1 //===-- Mips16ISelLowering.h - Mips16 DAG Lowering Interface ----*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Subclass of MipsTargetLowering specialized for mips16.
11 //===----------------------------------------------------------------------===//
12 #include "Mips16ISelLowering.h"
13 #include "MCTargetDesc/MipsBaseInfo.h"
14 #include "Mips16HardFloatInfo.h"
15 #include "MipsMachineFunction.h"
16 #include "MipsRegisterInfo.h"
17 #include "MipsTargetMachine.h"
18 #include "llvm/CodeGen/MachineInstrBuilder.h"
19 #include "llvm/CodeGen/TargetInstrInfo.h"
20 #include "llvm/Support/CommandLine.h"
24 #define DEBUG_TYPE "mips-lower"
26 static cl::opt
<bool> DontExpandCondPseudos16(
27 "mips16-dont-expand-cond-pseudo",
29 cl::desc("Don't expand conditional move related "
30 "pseudos for Mips 16"),
34 struct Mips16Libcall
{
35 RTLIB::Libcall Libcall
;
38 bool operator<(const Mips16Libcall
&RHS
) const {
39 return std::strcmp(Name
, RHS
.Name
) < 0;
43 struct Mips16IntrinsicHelperType
{
47 bool operator<(const Mips16IntrinsicHelperType
&RHS
) const {
48 return std::strcmp(Name
, RHS
.Name
) < 0;
50 bool operator==(const Mips16IntrinsicHelperType
&RHS
) const {
51 return std::strcmp(Name
, RHS
.Name
) == 0;
56 // Libcalls for which no helper is generated. Sorted by name for binary search.
57 static const Mips16Libcall HardFloatLibCalls
[] = {
58 { RTLIB::ADD_F64
, "__mips16_adddf3" },
59 { RTLIB::ADD_F32
, "__mips16_addsf3" },
60 { RTLIB::DIV_F64
, "__mips16_divdf3" },
61 { RTLIB::DIV_F32
, "__mips16_divsf3" },
62 { RTLIB::OEQ_F64
, "__mips16_eqdf2" },
63 { RTLIB::OEQ_F32
, "__mips16_eqsf2" },
64 { RTLIB::FPEXT_F32_F64
, "__mips16_extendsfdf2" },
65 { RTLIB::FPTOSINT_F64_I32
, "__mips16_fix_truncdfsi" },
66 { RTLIB::FPTOSINT_F32_I32
, "__mips16_fix_truncsfsi" },
67 { RTLIB::SINTTOFP_I32_F64
, "__mips16_floatsidf" },
68 { RTLIB::SINTTOFP_I32_F32
, "__mips16_floatsisf" },
69 { RTLIB::UINTTOFP_I32_F64
, "__mips16_floatunsidf" },
70 { RTLIB::UINTTOFP_I32_F32
, "__mips16_floatunsisf" },
71 { RTLIB::OGE_F64
, "__mips16_gedf2" },
72 { RTLIB::OGE_F32
, "__mips16_gesf2" },
73 { RTLIB::OGT_F64
, "__mips16_gtdf2" },
74 { RTLIB::OGT_F32
, "__mips16_gtsf2" },
75 { RTLIB::OLE_F64
, "__mips16_ledf2" },
76 { RTLIB::OLE_F32
, "__mips16_lesf2" },
77 { RTLIB::OLT_F64
, "__mips16_ltdf2" },
78 { RTLIB::OLT_F32
, "__mips16_ltsf2" },
79 { RTLIB::MUL_F64
, "__mips16_muldf3" },
80 { RTLIB::MUL_F32
, "__mips16_mulsf3" },
81 { RTLIB::UNE_F64
, "__mips16_nedf2" },
82 { RTLIB::UNE_F32
, "__mips16_nesf2" },
83 { RTLIB::UNKNOWN_LIBCALL
, "__mips16_ret_dc" }, // No associated libcall.
84 { RTLIB::UNKNOWN_LIBCALL
, "__mips16_ret_df" }, // No associated libcall.
85 { RTLIB::UNKNOWN_LIBCALL
, "__mips16_ret_sc" }, // No associated libcall.
86 { RTLIB::UNKNOWN_LIBCALL
, "__mips16_ret_sf" }, // No associated libcall.
87 { RTLIB::SUB_F64
, "__mips16_subdf3" },
88 { RTLIB::SUB_F32
, "__mips16_subsf3" },
89 { RTLIB::FPROUND_F64_F32
, "__mips16_truncdfsf2" },
90 { RTLIB::UO_F64
, "__mips16_unorddf2" },
91 { RTLIB::UO_F32
, "__mips16_unordsf2" }
94 static const Mips16IntrinsicHelperType Mips16IntrinsicHelper
[] = {
95 {"__fixunsdfsi", "__mips16_call_stub_2" },
96 {"ceil", "__mips16_call_stub_df_2"},
97 {"ceilf", "__mips16_call_stub_sf_1"},
98 {"copysign", "__mips16_call_stub_df_10"},
99 {"copysignf", "__mips16_call_stub_sf_5"},
100 {"cos", "__mips16_call_stub_df_2"},
101 {"cosf", "__mips16_call_stub_sf_1"},
102 {"exp2", "__mips16_call_stub_df_2"},
103 {"exp2f", "__mips16_call_stub_sf_1"},
104 {"floor", "__mips16_call_stub_df_2"},
105 {"floorf", "__mips16_call_stub_sf_1"},
106 {"log2", "__mips16_call_stub_df_2"},
107 {"log2f", "__mips16_call_stub_sf_1"},
108 {"nearbyint", "__mips16_call_stub_df_2"},
109 {"nearbyintf", "__mips16_call_stub_sf_1"},
110 {"rint", "__mips16_call_stub_df_2"},
111 {"rintf", "__mips16_call_stub_sf_1"},
112 {"sin", "__mips16_call_stub_df_2"},
113 {"sinf", "__mips16_call_stub_sf_1"},
114 {"sqrt", "__mips16_call_stub_df_2"},
115 {"sqrtf", "__mips16_call_stub_sf_1"},
116 {"trunc", "__mips16_call_stub_df_2"},
117 {"truncf", "__mips16_call_stub_sf_1"},
120 Mips16TargetLowering::Mips16TargetLowering(const MipsTargetMachine
&TM
,
121 const MipsSubtarget
&STI
)
122 : MipsTargetLowering(TM
, STI
) {
124 // Set up the register classes
125 addRegisterClass(MVT::i32
, &Mips::CPU16RegsRegClass
);
127 if (!Subtarget
.useSoftFloat())
128 setMips16HardFloatLibCalls();
130 setOperationAction(ISD::ATOMIC_FENCE
, MVT::Other
, Expand
);
131 setOperationAction(ISD::ATOMIC_CMP_SWAP
, MVT::i32
, Expand
);
132 setOperationAction(ISD::ATOMIC_SWAP
, MVT::i32
, Expand
);
133 setOperationAction(ISD::ATOMIC_LOAD_ADD
, MVT::i32
, Expand
);
134 setOperationAction(ISD::ATOMIC_LOAD_SUB
, MVT::i32
, Expand
);
135 setOperationAction(ISD::ATOMIC_LOAD_AND
, MVT::i32
, Expand
);
136 setOperationAction(ISD::ATOMIC_LOAD_OR
, MVT::i32
, Expand
);
137 setOperationAction(ISD::ATOMIC_LOAD_XOR
, MVT::i32
, Expand
);
138 setOperationAction(ISD::ATOMIC_LOAD_NAND
, MVT::i32
, Expand
);
139 setOperationAction(ISD::ATOMIC_LOAD_MIN
, MVT::i32
, Expand
);
140 setOperationAction(ISD::ATOMIC_LOAD_MAX
, MVT::i32
, Expand
);
141 setOperationAction(ISD::ATOMIC_LOAD_UMIN
, MVT::i32
, Expand
);
142 setOperationAction(ISD::ATOMIC_LOAD_UMAX
, MVT::i32
, Expand
);
144 setOperationAction(ISD::ROTR
, MVT::i32
, Expand
);
145 setOperationAction(ISD::ROTR
, MVT::i64
, Expand
);
146 setOperationAction(ISD::BSWAP
, MVT::i32
, Expand
);
147 setOperationAction(ISD::BSWAP
, MVT::i64
, Expand
);
149 computeRegisterProperties(STI
.getRegisterInfo());
152 const MipsTargetLowering
*
153 llvm::createMips16TargetLowering(const MipsTargetMachine
&TM
,
154 const MipsSubtarget
&STI
) {
155 return new Mips16TargetLowering(TM
, STI
);
158 bool Mips16TargetLowering::allowsMisalignedMemoryAccesses(
159 EVT VT
, unsigned, unsigned, MachineMemOperand::Flags
, bool *Fast
) const {
164 Mips16TargetLowering::EmitInstrWithCustomInserter(MachineInstr
&MI
,
165 MachineBasicBlock
*BB
) const {
166 switch (MI
.getOpcode()) {
168 return MipsTargetLowering::EmitInstrWithCustomInserter(MI
, BB
);
170 return emitSel16(Mips::BeqzRxImm16
, MI
, BB
);
172 return emitSel16(Mips::BnezRxImm16
, MI
, BB
);
173 case Mips::SelTBteqZCmpi
:
174 return emitSeliT16(Mips::Bteqz16
, Mips::CmpiRxImmX16
, MI
, BB
);
175 case Mips::SelTBteqZSlti
:
176 return emitSeliT16(Mips::Bteqz16
, Mips::SltiRxImmX16
, MI
, BB
);
177 case Mips::SelTBteqZSltiu
:
178 return emitSeliT16(Mips::Bteqz16
, Mips::SltiuRxImmX16
, MI
, BB
);
179 case Mips::SelTBtneZCmpi
:
180 return emitSeliT16(Mips::Btnez16
, Mips::CmpiRxImmX16
, MI
, BB
);
181 case Mips::SelTBtneZSlti
:
182 return emitSeliT16(Mips::Btnez16
, Mips::SltiRxImmX16
, MI
, BB
);
183 case Mips::SelTBtneZSltiu
:
184 return emitSeliT16(Mips::Btnez16
, Mips::SltiuRxImmX16
, MI
, BB
);
185 case Mips::SelTBteqZCmp
:
186 return emitSelT16(Mips::Bteqz16
, Mips::CmpRxRy16
, MI
, BB
);
187 case Mips::SelTBteqZSlt
:
188 return emitSelT16(Mips::Bteqz16
, Mips::SltRxRy16
, MI
, BB
);
189 case Mips::SelTBteqZSltu
:
190 return emitSelT16(Mips::Bteqz16
, Mips::SltuRxRy16
, MI
, BB
);
191 case Mips::SelTBtneZCmp
:
192 return emitSelT16(Mips::Btnez16
, Mips::CmpRxRy16
, MI
, BB
);
193 case Mips::SelTBtneZSlt
:
194 return emitSelT16(Mips::Btnez16
, Mips::SltRxRy16
, MI
, BB
);
195 case Mips::SelTBtneZSltu
:
196 return emitSelT16(Mips::Btnez16
, Mips::SltuRxRy16
, MI
, BB
);
197 case Mips::BteqzT8CmpX16
:
198 return emitFEXT_T8I816_ins(Mips::Bteqz16
, Mips::CmpRxRy16
, MI
, BB
);
199 case Mips::BteqzT8SltX16
:
200 return emitFEXT_T8I816_ins(Mips::Bteqz16
, Mips::SltRxRy16
, MI
, BB
);
201 case Mips::BteqzT8SltuX16
:
202 // TBD: figure out a way to get this or remove the instruction
204 return emitFEXT_T8I816_ins(Mips::Bteqz16
, Mips::SltuRxRy16
, MI
, BB
);
205 case Mips::BtnezT8CmpX16
:
206 return emitFEXT_T8I816_ins(Mips::Btnez16
, Mips::CmpRxRy16
, MI
, BB
);
207 case Mips::BtnezT8SltX16
:
208 return emitFEXT_T8I816_ins(Mips::Btnez16
, Mips::SltRxRy16
, MI
, BB
);
209 case Mips::BtnezT8SltuX16
:
210 // TBD: figure out a way to get this or remove the instruction
212 return emitFEXT_T8I816_ins(Mips::Btnez16
, Mips::SltuRxRy16
, MI
, BB
);
213 case Mips::BteqzT8CmpiX16
: return emitFEXT_T8I8I16_ins(
214 Mips::Bteqz16
, Mips::CmpiRxImm16
, Mips::CmpiRxImmX16
, false, MI
, BB
);
215 case Mips::BteqzT8SltiX16
: return emitFEXT_T8I8I16_ins(
216 Mips::Bteqz16
, Mips::SltiRxImm16
, Mips::SltiRxImmX16
, true, MI
, BB
);
217 case Mips::BteqzT8SltiuX16
: return emitFEXT_T8I8I16_ins(
218 Mips::Bteqz16
, Mips::SltiuRxImm16
, Mips::SltiuRxImmX16
, false, MI
, BB
);
219 case Mips::BtnezT8CmpiX16
: return emitFEXT_T8I8I16_ins(
220 Mips::Btnez16
, Mips::CmpiRxImm16
, Mips::CmpiRxImmX16
, false, MI
, BB
);
221 case Mips::BtnezT8SltiX16
: return emitFEXT_T8I8I16_ins(
222 Mips::Btnez16
, Mips::SltiRxImm16
, Mips::SltiRxImmX16
, true, MI
, BB
);
223 case Mips::BtnezT8SltiuX16
: return emitFEXT_T8I8I16_ins(
224 Mips::Btnez16
, Mips::SltiuRxImm16
, Mips::SltiuRxImmX16
, false, MI
, BB
);
226 case Mips::SltCCRxRy16
:
227 return emitFEXT_CCRX16_ins(Mips::SltRxRy16
, MI
, BB
);
229 case Mips::SltiCCRxImmX16
:
230 return emitFEXT_CCRXI16_ins
231 (Mips::SltiRxImm16
, Mips::SltiRxImmX16
, MI
, BB
);
232 case Mips::SltiuCCRxImmX16
:
233 return emitFEXT_CCRXI16_ins
234 (Mips::SltiuRxImm16
, Mips::SltiuRxImmX16
, MI
, BB
);
235 case Mips::SltuCCRxRy16
:
236 return emitFEXT_CCRX16_ins
237 (Mips::SltuRxRy16
, MI
, BB
);
241 bool Mips16TargetLowering::isEligibleForTailCallOptimization(
242 const CCState
&CCInfo
, unsigned NextStackOffset
,
243 const MipsFunctionInfo
&FI
) const {
244 // No tail call optimization for mips16.
248 void Mips16TargetLowering::setMips16HardFloatLibCalls() {
249 for (unsigned I
= 0; I
!= array_lengthof(HardFloatLibCalls
); ++I
) {
250 assert((I
== 0 || HardFloatLibCalls
[I
- 1] < HardFloatLibCalls
[I
]) &&
251 "Array not sorted!");
252 if (HardFloatLibCalls
[I
].Libcall
!= RTLIB::UNKNOWN_LIBCALL
)
253 setLibcallName(HardFloatLibCalls
[I
].Libcall
, HardFloatLibCalls
[I
].Name
);
256 setLibcallName(RTLIB::O_F64
, "__mips16_unorddf2");
257 setLibcallName(RTLIB::O_F32
, "__mips16_unordsf2");
261 // The Mips16 hard float is a crazy quilt inherited from gcc. I have a much
262 // cleaner way to do all of this but it will have to wait until the traditional
263 // gcc mechanism is completed.
265 // For Pic, in order for Mips16 code to call Mips32 code which according the abi
266 // have either arguments or returned values placed in floating point registers,
267 // we use a set of helper functions. (This includes functions which return type
268 // complex which on Mips are returned in a pair of floating point registers).
270 // This is an encoding that we inherited from gcc.
271 // In Mips traditional O32, N32 ABI, floating point numbers are passed in
272 // floating point argument registers 1,2 only when the first and optionally
273 // the second arguments are float (sf) or double (df).
274 // For Mips16 we are only concerned with the situations where floating point
275 // arguments are being passed in floating point registers by the ABI, because
276 // Mips16 mode code cannot execute floating point instructions to load those
277 // values and hence helper functions are needed.
278 // The possibilities are (), (sf), (sf, sf), (sf, df), (df), (df, sf), (df, df)
279 // the helper function suffixs for these are:
280 // 0, 1, 5, 9, 2, 6, 10
281 // this suffix can then be calculated as follows:
282 // for a given argument Arg:
283 // Arg1x, Arg2x = 1 : Arg is sf
285 // 0: Arg is neither sf or df
286 // So this stub is the string for number Arg1x + Arg2x*4.
287 // However not all numbers between 0 and 10 are possible, we check anyway and
288 // assert if the impossible exists.
291 unsigned int Mips16TargetLowering::getMips16HelperFunctionStubNumber
292 (ArgListTy
&Args
) const {
293 unsigned int resultNum
= 0;
294 if (Args
.size() >= 1) {
295 Type
*t
= Args
[0].Ty
;
296 if (t
->isFloatTy()) {
299 else if (t
->isDoubleTy()) {
304 if (Args
.size() >=2) {
305 Type
*t
= Args
[1].Ty
;
306 if (t
->isFloatTy()) {
309 else if (t
->isDoubleTy()) {
318 // Prefixes are attached to stub numbers depending on the return type.
319 // return type: float sf_
321 // single complex sc_
322 // double complext dc_
326 // The full name of a helper function is__mips16_call_stub +
327 // return type dependent prefix + stub number
329 // FIXME: This is something that probably should be in a different source file
330 // and perhaps done differently but my main purpose is to not waste runtime
331 // on something that we can enumerate in the source. Another possibility is
332 // to have a python script to generate these mapping tables. This will do
333 // for now. There are a whole series of helper function mapping arrays, one
334 // for each return type class as outlined above. There there are 11 possible
335 // entries. Ones with 0 are ones which should never be selected.
337 // All the arrays are similar except for ones which return neither
338 // sf, df, sc, dc, in which we only care about ones which have sf or df as a
341 #define P_ "__mips16_call_stub_"
342 #define MAX_STUB_NUMBER 10
343 #define T1 P "1", P "2", 0, 0, P "5", P "6", 0, 0, P "9", P "10"
346 static char const * vMips16Helper
[MAX_STUB_NUMBER
+1] =
350 static char const * sfMips16Helper
[MAX_STUB_NUMBER
+1] =
354 static char const * dfMips16Helper
[MAX_STUB_NUMBER
+1] =
358 static char const * scMips16Helper
[MAX_STUB_NUMBER
+1] =
362 static char const * dcMips16Helper
[MAX_STUB_NUMBER
+1] =
368 const char* Mips16TargetLowering::
369 getMips16HelperFunction
370 (Type
* RetTy
, ArgListTy
&Args
, bool &needHelper
) const {
371 const unsigned int stubNum
= getMips16HelperFunctionStubNumber(Args
);
373 const unsigned int maxStubNum
= 10;
374 assert(stubNum
<= maxStubNum
);
375 const bool validStubNum
[maxStubNum
+1] =
376 {true, true, true, false, false, true, true, false, false, true, true};
377 assert(validStubNum
[stubNum
]);
380 if (RetTy
->isFloatTy()) {
381 result
= sfMips16Helper
[stubNum
];
383 else if (RetTy
->isDoubleTy()) {
384 result
= dfMips16Helper
[stubNum
];
385 } else if (StructType
*SRetTy
= dyn_cast
<StructType
>(RetTy
)) {
386 // check if it's complex
387 if (SRetTy
->getNumElements() == 2) {
388 if ((SRetTy
->getElementType(0)->isFloatTy()) &&
389 (SRetTy
->getElementType(1)->isFloatTy())) {
390 result
= scMips16Helper
[stubNum
];
391 } else if ((SRetTy
->getElementType(0)->isDoubleTy()) &&
392 (SRetTy
->getElementType(1)->isDoubleTy())) {
393 result
= dcMips16Helper
[stubNum
];
395 llvm_unreachable("Uncovered condition");
398 llvm_unreachable("Uncovered condition");
405 result
= vMips16Helper
[stubNum
];
411 void Mips16TargetLowering::
412 getOpndList(SmallVectorImpl
<SDValue
> &Ops
,
413 std::deque
< std::pair
<unsigned, SDValue
> > &RegsToPass
,
414 bool IsPICCall
, bool GlobalOrExternal
, bool InternalLinkage
,
415 bool IsCallReloc
, CallLoweringInfo
&CLI
, SDValue Callee
,
416 SDValue Chain
) const {
417 SelectionDAG
&DAG
= CLI
.DAG
;
418 MachineFunction
&MF
= DAG
.getMachineFunction();
419 MipsFunctionInfo
*FuncInfo
= MF
.getInfo
<MipsFunctionInfo
>();
420 const char* Mips16HelperFunction
= nullptr;
421 bool NeedMips16Helper
= false;
423 if (Subtarget
.inMips16HardFloat()) {
425 // currently we don't have symbols tagged with the mips16 or mips32
426 // qualifier so we will assume that we don't know what kind it is.
427 // and generate the helper
429 bool LookupHelper
= true;
430 if (ExternalSymbolSDNode
*S
= dyn_cast
<ExternalSymbolSDNode
>(CLI
.Callee
)) {
431 Mips16Libcall Find
= { RTLIB::UNKNOWN_LIBCALL
, S
->getSymbol() };
433 if (std::binary_search(std::begin(HardFloatLibCalls
),
434 std::end(HardFloatLibCalls
), Find
))
435 LookupHelper
= false;
437 const char *Symbol
= S
->getSymbol();
438 Mips16IntrinsicHelperType IntrinsicFind
= { Symbol
, "" };
439 const Mips16HardFloatInfo::FuncSignature
*Signature
=
440 Mips16HardFloatInfo::findFuncSignature(Symbol
);
441 if (!IsPICCall
&& (Signature
&& (FuncInfo
->StubsNeeded
.find(Symbol
) ==
442 FuncInfo
->StubsNeeded
.end()))) {
443 FuncInfo
->StubsNeeded
[Symbol
] = Signature
;
445 // S2 is normally saved if the stub is for a function which
446 // returns a float or double value and is not otherwise. This is
447 // because more work is required after the function the stub
448 // is calling completes, and so the stub cannot directly return
449 // and the stub has no stack space to store the return address so
450 // S2 is used for that purpose.
451 // In order to take advantage of not saving S2, we need to also
452 // optimize the call in the stub and this requires some further
453 // functionality in MipsAsmPrinter which we don't have yet.
454 // So for now we always save S2. The optimization will be done
455 // in a follow-on patch.
457 if (1 || (Signature
->RetSig
!= Mips16HardFloatInfo::NoFPRet
))
458 FuncInfo
->setSaveS2();
460 // one more look at list of intrinsics
461 const Mips16IntrinsicHelperType
*Helper
=
462 llvm::lower_bound(Mips16IntrinsicHelper
, IntrinsicFind
);
463 if (Helper
!= std::end(Mips16IntrinsicHelper
) &&
464 *Helper
== IntrinsicFind
) {
465 Mips16HelperFunction
= Helper
->Helper
;
466 NeedMips16Helper
= true;
467 LookupHelper
= false;
471 } else if (GlobalAddressSDNode
*G
=
472 dyn_cast
<GlobalAddressSDNode
>(CLI
.Callee
)) {
473 Mips16Libcall Find
= { RTLIB::UNKNOWN_LIBCALL
,
474 G
->getGlobal()->getName().data() };
476 if (std::binary_search(std::begin(HardFloatLibCalls
),
477 std::end(HardFloatLibCalls
), Find
))
478 LookupHelper
= false;
481 Mips16HelperFunction
=
482 getMips16HelperFunction(CLI
.RetTy
, CLI
.getArgs(), NeedMips16Helper
);
485 SDValue JumpTarget
= Callee
;
487 // T9 should contain the address of the callee function if
488 // -relocation-model=pic or it is an indirect call.
489 if (IsPICCall
|| !GlobalOrExternal
) {
490 unsigned V0Reg
= Mips::V0
;
491 if (NeedMips16Helper
) {
492 RegsToPass
.push_front(std::make_pair(V0Reg
, Callee
));
493 JumpTarget
= DAG
.getExternalSymbol(Mips16HelperFunction
,
494 getPointerTy(DAG
.getDataLayout()));
495 ExternalSymbolSDNode
*S
= cast
<ExternalSymbolSDNode
>(JumpTarget
);
496 JumpTarget
= getAddrGlobal(S
, CLI
.DL
, JumpTarget
.getValueType(), DAG
,
497 MipsII::MO_GOT
, Chain
,
498 FuncInfo
->callPtrInfo(S
->getSymbol()));
500 RegsToPass
.push_front(std::make_pair((unsigned)Mips::T9
, Callee
));
503 Ops
.push_back(JumpTarget
);
505 MipsTargetLowering::getOpndList(Ops
, RegsToPass
, IsPICCall
, GlobalOrExternal
,
506 InternalLinkage
, IsCallReloc
, CLI
, Callee
,
511 Mips16TargetLowering::emitSel16(unsigned Opc
, MachineInstr
&MI
,
512 MachineBasicBlock
*BB
) const {
513 if (DontExpandCondPseudos16
)
515 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
516 DebugLoc DL
= MI
.getDebugLoc();
517 // To "insert" a SELECT_CC instruction, we actually have to insert the
518 // diamond control-flow pattern. The incoming instruction knows the
519 // destination vreg to set, the condition code register to branch on, the
520 // true/false values to select between, and a branch opcode to use.
521 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
522 MachineFunction::iterator It
= ++BB
->getIterator();
528 // bNE r1, r0, copy1MBB
529 // fallthrough --> copy0MBB
530 MachineBasicBlock
*thisMBB
= BB
;
531 MachineFunction
*F
= BB
->getParent();
532 MachineBasicBlock
*copy0MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
533 MachineBasicBlock
*sinkMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
534 F
->insert(It
, copy0MBB
);
535 F
->insert(It
, sinkMBB
);
537 // Transfer the remainder of BB and its successor edges to sinkMBB.
538 sinkMBB
->splice(sinkMBB
->begin(), BB
,
539 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
540 sinkMBB
->transferSuccessorsAndUpdatePHIs(BB
);
542 // Next, add the true and fallthrough blocks as its successors.
543 BB
->addSuccessor(copy0MBB
);
544 BB
->addSuccessor(sinkMBB
);
546 BuildMI(BB
, DL
, TII
->get(Opc
))
547 .addReg(MI
.getOperand(3).getReg())
552 // # fallthrough to sinkMBB
555 // Update machine-CFG edges
556 BB
->addSuccessor(sinkMBB
);
559 // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
563 BuildMI(*BB
, BB
->begin(), DL
, TII
->get(Mips::PHI
), MI
.getOperand(0).getReg())
564 .addReg(MI
.getOperand(1).getReg())
566 .addReg(MI
.getOperand(2).getReg())
569 MI
.eraseFromParent(); // The pseudo instruction is gone now.
574 Mips16TargetLowering::emitSelT16(unsigned Opc1
, unsigned Opc2
, MachineInstr
&MI
,
575 MachineBasicBlock
*BB
) const {
576 if (DontExpandCondPseudos16
)
578 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
579 DebugLoc DL
= MI
.getDebugLoc();
580 // To "insert" a SELECT_CC instruction, we actually have to insert the
581 // diamond control-flow pattern. The incoming instruction knows the
582 // destination vreg to set, the condition code register to branch on, the
583 // true/false values to select between, and a branch opcode to use.
584 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
585 MachineFunction::iterator It
= ++BB
->getIterator();
591 // bNE r1, r0, copy1MBB
592 // fallthrough --> copy0MBB
593 MachineBasicBlock
*thisMBB
= BB
;
594 MachineFunction
*F
= BB
->getParent();
595 MachineBasicBlock
*copy0MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
596 MachineBasicBlock
*sinkMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
597 F
->insert(It
, copy0MBB
);
598 F
->insert(It
, sinkMBB
);
600 // Transfer the remainder of BB and its successor edges to sinkMBB.
601 sinkMBB
->splice(sinkMBB
->begin(), BB
,
602 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
603 sinkMBB
->transferSuccessorsAndUpdatePHIs(BB
);
605 // Next, add the true and fallthrough blocks as its successors.
606 BB
->addSuccessor(copy0MBB
);
607 BB
->addSuccessor(sinkMBB
);
609 BuildMI(BB
, DL
, TII
->get(Opc2
))
610 .addReg(MI
.getOperand(3).getReg())
611 .addReg(MI
.getOperand(4).getReg());
612 BuildMI(BB
, DL
, TII
->get(Opc1
)).addMBB(sinkMBB
);
616 // # fallthrough to sinkMBB
619 // Update machine-CFG edges
620 BB
->addSuccessor(sinkMBB
);
623 // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
627 BuildMI(*BB
, BB
->begin(), DL
, TII
->get(Mips::PHI
), MI
.getOperand(0).getReg())
628 .addReg(MI
.getOperand(1).getReg())
630 .addReg(MI
.getOperand(2).getReg())
633 MI
.eraseFromParent(); // The pseudo instruction is gone now.
639 Mips16TargetLowering::emitSeliT16(unsigned Opc1
, unsigned Opc2
,
641 MachineBasicBlock
*BB
) const {
642 if (DontExpandCondPseudos16
)
644 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
645 DebugLoc DL
= MI
.getDebugLoc();
646 // To "insert" a SELECT_CC instruction, we actually have to insert the
647 // diamond control-flow pattern. The incoming instruction knows the
648 // destination vreg to set, the condition code register to branch on, the
649 // true/false values to select between, and a branch opcode to use.
650 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
651 MachineFunction::iterator It
= ++BB
->getIterator();
657 // bNE r1, r0, copy1MBB
658 // fallthrough --> copy0MBB
659 MachineBasicBlock
*thisMBB
= BB
;
660 MachineFunction
*F
= BB
->getParent();
661 MachineBasicBlock
*copy0MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
662 MachineBasicBlock
*sinkMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
663 F
->insert(It
, copy0MBB
);
664 F
->insert(It
, sinkMBB
);
666 // Transfer the remainder of BB and its successor edges to sinkMBB.
667 sinkMBB
->splice(sinkMBB
->begin(), BB
,
668 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
669 sinkMBB
->transferSuccessorsAndUpdatePHIs(BB
);
671 // Next, add the true and fallthrough blocks as its successors.
672 BB
->addSuccessor(copy0MBB
);
673 BB
->addSuccessor(sinkMBB
);
675 BuildMI(BB
, DL
, TII
->get(Opc2
))
676 .addReg(MI
.getOperand(3).getReg())
677 .addImm(MI
.getOperand(4).getImm());
678 BuildMI(BB
, DL
, TII
->get(Opc1
)).addMBB(sinkMBB
);
682 // # fallthrough to sinkMBB
685 // Update machine-CFG edges
686 BB
->addSuccessor(sinkMBB
);
689 // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
693 BuildMI(*BB
, BB
->begin(), DL
, TII
->get(Mips::PHI
), MI
.getOperand(0).getReg())
694 .addReg(MI
.getOperand(1).getReg())
696 .addReg(MI
.getOperand(2).getReg())
699 MI
.eraseFromParent(); // The pseudo instruction is gone now.
705 Mips16TargetLowering::emitFEXT_T8I816_ins(unsigned BtOpc
, unsigned CmpOpc
,
707 MachineBasicBlock
*BB
) const {
708 if (DontExpandCondPseudos16
)
710 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
711 unsigned regX
= MI
.getOperand(0).getReg();
712 unsigned regY
= MI
.getOperand(1).getReg();
713 MachineBasicBlock
*target
= MI
.getOperand(2).getMBB();
714 BuildMI(*BB
, MI
, MI
.getDebugLoc(), TII
->get(CmpOpc
))
717 BuildMI(*BB
, MI
, MI
.getDebugLoc(), TII
->get(BtOpc
)).addMBB(target
);
718 MI
.eraseFromParent(); // The pseudo instruction is gone now.
722 MachineBasicBlock
*Mips16TargetLowering::emitFEXT_T8I8I16_ins(
723 unsigned BtOpc
, unsigned CmpiOpc
, unsigned CmpiXOpc
, bool ImmSigned
,
724 MachineInstr
&MI
, MachineBasicBlock
*BB
) const {
725 if (DontExpandCondPseudos16
)
727 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
728 unsigned regX
= MI
.getOperand(0).getReg();
729 int64_t imm
= MI
.getOperand(1).getImm();
730 MachineBasicBlock
*target
= MI
.getOperand(2).getMBB();
734 else if ((!ImmSigned
&& isUInt
<16>(imm
)) ||
735 (ImmSigned
&& isInt
<16>(imm
)))
738 llvm_unreachable("immediate field not usable");
739 BuildMI(*BB
, MI
, MI
.getDebugLoc(), TII
->get(CmpOpc
)).addReg(regX
).addImm(imm
);
740 BuildMI(*BB
, MI
, MI
.getDebugLoc(), TII
->get(BtOpc
)).addMBB(target
);
741 MI
.eraseFromParent(); // The pseudo instruction is gone now.
745 static unsigned Mips16WhichOp8uOr16simm
746 (unsigned shortOp
, unsigned longOp
, int64_t Imm
) {
749 else if (isInt
<16>(Imm
))
752 llvm_unreachable("immediate field not usable");
756 Mips16TargetLowering::emitFEXT_CCRX16_ins(unsigned SltOpc
, MachineInstr
&MI
,
757 MachineBasicBlock
*BB
) const {
758 if (DontExpandCondPseudos16
)
760 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
761 unsigned CC
= MI
.getOperand(0).getReg();
762 unsigned regX
= MI
.getOperand(1).getReg();
763 unsigned regY
= MI
.getOperand(2).getReg();
764 BuildMI(*BB
, MI
, MI
.getDebugLoc(), TII
->get(SltOpc
))
767 BuildMI(*BB
, MI
, MI
.getDebugLoc(), TII
->get(Mips::MoveR3216
), CC
)
769 MI
.eraseFromParent(); // The pseudo instruction is gone now.
774 Mips16TargetLowering::emitFEXT_CCRXI16_ins(unsigned SltiOpc
, unsigned SltiXOpc
,
776 MachineBasicBlock
*BB
) const {
777 if (DontExpandCondPseudos16
)
779 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
780 unsigned CC
= MI
.getOperand(0).getReg();
781 unsigned regX
= MI
.getOperand(1).getReg();
782 int64_t Imm
= MI
.getOperand(2).getImm();
783 unsigned SltOpc
= Mips16WhichOp8uOr16simm(SltiOpc
, SltiXOpc
, Imm
);
784 BuildMI(*BB
, MI
, MI
.getDebugLoc(), TII
->get(SltOpc
)).addReg(regX
).addImm(Imm
);
785 BuildMI(*BB
, MI
, MI
.getDebugLoc(), TII
->get(Mips::MoveR3216
), CC
)
787 MI
.eraseFromParent(); // The pseudo instruction is gone now.