DAG
.getMachineFunction().getFunction();
8706 bool IsTC
= TLI
.isInTailCallPosition(DAG
, Op
.getNode(), TCChain
) &&
8707 F
.getReturnType() == LCRTy
;
8711 TargetLowering::CallLoweringInfo
CLI(DAG
);
8714 .setCallee(CallingConv::ARM_AAPCS_VFP
, LCRTy
, Callee
, std::move(Args
))
8716 std::pair
<SDValue
, SDValue
> CI
= TLI
.LowerCallTo(CLI
);
8718 // Return the chain (the DAG root) if it is a tail call
8719 return !CI
.second
.getNode() ? DAG
.getRoot() : CI
.first
;
8722 SDValue
ARMTargetLowering::LowerOperation(SDValue Op
, SelectionDAG
&DAG
) const {
8723 LLVM_DEBUG(dbgs() << "Lowering node: "; Op
.dump());
8724 switch (Op
.getOpcode()) {
8725 default: llvm_unreachable("Don't know how to custom lower this!");
8726 case ISD::WRITE_REGISTER
: return LowerWRITE_REGISTER(Op
, DAG
);
8727 case ISD::ConstantPool
: return LowerConstantPool(Op
, DAG
);
8728 case ISD::BlockAddress
: return LowerBlockAddress(Op
, DAG
);
8729 case ISD::GlobalAddress
: return LowerGlobalAddress(Op
, DAG
);
8730 case ISD::GlobalTLSAddress
: return LowerGlobalTLSAddress(Op
, DAG
);
8731 case ISD::SELECT
: return LowerSELECT(Op
, DAG
);
8732 case ISD::SELECT_CC
: return LowerSELECT_CC(Op
, DAG
);
8733 case ISD::BRCOND
: return LowerBRCOND(Op
, DAG
);
8734 case ISD::BR_CC
: return LowerBR_CC(Op
, DAG
);
8735 case ISD::BR_JT
: return LowerBR_JT(Op
, DAG
);
8736 case ISD::VASTART
: return LowerVASTART(Op
, DAG
);
8737 case ISD::ATOMIC_FENCE
: return LowerATOMIC_FENCE(Op
, DAG
, Subtarget
);
8738 case ISD::PREFETCH
: return LowerPREFETCH(Op
, DAG
, Subtarget
);
8739 case ISD::SINT_TO_FP
:
8740 case ISD::UINT_TO_FP
: return LowerINT_TO_FP(Op
, DAG
);
8741 case ISD::FP_TO_SINT
:
8742 case ISD::FP_TO_UINT
: return LowerFP_TO_INT(Op
, DAG
);
8743 case ISD::FCOPYSIGN
: return LowerFCOPYSIGN(Op
, DAG
);
8744 case ISD::RETURNADDR
: return LowerRETURNADDR(Op
, DAG
);
8745 case ISD::FRAMEADDR
: return LowerFRAMEADDR(Op
, DAG
);
8746 case ISD::EH_SJLJ_SETJMP
: return LowerEH_SJLJ_SETJMP(Op
, DAG
);
8747 case ISD::EH_SJLJ_LONGJMP
: return LowerEH_SJLJ_LONGJMP(Op
, DAG
);
8748 case ISD::EH_SJLJ_SETUP_DISPATCH
: return LowerEH_SJLJ_SETUP_DISPATCH(Op
, DAG
);
8749 case ISD::INTRINSIC_WO_CHAIN
: return LowerINTRINSIC_WO_CHAIN(Op
, DAG
,
8751 case ISD::BITCAST
: return ExpandBITCAST(Op
.getNode(), DAG
, Subtarget
);
8754 case ISD::SRA
: return LowerShift(Op
.getNode(), DAG
, Subtarget
);
8755 case ISD::SREM
: return LowerREM(Op
.getNode(), DAG
);
8756 case ISD::UREM
: return LowerREM(Op
.getNode(), DAG
);
8757 case ISD::SHL_PARTS
: return LowerShiftLeftParts(Op
, DAG
);
8758 case ISD::SRL_PARTS
:
8759 case ISD::SRA_PARTS
: return LowerShiftRightParts(Op
, DAG
);
8761 case ISD::CTTZ_ZERO_UNDEF
: return LowerCTTZ(Op
.getNode(), DAG
, Subtarget
);
8762 case ISD::CTPOP
: return LowerCTPOP(Op
.getNode(), DAG
, Subtarget
);
8763 case ISD::SETCC
: return LowerVSETCC(Op
, DAG
, Subtarget
);
8764 case ISD::SETCCCARRY
: return LowerSETCCCARRY(Op
, DAG
);
8765 case ISD::ConstantFP
: return LowerConstantFP(Op
, DAG
, Subtarget
);
8766 case ISD::BUILD_VECTOR
: return LowerBUILD_VECTOR(Op
, DAG
, Subtarget
);
8767 case ISD::VECTOR_SHUFFLE
: return LowerVECTOR_SHUFFLE(Op
, DAG
, Subtarget
);
8768 case ISD::EXTRACT_SUBVECTOR
: return LowerEXTRACT_SUBVECTOR(Op
, DAG
, Subtarget
);
8769 case ISD::INSERT_VECTOR_ELT
: return LowerINSERT_VECTOR_ELT(Op
, DAG
);
8770 case ISD::EXTRACT_VECTOR_ELT
: return LowerEXTRACT_VECTOR_ELT(Op
, DAG
, Subtarget
);
8771 case ISD::CONCAT_VECTORS
: return LowerCONCAT_VECTORS(Op
, DAG
, Subtarget
);
8772 case ISD::FLT_ROUNDS_
: return LowerFLT_ROUNDS_(Op
, DAG
);
8773 case ISD::MUL
: return LowerMUL(Op
, DAG
);
8775 if (Subtarget
->isTargetWindows() && !Op
.getValueType().isVector())
8776 return LowerDIV_Windows(Op
, DAG
, /* Signed */ true);
8777 return LowerSDIV(Op
, DAG
, Subtarget
);
8779 if (Subtarget
->isTargetWindows() && !Op
.getValueType().isVector())
8780 return LowerDIV_Windows(Op
, DAG
, /* Signed */ false);
8781 return LowerUDIV(Op
, DAG
, Subtarget
);
8783 case ISD::SUBCARRY
: return LowerADDSUBCARRY(Op
, DAG
);
8786 return LowerSignedALUO(Op
, DAG
);
8789 return LowerUnsignedALUO(Op
, DAG
);
8790 case ISD::ATOMIC_LOAD
:
8791 case ISD::ATOMIC_STORE
: return LowerAtomicLoadStore(Op
, DAG
);
8792 case ISD::FSINCOS
: return LowerFSINCOS(Op
, DAG
);
8794 case ISD::UDIVREM
: return LowerDivRem(Op
, DAG
);
8795 case ISD::DYNAMIC_STACKALLOC
:
8796 if (Subtarget
->isTargetWindows())
8797 return LowerDYNAMIC_STACKALLOC(Op
, DAG
);
8798 llvm_unreachable("Don't know how to custom lower this!");
8799 case ISD::FP_ROUND
: return LowerFP_ROUND(Op
, DAG
);
8800 case ISD::FP_EXTEND
: return LowerFP_EXTEND(Op
, DAG
);
8801 case ISD::FPOWI
: return LowerFPOWI(Op
, *Subtarget
, DAG
);
8802 case ARMISD::WIN__DBZCHK
: return SDValue();
8806 static void ReplaceLongIntrinsic(SDNode
*N
, SmallVectorImpl
<SDValue
> &Results
,
8807 SelectionDAG
&DAG
) {
8808 unsigned IntNo
= cast
<ConstantSDNode
>(N
->getOperand(0))->getZExtValue();
8810 if (IntNo
== Intrinsic::arm_smlald
)
8811 Opc
= ARMISD::SMLALD
;
8812 else if (IntNo
== Intrinsic::arm_smlaldx
)
8813 Opc
= ARMISD::SMLALDX
;
8814 else if (IntNo
== Intrinsic::arm_smlsld
)
8815 Opc
= ARMISD::SMLSLD
;
8816 else if (IntNo
== Intrinsic::arm_smlsldx
)
8817 Opc
= ARMISD::SMLSLDX
;
8822 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
8824 DAG
.getConstant(0, dl
, MVT::i32
));
8825 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
8827 DAG
.getConstant(1, dl
, MVT::i32
));
8829 SDValue LongMul
= DAG
.getNode(Opc
, dl
,
8830 DAG
.getVTList(MVT::i32
, MVT::i32
),
8831 N
->getOperand(1), N
->getOperand(2),
8833 Results
.push_back(LongMul
.getValue(0));
8834 Results
.push_back(LongMul
.getValue(1));
8837 /// ReplaceNodeResults - Replace the results of node with an illegal result
8838 /// type with new values built out of custom code.
8839 void ARMTargetLowering::ReplaceNodeResults(SDNode
*N
,
8840 SmallVectorImpl
<SDValue
> &Results
,
8841 SelectionDAG
&DAG
) const {
8843 switch (N
->getOpcode()) {
8845 llvm_unreachable("Don't know how to custom expand this!");
8846 case ISD::READ_REGISTER
:
8847 ExpandREAD_REGISTER(N
, Results
, DAG
);
8850 Res
= ExpandBITCAST(N
, DAG
, Subtarget
);
8855 Res
= Expand64BitShift(N
, DAG
, Subtarget
);
8859 Res
= LowerREM(N
, DAG
);
8863 Res
= LowerDivRem(SDValue(N
, 0), DAG
);
8864 assert(Res
.getNumOperands() == 2 && "DivRem needs two values");
8865 Results
.push_back(Res
.getValue(0));
8866 Results
.push_back(Res
.getValue(1));
8868 case ISD::READCYCLECOUNTER
:
8869 ReplaceREADCYCLECOUNTER(N
, Results
, DAG
, Subtarget
);
8873 assert(Subtarget
->isTargetWindows() && "can only expand DIV on Windows");
8874 return ExpandDIV_Windows(SDValue(N
, 0), DAG
, N
->getOpcode() == ISD::SDIV
,
8876 case ISD::ATOMIC_CMP_SWAP
:
8877 ReplaceCMP_SWAP_64Results(N
, Results
, DAG
);
8879 case ISD::INTRINSIC_WO_CHAIN
:
8880 return ReplaceLongIntrinsic(N
, Results
, DAG
);
8882 lowerABS(N
, Results
, DAG
);
8887 Results
.push_back(Res
);
8890 //===----------------------------------------------------------------------===//
8891 // ARM Scheduler Hooks
8892 //===----------------------------------------------------------------------===//
8894 /// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
8895 /// registers the function context.
8896 void ARMTargetLowering::SetupEntryBlockForSjLj(MachineInstr
&MI
,
8897 MachineBasicBlock
*MBB
,
8898 MachineBasicBlock
*DispatchBB
,
8900 assert(!Subtarget
->isROPI() && !Subtarget
->isRWPI() &&
8901 "ROPI/RWPI not currently supported with SjLj");
8902 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
8903 DebugLoc dl
= MI
.getDebugLoc();
8904 MachineFunction
*MF
= MBB
->getParent();
8905 MachineRegisterInfo
*MRI
= &MF
->getRegInfo();
8906 MachineConstantPool
*MCP
= MF
->getConstantPool();
8907 ARMFunctionInfo
*AFI
= MF
->getInfo
<ARMFunctionInfo
>();
8908 const Function
&F
= MF
->getFunction();
8910 bool isThumb
= Subtarget
->isThumb();
8911 bool isThumb2
= Subtarget
->isThumb2();
8913 unsigned PCLabelId
= AFI
->createPICLabelUId();
8914 unsigned PCAdj
= (isThumb
|| isThumb2
) ? 4 : 8;
8915 ARMConstantPoolValue
*CPV
=
8916 ARMConstantPoolMBB::Create(F
.getContext(), DispatchBB
, PCLabelId
, PCAdj
);
8917 unsigned CPI
= MCP
->getConstantPoolIndex(CPV
, 4);
8919 const TargetRegisterClass
*TRC
= isThumb
? &ARM::tGPRRegClass
8920 : &ARM::GPRRegClass
;
8922 // Grab constant pool and fixed stack memory operands.
8923 MachineMemOperand
*CPMMO
=
8924 MF
->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF
),
8925 MachineMemOperand::MOLoad
, 4, 4);
8927 MachineMemOperand
*FIMMOSt
=
8928 MF
->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF
, FI
),
8929 MachineMemOperand::MOStore
, 4, 4);
8931 // Load the address of the dispatch MBB into the jump buffer.
8933 // Incoming value: jbuf
8934 // ldr.n r5, LCPI1_1
8937 // str r5, [$jbuf, #+4] ; &jbuf[1]
8938 unsigned NewVReg1
= MRI
->createVirtualRegister(TRC
);
8939 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::t2LDRpci
), NewVReg1
)
8940 .addConstantPoolIndex(CPI
)
8941 .addMemOperand(CPMMO
)
8942 .add(predOps(ARMCC::AL
));
8943 // Set the low bit because of thumb mode.
8944 unsigned NewVReg2
= MRI
->createVirtualRegister(TRC
);
8945 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::t2ORRri
), NewVReg2
)
8946 .addReg(NewVReg1
, RegState::Kill
)
8948 .add(predOps(ARMCC::AL
))
8950 unsigned NewVReg3
= MRI
->createVirtualRegister(TRC
);
8951 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tPICADD
), NewVReg3
)
8952 .addReg(NewVReg2
, RegState::Kill
)
8954 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::t2STRi12
))
8955 .addReg(NewVReg3
, RegState::Kill
)
8957 .addImm(36) // &jbuf[1] :: pc
8958 .addMemOperand(FIMMOSt
)
8959 .add(predOps(ARMCC::AL
));
8960 } else if (isThumb
) {
8961 // Incoming value: jbuf
8962 // ldr.n r1, LCPI1_4
8966 // add r2, $jbuf, #+4 ; &jbuf[1]
8968 unsigned NewVReg1
= MRI
->createVirtualRegister(TRC
);
8969 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tLDRpci
), NewVReg1
)
8970 .addConstantPoolIndex(CPI
)
8971 .addMemOperand(CPMMO
)
8972 .add(predOps(ARMCC::AL
));
8973 unsigned NewVReg2
= MRI
->createVirtualRegister(TRC
);
8974 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tPICADD
), NewVReg2
)
8975 .addReg(NewVReg1
, RegState::Kill
)
8977 // Set the low bit because of thumb mode.
8978 unsigned NewVReg3
= MRI
->createVirtualRegister(TRC
);
8979 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tMOVi8
), NewVReg3
)
8980 .addReg(ARM::CPSR
, RegState::Define
)
8982 .add(predOps(ARMCC::AL
));
8983 unsigned NewVReg4
= MRI
->createVirtualRegister(TRC
);
8984 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tORR
), NewVReg4
)
8985 .addReg(ARM::CPSR
, RegState::Define
)
8986 .addReg(NewVReg2
, RegState::Kill
)
8987 .addReg(NewVReg3
, RegState::Kill
)
8988 .add(predOps(ARMCC::AL
));
8989 unsigned NewVReg5
= MRI
->createVirtualRegister(TRC
);
8990 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tADDframe
), NewVReg5
)
8992 .addImm(36); // &jbuf[1] :: pc
8993 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tSTRi
))
8994 .addReg(NewVReg4
, RegState::Kill
)
8995 .addReg(NewVReg5
, RegState::Kill
)
8997 .addMemOperand(FIMMOSt
)
8998 .add(predOps(ARMCC::AL
));
9000 // Incoming value: jbuf
9003 // str r1, [$jbuf, #+4] ; &jbuf[1]
9004 unsigned NewVReg1
= MRI
->createVirtualRegister(TRC
);
9005 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::LDRi12
), NewVReg1
)
9006 .addConstantPoolIndex(CPI
)
9008 .addMemOperand(CPMMO
)
9009 .add(predOps(ARMCC::AL
));
9010 unsigned NewVReg2
= MRI
->createVirtualRegister(TRC
);
9011 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::PICADD
), NewVReg2
)
9012 .addReg(NewVReg1
, RegState::Kill
)
9014 .add(predOps(ARMCC::AL
));
9015 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::STRi12
))
9016 .addReg(NewVReg2
, RegState::Kill
)
9018 .addImm(36) // &jbuf[1] :: pc
9019 .addMemOperand(FIMMOSt
)
9020 .add(predOps(ARMCC::AL
));
9024 void ARMTargetLowering::EmitSjLjDispatchBlock(MachineInstr
&MI
,
9025 MachineBasicBlock
*MBB
) const {
9026 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
9027 DebugLoc dl
= MI
.getDebugLoc();
9028 MachineFunction
*MF
= MBB
->getParent();
9029 MachineRegisterInfo
*MRI
= &MF
->getRegInfo();
9030 MachineFrameInfo
&MFI
= MF
->getFrameInfo();
9031 int FI
= MFI
.getFunctionContextIndex();
9033 const TargetRegisterClass
*TRC
= Subtarget
->isThumb() ? &ARM::tGPRRegClass
9034 : &ARM::GPRnopcRegClass
;
9036 // Get a mapping of the call site numbers to all of the landing pads they're
9038 DenseMap
<unsigned, SmallVector
<MachineBasicBlock
*, 2>> CallSiteNumToLPad
;
9039 unsigned MaxCSNum
= 0;
9040 for (MachineFunction::iterator BB
= MF
->begin(), E
= MF
->end(); BB
!= E
;
9042 if (!BB
->isEHPad()) continue;
9044 // FIXME: We should assert that the EH_LABEL is the first MI in the landing
9046 for (MachineBasicBlock::iterator
9047 II
= BB
->begin(), IE
= BB
->end(); II
!= IE
; ++II
) {
9048 if (!II
->isEHLabel()) continue;
9050 MCSymbol
*Sym
= II
->getOperand(0).getMCSymbol();
9051 if (!MF
->hasCallSiteLandingPad(Sym
)) continue;
9053 SmallVectorImpl
<unsigned> &CallSiteIdxs
= MF
->getCallSiteLandingPad(Sym
);
9054 for (SmallVectorImpl
<unsigned>::iterator
9055 CSI
= CallSiteIdxs
.begin(), CSE
= CallSiteIdxs
.end();
9056 CSI
!= CSE
; ++CSI
) {
9057 CallSiteNumToLPad
[*CSI
].push_back(&*BB
);
9058 MaxCSNum
= std::max(MaxCSNum
, *CSI
);
9064 // Get an ordered list of the machine basic blocks for the jump table.
9065 std::vector
<MachineBasicBlock
*> LPadList
;
9066 SmallPtrSet
<MachineBasicBlock
*, 32> InvokeBBs
;
9067 LPadList
.reserve(CallSiteNumToLPad
.size());
9068 for (unsigned I
= 1; I
<= MaxCSNum
; ++I
) {
9069 SmallVectorImpl
<MachineBasicBlock
*> &MBBList
= CallSiteNumToLPad
[I
];
9070 for (SmallVectorImpl
<MachineBasicBlock
*>::iterator
9071 II
= MBBList
.begin(), IE
= MBBList
.end(); II
!= IE
; ++II
) {
9072 LPadList
.push_back(*II
);
9073 InvokeBBs
.insert((*II
)->pred_begin(), (*II
)->pred_end());
9077 assert(!LPadList
.empty() &&
9078 "No landing pad destinations for the dispatch jump table!");
9080 // Create the jump table and associated information.
9081 MachineJumpTableInfo
*JTI
=
9082 MF
->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline
);
9083 unsigned MJTI
= JTI
->createJumpTableIndex(LPadList
);
9085 // Create the MBBs for the dispatch code.
9087 // Shove the dispatch's address into the return slot in the function context.
9088 MachineBasicBlock
*DispatchBB
= MF
->CreateMachineBasicBlock();
9089 DispatchBB
->setIsEHPad();
9091 MachineBasicBlock
*TrapBB
= MF
->CreateMachineBasicBlock();
9092 unsigned trap_opcode
;
9093 if (Subtarget
->isThumb())
9094 trap_opcode
= ARM::tTRAP
;
9096 trap_opcode
= Subtarget
->useNaClTrap() ? ARM::TRAPNaCl
: ARM::TRAP
;
9098 BuildMI(TrapBB
, dl
, TII
->get(trap_opcode
));
9099 DispatchBB
->addSuccessor(TrapBB
);
9101 MachineBasicBlock
*DispContBB
= MF
->CreateMachineBasicBlock();
9102 DispatchBB
->addSuccessor(DispContBB
);
9105 MF
->insert(MF
->end(), DispatchBB
);
9106 MF
->insert(MF
->end(), DispContBB
);
9107 MF
->insert(MF
->end(), TrapBB
);
9109 // Insert code into the entry block that creates and registers the function
9111 SetupEntryBlockForSjLj(MI
, MBB
, DispatchBB
, FI
);
9113 MachineMemOperand
*FIMMOLd
= MF
->getMachineMemOperand(
9114 MachinePointerInfo::getFixedStack(*MF
, FI
),
9115 MachineMemOperand::MOLoad
| MachineMemOperand::MOVolatile
, 4, 4);
9117 MachineInstrBuilder MIB
;
9118 MIB
= BuildMI(DispatchBB
, dl
, TII
->get(ARM::Int_eh_sjlj_dispatchsetup
));
9120 const ARMBaseInstrInfo
*AII
= static_cast<const ARMBaseInstrInfo
*>(TII
);
9121 const ARMBaseRegisterInfo
&RI
= AII
->getRegisterInfo();
9123 // Add a register mask with no preserved registers. This results in all
9124 // registers being marked as clobbered. This can't work if the dispatch block
9125 // is in a Thumb1 function and is linked with ARM code which uses the FP
9126 // registers, as there is no way to preserve the FP registers in Thumb1 mode.
9127 MIB
.addRegMask(RI
.getSjLjDispatchPreservedMask(*MF
));
9129 bool IsPositionIndependent
= isPositionIndependent();
9130 unsigned NumLPads
= LPadList
.size();
9131 if (Subtarget
->isThumb2()) {
9132 unsigned NewVReg1
= MRI
->createVirtualRegister(TRC
);
9133 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2LDRi12
), NewVReg1
)
9136 .addMemOperand(FIMMOLd
)
9137 .add(predOps(ARMCC::AL
));
9139 if (NumLPads
< 256) {
9140 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2CMPri
))
9142 .addImm(LPadList
.size())
9143 .add(predOps(ARMCC::AL
));
9145 unsigned VReg1
= MRI
->createVirtualRegister(TRC
);
9146 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2MOVi16
), VReg1
)
9147 .addImm(NumLPads
& 0xFFFF)
9148 .add(predOps(ARMCC::AL
));
9150 unsigned VReg2
= VReg1
;
9151 if ((NumLPads
& 0xFFFF0000) != 0) {
9152 VReg2
= MRI
->createVirtualRegister(TRC
);
9153 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2MOVTi16
), VReg2
)
9155 .addImm(NumLPads
>> 16)
9156 .add(predOps(ARMCC::AL
));
9159 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2CMPrr
))
9162 .add(predOps(ARMCC::AL
));
9165 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2Bcc
))
9170 unsigned NewVReg3
= MRI
->createVirtualRegister(TRC
);
9171 BuildMI(DispContBB
, dl
, TII
->get(ARM::t2LEApcrelJT
), NewVReg3
)
9172 .addJumpTableIndex(MJTI
)
9173 .add(predOps(ARMCC::AL
));
9175 unsigned NewVReg4
= MRI
->createVirtualRegister(TRC
);
9176 BuildMI(DispContBB
, dl
, TII
->get(ARM::t2ADDrs
), NewVReg4
)
9177 .addReg(NewVReg3
, RegState::Kill
)
9179 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl
, 2))
9180 .add(predOps(ARMCC::AL
))
9183 BuildMI(DispContBB
, dl
, TII
->get(ARM::t2BR_JT
))
9184 .addReg(NewVReg4
, RegState::Kill
)
9186 .addJumpTableIndex(MJTI
);
9187 } else if (Subtarget
->isThumb()) {
9188 unsigned NewVReg1
= MRI
->createVirtualRegister(TRC
);
9189 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tLDRspi
), NewVReg1
)
9192 .addMemOperand(FIMMOLd
)
9193 .add(predOps(ARMCC::AL
));
9195 if (NumLPads
< 256) {
9196 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tCMPi8
))
9199 .add(predOps(ARMCC::AL
));
9201 MachineConstantPool
*ConstantPool
= MF
->getConstantPool();
9202 Type
*Int32Ty
= Type::getInt32Ty(MF
->getFunction().getContext());
9203 const Constant
*C
= ConstantInt::get(Int32Ty
, NumLPads
);
9205 // MachineConstantPool wants an explicit alignment.
9206 unsigned Align
= MF
->getDataLayout().getPrefTypeAlignment(Int32Ty
);
9208 Align
= MF
->getDataLayout().getTypeAllocSize(C
->getType());
9209 unsigned Idx
= ConstantPool
->getConstantPoolIndex(C
, Align
);
9211 unsigned VReg1
= MRI
->createVirtualRegister(TRC
);
9212 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tLDRpci
))
9213 .addReg(VReg1
, RegState::Define
)
9214 .addConstantPoolIndex(Idx
)
9215 .add(predOps(ARMCC::AL
));
9216 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tCMPr
))
9219 .add(predOps(ARMCC::AL
));
9222 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tBcc
))
9227 unsigned NewVReg2
= MRI
->createVirtualRegister(TRC
);
9228 BuildMI(DispContBB
, dl
, TII
->get(ARM::tLSLri
), NewVReg2
)
9229 .addReg(ARM::CPSR
, RegState::Define
)
9232 .add(predOps(ARMCC::AL
));
9234 unsigned NewVReg3
= MRI
->createVirtualRegister(TRC
);
9235 BuildMI(DispContBB
, dl
, TII
->get(ARM::tLEApcrelJT
), NewVReg3
)
9236 .addJumpTableIndex(MJTI
)
9237 .add(predOps(ARMCC::AL
));
9239 unsigned NewVReg4
= MRI
->createVirtualRegister(TRC
);
9240 BuildMI(DispContBB
, dl
, TII
->get(ARM::tADDrr
), NewVReg4
)
9241 .addReg(ARM::CPSR
, RegState::Define
)
9242 .addReg(NewVReg2
, RegState::Kill
)
9244 .add(predOps(ARMCC::AL
));
9246 MachineMemOperand
*JTMMOLd
= MF
->getMachineMemOperand(
9247 MachinePointerInfo::getJumpTable(*MF
), MachineMemOperand::MOLoad
, 4, 4);
9249 unsigned NewVReg5
= MRI
->createVirtualRegister(TRC
);
9250 BuildMI(DispContBB
, dl
, TII
->get(ARM::tLDRi
), NewVReg5
)
9251 .addReg(NewVReg4
, RegState::Kill
)
9253 .addMemOperand(JTMMOLd
)
9254 .add(predOps(ARMCC::AL
));
9256 unsigned NewVReg6
= NewVReg5
;
9257 if (IsPositionIndependent
) {
9258 NewVReg6
= MRI
->createVirtualRegister(TRC
);
9259 BuildMI(DispContBB
, dl
, TII
->get(ARM::tADDrr
), NewVReg6
)
9260 .addReg(ARM::CPSR
, RegState::Define
)
9261 .addReg(NewVReg5
, RegState::Kill
)
9263 .add(predOps(ARMCC::AL
));
9266 BuildMI(DispContBB
, dl
, TII
->get(ARM::tBR_JTr
))
9267 .addReg(NewVReg6
, RegState::Kill
)
9268 .addJumpTableIndex(MJTI
);
9270 unsigned NewVReg1
= MRI
->createVirtualRegister(TRC
);
9271 BuildMI(DispatchBB
, dl
, TII
->get(ARM::LDRi12
), NewVReg1
)
9274 .addMemOperand(FIMMOLd
)
9275 .add(predOps(ARMCC::AL
));
9277 if (NumLPads
< 256) {
9278 BuildMI(DispatchBB
, dl
, TII
->get(ARM::CMPri
))
9281 .add(predOps(ARMCC::AL
));
9282 } else if (Subtarget
->hasV6T2Ops() && isUInt
<16>(NumLPads
)) {
9283 unsigned VReg1
= MRI
->createVirtualRegister(TRC
);
9284 BuildMI(DispatchBB
, dl
, TII
->get(ARM::MOVi16
), VReg1
)
9285 .addImm(NumLPads
& 0xFFFF)
9286 .add(predOps(ARMCC::AL
));
9288 unsigned VReg2
= VReg1
;
9289 if ((NumLPads
& 0xFFFF0000) != 0) {
9290 VReg2
= MRI
->createVirtualRegister(TRC
);
9291 BuildMI(DispatchBB
, dl
, TII
->get(ARM::MOVTi16
), VReg2
)
9293 .addImm(NumLPads
>> 16)
9294 .add(predOps(ARMCC::AL
));
9297 BuildMI(DispatchBB
, dl
, TII
->get(ARM::CMPrr
))
9300 .add(predOps(ARMCC::AL
));
9302 MachineConstantPool
*ConstantPool
= MF
->getConstantPool();
9303 Type
*Int32Ty
= Type::getInt32Ty(MF
->getFunction().getContext());
9304 const Constant
*C
= ConstantInt::get(Int32Ty
, NumLPads
);
9306 // MachineConstantPool wants an explicit alignment.
9307 unsigned Align
= MF
->getDataLayout().getPrefTypeAlignment(Int32Ty
);
9309 Align
= MF
->getDataLayout().getTypeAllocSize(C
->getType());
9310 unsigned Idx
= ConstantPool
->getConstantPoolIndex(C
, Align
);
9312 unsigned VReg1
= MRI
->createVirtualRegister(TRC
);
9313 BuildMI(DispatchBB
, dl
, TII
->get(ARM::LDRcp
))
9314 .addReg(VReg1
, RegState::Define
)
9315 .addConstantPoolIndex(Idx
)
9317 .add(predOps(ARMCC::AL
));
9318 BuildMI(DispatchBB
, dl
, TII
->get(ARM::CMPrr
))
9320 .addReg(VReg1
, RegState::Kill
)
9321 .add(predOps(ARMCC::AL
));
9324 BuildMI(DispatchBB
, dl
, TII
->get(ARM::Bcc
))
9329 unsigned NewVReg3
= MRI
->createVirtualRegister(TRC
);
9330 BuildMI(DispContBB
, dl
, TII
->get(ARM::MOVsi
), NewVReg3
)
9332 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl
, 2))
9333 .add(predOps(ARMCC::AL
))
9335 unsigned NewVReg4
= MRI
->createVirtualRegister(TRC
);
9336 BuildMI(DispContBB
, dl
, TII
->get(ARM::LEApcrelJT
), NewVReg4
)
9337 .addJumpTableIndex(MJTI
)
9338 .add(predOps(ARMCC::AL
));
9340 MachineMemOperand
*JTMMOLd
= MF
->getMachineMemOperand(
9341 MachinePointerInfo::getJumpTable(*MF
), MachineMemOperand::MOLoad
, 4, 4);
9342 unsigned NewVReg5
= MRI
->createVirtualRegister(TRC
);
9343 BuildMI(DispContBB
, dl
, TII
->get(ARM::LDRrs
), NewVReg5
)
9344 .addReg(NewVReg3
, RegState::Kill
)
9347 .addMemOperand(JTMMOLd
)
9348 .add(predOps(ARMCC::AL
));
9350 if (IsPositionIndependent
) {
9351 BuildMI(DispContBB
, dl
, TII
->get(ARM::BR_JTadd
))
9352 .addReg(NewVReg5
, RegState::Kill
)
9354 .addJumpTableIndex(MJTI
);
9356 BuildMI(DispContBB
, dl
, TII
->get(ARM::BR_JTr
))
9357 .addReg(NewVReg5
, RegState::Kill
)
9358 .addJumpTableIndex(MJTI
);
9362 // Add the jump table entries as successors to the MBB.
9363 SmallPtrSet
<MachineBasicBlock
*, 8> SeenMBBs
;
9364 for (std::vector
<MachineBasicBlock
*>::iterator
9365 I
= LPadList
.begin(), E
= LPadList
.end(); I
!= E
; ++I
) {
9366 MachineBasicBlock
*CurMBB
= *I
;
9367 if (SeenMBBs
.insert(CurMBB
).second
)
9368 DispContBB
->addSuccessor(CurMBB
);
9371 // N.B. the order the invoke BBs are processed in doesn't matter here.
9372 const MCPhysReg
*SavedRegs
= RI
.getCalleeSavedRegs(MF
);
9373 SmallVector
<MachineBasicBlock
*, 64> MBBLPads
;
9374 for (MachineBasicBlock
*BB
: InvokeBBs
) {
9376 // Remove the landing pad successor from the invoke block and replace it
9377 // with the new dispatch block.
9378 SmallVector
<MachineBasicBlock
*, 4> Successors(BB
->succ_begin(),
9380 while (!Successors
.empty()) {
9381 MachineBasicBlock
*SMBB
= Successors
.pop_back_val();
9382 if (SMBB
->isEHPad()) {
9383 BB
->removeSuccessor(SMBB
);
9384 MBBLPads
.push_back(SMBB
);
9388 BB
->addSuccessor(DispatchBB
, BranchProbability::getZero());
9389 BB
->normalizeSuccProbs();
9391 // Find the invoke call and mark all of the callee-saved registers as
9392 // 'implicit defined' so that they're spilled. This prevents code from
9393 // moving instructions to before the EH block, where they will never be
9395 for (MachineBasicBlock::reverse_iterator
9396 II
= BB
->rbegin(), IE
= BB
->rend(); II
!= IE
; ++II
) {
9397 if (!II
->isCall()) continue;
9399 DenseMap
<unsigned, bool> DefRegs
;
9400 for (MachineInstr::mop_iterator
9401 OI
= II
->operands_begin(), OE
= II
->operands_end();
9403 if (!OI
->isReg()) continue;
9404 DefRegs
[OI
->getReg()] = true;
9407 MachineInstrBuilder
MIB(*MF
, &*II
);
9409 for (unsigned i
= 0; SavedRegs
[i
] != 0; ++i
) {
9410 unsigned Reg
= SavedRegs
[i
];
9411 if (Subtarget
->isThumb2() &&
9412 !ARM::tGPRRegClass
.contains(Reg
) &&
9413 !ARM::hGPRRegClass
.contains(Reg
))
9415 if (Subtarget
->isThumb1Only() && !ARM::tGPRRegClass
.contains(Reg
))
9417 if (!Subtarget
->isThumb() && !ARM::GPRRegClass
.contains(Reg
))
9420 MIB
.addReg(Reg
, RegState::ImplicitDefine
| RegState::Dead
);
9427 // Mark all former landing pads as non-landing pads. The dispatch is the only
9429 for (SmallVectorImpl
<MachineBasicBlock
*>::iterator
9430 I
= MBBLPads
.begin(), E
= MBBLPads
.end(); I
!= E
; ++I
)
9431 (*I
)->setIsEHPad(false);
9433 // The instruction is gone now.
9434 MI
.eraseFromParent();
9438 MachineBasicBlock
*OtherSucc(MachineBasicBlock
*MBB
, MachineBasicBlock
*Succ
) {
9439 for (MachineBasicBlock::succ_iterator I
= MBB
->succ_begin(),
9440 E
= MBB
->succ_end(); I
!= E
; ++I
)
9443 llvm_unreachable("Expecting a BB with two successors!");
9446 /// Return the load opcode for a given load size. If load size >= 8,
9447 /// neon opcode will be returned.
9448 static unsigned getLdOpcode(unsigned LdSize
, bool IsThumb1
, bool IsThumb2
) {
9450 return LdSize
== 16 ? ARM::VLD1q32wb_fixed
9451 : LdSize
== 8 ? ARM::VLD1d32wb_fixed
: 0;
9453 return LdSize
== 4 ? ARM::tLDRi
9454 : LdSize
== 2 ? ARM::tLDRHi
9455 : LdSize
== 1 ? ARM::tLDRBi
: 0;
9457 return LdSize
== 4 ? ARM::t2LDR_POST
9458 : LdSize
== 2 ? ARM::t2LDRH_POST
9459 : LdSize
== 1 ? ARM::t2LDRB_POST
: 0;
9460 return LdSize
== 4 ? ARM::LDR_POST_IMM
9461 : LdSize
== 2 ? ARM::LDRH_POST
9462 : LdSize
== 1 ? ARM::LDRB_POST_IMM
: 0;
9465 /// Return the store opcode for a given store size. If store size >= 8,
9466 /// neon opcode will be returned.
9467 static unsigned getStOpcode(unsigned StSize
, bool IsThumb1
, bool IsThumb2
) {
9469 return StSize
== 16 ? ARM::VST1q32wb_fixed
9470 : StSize
== 8 ? ARM::VST1d32wb_fixed
: 0;
9472 return StSize
== 4 ? ARM::tSTRi
9473 : StSize
== 2 ? ARM::tSTRHi
9474 : StSize
== 1 ? ARM::tSTRBi
: 0;
9476 return StSize
== 4 ? ARM::t2STR_POST
9477 : StSize
== 2 ? ARM::t2STRH_POST
9478 : StSize
== 1 ? ARM::t2STRB_POST
: 0;
9479 return StSize
== 4 ? ARM::STR_POST_IMM
9480 : StSize
== 2 ? ARM::STRH_POST
9481 : StSize
== 1 ? ARM::STRB_POST_IMM
: 0;
9484 /// Emit a post-increment load operation with given size. The instructions
9485 /// will be added to BB at Pos.
9486 static void emitPostLd(MachineBasicBlock
*BB
, MachineBasicBlock::iterator Pos
,
9487 const TargetInstrInfo
*TII
, const DebugLoc
&dl
,
9488 unsigned LdSize
, unsigned Data
, unsigned AddrIn
,
9489 unsigned AddrOut
, bool IsThumb1
, bool IsThumb2
) {
9490 unsigned LdOpc
= getLdOpcode(LdSize
, IsThumb1
, IsThumb2
);
9491 assert(LdOpc
!= 0 && "Should have a load opcode");
9493 BuildMI(*BB
, Pos
, dl
, TII
->get(LdOpc
), Data
)
9494 .addReg(AddrOut
, RegState::Define
)
9497 .add(predOps(ARMCC::AL
));
9498 } else if (IsThumb1
) {
9499 // load + update AddrIn
9500 BuildMI(*BB
, Pos
, dl
, TII
->get(LdOpc
), Data
)
9503 .add(predOps(ARMCC::AL
));
9504 BuildMI(*BB
, Pos
, dl
, TII
->get(ARM::tADDi8
), AddrOut
)
9505 .add(t1CondCodeOp())
9508 .add(predOps(ARMCC::AL
));
9509 } else if (IsThumb2
) {
9510 BuildMI(*BB
, Pos
, dl
, TII
->get(LdOpc
), Data
)
9511 .addReg(AddrOut
, RegState::Define
)
9514 .add(predOps(ARMCC::AL
));
9516 BuildMI(*BB
, Pos
, dl
, TII
->get(LdOpc
), Data
)
9517 .addReg(AddrOut
, RegState::Define
)
9521 .add(predOps(ARMCC::AL
));
9525 /// Emit a post-increment store operation with given size. The instructions
9526 /// will be added to BB at Pos.
9527 static void emitPostSt(MachineBasicBlock
*BB
, MachineBasicBlock::iterator Pos
,
9528 const TargetInstrInfo
*TII
, const DebugLoc
&dl
,
9529 unsigned StSize
, unsigned Data
, unsigned AddrIn
,
9530 unsigned AddrOut
, bool IsThumb1
, bool IsThumb2
) {
9531 unsigned StOpc
= getStOpcode(StSize
, IsThumb1
, IsThumb2
);
9532 assert(StOpc
!= 0 && "Should have a store opcode");
9534 BuildMI(*BB
, Pos
, dl
, TII
->get(StOpc
), AddrOut
)
9538 .add(predOps(ARMCC::AL
));
9539 } else if (IsThumb1
) {
9540 // store + update AddrIn
9541 BuildMI(*BB
, Pos
, dl
, TII
->get(StOpc
))
9545 .add(predOps(ARMCC::AL
));
9546 BuildMI(*BB
, Pos
, dl
, TII
->get(ARM::tADDi8
), AddrOut
)
9547 .add(t1CondCodeOp())
9550 .add(predOps(ARMCC::AL
));
9551 } else if (IsThumb2
) {
9552 BuildMI(*BB
, Pos
, dl
, TII
->get(StOpc
), AddrOut
)
9556 .add(predOps(ARMCC::AL
));
9558 BuildMI(*BB
, Pos
, dl
, TII
->get(StOpc
), AddrOut
)
9563 .add(predOps(ARMCC::AL
));
9568 ARMTargetLowering::EmitStructByval(MachineInstr
&MI
,
9569 MachineBasicBlock
*BB
) const {
9570 // This pseudo instruction has 3 operands: dst, src, size
9571 // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
9572 // Otherwise, we will generate unrolled scalar copies.
9573 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
9574 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
9575 MachineFunction::iterator It
= ++BB
->getIterator();
9577 unsigned dest
= MI
.getOperand(0).getReg();
9578 unsigned src
= MI
.getOperand(1).getReg();
9579 unsigned SizeVal
= MI
.getOperand(2).getImm();
9580 unsigned Align
= MI
.getOperand(3).getImm();
9581 DebugLoc dl
= MI
.getDebugLoc();
9583 MachineFunction
*MF
= BB
->getParent();
9584 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
9585 unsigned UnitSize
= 0;
9586 const TargetRegisterClass
*TRC
= nullptr;
9587 const TargetRegisterClass
*VecTRC
= nullptr;
9589 bool IsThumb1
= Subtarget
->isThumb1Only();
9590 bool IsThumb2
= Subtarget
->isThumb2();
9591 bool IsThumb
= Subtarget
->isThumb();
9595 } else if (Align
& 2) {
9598 // Check whether we can use NEON instructions.
9599 if (!MF
->getFunction().hasFnAttribute(Attribute::NoImplicitFloat
) &&
9600 Subtarget
->hasNEON()) {
9601 if ((Align
% 16 == 0) && SizeVal
>= 16)
9603 else if ((Align
% 8 == 0) && SizeVal
>= 8)
9606 // Can't use NEON instructions.
9611 // Select the correct opcode and register class for unit size load/store
9612 bool IsNeon
= UnitSize
>= 8;
9613 TRC
= IsThumb
? &ARM::tGPRRegClass
: &ARM::GPRRegClass
;
9615 VecTRC
= UnitSize
== 16 ? &ARM::DPairRegClass
9616 : UnitSize
== 8 ? &ARM::DPRRegClass
9619 unsigned BytesLeft
= SizeVal
% UnitSize
;
9620 unsigned LoopSize
= SizeVal
- BytesLeft
;
9622 if (SizeVal
<= Subtarget
->getMaxInlineSizeThreshold()) {
9623 // Use LDR and STR to copy.
9624 // [scratch, srcOut] = LDR_POST(srcIn, UnitSize)
9625 // [destOut] = STR_POST(scratch, destIn, UnitSize)
9626 unsigned srcIn
= src
;
9627 unsigned destIn
= dest
;
9628 for (unsigned i
= 0; i
< LoopSize
; i
+=UnitSize
) {
9629 unsigned srcOut
= MRI
.createVirtualRegister(TRC
);
9630 unsigned destOut
= MRI
.createVirtualRegister(TRC
);
9631 unsigned scratch
= MRI
.createVirtualRegister(IsNeon
? VecTRC
: TRC
);
9632 emitPostLd(BB
, MI
, TII
, dl
, UnitSize
, scratch
, srcIn
, srcOut
,
9633 IsThumb1
, IsThumb2
);
9634 emitPostSt(BB
, MI
, TII
, dl
, UnitSize
, scratch
, destIn
, destOut
,
9635 IsThumb1
, IsThumb2
);
9640 // Handle the leftover bytes with LDRB and STRB.
9641 // [scratch, srcOut] = LDRB_POST(srcIn, 1)
9642 // [destOut] = STRB_POST(scratch, destIn, 1)
9643 for (unsigned i
= 0; i
< BytesLeft
; i
++) {
9644 unsigned srcOut
= MRI
.createVirtualRegister(TRC
);
9645 unsigned destOut
= MRI
.createVirtualRegister(TRC
);
9646 unsigned scratch
= MRI
.createVirtualRegister(TRC
);
9647 emitPostLd(BB
, MI
, TII
, dl
, 1, scratch
, srcIn
, srcOut
,
9648 IsThumb1
, IsThumb2
);
9649 emitPostSt(BB
, MI
, TII
, dl
, 1, scratch
, destIn
, destOut
,
9650 IsThumb1
, IsThumb2
);
9654 MI
.eraseFromParent(); // The instruction is gone now.
9658 // Expand the pseudo op to a loop.
9661 // movw varEnd, # --> with thumb2
9663 // ldrcp varEnd, idx --> without thumb2
9664 // fallthrough --> loopMBB
9666 // PHI varPhi, varEnd, varLoop
9667 // PHI srcPhi, src, srcLoop
9668 // PHI destPhi, dst, destLoop
9669 // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
9670 // [destLoop] = STR_POST(scratch, destPhi, UnitSize)
9671 // subs varLoop, varPhi, #UnitSize
9673 // fallthrough --> exitMBB
9675 // epilogue to handle left-over bytes
9676 // [scratch, srcOut] = LDRB_POST(srcLoop, 1)
9677 // [destOut] = STRB_POST(scratch, destLoop, 1)
9678 MachineBasicBlock
*loopMBB
= MF
->CreateMachineBasicBlock(LLVM_BB
);
9679 MachineBasicBlock
*exitMBB
= MF
->CreateMachineBasicBlock(LLVM_BB
);
9680 MF
->insert(It
, loopMBB
);
9681 MF
->insert(It
, exitMBB
);
9683 // Transfer the remainder of BB and its successor edges to exitMBB.
9684 exitMBB
->splice(exitMBB
->begin(), BB
,
9685 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
9686 exitMBB
->transferSuccessorsAndUpdatePHIs(BB
);
9688 // Load an immediate to varEnd.
9689 unsigned varEnd
= MRI
.createVirtualRegister(TRC
);
9690 if (Subtarget
->useMovt()) {
9691 unsigned Vtmp
= varEnd
;
9692 if ((LoopSize
& 0xFFFF0000) != 0)
9693 Vtmp
= MRI
.createVirtualRegister(TRC
);
9694 BuildMI(BB
, dl
, TII
->get(IsThumb
? ARM::t2MOVi16
: ARM::MOVi16
), Vtmp
)
9695 .addImm(LoopSize
& 0xFFFF)
9696 .add(predOps(ARMCC::AL
));
9698 if ((LoopSize
& 0xFFFF0000) != 0)
9699 BuildMI(BB
, dl
, TII
->get(IsThumb
? ARM::t2MOVTi16
: ARM::MOVTi16
), varEnd
)
9701 .addImm(LoopSize
>> 16)
9702 .add(predOps(ARMCC::AL
));
9704 MachineConstantPool
*ConstantPool
= MF
->getConstantPool();
9705 Type
*Int32Ty
= Type::getInt32Ty(MF
->getFunction().getContext());
9706 const Constant
*C
= ConstantInt::get(Int32Ty
, LoopSize
);
9708 // MachineConstantPool wants an explicit alignment.
9709 unsigned Align
= MF
->getDataLayout().getPrefTypeAlignment(Int32Ty
);
9711 Align
= MF
->getDataLayout().getTypeAllocSize(C
->getType());
9712 unsigned Idx
= ConstantPool
->getConstantPoolIndex(C
, Align
);
9713 MachineMemOperand
*CPMMO
=
9714 MF
->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF
),
9715 MachineMemOperand::MOLoad
, 4, 4);
9718 BuildMI(*BB
, MI
, dl
, TII
->get(ARM::tLDRpci
))
9719 .addReg(varEnd
, RegState::Define
)
9720 .addConstantPoolIndex(Idx
)
9721 .add(predOps(ARMCC::AL
))
9722 .addMemOperand(CPMMO
);
9724 BuildMI(*BB
, MI
, dl
, TII
->get(ARM::LDRcp
))
9725 .addReg(varEnd
, RegState::Define
)
9726 .addConstantPoolIndex(Idx
)
9728 .add(predOps(ARMCC::AL
))
9729 .addMemOperand(CPMMO
);
9731 BB
->addSuccessor(loopMBB
);
9733 // Generate the loop body:
9734 // varPhi = PHI(varLoop, varEnd)
9735 // srcPhi = PHI(srcLoop, src)
9736 // destPhi = PHI(destLoop, dst)
9737 MachineBasicBlock
*entryBB
= BB
;
9739 unsigned varLoop
= MRI
.createVirtualRegister(TRC
);
9740 unsigned varPhi
= MRI
.createVirtualRegister(TRC
);
9741 unsigned srcLoop
= MRI
.createVirtualRegister(TRC
);
9742 unsigned srcPhi
= MRI
.createVirtualRegister(TRC
);
9743 unsigned destLoop
= MRI
.createVirtualRegister(TRC
);
9744 unsigned destPhi
= MRI
.createVirtualRegister(TRC
);
9746 BuildMI(*BB
, BB
->begin(), dl
, TII
->get(ARM::PHI
), varPhi
)
9747 .addReg(varLoop
).addMBB(loopMBB
)
9748 .addReg(varEnd
).addMBB(entryBB
);
9749 BuildMI(BB
, dl
, TII
->get(ARM::PHI
), srcPhi
)
9750 .addReg(srcLoop
).addMBB(loopMBB
)
9751 .addReg(src
).addMBB(entryBB
);
9752 BuildMI(BB
, dl
, TII
->get(ARM::PHI
), destPhi
)
9753 .addReg(destLoop
).addMBB(loopMBB
)
9754 .addReg(dest
).addMBB(entryBB
);
9756 // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
9757 // [destLoop] = STR_POST(scratch, destPhi, UnitSiz)
9758 unsigned scratch
= MRI
.createVirtualRegister(IsNeon
? VecTRC
: TRC
);
9759 emitPostLd(BB
, BB
->end(), TII
, dl
, UnitSize
, scratch
, srcPhi
, srcLoop
,
9760 IsThumb1
, IsThumb2
);
9761 emitPostSt(BB
, BB
->end(), TII
, dl
, UnitSize
, scratch
, destPhi
, destLoop
,
9762 IsThumb1
, IsThumb2
);
9764 // Decrement loop variable by UnitSize.
9766 BuildMI(*BB
, BB
->end(), dl
, TII
->get(ARM::tSUBi8
), varLoop
)
9767 .add(t1CondCodeOp())
9770 .add(predOps(ARMCC::AL
));
9772 MachineInstrBuilder MIB
=
9773 BuildMI(*BB
, BB
->end(), dl
,
9774 TII
->get(IsThumb2
? ARM::t2SUBri
: ARM::SUBri
), varLoop
);
9777 .add(predOps(ARMCC::AL
))
9779 MIB
->getOperand(5).setReg(ARM::CPSR
);
9780 MIB
->getOperand(5).setIsDef(true);
9782 BuildMI(*BB
, BB
->end(), dl
,
9783 TII
->get(IsThumb1
? ARM::tBcc
: IsThumb2
? ARM::t2Bcc
: ARM::Bcc
))
9784 .addMBB(loopMBB
).addImm(ARMCC::NE
).addReg(ARM::CPSR
);
9786 // loopMBB can loop back to loopMBB or fall through to exitMBB.
9787 BB
->addSuccessor(loopMBB
);
9788 BB
->addSuccessor(exitMBB
);
9790 // Add epilogue to handle BytesLeft.
9792 auto StartOfExit
= exitMBB
->begin();
9794 // [scratch, srcOut] = LDRB_POST(srcLoop, 1)
9795 // [destOut] = STRB_POST(scratch, destLoop, 1)
9796 unsigned srcIn
= srcLoop
;
9797 unsigned destIn
= destLoop
;
9798 for (unsigned i
= 0; i
< BytesLeft
; i
++) {
9799 unsigned srcOut
= MRI
.createVirtualRegister(TRC
);
9800 unsigned destOut
= MRI
.createVirtualRegister(TRC
);
9801 unsigned scratch
= MRI
.createVirtualRegister(TRC
);
9802 emitPostLd(BB
, StartOfExit
, TII
, dl
, 1, scratch
, srcIn
, srcOut
,
9803 IsThumb1
, IsThumb2
);
9804 emitPostSt(BB
, StartOfExit
, TII
, dl
, 1, scratch
, destIn
, destOut
,
9805 IsThumb1
, IsThumb2
);
9810 MI
.eraseFromParent(); // The instruction is gone now.
9815 ARMTargetLowering::EmitLowered__chkstk(MachineInstr
&MI
,
9816 MachineBasicBlock
*MBB
) const {
9817 const TargetMachine
&TM
= getTargetMachine();
9818 const TargetInstrInfo
&TII
= *Subtarget
->getInstrInfo();
9819 DebugLoc DL
= MI
.getDebugLoc();
9821 assert(Subtarget
->isTargetWindows() &&
9822 "__chkstk is only supported on Windows");
9823 assert(Subtarget
->isThumb2() && "Windows on ARM requires Thumb-2 mode");
9825 // __chkstk takes the number of words to allocate on the stack in R4, and
9826 // returns the stack adjustment in number of bytes in R4. This will not
9827 // clober any other registers (other than the obvious lr).
9829 // Although, technically, IP should be considered a register which may be
9830 // clobbered, the call itself will not touch it. Windows on ARM is a pure
9831 // thumb-2 environment, so there is no interworking required. As a result, we
9832 // do not expect a veneer to be emitted by the linker, clobbering IP.
9834 // Each module receives its own copy of __chkstk, so no import thunk is
9835 // required, again, ensuring that IP is not clobbered.
9837 // Finally, although some linkers may theoretically provide a trampoline for
9838 // out of range calls (which is quite common due to a 32M range limitation of
9839 // branches for Thumb), we can generate the long-call version via
9840 // -mcmodel=large, alleviating the need for the trampoline which may clobber
9843 switch (TM
.getCodeModel()) {
9844 case CodeModel::Tiny
:
9845 llvm_unreachable("Tiny code model not available on ARM.");
9846 case CodeModel::Small
:
9847 case CodeModel::Medium
:
9848 case CodeModel::Kernel
:
9849 BuildMI(*MBB
, MI
, DL
, TII
.get(ARM::tBL
))
9850 .add(predOps(ARMCC::AL
))
9851 .addExternalSymbol("__chkstk")
9852 .addReg(ARM::R4
, RegState::Implicit
| RegState::Kill
)
9853 .addReg(ARM::R4
, RegState::Implicit
| RegState::Define
)
9855 RegState::Implicit
| RegState::Define
| RegState::Dead
)
9857 RegState::Implicit
| RegState::Define
| RegState::Dead
);
9859 case CodeModel::Large
: {
9860 MachineRegisterInfo
&MRI
= MBB
->getParent()->getRegInfo();
9861 unsigned Reg
= MRI
.createVirtualRegister(&ARM::rGPRRegClass
);
9863 BuildMI(*MBB
, MI
, DL
, TII
.get(ARM::t2MOVi32imm
), Reg
)
9864 .addExternalSymbol("__chkstk");
9865 BuildMI(*MBB
, MI
, DL
, TII
.get(ARM::tBLXr
))
9866 .add(predOps(ARMCC::AL
))
9867 .addReg(Reg
, RegState::Kill
)
9868 .addReg(ARM::R4
, RegState::Implicit
| RegState::Kill
)
9869 .addReg(ARM::R4
, RegState::Implicit
| RegState::Define
)
9871 RegState::Implicit
| RegState::Define
| RegState::Dead
)
9873 RegState::Implicit
| RegState::Define
| RegState::Dead
);
9878 BuildMI(*MBB
, MI
, DL
, TII
.get(ARM::t2SUBrr
), ARM::SP
)
9879 .addReg(ARM::SP
, RegState::Kill
)
9880 .addReg(ARM::R4
, RegState::Kill
)
9881 .setMIFlags(MachineInstr::FrameSetup
)
9882 .add(predOps(ARMCC::AL
))
9885 MI
.eraseFromParent();
9890 ARMTargetLowering::EmitLowered__dbzchk(MachineInstr
&MI
,
9891 MachineBasicBlock
*MBB
) const {
9892 DebugLoc DL
= MI
.getDebugLoc();
9893 MachineFunction
*MF
= MBB
->getParent();
9894 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
9896 MachineBasicBlock
*ContBB
= MF
->CreateMachineBasicBlock();
9897 MF
->insert(++MBB
->getIterator(), ContBB
);
9898 ContBB
->splice(ContBB
->begin(), MBB
,
9899 std::next(MachineBasicBlock::iterator(MI
)), MBB
->end());
9900 ContBB
->transferSuccessorsAndUpdatePHIs(MBB
);
9901 MBB
->addSuccessor(ContBB
);
9903 MachineBasicBlock
*TrapBB
= MF
->CreateMachineBasicBlock();
9904 BuildMI(TrapBB
, DL
, TII
->get(ARM::t__brkdiv0
));
9905 MF
->push_back(TrapBB
);
9906 MBB
->addSuccessor(TrapBB
);
9908 BuildMI(*MBB
, MI
, DL
, TII
->get(ARM::tCMPi8
))
9909 .addReg(MI
.getOperand(0).getReg())
9911 .add(predOps(ARMCC::AL
));
9912 BuildMI(*MBB
, MI
, DL
, TII
->get(ARM::t2Bcc
))
9917 MI
.eraseFromParent();
9921 // The CPSR operand of SelectItr might be missing a kill marker
9922 // because there were multiple uses of CPSR, and ISel didn't know
9923 // which to mark. Figure out whether SelectItr should have had a
9924 // kill marker, and set it if it should. Returns the correct kill
9926 static bool checkAndUpdateCPSRKill(MachineBasicBlock::iterator SelectItr
,
9927 MachineBasicBlock
* BB
,
9928 const TargetRegisterInfo
* TRI
) {
9929 // Scan forward through BB for a use/def of CPSR.
9930 MachineBasicBlock::iterator
miI(std::next(SelectItr
));
9931 for (MachineBasicBlock::iterator miE
= BB
->end(); miI
!= miE
; ++miI
) {
9932 const MachineInstr
& mi
= *miI
;
9933 if (mi
.readsRegister(ARM::CPSR
))
9935 if (mi
.definesRegister(ARM::CPSR
))
9936 break; // Should have kill-flag - update below.
9939 // If we hit the end of the block, check whether CPSR is live into a
9941 if (miI
== BB
->end()) {
9942 for (MachineBasicBlock::succ_iterator sItr
= BB
->succ_begin(),
9943 sEnd
= BB
->succ_end();
9944 sItr
!= sEnd
; ++sItr
) {
9945 MachineBasicBlock
* succ
= *sItr
;
9946 if (succ
->isLiveIn(ARM::CPSR
))
9951 // We found a def, or hit the end of the basic block and CPSR wasn't live
9952 // out. SelectMI should have a kill flag on CPSR.
9953 SelectItr
->addRegisterKilled(ARM::CPSR
, TRI
);
9958 ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr
&MI
,
9959 MachineBasicBlock
*BB
) const {
9960 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
9961 DebugLoc dl
= MI
.getDebugLoc();
9962 bool isThumb2
= Subtarget
->isThumb2();
9963 switch (MI
.getOpcode()) {
9966 llvm_unreachable("Unexpected instr type to insert");
9969 // Thumb1 post-indexed loads are really just single-register LDMs.
9970 case ARM::tLDR_postidx
: {
9971 MachineOperand
Def(MI
.getOperand(1));
9972 BuildMI(*BB
, MI
, dl
, TII
->get(ARM::tLDMIA_UPD
))
9974 .add(MI
.getOperand(2)) // Rn
9975 .add(MI
.getOperand(3)) // PredImm
9976 .add(MI
.getOperand(4)) // PredReg
9977 .add(MI
.getOperand(0)) // Rt
9979 MI
.eraseFromParent();
9983 // The Thumb2 pre-indexed stores have the same MI operands, they just
9984 // define them differently in the .td files from the isel patterns, so
9985 // they need pseudos.
9986 case ARM::t2STR_preidx
:
9987 MI
.setDesc(TII
->get(ARM::t2STR_PRE
));
9989 case ARM::t2STRB_preidx
:
9990 MI
.setDesc(TII
->get(ARM::t2STRB_PRE
));
9992 case ARM::t2STRH_preidx
:
9993 MI
.setDesc(TII
->get(ARM::t2STRH_PRE
));
9996 case ARM::STRi_preidx
:
9997 case ARM::STRBi_preidx
: {
9998 unsigned NewOpc
= MI
.getOpcode() == ARM::STRi_preidx
? ARM::STR_PRE_IMM
9999 : ARM::STRB_PRE_IMM
;
10000 // Decode the offset.
10001 unsigned Offset
= MI
.getOperand(4).getImm();
10002 bool isSub
= ARM_AM::getAM2Op(Offset
) == ARM_AM::sub
;
10003 Offset
= ARM_AM::getAM2Offset(Offset
);
10007 MachineMemOperand
*MMO
= *MI
.memoperands_begin();
10008 BuildMI(*BB
, MI
, dl
, TII
->get(NewOpc
))
10009 .add(MI
.getOperand(0)) // Rn_wb
10010 .add(MI
.getOperand(1)) // Rt
10011 .add(MI
.getOperand(2)) // Rn
10012 .addImm(Offset
) // offset (skip GPR==zero_reg)
10013 .add(MI
.getOperand(5)) // pred
10014 .add(MI
.getOperand(6))
10015 .addMemOperand(MMO
);
10016 MI
.eraseFromParent();
10019 case ARM::STRr_preidx
:
10020 case ARM::STRBr_preidx
:
10021 case ARM::STRH_preidx
: {
10023 switch (MI
.getOpcode()) {
10024 default: llvm_unreachable("unexpected opcode!");
10025 case ARM::STRr_preidx
: NewOpc
= ARM::STR_PRE_REG
; break;
10026 case ARM::STRBr_preidx
: NewOpc
= ARM::STRB_PRE_REG
; break;
10027 case ARM::STRH_preidx
: NewOpc
= ARM::STRH_PRE
; break;
10029 MachineInstrBuilder MIB
= BuildMI(*BB
, MI
, dl
, TII
->get(NewOpc
));
10030 for (unsigned i
= 0; i
< MI
.getNumOperands(); ++i
)
10031 MIB
.add(MI
.getOperand(i
));
10032 MI
.eraseFromParent();
10036 case ARM::tMOVCCr_pseudo
: {
10037 // To "insert" a SELECT_CC instruction, we actually have to insert the
10038 // diamond control-flow pattern. The incoming instruction knows the
10039 // destination vreg to set, the condition code register to branch on, the
10040 // true/false values to select between, and a branch opcode to use.
10041 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
10042 MachineFunction::iterator It
= ++BB
->getIterator();
10047 // cmpTY ccX, r1, r2
10049 // fallthrough --> copy0MBB
10050 MachineBasicBlock
*thisMBB
= BB
;
10051 MachineFunction
*F
= BB
->getParent();
10052 MachineBasicBlock
*copy0MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
10053 MachineBasicBlock
*sinkMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
10054 F
->insert(It
, copy0MBB
);
10055 F
->insert(It
, sinkMBB
);
10057 // Check whether CPSR is live past the tMOVCCr_pseudo.
10058 const TargetRegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
10059 if (!MI
.killsRegister(ARM::CPSR
) &&
10060 !checkAndUpdateCPSRKill(MI
, thisMBB
, TRI
)) {
10061 copy0MBB
->addLiveIn(ARM::CPSR
);
10062 sinkMBB
->addLiveIn(ARM::CPSR
);
10065 // Transfer the remainder of BB and its successor edges to sinkMBB.
10066 sinkMBB
->splice(sinkMBB
->begin(), BB
,
10067 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
10068 sinkMBB
->transferSuccessorsAndUpdatePHIs(BB
);
10070 BB
->addSuccessor(copy0MBB
);
10071 BB
->addSuccessor(sinkMBB
);
10073 BuildMI(BB
, dl
, TII
->get(ARM::tBcc
))
10075 .addImm(MI
.getOperand(3).getImm())
10076 .addReg(MI
.getOperand(4).getReg());
10079 // %FalseValue = ...
10080 // # fallthrough to sinkMBB
10083 // Update machine-CFG edges
10084 BB
->addSuccessor(sinkMBB
);
10087 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
10090 BuildMI(*BB
, BB
->begin(), dl
, TII
->get(ARM::PHI
), MI
.getOperand(0).getReg())
10091 .addReg(MI
.getOperand(1).getReg())
10093 .addReg(MI
.getOperand(2).getReg())
10096 MI
.eraseFromParent(); // The pseudo instruction is gone now.
10101 case ARM::BCCZi64
: {
10102 // If there is an unconditional branch to the other successor, remove it.
10103 BB
->erase(std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
10105 // Compare both parts that make up the double comparison separately for
10107 bool RHSisZero
= MI
.getOpcode() == ARM::BCCZi64
;
10109 unsigned LHS1
= MI
.getOperand(1).getReg();
10110 unsigned LHS2
= MI
.getOperand(2).getReg();
10112 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPri
: ARM::CMPri
))
10115 .add(predOps(ARMCC::AL
));
10116 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPri
: ARM::CMPri
))
10117 .addReg(LHS2
).addImm(0)
10118 .addImm(ARMCC::EQ
).addReg(ARM::CPSR
);
10120 unsigned RHS1
= MI
.getOperand(3).getReg();
10121 unsigned RHS2
= MI
.getOperand(4).getReg();
10122 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPrr
: ARM::CMPrr
))
10125 .add(predOps(ARMCC::AL
));
10126 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPrr
: ARM::CMPrr
))
10127 .addReg(LHS2
).addReg(RHS2
)
10128 .addImm(ARMCC::EQ
).addReg(ARM::CPSR
);
10131 MachineBasicBlock
*destMBB
= MI
.getOperand(RHSisZero
? 3 : 5).getMBB();
10132 MachineBasicBlock
*exitMBB
= OtherSucc(BB
, destMBB
);
10133 if (MI
.getOperand(0).getImm() == ARMCC::NE
)
10134 std::swap(destMBB
, exitMBB
);
10136 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2Bcc
: ARM::Bcc
))
10137 .addMBB(destMBB
).addImm(ARMCC::EQ
).addReg(ARM::CPSR
);
10139 BuildMI(BB
, dl
, TII
->get(ARM::t2B
))
10141 .add(predOps(ARMCC::AL
));
10143 BuildMI(BB
, dl
, TII
->get(ARM::B
)) .addMBB(exitMBB
);
10145 MI
.eraseFromParent(); // The pseudo instruction is gone now.
10149 case ARM::Int_eh_sjlj_setjmp
:
10150 case ARM::Int_eh_sjlj_setjmp_nofp
:
10151 case ARM::tInt_eh_sjlj_setjmp
:
10152 case ARM::t2Int_eh_sjlj_setjmp
:
10153 case ARM::t2Int_eh_sjlj_setjmp_nofp
:
10156 case ARM::Int_eh_sjlj_setup_dispatch
:
10157 EmitSjLjDispatchBlock(MI
, BB
);
10162 // To insert an ABS instruction, we have to insert the
10163 // diamond control-flow pattern. The incoming instruction knows the
10164 // source vreg to test against 0, the destination vreg to set,
10165 // the condition code register to branch on, the
10166 // true/false values to select between, and a branch opcode to use.
10171 // BCC (branch to SinkBB if V0 >= 0)
10172 // RSBBB: V3 = RSBri V2, 0 (compute ABS if V2 < 0)
10173 // SinkBB: V1 = PHI(V2, V3)
10174 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
10175 MachineFunction::iterator BBI
= ++BB
->getIterator();
10176 MachineFunction
*Fn
= BB
->getParent();
10177 MachineBasicBlock
*RSBBB
= Fn
->CreateMachineBasicBlock(LLVM_BB
);
10178 MachineBasicBlock
*SinkBB
= Fn
->CreateMachineBasicBlock(LLVM_BB
);
10179 Fn
->insert(BBI
, RSBBB
);
10180 Fn
->insert(BBI
, SinkBB
);
10182 unsigned int ABSSrcReg
= MI
.getOperand(1).getReg();
10183 unsigned int ABSDstReg
= MI
.getOperand(0).getReg();
10184 bool ABSSrcKIll
= MI
.getOperand(1).isKill();
10185 bool isThumb2
= Subtarget
->isThumb2();
10186 MachineRegisterInfo
&MRI
= Fn
->getRegInfo();
10187 // In Thumb mode S must not be specified if source register is the SP or
10188 // PC and if destination register is the SP, so restrict register class
10189 unsigned NewRsbDstReg
=
10190 MRI
.createVirtualRegister(isThumb2
? &ARM::rGPRRegClass
: &ARM::GPRRegClass
);
10192 // Transfer the remainder of BB and its successor edges to sinkMBB.
10193 SinkBB
->splice(SinkBB
->begin(), BB
,
10194 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
10195 SinkBB
->transferSuccessorsAndUpdatePHIs(BB
);
10197 BB
->addSuccessor(RSBBB
);
10198 BB
->addSuccessor(SinkBB
);
10200 // fall through to SinkMBB
10201 RSBBB
->addSuccessor(SinkBB
);
10203 // insert a cmp at the end of BB
10204 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPri
: ARM::CMPri
))
10207 .add(predOps(ARMCC::AL
));
10209 // insert a bcc with opposite CC to ARMCC::MI at the end of BB
10211 TII
->get(isThumb2
? ARM::t2Bcc
: ARM::Bcc
)).addMBB(SinkBB
)
10212 .addImm(ARMCC::getOppositeCondition(ARMCC::MI
)).addReg(ARM::CPSR
);
10214 // insert rsbri in RSBBB
10215 // Note: BCC and rsbri will be converted into predicated rsbmi
10216 // by if-conversion pass
10217 BuildMI(*RSBBB
, RSBBB
->begin(), dl
,
10218 TII
->get(isThumb2
? ARM::t2RSBri
: ARM::RSBri
), NewRsbDstReg
)
10219 .addReg(ABSSrcReg
, ABSSrcKIll
? RegState::Kill
: 0)
10221 .add(predOps(ARMCC::AL
))
10222 .add(condCodeOp());
10224 // insert PHI in SinkBB,
10225 // reuse ABSDstReg to not change uses of ABS instruction
10226 BuildMI(*SinkBB
, SinkBB
->begin(), dl
,
10227 TII
->get(ARM::PHI
), ABSDstReg
)
10228 .addReg(NewRsbDstReg
).addMBB(RSBBB
)
10229 .addReg(ABSSrcReg
).addMBB(BB
);
10231 // remove ABS instruction
10232 MI
.eraseFromParent();
10234 // return last added BB
10237 case ARM::COPY_STRUCT_BYVAL_I32
:
10239 return EmitStructByval(MI
, BB
);
10240 case ARM::WIN__CHKSTK
:
10241 return EmitLowered__chkstk(MI
, BB
);
10242 case ARM::WIN__DBZCHK
:
10243 return EmitLowered__dbzchk(MI
, BB
);
10247 /// Attaches vregs to MEMCPY that it will use as scratch registers
10248 /// when it is expanded into LDM/STM. This is done as a post-isel lowering
10249 /// instead of as a custom inserter because we need the use list from the SDNode.
10250 static void attachMEMCPYScratchRegs(const ARMSubtarget
*Subtarget
,
10251 MachineInstr
&MI
, const SDNode
*Node
) {
10252 bool isThumb1
= Subtarget
->isThumb1Only();
10254 DebugLoc DL
= MI
.getDebugLoc();
10255 MachineFunction
*MF
= MI
.getParent()->getParent();
10256 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
10257 MachineInstrBuilder
MIB(*MF
, MI
);
10259 // If the new dst/src is unused mark it as dead.
10260 if (!Node
->hasAnyUseOfValue(0)) {
10261 MI
.getOperand(0).setIsDead(true);
10263 if (!Node
->hasAnyUseOfValue(1)) {
10264 MI
.getOperand(1).setIsDead(true);
10267 // The MEMCPY both defines and kills the scratch registers.
10268 for (unsigned I
= 0; I
!= MI
.getOperand(4).getImm(); ++I
) {
10269 unsigned TmpReg
= MRI
.createVirtualRegister(isThumb1
? &ARM::tGPRRegClass
10270 : &ARM::GPRRegClass
);
10271 MIB
.addReg(TmpReg
, RegState::Define
|RegState::Dead
);
10275 void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr
&MI
,
10276 SDNode
*Node
) const {
10277 if (MI
.getOpcode() == ARM::MEMCPY
) {
10278 attachMEMCPYScratchRegs(Subtarget
, MI
, Node
);
10282 const MCInstrDesc
*MCID
= &MI
.getDesc();
10283 // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
10284 // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
10285 // operand is still set to noreg. If needed, set the optional operand's
10286 // register to CPSR, and remove the redundant implicit def.
10288 // e.g. ADCS (..., implicit-def CPSR) -> ADC (... opt:def CPSR).
10290 // Rename pseudo opcodes.
10291 unsigned NewOpc
= convertAddSubFlagsOpcode(MI
.getOpcode());
10294 const ARMBaseInstrInfo
*TII
= Subtarget
->getInstrInfo();
10295 MCID
= &TII
->get(NewOpc
);
10297 assert(MCID
->getNumOperands() ==
10298 MI
.getDesc().getNumOperands() + 5 - MI
.getDesc().getSize()
10299 && "converted opcode should be the same except for cc_out"
10300 " (and, on Thumb1, pred)");
10304 // Add the optional cc_out operand
10305 MI
.addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
10307 // On Thumb1, move all input operands to the end, then add the predicate
10308 if (Subtarget
->isThumb1Only()) {
10309 for (unsigned c
= MCID
->getNumOperands() - 4; c
--;) {
10310 MI
.addOperand(MI
.getOperand(1));
10311 MI
.RemoveOperand(1);
10314 // Restore the ties
10315 for (unsigned i
= MI
.getNumOperands(); i
--;) {
10316 const MachineOperand
& op
= MI
.getOperand(i
);
10317 if (op
.isReg() && op
.isUse()) {
10318 int DefIdx
= MCID
->getOperandConstraint(i
, MCOI::TIED_TO
);
10320 MI
.tieOperands(DefIdx
, i
);
10324 MI
.addOperand(MachineOperand::CreateImm(ARMCC::AL
));
10325 MI
.addOperand(MachineOperand::CreateReg(0, /*isDef=*/false));
10328 ccOutIdx
= MCID
->getNumOperands() - 1;
10330 ccOutIdx
= MCID
->getNumOperands() - 1;
10332 // Any ARM instruction that sets the 's' bit should specify an optional
10333 // "cc_out" operand in the last operand position.
10334 if (!MI
.hasOptionalDef() || !MCID
->OpInfo
[ccOutIdx
].isOptionalDef()) {
10335 assert(!NewOpc
&& "Optional cc_out operand required");
10338 // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
10339 // since we already have an optional CPSR def.
10340 bool definesCPSR
= false;
10341 bool deadCPSR
= false;
10342 for (unsigned i
= MCID
->getNumOperands(), e
= MI
.getNumOperands(); i
!= e
;
10344 const MachineOperand
&MO
= MI
.getOperand(i
);
10345 if (MO
.isReg() && MO
.isDef() && MO
.getReg() == ARM::CPSR
) {
10346 definesCPSR
= true;
10349 MI
.RemoveOperand(i
);
10353 if (!definesCPSR
) {
10354 assert(!NewOpc
&& "Optional cc_out operand required");
10357 assert(deadCPSR
== !Node
->hasAnyUseOfValue(1) && "inconsistent dead flag");
10359 assert(!MI
.getOperand(ccOutIdx
).getReg() &&
10360 "expect uninitialized optional cc_out operand");
10361 // Thumb1 instructions must have the S bit even if the CPSR is dead.
10362 if (!Subtarget
->isThumb1Only())
10366 // If this instruction was defined with an optional CPSR def and its dag node
10367 // had a live implicit CPSR def, then activate the optional CPSR def.
10368 MachineOperand
&MO
= MI
.getOperand(ccOutIdx
);
10369 MO
.setReg(ARM::CPSR
);
10373 //===----------------------------------------------------------------------===//
10374 // ARM Optimization Hooks
10375 //===----------------------------------------------------------------------===//
10377 // Helper function that checks if N is a null or all ones constant.
10378 static inline bool isZeroOrAllOnes(SDValue N
, bool AllOnes
) {
10379 return AllOnes
? isAllOnesConstant(N
) : isNullConstant(N
);
10382 // Return true if N is conditionally 0 or all ones.
10383 // Detects these expressions where cc is an i1 value:
10385 // (select cc 0, y) [AllOnes=0]
10386 // (select cc y, 0) [AllOnes=0]
10387 // (zext cc) [AllOnes=0]
10388 // (sext cc) [AllOnes=0/1]
10389 // (select cc -1, y) [AllOnes=1]
10390 // (select cc y, -1) [AllOnes=1]
10392 // Invert is set when N is the null/all ones constant when CC is false.
10393 // OtherOp is set to the alternative value of N.
10394 static bool isConditionalZeroOrAllOnes(SDNode
*N
, bool AllOnes
,
10395 SDValue
&CC
, bool &Invert
,
10397 SelectionDAG
&DAG
) {
10398 switch (N
->getOpcode()) {
10399 default: return false;
10400 case ISD::SELECT
: {
10401 CC
= N
->getOperand(0);
10402 SDValue N1
= N
->getOperand(1);
10403 SDValue N2
= N
->getOperand(2);
10404 if (isZeroOrAllOnes(N1
, AllOnes
)) {
10409 if (isZeroOrAllOnes(N2
, AllOnes
)) {
10416 case ISD::ZERO_EXTEND
:
10417 // (zext cc) can never be the all ones value.
10421 case ISD::SIGN_EXTEND
: {
10423 EVT VT
= N
->getValueType(0);
10424 CC
= N
->getOperand(0);
10425 if (CC
.getValueType() != MVT::i1
|| CC
.getOpcode() != ISD::SETCC
)
10429 // When looking for an AllOnes constant, N is an sext, and the 'other'
10431 OtherOp
= DAG
.getConstant(0, dl
, VT
);
10432 else if (N
->getOpcode() == ISD::ZERO_EXTEND
)
10433 // When looking for a 0 constant, N can be zext or sext.
10434 OtherOp
= DAG
.getConstant(1, dl
, VT
);
10436 OtherOp
= DAG
.getConstant(APInt::getAllOnesValue(VT
.getSizeInBits()), dl
,
10443 // Combine a constant select operand into its use:
10445 // (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
10446 // (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
10447 // (and (select cc, -1, c), x) -> (select cc, x, (and, x, c)) [AllOnes=1]
10448 // (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
10449 // (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
10451 // The transform is rejected if the select doesn't have a constant operand that
10452 // is null, or all ones when AllOnes is set.
10454 // Also recognize sext/zext from i1:
10456 // (add (zext cc), x) -> (select cc (add x, 1), x)
10457 // (add (sext cc), x) -> (select cc (add x, -1), x)
10459 // These transformations eventually create predicated instructions.
10461 // @param N The node to transform.
10462 // @param Slct The N operand that is a select.
10463 // @param OtherOp The other N operand (x above).
10464 // @param DCI Context.
10465 // @param AllOnes Require the select constant to be all ones instead of null.
10466 // @returns The new node, or SDValue() on failure.
10468 SDValue
combineSelectAndUse(SDNode
*N
, SDValue Slct
, SDValue OtherOp
,
10469 TargetLowering::DAGCombinerInfo
&DCI
,
10470 bool AllOnes
= false) {
10471 SelectionDAG
&DAG
= DCI
.DAG
;
10472 EVT VT
= N
->getValueType(0);
10473 SDValue NonConstantVal
;
10475 bool SwapSelectOps
;
10476 if (!isConditionalZeroOrAllOnes(Slct
.getNode(), AllOnes
, CCOp
, SwapSelectOps
,
10477 NonConstantVal
, DAG
))
10480 // Slct is now know to be the desired identity constant when CC is true.
10481 SDValue TrueVal
= OtherOp
;
10482 SDValue FalseVal
= DAG
.getNode(N
->getOpcode(), SDLoc(N
), VT
,
10483 OtherOp
, NonConstantVal
);
10484 // Unless SwapSelectOps says CC should be false.
10486 std::swap(TrueVal
, FalseVal
);
10488 return DAG
.getNode(ISD::SELECT
, SDLoc(N
), VT
,
10489 CCOp
, TrueVal
, FalseVal
);
10492 // Attempt combineSelectAndUse on each operand of a commutative operator N.
10494 SDValue
combineSelectAndUseCommutative(SDNode
*N
, bool AllOnes
,
10495 TargetLowering::DAGCombinerInfo
&DCI
) {
10496 SDValue N0
= N
->getOperand(0);
10497 SDValue N1
= N
->getOperand(1);
10498 if (N0
.getNode()->hasOneUse())
10499 if (SDValue Result
= combineSelectAndUse(N
, N0
, N1
, DCI
, AllOnes
))
10501 if (N1
.getNode()->hasOneUse())
10502 if (SDValue Result
= combineSelectAndUse(N
, N1
, N0
, DCI
, AllOnes
))
10507 static bool IsVUZPShuffleNode(SDNode
*N
) {
10508 // VUZP shuffle node.
10509 if (N
->getOpcode() == ARMISD::VUZP
)
10512 // "VUZP" on i32 is an alias for VTRN.
10513 if (N
->getOpcode() == ARMISD::VTRN
&& N
->getValueType(0) == MVT::v2i32
)
10519 static SDValue
AddCombineToVPADD(SDNode
*N
, SDValue N0
, SDValue N1
,
10520 TargetLowering::DAGCombinerInfo
&DCI
,
10521 const ARMSubtarget
*Subtarget
) {
10522 // Look for ADD(VUZP.0, VUZP.1).
10523 if (!IsVUZPShuffleNode(N0
.getNode()) || N0
.getNode() != N1
.getNode() ||
10527 // Make sure the ADD is a 64-bit add; there is no 128-bit VPADD.
10528 if (!N
->getValueType(0).is64BitVector())
10532 SelectionDAG
&DAG
= DCI
.DAG
;
10533 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
10535 SDNode
*Unzip
= N0
.getNode();
10536 EVT VT
= N
->getValueType(0);
10538 SmallVector
<SDValue
, 8> Ops
;
10539 Ops
.push_back(DAG
.getConstant(Intrinsic::arm_neon_vpadd
, dl
,
10540 TLI
.getPointerTy(DAG
.getDataLayout())));
10541 Ops
.push_back(Unzip
->getOperand(0));
10542 Ops
.push_back(Unzip
->getOperand(1));
10544 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
, Ops
);
10547 static SDValue
AddCombineVUZPToVPADDL(SDNode
*N
, SDValue N0
, SDValue N1
,
10548 TargetLowering::DAGCombinerInfo
&DCI
,
10549 const ARMSubtarget
*Subtarget
) {
10550 // Check for two extended operands.
10551 if (!(N0
.getOpcode() == ISD::SIGN_EXTEND
&&
10552 N1
.getOpcode() == ISD::SIGN_EXTEND
) &&
10553 !(N0
.getOpcode() == ISD::ZERO_EXTEND
&&
10554 N1
.getOpcode() == ISD::ZERO_EXTEND
))
10557 SDValue N00
= N0
.getOperand(0);
10558 SDValue N10
= N1
.getOperand(0);
10560 // Look for ADD(SEXT(VUZP.0), SEXT(VUZP.1))
10561 if (!IsVUZPShuffleNode(N00
.getNode()) || N00
.getNode() != N10
.getNode() ||
10565 // We only recognize Q register paddl here; this can't be reached until
10566 // after type legalization.
10567 if (!N00
.getValueType().is64BitVector() ||
10568 !N0
.getValueType().is128BitVector())
10571 // Generate vpaddl.
10572 SelectionDAG
&DAG
= DCI
.DAG
;
10573 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
10575 EVT VT
= N
->getValueType(0);
10577 SmallVector
<SDValue
, 8> Ops
;
10578 // Form vpaddl.sN or vpaddl.uN depending on the kind of extension.
10580 if (N0
.getOpcode() == ISD::SIGN_EXTEND
)
10581 Opcode
= Intrinsic::arm_neon_vpaddls
;
10583 Opcode
= Intrinsic::arm_neon_vpaddlu
;
10584 Ops
.push_back(DAG
.getConstant(Opcode
, dl
,
10585 TLI
.getPointerTy(DAG
.getDataLayout())));
10586 EVT ElemTy
= N00
.getValueType().getVectorElementType();
10587 unsigned NumElts
= VT
.getVectorNumElements();
10588 EVT ConcatVT
= EVT::getVectorVT(*DAG
.getContext(), ElemTy
, NumElts
* 2);
10589 SDValue Concat
= DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
), ConcatVT
,
10590 N00
.getOperand(0), N00
.getOperand(1));
10591 Ops
.push_back(Concat
);
10593 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
, Ops
);
10596 // FIXME: This function shouldn't be necessary; if we lower BUILD_VECTOR in
10597 // an appropriate manner, we end up with ADD(VUZP(ZEXT(N))), which is
10598 // much easier to match.
10600 AddCombineBUILD_VECTORToVPADDL(SDNode
*N
, SDValue N0
, SDValue N1
,
10601 TargetLowering::DAGCombinerInfo
&DCI
,
10602 const ARMSubtarget
*Subtarget
) {
10603 // Only perform optimization if after legalize, and if NEON is available. We
10604 // also expected both operands to be BUILD_VECTORs.
10605 if (DCI
.isBeforeLegalize() || !Subtarget
->hasNEON()
10606 || N0
.getOpcode() != ISD::BUILD_VECTOR
10607 || N1
.getOpcode() != ISD::BUILD_VECTOR
)
10610 // Check output type since VPADDL operand elements can only be 8, 16, or 32.
10611 EVT VT
= N
->getValueType(0);
10612 if (!VT
.isInteger() || VT
.getVectorElementType() == MVT::i64
)
10615 // Check that the vector operands are of the right form.
10616 // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
10617 // operands, where N is the size of the formed vector.
10618 // Each EXTRACT_VECTOR should have the same input vector and odd or even
10619 // index such that we have a pair wise add pattern.
10621 // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
10622 if (N0
->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT
)
10624 SDValue Vec
= N0
->getOperand(0)->getOperand(0);
10625 SDNode
*V
= Vec
.getNode();
10626 unsigned nextIndex
= 0;
10628 // For each operands to the ADD which are BUILD_VECTORs,
10629 // check to see if each of their operands are an EXTRACT_VECTOR with
10630 // the same vector and appropriate index.
10631 for (unsigned i
= 0, e
= N0
->getNumOperands(); i
!= e
; ++i
) {
10632 if (N0
->getOperand(i
)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
10633 && N1
->getOperand(i
)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
) {
10635 SDValue ExtVec0
= N0
->getOperand(i
);
10636 SDValue ExtVec1
= N1
->getOperand(i
);
10638 // First operand is the vector, verify its the same.
10639 if (V
!= ExtVec0
->getOperand(0).getNode() ||
10640 V
!= ExtVec1
->getOperand(0).getNode())
10643 // Second is the constant, verify its correct.
10644 ConstantSDNode
*C0
= dyn_cast
<ConstantSDNode
>(ExtVec0
->getOperand(1));
10645 ConstantSDNode
*C1
= dyn_cast
<ConstantSDNode
>(ExtVec1
->getOperand(1));
10647 // For the constant, we want to see all the even or all the odd.
10648 if (!C0
|| !C1
|| C0
->getZExtValue() != nextIndex
10649 || C1
->getZExtValue() != nextIndex
+1)
10652 // Increment index.
10658 // Don't generate vpaddl+vmovn; we'll match it to vpadd later. Also make sure
10659 // we're using the entire input vector, otherwise there's a size/legality
10660 // mismatch somewhere.
10661 if (nextIndex
!= Vec
.getValueType().getVectorNumElements() ||
10662 Vec
.getValueType().getVectorElementType() == VT
.getVectorElementType())
10665 // Create VPADDL node.
10666 SelectionDAG
&DAG
= DCI
.DAG
;
10667 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
10671 // Build operand list.
10672 SmallVector
<SDValue
, 8> Ops
;
10673 Ops
.push_back(DAG
.getConstant(Intrinsic::arm_neon_vpaddls
, dl
,
10674 TLI
.getPointerTy(DAG
.getDataLayout())));
10676 // Input is the vector.
10677 Ops
.push_back(Vec
);
10679 // Get widened type and narrowed type.
10681 unsigned numElem
= VT
.getVectorNumElements();
10683 EVT inputLaneType
= Vec
.getValueType().getVectorElementType();
10684 switch (inputLaneType
.getSimpleVT().SimpleTy
) {
10685 case MVT::i8
: widenType
= MVT::getVectorVT(MVT::i16
, numElem
); break;
10686 case MVT::i16
: widenType
= MVT::getVectorVT(MVT::i32
, numElem
); break;
10687 case MVT::i32
: widenType
= MVT::getVectorVT(MVT::i64
, numElem
); break;
10689 llvm_unreachable("Invalid vector element type for padd optimization.");
10692 SDValue tmp
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, widenType
, Ops
);
10693 unsigned ExtOp
= VT
.bitsGT(tmp
.getValueType()) ? ISD::ANY_EXTEND
: ISD::TRUNCATE
;
10694 return DAG
.getNode(ExtOp
, dl
, VT
, tmp
);
10697 static SDValue
findMUL_LOHI(SDValue V
) {
10698 if (V
->getOpcode() == ISD::UMUL_LOHI
||
10699 V
->getOpcode() == ISD::SMUL_LOHI
)
10704 static SDValue
AddCombineTo64BitSMLAL16(SDNode
*AddcNode
, SDNode
*AddeNode
,
10705 TargetLowering::DAGCombinerInfo
&DCI
,
10706 const ARMSubtarget
*Subtarget
) {
10707 if (Subtarget
->isThumb()) {
10708 if (!Subtarget
->hasDSP())
10710 } else if (!Subtarget
->hasV5TEOps())
10713 // SMLALBB, SMLALBT, SMLALTB, SMLALTT multiply two 16-bit values and
10714 // accumulates the product into a 64-bit value. The 16-bit values will
10715 // be sign extended somehow or SRA'd into 32-bit values
10716 // (addc (adde (mul 16bit, 16bit), lo), hi)
10717 SDValue Mul
= AddcNode
->getOperand(0);
10718 SDValue Lo
= AddcNode
->getOperand(1);
10719 if (Mul
.getOpcode() != ISD::MUL
) {
10720 Lo
= AddcNode
->getOperand(0);
10721 Mul
= AddcNode
->getOperand(1);
10722 if (Mul
.getOpcode() != ISD::MUL
)
10726 SDValue SRA
= AddeNode
->getOperand(0);
10727 SDValue Hi
= AddeNode
->getOperand(1);
10728 if (SRA
.getOpcode() != ISD::SRA
) {
10729 SRA
= AddeNode
->getOperand(1);
10730 Hi
= AddeNode
->getOperand(0);
10731 if (SRA
.getOpcode() != ISD::SRA
)
10734 if (auto Const
= dyn_cast
<ConstantSDNode
>(SRA
.getOperand(1))) {
10735 if (Const
->getZExtValue() != 31)
10740 if (SRA
.getOperand(0) != Mul
)
10743 SelectionDAG
&DAG
= DCI
.DAG
;
10744 SDLoc
dl(AddcNode
);
10745 unsigned Opcode
= 0;
10749 if (isS16(Mul
.getOperand(0), DAG
) && isS16(Mul
.getOperand(1), DAG
)) {
10750 Opcode
= ARMISD::SMLALBB
;
10751 Op0
= Mul
.getOperand(0);
10752 Op1
= Mul
.getOperand(1);
10753 } else if (isS16(Mul
.getOperand(0), DAG
) && isSRA16(Mul
.getOperand(1))) {
10754 Opcode
= ARMISD::SMLALBT
;
10755 Op0
= Mul
.getOperand(0);
10756 Op1
= Mul
.getOperand(1).getOperand(0);
10757 } else if (isSRA16(Mul
.getOperand(0)) && isS16(Mul
.getOperand(1), DAG
)) {
10758 Opcode
= ARMISD::SMLALTB
;
10759 Op0
= Mul
.getOperand(0).getOperand(0);
10760 Op1
= Mul
.getOperand(1);
10761 } else if (isSRA16(Mul
.getOperand(0)) && isSRA16(Mul
.getOperand(1))) {
10762 Opcode
= ARMISD::SMLALTT
;
10763 Op0
= Mul
->getOperand(0).getOperand(0);
10764 Op1
= Mul
->getOperand(1).getOperand(0);
10770 SDValue SMLAL
= DAG
.getNode(Opcode
, dl
, DAG
.getVTList(MVT::i32
, MVT::i32
),
10772 // Replace the ADDs' nodes uses by the MLA node's values.
10773 SDValue
HiMLALResult(SMLAL
.getNode(), 1);
10774 SDValue
LoMLALResult(SMLAL
.getNode(), 0);
10776 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddcNode
, 0), LoMLALResult
);
10777 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddeNode
, 0), HiMLALResult
);
10779 // Return original node to notify the driver to stop replacing.
10780 SDValue
resNode(AddcNode
, 0);
10784 static SDValue
AddCombineTo64bitMLAL(SDNode
*AddeSubeNode
,
10785 TargetLowering::DAGCombinerInfo
&DCI
,
10786 const ARMSubtarget
*Subtarget
) {
10787 // Look for multiply add opportunities.
10788 // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where
10789 // each add nodes consumes a value from ISD::UMUL_LOHI and there is
10790 // a glue link from the first add to the second add.
10791 // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by
10792 // a S/UMLAL instruction.
10795 // V \ [no multiline comment]
10801 // In the special case where only the higher part of a signed result is used
10802 // and the add to the low part of the result of ISD::UMUL_LOHI adds or subtracts
10803 // a constant with the exact value of 0x80000000, we recognize we are dealing
10804 // with a "rounded multiply and add" (or subtract) and transform it into
10805 // either a ARMISD::SMMLAR or ARMISD::SMMLSR respectively.
10807 assert((AddeSubeNode
->getOpcode() == ARMISD::ADDE
||
10808 AddeSubeNode
->getOpcode() == ARMISD::SUBE
) &&
10809 "Expect an ADDE or SUBE");
10811 assert(AddeSubeNode
->getNumOperands() == 3 &&
10812 AddeSubeNode
->getOperand(2).getValueType() == MVT::i32
&&
10813 "ADDE node has the wrong inputs");
10815 // Check that we are chained to the right ADDC or SUBC node.
10816 SDNode
*AddcSubcNode
= AddeSubeNode
->getOperand(2).getNode();
10817 if ((AddeSubeNode
->getOpcode() == ARMISD::ADDE
&&
10818 AddcSubcNode
->getOpcode() != ARMISD::ADDC
) ||
10819 (AddeSubeNode
->getOpcode() == ARMISD::SUBE
&&
10820 AddcSubcNode
->getOpcode() != ARMISD::SUBC
))
10823 SDValue AddcSubcOp0
= AddcSubcNode
->getOperand(0);
10824 SDValue AddcSubcOp1
= AddcSubcNode
->getOperand(1);
10826 // Check if the two operands are from the same mul_lohi node.
10827 if (AddcSubcOp0
.getNode() == AddcSubcOp1
.getNode())
10830 assert(AddcSubcNode
->getNumValues() == 2 &&
10831 AddcSubcNode
->getValueType(0) == MVT::i32
&&
10832 "Expect ADDC with two result values. First: i32");
10834 // Check that the ADDC adds the low result of the S/UMUL_LOHI. If not, it
10835 // maybe a SMLAL which multiplies two 16-bit values.
10836 if (AddeSubeNode
->getOpcode() == ARMISD::ADDE
&&
10837 AddcSubcOp0
->getOpcode() != ISD::UMUL_LOHI
&&
10838 AddcSubcOp0
->getOpcode() != ISD::SMUL_LOHI
&&
10839 AddcSubcOp1
->getOpcode() != ISD::UMUL_LOHI
&&
10840 AddcSubcOp1
->getOpcode() != ISD::SMUL_LOHI
)
10841 return AddCombineTo64BitSMLAL16(AddcSubcNode
, AddeSubeNode
, DCI
, Subtarget
);
10843 // Check for the triangle shape.
10844 SDValue AddeSubeOp0
= AddeSubeNode
->getOperand(0);
10845 SDValue AddeSubeOp1
= AddeSubeNode
->getOperand(1);
10847 // Make sure that the ADDE/SUBE operands are not coming from the same node.
10848 if (AddeSubeOp0
.getNode() == AddeSubeOp1
.getNode())
10851 // Find the MUL_LOHI node walking up ADDE/SUBE's operands.
10852 bool IsLeftOperandMUL
= false;
10853 SDValue MULOp
= findMUL_LOHI(AddeSubeOp0
);
10854 if (MULOp
== SDValue())
10855 MULOp
= findMUL_LOHI(AddeSubeOp1
);
10857 IsLeftOperandMUL
= true;
10858 if (MULOp
== SDValue())
10861 // Figure out the right opcode.
10862 unsigned Opc
= MULOp
->getOpcode();
10863 unsigned FinalOpc
= (Opc
== ISD::SMUL_LOHI
) ? ARMISD::SMLAL
: ARMISD::UMLAL
;
10865 // Figure out the high and low input values to the MLAL node.
10866 SDValue
*HiAddSub
= nullptr;
10867 SDValue
*LoMul
= nullptr;
10868 SDValue
*LowAddSub
= nullptr;
10870 // Ensure that ADDE/SUBE is from high result of ISD::xMUL_LOHI.
10871 if ((AddeSubeOp0
!= MULOp
.getValue(1)) && (AddeSubeOp1
!= MULOp
.getValue(1)))
10874 if (IsLeftOperandMUL
)
10875 HiAddSub
= &AddeSubeOp1
;
10877 HiAddSub
= &AddeSubeOp0
;
10879 // Ensure that LoMul and LowAddSub are taken from correct ISD::SMUL_LOHI node
10880 // whose low result is fed to the ADDC/SUBC we are checking.
10882 if (AddcSubcOp0
== MULOp
.getValue(0)) {
10883 LoMul
= &AddcSubcOp0
;
10884 LowAddSub
= &AddcSubcOp1
;
10886 if (AddcSubcOp1
== MULOp
.getValue(0)) {
10887 LoMul
= &AddcSubcOp1
;
10888 LowAddSub
= &AddcSubcOp0
;
10894 // If HiAddSub is the same node as ADDC/SUBC or is a predecessor of ADDC/SUBC
10895 // the replacement below will create a cycle.
10896 if (AddcSubcNode
== HiAddSub
->getNode() ||
10897 AddcSubcNode
->isPredecessorOf(HiAddSub
->getNode()))
10900 // Create the merged node.
10901 SelectionDAG
&DAG
= DCI
.DAG
;
10903 // Start building operand list.
10904 SmallVector
<SDValue
, 8> Ops
;
10905 Ops
.push_back(LoMul
->getOperand(0));
10906 Ops
.push_back(LoMul
->getOperand(1));
10908 // Check whether we can use SMMLAR, SMMLSR or SMMULR instead. For this to be
10909 // the case, we must be doing signed multiplication and only use the higher
10910 // part of the result of the MLAL, furthermore the LowAddSub must be a constant
10911 // addition or subtraction with the value of 0x800000.
10912 if (Subtarget
->hasV6Ops() && Subtarget
->hasDSP() && Subtarget
->useMulOps() &&
10913 FinalOpc
== ARMISD::SMLAL
&& !AddeSubeNode
->hasAnyUseOfValue(1) &&
10914 LowAddSub
->getNode()->getOpcode() == ISD::Constant
&&
10915 static_cast<ConstantSDNode
*>(LowAddSub
->getNode())->getZExtValue() ==
10917 Ops
.push_back(*HiAddSub
);
10918 if (AddcSubcNode
->getOpcode() == ARMISD::SUBC
) {
10919 FinalOpc
= ARMISD::SMMLSR
;
10921 FinalOpc
= ARMISD::SMMLAR
;
10923 SDValue NewNode
= DAG
.getNode(FinalOpc
, SDLoc(AddcSubcNode
), MVT::i32
, Ops
);
10924 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode
, 0), NewNode
);
10926 return SDValue(AddeSubeNode
, 0);
10927 } else if (AddcSubcNode
->getOpcode() == ARMISD::SUBC
)
10928 // SMMLS is generated during instruction selection and the rest of this
10929 // function can not handle the case where AddcSubcNode is a SUBC.
10932 // Finish building the operand list for {U/S}MLAL
10933 Ops
.push_back(*LowAddSub
);
10934 Ops
.push_back(*HiAddSub
);
10936 SDValue MLALNode
= DAG
.getNode(FinalOpc
, SDLoc(AddcSubcNode
),
10937 DAG
.getVTList(MVT::i32
, MVT::i32
), Ops
);
10939 // Replace the ADDs' nodes uses by the MLA node's values.
10940 SDValue
HiMLALResult(MLALNode
.getNode(), 1);
10941 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode
, 0), HiMLALResult
);
10943 SDValue
LoMLALResult(MLALNode
.getNode(), 0);
10944 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddcSubcNode
, 0), LoMLALResult
);
10946 // Return original node to notify the driver to stop replacing.
10947 return SDValue(AddeSubeNode
, 0);
10950 static SDValue
AddCombineTo64bitUMAAL(SDNode
*AddeNode
,
10951 TargetLowering::DAGCombinerInfo
&DCI
,
10952 const ARMSubtarget
*Subtarget
) {
10953 // UMAAL is similar to UMLAL except that it adds two unsigned values.
10954 // While trying to combine for the other MLAL nodes, first search for the
10955 // chance to use UMAAL. Check if Addc uses a node which has already
10956 // been combined into a UMLAL. The other pattern is UMLAL using Addc/Adde
10957 // as the addend, and it's handled in PerformUMLALCombine.
10959 if (!Subtarget
->hasV6Ops() || !Subtarget
->hasDSP())
10960 return AddCombineTo64bitMLAL(AddeNode
, DCI
, Subtarget
);
10962 // Check that we have a glued ADDC node.
10963 SDNode
* AddcNode
= AddeNode
->getOperand(2).getNode();
10964 if (AddcNode
->getOpcode() != ARMISD::ADDC
)
10967 // Find the converted UMAAL or quit if it doesn't exist.
10968 SDNode
*UmlalNode
= nullptr;
10970 if (AddcNode
->getOperand(0).getOpcode() == ARMISD::UMLAL
) {
10971 UmlalNode
= AddcNode
->getOperand(0).getNode();
10972 AddHi
= AddcNode
->getOperand(1);
10973 } else if (AddcNode
->getOperand(1).getOpcode() == ARMISD::UMLAL
) {
10974 UmlalNode
= AddcNode
->getOperand(1).getNode();
10975 AddHi
= AddcNode
->getOperand(0);
10977 return AddCombineTo64bitMLAL(AddeNode
, DCI
, Subtarget
);
10980 // The ADDC should be glued to an ADDE node, which uses the same UMLAL as
10981 // the ADDC as well as Zero.
10982 if (!isNullConstant(UmlalNode
->getOperand(3)))
10985 if ((isNullConstant(AddeNode
->getOperand(0)) &&
10986 AddeNode
->getOperand(1).getNode() == UmlalNode
) ||
10987 (AddeNode
->getOperand(0).getNode() == UmlalNode
&&
10988 isNullConstant(AddeNode
->getOperand(1)))) {
10989 SelectionDAG
&DAG
= DCI
.DAG
;
10990 SDValue Ops
[] = { UmlalNode
->getOperand(0), UmlalNode
->getOperand(1),
10991 UmlalNode
->getOperand(2), AddHi
};
10992 SDValue UMAAL
= DAG
.getNode(ARMISD::UMAAL
, SDLoc(AddcNode
),
10993 DAG
.getVTList(MVT::i32
, MVT::i32
), Ops
);
10995 // Replace the ADDs' nodes uses by the UMAAL node's values.
10996 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddeNode
, 0), SDValue(UMAAL
.getNode(), 1));
10997 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddcNode
, 0), SDValue(UMAAL
.getNode(), 0));
10999 // Return original node to notify the driver to stop replacing.
11000 return SDValue(AddeNode
, 0);
11005 static SDValue
PerformUMLALCombine(SDNode
*N
, SelectionDAG
&DAG
,
11006 const ARMSubtarget
*Subtarget
) {
11007 if (!Subtarget
->hasV6Ops() || !Subtarget
->hasDSP())
11010 // Check that we have a pair of ADDC and ADDE as operands.
11011 // Both addends of the ADDE must be zero.
11012 SDNode
* AddcNode
= N
->getOperand(2).getNode();
11013 SDNode
* AddeNode
= N
->getOperand(3).getNode();
11014 if ((AddcNode
->getOpcode() == ARMISD::ADDC
) &&
11015 (AddeNode
->getOpcode() == ARMISD::ADDE
) &&
11016 isNullConstant(AddeNode
->getOperand(0)) &&
11017 isNullConstant(AddeNode
->getOperand(1)) &&
11018 (AddeNode
->getOperand(2).getNode() == AddcNode
))
11019 return DAG
.getNode(ARMISD::UMAAL
, SDLoc(N
),
11020 DAG
.getVTList(MVT::i32
, MVT::i32
),
11021 {N
->getOperand(0), N
->getOperand(1),
11022 AddcNode
->getOperand(0), AddcNode
->getOperand(1)});
11027 static SDValue
PerformAddcSubcCombine(SDNode
*N
,
11028 TargetLowering::DAGCombinerInfo
&DCI
,
11029 const ARMSubtarget
*Subtarget
) {
11030 SelectionDAG
&DAG(DCI
.DAG
);
11032 if (N
->getOpcode() == ARMISD::SUBC
) {
11033 // (SUBC (ADDE 0, 0, C), 1) -> C
11034 SDValue LHS
= N
->getOperand(0);
11035 SDValue RHS
= N
->getOperand(1);
11036 if (LHS
->getOpcode() == ARMISD::ADDE
&&
11037 isNullConstant(LHS
->getOperand(0)) &&
11038 isNullConstant(LHS
->getOperand(1)) && isOneConstant(RHS
)) {
11039 return DCI
.CombineTo(N
, SDValue(N
, 0), LHS
->getOperand(2));
11043 if (Subtarget
->isThumb1Only()) {
11044 SDValue RHS
= N
->getOperand(1);
11045 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(RHS
)) {
11046 int32_t imm
= C
->getSExtValue();
11047 if (imm
< 0 && imm
> std::numeric_limits
<int>::min()) {
11049 RHS
= DAG
.getConstant(-imm
, DL
, MVT::i32
);
11050 unsigned Opcode
= (N
->getOpcode() == ARMISD::ADDC
) ? ARMISD::SUBC
11052 return DAG
.getNode(Opcode
, DL
, N
->getVTList(), N
->getOperand(0), RHS
);
11060 static SDValue
PerformAddeSubeCombine(SDNode
*N
,
11061 TargetLowering::DAGCombinerInfo
&DCI
,
11062 const ARMSubtarget
*Subtarget
) {
11063 if (Subtarget
->isThumb1Only()) {
11064 SelectionDAG
&DAG
= DCI
.DAG
;
11065 SDValue RHS
= N
->getOperand(1);
11066 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(RHS
)) {
11067 int64_t imm
= C
->getSExtValue();
11071 // The with-carry-in form matches bitwise not instead of the negation.
11072 // Effectively, the inverse interpretation of the carry flag already
11073 // accounts for part of the negation.
11074 RHS
= DAG
.getConstant(~imm
, DL
, MVT::i32
);
11076 unsigned Opcode
= (N
->getOpcode() == ARMISD::ADDE
) ? ARMISD::SUBE
11078 return DAG
.getNode(Opcode
, DL
, N
->getVTList(),
11079 N
->getOperand(0), RHS
, N
->getOperand(2));
11082 } else if (N
->getOperand(1)->getOpcode() == ISD::SMUL_LOHI
) {
11083 return AddCombineTo64bitMLAL(N
, DCI
, Subtarget
);
11088 static SDValue
PerformABSCombine(SDNode
*N
,
11089 TargetLowering::DAGCombinerInfo
&DCI
,
11090 const ARMSubtarget
*Subtarget
) {
11092 SelectionDAG
&DAG
= DCI
.DAG
;
11093 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
11095 if (TLI
.isOperationLegal(N
->getOpcode(), N
->getValueType(0)))
11098 if (!TLI
.expandABS(N
, res
, DAG
))
11104 /// PerformADDECombine - Target-specific dag combine transform from
11105 /// ARMISD::ADDC, ARMISD::ADDE, and ISD::MUL_LOHI to MLAL or
11106 /// ARMISD::ADDC, ARMISD::ADDE and ARMISD::UMLAL to ARMISD::UMAAL
11107 static SDValue
PerformADDECombine(SDNode
*N
,
11108 TargetLowering::DAGCombinerInfo
&DCI
,
11109 const ARMSubtarget
*Subtarget
) {
11110 // Only ARM and Thumb2 support UMLAL/SMLAL.
11111 if (Subtarget
->isThumb1Only())
11112 return PerformAddeSubeCombine(N
, DCI
, Subtarget
);
11114 // Only perform the checks after legalize when the pattern is available.
11115 if (DCI
.isBeforeLegalize()) return SDValue();
11117 return AddCombineTo64bitUMAAL(N
, DCI
, Subtarget
);
11120 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
11121 /// operands N0 and N1. This is a helper for PerformADDCombine that is
11122 /// called with the default operands, and if that fails, with commuted
11124 static SDValue
PerformADDCombineWithOperands(SDNode
*N
, SDValue N0
, SDValue N1
,
11125 TargetLowering::DAGCombinerInfo
&DCI
,
11126 const ARMSubtarget
*Subtarget
){
11127 // Attempt to create vpadd for this add.
11128 if (SDValue Result
= AddCombineToVPADD(N
, N0
, N1
, DCI
, Subtarget
))
11131 // Attempt to create vpaddl for this add.
11132 if (SDValue Result
= AddCombineVUZPToVPADDL(N
, N0
, N1
, DCI
, Subtarget
))
11134 if (SDValue Result
= AddCombineBUILD_VECTORToVPADDL(N
, N0
, N1
, DCI
,
11138 // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
11139 if (N0
.getNode()->hasOneUse())
11140 if (SDValue Result
= combineSelectAndUse(N
, N0
, N1
, DCI
))
11146 ARMTargetLowering::isDesirableToCommuteWithShift(const SDNode
*N
,
11147 CombineLevel Level
) const {
11148 if (Level
== BeforeLegalizeTypes
)
11151 if (N
->getOpcode() != ISD::SHL
)
11154 if (Subtarget
->isThumb1Only()) {
11155 // Avoid making expensive immediates by commuting shifts. (This logic
11156 // only applies to Thumb1 because ARM and Thumb2 immediates can be shifted
11158 if (N
->getOpcode() != ISD::SHL
)
11160 SDValue N1
= N
->getOperand(0);
11161 if (N1
->getOpcode() != ISD::ADD
&& N1
->getOpcode() != ISD::AND
&&
11162 N1
->getOpcode() != ISD::OR
&& N1
->getOpcode() != ISD::XOR
)
11164 if (auto *Const
= dyn_cast
<ConstantSDNode
>(N1
->getOperand(1))) {
11165 if (Const
->getAPIntValue().ult(256))
11167 if (N1
->getOpcode() == ISD::ADD
&& Const
->getAPIntValue().slt(0) &&
11168 Const
->getAPIntValue().sgt(-256))
11174 // Turn off commute-with-shift transform after legalization, so it doesn't
11175 // conflict with PerformSHLSimplify. (We could try to detect when
11176 // PerformSHLSimplify would trigger more precisely, but it isn't
11177 // really necessary.)
11181 bool ARMTargetLowering::shouldFoldConstantShiftPairToMask(
11182 const SDNode
*N
, CombineLevel Level
) const {
11183 if (!Subtarget
->isThumb1Only())
11186 if (Level
== BeforeLegalizeTypes
)
11192 bool ARMTargetLowering::preferIncOfAddToSubOfNot(EVT VT
) const {
11193 if (!Subtarget
->hasNEON()) {
11194 if (Subtarget
->isThumb1Only())
11195 return VT
.getScalarSizeInBits() <= 32;
11198 return VT
.isScalarInteger();
11201 static SDValue
PerformSHLSimplify(SDNode
*N
,
11202 TargetLowering::DAGCombinerInfo
&DCI
,
11203 const ARMSubtarget
*ST
) {
11204 // Allow the generic combiner to identify potential bswaps.
11205 if (DCI
.isBeforeLegalize())
11208 // DAG combiner will fold:
11209 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
11210 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2
11211 // Other code patterns that can be also be modified have the following form:
11212 // b + ((a << 1) | 510)
11213 // b + ((a << 1) & 510)
11214 // b + ((a << 1) ^ 510)
11215 // b + ((a << 1) + 510)
11217 // Many instructions can perform the shift for free, but it requires both
11218 // the operands to be registers. If c1 << c2 is too large, a mov immediate
11219 // instruction will needed. So, unfold back to the original pattern if:
11220 // - if c1 and c2 are small enough that they don't require mov imms.
11221 // - the user(s) of the node can perform an shl
11223 // No shifted operands for 16-bit instructions.
11224 if (ST
->isThumb() && ST
->isThumb1Only())
11227 // Check that all the users could perform the shl themselves.
11228 for (auto U
: N
->uses()) {
11229 switch(U
->getOpcode()) {
11239 // Check that the user isn't already using a constant because there
11240 // aren't any instructions that support an immediate operand and a
11241 // shifted operand.
11242 if (isa
<ConstantSDNode
>(U
->getOperand(0)) ||
11243 isa
<ConstantSDNode
>(U
->getOperand(1)))
11246 // Check that it's not already using a shift.
11247 if (U
->getOperand(0).getOpcode() == ISD::SHL
||
11248 U
->getOperand(1).getOpcode() == ISD::SHL
)
11254 if (N
->getOpcode() != ISD::ADD
&& N
->getOpcode() != ISD::OR
&&
11255 N
->getOpcode() != ISD::XOR
&& N
->getOpcode() != ISD::AND
)
11258 if (N
->getOperand(0).getOpcode() != ISD::SHL
)
11261 SDValue SHL
= N
->getOperand(0);
11263 auto *C1ShlC2
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
11264 auto *C2
= dyn_cast
<ConstantSDNode
>(SHL
.getOperand(1));
11265 if (!C1ShlC2
|| !C2
)
11268 APInt C2Int
= C2
->getAPIntValue();
11269 APInt C1Int
= C1ShlC2
->getAPIntValue();
11271 // Check that performing a lshr will not lose any information.
11272 APInt Mask
= APInt::getHighBitsSet(C2Int
.getBitWidth(),
11273 C2Int
.getBitWidth() - C2
->getZExtValue());
11274 if ((C1Int
& Mask
) != C1Int
)
11277 // Shift the first constant.
11278 C1Int
.lshrInPlace(C2Int
);
11280 // The immediates are encoded as an 8-bit value that can be rotated.
11281 auto LargeImm
= [](const APInt
&Imm
) {
11282 unsigned Zeros
= Imm
.countLeadingZeros() + Imm
.countTrailingZeros();
11283 return Imm
.getBitWidth() - Zeros
> 8;
11286 if (LargeImm(C1Int
) || LargeImm(C2Int
))
11289 SelectionDAG
&DAG
= DCI
.DAG
;
11291 SDValue X
= SHL
.getOperand(0);
11292 SDValue BinOp
= DAG
.getNode(N
->getOpcode(), dl
, MVT::i32
, X
,
11293 DAG
.getConstant(C1Int
, dl
, MVT::i32
));
11294 // Shift left to compensate for the lshr of C1Int.
11295 SDValue Res
= DAG
.getNode(ISD::SHL
, dl
, MVT::i32
, BinOp
, SHL
.getOperand(1));
11297 LLVM_DEBUG(dbgs() << "Simplify shl use:\n"; SHL
.getOperand(0).dump();
11298 SHL
.dump(); N
->dump());
11299 LLVM_DEBUG(dbgs() << "Into:\n"; X
.dump(); BinOp
.dump(); Res
.dump());
11304 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
11306 static SDValue
PerformADDCombine(SDNode
*N
,
11307 TargetLowering::DAGCombinerInfo
&DCI
,
11308 const ARMSubtarget
*Subtarget
) {
11309 SDValue N0
= N
->getOperand(0);
11310 SDValue N1
= N
->getOperand(1);
11312 // Only works one way, because it needs an immediate operand.
11313 if (SDValue Result
= PerformSHLSimplify(N
, DCI
, Subtarget
))
11316 // First try with the default operand order.
11317 if (SDValue Result
= PerformADDCombineWithOperands(N
, N0
, N1
, DCI
, Subtarget
))
11320 // If that didn't work, try again with the operands commuted.
11321 return PerformADDCombineWithOperands(N
, N1
, N0
, DCI
, Subtarget
);
11324 /// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
11326 static SDValue
PerformSUBCombine(SDNode
*N
,
11327 TargetLowering::DAGCombinerInfo
&DCI
) {
11328 SDValue N0
= N
->getOperand(0);
11329 SDValue N1
= N
->getOperand(1);
11331 // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
11332 if (N1
.getNode()->hasOneUse())
11333 if (SDValue Result
= combineSelectAndUse(N
, N1
, N0
, DCI
))
11339 /// PerformVMULCombine
11340 /// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
11341 /// special multiplier accumulator forwarding.
11342 /// vmul d3, d0, d2
11343 /// vmla d3, d1, d2
11345 /// vadd d3, d0, d1
11346 /// vmul d3, d3, d2
11347 // However, for (A + B) * (A + B),
11354 static SDValue
PerformVMULCombine(SDNode
*N
,
11355 TargetLowering::DAGCombinerInfo
&DCI
,
11356 const ARMSubtarget
*Subtarget
) {
11357 if (!Subtarget
->hasVMLxForwarding())
11360 SelectionDAG
&DAG
= DCI
.DAG
;
11361 SDValue N0
= N
->getOperand(0);
11362 SDValue N1
= N
->getOperand(1);
11363 unsigned Opcode
= N0
.getOpcode();
11364 if (Opcode
!= ISD::ADD
&& Opcode
!= ISD::SUB
&&
11365 Opcode
!= ISD::FADD
&& Opcode
!= ISD::FSUB
) {
11366 Opcode
= N1
.getOpcode();
11367 if (Opcode
!= ISD::ADD
&& Opcode
!= ISD::SUB
&&
11368 Opcode
!= ISD::FADD
&& Opcode
!= ISD::FSUB
)
11376 EVT VT
= N
->getValueType(0);
11378 SDValue N00
= N0
->getOperand(0);
11379 SDValue N01
= N0
->getOperand(1);
11380 return DAG
.getNode(Opcode
, DL
, VT
,
11381 DAG
.getNode(ISD::MUL
, DL
, VT
, N00
, N1
),
11382 DAG
.getNode(ISD::MUL
, DL
, VT
, N01
, N1
));
11385 static SDValue
PerformMULCombine(SDNode
*N
,
11386 TargetLowering::DAGCombinerInfo
&DCI
,
11387 const ARMSubtarget
*Subtarget
) {
11388 SelectionDAG
&DAG
= DCI
.DAG
;
11390 if (Subtarget
->isThumb1Only())
11393 if (DCI
.isBeforeLegalize() || DCI
.isCalledByLegalizer())
11396 EVT VT
= N
->getValueType(0);
11397 if (VT
.is64BitVector() || VT
.is128BitVector())
11398 return PerformVMULCombine(N
, DCI
, Subtarget
);
11399 if (VT
!= MVT::i32
)
11402 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
11406 int64_t MulAmt
= C
->getSExtValue();
11407 unsigned ShiftAmt
= countTrailingZeros
<uint64_t>(MulAmt
);
11409 ShiftAmt
= ShiftAmt
& (32 - 1);
11410 SDValue V
= N
->getOperand(0);
11414 MulAmt
>>= ShiftAmt
;
11417 if (isPowerOf2_32(MulAmt
- 1)) {
11418 // (mul x, 2^N + 1) => (add (shl x, N), x)
11419 Res
= DAG
.getNode(ISD::ADD
, DL
, VT
,
11421 DAG
.getNode(ISD::SHL
, DL
, VT
,
11423 DAG
.getConstant(Log2_32(MulAmt
- 1), DL
,
11425 } else if (isPowerOf2_32(MulAmt
+ 1)) {
11426 // (mul x, 2^N - 1) => (sub (shl x, N), x)
11427 Res
= DAG
.getNode(ISD::SUB
, DL
, VT
,
11428 DAG
.getNode(ISD::SHL
, DL
, VT
,
11430 DAG
.getConstant(Log2_32(MulAmt
+ 1), DL
,
11436 uint64_t MulAmtAbs
= -MulAmt
;
11437 if (isPowerOf2_32(MulAmtAbs
+ 1)) {
11438 // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
11439 Res
= DAG
.getNode(ISD::SUB
, DL
, VT
,
11441 DAG
.getNode(ISD::SHL
, DL
, VT
,
11443 DAG
.getConstant(Log2_32(MulAmtAbs
+ 1), DL
,
11445 } else if (isPowerOf2_32(MulAmtAbs
- 1)) {
11446 // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
11447 Res
= DAG
.getNode(ISD::ADD
, DL
, VT
,
11449 DAG
.getNode(ISD::SHL
, DL
, VT
,
11451 DAG
.getConstant(Log2_32(MulAmtAbs
- 1), DL
,
11453 Res
= DAG
.getNode(ISD::SUB
, DL
, VT
,
11454 DAG
.getConstant(0, DL
, MVT::i32
), Res
);
11460 Res
= DAG
.getNode(ISD::SHL
, DL
, VT
,
11461 Res
, DAG
.getConstant(ShiftAmt
, DL
, MVT::i32
));
11463 // Do not add new nodes to DAG combiner worklist.
11464 DCI
.CombineTo(N
, Res
, false);
11468 static SDValue
CombineANDShift(SDNode
*N
,
11469 TargetLowering::DAGCombinerInfo
&DCI
,
11470 const ARMSubtarget
*Subtarget
) {
11471 // Allow DAGCombine to pattern-match before we touch the canonical form.
11472 if (DCI
.isBeforeLegalize() || DCI
.isCalledByLegalizer())
11475 if (N
->getValueType(0) != MVT::i32
)
11478 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
11482 uint32_t C1
= (uint32_t)N1C
->getZExtValue();
11483 // Don't transform uxtb/uxth.
11484 if (C1
== 255 || C1
== 65535)
11487 SDNode
*N0
= N
->getOperand(0).getNode();
11488 if (!N0
->hasOneUse())
11491 if (N0
->getOpcode() != ISD::SHL
&& N0
->getOpcode() != ISD::SRL
)
11494 bool LeftShift
= N0
->getOpcode() == ISD::SHL
;
11496 ConstantSDNode
*N01C
= dyn_cast
<ConstantSDNode
>(N0
->getOperand(1));
11500 uint32_t C2
= (uint32_t)N01C
->getZExtValue();
11501 if (!C2
|| C2
>= 32)
11504 // Clear irrelevant bits in the mask.
11510 SelectionDAG
&DAG
= DCI
.DAG
;
11513 // We have a pattern of the form "(and (shl x, c2) c1)" or
11514 // "(and (srl x, c2) c1)", where c1 is a shifted mask. Try to
11515 // transform to a pair of shifts, to save materializing c1.
11517 // First pattern: right shift, then mask off leading bits.
11518 // FIXME: Use demanded bits?
11519 if (!LeftShift
&& isMask_32(C1
)) {
11520 uint32_t C3
= countLeadingZeros(C1
);
11522 SDValue SHL
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, N0
->getOperand(0),
11523 DAG
.getConstant(C3
- C2
, DL
, MVT::i32
));
11524 return DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, SHL
,
11525 DAG
.getConstant(C3
, DL
, MVT::i32
));
11529 // First pattern, reversed: left shift, then mask off trailing bits.
11530 if (LeftShift
&& isMask_32(~C1
)) {
11531 uint32_t C3
= countTrailingZeros(C1
);
11533 SDValue SHL
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, N0
->getOperand(0),
11534 DAG
.getConstant(C3
- C2
, DL
, MVT::i32
));
11535 return DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, SHL
,
11536 DAG
.getConstant(C3
, DL
, MVT::i32
));
11540 // Second pattern: left shift, then mask off leading bits.
11541 // FIXME: Use demanded bits?
11542 if (LeftShift
&& isShiftedMask_32(C1
)) {
11543 uint32_t Trailing
= countTrailingZeros(C1
);
11544 uint32_t C3
= countLeadingZeros(C1
);
11545 if (Trailing
== C2
&& C2
+ C3
< 32) {
11546 SDValue SHL
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, N0
->getOperand(0),
11547 DAG
.getConstant(C2
+ C3
, DL
, MVT::i32
));
11548 return DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, SHL
,
11549 DAG
.getConstant(C3
, DL
, MVT::i32
));
11553 // Second pattern, reversed: right shift, then mask off trailing bits.
11554 // FIXME: Handle other patterns of known/demanded bits.
11555 if (!LeftShift
&& isShiftedMask_32(C1
)) {
11556 uint32_t Leading
= countLeadingZeros(C1
);
11557 uint32_t C3
= countTrailingZeros(C1
);
11558 if (Leading
== C2
&& C2
+ C3
< 32) {
11559 SDValue SHL
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, N0
->getOperand(0),
11560 DAG
.getConstant(C2
+ C3
, DL
, MVT::i32
));
11561 return DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, SHL
,
11562 DAG
.getConstant(C3
, DL
, MVT::i32
));
11566 // FIXME: Transform "(and (shl x, c2) c1)" ->
11567 // "(shl (and x, c1>>c2), c2)" if "c1 >> c2" is a cheaper immediate than
11572 static SDValue
PerformANDCombine(SDNode
*N
,
11573 TargetLowering::DAGCombinerInfo
&DCI
,
11574 const ARMSubtarget
*Subtarget
) {
11575 // Attempt to use immediate-form VBIC
11576 BuildVectorSDNode
*BVN
= dyn_cast
<BuildVectorSDNode
>(N
->getOperand(1));
11578 EVT VT
= N
->getValueType(0);
11579 SelectionDAG
&DAG
= DCI
.DAG
;
11581 if(!DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
11584 APInt SplatBits
, SplatUndef
;
11585 unsigned SplatBitSize
;
11587 if (BVN
&& Subtarget
->hasNEON() &&
11588 BVN
->isConstantSplat(SplatBits
, SplatUndef
, SplatBitSize
, HasAnyUndefs
)) {
11589 if (SplatBitSize
<= 64) {
11591 SDValue Val
= isVMOVModifiedImm((~SplatBits
).getZExtValue(),
11592 SplatUndef
.getZExtValue(), SplatBitSize
,
11593 DAG
, dl
, VbicVT
, VT
.is128BitVector(),
11595 if (Val
.getNode()) {
11597 DAG
.getNode(ISD::BITCAST
, dl
, VbicVT
, N
->getOperand(0));
11598 SDValue Vbic
= DAG
.getNode(ARMISD::VBICIMM
, dl
, VbicVT
, Input
, Val
);
11599 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vbic
);
11604 if (!Subtarget
->isThumb1Only()) {
11605 // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
11606 if (SDValue Result
= combineSelectAndUseCommutative(N
, true, DCI
))
11609 if (SDValue Result
= PerformSHLSimplify(N
, DCI
, Subtarget
))
11613 if (Subtarget
->isThumb1Only())
11614 if (SDValue Result
= CombineANDShift(N
, DCI
, Subtarget
))
11620 // Try combining OR nodes to SMULWB, SMULWT.
11621 static SDValue
PerformORCombineToSMULWBT(SDNode
*OR
,
11622 TargetLowering::DAGCombinerInfo
&DCI
,
11623 const ARMSubtarget
*Subtarget
) {
11624 if (!Subtarget
->hasV6Ops() ||
11625 (Subtarget
->isThumb() &&
11626 (!Subtarget
->hasThumb2() || !Subtarget
->hasDSP())))
11629 SDValue SRL
= OR
->getOperand(0);
11630 SDValue SHL
= OR
->getOperand(1);
11632 if (SRL
.getOpcode() != ISD::SRL
|| SHL
.getOpcode() != ISD::SHL
) {
11633 SRL
= OR
->getOperand(1);
11634 SHL
= OR
->getOperand(0);
11636 if (!isSRL16(SRL
) || !isSHL16(SHL
))
11639 // The first operands to the shifts need to be the two results from the
11640 // same smul_lohi node.
11641 if ((SRL
.getOperand(0).getNode() != SHL
.getOperand(0).getNode()) ||
11642 SRL
.getOperand(0).getOpcode() != ISD::SMUL_LOHI
)
11645 SDNode
*SMULLOHI
= SRL
.getOperand(0).getNode();
11646 if (SRL
.getOperand(0) != SDValue(SMULLOHI
, 0) ||
11647 SHL
.getOperand(0) != SDValue(SMULLOHI
, 1))
11651 // (or (srl (smul_lohi ?, ?), 16), (shl (smul_lohi ?, ?), 16)))
11652 // For SMUL[B|T] smul_lohi will take a 32-bit and a 16-bit arguments.
11653 // For SMUWB the 16-bit value will signed extended somehow.
11654 // For SMULWT only the SRA is required.
11655 // Check both sides of SMUL_LOHI
11656 SDValue OpS16
= SMULLOHI
->getOperand(0);
11657 SDValue OpS32
= SMULLOHI
->getOperand(1);
11659 SelectionDAG
&DAG
= DCI
.DAG
;
11660 if (!isS16(OpS16
, DAG
) && !isSRA16(OpS16
)) {
11662 OpS32
= SMULLOHI
->getOperand(0);
11666 unsigned Opcode
= 0;
11667 if (isS16(OpS16
, DAG
))
11668 Opcode
= ARMISD::SMULWB
;
11669 else if (isSRA16(OpS16
)) {
11670 Opcode
= ARMISD::SMULWT
;
11671 OpS16
= OpS16
->getOperand(0);
11676 SDValue Res
= DAG
.getNode(Opcode
, dl
, MVT::i32
, OpS32
, OpS16
);
11677 DAG
.ReplaceAllUsesOfValueWith(SDValue(OR
, 0), Res
);
11678 return SDValue(OR
, 0);
11681 static SDValue
PerformORCombineToBFI(SDNode
*N
,
11682 TargetLowering::DAGCombinerInfo
&DCI
,
11683 const ARMSubtarget
*Subtarget
) {
11684 // BFI is only available on V6T2+
11685 if (Subtarget
->isThumb1Only() || !Subtarget
->hasV6T2Ops())
11688 EVT VT
= N
->getValueType(0);
11689 SDValue N0
= N
->getOperand(0);
11690 SDValue N1
= N
->getOperand(1);
11691 SelectionDAG
&DAG
= DCI
.DAG
;
11693 // 1) or (and A, mask), val => ARMbfi A, val, mask
11694 // iff (val & mask) == val
11696 // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
11697 // 2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
11698 // && mask == ~mask2
11699 // 2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
11700 // && ~mask == mask2
11701 // (i.e., copy a bitfield value into another bitfield of the same width)
11703 if (VT
!= MVT::i32
)
11706 SDValue N00
= N0
.getOperand(0);
11708 // The value and the mask need to be constants so we can verify this is
11709 // actually a bitfield set. If the mask is 0xffff, we can do better
11710 // via a movt instruction, so don't use BFI in that case.
11711 SDValue MaskOp
= N0
.getOperand(1);
11712 ConstantSDNode
*MaskC
= dyn_cast
<ConstantSDNode
>(MaskOp
);
11715 unsigned Mask
= MaskC
->getZExtValue();
11716 if (Mask
== 0xffff)
11719 // Case (1): or (and A, mask), val => ARMbfi A, val, mask
11720 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
11722 unsigned Val
= N1C
->getZExtValue();
11723 if ((Val
& ~Mask
) != Val
)
11726 if (ARM::isBitFieldInvertedMask(Mask
)) {
11727 Val
>>= countTrailingZeros(~Mask
);
11729 Res
= DAG
.getNode(ARMISD::BFI
, DL
, VT
, N00
,
11730 DAG
.getConstant(Val
, DL
, MVT::i32
),
11731 DAG
.getConstant(Mask
, DL
, MVT::i32
));
11733 DCI
.CombineTo(N
, Res
, false);
11734 // Return value from the original node to inform the combiner than N is
11736 return SDValue(N
, 0);
11738 } else if (N1
.getOpcode() == ISD::AND
) {
11739 // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
11740 ConstantSDNode
*N11C
= dyn_cast
<ConstantSDNode
>(N1
.getOperand(1));
11743 unsigned Mask2
= N11C
->getZExtValue();
11745 // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
11747 if (ARM::isBitFieldInvertedMask(Mask
) &&
11748 (Mask
== ~Mask2
)) {
11749 // The pack halfword instruction works better for masks that fit it,
11750 // so use that when it's available.
11751 if (Subtarget
->hasDSP() &&
11752 (Mask
== 0xffff || Mask
== 0xffff0000))
11755 unsigned amt
= countTrailingZeros(Mask2
);
11756 Res
= DAG
.getNode(ISD::SRL
, DL
, VT
, N1
.getOperand(0),
11757 DAG
.getConstant(amt
, DL
, MVT::i32
));
11758 Res
= DAG
.getNode(ARMISD::BFI
, DL
, VT
, N00
, Res
,
11759 DAG
.getConstant(Mask
, DL
, MVT::i32
));
11760 DCI
.CombineTo(N
, Res
, false);
11761 // Return value from the original node to inform the combiner than N is
11763 return SDValue(N
, 0);
11764 } else if (ARM::isBitFieldInvertedMask(~Mask
) &&
11765 (~Mask
== Mask2
)) {
11766 // The pack halfword instruction works better for masks that fit it,
11767 // so use that when it's available.
11768 if (Subtarget
->hasDSP() &&
11769 (Mask2
== 0xffff || Mask2
== 0xffff0000))
11772 unsigned lsb
= countTrailingZeros(Mask
);
11773 Res
= DAG
.getNode(ISD::SRL
, DL
, VT
, N00
,
11774 DAG
.getConstant(lsb
, DL
, MVT::i32
));
11775 Res
= DAG
.getNode(ARMISD::BFI
, DL
, VT
, N1
.getOperand(0), Res
,
11776 DAG
.getConstant(Mask2
, DL
, MVT::i32
));
11777 DCI
.CombineTo(N
, Res
, false);
11778 // Return value from the original node to inform the combiner than N is
11780 return SDValue(N
, 0);
11784 if (DAG
.MaskedValueIsZero(N1
, MaskC
->getAPIntValue()) &&
11785 N00
.getOpcode() == ISD::SHL
&& isa
<ConstantSDNode
>(N00
.getOperand(1)) &&
11786 ARM::isBitFieldInvertedMask(~Mask
)) {
11787 // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
11788 // where lsb(mask) == #shamt and masked bits of B are known zero.
11789 SDValue ShAmt
= N00
.getOperand(1);
11790 unsigned ShAmtC
= cast
<ConstantSDNode
>(ShAmt
)->getZExtValue();
11791 unsigned LSB
= countTrailingZeros(Mask
);
11795 Res
= DAG
.getNode(ARMISD::BFI
, DL
, VT
, N1
, N00
.getOperand(0),
11796 DAG
.getConstant(~Mask
, DL
, MVT::i32
));
11798 DCI
.CombineTo(N
, Res
, false);
11799 // Return value from the original node to inform the combiner than N is
11801 return SDValue(N
, 0);
11807 static bool isValidMVECond(unsigned CC
, bool IsFloat
) {
11824 static SDValue
PerformORCombine_i1(SDNode
*N
,
11825 TargetLowering::DAGCombinerInfo
&DCI
,
11826 const ARMSubtarget
*Subtarget
) {
11827 // Try to invert "or A, B" -> "and ~A, ~B", as the "and" is easier to chain
11828 // together with predicates
11829 EVT VT
= N
->getValueType(0);
11830 SDValue N0
= N
->getOperand(0);
11831 SDValue N1
= N
->getOperand(1);
11833 ARMCC::CondCodes CondCode0
= ARMCC::AL
;
11834 ARMCC::CondCodes CondCode1
= ARMCC::AL
;
11835 if (N0
->getOpcode() == ARMISD::VCMP
)
11836 CondCode0
= (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(N0
->getOperand(2))
11838 else if (N0
->getOpcode() == ARMISD::VCMPZ
)
11839 CondCode0
= (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(N0
->getOperand(1))
11841 if (N1
->getOpcode() == ARMISD::VCMP
)
11842 CondCode1
= (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(N1
->getOperand(2))
11844 else if (N1
->getOpcode() == ARMISD::VCMPZ
)
11845 CondCode1
= (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(N1
->getOperand(1))
11848 if (CondCode0
== ARMCC::AL
|| CondCode1
== ARMCC::AL
)
11851 unsigned Opposite0
= ARMCC::getOppositeCondition(CondCode0
);
11852 unsigned Opposite1
= ARMCC::getOppositeCondition(CondCode1
);
11854 if (!isValidMVECond(Opposite0
,
11855 N0
->getOperand(0)->getValueType(0).isFloatingPoint()) ||
11856 !isValidMVECond(Opposite1
,
11857 N1
->getOperand(0)->getValueType(0).isFloatingPoint()))
11860 SmallVector
<SDValue
, 4> Ops0
;
11861 Ops0
.push_back(N0
->getOperand(0));
11862 if (N0
->getOpcode() == ARMISD::VCMP
)
11863 Ops0
.push_back(N0
->getOperand(1));
11864 Ops0
.push_back(DCI
.DAG
.getConstant(Opposite0
, SDLoc(N0
), MVT::i32
));
11865 SmallVector
<SDValue
, 4> Ops1
;
11866 Ops1
.push_back(N1
->getOperand(0));
11867 if (N1
->getOpcode() == ARMISD::VCMP
)
11868 Ops1
.push_back(N1
->getOperand(1));
11869 Ops1
.push_back(DCI
.DAG
.getConstant(Opposite1
, SDLoc(N1
), MVT::i32
));
11871 SDValue NewN0
= DCI
.DAG
.getNode(N0
->getOpcode(), SDLoc(N0
), VT
, Ops0
);
11872 SDValue NewN1
= DCI
.DAG
.getNode(N1
->getOpcode(), SDLoc(N1
), VT
, Ops1
);
11873 SDValue And
= DCI
.DAG
.getNode(ISD::AND
, SDLoc(N
), VT
, NewN0
, NewN1
);
11874 return DCI
.DAG
.getNode(ISD::XOR
, SDLoc(N
), VT
, And
,
11875 DCI
.DAG
.getAllOnesConstant(SDLoc(N
), VT
));
11878 /// PerformORCombine - Target-specific dag combine xforms for ISD::OR
11879 static SDValue
PerformORCombine(SDNode
*N
,
11880 TargetLowering::DAGCombinerInfo
&DCI
,
11881 const ARMSubtarget
*Subtarget
) {
11882 // Attempt to use immediate-form VORR
11883 BuildVectorSDNode
*BVN
= dyn_cast
<BuildVectorSDNode
>(N
->getOperand(1));
11885 EVT VT
= N
->getValueType(0);
11886 SelectionDAG
&DAG
= DCI
.DAG
;
11888 if(!DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
11891 APInt SplatBits
, SplatUndef
;
11892 unsigned SplatBitSize
;
11894 if (BVN
&& Subtarget
->hasNEON() &&
11895 BVN
->isConstantSplat(SplatBits
, SplatUndef
, SplatBitSize
, HasAnyUndefs
)) {
11896 if (SplatBitSize
<= 64) {
11898 SDValue Val
= isVMOVModifiedImm(SplatBits
.getZExtValue(),
11899 SplatUndef
.getZExtValue(), SplatBitSize
,
11900 DAG
, dl
, VorrVT
, VT
.is128BitVector(),
11902 if (Val
.getNode()) {
11904 DAG
.getNode(ISD::BITCAST
, dl
, VorrVT
, N
->getOperand(0));
11905 SDValue Vorr
= DAG
.getNode(ARMISD::VORRIMM
, dl
, VorrVT
, Input
, Val
);
11906 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vorr
);
11911 if (!Subtarget
->isThumb1Only()) {
11912 // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
11913 if (SDValue Result
= combineSelectAndUseCommutative(N
, false, DCI
))
11915 if (SDValue Result
= PerformORCombineToSMULWBT(N
, DCI
, Subtarget
))
11919 SDValue N0
= N
->getOperand(0);
11920 SDValue N1
= N
->getOperand(1);
11922 // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
11923 if (Subtarget
->hasNEON() && N1
.getOpcode() == ISD::AND
&& VT
.isVector() &&
11924 DAG
.getTargetLoweringInfo().isTypeLegal(VT
)) {
11926 // The code below optimizes (or (and X, Y), Z).
11927 // The AND operand needs to have a single user to make these optimizations
11929 if (N0
.getOpcode() != ISD::AND
|| !N0
.hasOneUse())
11933 unsigned SplatBitSize
;
11936 APInt SplatBits0
, SplatBits1
;
11937 BuildVectorSDNode
*BVN0
= dyn_cast
<BuildVectorSDNode
>(N0
->getOperand(1));
11938 BuildVectorSDNode
*BVN1
= dyn_cast
<BuildVectorSDNode
>(N1
->getOperand(1));
11939 // Ensure that the second operand of both ands are constants
11940 if (BVN0
&& BVN0
->isConstantSplat(SplatBits0
, SplatUndef
, SplatBitSize
,
11941 HasAnyUndefs
) && !HasAnyUndefs
) {
11942 if (BVN1
&& BVN1
->isConstantSplat(SplatBits1
, SplatUndef
, SplatBitSize
,
11943 HasAnyUndefs
) && !HasAnyUndefs
) {
11944 // Ensure that the bit width of the constants are the same and that
11945 // the splat arguments are logical inverses as per the pattern we
11946 // are trying to simplify.
11947 if (SplatBits0
.getBitWidth() == SplatBits1
.getBitWidth() &&
11948 SplatBits0
== ~SplatBits1
) {
11949 // Canonicalize the vector type to make instruction selection
11951 EVT CanonicalVT
= VT
.is128BitVector() ? MVT::v4i32
: MVT::v2i32
;
11952 SDValue Result
= DAG
.getNode(ARMISD::VBSL
, dl
, CanonicalVT
,
11955 N1
->getOperand(0));
11956 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Result
);
11962 if (Subtarget
->hasMVEIntegerOps() &&
11963 (VT
== MVT::v4i1
|| VT
== MVT::v8i1
|| VT
== MVT::v16i1
))
11964 return PerformORCombine_i1(N
, DCI
, Subtarget
);
11966 // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
11968 if (N0
.getOpcode() == ISD::AND
&& N0
.hasOneUse()) {
11969 if (SDValue Res
= PerformORCombineToBFI(N
, DCI
, Subtarget
))
11973 if (SDValue Result
= PerformSHLSimplify(N
, DCI
, Subtarget
))
11979 static SDValue
PerformXORCombine(SDNode
*N
,
11980 TargetLowering::DAGCombinerInfo
&DCI
,
11981 const ARMSubtarget
*Subtarget
) {
11982 EVT VT
= N
->getValueType(0);
11983 SelectionDAG
&DAG
= DCI
.DAG
;
11985 if(!DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
11988 if (!Subtarget
->isThumb1Only()) {
11989 // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
11990 if (SDValue Result
= combineSelectAndUseCommutative(N
, false, DCI
))
11993 if (SDValue Result
= PerformSHLSimplify(N
, DCI
, Subtarget
))
12000 // ParseBFI - given a BFI instruction in N, extract the "from" value (Rn) and return it,
12001 // and fill in FromMask and ToMask with (consecutive) bits in "from" to be extracted and
12002 // their position in "to" (Rd).
12003 static SDValue
ParseBFI(SDNode
*N
, APInt
&ToMask
, APInt
&FromMask
) {
12004 assert(N
->getOpcode() == ARMISD::BFI
);
12006 SDValue From
= N
->getOperand(1);
12007 ToMask
= ~cast
<ConstantSDNode
>(N
->getOperand(2))->getAPIntValue();
12008 FromMask
= APInt::getLowBitsSet(ToMask
.getBitWidth(), ToMask
.countPopulation());
12010 // If the Base came from a SHR #C, we can deduce that it is really testing bit
12011 // #C in the base of the SHR.
12012 if (From
->getOpcode() == ISD::SRL
&&
12013 isa
<ConstantSDNode
>(From
->getOperand(1))) {
12014 APInt Shift
= cast
<ConstantSDNode
>(From
->getOperand(1))->getAPIntValue();
12015 assert(Shift
.getLimitedValue() < 32 && "Shift too large!");
12016 FromMask
<<= Shift
.getLimitedValue(31);
12017 From
= From
->getOperand(0);
12023 // If A and B contain one contiguous set of bits, does A | B == A . B?
12025 // Neither A nor B must be zero.
12026 static bool BitsProperlyConcatenate(const APInt
&A
, const APInt
&B
) {
12027 unsigned LastActiveBitInA
= A
.countTrailingZeros();
12028 unsigned FirstActiveBitInB
= B
.getBitWidth() - B
.countLeadingZeros() - 1;
12029 return LastActiveBitInA
- 1 == FirstActiveBitInB
;
12032 static SDValue
FindBFIToCombineWith(SDNode
*N
) {
12033 // We have a BFI in N. Follow a possible chain of BFIs and find a BFI it can combine with,
12035 APInt ToMask
, FromMask
;
12036 SDValue From
= ParseBFI(N
, ToMask
, FromMask
);
12037 SDValue To
= N
->getOperand(0);
12039 // Now check for a compatible BFI to merge with. We can pass through BFIs that
12040 // aren't compatible, but not if they set the same bit in their destination as
12041 // we do (or that of any BFI we're going to combine with).
12043 APInt CombinedToMask
= ToMask
;
12044 while (V
.getOpcode() == ARMISD::BFI
) {
12045 APInt NewToMask
, NewFromMask
;
12046 SDValue NewFrom
= ParseBFI(V
.getNode(), NewToMask
, NewFromMask
);
12047 if (NewFrom
!= From
) {
12048 // This BFI has a different base. Keep going.
12049 CombinedToMask
|= NewToMask
;
12050 V
= V
.getOperand(0);
12054 // Do the written bits conflict with any we've seen so far?
12055 if ((NewToMask
& CombinedToMask
).getBoolValue())
12056 // Conflicting bits - bail out because going further is unsafe.
12059 // Are the new bits contiguous when combined with the old bits?
12060 if (BitsProperlyConcatenate(ToMask
, NewToMask
) &&
12061 BitsProperlyConcatenate(FromMask
, NewFromMask
))
12063 if (BitsProperlyConcatenate(NewToMask
, ToMask
) &&
12064 BitsProperlyConcatenate(NewFromMask
, FromMask
))
12067 // We've seen a write to some bits, so track it.
12068 CombinedToMask
|= NewToMask
;
12070 V
= V
.getOperand(0);
12076 static SDValue
PerformBFICombine(SDNode
*N
,
12077 TargetLowering::DAGCombinerInfo
&DCI
) {
12078 SDValue N1
= N
->getOperand(1);
12079 if (N1
.getOpcode() == ISD::AND
) {
12080 // (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
12081 // the bits being cleared by the AND are not demanded by the BFI.
12082 ConstantSDNode
*N11C
= dyn_cast
<ConstantSDNode
>(N1
.getOperand(1));
12085 unsigned InvMask
= cast
<ConstantSDNode
>(N
->getOperand(2))->getZExtValue();
12086 unsigned LSB
= countTrailingZeros(~InvMask
);
12087 unsigned Width
= (32 - countLeadingZeros(~InvMask
)) - LSB
;
12089 static_cast<unsigned>(std::numeric_limits
<unsigned>::digits
) &&
12090 "undefined behavior");
12091 unsigned Mask
= (1u << Width
) - 1;
12092 unsigned Mask2
= N11C
->getZExtValue();
12093 if ((Mask
& (~Mask2
)) == 0)
12094 return DCI
.DAG
.getNode(ARMISD::BFI
, SDLoc(N
), N
->getValueType(0),
12095 N
->getOperand(0), N1
.getOperand(0),
12097 } else if (N
->getOperand(0).getOpcode() == ARMISD::BFI
) {
12098 // We have a BFI of a BFI. Walk up the BFI chain to see how long it goes.
12099 // Keep track of any consecutive bits set that all come from the same base
12100 // value. We can combine these together into a single BFI.
12101 SDValue CombineBFI
= FindBFIToCombineWith(N
);
12102 if (CombineBFI
== SDValue())
12105 // We've found a BFI.
12106 APInt ToMask1
, FromMask1
;
12107 SDValue From1
= ParseBFI(N
, ToMask1
, FromMask1
);
12109 APInt ToMask2
, FromMask2
;
12110 SDValue From2
= ParseBFI(CombineBFI
.getNode(), ToMask2
, FromMask2
);
12111 assert(From1
== From2
);
12114 // First, unlink CombineBFI.
12115 DCI
.DAG
.ReplaceAllUsesWith(CombineBFI
, CombineBFI
.getOperand(0));
12116 // Then create a new BFI, combining the two together.
12117 APInt NewFromMask
= FromMask1
| FromMask2
;
12118 APInt NewToMask
= ToMask1
| ToMask2
;
12120 EVT VT
= N
->getValueType(0);
12123 if (NewFromMask
[0] == 0)
12124 From1
= DCI
.DAG
.getNode(
12125 ISD::SRL
, dl
, VT
, From1
,
12126 DCI
.DAG
.getConstant(NewFromMask
.countTrailingZeros(), dl
, VT
));
12127 return DCI
.DAG
.getNode(ARMISD::BFI
, dl
, VT
, N
->getOperand(0), From1
,
12128 DCI
.DAG
.getConstant(~NewToMask
, dl
, VT
));
12133 /// PerformVMOVRRDCombine - Target-specific dag combine xforms for
12134 /// ARMISD::VMOVRRD.
12135 static SDValue
PerformVMOVRRDCombine(SDNode
*N
,
12136 TargetLowering::DAGCombinerInfo
&DCI
,
12137 const ARMSubtarget
*Subtarget
) {
12138 // vmovrrd(vmovdrr x, y) -> x,y
12139 SDValue InDouble
= N
->getOperand(0);
12140 if (InDouble
.getOpcode() == ARMISD::VMOVDRR
&& Subtarget
->hasFP64())
12141 return DCI
.CombineTo(N
, InDouble
.getOperand(0), InDouble
.getOperand(1));
12143 // vmovrrd(load f64) -> (load i32), (load i32)
12144 SDNode
*InNode
= InDouble
.getNode();
12145 if (ISD::isNormalLoad(InNode
) && InNode
->hasOneUse() &&
12146 InNode
->getValueType(0) == MVT::f64
&&
12147 InNode
->getOperand(1).getOpcode() == ISD::FrameIndex
&&
12148 !cast
<LoadSDNode
>(InNode
)->isVolatile()) {
12149 // TODO: Should this be done for non-FrameIndex operands?
12150 LoadSDNode
*LD
= cast
<LoadSDNode
>(InNode
);
12152 SelectionDAG
&DAG
= DCI
.DAG
;
12154 SDValue BasePtr
= LD
->getBasePtr();
12156 DAG
.getLoad(MVT::i32
, DL
, LD
->getChain(), BasePtr
, LD
->getPointerInfo(),
12157 LD
->getAlignment(), LD
->getMemOperand()->getFlags());
12159 SDValue OffsetPtr
= DAG
.getNode(ISD::ADD
, DL
, MVT::i32
, BasePtr
,
12160 DAG
.getConstant(4, DL
, MVT::i32
));
12162 SDValue NewLD2
= DAG
.getLoad(MVT::i32
, DL
, LD
->getChain(), OffsetPtr
,
12163 LD
->getPointerInfo().getWithOffset(4),
12164 std::min(4U, LD
->getAlignment()),
12165 LD
->getMemOperand()->getFlags());
12167 DAG
.ReplaceAllUsesOfValueWith(SDValue(LD
, 1), NewLD2
.getValue(1));
12168 if (DCI
.DAG
.getDataLayout().isBigEndian())
12169 std::swap (NewLD1
, NewLD2
);
12170 SDValue Result
= DCI
.CombineTo(N
, NewLD1
, NewLD2
);
12177 /// PerformVMOVDRRCombine - Target-specific dag combine xforms for
12178 /// ARMISD::VMOVDRR. This is also used for BUILD_VECTORs with 2 operands.
12179 static SDValue
PerformVMOVDRRCombine(SDNode
*N
, SelectionDAG
&DAG
) {
12180 // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
12181 SDValue Op0
= N
->getOperand(0);
12182 SDValue Op1
= N
->getOperand(1);
12183 if (Op0
.getOpcode() == ISD::BITCAST
)
12184 Op0
= Op0
.getOperand(0);
12185 if (Op1
.getOpcode() == ISD::BITCAST
)
12186 Op1
= Op1
.getOperand(0);
12187 if (Op0
.getOpcode() == ARMISD::VMOVRRD
&&
12188 Op0
.getNode() == Op1
.getNode() &&
12189 Op0
.getResNo() == 0 && Op1
.getResNo() == 1)
12190 return DAG
.getNode(ISD::BITCAST
, SDLoc(N
),
12191 N
->getValueType(0), Op0
.getOperand(0));
12195 /// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
12196 /// are normal, non-volatile loads. If so, it is profitable to bitcast an
12197 /// i64 vector to have f64 elements, since the value can then be loaded
12198 /// directly into a VFP register.
12199 static bool hasNormalLoadOperand(SDNode
*N
) {
12200 unsigned NumElts
= N
->getValueType(0).getVectorNumElements();
12201 for (unsigned i
= 0; i
< NumElts
; ++i
) {
12202 SDNode
*Elt
= N
->getOperand(i
).getNode();
12203 if (ISD::isNormalLoad(Elt
) && !cast
<LoadSDNode
>(Elt
)->isVolatile())
12209 /// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
12210 /// ISD::BUILD_VECTOR.
12211 static SDValue
PerformBUILD_VECTORCombine(SDNode
*N
,
12212 TargetLowering::DAGCombinerInfo
&DCI
,
12213 const ARMSubtarget
*Subtarget
) {
12214 // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
12215 // VMOVRRD is introduced when legalizing i64 types. It forces the i64 value
12216 // into a pair of GPRs, which is fine when the value is used as a scalar,
12217 // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
12218 SelectionDAG
&DAG
= DCI
.DAG
;
12219 if (N
->getNumOperands() == 2)
12220 if (SDValue RV
= PerformVMOVDRRCombine(N
, DAG
))
12223 // Load i64 elements as f64 values so that type legalization does not split
12224 // them up into i32 values.
12225 EVT VT
= N
->getValueType(0);
12226 if (VT
.getVectorElementType() != MVT::i64
|| !hasNormalLoadOperand(N
))
12229 SmallVector
<SDValue
, 8> Ops
;
12230 unsigned NumElts
= VT
.getVectorNumElements();
12231 for (unsigned i
= 0; i
< NumElts
; ++i
) {
12232 SDValue V
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, N
->getOperand(i
));
12234 // Make the DAGCombiner fold the bitcast.
12235 DCI
.AddToWorklist(V
.getNode());
12237 EVT FloatVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::f64
, NumElts
);
12238 SDValue BV
= DAG
.getBuildVector(FloatVT
, dl
, Ops
);
12239 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, BV
);
12242 /// Target-specific dag combine xforms for ARMISD::BUILD_VECTOR.
12244 PerformARMBUILD_VECTORCombine(SDNode
*N
, TargetLowering::DAGCombinerInfo
&DCI
) {
12245 // ARMISD::BUILD_VECTOR is introduced when legalizing ISD::BUILD_VECTOR.
12246 // At that time, we may have inserted bitcasts from integer to float.
12247 // If these bitcasts have survived DAGCombine, change the lowering of this
12248 // BUILD_VECTOR in something more vector friendly, i.e., that does not
12249 // force to use floating point types.
12251 // Make sure we can change the type of the vector.
12252 // This is possible iff:
12253 // 1. The vector is only used in a bitcast to a integer type. I.e.,
12254 // 1.1. Vector is used only once.
12255 // 1.2. Use is a bit convert to an integer type.
12256 // 2. The size of its operands are 32-bits (64-bits are not legal).
12257 EVT VT
= N
->getValueType(0);
12258 EVT EltVT
= VT
.getVectorElementType();
12260 // Check 1.1. and 2.
12261 if (EltVT
.getSizeInBits() != 32 || !N
->hasOneUse())
12264 // By construction, the input type must be float.
12265 assert(EltVT
== MVT::f32
&& "Unexpected type!");
12268 SDNode
*Use
= *N
->use_begin();
12269 if (Use
->getOpcode() != ISD::BITCAST
||
12270 Use
->getValueType(0).isFloatingPoint())
12273 // Check profitability.
12274 // Model is, if more than half of the relevant operands are bitcast from
12275 // i32, turn the build_vector into a sequence of insert_vector_elt.
12276 // Relevant operands are everything that is not statically
12277 // (i.e., at compile time) bitcasted.
12278 unsigned NumOfBitCastedElts
= 0;
12279 unsigned NumElts
= VT
.getVectorNumElements();
12280 unsigned NumOfRelevantElts
= NumElts
;
12281 for (unsigned Idx
= 0; Idx
< NumElts
; ++Idx
) {
12282 SDValue Elt
= N
->getOperand(Idx
);
12283 if (Elt
->getOpcode() == ISD::BITCAST
) {
12284 // Assume only bit cast to i32 will go away.
12285 if (Elt
->getOperand(0).getValueType() == MVT::i32
)
12286 ++NumOfBitCastedElts
;
12287 } else if (Elt
.isUndef() || isa
<ConstantSDNode
>(Elt
))
12288 // Constants are statically casted, thus do not count them as
12289 // relevant operands.
12290 --NumOfRelevantElts
;
12293 // Check if more than half of the elements require a non-free bitcast.
12294 if (NumOfBitCastedElts
<= NumOfRelevantElts
/ 2)
12297 SelectionDAG
&DAG
= DCI
.DAG
;
12298 // Create the new vector type.
12299 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::i32
, NumElts
);
12300 // Check if the type is legal.
12301 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
12302 if (!TLI
.isTypeLegal(VecVT
))
12306 // ARMISD::BUILD_VECTOR E1, E2, ..., EN.
12307 // => BITCAST INSERT_VECTOR_ELT
12308 // (INSERT_VECTOR_ELT (...), (BITCAST EN-1), N-1),
12309 // (BITCAST EN), N.
12310 SDValue Vec
= DAG
.getUNDEF(VecVT
);
12312 for (unsigned Idx
= 0 ; Idx
< NumElts
; ++Idx
) {
12313 SDValue V
= N
->getOperand(Idx
);
12316 if (V
.getOpcode() == ISD::BITCAST
&&
12317 V
->getOperand(0).getValueType() == MVT::i32
)
12318 // Fold obvious case.
12319 V
= V
.getOperand(0);
12321 V
= DAG
.getNode(ISD::BITCAST
, SDLoc(V
), MVT::i32
, V
);
12322 // Make the DAGCombiner fold the bitcasts.
12323 DCI
.AddToWorklist(V
.getNode());
12325 SDValue LaneIdx
= DAG
.getConstant(Idx
, dl
, MVT::i32
);
12326 Vec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VecVT
, Vec
, V
, LaneIdx
);
12328 Vec
= DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vec
);
12329 // Make the DAGCombiner fold the bitcasts.
12330 DCI
.AddToWorklist(Vec
.getNode());
12334 /// PerformInsertEltCombine - Target-specific dag combine xforms for
12335 /// ISD::INSERT_VECTOR_ELT.
12336 static SDValue
PerformInsertEltCombine(SDNode
*N
,
12337 TargetLowering::DAGCombinerInfo
&DCI
) {
12338 // Bitcast an i64 load inserted into a vector to f64.
12339 // Otherwise, the i64 value will be legalized to a pair of i32 values.
12340 EVT VT
= N
->getValueType(0);
12341 SDNode
*Elt
= N
->getOperand(1).getNode();
12342 if (VT
.getVectorElementType() != MVT::i64
||
12343 !ISD::isNormalLoad(Elt
) || cast
<LoadSDNode
>(Elt
)->isVolatile())
12346 SelectionDAG
&DAG
= DCI
.DAG
;
12348 EVT FloatVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::f64
,
12349 VT
.getVectorNumElements());
12350 SDValue Vec
= DAG
.getNode(ISD::BITCAST
, dl
, FloatVT
, N
->getOperand(0));
12351 SDValue V
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, N
->getOperand(1));
12352 // Make the DAGCombiner fold the bitcasts.
12353 DCI
.AddToWorklist(Vec
.getNode());
12354 DCI
.AddToWorklist(V
.getNode());
12355 SDValue InsElt
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, FloatVT
,
12356 Vec
, V
, N
->getOperand(2));
12357 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, InsElt
);
12360 /// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
12361 /// ISD::VECTOR_SHUFFLE.
12362 static SDValue
PerformVECTOR_SHUFFLECombine(SDNode
*N
, SelectionDAG
&DAG
) {
12363 // The LLVM shufflevector instruction does not require the shuffle mask
12364 // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
12365 // have that requirement. When translating to ISD::VECTOR_SHUFFLE, if the
12366 // operands do not match the mask length, they are extended by concatenating
12367 // them with undef vectors. That is probably the right thing for other
12368 // targets, but for NEON it is better to concatenate two double-register
12369 // size vector operands into a single quad-register size vector. Do that
12370 // transformation here:
12371 // shuffle(concat(v1, undef), concat(v2, undef)) ->
12372 // shuffle(concat(v1, v2), undef)
12373 SDValue Op0
= N
->getOperand(0);
12374 SDValue Op1
= N
->getOperand(1);
12375 if (Op0
.getOpcode() != ISD::CONCAT_VECTORS
||
12376 Op1
.getOpcode() != ISD::CONCAT_VECTORS
||
12377 Op0
.getNumOperands() != 2 ||
12378 Op1
.getNumOperands() != 2)
12380 SDValue Concat0Op1
= Op0
.getOperand(1);
12381 SDValue Concat1Op1
= Op1
.getOperand(1);
12382 if (!Concat0Op1
.isUndef() || !Concat1Op1
.isUndef())
12384 // Skip the transformation if any of the types are illegal.
12385 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
12386 EVT VT
= N
->getValueType(0);
12387 if (!TLI
.isTypeLegal(VT
) ||
12388 !TLI
.isTypeLegal(Concat0Op1
.getValueType()) ||
12389 !TLI
.isTypeLegal(Concat1Op1
.getValueType()))
12392 SDValue NewConcat
= DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
), VT
,
12393 Op0
.getOperand(0), Op1
.getOperand(0));
12394 // Translate the shuffle mask.
12395 SmallVector
<int, 16> NewMask
;
12396 unsigned NumElts
= VT
.getVectorNumElements();
12397 unsigned HalfElts
= NumElts
/2;
12398 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(N
);
12399 for (unsigned n
= 0; n
< NumElts
; ++n
) {
12400 int MaskElt
= SVN
->getMaskElt(n
);
12402 if (MaskElt
< (int)HalfElts
)
12404 else if (MaskElt
>= (int)NumElts
&& MaskElt
< (int)(NumElts
+ HalfElts
))
12405 NewElt
= HalfElts
+ MaskElt
- NumElts
;
12406 NewMask
.push_back(NewElt
);
12408 return DAG
.getVectorShuffle(VT
, SDLoc(N
), NewConcat
,
12409 DAG
.getUNDEF(VT
), NewMask
);
12412 /// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP,
12413 /// NEON load/store intrinsics, and generic vector load/stores, to merge
12414 /// base address updates.
12415 /// For generic load/stores, the memory type is assumed to be a vector.
12416 /// The caller is assumed to have checked legality.
12417 static SDValue
CombineBaseUpdate(SDNode
*N
,
12418 TargetLowering::DAGCombinerInfo
&DCI
) {
12419 SelectionDAG
&DAG
= DCI
.DAG
;
12420 const bool isIntrinsic
= (N
->getOpcode() == ISD::INTRINSIC_VOID
||
12421 N
->getOpcode() == ISD::INTRINSIC_W_CHAIN
);
12422 const bool isStore
= N
->getOpcode() == ISD::STORE
;
12423 const unsigned AddrOpIdx
= ((isIntrinsic
|| isStore
) ? 2 : 1);
12424 SDValue Addr
= N
->getOperand(AddrOpIdx
);
12425 MemSDNode
*MemN
= cast
<MemSDNode
>(N
);
12428 // Search for a use of the address operand that is an increment.
12429 for (SDNode::use_iterator UI
= Addr
.getNode()->use_begin(),
12430 UE
= Addr
.getNode()->use_end(); UI
!= UE
; ++UI
) {
12431 SDNode
*User
= *UI
;
12432 if (User
->getOpcode() != ISD::ADD
||
12433 UI
.getUse().getResNo() != Addr
.getResNo())
12436 // Check that the add is independent of the load/store. Otherwise, folding
12437 // it would create a cycle. We can avoid searching through Addr as it's a
12438 // predecessor to both.
12439 SmallPtrSet
<const SDNode
*, 32> Visited
;
12440 SmallVector
<const SDNode
*, 16> Worklist
;
12441 Visited
.insert(Addr
.getNode());
12442 Worklist
.push_back(N
);
12443 Worklist
.push_back(User
);
12444 if (SDNode::hasPredecessorHelper(N
, Visited
, Worklist
) ||
12445 SDNode::hasPredecessorHelper(User
, Visited
, Worklist
))
12448 // Find the new opcode for the updating load/store.
12449 bool isLoadOp
= true;
12450 bool isLaneOp
= false;
12451 unsigned NewOpc
= 0;
12452 unsigned NumVecs
= 0;
12454 unsigned IntNo
= cast
<ConstantSDNode
>(N
->getOperand(1))->getZExtValue();
12456 default: llvm_unreachable("unexpected intrinsic for Neon base update");
12457 case Intrinsic::arm_neon_vld1
: NewOpc
= ARMISD::VLD1_UPD
;
12458 NumVecs
= 1; break;
12459 case Intrinsic::arm_neon_vld2
: NewOpc
= ARMISD::VLD2_UPD
;
12460 NumVecs
= 2; break;
12461 case Intrinsic::arm_neon_vld3
: NewOpc
= ARMISD::VLD3_UPD
;
12462 NumVecs
= 3; break;
12463 case Intrinsic::arm_neon_vld4
: NewOpc
= ARMISD::VLD4_UPD
;
12464 NumVecs
= 4; break;
12465 case Intrinsic::arm_neon_vld2dup
:
12466 case Intrinsic::arm_neon_vld3dup
:
12467 case Intrinsic::arm_neon_vld4dup
:
12468 // TODO: Support updating VLDxDUP nodes. For now, we just skip
12469 // combining base updates for such intrinsics.
12471 case Intrinsic::arm_neon_vld2lane
: NewOpc
= ARMISD::VLD2LN_UPD
;
12472 NumVecs
= 2; isLaneOp
= true; break;
12473 case Intrinsic::arm_neon_vld3lane
: NewOpc
= ARMISD::VLD3LN_UPD
;
12474 NumVecs
= 3; isLaneOp
= true; break;
12475 case Intrinsic::arm_neon_vld4lane
: NewOpc
= ARMISD::VLD4LN_UPD
;
12476 NumVecs
= 4; isLaneOp
= true; break;
12477 case Intrinsic::arm_neon_vst1
: NewOpc
= ARMISD::VST1_UPD
;
12478 NumVecs
= 1; isLoadOp
= false; break;
12479 case Intrinsic::arm_neon_vst2
: NewOpc
= ARMISD::VST2_UPD
;
12480 NumVecs
= 2; isLoadOp
= false; break;
12481 case Intrinsic::arm_neon_vst3
: NewOpc
= ARMISD::VST3_UPD
;
12482 NumVecs
= 3; isLoadOp
= false; break;
12483 case Intrinsic::arm_neon_vst4
: NewOpc
= ARMISD::VST4_UPD
;
12484 NumVecs
= 4; isLoadOp
= false; break;
12485 case Intrinsic::arm_neon_vst2lane
: NewOpc
= ARMISD::VST2LN_UPD
;
12486 NumVecs
= 2; isLoadOp
= false; isLaneOp
= true; break;
12487 case Intrinsic::arm_neon_vst3lane
: NewOpc
= ARMISD::VST3LN_UPD
;
12488 NumVecs
= 3; isLoadOp
= false; isLaneOp
= true; break;
12489 case Intrinsic::arm_neon_vst4lane
: NewOpc
= ARMISD::VST4LN_UPD
;
12490 NumVecs
= 4; isLoadOp
= false; isLaneOp
= true; break;
12494 switch (N
->getOpcode()) {
12495 default: llvm_unreachable("unexpected opcode for Neon base update");
12496 case ARMISD::VLD1DUP
: NewOpc
= ARMISD::VLD1DUP_UPD
; NumVecs
= 1; break;
12497 case ARMISD::VLD2DUP
: NewOpc
= ARMISD::VLD2DUP_UPD
; NumVecs
= 2; break;
12498 case ARMISD::VLD3DUP
: NewOpc
= ARMISD::VLD3DUP_UPD
; NumVecs
= 3; break;
12499 case ARMISD::VLD4DUP
: NewOpc
= ARMISD::VLD4DUP_UPD
; NumVecs
= 4; break;
12500 case ISD::LOAD
: NewOpc
= ARMISD::VLD1_UPD
;
12501 NumVecs
= 1; isLaneOp
= false; break;
12502 case ISD::STORE
: NewOpc
= ARMISD::VST1_UPD
;
12503 NumVecs
= 1; isLaneOp
= false; isLoadOp
= false; break;
12507 // Find the size of memory referenced by the load/store.
12510 VecTy
= N
->getValueType(0);
12511 } else if (isIntrinsic
) {
12512 VecTy
= N
->getOperand(AddrOpIdx
+1).getValueType();
12514 assert(isStore
&& "Node has to be a load, a store, or an intrinsic!");
12515 VecTy
= N
->getOperand(1).getValueType();
12518 unsigned NumBytes
= NumVecs
* VecTy
.getSizeInBits() / 8;
12520 NumBytes
/= VecTy
.getVectorNumElements();
12522 // If the increment is a constant, it must match the memory ref size.
12523 SDValue Inc
= User
->getOperand(User
->getOperand(0) == Addr
? 1 : 0);
12524 ConstantSDNode
*CInc
= dyn_cast
<ConstantSDNode
>(Inc
.getNode());
12525 if (NumBytes
>= 3 * 16 && (!CInc
|| CInc
->getZExtValue() != NumBytes
)) {
12526 // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
12527 // separate instructions that make it harder to use a non-constant update.
12531 // OK, we found an ADD we can fold into the base update.
12532 // Now, create a _UPD node, taking care of not breaking alignment.
12534 EVT AlignedVecTy
= VecTy
;
12535 unsigned Alignment
= MemN
->getAlignment();
12537 // If this is a less-than-standard-aligned load/store, change the type to
12538 // match the standard alignment.
12539 // The alignment is overlooked when selecting _UPD variants; and it's
12540 // easier to introduce bitcasts here than fix that.
12541 // There are 3 ways to get to this base-update combine:
12542 // - intrinsics: they are assumed to be properly aligned (to the standard
12543 // alignment of the memory type), so we don't need to do anything.
12544 // - ARMISD::VLDx nodes: they are only generated from the aforementioned
12545 // intrinsics, so, likewise, there's nothing to do.
12546 // - generic load/store instructions: the alignment is specified as an
12547 // explicit operand, rather than implicitly as the standard alignment
12548 // of the memory type (like the intrisics). We need to change the
12549 // memory type to match the explicit alignment. That way, we don't
12550 // generate non-standard-aligned ARMISD::VLDx nodes.
12551 if (isa
<LSBaseSDNode
>(N
)) {
12552 if (Alignment
== 0)
12554 if (Alignment
< VecTy
.getScalarSizeInBits() / 8) {
12555 MVT EltTy
= MVT::getIntegerVT(Alignment
* 8);
12556 assert(NumVecs
== 1 && "Unexpected multi-element generic load/store.");
12557 assert(!isLaneOp
&& "Unexpected generic load/store lane.");
12558 unsigned NumElts
= NumBytes
/ (EltTy
.getSizeInBits() / 8);
12559 AlignedVecTy
= MVT::getVectorVT(EltTy
, NumElts
);
12561 // Don't set an explicit alignment on regular load/stores that we want
12562 // to transform to VLD/VST 1_UPD nodes.
12563 // This matches the behavior of regular load/stores, which only get an
12564 // explicit alignment if the MMO alignment is larger than the standard
12565 // alignment of the memory type.
12566 // Intrinsics, however, always get an explicit alignment, set to the
12567 // alignment of the MMO.
12571 // Create the new updating load/store node.
12572 // First, create an SDVTList for the new updating node's results.
12574 unsigned NumResultVecs
= (isLoadOp
? NumVecs
: 0);
12576 for (n
= 0; n
< NumResultVecs
; ++n
)
12577 Tys
[n
] = AlignedVecTy
;
12578 Tys
[n
++] = MVT::i32
;
12579 Tys
[n
] = MVT::Other
;
12580 SDVTList SDTys
= DAG
.getVTList(makeArrayRef(Tys
, NumResultVecs
+2));
12582 // Then, gather the new node's operands.
12583 SmallVector
<SDValue
, 8> Ops
;
12584 Ops
.push_back(N
->getOperand(0)); // incoming chain
12585 Ops
.push_back(N
->getOperand(AddrOpIdx
));
12586 Ops
.push_back(Inc
);
12588 if (StoreSDNode
*StN
= dyn_cast
<StoreSDNode
>(N
)) {
12589 // Try to match the intrinsic's signature
12590 Ops
.push_back(StN
->getValue());
12592 // Loads (and of course intrinsics) match the intrinsics' signature,
12593 // so just add all but the alignment operand.
12594 for (unsigned i
= AddrOpIdx
+ 1; i
< N
->getNumOperands() - 1; ++i
)
12595 Ops
.push_back(N
->getOperand(i
));
12598 // For all node types, the alignment operand is always the last one.
12599 Ops
.push_back(DAG
.getConstant(Alignment
, dl
, MVT::i32
));
12601 // If this is a non-standard-aligned STORE, the penultimate operand is the
12602 // stored value. Bitcast it to the aligned type.
12603 if (AlignedVecTy
!= VecTy
&& N
->getOpcode() == ISD::STORE
) {
12604 SDValue
&StVal
= Ops
[Ops
.size()-2];
12605 StVal
= DAG
.getNode(ISD::BITCAST
, dl
, AlignedVecTy
, StVal
);
12608 EVT LoadVT
= isLaneOp
? VecTy
.getVectorElementType() : AlignedVecTy
;
12609 SDValue UpdN
= DAG
.getMemIntrinsicNode(NewOpc
, dl
, SDTys
, Ops
, LoadVT
,
12610 MemN
->getMemOperand());
12612 // Update the uses.
12613 SmallVector
<SDValue
, 5> NewResults
;
12614 for (unsigned i
= 0; i
< NumResultVecs
; ++i
)
12615 NewResults
.push_back(SDValue(UpdN
.getNode(), i
));
12617 // If this is an non-standard-aligned LOAD, the first result is the loaded
12618 // value. Bitcast it to the expected result type.
12619 if (AlignedVecTy
!= VecTy
&& N
->getOpcode() == ISD::LOAD
) {
12620 SDValue
&LdVal
= NewResults
[0];
12621 LdVal
= DAG
.getNode(ISD::BITCAST
, dl
, VecTy
, LdVal
);
12624 NewResults
.push_back(SDValue(UpdN
.getNode(), NumResultVecs
+1)); // chain
12625 DCI
.CombineTo(N
, NewResults
);
12626 DCI
.CombineTo(User
, SDValue(UpdN
.getNode(), NumResultVecs
));
12633 static SDValue
PerformVLDCombine(SDNode
*N
,
12634 TargetLowering::DAGCombinerInfo
&DCI
) {
12635 if (DCI
.isBeforeLegalize() || DCI
.isCalledByLegalizer())
12638 return CombineBaseUpdate(N
, DCI
);
12641 /// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
12642 /// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
12643 /// are also VDUPLANEs. If so, combine them to a vldN-dup operation and
12645 static bool CombineVLDDUP(SDNode
*N
, TargetLowering::DAGCombinerInfo
&DCI
) {
12646 SelectionDAG
&DAG
= DCI
.DAG
;
12647 EVT VT
= N
->getValueType(0);
12648 // vldN-dup instructions only support 64-bit vectors for N > 1.
12649 if (!VT
.is64BitVector())
12652 // Check if the VDUPLANE operand is a vldN-dup intrinsic.
12653 SDNode
*VLD
= N
->getOperand(0).getNode();
12654 if (VLD
->getOpcode() != ISD::INTRINSIC_W_CHAIN
)
12656 unsigned NumVecs
= 0;
12657 unsigned NewOpc
= 0;
12658 unsigned IntNo
= cast
<ConstantSDNode
>(VLD
->getOperand(1))->getZExtValue();
12659 if (IntNo
== Intrinsic::arm_neon_vld2lane
) {
12661 NewOpc
= ARMISD::VLD2DUP
;
12662 } else if (IntNo
== Intrinsic::arm_neon_vld3lane
) {
12664 NewOpc
= ARMISD::VLD3DUP
;
12665 } else if (IntNo
== Intrinsic::arm_neon_vld4lane
) {
12667 NewOpc
= ARMISD::VLD4DUP
;
12672 // First check that all the vldN-lane uses are VDUPLANEs and that the lane
12673 // numbers match the load.
12674 unsigned VLDLaneNo
=
12675 cast
<ConstantSDNode
>(VLD
->getOperand(NumVecs
+3))->getZExtValue();
12676 for (SDNode::use_iterator UI
= VLD
->use_begin(), UE
= VLD
->use_end();
12678 // Ignore uses of the chain result.
12679 if (UI
.getUse().getResNo() == NumVecs
)
12681 SDNode
*User
= *UI
;
12682 if (User
->getOpcode() != ARMISD::VDUPLANE
||
12683 VLDLaneNo
!= cast
<ConstantSDNode
>(User
->getOperand(1))->getZExtValue())
12687 // Create the vldN-dup node.
12690 for (n
= 0; n
< NumVecs
; ++n
)
12692 Tys
[n
] = MVT::Other
;
12693 SDVTList SDTys
= DAG
.getVTList(makeArrayRef(Tys
, NumVecs
+1));
12694 SDValue Ops
[] = { VLD
->getOperand(0), VLD
->getOperand(2) };
12695 MemIntrinsicSDNode
*VLDMemInt
= cast
<MemIntrinsicSDNode
>(VLD
);
12696 SDValue VLDDup
= DAG
.getMemIntrinsicNode(NewOpc
, SDLoc(VLD
), SDTys
,
12697 Ops
, VLDMemInt
->getMemoryVT(),
12698 VLDMemInt
->getMemOperand());
12700 // Update the uses.
12701 for (SDNode::use_iterator UI
= VLD
->use_begin(), UE
= VLD
->use_end();
12703 unsigned ResNo
= UI
.getUse().getResNo();
12704 // Ignore uses of the chain result.
12705 if (ResNo
== NumVecs
)
12707 SDNode
*User
= *UI
;
12708 DCI
.CombineTo(User
, SDValue(VLDDup
.getNode(), ResNo
));
12711 // Now the vldN-lane intrinsic is dead except for its chain result.
12712 // Update uses of the chain.
12713 std::vector
<SDValue
> VLDDupResults
;
12714 for (unsigned n
= 0; n
< NumVecs
; ++n
)
12715 VLDDupResults
.push_back(SDValue(VLDDup
.getNode(), n
));
12716 VLDDupResults
.push_back(SDValue(VLDDup
.getNode(), NumVecs
));
12717 DCI
.CombineTo(VLD
, VLDDupResults
);
12722 /// PerformVDUPLANECombine - Target-specific dag combine xforms for
12723 /// ARMISD::VDUPLANE.
12724 static SDValue
PerformVDUPLANECombine(SDNode
*N
,
12725 TargetLowering::DAGCombinerInfo
&DCI
) {
12726 SDValue Op
= N
->getOperand(0);
12728 // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
12729 // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
12730 if (CombineVLDDUP(N
, DCI
))
12731 return SDValue(N
, 0);
12733 // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
12734 // redundant. Ignore bit_converts for now; element sizes are checked below.
12735 while (Op
.getOpcode() == ISD::BITCAST
)
12736 Op
= Op
.getOperand(0);
12737 if (Op
.getOpcode() != ARMISD::VMOVIMM
&& Op
.getOpcode() != ARMISD::VMVNIMM
)
12740 // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
12741 unsigned EltSize
= Op
.getScalarValueSizeInBits();
12742 // The canonical VMOV for a zero vector uses a 32-bit element size.
12743 unsigned Imm
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
12745 if (ARM_AM::decodeVMOVModImm(Imm
, EltBits
) == 0)
12747 EVT VT
= N
->getValueType(0);
12748 if (EltSize
> VT
.getScalarSizeInBits())
12751 return DCI
.DAG
.getNode(ISD::BITCAST
, SDLoc(N
), VT
, Op
);
12754 /// PerformVDUPCombine - Target-specific dag combine xforms for ARMISD::VDUP.
12755 static SDValue
PerformVDUPCombine(SDNode
*N
,
12756 TargetLowering::DAGCombinerInfo
&DCI
,
12757 const ARMSubtarget
*Subtarget
) {
12758 SelectionDAG
&DAG
= DCI
.DAG
;
12759 SDValue Op
= N
->getOperand(0);
12761 if (!Subtarget
->hasNEON())
12764 // Match VDUP(LOAD) -> VLD1DUP.
12765 // We match this pattern here rather than waiting for isel because the
12766 // transform is only legal for unindexed loads.
12767 LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(Op
.getNode());
12768 if (LD
&& Op
.hasOneUse() && LD
->isUnindexed() &&
12769 LD
->getMemoryVT() == N
->getValueType(0).getVectorElementType()) {
12770 SDValue Ops
[] = { LD
->getOperand(0), LD
->getOperand(1),
12771 DAG
.getConstant(LD
->getAlignment(), SDLoc(N
), MVT::i32
) };
12772 SDVTList SDTys
= DAG
.getVTList(N
->getValueType(0), MVT::Other
);
12773 SDValue VLDDup
= DAG
.getMemIntrinsicNode(ARMISD::VLD1DUP
, SDLoc(N
), SDTys
,
12774 Ops
, LD
->getMemoryVT(),
12775 LD
->getMemOperand());
12776 DAG
.ReplaceAllUsesOfValueWith(SDValue(LD
, 1), VLDDup
.getValue(1));
12783 static SDValue
PerformLOADCombine(SDNode
*N
,
12784 TargetLowering::DAGCombinerInfo
&DCI
) {
12785 EVT VT
= N
->getValueType(0);
12787 // If this is a legal vector load, try to combine it into a VLD1_UPD.
12788 if (ISD::isNormalLoad(N
) && VT
.isVector() &&
12789 DCI
.DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
12790 return CombineBaseUpdate(N
, DCI
);
12795 /// PerformSTORECombine - Target-specific dag combine xforms for
12797 static SDValue
PerformSTORECombine(SDNode
*N
,
12798 TargetLowering::DAGCombinerInfo
&DCI
) {
12799 StoreSDNode
*St
= cast
<StoreSDNode
>(N
);
12800 if (St
->isVolatile())
12803 // Optimize trunc store (of multiple scalars) to shuffle and store. First,
12804 // pack all of the elements in one place. Next, store to memory in fewer
12806 SDValue StVal
= St
->getValue();
12807 EVT VT
= StVal
.getValueType();
12808 if (St
->isTruncatingStore() && VT
.isVector()) {
12809 SelectionDAG
&DAG
= DCI
.DAG
;
12810 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
12811 EVT StVT
= St
->getMemoryVT();
12812 unsigned NumElems
= VT
.getVectorNumElements();
12813 assert(StVT
!= VT
&& "Cannot truncate to the same type");
12814 unsigned FromEltSz
= VT
.getScalarSizeInBits();
12815 unsigned ToEltSz
= StVT
.getScalarSizeInBits();
12817 // From, To sizes and ElemCount must be pow of two
12818 if (!isPowerOf2_32(NumElems
* FromEltSz
* ToEltSz
)) return SDValue();
12820 // We are going to use the original vector elt for storing.
12821 // Accumulated smaller vector elements must be a multiple of the store size.
12822 if (0 != (NumElems
* FromEltSz
) % ToEltSz
) return SDValue();
12824 unsigned SizeRatio
= FromEltSz
/ ToEltSz
;
12825 assert(SizeRatio
* NumElems
* ToEltSz
== VT
.getSizeInBits());
12827 // Create a type on which we perform the shuffle.
12828 EVT WideVecVT
= EVT::getVectorVT(*DAG
.getContext(), StVT
.getScalarType(),
12829 NumElems
*SizeRatio
);
12830 assert(WideVecVT
.getSizeInBits() == VT
.getSizeInBits());
12833 SDValue WideVec
= DAG
.getNode(ISD::BITCAST
, DL
, WideVecVT
, StVal
);
12834 SmallVector
<int, 8> ShuffleVec(NumElems
* SizeRatio
, -1);
12835 for (unsigned i
= 0; i
< NumElems
; ++i
)
12836 ShuffleVec
[i
] = DAG
.getDataLayout().isBigEndian()
12837 ? (i
+ 1) * SizeRatio
- 1
12840 // Can't shuffle using an illegal type.
12841 if (!TLI
.isTypeLegal(WideVecVT
)) return SDValue();
12843 SDValue Shuff
= DAG
.getVectorShuffle(WideVecVT
, DL
, WideVec
,
12844 DAG
.getUNDEF(WideVec
.getValueType()),
12846 // At this point all of the data is stored at the bottom of the
12847 // register. We now need to save it to mem.
12849 // Find the largest store unit
12850 MVT StoreType
= MVT::i8
;
12851 for (MVT Tp
: MVT::integer_valuetypes()) {
12852 if (TLI
.isTypeLegal(Tp
) && Tp
.getSizeInBits() <= NumElems
* ToEltSz
)
12855 // Didn't find a legal store type.
12856 if (!TLI
.isTypeLegal(StoreType
))
12859 // Bitcast the original vector into a vector of store-size units
12860 EVT StoreVecVT
= EVT::getVectorVT(*DAG
.getContext(),
12861 StoreType
, VT
.getSizeInBits()/EVT(StoreType
).getSizeInBits());
12862 assert(StoreVecVT
.getSizeInBits() == VT
.getSizeInBits());
12863 SDValue ShuffWide
= DAG
.getNode(ISD::BITCAST
, DL
, StoreVecVT
, Shuff
);
12864 SmallVector
<SDValue
, 8> Chains
;
12865 SDValue Increment
= DAG
.getConstant(StoreType
.getSizeInBits() / 8, DL
,
12866 TLI
.getPointerTy(DAG
.getDataLayout()));
12867 SDValue BasePtr
= St
->getBasePtr();
12869 // Perform one or more big stores into memory.
12870 unsigned E
= (ToEltSz
*NumElems
)/StoreType
.getSizeInBits();
12871 for (unsigned I
= 0; I
< E
; I
++) {
12872 SDValue SubVec
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
,
12873 StoreType
, ShuffWide
,
12874 DAG
.getIntPtrConstant(I
, DL
));
12875 SDValue Ch
= DAG
.getStore(St
->getChain(), DL
, SubVec
, BasePtr
,
12876 St
->getPointerInfo(), St
->getAlignment(),
12877 St
->getMemOperand()->getFlags());
12878 BasePtr
= DAG
.getNode(ISD::ADD
, DL
, BasePtr
.getValueType(), BasePtr
,
12880 Chains
.push_back(Ch
);
12882 return DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, Chains
);
12885 if (!ISD::isNormalStore(St
))
12888 // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
12889 // ARM stores of arguments in the same cache line.
12890 if (StVal
.getNode()->getOpcode() == ARMISD::VMOVDRR
&&
12891 StVal
.getNode()->hasOneUse()) {
12892 SelectionDAG
&DAG
= DCI
.DAG
;
12893 bool isBigEndian
= DAG
.getDataLayout().isBigEndian();
12895 SDValue BasePtr
= St
->getBasePtr();
12896 SDValue NewST1
= DAG
.getStore(
12897 St
->getChain(), DL
, StVal
.getNode()->getOperand(isBigEndian
? 1 : 0),
12898 BasePtr
, St
->getPointerInfo(), St
->getAlignment(),
12899 St
->getMemOperand()->getFlags());
12901 SDValue OffsetPtr
= DAG
.getNode(ISD::ADD
, DL
, MVT::i32
, BasePtr
,
12902 DAG
.getConstant(4, DL
, MVT::i32
));
12903 return DAG
.getStore(NewST1
.getValue(0), DL
,
12904 StVal
.getNode()->getOperand(isBigEndian
? 0 : 1),
12905 OffsetPtr
, St
->getPointerInfo(),
12906 std::min(4U, St
->getAlignment() / 2),
12907 St
->getMemOperand()->getFlags());
12910 if (StVal
.getValueType() == MVT::i64
&&
12911 StVal
.getNode()->getOpcode() == ISD::EXTRACT_VECTOR_ELT
) {
12913 // Bitcast an i64 store extracted from a vector to f64.
12914 // Otherwise, the i64 value will be legalized to a pair of i32 values.
12915 SelectionDAG
&DAG
= DCI
.DAG
;
12917 SDValue IntVec
= StVal
.getOperand(0);
12918 EVT FloatVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::f64
,
12919 IntVec
.getValueType().getVectorNumElements());
12920 SDValue Vec
= DAG
.getNode(ISD::BITCAST
, dl
, FloatVT
, IntVec
);
12921 SDValue ExtElt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
,
12922 Vec
, StVal
.getOperand(1));
12924 SDValue V
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i64
, ExtElt
);
12925 // Make the DAGCombiner fold the bitcasts.
12926 DCI
.AddToWorklist(Vec
.getNode());
12927 DCI
.AddToWorklist(ExtElt
.getNode());
12928 DCI
.AddToWorklist(V
.getNode());
12929 return DAG
.getStore(St
->getChain(), dl
, V
, St
->getBasePtr(),
12930 St
->getPointerInfo(), St
->getAlignment(),
12931 St
->getMemOperand()->getFlags(), St
->getAAInfo());
12934 // If this is a legal vector store, try to combine it into a VST1_UPD.
12935 if (ISD::isNormalStore(N
) && VT
.isVector() &&
12936 DCI
.DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
12937 return CombineBaseUpdate(N
, DCI
);
12942 /// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
12943 /// can replace combinations of VMUL and VCVT (floating-point to integer)
12944 /// when the VMUL has a constant operand that is a power of 2.
12946 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
12947 /// vmul.f32 d16, d17, d16
12948 /// vcvt.s32.f32 d16, d16
12950 /// vcvt.s32.f32 d16, d16, #3
12951 static SDValue
PerformVCVTCombine(SDNode
*N
, SelectionDAG
&DAG
,
12952 const ARMSubtarget
*Subtarget
) {
12953 if (!Subtarget
->hasNEON())
12956 SDValue Op
= N
->getOperand(0);
12957 if (!Op
.getValueType().isVector() || !Op
.getValueType().isSimple() ||
12958 Op
.getOpcode() != ISD::FMUL
)
12961 SDValue ConstVec
= Op
->getOperand(1);
12962 if (!isa
<BuildVectorSDNode
>(ConstVec
))
12965 MVT FloatTy
= Op
.getSimpleValueType().getVectorElementType();
12966 uint32_t FloatBits
= FloatTy
.getSizeInBits();
12967 MVT IntTy
= N
->getSimpleValueType(0).getVectorElementType();
12968 uint32_t IntBits
= IntTy
.getSizeInBits();
12969 unsigned NumLanes
= Op
.getValueType().getVectorNumElements();
12970 if (FloatBits
!= 32 || IntBits
> 32 || (NumLanes
!= 4 && NumLanes
!= 2)) {
12971 // These instructions only exist converting from f32 to i32. We can handle
12972 // smaller integers by generating an extra truncate, but larger ones would
12973 // be lossy. We also can't handle anything other than 2 or 4 lanes, since
12974 // these intructions only support v2i32/v4i32 types.
12978 BitVector UndefElements
;
12979 BuildVectorSDNode
*BV
= cast
<BuildVectorSDNode
>(ConstVec
);
12980 int32_t C
= BV
->getConstantFPSplatPow2ToLog2Int(&UndefElements
, 33);
12981 if (C
== -1 || C
== 0 || C
> 32)
12985 bool isSigned
= N
->getOpcode() == ISD::FP_TO_SINT
;
12986 unsigned IntrinsicOpcode
= isSigned
? Intrinsic::arm_neon_vcvtfp2fxs
:
12987 Intrinsic::arm_neon_vcvtfp2fxu
;
12988 SDValue FixConv
= DAG
.getNode(
12989 ISD::INTRINSIC_WO_CHAIN
, dl
, NumLanes
== 2 ? MVT::v2i32
: MVT::v4i32
,
12990 DAG
.getConstant(IntrinsicOpcode
, dl
, MVT::i32
), Op
->getOperand(0),
12991 DAG
.getConstant(C
, dl
, MVT::i32
));
12993 if (IntBits
< FloatBits
)
12994 FixConv
= DAG
.getNode(ISD::TRUNCATE
, dl
, N
->getValueType(0), FixConv
);
12999 /// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
13000 /// can replace combinations of VCVT (integer to floating-point) and VDIV
13001 /// when the VDIV has a constant operand that is a power of 2.
13003 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
13004 /// vcvt.f32.s32 d16, d16
13005 /// vdiv.f32 d16, d17, d16
13007 /// vcvt.f32.s32 d16, d16, #3
13008 static SDValue
PerformVDIVCombine(SDNode
*N
, SelectionDAG
&DAG
,
13009 const ARMSubtarget
*Subtarget
) {
13010 if (!Subtarget
->hasNEON())
13013 SDValue Op
= N
->getOperand(0);
13014 unsigned OpOpcode
= Op
.getNode()->getOpcode();
13015 if (!N
->getValueType(0).isVector() || !N
->getValueType(0).isSimple() ||
13016 (OpOpcode
!= ISD::SINT_TO_FP
&& OpOpcode
!= ISD::UINT_TO_FP
))
13019 SDValue ConstVec
= N
->getOperand(1);
13020 if (!isa
<BuildVectorSDNode
>(ConstVec
))
13023 MVT FloatTy
= N
->getSimpleValueType(0).getVectorElementType();
13024 uint32_t FloatBits
= FloatTy
.getSizeInBits();
13025 MVT IntTy
= Op
.getOperand(0).getSimpleValueType().getVectorElementType();
13026 uint32_t IntBits
= IntTy
.getSizeInBits();
13027 unsigned NumLanes
= Op
.getValueType().getVectorNumElements();
13028 if (FloatBits
!= 32 || IntBits
> 32 || (NumLanes
!= 4 && NumLanes
!= 2)) {
13029 // These instructions only exist converting from i32 to f32. We can handle
13030 // smaller integers by generating an extra extend, but larger ones would
13031 // be lossy. We also can't handle anything other than 2 or 4 lanes, since
13032 // these intructions only support v2i32/v4i32 types.
13036 BitVector UndefElements
;
13037 BuildVectorSDNode
*BV
= cast
<BuildVectorSDNode
>(ConstVec
);
13038 int32_t C
= BV
->getConstantFPSplatPow2ToLog2Int(&UndefElements
, 33);
13039 if (C
== -1 || C
== 0 || C
> 32)
13043 bool isSigned
= OpOpcode
== ISD::SINT_TO_FP
;
13044 SDValue ConvInput
= Op
.getOperand(0);
13045 if (IntBits
< FloatBits
)
13046 ConvInput
= DAG
.getNode(isSigned
? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
,
13047 dl
, NumLanes
== 2 ? MVT::v2i32
: MVT::v4i32
,
13050 unsigned IntrinsicOpcode
= isSigned
? Intrinsic::arm_neon_vcvtfxs2fp
:
13051 Intrinsic::arm_neon_vcvtfxu2fp
;
13052 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
,
13054 DAG
.getConstant(IntrinsicOpcode
, dl
, MVT::i32
),
13055 ConvInput
, DAG
.getConstant(C
, dl
, MVT::i32
));
13058 /// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
13059 static SDValue
PerformIntrinsicCombine(SDNode
*N
, SelectionDAG
&DAG
) {
13060 unsigned IntNo
= cast
<ConstantSDNode
>(N
->getOperand(0))->getZExtValue();
13063 // Don't do anything for most intrinsics.
13066 // Vector shifts: check for immediate versions and lower them.
13067 // Note: This is done during DAG combining instead of DAG legalizing because
13068 // the build_vectors for 64-bit vector element shift counts are generally
13069 // not legal, and it is hard to see their values after they get legalized to
13070 // loads from a constant pool.
13071 case Intrinsic::arm_neon_vshifts
:
13072 case Intrinsic::arm_neon_vshiftu
:
13073 case Intrinsic::arm_neon_vrshifts
:
13074 case Intrinsic::arm_neon_vrshiftu
:
13075 case Intrinsic::arm_neon_vrshiftn
:
13076 case Intrinsic::arm_neon_vqshifts
:
13077 case Intrinsic::arm_neon_vqshiftu
:
13078 case Intrinsic::arm_neon_vqshiftsu
:
13079 case Intrinsic::arm_neon_vqshiftns
:
13080 case Intrinsic::arm_neon_vqshiftnu
:
13081 case Intrinsic::arm_neon_vqshiftnsu
:
13082 case Intrinsic::arm_neon_vqrshiftns
:
13083 case Intrinsic::arm_neon_vqrshiftnu
:
13084 case Intrinsic::arm_neon_vqrshiftnsu
: {
13085 EVT VT
= N
->getOperand(1).getValueType();
13087 unsigned VShiftOpc
= 0;
13090 case Intrinsic::arm_neon_vshifts
:
13091 case Intrinsic::arm_neon_vshiftu
:
13092 if (isVShiftLImm(N
->getOperand(2), VT
, false, Cnt
)) {
13093 VShiftOpc
= ARMISD::VSHLIMM
;
13096 if (isVShiftRImm(N
->getOperand(2), VT
, false, true, Cnt
)) {
13097 VShiftOpc
= (IntNo
== Intrinsic::arm_neon_vshifts
? ARMISD::VSHRsIMM
13098 : ARMISD::VSHRuIMM
);
13103 case Intrinsic::arm_neon_vrshifts
:
13104 case Intrinsic::arm_neon_vrshiftu
:
13105 if (isVShiftRImm(N
->getOperand(2), VT
, false, true, Cnt
))
13109 case Intrinsic::arm_neon_vqshifts
:
13110 case Intrinsic::arm_neon_vqshiftu
:
13111 if (isVShiftLImm(N
->getOperand(2), VT
, false, Cnt
))
13115 case Intrinsic::arm_neon_vqshiftsu
:
13116 if (isVShiftLImm(N
->getOperand(2), VT
, false, Cnt
))
13118 llvm_unreachable("invalid shift count for vqshlu intrinsic");
13120 case Intrinsic::arm_neon_vrshiftn
:
13121 case Intrinsic::arm_neon_vqshiftns
:
13122 case Intrinsic::arm_neon_vqshiftnu
:
13123 case Intrinsic::arm_neon_vqshiftnsu
:
13124 case Intrinsic::arm_neon_vqrshiftns
:
13125 case Intrinsic::arm_neon_vqrshiftnu
:
13126 case Intrinsic::arm_neon_vqrshiftnsu
:
13127 // Narrowing shifts require an immediate right shift.
13128 if (isVShiftRImm(N
->getOperand(2), VT
, true, true, Cnt
))
13130 llvm_unreachable("invalid shift count for narrowing vector shift "
13134 llvm_unreachable("unhandled vector shift");
13138 case Intrinsic::arm_neon_vshifts
:
13139 case Intrinsic::arm_neon_vshiftu
:
13140 // Opcode already set above.
13142 case Intrinsic::arm_neon_vrshifts
:
13143 VShiftOpc
= ARMISD::VRSHRsIMM
;
13145 case Intrinsic::arm_neon_vrshiftu
:
13146 VShiftOpc
= ARMISD::VRSHRuIMM
;
13148 case Intrinsic::arm_neon_vrshiftn
:
13149 VShiftOpc
= ARMISD::VRSHRNIMM
;
13151 case Intrinsic::arm_neon_vqshifts
:
13152 VShiftOpc
= ARMISD::VQSHLsIMM
;
13154 case Intrinsic::arm_neon_vqshiftu
:
13155 VShiftOpc
= ARMISD::VQSHLuIMM
;
13157 case Intrinsic::arm_neon_vqshiftsu
:
13158 VShiftOpc
= ARMISD::VQSHLsuIMM
;
13160 case Intrinsic::arm_neon_vqshiftns
:
13161 VShiftOpc
= ARMISD::VQSHRNsIMM
;
13163 case Intrinsic::arm_neon_vqshiftnu
:
13164 VShiftOpc
= ARMISD::VQSHRNuIMM
;
13166 case Intrinsic::arm_neon_vqshiftnsu
:
13167 VShiftOpc
= ARMISD::VQSHRNsuIMM
;
13169 case Intrinsic::arm_neon_vqrshiftns
:
13170 VShiftOpc
= ARMISD::VQRSHRNsIMM
;
13172 case Intrinsic::arm_neon_vqrshiftnu
:
13173 VShiftOpc
= ARMISD::VQRSHRNuIMM
;
13175 case Intrinsic::arm_neon_vqrshiftnsu
:
13176 VShiftOpc
= ARMISD::VQRSHRNsuIMM
;
13181 return DAG
.getNode(VShiftOpc
, dl
, N
->getValueType(0),
13182 N
->getOperand(1), DAG
.getConstant(Cnt
, dl
, MVT::i32
));
13185 case Intrinsic::arm_neon_vshiftins
: {
13186 EVT VT
= N
->getOperand(1).getValueType();
13188 unsigned VShiftOpc
= 0;
13190 if (isVShiftLImm(N
->getOperand(3), VT
, false, Cnt
))
13191 VShiftOpc
= ARMISD::VSLIIMM
;
13192 else if (isVShiftRImm(N
->getOperand(3), VT
, false, true, Cnt
))
13193 VShiftOpc
= ARMISD::VSRIIMM
;
13195 llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
13199 return DAG
.getNode(VShiftOpc
, dl
, N
->getValueType(0),
13200 N
->getOperand(1), N
->getOperand(2),
13201 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
13204 case Intrinsic::arm_neon_vqrshifts
:
13205 case Intrinsic::arm_neon_vqrshiftu
:
13206 // No immediate versions of these to check for.
13213 /// PerformShiftCombine - Checks for immediate versions of vector shifts and
13214 /// lowers them. As with the vector shift intrinsics, this is done during DAG
13215 /// combining instead of DAG legalizing because the build_vectors for 64-bit
13216 /// vector element shift counts are generally not legal, and it is hard to see
13217 /// their values after they get legalized to loads from a constant pool.
13218 static SDValue
PerformShiftCombine(SDNode
*N
,
13219 TargetLowering::DAGCombinerInfo
&DCI
,
13220 const ARMSubtarget
*ST
) {
13221 SelectionDAG
&DAG
= DCI
.DAG
;
13222 EVT VT
= N
->getValueType(0);
13223 if (N
->getOpcode() == ISD::SRL
&& VT
== MVT::i32
&& ST
->hasV6Ops()) {
13224 // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high
13225 // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16.
13226 SDValue N1
= N
->getOperand(1);
13227 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N1
)) {
13228 SDValue N0
= N
->getOperand(0);
13229 if (C
->getZExtValue() == 16 && N0
.getOpcode() == ISD::BSWAP
&&
13230 DAG
.MaskedValueIsZero(N0
.getOperand(0),
13231 APInt::getHighBitsSet(32, 16)))
13232 return DAG
.getNode(ISD::ROTR
, SDLoc(N
), VT
, N0
, N1
);
13236 if (ST
->isThumb1Only() && N
->getOpcode() == ISD::SHL
&& VT
== MVT::i32
&&
13237 N
->getOperand(0)->getOpcode() == ISD::AND
&&
13238 N
->getOperand(0)->hasOneUse()) {
13239 if (DCI
.isBeforeLegalize() || DCI
.isCalledByLegalizer())
13241 // Look for the pattern (shl (and x, AndMask), ShiftAmt). This doesn't
13242 // usually show up because instcombine prefers to canonicalize it to
13243 // (and (shl x, ShiftAmt) (shl AndMask, ShiftAmt)), but the shift can come
13244 // out of GEP lowering in some cases.
13245 SDValue N0
= N
->getOperand(0);
13246 ConstantSDNode
*ShiftAmtNode
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
13249 uint32_t ShiftAmt
= static_cast<uint32_t>(ShiftAmtNode
->getZExtValue());
13250 ConstantSDNode
*AndMaskNode
= dyn_cast
<ConstantSDNode
>(N0
->getOperand(1));
13253 uint32_t AndMask
= static_cast<uint32_t>(AndMaskNode
->getZExtValue());
13254 // Don't transform uxtb/uxth.
13255 if (AndMask
== 255 || AndMask
== 65535)
13257 if (isMask_32(AndMask
)) {
13258 uint32_t MaskedBits
= countLeadingZeros(AndMask
);
13259 if (MaskedBits
> ShiftAmt
) {
13261 SDValue SHL
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, N0
->getOperand(0),
13262 DAG
.getConstant(MaskedBits
, DL
, MVT::i32
));
13263 return DAG
.getNode(
13264 ISD::SRL
, DL
, MVT::i32
, SHL
,
13265 DAG
.getConstant(MaskedBits
- ShiftAmt
, DL
, MVT::i32
));
13270 // Nothing to be done for scalar shifts.
13271 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
13272 if (!VT
.isVector() || !TLI
.isTypeLegal(VT
))
13274 if (ST
->hasMVEIntegerOps() && VT
== MVT::v2i64
)
13279 switch (N
->getOpcode()) {
13280 default: llvm_unreachable("unexpected shift opcode");
13283 if (isVShiftLImm(N
->getOperand(1), VT
, false, Cnt
)) {
13285 return DAG
.getNode(ARMISD::VSHLIMM
, dl
, VT
, N
->getOperand(0),
13286 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
13292 if (isVShiftRImm(N
->getOperand(1), VT
, false, false, Cnt
)) {
13293 unsigned VShiftOpc
=
13294 (N
->getOpcode() == ISD::SRA
? ARMISD::VSHRsIMM
: ARMISD::VSHRuIMM
);
13296 return DAG
.getNode(VShiftOpc
, dl
, VT
, N
->getOperand(0),
13297 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
13303 /// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
13304 /// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
13305 static SDValue
PerformExtendCombine(SDNode
*N
, SelectionDAG
&DAG
,
13306 const ARMSubtarget
*ST
) {
13307 SDValue N0
= N
->getOperand(0);
13309 // Check for sign- and zero-extensions of vector extract operations of 8-
13310 // and 16-bit vector elements. NEON supports these directly. They are
13311 // handled during DAG combining because type legalization will promote them
13312 // to 32-bit types and it is messy to recognize the operations after that.
13313 if (ST
->hasNEON() && N0
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
) {
13314 SDValue Vec
= N0
.getOperand(0);
13315 SDValue Lane
= N0
.getOperand(1);
13316 EVT VT
= N
->getValueType(0);
13317 EVT EltVT
= N0
.getValueType();
13318 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
13320 if (VT
== MVT::i32
&&
13321 (EltVT
== MVT::i8
|| EltVT
== MVT::i16
) &&
13322 TLI
.isTypeLegal(Vec
.getValueType()) &&
13323 isa
<ConstantSDNode
>(Lane
)) {
13326 switch (N
->getOpcode()) {
13327 default: llvm_unreachable("unexpected opcode");
13328 case ISD::SIGN_EXTEND
:
13329 Opc
= ARMISD::VGETLANEs
;
13331 case ISD::ZERO_EXTEND
:
13332 case ISD::ANY_EXTEND
:
13333 Opc
= ARMISD::VGETLANEu
;
13336 return DAG
.getNode(Opc
, SDLoc(N
), VT
, Vec
, Lane
);
13343 static const APInt
*isPowerOf2Constant(SDValue V
) {
13344 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(V
);
13347 const APInt
*CV
= &C
->getAPIntValue();
13348 return CV
->isPowerOf2() ? CV
: nullptr;
13351 SDValue
ARMTargetLowering::PerformCMOVToBFICombine(SDNode
*CMOV
, SelectionDAG
&DAG
) const {
13352 // If we have a CMOV, OR and AND combination such as:
13357 // * CN is a single bit;
13358 // * All bits covered by CM are known zero in y
13360 // Then we can convert this into a sequence of BFI instructions. This will
13361 // always be a win if CM is a single bit, will always be no worse than the
13362 // TST&OR sequence if CM is two bits, and for thumb will be no worse if CM is
13363 // three bits (due to the extra IT instruction).
13365 SDValue Op0
= CMOV
->getOperand(0);
13366 SDValue Op1
= CMOV
->getOperand(1);
13367 auto CCNode
= cast
<ConstantSDNode
>(CMOV
->getOperand(2));
13368 auto CC
= CCNode
->getAPIntValue().getLimitedValue();
13369 SDValue CmpZ
= CMOV
->getOperand(4);
13371 // The compare must be against zero.
13372 if (!isNullConstant(CmpZ
->getOperand(1)))
13375 assert(CmpZ
->getOpcode() == ARMISD::CMPZ
);
13376 SDValue And
= CmpZ
->getOperand(0);
13377 if (And
->getOpcode() != ISD::AND
)
13379 const APInt
*AndC
= isPowerOf2Constant(And
->getOperand(1));
13382 SDValue X
= And
->getOperand(0);
13384 if (CC
== ARMCC::EQ
) {
13385 // We're performing an "equal to zero" compare. Swap the operands so we
13386 // canonicalize on a "not equal to zero" compare.
13387 std::swap(Op0
, Op1
);
13389 assert(CC
== ARMCC::NE
&& "How can a CMPZ node not be EQ or NE?");
13392 if (Op1
->getOpcode() != ISD::OR
)
13395 ConstantSDNode
*OrC
= dyn_cast
<ConstantSDNode
>(Op1
->getOperand(1));
13398 SDValue Y
= Op1
->getOperand(0);
13403 // Now, is it profitable to continue?
13404 APInt OrCI
= OrC
->getAPIntValue();
13405 unsigned Heuristic
= Subtarget
->isThumb() ? 3 : 2;
13406 if (OrCI
.countPopulation() > Heuristic
)
13409 // Lastly, can we determine that the bits defined by OrCI
13411 KnownBits Known
= DAG
.computeKnownBits(Y
);
13412 if ((OrCI
& Known
.Zero
) != OrCI
)
13415 // OK, we can do the combine.
13418 EVT VT
= X
.getValueType();
13419 unsigned BitInX
= AndC
->logBase2();
13422 // We must shift X first.
13423 X
= DAG
.getNode(ISD::SRL
, dl
, VT
, X
,
13424 DAG
.getConstant(BitInX
, dl
, VT
));
13427 for (unsigned BitInY
= 0, NumActiveBits
= OrCI
.getActiveBits();
13428 BitInY
< NumActiveBits
; ++BitInY
) {
13429 if (OrCI
[BitInY
] == 0)
13431 APInt
Mask(VT
.getSizeInBits(), 0);
13432 Mask
.setBit(BitInY
);
13433 V
= DAG
.getNode(ARMISD::BFI
, dl
, VT
, V
, X
,
13434 // Confusingly, the operand is an *inverted* mask.
13435 DAG
.getConstant(~Mask
, dl
, VT
));
13441 // Given N, the value controlling the conditional branch, search for the loop
13442 // intrinsic, returning it, along with how the value is used. We need to handle
13443 // patterns such as the following:
13444 // (brcond (xor (setcc (loop.decrement), 0, ne), 1), exit)
13445 // (brcond (setcc (loop.decrement), 0, eq), exit)
13446 // (brcond (setcc (loop.decrement), 0, ne), header)
13447 static SDValue
SearchLoopIntrinsic(SDValue N
, ISD::CondCode
&CC
, int &Imm
,
13449 switch (N
->getOpcode()) {
13453 if (!isa
<ConstantSDNode
>(N
.getOperand(1)))
13455 if (!cast
<ConstantSDNode
>(N
.getOperand(1))->isOne())
13458 return SearchLoopIntrinsic(N
.getOperand(0), CC
, Imm
, Negate
);
13461 auto *Const
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1));
13464 if (Const
->isNullValue())
13466 else if (Const
->isOne())
13470 CC
= cast
<CondCodeSDNode
>(N
.getOperand(2))->get();
13471 return SearchLoopIntrinsic(N
->getOperand(0), CC
, Imm
, Negate
);
13473 case ISD::INTRINSIC_W_CHAIN
: {
13474 unsigned IntOp
= cast
<ConstantSDNode
>(N
.getOperand(1))->getZExtValue();
13475 if (IntOp
!= Intrinsic::test_set_loop_iterations
&&
13476 IntOp
!= Intrinsic::loop_decrement_reg
)
13484 static SDValue
PerformHWLoopCombine(SDNode
*N
,
13485 TargetLowering::DAGCombinerInfo
&DCI
,
13486 const ARMSubtarget
*ST
) {
13488 // The hwloop intrinsics that we're interested are used for control-flow,
13489 // either for entering or exiting the loop:
13490 // - test.set.loop.iterations will test whether its operand is zero. If it
13491 // is zero, the proceeding branch should not enter the loop.
13492 // - loop.decrement.reg also tests whether its operand is zero. If it is
13493 // zero, the proceeding branch should not branch back to the beginning of
13495 // So here, we need to check that how the brcond is using the result of each
13496 // of the intrinsics to ensure that we're branching to the right place at the
13502 bool Negate
= false;
13503 SDValue Chain
= N
->getOperand(0);
13506 if (N
->getOpcode() == ISD::BRCOND
) {
13508 Cond
= N
->getOperand(1);
13509 Dest
= N
->getOperand(2);
13511 assert(N
->getOpcode() == ISD::BR_CC
&& "Expected BRCOND or BR_CC!");
13512 CC
= cast
<CondCodeSDNode
>(N
->getOperand(1))->get();
13513 Cond
= N
->getOperand(2);
13514 Dest
= N
->getOperand(4);
13515 if (auto *Const
= dyn_cast
<ConstantSDNode
>(N
->getOperand(3))) {
13516 if (!Const
->isOne() && !Const
->isNullValue())
13518 Imm
= Const
->getZExtValue();
13523 SDValue Int
= SearchLoopIntrinsic(Cond
, CC
, Imm
, Negate
);
13528 CC
= ISD::getSetCCInverse(CC
, true);
13530 auto IsTrueIfZero
= [](ISD::CondCode CC
, int Imm
) {
13531 return (CC
== ISD::SETEQ
&& Imm
== 0) ||
13532 (CC
== ISD::SETNE
&& Imm
== 1) ||
13533 (CC
== ISD::SETLT
&& Imm
== 1) ||
13534 (CC
== ISD::SETULT
&& Imm
== 1);
13537 auto IsFalseIfZero
= [](ISD::CondCode CC
, int Imm
) {
13538 return (CC
== ISD::SETEQ
&& Imm
== 1) ||
13539 (CC
== ISD::SETNE
&& Imm
== 0) ||
13540 (CC
== ISD::SETGT
&& Imm
== 0) ||
13541 (CC
== ISD::SETUGT
&& Imm
== 0) ||
13542 (CC
== ISD::SETGE
&& Imm
== 1) ||
13543 (CC
== ISD::SETUGE
&& Imm
== 1);
13546 assert((IsTrueIfZero(CC
, Imm
) || IsFalseIfZero(CC
, Imm
)) &&
13547 "unsupported condition");
13550 SelectionDAG
&DAG
= DCI
.DAG
;
13551 SDValue Elements
= Int
.getOperand(2);
13552 unsigned IntOp
= cast
<ConstantSDNode
>(Int
->getOperand(1))->getZExtValue();
13553 assert((N
->hasOneUse() && N
->use_begin()->getOpcode() == ISD::BR
)
13554 && "expected single br user");
13555 SDNode
*Br
= *N
->use_begin();
13556 SDValue OtherTarget
= Br
->getOperand(1);
13558 // Update the unconditional branch to branch to the given Dest.
13559 auto UpdateUncondBr
= [](SDNode
*Br
, SDValue Dest
, SelectionDAG
&DAG
) {
13560 SDValue NewBrOps
[] = { Br
->getOperand(0), Dest
};
13561 SDValue NewBr
= DAG
.getNode(ISD::BR
, SDLoc(Br
), MVT::Other
, NewBrOps
);
13562 DAG
.ReplaceAllUsesOfValueWith(SDValue(Br
, 0), NewBr
);
13565 if (IntOp
== Intrinsic::test_set_loop_iterations
) {
13567 // We expect this 'instruction' to branch when the counter is zero.
13568 if (IsTrueIfZero(CC
, Imm
)) {
13569 SDValue Ops
[] = { Chain
, Elements
, Dest
};
13570 Res
= DAG
.getNode(ARMISD::WLS
, dl
, MVT::Other
, Ops
);
13572 // The logic is the reverse of what we need for WLS, so find the other
13573 // basic block target: the target of the proceeding br.
13574 UpdateUncondBr(Br
, Dest
, DAG
);
13576 SDValue Ops
[] = { Chain
, Elements
, OtherTarget
};
13577 Res
= DAG
.getNode(ARMISD::WLS
, dl
, MVT::Other
, Ops
);
13579 DAG
.ReplaceAllUsesOfValueWith(Int
.getValue(1), Int
.getOperand(0));
13582 SDValue Size
= DAG
.getTargetConstant(
13583 cast
<ConstantSDNode
>(Int
.getOperand(3))->getZExtValue(), dl
, MVT::i32
);
13584 SDValue Args
[] = { Int
.getOperand(0), Elements
, Size
, };
13585 SDValue LoopDec
= DAG
.getNode(ARMISD::LOOP_DEC
, dl
,
13586 DAG
.getVTList(MVT::i32
, MVT::Other
), Args
);
13587 DAG
.ReplaceAllUsesWith(Int
.getNode(), LoopDec
.getNode());
13589 // We expect this instruction to branch when the count is not zero.
13590 SDValue Target
= IsFalseIfZero(CC
, Imm
) ? Dest
: OtherTarget
;
13592 // Update the unconditional branch to target the loop preheader if we've
13593 // found the condition has been reversed.
13594 if (Target
== OtherTarget
)
13595 UpdateUncondBr(Br
, Dest
, DAG
);
13597 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
13598 SDValue(LoopDec
.getNode(), 1), Chain
);
13600 SDValue EndArgs
[] = { Chain
, SDValue(LoopDec
.getNode(), 0), Target
};
13601 return DAG
.getNode(ARMISD::LE
, dl
, MVT::Other
, EndArgs
);
13606 /// PerformBRCONDCombine - Target-specific DAG combining for ARMISD::BRCOND.
13608 ARMTargetLowering::PerformBRCONDCombine(SDNode
*N
, SelectionDAG
&DAG
) const {
13609 SDValue Cmp
= N
->getOperand(4);
13610 if (Cmp
.getOpcode() != ARMISD::CMPZ
)
13611 // Only looking at NE cases.
13614 EVT VT
= N
->getValueType(0);
13616 SDValue LHS
= Cmp
.getOperand(0);
13617 SDValue RHS
= Cmp
.getOperand(1);
13618 SDValue Chain
= N
->getOperand(0);
13619 SDValue BB
= N
->getOperand(1);
13620 SDValue ARMcc
= N
->getOperand(2);
13621 ARMCC::CondCodes CC
=
13622 (ARMCC::CondCodes
)cast
<ConstantSDNode
>(ARMcc
)->getZExtValue();
13624 // (brcond Chain BB ne CPSR (cmpz (and (cmov 0 1 CC CPSR Cmp) 1) 0))
13625 // -> (brcond Chain BB CC CPSR Cmp)
13626 if (CC
== ARMCC::NE
&& LHS
.getOpcode() == ISD::AND
&& LHS
->hasOneUse() &&
13627 LHS
->getOperand(0)->getOpcode() == ARMISD::CMOV
&&
13628 LHS
->getOperand(0)->hasOneUse()) {
13629 auto *LHS00C
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(0)->getOperand(0));
13630 auto *LHS01C
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(0)->getOperand(1));
13631 auto *LHS1C
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(1));
13632 auto *RHSC
= dyn_cast
<ConstantSDNode
>(RHS
);
13633 if ((LHS00C
&& LHS00C
->getZExtValue() == 0) &&
13634 (LHS01C
&& LHS01C
->getZExtValue() == 1) &&
13635 (LHS1C
&& LHS1C
->getZExtValue() == 1) &&
13636 (RHSC
&& RHSC
->getZExtValue() == 0)) {
13637 return DAG
.getNode(
13638 ARMISD::BRCOND
, dl
, VT
, Chain
, BB
, LHS
->getOperand(0)->getOperand(2),
13639 LHS
->getOperand(0)->getOperand(3), LHS
->getOperand(0)->getOperand(4));
13646 /// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
13648 ARMTargetLowering::PerformCMOVCombine(SDNode
*N
, SelectionDAG
&DAG
) const {
13649 SDValue Cmp
= N
->getOperand(4);
13650 if (Cmp
.getOpcode() != ARMISD::CMPZ
)
13651 // Only looking at EQ and NE cases.
13654 EVT VT
= N
->getValueType(0);
13656 SDValue LHS
= Cmp
.getOperand(0);
13657 SDValue RHS
= Cmp
.getOperand(1);
13658 SDValue FalseVal
= N
->getOperand(0);
13659 SDValue TrueVal
= N
->getOperand(1);
13660 SDValue ARMcc
= N
->getOperand(2);
13661 ARMCC::CondCodes CC
=
13662 (ARMCC::CondCodes
)cast
<ConstantSDNode
>(ARMcc
)->getZExtValue();
13664 // BFI is only available on V6T2+.
13665 if (!Subtarget
->isThumb1Only() && Subtarget
->hasV6T2Ops()) {
13666 SDValue R
= PerformCMOVToBFICombine(N
, DAG
);
13687 /// FIXME: Turn this into a target neutral optimization?
13689 if (CC
== ARMCC::NE
&& FalseVal
== RHS
&& FalseVal
!= LHS
) {
13690 Res
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, LHS
, TrueVal
, ARMcc
,
13691 N
->getOperand(3), Cmp
);
13692 } else if (CC
== ARMCC::EQ
&& TrueVal
== RHS
) {
13694 SDValue NewCmp
= getARMCmp(LHS
, RHS
, ISD::SETNE
, ARMcc
, DAG
, dl
);
13695 Res
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, LHS
, FalseVal
, ARMcc
,
13696 N
->getOperand(3), NewCmp
);
13699 // (cmov F T ne CPSR (cmpz (cmov 0 1 CC CPSR Cmp) 0))
13700 // -> (cmov F T CC CPSR Cmp)
13701 if (CC
== ARMCC::NE
&& LHS
.getOpcode() == ARMISD::CMOV
&& LHS
->hasOneUse()) {
13702 auto *LHS0C
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(0));
13703 auto *LHS1C
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(1));
13704 auto *RHSC
= dyn_cast
<ConstantSDNode
>(RHS
);
13705 if ((LHS0C
&& LHS0C
->getZExtValue() == 0) &&
13706 (LHS1C
&& LHS1C
->getZExtValue() == 1) &&
13707 (RHSC
&& RHSC
->getZExtValue() == 0)) {
13708 return DAG
.getNode(ARMISD::CMOV
, dl
, VT
, FalseVal
, TrueVal
,
13709 LHS
->getOperand(2), LHS
->getOperand(3),
13710 LHS
->getOperand(4));
13714 if (!VT
.isInteger())
13717 // Materialize a boolean comparison for integers so we can avoid branching.
13718 if (isNullConstant(FalseVal
)) {
13719 if (CC
== ARMCC::EQ
&& isOneConstant(TrueVal
)) {
13720 if (!Subtarget
->isThumb1Only() && Subtarget
->hasV5TOps()) {
13721 // If x == y then x - y == 0 and ARM's CLZ will return 32, shifting it
13722 // right 5 bits will make that 32 be 1, otherwise it will be 0.
13723 // CMOV 0, 1, ==, (CMPZ x, y) -> SRL (CTLZ (SUB x, y)), 5
13724 SDValue Sub
= DAG
.getNode(ISD::SUB
, dl
, VT
, LHS
, RHS
);
13725 Res
= DAG
.getNode(ISD::SRL
, dl
, VT
, DAG
.getNode(ISD::CTLZ
, dl
, VT
, Sub
),
13726 DAG
.getConstant(5, dl
, MVT::i32
));
13728 // CMOV 0, 1, ==, (CMPZ x, y) ->
13729 // (ADDCARRY (SUB x, y), t:0, t:1)
13730 // where t = (SUBCARRY 0, (SUB x, y), 0)
13732 // The SUBCARRY computes 0 - (x - y) and this will give a borrow when
13733 // x != y. In other words, a carry C == 1 when x == y, C == 0
13735 // The final ADDCARRY computes
13736 // x - y + (0 - (x - y)) + C == C
13737 SDValue Sub
= DAG
.getNode(ISD::SUB
, dl
, VT
, LHS
, RHS
);
13738 SDVTList VTs
= DAG
.getVTList(VT
, MVT::i32
);
13739 SDValue Neg
= DAG
.getNode(ISD::USUBO
, dl
, VTs
, FalseVal
, Sub
);
13740 // ISD::SUBCARRY returns a borrow but we want the carry here
13743 DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
13744 DAG
.getConstant(1, dl
, MVT::i32
), Neg
.getValue(1));
13745 Res
= DAG
.getNode(ISD::ADDCARRY
, dl
, VTs
, Sub
, Neg
, Carry
);
13747 } else if (CC
== ARMCC::NE
&& !isNullConstant(RHS
) &&
13748 (!Subtarget
->isThumb1Only() || isPowerOf2Constant(TrueVal
))) {
13749 // This seems pointless but will allow us to combine it further below.
13750 // CMOV 0, z, !=, (CMPZ x, y) -> CMOV (SUBS x, y), z, !=, (SUBS x, y):1
13752 DAG
.getNode(ARMISD::SUBS
, dl
, DAG
.getVTList(VT
, MVT::i32
), LHS
, RHS
);
13753 SDValue CPSRGlue
= DAG
.getCopyToReg(DAG
.getEntryNode(), dl
, ARM::CPSR
,
13754 Sub
.getValue(1), SDValue());
13755 Res
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, Sub
, TrueVal
, ARMcc
,
13756 N
->getOperand(3), CPSRGlue
.getValue(1));
13759 } else if (isNullConstant(TrueVal
)) {
13760 if (CC
== ARMCC::EQ
&& !isNullConstant(RHS
) &&
13761 (!Subtarget
->isThumb1Only() || isPowerOf2Constant(FalseVal
))) {
13762 // This seems pointless but will allow us to combine it further below
13763 // Note that we change == for != as this is the dual for the case above.
13764 // CMOV z, 0, ==, (CMPZ x, y) -> CMOV (SUBS x, y), z, !=, (SUBS x, y):1
13766 DAG
.getNode(ARMISD::SUBS
, dl
, DAG
.getVTList(VT
, MVT::i32
), LHS
, RHS
);
13767 SDValue CPSRGlue
= DAG
.getCopyToReg(DAG
.getEntryNode(), dl
, ARM::CPSR
,
13768 Sub
.getValue(1), SDValue());
13769 Res
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, Sub
, FalseVal
,
13770 DAG
.getConstant(ARMCC::NE
, dl
, MVT::i32
),
13771 N
->getOperand(3), CPSRGlue
.getValue(1));
13776 // On Thumb1, the DAG above may be further combined if z is a power of 2
13778 // CMOV (SUBS x, y), z, !=, (SUBS x, y):1 ->
13779 // t1 = (USUBO (SUB x, y), 1)
13780 // t2 = (SUBCARRY (SUB x, y), t1:0, t1:1)
13781 // Result = if K != 0 then (SHL t2:0, K) else t2:0
13783 // This also handles the special case of comparing against zero; it's
13784 // essentially, the same pattern, except there's no SUBS:
13785 // CMOV x, z, !=, (CMPZ x, 0) ->
13786 // t1 = (USUBO x, 1)
13787 // t2 = (SUBCARRY x, t1:0, t1:1)
13788 // Result = if K != 0 then (SHL t2:0, K) else t2:0
13789 const APInt
*TrueConst
;
13790 if (Subtarget
->isThumb1Only() && CC
== ARMCC::NE
&&
13791 ((FalseVal
.getOpcode() == ARMISD::SUBS
&&
13792 FalseVal
.getOperand(0) == LHS
&& FalseVal
.getOperand(1) == RHS
) ||
13793 (FalseVal
== LHS
&& isNullConstant(RHS
))) &&
13794 (TrueConst
= isPowerOf2Constant(TrueVal
))) {
13795 SDVTList VTs
= DAG
.getVTList(VT
, MVT::i32
);
13796 unsigned ShiftAmount
= TrueConst
->logBase2();
13798 TrueVal
= DAG
.getConstant(1, dl
, VT
);
13799 SDValue Subc
= DAG
.getNode(ISD::USUBO
, dl
, VTs
, FalseVal
, TrueVal
);
13800 Res
= DAG
.getNode(ISD::SUBCARRY
, dl
, VTs
, FalseVal
, Subc
, Subc
.getValue(1));
13803 Res
= DAG
.getNode(ISD::SHL
, dl
, VT
, Res
,
13804 DAG
.getConstant(ShiftAmount
, dl
, MVT::i32
));
13807 if (Res
.getNode()) {
13808 KnownBits Known
= DAG
.computeKnownBits(SDValue(N
,0));
13809 // Capture demanded bits information that would be otherwise lost.
13810 if (Known
.Zero
== 0xfffffffe)
13811 Res
= DAG
.getNode(ISD::AssertZext
, dl
, MVT::i32
, Res
,
13812 DAG
.getValueType(MVT::i1
));
13813 else if (Known
.Zero
== 0xffffff00)
13814 Res
= DAG
.getNode(ISD::AssertZext
, dl
, MVT::i32
, Res
,
13815 DAG
.getValueType(MVT::i8
));
13816 else if (Known
.Zero
== 0xffff0000)
13817 Res
= DAG
.getNode(ISD::AssertZext
, dl
, MVT::i32
, Res
,
13818 DAG
.getValueType(MVT::i16
));
13824 SDValue
ARMTargetLowering::PerformDAGCombine(SDNode
*N
,
13825 DAGCombinerInfo
&DCI
) const {
13826 switch (N
->getOpcode()) {
13828 case ISD::ABS
: return PerformABSCombine(N
, DCI
, Subtarget
);
13829 case ARMISD::ADDE
: return PerformADDECombine(N
, DCI
, Subtarget
);
13830 case ARMISD::UMLAL
: return PerformUMLALCombine(N
, DCI
.DAG
, Subtarget
);
13831 case ISD::ADD
: return PerformADDCombine(N
, DCI
, Subtarget
);
13832 case ISD::SUB
: return PerformSUBCombine(N
, DCI
);
13833 case ISD::MUL
: return PerformMULCombine(N
, DCI
, Subtarget
);
13834 case ISD::OR
: return PerformORCombine(N
, DCI
, Subtarget
);
13835 case ISD::XOR
: return PerformXORCombine(N
, DCI
, Subtarget
);
13836 case ISD::AND
: return PerformANDCombine(N
, DCI
, Subtarget
);
13838 case ISD::BR_CC
: return PerformHWLoopCombine(N
, DCI
, Subtarget
);
13840 case ARMISD::SUBC
: return PerformAddcSubcCombine(N
, DCI
, Subtarget
);
13841 case ARMISD::SUBE
: return PerformAddeSubeCombine(N
, DCI
, Subtarget
);
13842 case ARMISD::BFI
: return PerformBFICombine(N
, DCI
);
13843 case ARMISD::VMOVRRD
: return PerformVMOVRRDCombine(N
, DCI
, Subtarget
);
13844 case ARMISD::VMOVDRR
: return PerformVMOVDRRCombine(N
, DCI
.DAG
);
13845 case ISD::STORE
: return PerformSTORECombine(N
, DCI
);
13846 case ISD::BUILD_VECTOR
: return PerformBUILD_VECTORCombine(N
, DCI
, Subtarget
);
13847 case ISD::INSERT_VECTOR_ELT
: return PerformInsertEltCombine(N
, DCI
);
13848 case ISD::VECTOR_SHUFFLE
: return PerformVECTOR_SHUFFLECombine(N
, DCI
.DAG
);
13849 case ARMISD::VDUPLANE
: return PerformVDUPLANECombine(N
, DCI
);
13850 case ARMISD::VDUP
: return PerformVDUPCombine(N
, DCI
, Subtarget
);
13851 case ISD::FP_TO_SINT
:
13852 case ISD::FP_TO_UINT
:
13853 return PerformVCVTCombine(N
, DCI
.DAG
, Subtarget
);
13855 return PerformVDIVCombine(N
, DCI
.DAG
, Subtarget
);
13856 case ISD::INTRINSIC_WO_CHAIN
: return PerformIntrinsicCombine(N
, DCI
.DAG
);
13860 return PerformShiftCombine(N
, DCI
, Subtarget
);
13861 case ISD::SIGN_EXTEND
:
13862 case ISD::ZERO_EXTEND
:
13863 case ISD::ANY_EXTEND
: return PerformExtendCombine(N
, DCI
.DAG
, Subtarget
);
13864 case ARMISD::CMOV
: return PerformCMOVCombine(N
, DCI
.DAG
);
13865 case ARMISD::BRCOND
: return PerformBRCONDCombine(N
, DCI
.DAG
);
13866 case ISD::LOAD
: return PerformLOADCombine(N
, DCI
);
13867 case ARMISD::VLD1DUP
:
13868 case ARMISD::VLD2DUP
:
13869 case ARMISD::VLD3DUP
:
13870 case ARMISD::VLD4DUP
:
13871 return PerformVLDCombine(N
, DCI
);
13872 case ARMISD::BUILD_VECTOR
:
13873 return PerformARMBUILD_VECTORCombine(N
, DCI
);
13874 case ARMISD::SMULWB
: {
13875 unsigned BitWidth
= N
->getValueType(0).getSizeInBits();
13876 APInt DemandedMask
= APInt::getLowBitsSet(BitWidth
, 16);
13877 if (SimplifyDemandedBits(N
->getOperand(1), DemandedMask
, DCI
))
13881 case ARMISD::SMULWT
: {
13882 unsigned BitWidth
= N
->getValueType(0).getSizeInBits();
13883 APInt DemandedMask
= APInt::getHighBitsSet(BitWidth
, 16);
13884 if (SimplifyDemandedBits(N
->getOperand(1), DemandedMask
, DCI
))
13888 case ARMISD::SMLALBB
: {
13889 unsigned BitWidth
= N
->getValueType(0).getSizeInBits();
13890 APInt DemandedMask
= APInt::getLowBitsSet(BitWidth
, 16);
13891 if ((SimplifyDemandedBits(N
->getOperand(0), DemandedMask
, DCI
)) ||
13892 (SimplifyDemandedBits(N
->getOperand(1), DemandedMask
, DCI
)))
13896 case ARMISD::SMLALBT
: {
13897 unsigned LowWidth
= N
->getOperand(0).getValueType().getSizeInBits();
13898 APInt LowMask
= APInt::getLowBitsSet(LowWidth
, 16);
13899 unsigned HighWidth
= N
->getOperand(1).getValueType().getSizeInBits();
13900 APInt HighMask
= APInt::getHighBitsSet(HighWidth
, 16);
13901 if ((SimplifyDemandedBits(N
->getOperand(0), LowMask
, DCI
)) ||
13902 (SimplifyDemandedBits(N
->getOperand(1), HighMask
, DCI
)))
13906 case ARMISD::SMLALTB
: {
13907 unsigned HighWidth
= N
->getOperand(0).getValueType().getSizeInBits();
13908 APInt HighMask
= APInt::getHighBitsSet(HighWidth
, 16);
13909 unsigned LowWidth
= N
->getOperand(1).getValueType().getSizeInBits();
13910 APInt LowMask
= APInt::getLowBitsSet(LowWidth
, 16);
13911 if ((SimplifyDemandedBits(N
->getOperand(0), HighMask
, DCI
)) ||
13912 (SimplifyDemandedBits(N
->getOperand(1), LowMask
, DCI
)))
13916 case ARMISD::SMLALTT
: {
13917 unsigned BitWidth
= N
->getValueType(0).getSizeInBits();
13918 APInt DemandedMask
= APInt::getHighBitsSet(BitWidth
, 16);
13919 if ((SimplifyDemandedBits(N
->getOperand(0), DemandedMask
, DCI
)) ||
13920 (SimplifyDemandedBits(N
->getOperand(1), DemandedMask
, DCI
)))
13924 case ISD::INTRINSIC_VOID
:
13925 case ISD::INTRINSIC_W_CHAIN
:
13926 switch (cast
<ConstantSDNode
>(N
->getOperand(1))->getZExtValue()) {
13927 case Intrinsic::arm_neon_vld1
:
13928 case Intrinsic::arm_neon_vld1x2
:
13929 case Intrinsic::arm_neon_vld1x3
:
13930 case Intrinsic::arm_neon_vld1x4
:
13931 case Intrinsic::arm_neon_vld2
:
13932 case Intrinsic::arm_neon_vld3
:
13933 case Intrinsic::arm_neon_vld4
:
13934 case Intrinsic::arm_neon_vld2lane
:
13935 case Intrinsic::arm_neon_vld3lane
:
13936 case Intrinsic::arm_neon_vld4lane
:
13937 case Intrinsic::arm_neon_vld2dup
:
13938 case Intrinsic::arm_neon_vld3dup
:
13939 case Intrinsic::arm_neon_vld4dup
:
13940 case Intrinsic::arm_neon_vst1
:
13941 case Intrinsic::arm_neon_vst1x2
:
13942 case Intrinsic::arm_neon_vst1x3
:
13943 case Intrinsic::arm_neon_vst1x4
:
13944 case Intrinsic::arm_neon_vst2
:
13945 case Intrinsic::arm_neon_vst3
:
13946 case Intrinsic::arm_neon_vst4
:
13947 case Intrinsic::arm_neon_vst2lane
:
13948 case Intrinsic::arm_neon_vst3lane
:
13949 case Intrinsic::arm_neon_vst4lane
:
13950 return PerformVLDCombine(N
, DCI
);
13958 bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc
,
13960 return (VT
== MVT::f32
) && (Opc
== ISD::LOAD
|| Opc
== ISD::STORE
);
13963 bool ARMTargetLowering::allowsMisalignedMemoryAccesses(EVT VT
, unsigned,
13964 unsigned Alignment
,
13965 MachineMemOperand::Flags
,
13966 bool *Fast
) const {
13967 // Depends what it gets converted into if the type is weird.
13968 if (!VT
.isSimple())
13971 // The AllowsUnaliged flag models the SCTLR.A setting in ARM cpus
13972 bool AllowsUnaligned
= Subtarget
->allowsUnalignedMem();
13973 auto Ty
= VT
.getSimpleVT().SimpleTy
;
13975 if (Ty
== MVT::i8
|| Ty
== MVT::i16
|| Ty
== MVT::i32
) {
13976 // Unaligned access can use (for example) LRDB, LRDH, LDR
13977 if (AllowsUnaligned
) {
13979 *Fast
= Subtarget
->hasV7Ops();
13984 if (Ty
== MVT::f64
|| Ty
== MVT::v2f64
) {
13985 // For any little-endian targets with neon, we can support unaligned ld/st
13986 // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8.
13987 // A big-endian target may also explicitly support unaligned accesses
13988 if (Subtarget
->hasNEON() && (AllowsUnaligned
|| Subtarget
->isLittle())) {
13995 if (!Subtarget
->hasMVEIntegerOps())
13998 // These are for predicates
13999 if ((Ty
== MVT::v16i1
|| Ty
== MVT::v8i1
|| Ty
== MVT::v4i1
)) {
14005 if (Ty
!= MVT::v16i8
&& Ty
!= MVT::v8i16
&& Ty
!= MVT::v8f16
&&
14006 Ty
!= MVT::v4i32
&& Ty
!= MVT::v4f32
&& Ty
!= MVT::v2i64
&&
14007 Ty
!= MVT::v2f64
&&
14008 // These are for truncated stores
14009 Ty
!= MVT::v4i8
&& Ty
!= MVT::v8i8
&& Ty
!= MVT::v4i16
)
14012 if (Subtarget
->isLittle()) {
14013 // In little-endian MVE, the store instructions VSTRB.U8,
14014 // VSTRH.U16 and VSTRW.U32 all store the vector register in
14015 // exactly the same format, and differ only in the range of
14016 // their immediate offset field and the required alignment.
14018 // In particular, VSTRB.U8 can store a vector at byte alignment.
14019 // So at this stage we can simply say that loads/stores of all
14020 // 128-bit wide vector types are permitted at any alignment,
14021 // because we know at least _one_ instruction can manage that.
14023 // Later on we might find that some of those loads are better
14024 // generated as VLDRW.U32 if alignment permits, to take
14025 // advantage of the larger immediate range. But for the moment,
14026 // all that matters is that if we don't lower the load then
14027 // _some_ instruction can handle it.
14032 // In big-endian MVE, those instructions aren't so similar
14033 // after all, because they reorder the bytes of the vector
14034 // differently. So this time we can only store a particular
14035 // kind of vector if its alignment is at least the element
14036 // type. And we can't store vectors of i64 or f64 at all
14037 // without having to do some postprocessing, because there's
14039 if (Ty
== MVT::v16i8
||
14040 ((Ty
== MVT::v8i16
|| Ty
== MVT::v8f16
) && Alignment
>= 2) ||
14041 ((Ty
== MVT::v4i32
|| Ty
== MVT::v4f32
) && Alignment
>= 4)) {
14051 static bool memOpAlign(unsigned DstAlign
, unsigned SrcAlign
,
14052 unsigned AlignCheck
) {
14053 return ((SrcAlign
== 0 || SrcAlign
% AlignCheck
== 0) &&
14054 (DstAlign
== 0 || DstAlign
% AlignCheck
== 0));
14057 EVT
ARMTargetLowering::getOptimalMemOpType(
14058 uint64_t Size
, unsigned DstAlign
, unsigned SrcAlign
, bool IsMemset
,
14059 bool ZeroMemset
, bool MemcpyStrSrc
,
14060 const AttributeList
&FuncAttributes
) const {
14061 // See if we can use NEON instructions for this...
14062 if ((!IsMemset
|| ZeroMemset
) && Subtarget
->hasNEON() &&
14063 !FuncAttributes
.hasFnAttribute(Attribute::NoImplicitFloat
)) {
14066 (memOpAlign(SrcAlign
, DstAlign
, 16) ||
14067 (allowsMisalignedMemoryAccesses(MVT::v2f64
, 0, 1,
14068 MachineMemOperand::MONone
, &Fast
) &&
14071 } else if (Size
>= 8 &&
14072 (memOpAlign(SrcAlign
, DstAlign
, 8) ||
14073 (allowsMisalignedMemoryAccesses(
14074 MVT::f64
, 0, 1, MachineMemOperand::MONone
, &Fast
) &&
14080 // Let the target-independent logic figure it out.
14084 // 64-bit integers are split into their high and low parts and held in two
14085 // different registers, so the trunc is free since the low register can just
14087 bool ARMTargetLowering::isTruncateFree(Type
*SrcTy
, Type
*DstTy
) const {
14088 if (!SrcTy
->isIntegerTy() || !DstTy
->isIntegerTy())
14090 unsigned SrcBits
= SrcTy
->getPrimitiveSizeInBits();
14091 unsigned DestBits
= DstTy
->getPrimitiveSizeInBits();
14092 return (SrcBits
== 64 && DestBits
== 32);
14095 bool ARMTargetLowering::isTruncateFree(EVT SrcVT
, EVT DstVT
) const {
14096 if (SrcVT
.isVector() || DstVT
.isVector() || !SrcVT
.isInteger() ||
14097 !DstVT
.isInteger())
14099 unsigned SrcBits
= SrcVT
.getSizeInBits();
14100 unsigned DestBits
= DstVT
.getSizeInBits();
14101 return (SrcBits
== 64 && DestBits
== 32);
14104 bool ARMTargetLowering::isZExtFree(SDValue Val
, EVT VT2
) const {
14105 if (Val
.getOpcode() != ISD::LOAD
)
14108 EVT VT1
= Val
.getValueType();
14109 if (!VT1
.isSimple() || !VT1
.isInteger() ||
14110 !VT2
.isSimple() || !VT2
.isInteger())
14113 switch (VT1
.getSimpleVT().SimpleTy
) {
14118 // 8-bit and 16-bit loads implicitly zero-extend to 32-bits.
14125 bool ARMTargetLowering::isFNegFree(EVT VT
) const {
14126 if (!VT
.isSimple())
14129 // There are quite a few FP16 instructions (e.g. VNMLA, VNMLS, etc.) that
14130 // negate values directly (fneg is free). So, we don't want to let the DAG
14131 // combiner rewrite fneg into xors and some other instructions. For f16 and
14132 // FullFP16 argument passing, some bitcast nodes may be introduced,
14133 // triggering this DAG combine rewrite, so we are avoiding that with this.
14134 switch (VT
.getSimpleVT().SimpleTy
) {
14137 return Subtarget
->hasFullFP16();
14143 /// Check if Ext1 and Ext2 are extends of the same type, doubling the bitwidth
14144 /// of the vector elements.
14145 static bool areExtractExts(Value
*Ext1
, Value
*Ext2
) {
14146 auto areExtDoubled
= [](Instruction
*Ext
) {
14147 return Ext
->getType()->getScalarSizeInBits() ==
14148 2 * Ext
->getOperand(0)->getType()->getScalarSizeInBits();
14151 if (!match(Ext1
, m_ZExtOrSExt(m_Value())) ||
14152 !match(Ext2
, m_ZExtOrSExt(m_Value())) ||
14153 !areExtDoubled(cast
<Instruction
>(Ext1
)) ||
14154 !areExtDoubled(cast
<Instruction
>(Ext2
)))
14160 /// Check if sinking \p I's operands to I's basic block is profitable, because
14161 /// the operands can be folded into a target instruction, e.g.
14162 /// sext/zext can be folded into vsubl.
14163 bool ARMTargetLowering::shouldSinkOperands(Instruction
*I
,
14164 SmallVectorImpl
<Use
*> &Ops
) const {
14165 if (!Subtarget
->hasNEON() || !I
->getType()->isVectorTy())
14168 switch (I
->getOpcode()) {
14169 case Instruction::Sub
:
14170 case Instruction::Add
: {
14171 if (!areExtractExts(I
->getOperand(0), I
->getOperand(1)))
14173 Ops
.push_back(&I
->getOperandUse(0));
14174 Ops
.push_back(&I
->getOperandUse(1));
14183 bool ARMTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal
) const {
14184 EVT VT
= ExtVal
.getValueType();
14186 if (!isTypeLegal(VT
))
14189 // Don't create a loadext if we can fold the extension into a wide/long
14191 // If there's more than one user instruction, the loadext is desirable no
14192 // matter what. There can be two uses by the same instruction.
14193 if (ExtVal
->use_empty() ||
14194 !ExtVal
->use_begin()->isOnlyUserOf(ExtVal
.getNode()))
14197 SDNode
*U
= *ExtVal
->use_begin();
14198 if ((U
->getOpcode() == ISD::ADD
|| U
->getOpcode() == ISD::SUB
||
14199 U
->getOpcode() == ISD::SHL
|| U
->getOpcode() == ARMISD::VSHLIMM
))
14205 bool ARMTargetLowering::allowTruncateForTailCall(Type
*Ty1
, Type
*Ty2
) const {
14206 if (!Ty1
->isIntegerTy() || !Ty2
->isIntegerTy())
14209 if (!isTypeLegal(EVT::getEVT(Ty1
)))
14212 assert(Ty1
->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
14214 // Assuming the caller doesn't have a zeroext or signext return parameter,
14215 // truncation all the way down to i1 is valid.
14219 int ARMTargetLowering::getScalingFactorCost(const DataLayout
&DL
,
14220 const AddrMode
&AM
, Type
*Ty
,
14221 unsigned AS
) const {
14222 if (isLegalAddressingMode(DL
, AM
, Ty
, AS
)) {
14223 if (Subtarget
->hasFPAO())
14224 return AM
.Scale
< 0 ? 1 : 0; // positive offsets execute faster
14230 static bool isLegalT1AddressImmediate(int64_t V
, EVT VT
) {
14234 unsigned Scale
= 1;
14235 switch (VT
.getSimpleVT().SimpleTy
) {
14245 // On thumb1 we load most things (i32, i64, floats, etc) with a LDR
14251 if ((V
& (Scale
- 1)) != 0)
14253 return isUInt
<5>(V
/ Scale
);
14256 static bool isLegalT2AddressImmediate(int64_t V
, EVT VT
,
14257 const ARMSubtarget
*Subtarget
) {
14258 if (!VT
.isInteger() && !VT
.isFloatingPoint())
14260 if (VT
.isVector() && Subtarget
->hasNEON())
14262 if (VT
.isVector() && VT
.isFloatingPoint() && Subtarget
->hasMVEIntegerOps() &&
14263 !Subtarget
->hasMVEFloatOps())
14266 bool IsNeg
= false;
14272 unsigned NumBytes
= std::max(VT
.getSizeInBits() / 8, 1U);
14274 // MVE: size * imm7
14275 if (VT
.isVector() && Subtarget
->hasMVEIntegerOps()) {
14276 switch (VT
.getSimpleVT().getVectorElementType().SimpleTy
) {
14279 return isShiftedUInt
<7,2>(V
);
14282 return isShiftedUInt
<7,1>(V
);
14284 return isUInt
<7>(V
);
14290 // half VLDR: 2 * imm8
14291 if (VT
.isFloatingPoint() && NumBytes
== 2 && Subtarget
->hasFPRegs16())
14292 return isShiftedUInt
<8, 1>(V
);
14293 // VLDR and LDRD: 4 * imm8
14294 if ((VT
.isFloatingPoint() && Subtarget
->hasVFP2Base()) || NumBytes
== 8)
14295 return isShiftedUInt
<8, 2>(V
);
14297 if (NumBytes
== 1 || NumBytes
== 2 || NumBytes
== 4) {
14298 // + imm12 or - imm8
14300 return isUInt
<8>(V
);
14301 return isUInt
<12>(V
);
14307 /// isLegalAddressImmediate - Return true if the integer value can be used
14308 /// as the offset of the target addressing mode for load / store of the
14310 static bool isLegalAddressImmediate(int64_t V
, EVT VT
,
14311 const ARMSubtarget
*Subtarget
) {
14315 if (!VT
.isSimple())
14318 if (Subtarget
->isThumb1Only())
14319 return isLegalT1AddressImmediate(V
, VT
);
14320 else if (Subtarget
->isThumb2())
14321 return isLegalT2AddressImmediate(V
, VT
, Subtarget
);
14326 switch (VT
.getSimpleVT().SimpleTy
) {
14327 default: return false;
14332 return isUInt
<12>(V
);
14335 return isUInt
<8>(V
);
14338 if (!Subtarget
->hasVFP2Base()) // FIXME: NEON?
14340 return isShiftedUInt
<8, 2>(V
);
14344 bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode
&AM
,
14346 int Scale
= AM
.Scale
;
14350 switch (VT
.getSimpleVT().SimpleTy
) {
14351 default: return false;
14359 Scale
= Scale
& ~1;
14360 return Scale
== 2 || Scale
== 4 || Scale
== 8;
14362 // FIXME: What are we trying to model here? ldrd doesn't have an r + r
14363 // version in Thumb mode.
14367 // r * 2 (this can be lowered to r + r).
14368 if (!AM
.HasBaseReg
&& Scale
== 2)
14372 // Note, we allow "void" uses (basically, uses that aren't loads or
14373 // stores), because arm allows folding a scale into many arithmetic
14374 // operations. This should be made more precise and revisited later.
14376 // Allow r << imm, but the imm has to be a multiple of two.
14377 if (Scale
& 1) return false;
14378 return isPowerOf2_32(Scale
);
14382 bool ARMTargetLowering::isLegalT1ScaledAddressingMode(const AddrMode
&AM
,
14384 const int Scale
= AM
.Scale
;
14386 // Negative scales are not supported in Thumb1.
14390 // Thumb1 addressing modes do not support register scaling excepting the
14391 // following cases:
14392 // 1. Scale == 1 means no scaling.
14393 // 2. Scale == 2 this can be lowered to r + r if there is no base register.
14394 return (Scale
== 1) || (!AM
.HasBaseReg
&& Scale
== 2);
14397 /// isLegalAddressingMode - Return true if the addressing mode represented
14398 /// by AM is legal for this target, for a load/store of the specified type.
14399 bool ARMTargetLowering::isLegalAddressingMode(const DataLayout
&DL
,
14400 const AddrMode
&AM
, Type
*Ty
,
14401 unsigned AS
, Instruction
*I
) const {
14402 EVT VT
= getValueType(DL
, Ty
, true);
14403 if (!isLegalAddressImmediate(AM
.BaseOffs
, VT
, Subtarget
))
14406 // Can never fold addr of global into load/store.
14410 switch (AM
.Scale
) {
14411 case 0: // no scale reg, must be "r+i" or "r", or "i".
14414 // ARM doesn't support any R+R*scale+imm addr modes.
14418 if (!VT
.isSimple())
14421 if (Subtarget
->isThumb1Only())
14422 return isLegalT1ScaledAddressingMode(AM
, VT
);
14424 if (Subtarget
->isThumb2())
14425 return isLegalT2ScaledAddressingMode(AM
, VT
);
14427 int Scale
= AM
.Scale
;
14428 switch (VT
.getSimpleVT().SimpleTy
) {
14429 default: return false;
14433 if (Scale
< 0) Scale
= -Scale
;
14437 return isPowerOf2_32(Scale
& ~1);
14441 if (Scale
== 1 || (AM
.HasBaseReg
&& Scale
== -1))
14443 // r * 2 (this can be lowered to r + r).
14444 if (!AM
.HasBaseReg
&& Scale
== 2)
14449 // Note, we allow "void" uses (basically, uses that aren't loads or
14450 // stores), because arm allows folding a scale into many arithmetic
14451 // operations. This should be made more precise and revisited later.
14453 // Allow r << imm, but the imm has to be a multiple of two.
14454 if (Scale
& 1) return false;
14455 return isPowerOf2_32(Scale
);
14461 /// isLegalICmpImmediate - Return true if the specified immediate is legal
14462 /// icmp immediate, that is the target has icmp instructions which can compare
14463 /// a register against the immediate without having to materialize the
14464 /// immediate into a register.
14465 bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm
) const {
14466 // Thumb2 and ARM modes can use cmn for negative immediates.
14467 if (!Subtarget
->isThumb())
14468 return ARM_AM::getSOImmVal((uint32_t)Imm
) != -1 ||
14469 ARM_AM::getSOImmVal(-(uint32_t)Imm
) != -1;
14470 if (Subtarget
->isThumb2())
14471 return ARM_AM::getT2SOImmVal((uint32_t)Imm
) != -1 ||
14472 ARM_AM::getT2SOImmVal(-(uint32_t)Imm
) != -1;
14473 // Thumb1 doesn't have cmn, and only 8-bit immediates.
14474 return Imm
>= 0 && Imm
<= 255;
14477 /// isLegalAddImmediate - Return true if the specified immediate is a legal add
14478 /// *or sub* immediate, that is the target has add or sub instructions which can
14479 /// add a register with the immediate without having to materialize the
14480 /// immediate into a register.
14481 bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm
) const {
14482 // Same encoding for add/sub, just flip the sign.
14483 int64_t AbsImm
= std::abs(Imm
);
14484 if (!Subtarget
->isThumb())
14485 return ARM_AM::getSOImmVal(AbsImm
) != -1;
14486 if (Subtarget
->isThumb2())
14487 return ARM_AM::getT2SOImmVal(AbsImm
) != -1;
14488 // Thumb1 only has 8-bit unsigned immediate.
14489 return AbsImm
>= 0 && AbsImm
<= 255;
14492 static bool getARMIndexedAddressParts(SDNode
*Ptr
, EVT VT
,
14493 bool isSEXTLoad
, SDValue
&Base
,
14494 SDValue
&Offset
, bool &isInc
,
14495 SelectionDAG
&DAG
) {
14496 if (Ptr
->getOpcode() != ISD::ADD
&& Ptr
->getOpcode() != ISD::SUB
)
14499 if (VT
== MVT::i16
|| ((VT
== MVT::i8
|| VT
== MVT::i1
) && isSEXTLoad
)) {
14500 // AddressingMode 3
14501 Base
= Ptr
->getOperand(0);
14502 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(Ptr
->getOperand(1))) {
14503 int RHSC
= (int)RHS
->getZExtValue();
14504 if (RHSC
< 0 && RHSC
> -256) {
14505 assert(Ptr
->getOpcode() == ISD::ADD
);
14507 Offset
= DAG
.getConstant(-RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
14511 isInc
= (Ptr
->getOpcode() == ISD::ADD
);
14512 Offset
= Ptr
->getOperand(1);
14514 } else if (VT
== MVT::i32
|| VT
== MVT::i8
|| VT
== MVT::i1
) {
14515 // AddressingMode 2
14516 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(Ptr
->getOperand(1))) {
14517 int RHSC
= (int)RHS
->getZExtValue();
14518 if (RHSC
< 0 && RHSC
> -0x1000) {
14519 assert(Ptr
->getOpcode() == ISD::ADD
);
14521 Offset
= DAG
.getConstant(-RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
14522 Base
= Ptr
->getOperand(0);
14527 if (Ptr
->getOpcode() == ISD::ADD
) {
14529 ARM_AM::ShiftOpc ShOpcVal
=
14530 ARM_AM::getShiftOpcForNode(Ptr
->getOperand(0).getOpcode());
14531 if (ShOpcVal
!= ARM_AM::no_shift
) {
14532 Base
= Ptr
->getOperand(1);
14533 Offset
= Ptr
->getOperand(0);
14535 Base
= Ptr
->getOperand(0);
14536 Offset
= Ptr
->getOperand(1);
14541 isInc
= (Ptr
->getOpcode() == ISD::ADD
);
14542 Base
= Ptr
->getOperand(0);
14543 Offset
= Ptr
->getOperand(1);
14547 // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
14551 static bool getT2IndexedAddressParts(SDNode
*Ptr
, EVT VT
,
14552 bool isSEXTLoad
, SDValue
&Base
,
14553 SDValue
&Offset
, bool &isInc
,
14554 SelectionDAG
&DAG
) {
14555 if (Ptr
->getOpcode() != ISD::ADD
&& Ptr
->getOpcode() != ISD::SUB
)
14558 Base
= Ptr
->getOperand(0);
14559 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(Ptr
->getOperand(1))) {
14560 int RHSC
= (int)RHS
->getZExtValue();
14561 if (RHSC
< 0 && RHSC
> -0x100) { // 8 bits.
14562 assert(Ptr
->getOpcode() == ISD::ADD
);
14564 Offset
= DAG
.getConstant(-RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
14566 } else if (RHSC
> 0 && RHSC
< 0x100) { // 8 bit, no zero.
14567 isInc
= Ptr
->getOpcode() == ISD::ADD
;
14568 Offset
= DAG
.getConstant(RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
14576 /// getPreIndexedAddressParts - returns true by value, base pointer and
14577 /// offset pointer and addressing mode by reference if the node's address
14578 /// can be legally represented as pre-indexed load / store address.
14580 ARMTargetLowering::getPreIndexedAddressParts(SDNode
*N
, SDValue
&Base
,
14582 ISD::MemIndexedMode
&AM
,
14583 SelectionDAG
&DAG
) const {
14584 if (Subtarget
->isThumb1Only())
14589 bool isSEXTLoad
= false;
14590 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
14591 Ptr
= LD
->getBasePtr();
14592 VT
= LD
->getMemoryVT();
14593 isSEXTLoad
= LD
->getExtensionType() == ISD::SEXTLOAD
;
14594 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
14595 Ptr
= ST
->getBasePtr();
14596 VT
= ST
->getMemoryVT();
14601 bool isLegal
= false;
14602 if (Subtarget
->isThumb2())
14603 isLegal
= getT2IndexedAddressParts(Ptr
.getNode(), VT
, isSEXTLoad
, Base
,
14604 Offset
, isInc
, DAG
);
14606 isLegal
= getARMIndexedAddressParts(Ptr
.getNode(), VT
, isSEXTLoad
, Base
,
14607 Offset
, isInc
, DAG
);
14611 AM
= isInc
? ISD::PRE_INC
: ISD::PRE_DEC
;
14615 /// getPostIndexedAddressParts - returns true by value, base pointer and
14616 /// offset pointer and addressing mode by reference if this node can be
14617 /// combined with a load / store to form a post-indexed load / store.
14618 bool ARMTargetLowering::getPostIndexedAddressParts(SDNode
*N
, SDNode
*Op
,
14621 ISD::MemIndexedMode
&AM
,
14622 SelectionDAG
&DAG
) const {
14625 bool isSEXTLoad
= false, isNonExt
;
14626 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
14627 VT
= LD
->getMemoryVT();
14628 Ptr
= LD
->getBasePtr();
14629 isSEXTLoad
= LD
->getExtensionType() == ISD::SEXTLOAD
;
14630 isNonExt
= LD
->getExtensionType() == ISD::NON_EXTLOAD
;
14631 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
14632 VT
= ST
->getMemoryVT();
14633 Ptr
= ST
->getBasePtr();
14634 isNonExt
= !ST
->isTruncatingStore();
14638 if (Subtarget
->isThumb1Only()) {
14639 // Thumb-1 can do a limited post-inc load or store as an updating LDM. It
14640 // must be non-extending/truncating, i32, with an offset of 4.
14641 assert(Op
->getValueType(0) == MVT::i32
&& "Non-i32 post-inc op?!");
14642 if (Op
->getOpcode() != ISD::ADD
|| !isNonExt
)
14644 auto *RHS
= dyn_cast
<ConstantSDNode
>(Op
->getOperand(1));
14645 if (!RHS
|| RHS
->getZExtValue() != 4)
14648 Offset
= Op
->getOperand(1);
14649 Base
= Op
->getOperand(0);
14650 AM
= ISD::POST_INC
;
14655 bool isLegal
= false;
14656 if (Subtarget
->isThumb2())
14657 isLegal
= getT2IndexedAddressParts(Op
, VT
, isSEXTLoad
, Base
, Offset
,
14660 isLegal
= getARMIndexedAddressParts(Op
, VT
, isSEXTLoad
, Base
, Offset
,
14666 // Swap base ptr and offset to catch more post-index load / store when
14667 // it's legal. In Thumb2 mode, offset must be an immediate.
14668 if (Ptr
== Offset
&& Op
->getOpcode() == ISD::ADD
&&
14669 !Subtarget
->isThumb2())
14670 std::swap(Base
, Offset
);
14672 // Post-indexed load / store update the base pointer.
14677 AM
= isInc
? ISD::POST_INC
: ISD::POST_DEC
;
14681 void ARMTargetLowering::computeKnownBitsForTargetNode(const SDValue Op
,
14683 const APInt
&DemandedElts
,
14684 const SelectionDAG
&DAG
,
14685 unsigned Depth
) const {
14686 unsigned BitWidth
= Known
.getBitWidth();
14688 switch (Op
.getOpcode()) {
14694 // Special cases when we convert a carry to a boolean.
14695 if (Op
.getResNo() == 0) {
14696 SDValue LHS
= Op
.getOperand(0);
14697 SDValue RHS
= Op
.getOperand(1);
14698 // (ADDE 0, 0, C) will give us a single bit.
14699 if (Op
->getOpcode() == ARMISD::ADDE
&& isNullConstant(LHS
) &&
14700 isNullConstant(RHS
)) {
14701 Known
.Zero
|= APInt::getHighBitsSet(BitWidth
, BitWidth
- 1);
14706 case ARMISD::CMOV
: {
14707 // Bits are known zero/one if known on the LHS and RHS.
14708 Known
= DAG
.computeKnownBits(Op
.getOperand(0), Depth
+1);
14709 if (Known
.isUnknown())
14712 KnownBits KnownRHS
= DAG
.computeKnownBits(Op
.getOperand(1), Depth
+1);
14713 Known
.Zero
&= KnownRHS
.Zero
;
14714 Known
.One
&= KnownRHS
.One
;
14717 case ISD::INTRINSIC_W_CHAIN
: {
14718 ConstantSDNode
*CN
= cast
<ConstantSDNode
>(Op
->getOperand(1));
14719 Intrinsic::ID IntID
= static_cast<Intrinsic::ID
>(CN
->getZExtValue());
14722 case Intrinsic::arm_ldaex
:
14723 case Intrinsic::arm_ldrex
: {
14724 EVT VT
= cast
<MemIntrinsicSDNode
>(Op
)->getMemoryVT();
14725 unsigned MemBits
= VT
.getScalarSizeInBits();
14726 Known
.Zero
|= APInt::getHighBitsSet(BitWidth
, BitWidth
- MemBits
);
14731 case ARMISD::BFI
: {
14732 // Conservatively, we can recurse down the first operand
14733 // and just mask out all affected bits.
14734 Known
= DAG
.computeKnownBits(Op
.getOperand(0), Depth
+ 1);
14736 // The operand to BFI is already a mask suitable for removing the bits it
14738 ConstantSDNode
*CI
= cast
<ConstantSDNode
>(Op
.getOperand(2));
14739 const APInt
&Mask
= CI
->getAPIntValue();
14740 Known
.Zero
&= Mask
;
14744 case ARMISD::VGETLANEs
:
14745 case ARMISD::VGETLANEu
: {
14746 const SDValue
&SrcSV
= Op
.getOperand(0);
14747 EVT VecVT
= SrcSV
.getValueType();
14748 assert(VecVT
.isVector() && "VGETLANE expected a vector type");
14749 const unsigned NumSrcElts
= VecVT
.getVectorNumElements();
14750 ConstantSDNode
*Pos
= cast
<ConstantSDNode
>(Op
.getOperand(1).getNode());
14751 assert(Pos
->getAPIntValue().ult(NumSrcElts
) &&
14752 "VGETLANE index out of bounds");
14753 unsigned Idx
= Pos
->getZExtValue();
14754 APInt DemandedElt
= APInt::getOneBitSet(NumSrcElts
, Idx
);
14755 Known
= DAG
.computeKnownBits(SrcSV
, DemandedElt
, Depth
+ 1);
14757 EVT VT
= Op
.getValueType();
14758 const unsigned DstSz
= VT
.getScalarSizeInBits();
14759 const unsigned SrcSz
= VecVT
.getVectorElementType().getSizeInBits();
14761 assert(SrcSz
== Known
.getBitWidth());
14762 assert(DstSz
> SrcSz
);
14763 if (Op
.getOpcode() == ARMISD::VGETLANEs
)
14764 Known
= Known
.sext(DstSz
);
14766 Known
= Known
.zext(DstSz
, true /* extended bits are known zero */);
14768 assert(DstSz
== Known
.getBitWidth());
14775 ARMTargetLowering::targetShrinkDemandedConstant(SDValue Op
,
14776 const APInt
&DemandedAPInt
,
14777 TargetLoweringOpt
&TLO
) const {
14778 // Delay optimization, so we don't have to deal with illegal types, or block
14783 // Only optimize AND for now.
14784 if (Op
.getOpcode() != ISD::AND
)
14787 EVT VT
= Op
.getValueType();
14793 assert(VT
== MVT::i32
&& "Unexpected integer type");
14795 // Make sure the RHS really is a constant.
14796 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
14800 unsigned Mask
= C
->getZExtValue();
14802 unsigned Demanded
= DemandedAPInt
.getZExtValue();
14803 unsigned ShrunkMask
= Mask
& Demanded
;
14804 unsigned ExpandedMask
= Mask
| ~Demanded
;
14806 // If the mask is all zeros, let the target-independent code replace the
14807 // result with zero.
14808 if (ShrunkMask
== 0)
14811 // If the mask is all ones, erase the AND. (Currently, the target-independent
14812 // code won't do this, so we have to do it explicitly to avoid an infinite
14813 // loop in obscure cases.)
14814 if (ExpandedMask
== ~0U)
14815 return TLO
.CombineTo(Op
, Op
.getOperand(0));
14817 auto IsLegalMask
= [ShrunkMask
, ExpandedMask
](unsigned Mask
) -> bool {
14818 return (ShrunkMask
& Mask
) == ShrunkMask
&& (~ExpandedMask
& Mask
) == 0;
14820 auto UseMask
= [Mask
, Op
, VT
, &TLO
](unsigned NewMask
) -> bool {
14821 if (NewMask
== Mask
)
14824 SDValue NewC
= TLO
.DAG
.getConstant(NewMask
, DL
, VT
);
14825 SDValue NewOp
= TLO
.DAG
.getNode(ISD::AND
, DL
, VT
, Op
.getOperand(0), NewC
);
14826 return TLO
.CombineTo(Op
, NewOp
);
14829 // Prefer uxtb mask.
14830 if (IsLegalMask(0xFF))
14831 return UseMask(0xFF);
14833 // Prefer uxth mask.
14834 if (IsLegalMask(0xFFFF))
14835 return UseMask(0xFFFF);
14837 // [1, 255] is Thumb1 movs+ands, legal immediate for ARM/Thumb2.
14838 // FIXME: Prefer a contiguous sequence of bits for other optimizations.
14839 if (ShrunkMask
< 256)
14840 return UseMask(ShrunkMask
);
14842 // [-256, -2] is Thumb1 movs+bics, legal immediate for ARM/Thumb2.
14843 // FIXME: Prefer a contiguous sequence of bits for other optimizations.
14844 if ((int)ExpandedMask
<= -2 && (int)ExpandedMask
>= -256)
14845 return UseMask(ExpandedMask
);
14847 // Potential improvements:
14849 // We could try to recognize lsls+lsrs or lsrs+lsls pairs here.
14850 // We could try to prefer Thumb1 immediates which can be lowered to a
14851 // two-instruction sequence.
14852 // We could try to recognize more legal ARM/Thumb2 immediates here.
14858 //===----------------------------------------------------------------------===//
14859 // ARM Inline Assembly Support
14860 //===----------------------------------------------------------------------===//
14862 bool ARMTargetLowering::ExpandInlineAsm(CallInst
*CI
) const {
14863 // Looking for "rev" which is V6+.
14864 if (!Subtarget
->hasV6Ops())
14867 InlineAsm
*IA
= cast
<InlineAsm
>(CI
->getCalledValue());
14868 std::string AsmStr
= IA
->getAsmString();
14869 SmallVector
<StringRef
, 4> AsmPieces
;
14870 SplitString(AsmStr
, AsmPieces
, ";\n");
14872 switch (AsmPieces
.size()) {
14873 default: return false;
14875 AsmStr
= AsmPieces
[0];
14877 SplitString(AsmStr
, AsmPieces
, " \t,");
14880 if (AsmPieces
.size() == 3 &&
14881 AsmPieces
[0] == "rev" && AsmPieces
[1] == "$0" && AsmPieces
[2] == "$1" &&
14882 IA
->getConstraintString().compare(0, 4, "=l,l") == 0) {
14883 IntegerType
*Ty
= dyn_cast
<IntegerType
>(CI
->getType());
14884 if (Ty
&& Ty
->getBitWidth() == 32)
14885 return IntrinsicLowering::LowerToByteSwap(CI
);
14893 const char *ARMTargetLowering::LowerXConstraint(EVT ConstraintVT
) const {
14894 // At this point, we have to lower this constraint to something else, so we
14895 // lower it to an "r" or "w". However, by doing this we will force the result
14896 // to be in register, while the X constraint is much more permissive.
14898 // Although we are correct (we are free to emit anything, without
14899 // constraints), we might break use cases that would expect us to be more
14900 // efficient and emit something else.
14901 if (!Subtarget
->hasVFP2Base())
14903 if (ConstraintVT
.isFloatingPoint())
14905 if (ConstraintVT
.isVector() && Subtarget
->hasNEON() &&
14906 (ConstraintVT
.getSizeInBits() == 64 ||
14907 ConstraintVT
.getSizeInBits() == 128))
14913 /// getConstraintType - Given a constraint letter, return the type of
14914 /// constraint it is for this target.
14915 ARMTargetLowering::ConstraintType
14916 ARMTargetLowering::getConstraintType(StringRef Constraint
) const {
14917 if (Constraint
.size() == 1) {
14918 switch (Constraint
[0]) {
14920 case 'l': return C_RegisterClass
;
14921 case 'w': return C_RegisterClass
;
14922 case 'h': return C_RegisterClass
;
14923 case 'x': return C_RegisterClass
;
14924 case 't': return C_RegisterClass
;
14925 case 'j': return C_Other
; // Constant for movw.
14926 // An address with a single base register. Due to the way we
14927 // currently handle addresses it is the same as an 'r' memory constraint.
14928 case 'Q': return C_Memory
;
14930 } else if (Constraint
.size() == 2) {
14931 switch (Constraint
[0]) {
14933 case 'T': return C_RegisterClass
;
14934 // All 'U+' constraints are addresses.
14935 case 'U': return C_Memory
;
14938 return TargetLowering::getConstraintType(Constraint
);
14941 /// Examine constraint type and operand type and determine a weight value.
14942 /// This object must already have been set up with the operand type
14943 /// and the current alternative constraint selected.
14944 TargetLowering::ConstraintWeight
14945 ARMTargetLowering::getSingleConstraintMatchWeight(
14946 AsmOperandInfo
&info
, const char *constraint
) const {
14947 ConstraintWeight weight
= CW_Invalid
;
14948 Value
*CallOperandVal
= info
.CallOperandVal
;
14949 // If we don't have a value, we can't do a match,
14950 // but allow it at the lowest weight.
14951 if (!CallOperandVal
)
14953 Type
*type
= CallOperandVal
->getType();
14954 // Look at the constraint type.
14955 switch (*constraint
) {
14957 weight
= TargetLowering::getSingleConstraintMatchWeight(info
, constraint
);
14960 if (type
->isIntegerTy()) {
14961 if (Subtarget
->isThumb())
14962 weight
= CW_SpecificReg
;
14964 weight
= CW_Register
;
14968 if (type
->isFloatingPointTy())
14969 weight
= CW_Register
;
14975 using RCPair
= std::pair
<unsigned, const TargetRegisterClass
*>;
14977 RCPair
ARMTargetLowering::getRegForInlineAsmConstraint(
14978 const TargetRegisterInfo
*TRI
, StringRef Constraint
, MVT VT
) const {
14979 switch (Constraint
.size()) {
14981 // GCC ARM Constraint Letters
14982 switch (Constraint
[0]) {
14983 case 'l': // Low regs or general regs.
14984 if (Subtarget
->isThumb())
14985 return RCPair(0U, &ARM::tGPRRegClass
);
14986 return RCPair(0U, &ARM::GPRRegClass
);
14987 case 'h': // High regs or no regs.
14988 if (Subtarget
->isThumb())
14989 return RCPair(0U, &ARM::hGPRRegClass
);
14992 if (Subtarget
->isThumb1Only())
14993 return RCPair(0U, &ARM::tGPRRegClass
);
14994 return RCPair(0U, &ARM::GPRRegClass
);
14996 if (VT
== MVT::Other
)
14998 if (VT
== MVT::f32
)
14999 return RCPair(0U, &ARM::SPRRegClass
);
15000 if (VT
.getSizeInBits() == 64)
15001 return RCPair(0U, &ARM::DPRRegClass
);
15002 if (VT
.getSizeInBits() == 128)
15003 return RCPair(0U, &ARM::QPRRegClass
);
15006 if (VT
== MVT::Other
)
15008 if (VT
== MVT::f32
)
15009 return RCPair(0U, &ARM::SPR_8RegClass
);
15010 if (VT
.getSizeInBits() == 64)
15011 return RCPair(0U, &ARM::DPR_8RegClass
);
15012 if (VT
.getSizeInBits() == 128)
15013 return RCPair(0U, &ARM::QPR_8RegClass
);
15016 if (VT
== MVT::Other
)
15018 if (VT
== MVT::f32
|| VT
== MVT::i32
)
15019 return RCPair(0U, &ARM::SPRRegClass
);
15020 if (VT
.getSizeInBits() == 64)
15021 return RCPair(0U, &ARM::DPR_VFP2RegClass
);
15022 if (VT
.getSizeInBits() == 128)
15023 return RCPair(0U, &ARM::QPR_VFP2RegClass
);
15029 if (Constraint
[0] == 'T') {
15030 switch (Constraint
[1]) {
15034 return RCPair(0U, &ARM::tGPREvenRegClass
);
15036 return RCPair(0U, &ARM::tGPROddRegClass
);
15045 if (StringRef("{cc}").equals_lower(Constraint
))
15046 return std::make_pair(unsigned(ARM::CPSR
), &ARM::CCRRegClass
);
15048 return TargetLowering::getRegForInlineAsmConstraint(TRI
, Constraint
, VT
);
15051 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15052 /// vector. If it is invalid, don't add anything to Ops.
15053 void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op
,
15054 std::string
&Constraint
,
15055 std::vector
<SDValue
>&Ops
,
15056 SelectionDAG
&DAG
) const {
15059 // Currently only support length 1 constraints.
15060 if (Constraint
.length() != 1) return;
15062 char ConstraintLetter
= Constraint
[0];
15063 switch (ConstraintLetter
) {
15066 case 'I': case 'J': case 'K': case 'L':
15067 case 'M': case 'N': case 'O':
15068 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
);
15072 int64_t CVal64
= C
->getSExtValue();
15073 int CVal
= (int) CVal64
;
15074 // None of these constraints allow values larger than 32 bits. Check
15075 // that the value fits in an int.
15076 if (CVal
!= CVal64
)
15079 switch (ConstraintLetter
) {
15081 // Constant suitable for movw, must be between 0 and
15083 if (Subtarget
->hasV6T2Ops())
15084 if (CVal
>= 0 && CVal
<= 65535)
15088 if (Subtarget
->isThumb1Only()) {
15089 // This must be a constant between 0 and 255, for ADD
15091 if (CVal
>= 0 && CVal
<= 255)
15093 } else if (Subtarget
->isThumb2()) {
15094 // A constant that can be used as an immediate value in a
15095 // data-processing instruction.
15096 if (ARM_AM::getT2SOImmVal(CVal
) != -1)
15099 // A constant that can be used as an immediate value in a
15100 // data-processing instruction.
15101 if (ARM_AM::getSOImmVal(CVal
) != -1)
15107 if (Subtarget
->isThumb1Only()) {
15108 // This must be a constant between -255 and -1, for negated ADD
15109 // immediates. This can be used in GCC with an "n" modifier that
15110 // prints the negated value, for use with SUB instructions. It is
15111 // not useful otherwise but is implemented for compatibility.
15112 if (CVal
>= -255 && CVal
<= -1)
15115 // This must be a constant between -4095 and 4095. It is not clear
15116 // what this constraint is intended for. Implemented for
15117 // compatibility with GCC.
15118 if (CVal
>= -4095 && CVal
<= 4095)
15124 if (Subtarget
->isThumb1Only()) {
15125 // A 32-bit value where only one byte has a nonzero value. Exclude
15126 // zero to match GCC. This constraint is used by GCC internally for
15127 // constants that can be loaded with a move/shift combination.
15128 // It is not useful otherwise but is implemented for compatibility.
15129 if (CVal
!= 0 && ARM_AM::isThumbImmShiftedVal(CVal
))
15131 } else if (Subtarget
->isThumb2()) {
15132 // A constant whose bitwise inverse can be used as an immediate
15133 // value in a data-processing instruction. This can be used in GCC
15134 // with a "B" modifier that prints the inverted value, for use with
15135 // BIC and MVN instructions. It is not useful otherwise but is
15136 // implemented for compatibility.
15137 if (ARM_AM::getT2SOImmVal(~CVal
) != -1)
15140 // A constant whose bitwise inverse can be used as an immediate
15141 // value in a data-processing instruction. This can be used in GCC
15142 // with a "B" modifier that prints the inverted value, for use with
15143 // BIC and MVN instructions. It is not useful otherwise but is
15144 // implemented for compatibility.
15145 if (ARM_AM::getSOImmVal(~CVal
) != -1)
15151 if (Subtarget
->isThumb1Only()) {
15152 // This must be a constant between -7 and 7,
15153 // for 3-operand ADD/SUB immediate instructions.
15154 if (CVal
>= -7 && CVal
< 7)
15156 } else if (Subtarget
->isThumb2()) {
15157 // A constant whose negation can be used as an immediate value in a
15158 // data-processing instruction. This can be used in GCC with an "n"
15159 // modifier that prints the negated value, for use with SUB
15160 // instructions. It is not useful otherwise but is implemented for
15162 if (ARM_AM::getT2SOImmVal(-CVal
) != -1)
15165 // A constant whose negation can be used as an immediate value in a
15166 // data-processing instruction. This can be used in GCC with an "n"
15167 // modifier that prints the negated value, for use with SUB
15168 // instructions. It is not useful otherwise but is implemented for
15170 if (ARM_AM::getSOImmVal(-CVal
) != -1)
15176 if (Subtarget
->isThumb1Only()) {
15177 // This must be a multiple of 4 between 0 and 1020, for
15178 // ADD sp + immediate.
15179 if ((CVal
>= 0 && CVal
<= 1020) && ((CVal
& 3) == 0))
15182 // A power of two or a constant between 0 and 32. This is used in
15183 // GCC for the shift amount on shifted register operands, but it is
15184 // useful in general for any shift amounts.
15185 if ((CVal
>= 0 && CVal
<= 32) || ((CVal
& (CVal
- 1)) == 0))
15191 if (Subtarget
->isThumb()) { // FIXME thumb2
15192 // This must be a constant between 0 and 31, for shift amounts.
15193 if (CVal
>= 0 && CVal
<= 31)
15199 if (Subtarget
->isThumb()) { // FIXME thumb2
15200 // This must be a multiple of 4 between -508 and 508, for
15201 // ADD/SUB sp = sp + immediate.
15202 if ((CVal
>= -508 && CVal
<= 508) && ((CVal
& 3) == 0))
15207 Result
= DAG
.getTargetConstant(CVal
, SDLoc(Op
), Op
.getValueType());
15211 if (Result
.getNode()) {
15212 Ops
.push_back(Result
);
15215 return TargetLowering::LowerAsmOperandForConstraint(Op
, Constraint
, Ops
, DAG
);
15218 static RTLIB::Libcall
getDivRemLibcall(
15219 const SDNode
*N
, MVT::SimpleValueType SVT
) {
15220 assert((N
->getOpcode() == ISD::SDIVREM
|| N
->getOpcode() == ISD::UDIVREM
||
15221 N
->getOpcode() == ISD::SREM
|| N
->getOpcode() == ISD::UREM
) &&
15222 "Unhandled Opcode in getDivRemLibcall");
15223 bool isSigned
= N
->getOpcode() == ISD::SDIVREM
||
15224 N
->getOpcode() == ISD::SREM
;
15227 default: llvm_unreachable("Unexpected request for libcall!");
15228 case MVT::i8
: LC
= isSigned
? RTLIB::SDIVREM_I8
: RTLIB::UDIVREM_I8
; break;
15229 case MVT::i16
: LC
= isSigned
? RTLIB::SDIVREM_I16
: RTLIB::UDIVREM_I16
; break;
15230 case MVT::i32
: LC
= isSigned
? RTLIB::SDIVREM_I32
: RTLIB::UDIVREM_I32
; break;
15231 case MVT::i64
: LC
= isSigned
? RTLIB::SDIVREM_I64
: RTLIB::UDIVREM_I64
; break;
15236 static TargetLowering::ArgListTy
getDivRemArgList(
15237 const SDNode
*N
, LLVMContext
*Context
, const ARMSubtarget
*Subtarget
) {
15238 assert((N
->getOpcode() == ISD::SDIVREM
|| N
->getOpcode() == ISD::UDIVREM
||
15239 N
->getOpcode() == ISD::SREM
|| N
->getOpcode() == ISD::UREM
) &&
15240 "Unhandled Opcode in getDivRemArgList");
15241 bool isSigned
= N
->getOpcode() == ISD::SDIVREM
||
15242 N
->getOpcode() == ISD::SREM
;
15243 TargetLowering::ArgListTy Args
;
15244 TargetLowering::ArgListEntry Entry
;
15245 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
15246 EVT ArgVT
= N
->getOperand(i
).getValueType();
15247 Type
*ArgTy
= ArgVT
.getTypeForEVT(*Context
);
15248 Entry
.Node
= N
->getOperand(i
);
15250 Entry
.IsSExt
= isSigned
;
15251 Entry
.IsZExt
= !isSigned
;
15252 Args
.push_back(Entry
);
15254 if (Subtarget
->isTargetWindows() && Args
.size() >= 2)
15255 std::swap(Args
[0], Args
[1]);
15259 SDValue
ARMTargetLowering::LowerDivRem(SDValue Op
, SelectionDAG
&DAG
) const {
15260 assert((Subtarget
->isTargetAEABI() || Subtarget
->isTargetAndroid() ||
15261 Subtarget
->isTargetGNUAEABI() || Subtarget
->isTargetMuslAEABI() ||
15262 Subtarget
->isTargetWindows()) &&
15263 "Register-based DivRem lowering only");
15264 unsigned Opcode
= Op
->getOpcode();
15265 assert((Opcode
== ISD::SDIVREM
|| Opcode
== ISD::UDIVREM
) &&
15266 "Invalid opcode for Div/Rem lowering");
15267 bool isSigned
= (Opcode
== ISD::SDIVREM
);
15268 EVT VT
= Op
->getValueType(0);
15269 Type
*Ty
= VT
.getTypeForEVT(*DAG
.getContext());
15272 // If the target has hardware divide, use divide + multiply + subtract:
15274 // rem = a - b * div
15275 // return {div, rem}
15276 // This should be lowered into UDIV/SDIV + MLS later on.
15277 bool hasDivide
= Subtarget
->isThumb() ? Subtarget
->hasDivideInThumbMode()
15278 : Subtarget
->hasDivideInARMMode();
15279 if (hasDivide
&& Op
->getValueType(0).isSimple() &&
15280 Op
->getSimpleValueType(0) == MVT::i32
) {
15281 unsigned DivOpcode
= isSigned
? ISD::SDIV
: ISD::UDIV
;
15282 const SDValue Dividend
= Op
->getOperand(0);
15283 const SDValue Divisor
= Op
->getOperand(1);
15284 SDValue Div
= DAG
.getNode(DivOpcode
, dl
, VT
, Dividend
, Divisor
);
15285 SDValue Mul
= DAG
.getNode(ISD::MUL
, dl
, VT
, Div
, Divisor
);
15286 SDValue Rem
= DAG
.getNode(ISD::SUB
, dl
, VT
, Dividend
, Mul
);
15288 SDValue Values
[2] = {Div
, Rem
};
15289 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, DAG
.getVTList(VT
, VT
), Values
);
15292 RTLIB::Libcall LC
= getDivRemLibcall(Op
.getNode(),
15293 VT
.getSimpleVT().SimpleTy
);
15294 SDValue InChain
= DAG
.getEntryNode();
15296 TargetLowering::ArgListTy Args
= getDivRemArgList(Op
.getNode(),
15300 SDValue Callee
= DAG
.getExternalSymbol(getLibcallName(LC
),
15301 getPointerTy(DAG
.getDataLayout()));
15303 Type
*RetTy
= StructType::get(Ty
, Ty
);
15305 if (Subtarget
->isTargetWindows())
15306 InChain
= WinDBZCheckDenominator(DAG
, Op
.getNode(), InChain
);
15308 TargetLowering::CallLoweringInfo
CLI(DAG
);
15309 CLI
.setDebugLoc(dl
).setChain(InChain
)
15310 .setCallee(getLibcallCallingConv(LC
), RetTy
, Callee
, std::move(Args
))
15311 .setInRegister().setSExtResult(isSigned
).setZExtResult(!isSigned
);
15313 std::pair
<SDValue
, SDValue
> CallInfo
= LowerCallTo(CLI
);
15314 return CallInfo
.first
;
15317 // Lowers REM using divmod helpers
15318 // see RTABI section 4.2/4.3
15319 SDValue
ARMTargetLowering::LowerREM(SDNode
*N
, SelectionDAG
&DAG
) const {
15320 // Build return types (div and rem)
15321 std::vector
<Type
*> RetTyParams
;
15322 Type
*RetTyElement
;
15324 switch (N
->getValueType(0).getSimpleVT().SimpleTy
) {
15325 default: llvm_unreachable("Unexpected request for libcall!");
15326 case MVT::i8
: RetTyElement
= Type::getInt8Ty(*DAG
.getContext()); break;
15327 case MVT::i16
: RetTyElement
= Type::getInt16Ty(*DAG
.getContext()); break;
15328 case MVT::i32
: RetTyElement
= Type::getInt32Ty(*DAG
.getContext()); break;
15329 case MVT::i64
: RetTyElement
= Type::getInt64Ty(*DAG
.getContext()); break;
15332 RetTyParams
.push_back(RetTyElement
);
15333 RetTyParams
.push_back(RetTyElement
);
15334 ArrayRef
<Type
*> ret
= ArrayRef
<Type
*>(RetTyParams
);
15335 Type
*RetTy
= StructType::get(*DAG
.getContext(), ret
);
15337 RTLIB::Libcall LC
= getDivRemLibcall(N
, N
->getValueType(0).getSimpleVT().
15339 SDValue InChain
= DAG
.getEntryNode();
15340 TargetLowering::ArgListTy Args
= getDivRemArgList(N
, DAG
.getContext(),
15342 bool isSigned
= N
->getOpcode() == ISD::SREM
;
15343 SDValue Callee
= DAG
.getExternalSymbol(getLibcallName(LC
),
15344 getPointerTy(DAG
.getDataLayout()));
15346 if (Subtarget
->isTargetWindows())
15347 InChain
= WinDBZCheckDenominator(DAG
, N
, InChain
);
15350 CallLoweringInfo
CLI(DAG
);
15351 CLI
.setChain(InChain
)
15352 .setCallee(CallingConv::ARM_AAPCS
, RetTy
, Callee
, std::move(Args
))
15353 .setSExtResult(isSigned
).setZExtResult(!isSigned
).setDebugLoc(SDLoc(N
));
15354 std::pair
<SDValue
, SDValue
> CallResult
= LowerCallTo(CLI
);
15356 // Return second (rem) result operand (first contains div)
15357 SDNode
*ResNode
= CallResult
.first
.getNode();
15358 assert(ResNode
->getNumOperands() == 2 && "divmod should return two operands");
15359 return ResNode
->getOperand(1);
15363 ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op
, SelectionDAG
&DAG
) const {
15364 assert(Subtarget
->isTargetWindows() && "unsupported target platform");
15368 SDValue Chain
= Op
.getOperand(0);
15369 SDValue Size
= Op
.getOperand(1);
15371 if (DAG
.getMachineFunction().getFunction().hasFnAttribute(
15372 "no-stack-arg-probe")) {
15373 unsigned Align
= cast
<ConstantSDNode
>(Op
.getOperand(2))->getZExtValue();
15374 SDValue SP
= DAG
.getCopyFromReg(Chain
, DL
, ARM::SP
, MVT::i32
);
15375 Chain
= SP
.getValue(1);
15376 SP
= DAG
.getNode(ISD::SUB
, DL
, MVT::i32
, SP
, Size
);
15378 SP
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, SP
.getValue(0),
15379 DAG
.getConstant(-(uint64_t)Align
, DL
, MVT::i32
));
15380 Chain
= DAG
.getCopyToReg(Chain
, DL
, ARM::SP
, SP
);
15381 SDValue Ops
[2] = { SP
, Chain
};
15382 return DAG
.getMergeValues(Ops
, DL
);
15385 SDValue Words
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, Size
,
15386 DAG
.getConstant(2, DL
, MVT::i32
));
15389 Chain
= DAG
.getCopyToReg(Chain
, DL
, ARM::R4
, Words
, Flag
);
15390 Flag
= Chain
.getValue(1);
15392 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
15393 Chain
= DAG
.getNode(ARMISD::WIN__CHKSTK
, DL
, NodeTys
, Chain
, Flag
);
15395 SDValue NewSP
= DAG
.getCopyFromReg(Chain
, DL
, ARM::SP
, MVT::i32
);
15396 Chain
= NewSP
.getValue(1);
15398 SDValue Ops
[2] = { NewSP
, Chain
};
15399 return DAG
.getMergeValues(Ops
, DL
);
15402 SDValue
ARMTargetLowering::LowerFP_EXTEND(SDValue Op
, SelectionDAG
&DAG
) const {
15403 SDValue SrcVal
= Op
.getOperand(0);
15404 const unsigned DstSz
= Op
.getValueType().getSizeInBits();
15405 const unsigned SrcSz
= SrcVal
.getValueType().getSizeInBits();
15406 assert(DstSz
> SrcSz
&& DstSz
<= 64 && SrcSz
>= 16 &&
15407 "Unexpected type for custom-lowering FP_EXTEND");
15409 assert((!Subtarget
->hasFP64() || !Subtarget
->hasFPARMv8Base()) &&
15410 "With both FP DP and 16, any FP conversion is legal!");
15412 assert(!(DstSz
== 32 && Subtarget
->hasFP16()) &&
15413 "With FP16, 16 to 32 conversion is legal!");
15415 // Either we are converting from 16 -> 64, without FP16 and/or
15416 // FP.double-precision or without Armv8-fp. So we must do it in two
15418 // Or we are converting from 32 -> 64 without fp.double-precision or 16 -> 32
15419 // without FP16. So we must do a function call.
15423 // Instruction from 16 -> 32
15424 if (Subtarget
->hasFP16())
15425 SrcVal
= DAG
.getNode(ISD::FP_EXTEND
, Loc
, MVT::f32
, SrcVal
);
15426 // Lib call from 16 -> 32
15428 LC
= RTLIB::getFPEXT(MVT::f16
, MVT::f32
);
15429 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&&
15430 "Unexpected type for custom-lowering FP_EXTEND");
15432 makeLibCall(DAG
, LC
, MVT::f32
, SrcVal
, /*isSigned*/ false, Loc
).first
;
15438 // For sure now SrcVal is 32 bits
15439 if (Subtarget
->hasFP64()) // Instruction from 32 -> 64
15440 return DAG
.getNode(ISD::FP_EXTEND
, Loc
, MVT::f64
, SrcVal
);
15442 LC
= RTLIB::getFPEXT(MVT::f32
, MVT::f64
);
15443 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&&
15444 "Unexpected type for custom-lowering FP_EXTEND");
15445 return makeLibCall(DAG
, LC
, MVT::f64
, SrcVal
, /*isSigned*/ false, Loc
).first
;
15448 SDValue
ARMTargetLowering::LowerFP_ROUND(SDValue Op
, SelectionDAG
&DAG
) const {
15449 SDValue SrcVal
= Op
.getOperand(0);
15450 EVT SrcVT
= SrcVal
.getValueType();
15451 EVT DstVT
= Op
.getValueType();
15452 const unsigned DstSz
= Op
.getValueType().getSizeInBits();
15453 const unsigned SrcSz
= SrcVT
.getSizeInBits();
15455 assert(DstSz
< SrcSz
&& SrcSz
<= 64 && DstSz
>= 16 &&
15456 "Unexpected type for custom-lowering FP_ROUND");
15458 assert((!Subtarget
->hasFP64() || !Subtarget
->hasFPARMv8Base()) &&
15459 "With both FP DP and 16, any FP conversion is legal!");
15463 // Instruction from 32 -> 16 if hasFP16 is valid
15464 if (SrcSz
== 32 && Subtarget
->hasFP16())
15467 // Lib call from 32 -> 16 / 64 -> [32, 16]
15468 RTLIB::Libcall LC
= RTLIB::getFPROUND(SrcVT
, DstVT
);
15469 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&&
15470 "Unexpected type for custom-lowering FP_ROUND");
15471 return makeLibCall(DAG
, LC
, DstVT
, SrcVal
, /*isSigned*/ false, Loc
).first
;
15474 void ARMTargetLowering::lowerABS(SDNode
*N
, SmallVectorImpl
<SDValue
> &Results
,
15475 SelectionDAG
&DAG
) const {
15476 assert(N
->getValueType(0) == MVT::i64
&& "Unexpected type (!= i64) on ABS.");
15477 MVT HalfT
= MVT::i32
;
15479 SDValue Hi
, Lo
, Tmp
;
15481 if (!isOperationLegalOrCustom(ISD::ADDCARRY
, HalfT
) ||
15482 !isOperationLegalOrCustom(ISD::UADDO
, HalfT
))
15485 unsigned OpTypeBits
= HalfT
.getScalarSizeInBits();
15486 SDVTList VTList
= DAG
.getVTList(HalfT
, MVT::i1
);
15488 Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, HalfT
, N
->getOperand(0),
15489 DAG
.getConstant(0, dl
, HalfT
));
15490 Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, HalfT
, N
->getOperand(0),
15491 DAG
.getConstant(1, dl
, HalfT
));
15493 Tmp
= DAG
.getNode(ISD::SRA
, dl
, HalfT
, Hi
,
15494 DAG
.getConstant(OpTypeBits
- 1, dl
,
15495 getShiftAmountTy(HalfT
, DAG
.getDataLayout())));
15496 Lo
= DAG
.getNode(ISD::UADDO
, dl
, VTList
, Tmp
, Lo
);
15497 Hi
= DAG
.getNode(ISD::ADDCARRY
, dl
, VTList
, Tmp
, Hi
,
15498 SDValue(Lo
.getNode(), 1));
15499 Hi
= DAG
.getNode(ISD::XOR
, dl
, HalfT
, Tmp
, Hi
);
15500 Lo
= DAG
.getNode(ISD::XOR
, dl
, HalfT
, Tmp
, Lo
);
15502 Results
.push_back(Lo
);
15503 Results
.push_back(Hi
);
15507 ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode
*GA
) const {
15508 // The ARM target isn't yet aware of offsets.
15512 bool ARM::isBitFieldInvertedMask(unsigned v
) {
15513 if (v
== 0xffffffff)
15516 // there can be 1's on either or both "outsides", all the "inside"
15517 // bits must be 0's
15518 return isShiftedMask_32(~v
);
15521 /// isFPImmLegal - Returns true if the target can instruction select the
15522 /// specified FP immediate natively. If false, the legalizer will
15523 /// materialize the FP immediate as a load from a constant pool.
15524 bool ARMTargetLowering::isFPImmLegal(const APFloat
&Imm
, EVT VT
,
15525 bool ForCodeSize
) const {
15526 if (!Subtarget
->hasVFP3Base())
15528 if (VT
== MVT::f16
&& Subtarget
->hasFullFP16())
15529 return ARM_AM::getFP16Imm(Imm
) != -1;
15530 if (VT
== MVT::f32
)
15531 return ARM_AM::getFP32Imm(Imm
) != -1;
15532 if (VT
== MVT::f64
&& Subtarget
->hasFP64())
15533 return ARM_AM::getFP64Imm(Imm
) != -1;
15537 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
15538 /// MemIntrinsicNodes. The associated MachineMemOperands record the alignment
15539 /// specified in the intrinsic calls.
15540 bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo
&Info
,
15542 MachineFunction
&MF
,
15543 unsigned Intrinsic
) const {
15544 switch (Intrinsic
) {
15545 case Intrinsic::arm_neon_vld1
:
15546 case Intrinsic::arm_neon_vld2
:
15547 case Intrinsic::arm_neon_vld3
:
15548 case Intrinsic::arm_neon_vld4
:
15549 case Intrinsic::arm_neon_vld2lane
:
15550 case Intrinsic::arm_neon_vld3lane
:
15551 case Intrinsic::arm_neon_vld4lane
:
15552 case Intrinsic::arm_neon_vld2dup
:
15553 case Intrinsic::arm_neon_vld3dup
:
15554 case Intrinsic::arm_neon_vld4dup
: {
15555 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
15556 // Conservatively set memVT to the entire set of vectors loaded.
15557 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
15558 uint64_t NumElts
= DL
.getTypeSizeInBits(I
.getType()) / 64;
15559 Info
.memVT
= EVT::getVectorVT(I
.getType()->getContext(), MVT::i64
, NumElts
);
15560 Info
.ptrVal
= I
.getArgOperand(0);
15562 Value
*AlignArg
= I
.getArgOperand(I
.getNumArgOperands() - 1);
15563 Info
.align
= cast
<ConstantInt
>(AlignArg
)->getZExtValue();
15564 // volatile loads with NEON intrinsics not supported
15565 Info
.flags
= MachineMemOperand::MOLoad
;
15568 case Intrinsic::arm_neon_vld1x2
:
15569 case Intrinsic::arm_neon_vld1x3
:
15570 case Intrinsic::arm_neon_vld1x4
: {
15571 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
15572 // Conservatively set memVT to the entire set of vectors loaded.
15573 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
15574 uint64_t NumElts
= DL
.getTypeSizeInBits(I
.getType()) / 64;
15575 Info
.memVT
= EVT::getVectorVT(I
.getType()->getContext(), MVT::i64
, NumElts
);
15576 Info
.ptrVal
= I
.getArgOperand(I
.getNumArgOperands() - 1);
15579 // volatile loads with NEON intrinsics not supported
15580 Info
.flags
= MachineMemOperand::MOLoad
;
15583 case Intrinsic::arm_neon_vst1
:
15584 case Intrinsic::arm_neon_vst2
:
15585 case Intrinsic::arm_neon_vst3
:
15586 case Intrinsic::arm_neon_vst4
:
15587 case Intrinsic::arm_neon_vst2lane
:
15588 case Intrinsic::arm_neon_vst3lane
:
15589 case Intrinsic::arm_neon_vst4lane
: {
15590 Info
.opc
= ISD::INTRINSIC_VOID
;
15591 // Conservatively set memVT to the entire set of vectors stored.
15592 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
15593 unsigned NumElts
= 0;
15594 for (unsigned ArgI
= 1, ArgE
= I
.getNumArgOperands(); ArgI
< ArgE
; ++ArgI
) {
15595 Type
*ArgTy
= I
.getArgOperand(ArgI
)->getType();
15596 if (!ArgTy
->isVectorTy())
15598 NumElts
+= DL
.getTypeSizeInBits(ArgTy
) / 64;
15600 Info
.memVT
= EVT::getVectorVT(I
.getType()->getContext(), MVT::i64
, NumElts
);
15601 Info
.ptrVal
= I
.getArgOperand(0);
15603 Value
*AlignArg
= I
.getArgOperand(I
.getNumArgOperands() - 1);
15604 Info
.align
= cast
<ConstantInt
>(AlignArg
)->getZExtValue();
15605 // volatile stores with NEON intrinsics not supported
15606 Info
.flags
= MachineMemOperand::MOStore
;
15609 case Intrinsic::arm_neon_vst1x2
:
15610 case Intrinsic::arm_neon_vst1x3
:
15611 case Intrinsic::arm_neon_vst1x4
: {
15612 Info
.opc
= ISD::INTRINSIC_VOID
;
15613 // Conservatively set memVT to the entire set of vectors stored.
15614 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
15615 unsigned NumElts
= 0;
15616 for (unsigned ArgI
= 1, ArgE
= I
.getNumArgOperands(); ArgI
< ArgE
; ++ArgI
) {
15617 Type
*ArgTy
= I
.getArgOperand(ArgI
)->getType();
15618 if (!ArgTy
->isVectorTy())
15620 NumElts
+= DL
.getTypeSizeInBits(ArgTy
) / 64;
15622 Info
.memVT
= EVT::getVectorVT(I
.getType()->getContext(), MVT::i64
, NumElts
);
15623 Info
.ptrVal
= I
.getArgOperand(0);
15626 // volatile stores with NEON intrinsics not supported
15627 Info
.flags
= MachineMemOperand::MOStore
;
15630 case Intrinsic::arm_ldaex
:
15631 case Intrinsic::arm_ldrex
: {
15632 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
15633 PointerType
*PtrTy
= cast
<PointerType
>(I
.getArgOperand(0)->getType());
15634 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
15635 Info
.memVT
= MVT::getVT(PtrTy
->getElementType());
15636 Info
.ptrVal
= I
.getArgOperand(0);
15638 Info
.align
= DL
.getABITypeAlignment(PtrTy
->getElementType());
15639 Info
.flags
= MachineMemOperand::MOLoad
| MachineMemOperand::MOVolatile
;
15642 case Intrinsic::arm_stlex
:
15643 case Intrinsic::arm_strex
: {
15644 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
15645 PointerType
*PtrTy
= cast
<PointerType
>(I
.getArgOperand(1)->getType());
15646 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
15647 Info
.memVT
= MVT::getVT(PtrTy
->getElementType());
15648 Info
.ptrVal
= I
.getArgOperand(1);
15650 Info
.align
= DL
.getABITypeAlignment(PtrTy
->getElementType());
15651 Info
.flags
= MachineMemOperand::MOStore
| MachineMemOperand::MOVolatile
;
15654 case Intrinsic::arm_stlexd
:
15655 case Intrinsic::arm_strexd
:
15656 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
15657 Info
.memVT
= MVT::i64
;
15658 Info
.ptrVal
= I
.getArgOperand(2);
15661 Info
.flags
= MachineMemOperand::MOStore
| MachineMemOperand::MOVolatile
;
15664 case Intrinsic::arm_ldaexd
:
15665 case Intrinsic::arm_ldrexd
:
15666 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
15667 Info
.memVT
= MVT::i64
;
15668 Info
.ptrVal
= I
.getArgOperand(0);
15671 Info
.flags
= MachineMemOperand::MOLoad
| MachineMemOperand::MOVolatile
;
15681 /// Returns true if it is beneficial to convert a load of a constant
15682 /// to just the constant itself.
15683 bool ARMTargetLowering::shouldConvertConstantLoadToIntImm(const APInt
&Imm
,
15685 assert(Ty
->isIntegerTy());
15687 unsigned Bits
= Ty
->getPrimitiveSizeInBits();
15688 if (Bits
== 0 || Bits
> 32)
15693 bool ARMTargetLowering::isExtractSubvectorCheap(EVT ResVT
, EVT SrcVT
,
15694 unsigned Index
) const {
15695 if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR
, ResVT
))
15698 return (Index
== 0 || Index
== ResVT
.getVectorNumElements());
15701 Instruction
* ARMTargetLowering::makeDMB(IRBuilder
<> &Builder
,
15702 ARM_MB::MemBOpt Domain
) const {
15703 Module
*M
= Builder
.GetInsertBlock()->getParent()->getParent();
15705 // First, if the target has no DMB, see what fallback we can use.
15706 if (!Subtarget
->hasDataBarrier()) {
15707 // Some ARMv6 cpus can support data barriers with an mcr instruction.
15708 // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
15710 if (Subtarget
->hasV6Ops() && !Subtarget
->isThumb()) {
15711 Function
*MCR
= Intrinsic::getDeclaration(M
, Intrinsic::arm_mcr
);
15712 Value
* args
[6] = {Builder
.getInt32(15), Builder
.getInt32(0),
15713 Builder
.getInt32(0), Builder
.getInt32(7),
15714 Builder
.getInt32(10), Builder
.getInt32(5)};
15715 return Builder
.CreateCall(MCR
, args
);
15717 // Instead of using barriers, atomic accesses on these subtargets use
15719 llvm_unreachable("makeDMB on a target so old that it has no barriers");
15722 Function
*DMB
= Intrinsic::getDeclaration(M
, Intrinsic::arm_dmb
);
15723 // Only a full system barrier exists in the M-class architectures.
15724 Domain
= Subtarget
->isMClass() ? ARM_MB::SY
: Domain
;
15725 Constant
*CDomain
= Builder
.getInt32(Domain
);
15726 return Builder
.CreateCall(DMB
, CDomain
);
15730 // Based on http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
15731 Instruction
*ARMTargetLowering::emitLeadingFence(IRBuilder
<> &Builder
,
15733 AtomicOrdering Ord
) const {
15735 case AtomicOrdering::NotAtomic
:
15736 case AtomicOrdering::Unordered
:
15737 llvm_unreachable("Invalid fence: unordered/non-atomic");
15738 case AtomicOrdering::Monotonic
:
15739 case AtomicOrdering::Acquire
:
15740 return nullptr; // Nothing to do
15741 case AtomicOrdering::SequentiallyConsistent
:
15742 if (!Inst
->hasAtomicStore())
15743 return nullptr; // Nothing to do
15745 case AtomicOrdering::Release
:
15746 case AtomicOrdering::AcquireRelease
:
15747 if (Subtarget
->preferISHSTBarriers())
15748 return makeDMB(Builder
, ARM_MB::ISHST
);
15749 // FIXME: add a comment with a link to documentation justifying this.
15751 return makeDMB(Builder
, ARM_MB::ISH
);
15753 llvm_unreachable("Unknown fence ordering in emitLeadingFence");
15756 Instruction
*ARMTargetLowering::emitTrailingFence(IRBuilder
<> &Builder
,
15758 AtomicOrdering Ord
) const {
15760 case AtomicOrdering::NotAtomic
:
15761 case AtomicOrdering::Unordered
:
15762 llvm_unreachable("Invalid fence: unordered/not-atomic");
15763 case AtomicOrdering::Monotonic
:
15764 case AtomicOrdering::Release
:
15765 return nullptr; // Nothing to do
15766 case AtomicOrdering::Acquire
:
15767 case AtomicOrdering::AcquireRelease
:
15768 case AtomicOrdering::SequentiallyConsistent
:
15769 return makeDMB(Builder
, ARM_MB::ISH
);
15771 llvm_unreachable("Unknown fence ordering in emitTrailingFence");
15774 // Loads and stores less than 64-bits are already atomic; ones above that
15775 // are doomed anyway, so defer to the default libcall and blame the OS when
15776 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
15777 // anything for those.
15778 bool ARMTargetLowering::shouldExpandAtomicStoreInIR(StoreInst
*SI
) const {
15779 unsigned Size
= SI
->getValueOperand()->getType()->getPrimitiveSizeInBits();
15780 return (Size
== 64) && !Subtarget
->isMClass();
15783 // Loads and stores less than 64-bits are already atomic; ones above that
15784 // are doomed anyway, so defer to the default libcall and blame the OS when
15785 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
15786 // anything for those.
15787 // FIXME: ldrd and strd are atomic if the CPU has LPAE (e.g. A15 has that
15788 // guarantee, see DDI0406C ARM architecture reference manual,
15789 // sections A8.8.72-74 LDRD)
15790 TargetLowering::AtomicExpansionKind
15791 ARMTargetLowering::shouldExpandAtomicLoadInIR(LoadInst
*LI
) const {
15792 unsigned Size
= LI
->getType()->getPrimitiveSizeInBits();
15793 return ((Size
== 64) && !Subtarget
->isMClass()) ? AtomicExpansionKind::LLOnly
15794 : AtomicExpansionKind::None
;
15797 // For the real atomic operations, we have ldrex/strex up to 32 bits,
15798 // and up to 64 bits on the non-M profiles
15799 TargetLowering::AtomicExpansionKind
15800 ARMTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst
*AI
) const {
15801 if (AI
->isFloatingPointOperation())
15802 return AtomicExpansionKind::CmpXChg
;
15804 unsigned Size
= AI
->getType()->getPrimitiveSizeInBits();
15805 bool hasAtomicRMW
= !Subtarget
->isThumb() || Subtarget
->hasV8MBaselineOps();
15806 return (Size
<= (Subtarget
->isMClass() ? 32U : 64U) && hasAtomicRMW
)
15807 ? AtomicExpansionKind::LLSC
15808 : AtomicExpansionKind::None
;
15811 TargetLowering::AtomicExpansionKind
15812 ARMTargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst
*AI
) const {
15813 // At -O0, fast-regalloc cannot cope with the live vregs necessary to
15814 // implement cmpxchg without spilling. If the address being exchanged is also
15815 // on the stack and close enough to the spill slot, this can lead to a
15816 // situation where the monitor always gets cleared and the atomic operation
15817 // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead.
15818 bool HasAtomicCmpXchg
=
15819 !Subtarget
->isThumb() || Subtarget
->hasV8MBaselineOps();
15820 if (getTargetMachine().getOptLevel() != 0 && HasAtomicCmpXchg
)
15821 return AtomicExpansionKind::LLSC
;
15822 return AtomicExpansionKind::None
;
15825 bool ARMTargetLowering::shouldInsertFencesForAtomic(
15826 const Instruction
*I
) const {
15827 return InsertFencesForAtomic
;
15830 // This has so far only been implemented for MachO.
15831 bool ARMTargetLowering::useLoadStackGuardNode() const {
15832 return Subtarget
->isTargetMachO();
15835 void ARMTargetLowering::insertSSPDeclarations(Module
&M
) const {
15836 if (!Subtarget
->getTargetTriple().isWindowsMSVCEnvironment())
15837 return TargetLowering::insertSSPDeclarations(M
);
15839 // MSVC CRT has a global variable holding security cookie.
15840 M
.getOrInsertGlobal("__security_cookie",
15841 Type::getInt8PtrTy(M
.getContext()));
15843 // MSVC CRT has a function to validate security cookie.
15844 FunctionCallee SecurityCheckCookie
= M
.getOrInsertFunction(
15845 "__security_check_cookie", Type::getVoidTy(M
.getContext()),
15846 Type::getInt8PtrTy(M
.getContext()));
15847 if (Function
*F
= dyn_cast
<Function
>(SecurityCheckCookie
.getCallee()))
15848 F
->addAttribute(1, Attribute::AttrKind::InReg
);
15851 Value
*ARMTargetLowering::getSDagStackGuard(const Module
&M
) const {
15852 // MSVC CRT has a global variable holding security cookie.
15853 if (Subtarget
->getTargetTriple().isWindowsMSVCEnvironment())
15854 return M
.getGlobalVariable("__security_cookie");
15855 return TargetLowering::getSDagStackGuard(M
);
15858 Function
*ARMTargetLowering::getSSPStackGuardCheck(const Module
&M
) const {
15859 // MSVC CRT has a function to validate security cookie.
15860 if (Subtarget
->getTargetTriple().isWindowsMSVCEnvironment())
15861 return M
.getFunction("__security_check_cookie");
15862 return TargetLowering::getSSPStackGuardCheck(M
);
15865 bool ARMTargetLowering::canCombineStoreAndExtract(Type
*VectorTy
, Value
*Idx
,
15866 unsigned &Cost
) const {
15867 // If we do not have NEON, vector types are not natively supported.
15868 if (!Subtarget
->hasNEON())
15871 // Floating point values and vector values map to the same register file.
15872 // Therefore, although we could do a store extract of a vector type, this is
15873 // better to leave at float as we have more freedom in the addressing mode for
15875 if (VectorTy
->isFPOrFPVectorTy())
15878 // If the index is unknown at compile time, this is very expensive to lower
15879 // and it is not possible to combine the store with the extract.
15880 if (!isa
<ConstantInt
>(Idx
))
15883 assert(VectorTy
->isVectorTy() && "VectorTy is not a vector type");
15884 unsigned BitWidth
= cast
<VectorType
>(VectorTy
)->getBitWidth();
15885 // We can do a store + vector extract on any vector that fits perfectly in a D
15887 if (BitWidth
== 64 || BitWidth
== 128) {
15894 bool ARMTargetLowering::isCheapToSpeculateCttz() const {
15895 return Subtarget
->hasV6T2Ops();
15898 bool ARMTargetLowering::isCheapToSpeculateCtlz() const {
15899 return Subtarget
->hasV6T2Ops();
15902 bool ARMTargetLowering::shouldExpandShift(SelectionDAG
&DAG
, SDNode
*N
) const {
15903 return !Subtarget
->hasMinSize();
15906 Value
*ARMTargetLowering::emitLoadLinked(IRBuilder
<> &Builder
, Value
*Addr
,
15907 AtomicOrdering Ord
) const {
15908 Module
*M
= Builder
.GetInsertBlock()->getParent()->getParent();
15909 Type
*ValTy
= cast
<PointerType
>(Addr
->getType())->getElementType();
15910 bool IsAcquire
= isAcquireOrStronger(Ord
);
15912 // Since i64 isn't legal and intrinsics don't get type-lowered, the ldrexd
15913 // intrinsic must return {i32, i32} and we have to recombine them into a
15914 // single i64 here.
15915 if (ValTy
->getPrimitiveSizeInBits() == 64) {
15916 Intrinsic::ID Int
=
15917 IsAcquire
? Intrinsic::arm_ldaexd
: Intrinsic::arm_ldrexd
;
15918 Function
*Ldrex
= Intrinsic::getDeclaration(M
, Int
);
15920 Addr
= Builder
.CreateBitCast(Addr
, Type::getInt8PtrTy(M
->getContext()));
15921 Value
*LoHi
= Builder
.CreateCall(Ldrex
, Addr
, "lohi");
15923 Value
*Lo
= Builder
.CreateExtractValue(LoHi
, 0, "lo");
15924 Value
*Hi
= Builder
.CreateExtractValue(LoHi
, 1, "hi");
15925 if (!Subtarget
->isLittle())
15926 std::swap (Lo
, Hi
);
15927 Lo
= Builder
.CreateZExt(Lo
, ValTy
, "lo64");
15928 Hi
= Builder
.CreateZExt(Hi
, ValTy
, "hi64");
15929 return Builder
.CreateOr(
15930 Lo
, Builder
.CreateShl(Hi
, ConstantInt::get(ValTy
, 32)), "val64");
15933 Type
*Tys
[] = { Addr
->getType() };
15934 Intrinsic::ID Int
= IsAcquire
? Intrinsic::arm_ldaex
: Intrinsic::arm_ldrex
;
15935 Function
*Ldrex
= Intrinsic::getDeclaration(M
, Int
, Tys
);
15937 return Builder
.CreateTruncOrBitCast(
15938 Builder
.CreateCall(Ldrex
, Addr
),
15939 cast
<PointerType
>(Addr
->getType())->getElementType());
15942 void ARMTargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
15943 IRBuilder
<> &Builder
) const {
15944 if (!Subtarget
->hasV7Ops())
15946 Module
*M
= Builder
.GetInsertBlock()->getParent()->getParent();
15947 Builder
.CreateCall(Intrinsic::getDeclaration(M
, Intrinsic::arm_clrex
));
15950 Value
*ARMTargetLowering::emitStoreConditional(IRBuilder
<> &Builder
, Value
*Val
,
15952 AtomicOrdering Ord
) const {
15953 Module
*M
= Builder
.GetInsertBlock()->getParent()->getParent();
15954 bool IsRelease
= isReleaseOrStronger(Ord
);
15956 // Since the intrinsics must have legal type, the i64 intrinsics take two
15957 // parameters: "i32, i32". We must marshal Val into the appropriate form
15958 // before the call.
15959 if (Val
->getType()->getPrimitiveSizeInBits() == 64) {
15960 Intrinsic::ID Int
=
15961 IsRelease
? Intrinsic::arm_stlexd
: Intrinsic::arm_strexd
;
15962 Function
*Strex
= Intrinsic::getDeclaration(M
, Int
);
15963 Type
*Int32Ty
= Type::getInt32Ty(M
->getContext());
15965 Value
*Lo
= Builder
.CreateTrunc(Val
, Int32Ty
, "lo");
15966 Value
*Hi
= Builder
.CreateTrunc(Builder
.CreateLShr(Val
, 32), Int32Ty
, "hi");
15967 if (!Subtarget
->isLittle())
15969 Addr
= Builder
.CreateBitCast(Addr
, Type::getInt8PtrTy(M
->getContext()));
15970 return Builder
.CreateCall(Strex
, {Lo
, Hi
, Addr
});
15973 Intrinsic::ID Int
= IsRelease
? Intrinsic::arm_stlex
: Intrinsic::arm_strex
;
15974 Type
*Tys
[] = { Addr
->getType() };
15975 Function
*Strex
= Intrinsic::getDeclaration(M
, Int
, Tys
);
15977 return Builder
.CreateCall(
15978 Strex
, {Builder
.CreateZExtOrBitCast(
15979 Val
, Strex
->getFunctionType()->getParamType(0)),
15984 bool ARMTargetLowering::alignLoopsWithOptSize() const {
15985 return Subtarget
->isMClass();
15988 /// A helper function for determining the number of interleaved accesses we
15989 /// will generate when lowering accesses of the given type.
15991 ARMTargetLowering::getNumInterleavedAccesses(VectorType
*VecTy
,
15992 const DataLayout
&DL
) const {
15993 return (DL
.getTypeSizeInBits(VecTy
) + 127) / 128;
15996 bool ARMTargetLowering::isLegalInterleavedAccessType(
15997 VectorType
*VecTy
, const DataLayout
&DL
) const {
15999 unsigned VecSize
= DL
.getTypeSizeInBits(VecTy
);
16000 unsigned ElSize
= DL
.getTypeSizeInBits(VecTy
->getElementType());
16002 // Ensure the vector doesn't have f16 elements. Even though we could do an
16003 // i16 vldN, we can't hold the f16 vectors and will end up converting via
16005 if (VecTy
->getElementType()->isHalfTy())
16008 // Ensure the number of vector elements is greater than 1.
16009 if (VecTy
->getNumElements() < 2)
16012 // Ensure the element type is legal.
16013 if (ElSize
!= 8 && ElSize
!= 16 && ElSize
!= 32)
16016 // Ensure the total vector size is 64 or a multiple of 128. Types larger than
16017 // 128 will be split into multiple interleaved accesses.
16018 return VecSize
== 64 || VecSize
% 128 == 0;
16021 /// Lower an interleaved load into a vldN intrinsic.
16023 /// E.g. Lower an interleaved load (Factor = 2):
16024 /// %wide.vec = load <8 x i32>, <8 x i32>* %ptr, align 4
16025 /// %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6> ; Extract even elements
16026 /// %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7> ; Extract odd elements
16029 /// %vld2 = { <4 x i32>, <4 x i32> } call llvm.arm.neon.vld2(%ptr, 4)
16030 /// %vec0 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 0
16031 /// %vec1 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 1
16032 bool ARMTargetLowering::lowerInterleavedLoad(
16033 LoadInst
*LI
, ArrayRef
<ShuffleVectorInst
*> Shuffles
,
16034 ArrayRef
<unsigned> Indices
, unsigned Factor
) const {
16035 assert(Factor
>= 2 && Factor
<= getMaxSupportedInterleaveFactor() &&
16036 "Invalid interleave factor");
16037 assert(!Shuffles
.empty() && "Empty shufflevector input");
16038 assert(Shuffles
.size() == Indices
.size() &&
16039 "Unmatched number of shufflevectors and indices");
16041 VectorType
*VecTy
= Shuffles
[0]->getType();
16042 Type
*EltTy
= VecTy
->getVectorElementType();
16044 const DataLayout
&DL
= LI
->getModule()->getDataLayout();
16046 // Skip if we do not have NEON and skip illegal vector types. We can
16047 // "legalize" wide vector types into multiple interleaved accesses as long as
16048 // the vector types are divisible by 128.
16049 if (!Subtarget
->hasNEON() || !isLegalInterleavedAccessType(VecTy
, DL
))
16052 unsigned NumLoads
= getNumInterleavedAccesses(VecTy
, DL
);
16054 // A pointer vector can not be the return type of the ldN intrinsics. Need to
16055 // load integer vectors first and then convert to pointer vectors.
16056 if (EltTy
->isPointerTy())
16058 VectorType::get(DL
.getIntPtrType(EltTy
), VecTy
->getVectorNumElements());
16060 IRBuilder
<> Builder(LI
);
16062 // The base address of the load.
16063 Value
*BaseAddr
= LI
->getPointerOperand();
16065 if (NumLoads
> 1) {
16066 // If we're going to generate more than one load, reset the sub-vector type
16067 // to something legal.
16068 VecTy
= VectorType::get(VecTy
->getVectorElementType(),
16069 VecTy
->getVectorNumElements() / NumLoads
);
16071 // We will compute the pointer operand of each load from the original base
16072 // address using GEPs. Cast the base address to a pointer to the scalar
16074 BaseAddr
= Builder
.CreateBitCast(
16075 BaseAddr
, VecTy
->getVectorElementType()->getPointerTo(
16076 LI
->getPointerAddressSpace()));
16079 assert(isTypeLegal(EVT::getEVT(VecTy
)) && "Illegal vldN vector type!");
16081 Type
*Int8Ptr
= Builder
.getInt8PtrTy(LI
->getPointerAddressSpace());
16082 Type
*Tys
[] = {VecTy
, Int8Ptr
};
16083 static const Intrinsic::ID LoadInts
[3] = {Intrinsic::arm_neon_vld2
,
16084 Intrinsic::arm_neon_vld3
,
16085 Intrinsic::arm_neon_vld4
};
16086 Function
*VldnFunc
=
16087 Intrinsic::getDeclaration(LI
->getModule(), LoadInts
[Factor
- 2], Tys
);
16089 // Holds sub-vectors extracted from the load intrinsic return values. The
16090 // sub-vectors are associated with the shufflevector instructions they will
16092 DenseMap
<ShuffleVectorInst
*, SmallVector
<Value
*, 4>> SubVecs
;
16094 for (unsigned LoadCount
= 0; LoadCount
< NumLoads
; ++LoadCount
) {
16095 // If we're generating more than one load, compute the base address of
16096 // subsequent loads as an offset from the previous.
16099 Builder
.CreateConstGEP1_32(VecTy
->getVectorElementType(), BaseAddr
,
16100 VecTy
->getVectorNumElements() * Factor
);
16102 SmallVector
<Value
*, 2> Ops
;
16103 Ops
.push_back(Builder
.CreateBitCast(BaseAddr
, Int8Ptr
));
16104 Ops
.push_back(Builder
.getInt32(LI
->getAlignment()));
16106 CallInst
*VldN
= Builder
.CreateCall(VldnFunc
, Ops
, "vldN");
16108 // Replace uses of each shufflevector with the corresponding vector loaded
16110 for (unsigned i
= 0; i
< Shuffles
.size(); i
++) {
16111 ShuffleVectorInst
*SV
= Shuffles
[i
];
16112 unsigned Index
= Indices
[i
];
16114 Value
*SubVec
= Builder
.CreateExtractValue(VldN
, Index
);
16116 // Convert the integer vector to pointer vector if the element is pointer.
16117 if (EltTy
->isPointerTy())
16118 SubVec
= Builder
.CreateIntToPtr(
16119 SubVec
, VectorType::get(SV
->getType()->getVectorElementType(),
16120 VecTy
->getVectorNumElements()));
16122 SubVecs
[SV
].push_back(SubVec
);
16126 // Replace uses of the shufflevector instructions with the sub-vectors
16127 // returned by the load intrinsic. If a shufflevector instruction is
16128 // associated with more than one sub-vector, those sub-vectors will be
16129 // concatenated into a single wide vector.
16130 for (ShuffleVectorInst
*SVI
: Shuffles
) {
16131 auto &SubVec
= SubVecs
[SVI
];
16133 SubVec
.size() > 1 ? concatenateVectors(Builder
, SubVec
) : SubVec
[0];
16134 SVI
->replaceAllUsesWith(WideVec
);
16140 /// Lower an interleaved store into a vstN intrinsic.
16142 /// E.g. Lower an interleaved store (Factor = 3):
16143 /// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
16144 /// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
16145 /// store <12 x i32> %i.vec, <12 x i32>* %ptr, align 4
16148 /// %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
16149 /// %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
16150 /// %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
16151 /// call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
16153 /// Note that the new shufflevectors will be removed and we'll only generate one
16154 /// vst3 instruction in CodeGen.
16156 /// Example for a more general valid mask (Factor 3). Lower:
16157 /// %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1,
16158 /// <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
16159 /// store <12 x i32> %i.vec, <12 x i32>* %ptr
16162 /// %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7>
16163 /// %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35>
16164 /// %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19>
16165 /// call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
16166 bool ARMTargetLowering::lowerInterleavedStore(StoreInst
*SI
,
16167 ShuffleVectorInst
*SVI
,
16168 unsigned Factor
) const {
16169 assert(Factor
>= 2 && Factor
<= getMaxSupportedInterleaveFactor() &&
16170 "Invalid interleave factor");
16172 VectorType
*VecTy
= SVI
->getType();
16173 assert(VecTy
->getVectorNumElements() % Factor
== 0 &&
16174 "Invalid interleaved store");
16176 unsigned LaneLen
= VecTy
->getVectorNumElements() / Factor
;
16177 Type
*EltTy
= VecTy
->getVectorElementType();
16178 VectorType
*SubVecTy
= VectorType::get(EltTy
, LaneLen
);
16180 const DataLayout
&DL
= SI
->getModule()->getDataLayout();
16182 // Skip if we do not have NEON and skip illegal vector types. We can
16183 // "legalize" wide vector types into multiple interleaved accesses as long as
16184 // the vector types are divisible by 128.
16185 if (!Subtarget
->hasNEON() || !isLegalInterleavedAccessType(SubVecTy
, DL
))
16188 unsigned NumStores
= getNumInterleavedAccesses(SubVecTy
, DL
);
16190 Value
*Op0
= SVI
->getOperand(0);
16191 Value
*Op1
= SVI
->getOperand(1);
16192 IRBuilder
<> Builder(SI
);
16194 // StN intrinsics don't support pointer vectors as arguments. Convert pointer
16195 // vectors to integer vectors.
16196 if (EltTy
->isPointerTy()) {
16197 Type
*IntTy
= DL
.getIntPtrType(EltTy
);
16199 // Convert to the corresponding integer vector.
16201 VectorType::get(IntTy
, Op0
->getType()->getVectorNumElements());
16202 Op0
= Builder
.CreatePtrToInt(Op0
, IntVecTy
);
16203 Op1
= Builder
.CreatePtrToInt(Op1
, IntVecTy
);
16205 SubVecTy
= VectorType::get(IntTy
, LaneLen
);
16208 // The base address of the store.
16209 Value
*BaseAddr
= SI
->getPointerOperand();
16211 if (NumStores
> 1) {
16212 // If we're going to generate more than one store, reset the lane length
16213 // and sub-vector type to something legal.
16214 LaneLen
/= NumStores
;
16215 SubVecTy
= VectorType::get(SubVecTy
->getVectorElementType(), LaneLen
);
16217 // We will compute the pointer operand of each store from the original base
16218 // address using GEPs. Cast the base address to a pointer to the scalar
16220 BaseAddr
= Builder
.CreateBitCast(
16221 BaseAddr
, SubVecTy
->getVectorElementType()->getPointerTo(
16222 SI
->getPointerAddressSpace()));
16225 assert(isTypeLegal(EVT::getEVT(SubVecTy
)) && "Illegal vstN vector type!");
16227 auto Mask
= SVI
->getShuffleMask();
16229 Type
*Int8Ptr
= Builder
.getInt8PtrTy(SI
->getPointerAddressSpace());
16230 Type
*Tys
[] = {Int8Ptr
, SubVecTy
};
16231 static const Intrinsic::ID StoreInts
[3] = {Intrinsic::arm_neon_vst2
,
16232 Intrinsic::arm_neon_vst3
,
16233 Intrinsic::arm_neon_vst4
};
16235 for (unsigned StoreCount
= 0; StoreCount
< NumStores
; ++StoreCount
) {
16236 // If we generating more than one store, we compute the base address of
16237 // subsequent stores as an offset from the previous.
16238 if (StoreCount
> 0)
16239 BaseAddr
= Builder
.CreateConstGEP1_32(SubVecTy
->getVectorElementType(),
16240 BaseAddr
, LaneLen
* Factor
);
16242 SmallVector
<Value
*, 6> Ops
;
16243 Ops
.push_back(Builder
.CreateBitCast(BaseAddr
, Int8Ptr
));
16245 Function
*VstNFunc
=
16246 Intrinsic::getDeclaration(SI
->getModule(), StoreInts
[Factor
- 2], Tys
);
16248 // Split the shufflevector operands into sub vectors for the new vstN call.
16249 for (unsigned i
= 0; i
< Factor
; i
++) {
16250 unsigned IdxI
= StoreCount
* LaneLen
* Factor
+ i
;
16251 if (Mask
[IdxI
] >= 0) {
16252 Ops
.push_back(Builder
.CreateShuffleVector(
16253 Op0
, Op1
, createSequentialMask(Builder
, Mask
[IdxI
], LaneLen
, 0)));
16255 unsigned StartMask
= 0;
16256 for (unsigned j
= 1; j
< LaneLen
; j
++) {
16257 unsigned IdxJ
= StoreCount
* LaneLen
* Factor
+ j
;
16258 if (Mask
[IdxJ
* Factor
+ IdxI
] >= 0) {
16259 StartMask
= Mask
[IdxJ
* Factor
+ IdxI
] - IdxJ
;
16263 // Note: If all elements in a chunk are undefs, StartMask=0!
16264 // Note: Filling undef gaps with random elements is ok, since
16265 // those elements were being written anyway (with undefs).
16266 // In the case of all undefs we're defaulting to using elems from 0
16267 // Note: StartMask cannot be negative, it's checked in
16268 // isReInterleaveMask
16269 Ops
.push_back(Builder
.CreateShuffleVector(
16270 Op0
, Op1
, createSequentialMask(Builder
, StartMask
, LaneLen
, 0)));
16274 Ops
.push_back(Builder
.getInt32(SI
->getAlignment()));
16275 Builder
.CreateCall(VstNFunc
, Ops
);
16288 static bool isHomogeneousAggregate(Type
*Ty
, HABaseType
&Base
,
16289 uint64_t &Members
) {
16290 if (auto *ST
= dyn_cast
<StructType
>(Ty
)) {
16291 for (unsigned i
= 0; i
< ST
->getNumElements(); ++i
) {
16292 uint64_t SubMembers
= 0;
16293 if (!isHomogeneousAggregate(ST
->getElementType(i
), Base
, SubMembers
))
16295 Members
+= SubMembers
;
16297 } else if (auto *AT
= dyn_cast
<ArrayType
>(Ty
)) {
16298 uint64_t SubMembers
= 0;
16299 if (!isHomogeneousAggregate(AT
->getElementType(), Base
, SubMembers
))
16301 Members
+= SubMembers
* AT
->getNumElements();
16302 } else if (Ty
->isFloatTy()) {
16303 if (Base
!= HA_UNKNOWN
&& Base
!= HA_FLOAT
)
16307 } else if (Ty
->isDoubleTy()) {
16308 if (Base
!= HA_UNKNOWN
&& Base
!= HA_DOUBLE
)
16312 } else if (auto *VT
= dyn_cast
<VectorType
>(Ty
)) {
16319 return VT
->getBitWidth() == 64;
16321 return VT
->getBitWidth() == 128;
16323 switch (VT
->getBitWidth()) {
16336 return (Members
> 0 && Members
<= 4);
16339 /// Return the correct alignment for the current calling convention.
16341 ARMTargetLowering::getABIAlignmentForCallingConv(Type
*ArgTy
,
16342 DataLayout DL
) const {
16343 if (!ArgTy
->isVectorTy())
16344 return DL
.getABITypeAlignment(ArgTy
);
16346 // Avoid over-aligning vector parameters. It would require realigning the
16347 // stack and waste space for no real benefit.
16348 return std::min(DL
.getABITypeAlignment(ArgTy
), DL
.getStackAlignment());
16351 /// Return true if a type is an AAPCS-VFP homogeneous aggregate or one of
16352 /// [N x i32] or [N x i64]. This allows front-ends to skip emitting padding when
16353 /// passing according to AAPCS rules.
16354 bool ARMTargetLowering::functionArgumentNeedsConsecutiveRegisters(
16355 Type
*Ty
, CallingConv::ID CallConv
, bool isVarArg
) const {
16356 if (getEffectiveCallingConv(CallConv
, isVarArg
) !=
16357 CallingConv::ARM_AAPCS_VFP
)
16360 HABaseType Base
= HA_UNKNOWN
;
16361 uint64_t Members
= 0;
16362 bool IsHA
= isHomogeneousAggregate(Ty
, Base
, Members
);
16363 LLVM_DEBUG(dbgs() << "isHA: " << IsHA
<< " "; Ty
->dump());
16365 bool IsIntArray
= Ty
->isArrayTy() && Ty
->getArrayElementType()->isIntegerTy();
16366 return IsHA
|| IsIntArray
;
16369 unsigned ARMTargetLowering::getExceptionPointerRegister(
16370 const Constant
*PersonalityFn
) const {
16371 // Platforms which do not use SjLj EH may return values in these registers
16372 // via the personality function.
16373 return Subtarget
->useSjLjEH() ? ARM::NoRegister
: ARM::R0
;
16376 unsigned ARMTargetLowering::getExceptionSelectorRegister(
16377 const Constant
*PersonalityFn
) const {
16378 // Platforms which do not use SjLj EH may return values in these registers
16379 // via the personality function.
16380 return Subtarget
->useSjLjEH() ? ARM::NoRegister
: ARM::R1
;
16383 void ARMTargetLowering::initializeSplitCSR(MachineBasicBlock
*Entry
) const {
16384 // Update IsSplitCSR in ARMFunctionInfo.
16385 ARMFunctionInfo
*AFI
= Entry
->getParent()->getInfo
<ARMFunctionInfo
>();
16386 AFI
->setIsSplitCSR(true);
16389 void ARMTargetLowering::insertCopiesSplitCSR(
16390 MachineBasicBlock
*Entry
,
16391 const SmallVectorImpl
<MachineBasicBlock
*> &Exits
) const {
16392 const ARMBaseRegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
16393 const MCPhysReg
*IStart
= TRI
->getCalleeSavedRegsViaCopy(Entry
->getParent());
16397 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
16398 MachineRegisterInfo
*MRI
= &Entry
->getParent()->getRegInfo();
16399 MachineBasicBlock::iterator MBBI
= Entry
->begin();
16400 for (const MCPhysReg
*I
= IStart
; *I
; ++I
) {
16401 const TargetRegisterClass
*RC
= nullptr;
16402 if (ARM::GPRRegClass
.contains(*I
))
16403 RC
= &ARM::GPRRegClass
;
16404 else if (ARM::DPRRegClass
.contains(*I
))
16405 RC
= &ARM::DPRRegClass
;
16407 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
16409 unsigned NewVR
= MRI
->createVirtualRegister(RC
);
16410 // Create copy from CSR to a virtual register.
16411 // FIXME: this currently does not emit CFI pseudo-instructions, it works
16412 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
16413 // nounwind. If we want to generalize this later, we may need to emit
16414 // CFI pseudo-instructions.
16415 assert(Entry
->getParent()->getFunction().hasFnAttribute(
16416 Attribute::NoUnwind
) &&
16417 "Function should be nounwind in insertCopiesSplitCSR!");
16418 Entry
->addLiveIn(*I
);
16419 BuildMI(*Entry
, MBBI
, DebugLoc(), TII
->get(TargetOpcode::COPY
), NewVR
)
16422 // Insert the copy-back instructions right before the terminator.
16423 for (auto *Exit
: Exits
)
16424 BuildMI(*Exit
, Exit
->getFirstTerminator(), DebugLoc(),
16425 TII
->get(TargetOpcode::COPY
), *I
)
16430 void ARMTargetLowering::finalizeLowering(MachineFunction
&MF
) const {
16431 MF
.getFrameInfo().computeMaxCallFrameSize(MF
);
16432 TargetLoweringBase::finalizeLowering(MF
);