[ARM] Better patterns for fp <> predicate vectors
[llvm-complete.git] / lib / Target / Mips / Mips16InstrInfo.td
blob36b6c73d1008a93add7f7269cd1724eaa402482a
1 //===- Mips16InstrInfo.td - Target Description for Mips16  -*- tablegen -*-=//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file describes Mips16 instructions.
11 //===----------------------------------------------------------------------===//
14 // Mips Address
16 def addr16 : ComplexPattern<iPTR, 2, "selectAddr16", [frameindex]>;
17 def addr16sp : ComplexPattern<iPTR, 2, "selectAddr16SP", [frameindex]>;
20 // Address operand
21 def mem16 : Operand<i32> {
22   let PrintMethod = "printMemOperand";
23   let MIOperandInfo = (ops CPU16Regs, simm16);
24   let EncoderMethod = "getMemEncoding";
27 def mem16sp : Operand<i32> {
28   let PrintMethod = "printMemOperand";
29   // This should be CPUSPReg but the MIPS16 subtarget isn't good enough at
30   // keeping the sp-relative load and the other varieties separate at the
31   // moment. This lie fixes the problem sufficiently well to fix the errors
32   // emitted by -verify-machineinstrs and the output ends up correct as long
33   // as we use an external assembler (which is already a requirement for MIPS16
34   // for several other reasons).
35   let MIOperandInfo = (ops CPU16RegsPlusSP, simm16);
36   let EncoderMethod = "getMemEncoding";
39 def mem16_ea : Operand<i32> {
40   let PrintMethod = "printMemOperandEA";
41   let MIOperandInfo = (ops CPU16RegsPlusSP, simm16);
42   let EncoderMethod = "getMemEncoding";
45 def pcrel16 : Operand<i32>;
48 // I-type instruction format
50 // this is only used by bimm. the actual assembly value is a 12 bit signed
51 // number
53 class FI16_ins<bits<5> op, string asmstr, InstrItinClass itin>:
54   FI16<op, (outs), (ins brtarget:$imm16),
55             !strconcat(asmstr, "\t$imm16 # 16 bit inst"), [], itin>;
59 // I8 instruction format
62 class FI816_ins_base<bits<3> _func, string asmstr,
63                      string asmstr2, InstrItinClass itin>:
64   FI816<_func, (outs), (ins simm16:$imm), !strconcat(asmstr, asmstr2),
65         [], itin>;
67 class FI816_ins<bits<3> _func, string asmstr,
68                 InstrItinClass itin>:
69   FI816_ins_base<_func, asmstr, "\t$imm  # 16 bit inst", itin>;
71 class FI816_SP_ins<bits<3> _func, string asmstr,
72                    InstrItinClass itin>:
73   FI816_ins_base<_func, asmstr, "\t$$sp, $imm # 16 bit inst", itin>;
76 // RI instruction format
80 class FRI16_ins_base<bits<5> op, string asmstr, string asmstr2,
81                      InstrItinClass itin>:
82   FRI16<op, (outs CPU16Regs:$rx), (ins simm16:$imm),
83         !strconcat(asmstr, asmstr2), [], itin>;
85 class FRI16_ins<bits<5> op, string asmstr,
86                 InstrItinClass itin>:
87   FRI16_ins_base<op, asmstr, "\t$rx, $imm \t# 16 bit inst", itin>;
89 class FRI16_TCP_ins<bits<5> _op, string asmstr,
90                     InstrItinClass itin>:
91   FRI16<_op, (outs CPU16Regs:$rx), (ins pcrel16:$imm, i32imm:$size),
92             !strconcat(asmstr, "\t$rx, $imm\t# 16 bit inst"), [], itin>;
93             
94 class FRI16R_ins_base<bits<5> op, string asmstr, string asmstr2,
95                      InstrItinClass itin>:
96   FRI16<op, (outs), (ins CPU16Regs:$rx, simm16:$imm),
97         !strconcat(asmstr, asmstr2), [], itin>;
99 class FRI16R_ins<bits<5> op, string asmstr,
100                 InstrItinClass itin>:
101   FRI16R_ins_base<op, asmstr, "\t$rx, $imm \t# 16 bit inst", itin>;
103 class F2RI16_ins<bits<5> _op, string asmstr,
104                      InstrItinClass itin>:
105   FRI16<_op, (outs CPU16Regs:$rx), (ins CPU16Regs:$rx_, simm16:$imm),
106         !strconcat(asmstr, "\t$rx, $imm\t# 16 bit inst"), [], itin> {
107   let Constraints = "$rx_ = $rx";
110 class FRI16_B_ins<bits<5> _op, string asmstr,
111                   InstrItinClass itin>:
112   FRI16<_op, (outs), (ins  CPU16Regs:$rx, brtarget:$imm),
113         !strconcat(asmstr, "\t$rx, $imm  # 16 bit inst"), [], itin>;
115 // Compare a register and immediate and place result in CC
116 // Implicit use of T8
118 // EXT-CCRR Instruction format
120 class FEXT_CCRXI16_ins<string asmstr>:
121   MipsPseudo16<(outs CPU16Regs:$cc), (ins CPU16Regs:$rx, simm16:$imm),
122                !strconcat(asmstr, "\t$rx, $imm\n\tmove\t$cc, $$t8"), []> {
123   let isCodeGenOnly=1;
124   let usesCustomInserter = 1;
127 // JAL and JALX instruction format
129 class FJAL16_ins<bits<1> _X, string asmstr,
130                  InstrItinClass itin>:
131   FJAL16<_X, (outs), (ins uimm26:$imm),
132          !strconcat(asmstr, "\t$imm\n\tnop"),[],
133          itin>  {
134   let isCodeGenOnly=1;
135   let Size=6;
138 class FJALB16_ins<bits<1> _X, string asmstr,
139                  InstrItinClass itin>:
140   FJAL16<_X, (outs), (ins uimm26:$imm),
141          !strconcat(asmstr, "\t$imm\t# branch\n\tnop"),[],
142          itin>  {
143   let isCodeGenOnly=1;
144   let Size=6;
148 // EXT-I instruction format
150 class FEXT_I16_ins<bits<5> eop, string asmstr, InstrItinClass itin> :
151   FEXT_I16<eop, (outs), (ins brtarget:$imm16),
152            !strconcat(asmstr, "\t$imm16"),[], itin>;
155 // EXT-I8 instruction format
158 class FEXT_I816_ins_base<bits<3> _func, string asmstr,
159                          string asmstr2, InstrItinClass itin>:
160   FEXT_I816<_func, (outs), (ins simm16:$imm), !strconcat(asmstr, asmstr2),
161             [], itin>;
163 class FEXT_I816_ins<bits<3> _func, string asmstr,
164                     InstrItinClass itin>:
165   FEXT_I816_ins_base<_func, asmstr, "\t$imm", itin>;
167 class FEXT_I816_SP_ins<bits<3> _func, string asmstr,
168                        InstrItinClass itin>:
169       FEXT_I816_ins_base<_func, asmstr, "\t$$sp, $imm", itin>;
172 // Assembler formats in alphabetical order.
173 // Natural and pseudos are mixed together.
175 // Compare two registers and place result in CC
176 // Implicit use of T8
178 // CC-RR Instruction format
180 class FCCRR16_ins<string asmstr> :
181   MipsPseudo16<(outs CPU16Regs:$cc), (ins CPU16Regs:$rx, CPU16Regs:$ry),
182                !strconcat(asmstr, "\t$rx, $ry\n\tmove\t$cc, $$t8"), []> {
183   let isCodeGenOnly=1;
184   let usesCustomInserter = 1;
188 // EXT-RI instruction format
191 class FEXT_RI16_ins_base<bits<5> _op, string asmstr, string asmstr2,
192                          InstrItinClass itin>:
193   FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins simm16:$imm),
194                   !strconcat(asmstr, asmstr2), [], itin>;
196 class FEXT_RI16_ins<bits<5> _op, string asmstr,
197                     InstrItinClass itin>:
198   FEXT_RI16_ins_base<_op, asmstr, "\t$rx, $imm", itin>;
200 class FEXT_RI16R_ins_base<bits<5> _op, string asmstr, string asmstr2,
201                          InstrItinClass itin>:
202   FEXT_RI16<_op, (outs ), (ins CPU16Regs:$rx, simm16:$imm),
203                   !strconcat(asmstr, asmstr2), [], itin>;
205 class FEXT_RI16R_ins<bits<5> _op, string asmstr,
206                     InstrItinClass itin>:
207   FEXT_RI16R_ins_base<_op, asmstr, "\t$rx, $imm", itin>;
209 class FEXT_RI16_PC_ins<bits<5> _op, string asmstr, InstrItinClass itin>:
210   FEXT_RI16_ins_base<_op, asmstr, "\t$rx, $$pc, $imm", itin>;
212 class FEXT_RI16_B_ins<bits<5> _op, string asmstr,
213                       InstrItinClass itin>:
214   FEXT_RI16<_op, (outs), (ins  CPU16Regs:$rx, brtarget:$imm),
215             !strconcat(asmstr, "\t$rx, $imm"), [], itin>;
217 class FEXT_RI16_TCP_ins<bits<5> _op, string asmstr,
218                         InstrItinClass itin>:
219   FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins pcrel16:$imm, i32imm:$size),
220             !strconcat(asmstr, "\t$rx, $imm"), [], itin>;
222 class FEXT_2RI16_ins<bits<5> _op, string asmstr,
223                      InstrItinClass itin>:
224   FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins CPU16Regs:$rx_, simm16:$imm),
225             !strconcat(asmstr, "\t$rx, $imm"), [], itin> {
226   let Constraints = "$rx_ = $rx";
230 // EXT-RRI instruction format
233 class FEXT_RRI16_mem_ins<bits<5> op, string asmstr, Operand MemOpnd,
234                          InstrItinClass itin>:
235   FEXT_RRI16<op, (outs CPU16Regs:$ry), (ins  MemOpnd:$addr),
236              !strconcat(asmstr, "\t$ry, $addr"), [], itin>;
238 class FEXT_RRI16_mem2_ins<bits<5> op, string asmstr, Operand MemOpnd,
239                           InstrItinClass itin>:
240   FEXT_RRI16<op, (outs ), (ins  CPU16Regs:$ry, MemOpnd:$addr),
241              !strconcat(asmstr, "\t$ry, $addr"), [], itin>;
245 // EXT-RRI-A instruction format
248 class FEXT_RRI_A16_mem_ins<bits<1> op, string asmstr, Operand MemOpnd,
249                            InstrItinClass itin>:
250   FEXT_RRI_A16<op, (outs CPU16Regs:$ry), (ins  MemOpnd:$addr),
251                !strconcat(asmstr, "\t$ry, $addr"), [], itin>;
254 // EXT-SHIFT instruction format
256 class FEXT_SHIFT16_ins<bits<2> _f, string asmstr, InstrItinClass itin>:
257   FEXT_SHIFT16<_f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry, uimm5:$sa),
258                !strconcat(asmstr, "\t$rx, $ry, $sa"), [], itin>;
261 // EXT-T8I8
263 class FEXT_T8I816_ins<string asmstr, string asmstr2>:
264   MipsPseudo16<(outs),
265                (ins CPU16Regs:$rx, CPU16Regs:$ry, brtarget:$imm),
266                !strconcat(asmstr2, !strconcat("\t$rx, $ry\n\t",
267                !strconcat(asmstr, "\t$imm"))),[]> {
268   let isCodeGenOnly=1;
269   let usesCustomInserter = 1;
273 // EXT-T8I8I
275 class FEXT_T8I8I16_ins<string asmstr, string asmstr2>:
276   MipsPseudo16<(outs),
277                (ins CPU16Regs:$rx, simm16:$imm, brtarget:$targ),
278                !strconcat(asmstr2, !strconcat("\t$rx, $imm\n\t",
279                !strconcat(asmstr, "\t$targ"))), []> {
280   let isCodeGenOnly=1;
281   let usesCustomInserter = 1;
287 // I8_MOVR32 instruction format (used only by the MOVR32 instructio
289 class FI8_MOVR3216_ins<string asmstr, InstrItinClass itin>:
290        FI8_MOVR3216<(outs CPU16Regs:$rz), (ins GPR32:$r32),
291        !strconcat(asmstr,  "\t$rz, $r32"), [], itin>;
294 // I8_MOV32R instruction format (used only by MOV32R instruction)
297 class FI8_MOV32R16_ins<string asmstr, InstrItinClass itin>:
298   FI8_MOV32R16<(outs GPR32:$r32), (ins CPU16Regs:$rz),
299                !strconcat(asmstr,  "\t$r32, $rz"), [], itin>;
302 // This are pseudo formats for multiply
303 // This first one can be changed to non-pseudo now.
305 // MULT
307 class FMULT16_ins<string asmstr, InstrItinClass itin> :
308   MipsPseudo16<(outs), (ins CPU16Regs:$rx, CPU16Regs:$ry),
309                !strconcat(asmstr, "\t$rx, $ry"), []>;
312 // MULT-LO
314 class FMULT16_LO_ins<string asmstr, InstrItinClass itin> :
315   MipsPseudo16<(outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
316                !strconcat(asmstr, "\t$rx, $ry\n\tmflo\t$rz"), []> {
317   let isCodeGenOnly=1;
321 // RR-type instruction format
324 class FRR16_ins<bits<5> f, string asmstr, InstrItinClass itin> :
325   FRR16<f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry),
326         !strconcat(asmstr, "\t$rx, $ry"), [], itin> {
329 class FRRBreakNull16_ins<string asmstr, InstrItinClass itin> :
330   FRRBreak16<(outs), (ins), asmstr, [], itin> {
331   let Code=0;
334 class FRR16R_ins<bits<5> f, string asmstr, InstrItinClass itin> :
335   FRR16<f, (outs), (ins  CPU16Regs:$rx, CPU16Regs:$ry),
336         !strconcat(asmstr, "\t$rx, $ry"), [], itin> {
339 class FRRTR16_ins<string asmstr> :
340   MipsPseudo16<(outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
341                !strconcat(asmstr, "\t$rx, $ry\n\tmove\t$rz, $$t8"), []> ;
344 // maybe refactor but need a $zero as a dummy first parameter
346 class FRR16_div_ins<bits<5> f, string asmstr, InstrItinClass itin> :
347   FRR16<f, (outs ), (ins CPU16Regs:$rx, CPU16Regs:$ry),
348         !strconcat(asmstr, "\t$$zero, $rx, $ry"), [], itin> ;
350 class FUnaryRR16_ins<bits<5> f, string asmstr, InstrItinClass itin> :
351   FRR16<f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry),
352         !strconcat(asmstr, "\t$rx, $ry"), [], itin> ;
355 class FRR16_M_ins<bits<5> f, string asmstr,
356                   InstrItinClass itin> :
357   FRR16<f, (outs CPU16Regs:$rx), (ins),
358         !strconcat(asmstr, "\t$rx"), [], itin>;
360 class FRxRxRy16_ins<bits<5> f, string asmstr,
361                     InstrItinClass itin> :
362   FRR16<f, (outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
363             !strconcat(asmstr, "\t$rz, $ry"),
364             [], itin> {
365   let Constraints = "$rx = $rz";
368 let rx=0 in
369 class FRR16_JALRC_RA_only_ins<bits<1> nd_, bits<1> l_,
370                               string asmstr, InstrItinClass itin>:
371   FRR16_JALRC<nd_, l_, 1, (outs), (ins), !strconcat(asmstr, "\t$$ra"),
372               [], itin> ;
375 class FRR16_JALRC_ins<bits<1> nd, bits<1> l, bits<1> ra,
376                       string asmstr, InstrItinClass itin>:
377   FRR16_JALRC<nd, l, ra, (outs), (ins CPU16Regs:$rx),
378               !strconcat(asmstr, "\t$rx"), [], itin> ;
380 class FRR_SF16_ins
381   <bits<5> _funct, bits<3> _subfunc,
382     string asmstr, InstrItinClass itin>:
383   FRR_SF16<_funct, _subfunc, (outs CPU16Regs:$rx), (ins CPU16Regs:$rx_),
384            !strconcat(asmstr, "\t $rx"),
385            [], itin> {
386   let Constraints = "$rx_ = $rx";
387   }
389 // RRR-type instruction format
392 class FRRR16_ins<bits<2> _f, string asmstr,  InstrItinClass itin> :
393   FRRR16<_f, (outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
394          !strconcat(asmstr, "\t$rz, $rx, $ry"), [], itin>;
397 // These Sel patterns support the generation of conditional move
398 // pseudo instructions.
400 // The nomenclature uses the components making up the pseudo and may
401 // be a bit counter intuitive when compared with the end result we seek.
402 // For example using a bqez in the example directly below results in the
403 // conditional move being done if the tested register is not zero.
404 // I considered in easier to check by keeping the pseudo consistent with
405 // it's components but it could have been done differently.
407 // The simplest case is when can test and operand directly and do the
408 // conditional move based on a simple mips16 conditional
409 //  branch instruction.
410 // for example:
411 // if $op == beqz or bnez:
413 // $op1 $rt, .+4
414 // move $rd, $rs
416 // if $op == beqz, then if $rt != 0, then the conditional assignment
417 // $rd = $rs is done.
419 // if $op == bnez, then if $rt == 0, then the conditional assignment
420 // $rd = $rs is done.
422 // So this pseudo class only has one operand, i.e. op
424 class Sel<string op>:
425   MipsPseudo16<(outs CPU16Regs:$rd_), (ins CPU16Regs:$rd, CPU16Regs:$rs,
426                CPU16Regs:$rt),
427                !strconcat(op, "\t$rt, .+4\n\t\n\tmove $rd, $rs"), []> {
428   //let isCodeGenOnly=1;
429   let Constraints = "$rd = $rd_";
430   let usesCustomInserter = 1;
434 // The next two instruction classes allow for an operand which tests
435 // two operands and returns a value in register T8 and
436 //then does a conditional branch based on the value of T8
439 // op2 can be cmpi or slti/sltiu
440 // op1 can bteqz or btnez
441 // the operands for op2 are a register and a signed constant
443 // $op2 $t, $imm  ;test register t and branch conditionally
444 // $op1 .+4       ;op1 is a conditional branch
445 // move $rd, $rs
448 class SeliT<string op1, string op2>:
449   MipsPseudo16<(outs CPU16Regs:$rd_), (ins CPU16Regs:$rd, CPU16Regs:$rs,
450                                        CPU16Regs:$rl, simm16:$imm),
451                !strconcat(op2,
452                !strconcat("\t$rl, $imm\n\t",
453                !strconcat(op1, "\t.+4\n\tmove $rd, $rs"))), []> {
454   let isCodeGenOnly=1;
455   let Constraints = "$rd = $rd_";
456   let usesCustomInserter = 1;
460 // op2 can be cmp or slt/sltu
461 // op1 can be bteqz or btnez
462 // the operands for op2 are two registers
463 // op1 is a conditional branch
466 // $op2 $rl, $rr  ;test registers rl,rr
467 // $op1 .+4       ;op2 is a conditional branch
468 // move $rd, $rs
471 class SelT<string op1, string op2>:
472   MipsPseudo16<(outs CPU16Regs:$rd_),
473                (ins CPU16Regs:$rd, CPU16Regs:$rs,
474                 CPU16Regs:$rl, CPU16Regs:$rr),
475                !strconcat(op2,
476                !strconcat("\t$rl, $rr\n\t",
477                !strconcat(op1, "\t.+4\n\tmove $rd, $rs"))), []> {
478   let isCodeGenOnly=1;
479   let Constraints = "$rd = $rd_";
480   let usesCustomInserter = 1;
484 // 32 bit constant
486 def Constant32 : MipsPseudo16<(outs), (ins simm32:$imm), "\t.word $imm", []>;
488 def LwConstant32 :
489   MipsPseudo16<(outs CPU16Regs:$rx), (ins simm32:$imm, simm32:$constid),
490                "lw\t$rx, 1f\n\tb\t2f\n\t.align\t2\n1: \t.word\t$imm\n2:", []>;
493 // Some general instruction class info
497 class ArithLogic16Defs<bit isCom=0> {
498   bits<5> shamt = 0;
499   bit isCommutable = isCom;
500   bit isReMaterializable = 1;
501   bit hasSideEffects = 0;
504 class branch16 {
505   bit isBranch = 1;
506   bit isTerminator = 1;
507   bit isBarrier = 1;
510 class cbranch16 {
511   bit isBranch = 1;
512   bit isTerminator = 1;
515 class MayLoad {
516   bit mayLoad = 1;
519 class MayStore {
520   bit mayStore = 1;
525 // Format: ADDIU rx, immediate MIPS16e
526 // Purpose: Add Immediate Unsigned Word (2-Operand, Extended)
527 // To add a constant to a 32-bit integer.
529 def AddiuRxImmX16: FEXT_RI16_ins<0b01001, "addiu", IIM16Alu>;
531 def AddiuRxRxImm16: F2RI16_ins<0b01001, "addiu", IIM16Alu>,
532   ArithLogic16Defs<0> {
533   let AddedComplexity = 5;
535 def AddiuRxRxImmX16: FEXT_2RI16_ins<0b01001, "addiu", IIM16Alu>,
536   ArithLogic16Defs<0> {
537   let isCodeGenOnly = 1;
540 def AddiuRxRyOffMemX16:
541   FEXT_RRI_A16_mem_ins<0, "addiu", mem16_ea, IIM16Alu>;
545 // Format: ADDIU rx, pc, immediate MIPS16e
546 // Purpose: Add Immediate Unsigned Word (3-Operand, PC-Relative, Extended)
547 // To add a constant to the program counter.
549 def AddiuRxPcImmX16: FEXT_RI16_PC_ins<0b00001, "addiu", IIM16Alu>;
552 // Format: ADDIU sp, immediate MIPS16e
553 // Purpose: Add Immediate Unsigned Word (2-Operand, SP-Relative, Extended)
554 // To add a constant to the stack pointer.
556 def AddiuSpImm16
557   : FI816_SP_ins<0b011, "addiu", IIM16Alu> {
558   let Defs = [SP];
559   let Uses = [SP];
560   let AddedComplexity = 5;
563 def AddiuSpImmX16
564   : FEXT_I816_SP_ins<0b011, "addiu", IIM16Alu> {
565   let Defs = [SP];
566   let Uses = [SP];
570 // Format: ADDU rz, rx, ry MIPS16e
571 // Purpose: Add Unsigned Word (3-Operand)
572 // To add 32-bit integers.
575 def AdduRxRyRz16: FRRR16_ins<01, "addu", IIM16Alu>, ArithLogic16Defs<1>;
578 // Format: AND rx, ry MIPS16e
579 // Purpose: AND
580 // To do a bitwise logical AND.
582 def AndRxRxRy16: FRxRxRy16_ins<0b01100, "and", IIM16Alu>, ArithLogic16Defs<1>;
586 // Format: BEQZ rx, offset MIPS16e
587 // Purpose: Branch on Equal to Zero
588 // To test a GPR then do a PC-relative conditional branch.
590 def BeqzRxImm16: FRI16_B_ins<0b00100, "beqz", IIM16Alu>, cbranch16;
594 // Format: BEQZ rx, offset MIPS16e
595 // Purpose: Branch on Equal to Zero (Extended)
596 // To test a GPR then do a PC-relative conditional branch.
598 def BeqzRxImmX16: FEXT_RI16_B_ins<0b00100, "beqz", IIM16Alu>, cbranch16;
601 // Format: B offset MIPS16e
602 // Purpose: Unconditional Branch (Extended)
603 // To do an unconditional PC-relative branch.
606 def Bimm16: FI16_ins<0b00010, "b", IIM16Alu>, branch16;
608 // Format: B offset MIPS16e
609 // Purpose: Unconditional Branch
610 // To do an unconditional PC-relative branch.
612 def BimmX16: FEXT_I16_ins<0b00010, "b", IIM16Alu>, branch16;
615 // Format: BNEZ rx, offset MIPS16e
616 // Purpose: Branch on Not Equal to Zero
617 // To test a GPR then do a PC-relative conditional branch.
619 def BnezRxImm16: FRI16_B_ins<0b00101, "bnez", IIM16Alu>, cbranch16;
622 // Format: BNEZ rx, offset MIPS16e
623 // Purpose: Branch on Not Equal to Zero (Extended)
624 // To test a GPR then do a PC-relative conditional branch.
626 def BnezRxImmX16: FEXT_RI16_B_ins<0b00101, "bnez", IIM16Alu>, cbranch16;
630 //Format: BREAK immediate
631 // Purpose: Breakpoint
632 // To cause a Breakpoint exception.
634 def Break16: FRRBreakNull16_ins<"break 0", IIM16Alu>;
636 // Format: BTEQZ offset MIPS16e
637 // Purpose: Branch on T Equal to Zero (Extended)
638 // To test special register T then do a PC-relative conditional branch.
640 def Bteqz16: FI816_ins<0b000, "bteqz", IIM16Alu>, cbranch16 {
641   let Uses = [T8];
644 def BteqzX16: FEXT_I816_ins<0b000, "bteqz", IIM16Alu>, cbranch16 {
645   let Uses = [T8];
648 def BteqzT8CmpX16: FEXT_T8I816_ins<"bteqz", "cmp">, cbranch16;
650 def BteqzT8CmpiX16: FEXT_T8I8I16_ins<"bteqz", "cmpi">,
651   cbranch16;
653 def BteqzT8SltX16: FEXT_T8I816_ins<"bteqz", "slt">, cbranch16;
655 def BteqzT8SltuX16: FEXT_T8I816_ins<"bteqz", "sltu">, cbranch16;
657 def BteqzT8SltiX16: FEXT_T8I8I16_ins<"bteqz", "slti">, cbranch16;
659 def BteqzT8SltiuX16: FEXT_T8I8I16_ins<"bteqz", "sltiu">,
660   cbranch16;
663 // Format: BTNEZ offset MIPS16e
664 // Purpose: Branch on T Not Equal to Zero (Extended)
665 // To test special register T then do a PC-relative conditional branch.
668 def Btnez16: FI816_ins<0b001, "btnez", IIM16Alu>, cbranch16 {
669   let Uses = [T8];
672 def BtnezX16: FEXT_I816_ins<0b001, "btnez", IIM16Alu> ,cbranch16 {
673   let Uses = [T8];
676 def BtnezT8CmpX16: FEXT_T8I816_ins<"btnez", "cmp">, cbranch16;
678 def BtnezT8CmpiX16: FEXT_T8I8I16_ins<"btnez", "cmpi">, cbranch16;
680 def BtnezT8SltX16: FEXT_T8I816_ins<"btnez", "slt">, cbranch16;
682 def BtnezT8SltuX16: FEXT_T8I816_ins<"btnez", "sltu">, cbranch16;
684 def BtnezT8SltiX16: FEXT_T8I8I16_ins<"btnez", "slti">, cbranch16;
686 def BtnezT8SltiuX16: FEXT_T8I8I16_ins<"btnez", "sltiu">,
687   cbranch16;
690 // Format: CMP rx, ry MIPS16e
691 // Purpose: Compare
692 // To compare the contents of two GPRs.
694 def CmpRxRy16: FRR16R_ins<0b01010, "cmp", IIM16Alu> {
695   let Defs = [T8];
699 // Format: CMPI rx, immediate MIPS16e
700 // Purpose: Compare Immediate
701 // To compare a constant with the contents of a GPR.
703 def CmpiRxImm16: FRI16R_ins<0b01110, "cmpi", IIM16Alu> {
704   let Defs = [T8];
708 // Format: CMPI rx, immediate MIPS16e
709 // Purpose: Compare Immediate (Extended)
710 // To compare a constant with the contents of a GPR.
712 def CmpiRxImmX16: FEXT_RI16R_ins<0b01110, "cmpi", IIM16Alu> {
713   let Defs = [T8];
718 // Format: DIV rx, ry MIPS16e
719 // Purpose: Divide Word
720 // To divide 32-bit signed integers.
722 def DivRxRy16: FRR16_div_ins<0b11010, "div", IIM16Alu> {
723   let Defs = [HI0, LO0];
727 // Format: DIVU rx, ry MIPS16e
728 // Purpose: Divide Unsigned Word
729 // To divide 32-bit unsigned integers.
731 def DivuRxRy16: FRR16_div_ins<0b11011, "divu", IIM16Alu> {
732   let Defs = [HI0, LO0];
735 // Format: JAL target MIPS16e
736 // Purpose: Jump and Link
737 // To execute a procedure call within the current 256 MB-aligned
738 // region and preserve the current ISA.
741 def Jal16 : FJAL16_ins<0b0, "jal", IIM16Alu> {
742   let hasDelaySlot = 0;  // not true, but we add the nop for now
743   let isCall=1;
744   let Defs = [RA];
747 def JalB16 : FJALB16_ins<0b0, "jal", IIM16Alu>, branch16 {
748   let hasDelaySlot = 0;  // not true, but we add the nop for now
749   let isBranch=1;
750   let Defs = [RA];
754 // Format: JR ra MIPS16e
755 // Purpose: Jump Register Through Register ra
756 // To execute a branch to the instruction address in the return
757 // address register.
760 def JrRa16: FRR16_JALRC_RA_only_ins<0, 0, "jr", IIM16Alu> {
761   let isBranch = 1;
762   let isIndirectBranch = 1;
763   let hasDelaySlot = 1;
764   let isTerminator=1;
765   let isBarrier=1;
766   let isReturn=1;
769 def JrcRa16: FRR16_JALRC_RA_only_ins<1, 1, "jrc", IIM16Alu> {
770   let isBranch = 1;
771   let isIndirectBranch = 1;
772   let isTerminator=1;
773   let isBarrier=1;
774   let isReturn=1;
777 def JrcRx16: FRR16_JALRC_ins<1, 1, 0, "jrc", IIM16Alu> {
778   let isBranch = 1;
779   let isIndirectBranch = 1;
780   let isTerminator=1;
781   let isBarrier=1;
784 // Format: LB ry, offset(rx) MIPS16e
785 // Purpose: Load Byte (Extended)
786 // To load a byte from memory as a signed value.
788 def LbRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10011, "lb", mem16, II_LB>, MayLoad{
789   let isCodeGenOnly = 1;
793 // Format: LBU ry, offset(rx) MIPS16e
794 // Purpose: Load Byte Unsigned (Extended)
795 // To load a byte from memory as a unsigned value.
797 def LbuRxRyOffMemX16:
798   FEXT_RRI16_mem_ins<0b10100, "lbu", mem16, II_LBU>, MayLoad {
799   let isCodeGenOnly = 1;
803 // Format: LH ry, offset(rx) MIPS16e
804 // Purpose: Load Halfword signed (Extended)
805 // To load a halfword from memory as a signed value.
807 def LhRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10100, "lh", mem16, II_LH>, MayLoad{
808   let isCodeGenOnly = 1;
812 // Format: LHU ry, offset(rx) MIPS16e
813 // Purpose: Load Halfword unsigned (Extended)
814 // To load a halfword from memory as an unsigned value.
816 def LhuRxRyOffMemX16:
817   FEXT_RRI16_mem_ins<0b10100, "lhu", mem16, II_LHU>, MayLoad {
818   let isCodeGenOnly = 1;
822 // Format: LI rx, immediate MIPS16e
823 // Purpose: Load Immediate
824 // To load a constant into a GPR.
826 def LiRxImm16: FRI16_ins<0b01101, "li", IIM16Alu>;
829 // Format: LI rx, immediate MIPS16e
830 // Purpose: Load Immediate (Extended)
831 // To load a constant into a GPR.
833 def LiRxImmX16: FEXT_RI16_ins<0b01101, "li", IIM16Alu>;
835 def LiRxImmAlignX16: FEXT_RI16_ins<0b01101, ".align 2\n\tli", IIM16Alu> {
836   let isCodeGenOnly = 1;
840 // Format: LW ry, offset(rx) MIPS16e
841 // Purpose: Load Word (Extended)
842 // To load a word from memory as a signed value.
844 def LwRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10011, "lw", mem16, II_LW>, MayLoad{
845   let isCodeGenOnly = 1;
848 // Format: LW rx, offset(sp) MIPS16e
849 // Purpose: Load Word (SP-Relative, Extended)
850 // To load an SP-relative word from memory as a signed value.
852 def LwRxSpImmX16: FEXT_RRI16_mem_ins<0b10010, "lw", mem16sp, II_LW>, MayLoad;
854 def LwRxPcTcp16: FRI16_TCP_ins<0b10110, "lw", II_LW>, MayLoad;
856 def LwRxPcTcpX16: FEXT_RI16_TCP_ins<0b10110, "lw", II_LW>, MayLoad;
858 // Format: MOVE r32, rz MIPS16e
859 // Purpose: Move
860 // To move the contents of a GPR to a GPR.
862 def Move32R16: FI8_MOV32R16_ins<"move", IIM16Alu>;
865 // Format: MOVE ry, r32 MIPS16e
866 //Purpose: Move
867 // To move the contents of a GPR to a GPR.
869 def MoveR3216: FI8_MOVR3216_ins<"move", IIM16Alu> {
870   let isMoveReg = 1;
874 // Format: MFHI rx MIPS16e
875 // Purpose: Move From HI Register
876 // To copy the special purpose HI register to a GPR.
878 def Mfhi16: FRR16_M_ins<0b10000, "mfhi", IIM16Alu> {
879   let Uses = [HI0];
880   let hasSideEffects = 0;
881   let isMoveReg = 1;
885 // Format: MFLO rx MIPS16e
886 // Purpose: Move From LO Register
887 // To copy the special purpose LO register to a GPR.
889 def Mflo16: FRR16_M_ins<0b10010, "mflo", IIM16Alu> {
890   let Uses = [LO0];
891   let hasSideEffects = 0;
892   let isMoveReg = 0;
896 // Pseudo Instruction for mult
898 def MultRxRy16:  FMULT16_ins<"mult",  IIM16Alu> {
899   let isCommutable = 1;
900   let hasSideEffects = 0;
901   let Defs = [HI0, LO0];
904 def MultuRxRy16: FMULT16_ins<"multu", IIM16Alu> {
905   let isCommutable = 1;
906   let hasSideEffects = 0;
907   let Defs = [HI0, LO0];
911 // Format: MULT rx, ry MIPS16e
912 // Purpose: Multiply Word
913 // To multiply 32-bit signed integers.
915 def MultRxRyRz16: FMULT16_LO_ins<"mult", IIM16Alu> {
916   let isCommutable = 1;
917   let hasSideEffects = 0;
918   let Defs = [HI0, LO0];
922 // Format: MULTU rx, ry MIPS16e
923 // Purpose: Multiply Unsigned Word
924 // To multiply 32-bit unsigned integers.
926 def MultuRxRyRz16: FMULT16_LO_ins<"multu", IIM16Alu> {
927   let isCommutable = 1;
928   let hasSideEffects = 0;
929   let Defs = [HI0, LO0];
933 // Format: NEG rx, ry MIPS16e
934 // Purpose: Negate
935 // To negate an integer value.
937 def NegRxRy16: FUnaryRR16_ins<0b11101, "neg", IIM16Alu>;
940 // Format: NOT rx, ry MIPS16e
941 // Purpose: Not
942 // To complement an integer value
944 def NotRxRy16: FUnaryRR16_ins<0b01111, "not", IIM16Alu>;
947 // Format: OR rx, ry MIPS16e
948 // Purpose: Or
949 // To do a bitwise logical OR.
951 def OrRxRxRy16: FRxRxRy16_ins<0b01101, "or", IIM16Alu>, ArithLogic16Defs<1>;
954 // Format: RESTORE {ra,}{s0/s1/s0-1,}{framesize}
955 // (All args are optional) MIPS16e
956 // Purpose: Restore Registers and Deallocate Stack Frame
957 // To deallocate a stack frame before exit from a subroutine,
958 // restoring return address and static registers, and adjusting
959 // stack
962 def Restore16:
963   FI8_SVRS16<0b1, (outs), (ins variable_ops),
964              "", [], II_RESTORE >, MayLoad {
965   let isCodeGenOnly = 1;
966   let Defs = [SP];
967   let Uses = [SP];
971 def RestoreX16:
972   FI8_SVRS16<0b1, (outs), (ins variable_ops),
973              "", [], II_RESTORE >, MayLoad {
974   let isCodeGenOnly = 1;
975   let Defs = [SP];
976   let Uses = [SP];
980 // Format: SAVE {ra,}{s0/s1/s0-1,}{framesize} (All arguments are optional)
981 // MIPS16e
982 // Purpose: Save Registers and Set Up Stack Frame
983 // To set up a stack frame on entry to a subroutine,
984 // saving return address and static registers, and adjusting stack
986 def Save16: 
987   FI8_SVRS16<0b1, (outs), (ins variable_ops),
988              "", [], II_SAVE >, MayStore {
989   let isCodeGenOnly = 1;
990   let Uses = [SP];
991   let Defs = [SP];
994 def SaveX16:
995   FI8_SVRS16<0b1, (outs), (ins variable_ops),
996              "", [], II_SAVE >, MayStore {
997   let isCodeGenOnly = 1;
998   let Uses = [SP];
999   let Defs = [SP];
1002 // Format: SB ry, offset(rx) MIPS16e
1003 // Purpose: Store Byte (Extended)
1004 // To store a byte to memory.
1006 def SbRxRyOffMemX16:
1007   FEXT_RRI16_mem2_ins<0b11000, "sb", mem16, II_SB>, MayStore;
1010 // Format: SEB rx MIPS16e
1011 // Purpose: Sign-Extend Byte
1012 // Sign-extend least significant byte in register rx.
1014 def SebRx16
1015   : FRR_SF16_ins<0b10001, 0b100, "seb", IIM16Alu>;
1018 // Format: SEH rx MIPS16e
1019 // Purpose: Sign-Extend Halfword
1020 // Sign-extend least significant word in register rx.
1022 def SehRx16
1023   : FRR_SF16_ins<0b10001, 0b101, "seh", IIM16Alu>;
1026 // The Sel(T) instructions are pseudos
1027 // T means that they use T8 implicitly.
1030 // Format: SelBeqZ rd, rs, rt
1031 // Purpose: if rt==0, do nothing
1032 //          else rs = rt
1034 def SelBeqZ: Sel<"beqz">;
1037 // Format:  SelTBteqZCmp rd, rs, rl, rr
1038 // Purpose: b = Cmp rl, rr.
1039 //          If b==0 then do nothing.
1040 //          if b!=0 then rd = rs
1042 def SelTBteqZCmp: SelT<"bteqz", "cmp">;
1045 // Format:  SelTBteqZCmpi rd, rs, rl, rr
1046 // Purpose: b = Cmpi rl, imm.
1047 //          If b==0 then do nothing.
1048 //          if b!=0 then rd = rs
1050 def SelTBteqZCmpi: SeliT<"bteqz", "cmpi">;
1053 // Format:  SelTBteqZSlt rd, rs, rl, rr
1054 // Purpose: b = Slt rl, rr.
1055 //          If b==0 then do nothing.
1056 //          if b!=0 then rd = rs
1058 def SelTBteqZSlt: SelT<"bteqz", "slt">;
1061 // Format:  SelTBteqZSlti rd, rs, rl, rr
1062 // Purpose: b = Slti rl, imm.
1063 //          If b==0 then do nothing.
1064 //          if b!=0 then rd = rs
1066 def SelTBteqZSlti: SeliT<"bteqz", "slti">;
1069 // Format:  SelTBteqZSltu rd, rs, rl, rr
1070 // Purpose: b = Sltu rl, rr.
1071 //          If b==0 then do nothing.
1072 //          if b!=0 then rd = rs
1074 def SelTBteqZSltu: SelT<"bteqz", "sltu">;
1077 // Format:  SelTBteqZSltiu rd, rs, rl, rr
1078 // Purpose: b = Sltiu rl, imm.
1079 //          If b==0 then do nothing.
1080 //          if b!=0 then rd = rs
1082 def SelTBteqZSltiu: SeliT<"bteqz", "sltiu">;
1085 // Format: SelBnez rd, rs, rt
1086 // Purpose: if rt!=0, do nothing
1087 //          else rs = rt
1089 def SelBneZ: Sel<"bnez">;
1092 // Format:  SelTBtneZCmp rd, rs, rl, rr
1093 // Purpose: b = Cmp rl, rr.
1094 //          If b!=0 then do nothing.
1095 //          if b0=0 then rd = rs
1097 def SelTBtneZCmp: SelT<"btnez", "cmp">;
1100 // Format:  SelTBtnezCmpi rd, rs, rl, rr
1101 // Purpose: b = Cmpi rl, imm.
1102 //          If b!=0 then do nothing.
1103 //          if b==0 then rd = rs
1105 def SelTBtneZCmpi: SeliT<"btnez", "cmpi">;
1108 // Format:  SelTBtneZSlt rd, rs, rl, rr
1109 // Purpose: b = Slt rl, rr.
1110 //          If b!=0 then do nothing.
1111 //          if b==0 then rd = rs
1113 def SelTBtneZSlt: SelT<"btnez", "slt">;
1116 // Format:  SelTBtneZSlti rd, rs, rl, rr
1117 // Purpose: b = Slti rl, imm.
1118 //          If b!=0 then do nothing.
1119 //          if b==0 then rd = rs
1121 def SelTBtneZSlti: SeliT<"btnez", "slti">;
1124 // Format:  SelTBtneZSltu rd, rs, rl, rr
1125 // Purpose: b = Sltu rl, rr.
1126 //          If b!=0 then do nothing.
1127 //          if b==0 then rd = rs
1129 def SelTBtneZSltu: SelT<"btnez", "sltu">;
1132 // Format:  SelTBtneZSltiu rd, rs, rl, rr
1133 // Purpose: b = Slti rl, imm.
1134 //          If b!=0 then do nothing.
1135 //          if b==0 then rd = rs
1137 def SelTBtneZSltiu: SeliT<"btnez", "sltiu">;
1140 // Format: SH ry, offset(rx) MIPS16e
1141 // Purpose: Store Halfword (Extended)
1142 // To store a halfword to memory.
1144 def ShRxRyOffMemX16:
1145   FEXT_RRI16_mem2_ins<0b11001, "sh", mem16, II_SH>, MayStore;
1148 // Format: SLL rx, ry, sa MIPS16e
1149 // Purpose: Shift Word Left Logical (Extended)
1150 // To execute a left-shift of a word by a fixed number of bits-0 to 31 bits.
1152 def SllX16: FEXT_SHIFT16_ins<0b00, "sll", IIM16Alu>;
1155 // Format: SLLV ry, rx MIPS16e
1156 // Purpose: Shift Word Left Logical Variable
1157 // To execute a left-shift of a word by a variable number of bits.
1159 def SllvRxRy16 : FRxRxRy16_ins<0b00100, "sllv", IIM16Alu>;
1161 // Format: SLTI rx, immediate MIPS16e
1162 // Purpose: Set on Less Than Immediate
1163 // To record the result of a less-than comparison with a constant.
1166 def SltiRxImm16: FRI16R_ins<0b01010, "slti", IIM16Alu> {
1167   let Defs = [T8];
1171 // Format: SLTI rx, immediate MIPS16e
1172 // Purpose: Set on Less Than Immediate (Extended)
1173 // To record the result of a less-than comparison with a constant.
1176 def SltiRxImmX16: FEXT_RI16R_ins<0b01010, "slti", IIM16Alu> {
1177   let Defs = [T8];
1180 def SltiCCRxImmX16: FEXT_CCRXI16_ins<"slti">;
1182 // Format: SLTIU rx, immediate MIPS16e
1183 // Purpose: Set on Less Than Immediate Unsigned
1184 // To record the result of a less-than comparison with a constant.
1187 def SltiuRxImm16: FRI16R_ins<0b01011, "sltiu", IIM16Alu> {
1188   let Defs = [T8];
1192 // Format: SLTI rx, immediate MIPS16e
1193 // Purpose: Set on Less Than Immediate Unsigned (Extended)
1194 // To record the result of a less-than comparison with a constant.
1197 def SltiuRxImmX16: FEXT_RI16R_ins<0b01011, "sltiu", IIM16Alu> {
1198   let Defs = [T8];
1201 // Format: SLTIU rx, immediate MIPS16e
1202 // Purpose: Set on Less Than Immediate Unsigned (Extended)
1203 // To record the result of a less-than comparison with a constant.
1205 def SltiuCCRxImmX16: FEXT_CCRXI16_ins<"sltiu">;
1208 // Format: SLT rx, ry MIPS16e
1209 // Purpose: Set on Less Than
1210 // To record the result of a less-than comparison.
1212 def SltRxRy16: FRR16R_ins<0b00010, "slt", IIM16Alu>{
1213   let Defs = [T8];
1216 def SltCCRxRy16: FCCRR16_ins<"slt">;
1218 // Format: SLTU rx, ry MIPS16e
1219 // Purpose: Set on Less Than Unsigned
1220 // To record the result of an unsigned less-than comparison.
1222 def SltuRxRy16: FRR16R_ins<0b00011, "sltu", IIM16Alu>{
1223   let Defs = [T8];
1226 def SltuRxRyRz16: FRRTR16_ins<"sltu"> {
1227   let isCodeGenOnly=1;
1228   let Defs = [T8];
1232 def SltuCCRxRy16: FCCRR16_ins<"sltu">;
1234 // Format: SRAV ry, rx MIPS16e
1235 // Purpose: Shift Word Right Arithmetic Variable
1236 // To execute an arithmetic right-shift of a word by a variable
1237 // number of bits.
1239 def SravRxRy16: FRxRxRy16_ins<0b00111, "srav", IIM16Alu>;
1243 // Format: SRA rx, ry, sa MIPS16e
1244 // Purpose: Shift Word Right Arithmetic (Extended)
1245 // To execute an arithmetic right-shift of a word by a fixed
1246 // number of bits-1 to 8 bits.
1248 def SraX16: FEXT_SHIFT16_ins<0b11, "sra", IIM16Alu>;
1252 // Format: SRLV ry, rx MIPS16e
1253 // Purpose: Shift Word Right Logical Variable
1254 // To execute a logical right-shift of a word by a variable
1255 // number of bits.
1257 def SrlvRxRy16: FRxRxRy16_ins<0b00110, "srlv", IIM16Alu>;
1261 // Format: SRL rx, ry, sa MIPS16e
1262 // Purpose: Shift Word Right Logical (Extended)
1263 // To execute a logical right-shift of a word by a fixed
1264 // number of bits-1 to 31 bits.
1266 def SrlX16: FEXT_SHIFT16_ins<0b10, "srl", IIM16Alu>;
1269 // Format: SUBU rz, rx, ry MIPS16e
1270 // Purpose: Subtract Unsigned Word
1271 // To subtract 32-bit integers
1273 def SubuRxRyRz16: FRRR16_ins<0b11, "subu", IIM16Alu>, ArithLogic16Defs<0>;
1276 // Format: SW ry, offset(rx) MIPS16e
1277 // Purpose: Store Word (Extended)
1278 // To store a word to memory.
1280 def SwRxRyOffMemX16: FEXT_RRI16_mem2_ins<0b11011, "sw", mem16, II_SW>, MayStore;
1283 // Format: SW rx, offset(sp) MIPS16e
1284 // Purpose: Store Word rx (SP-Relative)
1285 // To store an SP-relative word to memory.
1287 def SwRxSpImmX16: FEXT_RRI16_mem2_ins<0b11010, "sw", mem16sp, II_SW>, MayStore;
1291 // Format: XOR rx, ry MIPS16e
1292 // Purpose: Xor
1293 // To do a bitwise logical XOR.
1295 def XorRxRxRy16: FRxRxRy16_ins<0b01110, "xor", IIM16Alu>, ArithLogic16Defs<1>;
1297 class Mips16Pat<dag pattern, dag result> : Pat<pattern, result> {
1298   let Predicates = [InMips16Mode];
1301 // Unary Arith/Logic
1303 class ArithLogicU_pat<PatFrag OpNode, Instruction I> :
1304   Mips16Pat<(OpNode CPU16Regs:$r),
1305             (I CPU16Regs:$r)>;
1307 def: ArithLogicU_pat<not, NotRxRy16>;
1308 def: ArithLogicU_pat<ineg, NegRxRy16>;
1310 class ArithLogic16_pat<SDNode OpNode, Instruction I> :
1311   Mips16Pat<(OpNode CPU16Regs:$l, CPU16Regs:$r),
1312             (I CPU16Regs:$l, CPU16Regs:$r)>;
1314 def: ArithLogic16_pat<add, AdduRxRyRz16>;
1315 def: ArithLogic16_pat<and, AndRxRxRy16>;
1316 def: ArithLogic16_pat<mul, MultRxRyRz16>;
1317 def: ArithLogic16_pat<or, OrRxRxRy16>;
1318 def: ArithLogic16_pat<sub, SubuRxRyRz16>;
1319 def: ArithLogic16_pat<xor, XorRxRxRy16>;
1321 // Arithmetic and logical instructions with 2 register operands.
1323 class ArithLogicI16_pat<SDNode OpNode, PatFrag imm_type, Instruction I> :
1324   Mips16Pat<(OpNode CPU16Regs:$in, imm_type:$imm),
1325             (I CPU16Regs:$in, imm_type:$imm)>;
1327 def: ArithLogicI16_pat<add, immSExt8, AddiuRxRxImm16>;
1328 def: ArithLogicI16_pat<add, immSExt16, AddiuRxRxImmX16>;
1329 def: ArithLogicI16_pat<shl, immZExt5, SllX16>;
1330 def: ArithLogicI16_pat<srl, immZExt5, SrlX16>;
1331 def: ArithLogicI16_pat<sra, immZExt5, SraX16>;
1333 class shift_rotate_reg16_pat<SDNode OpNode, Instruction I> :
1334   Mips16Pat<(OpNode CPU16Regs:$r, CPU16Regs:$ra),
1335             (I CPU16Regs:$r, CPU16Regs:$ra)>;
1337 def: shift_rotate_reg16_pat<shl, SllvRxRy16>;
1338 def: shift_rotate_reg16_pat<sra, SravRxRy16>;
1339 def: shift_rotate_reg16_pat<srl, SrlvRxRy16>;
1341 class LoadM16_pat<PatFrag OpNode, Instruction I, ComplexPattern Addr> :
1342   Mips16Pat<(OpNode Addr:$addr), (I Addr:$addr)>;
1344 def: LoadM16_pat<sextloadi8, LbRxRyOffMemX16, addr16>;
1345 def: LoadM16_pat<zextloadi8, LbuRxRyOffMemX16, addr16>;
1346 def: LoadM16_pat<sextloadi16, LhRxRyOffMemX16, addr16>;
1347 def: LoadM16_pat<zextloadi16, LhuRxRyOffMemX16, addr16>;
1348 def: LoadM16_pat<load, LwRxSpImmX16, addr16sp>;
1350 class StoreM16_pat<PatFrag OpNode, Instruction I, ComplexPattern Addr> :
1351   Mips16Pat<(OpNode CPU16Regs:$r, Addr:$addr), (I CPU16Regs:$r, Addr:$addr)>;
1353 def: StoreM16_pat<truncstorei8, SbRxRyOffMemX16, addr16>;
1354 def: StoreM16_pat<truncstorei16, ShRxRyOffMemX16, addr16>;
1355 def: StoreM16_pat<store, SwRxSpImmX16, addr16sp>;
1357 // Unconditional branch
1358 class UncondBranch16_pat<SDNode OpNode, Instruction I>:
1359   Mips16Pat<(OpNode bb:$imm16), (I bb:$imm16)> {
1360     let Predicates = [InMips16Mode];
1361   }
1363 def : Mips16Pat<(MipsJmpLink (i32 tglobaladdr:$dst)),
1364                 (Jal16 tglobaladdr:$dst)>;
1366 def : Mips16Pat<(MipsJmpLink (i32 texternalsym:$dst)),
1367                 (Jal16 texternalsym:$dst)>;
1369 // Indirect branch
1370 def: Mips16Pat<(brind CPU16Regs:$rs), (JrcRx16 CPU16Regs:$rs)> {
1371   // Ensure that the addition of MIPS32r6/MIPS64r6 support does not change
1372   // MIPS16's behaviour.
1373   let AddedComplexity = 1;
1376 // Jump and Link (Call)
1377 let isCall=1, hasDelaySlot=0 in
1378 def JumpLinkReg16:
1379   FRR16_JALRC<0, 0, 0, (outs), (ins CPU16Regs:$rs),
1380               "jalrc\t$rs", [(MipsJmpLink CPU16Regs:$rs)], II_JALRC> {
1381   let Defs = [RA];
1384 // Mips16 pseudos
1385 let isReturn=1, isTerminator=1, hasDelaySlot=1, isBarrier=1, hasCtrlDep=1,
1386   hasExtraSrcRegAllocReq = 1 in
1387 def RetRA16 : MipsPseudo16<(outs), (ins), "", [(MipsRet)]>;
1390 // setcc patterns
1392 class SetCC_R16<PatFrag cond_op, Instruction I>:
1393   Mips16Pat<(cond_op CPU16Regs:$rx, CPU16Regs:$ry),
1394             (I CPU16Regs:$rx, CPU16Regs:$ry)>;
1396 class SetCC_I16<PatFrag cond_op, PatLeaf imm_type, Instruction I>:
1397   Mips16Pat<(cond_op CPU16Regs:$rx, imm_type:$imm16),
1398             (I CPU16Regs:$rx, imm_type:$imm16)>;
1401 def: Mips16Pat<(i32 addr16sp:$addr), (AddiuRxRyOffMemX16 addr16sp:$addr)>;
1404 // Large (>16 bit) immediate loads
1405 def : Mips16Pat<(i32 imm:$imm), (LwConstant32 imm:$imm, -1)>;
1408 // Some branch conditional patterns are not generated by llvm at this time.
1409 // Some are for seemingly arbitrary reasons not used: i.e. with signed number
1410 // comparison they are used and for unsigned a different pattern is used.
1411 // I am pushing upstream from the full mips16 port and it seemed that I needed
1412 // these earlier and the mips32 port has these but now I cannot create test
1413 // cases that use these patterns. While I sort this all out I will leave these
1414 // extra patterns commented out and if I can be sure they are really not used,
1415 // I will delete the code. I don't want to check the code in uncommented without
1416 // a valid test case. In some cases, the compiler is generating patterns with
1417 // setcc instead and earlier I had implemented setcc first so may have masked
1418 // the problem. The setcc variants are suboptimal for mips16 so I may wantto
1419 // figure out how to enable the brcond patterns or else possibly new
1420 // combinations of brcond and setcc.
1423 // bcond-seteq
1425 def: Mips16Pat
1426   <(brcond (i32 (seteq CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1427    (BteqzT8CmpX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1428   >;
1431 def: Mips16Pat
1432   <(brcond (i32 (seteq CPU16Regs:$rx, immZExt16:$imm)), bb:$targ16),
1433    (BteqzT8CmpiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$targ16)
1434   >;
1436 def: Mips16Pat
1437   <(brcond (i32 (seteq CPU16Regs:$rx, 0)), bb:$targ16),
1438    (BeqzRxImm16 CPU16Regs:$rx, bb:$targ16)
1439   >;
1442 // bcond-setgt (do we need to have this pair of setlt, setgt??)
1444 def: Mips16Pat
1445   <(brcond (i32 (setgt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1446    (BtnezT8SltX16 CPU16Regs:$ry, CPU16Regs:$rx,  bb:$imm16)
1447   >;
1450 // bcond-setge
1452 def: Mips16Pat
1453   <(brcond (i32 (setge CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1454    (BteqzT8SltX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1455   >;
1458 // never called because compiler transforms a >= k to a > (k-1)
1459 def: Mips16Pat
1460   <(brcond (i32 (setge CPU16Regs:$rx, immSExt16:$imm)), bb:$imm16),
1461    (BteqzT8SltiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$imm16)
1462   >;
1465 // bcond-setlt
1467 def: Mips16Pat
1468   <(brcond (i32 (setlt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1469    (BtnezT8SltX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1470   >;
1472 def: Mips16Pat
1473   <(brcond (i32 (setlt CPU16Regs:$rx, immSExt16:$imm)), bb:$imm16),
1474    (BtnezT8SltiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$imm16)
1475   >;
1478 // bcond-setle
1480 def: Mips16Pat
1481   <(brcond (i32 (setle CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1482    (BteqzT8SltX16 CPU16Regs:$ry, CPU16Regs:$rx,  bb:$imm16)
1483   >;
1486 // bcond-setne
1488 def: Mips16Pat
1489   <(brcond (i32 (setne CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1490    (BtnezT8CmpX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1491   >;
1493 def: Mips16Pat
1494   <(brcond (i32 (setne CPU16Regs:$rx, immZExt16:$imm)), bb:$targ16),
1495    (BtnezT8CmpiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$targ16)
1496   >;
1498 def: Mips16Pat
1499   <(brcond (i32 (setne CPU16Regs:$rx, 0)), bb:$targ16),
1500    (BnezRxImm16 CPU16Regs:$rx, bb:$targ16)
1501   >;
1504 // This needs to be there but I forget which code will generate it
1506 def: Mips16Pat
1507   <(brcond CPU16Regs:$rx, bb:$targ16),
1508    (BnezRxImm16 CPU16Regs:$rx, bb:$targ16)
1509   >;
1514 // bcond-setugt
1516 //def: Mips16Pat
1517 //  <(brcond (i32 (setugt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1518 //   (BtnezT8SltuX16 CPU16Regs:$ry, CPU16Regs:$rx,  bb:$imm16)
1519 //  >;
1522 // bcond-setuge
1524 //def: Mips16Pat
1525 //  <(brcond (i32 (setuge CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1526 //   (BteqzT8SltuX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1527 //  >;
1531 // bcond-setult
1533 //def: Mips16Pat
1534 //  <(brcond (i32 (setult CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1535 //   (BtnezT8SltuX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1536 //  >;
1538 def: UncondBranch16_pat<br, Bimm16>;
1540 // Small immediates
1541 def: Mips16Pat<(i32 immSExt16:$in),
1542                (AddiuRxRxImmX16 (MoveR3216 ZERO), immSExt16:$in)>;
1544 def: Mips16Pat<(i32 immZExt16:$in), (LiRxImmX16 immZExt16:$in)>;
1547 // MipsDivRem
1549 def: Mips16Pat
1550   <(MipsDivRem16 CPU16Regs:$rx, CPU16Regs:$ry),
1551    (DivRxRy16 CPU16Regs:$rx, CPU16Regs:$ry)>;
1554 // MipsDivRemU
1556 def: Mips16Pat
1557   <(MipsDivRemU16 CPU16Regs:$rx, CPU16Regs:$ry),
1558    (DivuRxRy16 CPU16Regs:$rx, CPU16Regs:$ry)>;
1560 //  signed a,b
1561 //  x = (a>=b)?x:y
1563 //  if !(a < b) x = y
1565 def : Mips16Pat<(select (i32 (setge CPU16Regs:$a, CPU16Regs:$b)),
1566                  CPU16Regs:$x, CPU16Regs:$y),
1567                 (SelTBteqZSlt CPU16Regs:$x, CPU16Regs:$y,
1568                  CPU16Regs:$a, CPU16Regs:$b)>;
1570 //  signed a,b
1571 //  x = (a>b)?x:y
1573 //  if  (b < a) x = y
1575 def : Mips16Pat<(select (i32 (setgt CPU16Regs:$a, CPU16Regs:$b)),
1576                  CPU16Regs:$x, CPU16Regs:$y),
1577                 (SelTBtneZSlt CPU16Regs:$x, CPU16Regs:$y,
1578                  CPU16Regs:$b, CPU16Regs:$a)>;
1580 // unsigned a,b
1581 // x = (a>=b)?x:y
1583 // if !(a < b) x = y;
1585 def : Mips16Pat<
1586   (select (i32 (setuge CPU16Regs:$a, CPU16Regs:$b)),
1587    CPU16Regs:$x, CPU16Regs:$y),
1588   (SelTBteqZSltu CPU16Regs:$x, CPU16Regs:$y,
1589    CPU16Regs:$a, CPU16Regs:$b)>;
1591 //  unsigned a,b
1592 //  x = (a>b)?x:y
1594 //  if (b < a) x = y
1596 def : Mips16Pat<(select (i32 (setugt CPU16Regs:$a, CPU16Regs:$b)),
1597                  CPU16Regs:$x, CPU16Regs:$y),
1598                 (SelTBtneZSltu CPU16Regs:$x, CPU16Regs:$y,
1599                  CPU16Regs:$b, CPU16Regs:$a)>;
1601 // signed
1602 // x = (a >= k)?x:y
1603 // due to an llvm optimization, i don't think that this will ever
1604 // be used. This is transformed into x = (a > k-1)?x:y
1608 //def : Mips16Pat<
1609 //  (select (i32 (setge CPU16Regs:$lhs, immSExt16:$rhs)),
1610 //   CPU16Regs:$T, CPU16Regs:$F),
1611 //  (SelTBteqZSlti CPU16Regs:$T, CPU16Regs:$F,
1612 //   CPU16Regs:$lhs, immSExt16:$rhs)>;
1614 //def : Mips16Pat<
1615 //  (select (i32 (setuge CPU16Regs:$lhs, immSExt16:$rhs)),
1616 //   CPU16Regs:$T, CPU16Regs:$F),
1617 //  (SelTBteqZSltiu CPU16Regs:$T, CPU16Regs:$F,
1618 //   CPU16Regs:$lhs, immSExt16:$rhs)>;
1620 // signed
1621 // x = (a < k)?x:y
1623 // if !(a < k) x = y;
1625 def : Mips16Pat<
1626   (select (i32 (setlt CPU16Regs:$a, immSExt16:$b)),
1627    CPU16Regs:$x, CPU16Regs:$y),
1628   (SelTBtneZSlti CPU16Regs:$x, CPU16Regs:$y,
1629    CPU16Regs:$a, immSExt16:$b)>;
1634 // signed
1635 // x = (a <= b)? x : y
1637 // if  (b < a) x = y
1639 def : Mips16Pat<(select (i32 (setle CPU16Regs:$a, CPU16Regs:$b)),
1640                  CPU16Regs:$x, CPU16Regs:$y),
1641                 (SelTBteqZSlt CPU16Regs:$x, CPU16Regs:$y,
1642                  CPU16Regs:$b, CPU16Regs:$a)>;
1645 // unnsigned
1646 // x = (a <= b)? x : y
1648 // if  (b < a) x = y
1650 def : Mips16Pat<(select (i32 (setule CPU16Regs:$a, CPU16Regs:$b)),
1651                  CPU16Regs:$x, CPU16Regs:$y),
1652                 (SelTBteqZSltu CPU16Regs:$x, CPU16Regs:$y,
1653                  CPU16Regs:$b, CPU16Regs:$a)>;
1656 // signed/unsigned
1657 // x = (a == b)? x : y
1659 // if (a != b) x = y
1661 def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, CPU16Regs:$b)),
1662                  CPU16Regs:$x, CPU16Regs:$y),
1663                 (SelTBteqZCmp CPU16Regs:$x, CPU16Regs:$y,
1664                  CPU16Regs:$b, CPU16Regs:$a)>;
1667 // signed/unsigned
1668 // x = (a == 0)? x : y
1670 // if (a != 0) x = y
1672 def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, 0)),
1673                  CPU16Regs:$x, CPU16Regs:$y),
1674                 (SelBeqZ CPU16Regs:$x, CPU16Regs:$y,
1675                  CPU16Regs:$a)>;
1679 // signed/unsigned
1680 // x = (a == k)? x : y
1682 // if (a != k) x = y
1684 def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, immZExt16:$k)),
1685                  CPU16Regs:$x, CPU16Regs:$y),
1686                 (SelTBteqZCmpi CPU16Regs:$x, CPU16Regs:$y,
1687                  CPU16Regs:$a, immZExt16:$k)>;
1691 // signed/unsigned
1692 // x = (a != b)? x : y
1694 // if (a == b) x = y
1697 def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, CPU16Regs:$b)),
1698                  CPU16Regs:$x, CPU16Regs:$y),
1699                 (SelTBtneZCmp CPU16Regs:$x, CPU16Regs:$y,
1700                  CPU16Regs:$b, CPU16Regs:$a)>;
1703 // signed/unsigned
1704 // x = (a != 0)? x : y
1706 // if (a == 0) x = y
1708 def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, 0)),
1709                  CPU16Regs:$x, CPU16Regs:$y),
1710                 (SelBneZ CPU16Regs:$x, CPU16Regs:$y,
1711                  CPU16Regs:$a)>;
1713 // signed/unsigned
1714 // x = (a)? x : y
1716 // if (!a) x = y
1718 def : Mips16Pat<(select  CPU16Regs:$a,
1719                  CPU16Regs:$x, CPU16Regs:$y),
1720       (SelBneZ CPU16Regs:$x, CPU16Regs:$y,
1721        CPU16Regs:$a)>;
1725 // signed/unsigned
1726 // x = (a != k)? x : y
1728 // if (a == k) x = y
1730 def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, immZExt16:$k)),
1731                  CPU16Regs:$x, CPU16Regs:$y),
1732                 (SelTBtneZCmpi CPU16Regs:$x, CPU16Regs:$y,
1733                  CPU16Regs:$a, immZExt16:$k)>;
1736 // When writing C code to test setxx these patterns,
1737 // some will be transformed into
1738 // other things. So we test using C code but using -O3 and -O0
1740 // seteq
1742 def : Mips16Pat
1743   <(seteq CPU16Regs:$lhs,CPU16Regs:$rhs),
1744    (SltiuCCRxImmX16 (XorRxRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs), 1)>;
1746 def : Mips16Pat
1747   <(seteq CPU16Regs:$lhs, 0),
1748    (SltiuCCRxImmX16 CPU16Regs:$lhs, 1)>;
1752 // setge
1755 def: Mips16Pat
1756   <(setge CPU16Regs:$lhs, CPU16Regs:$rhs),
1757    (XorRxRxRy16 (SltCCRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs),
1758    (LiRxImmX16 1))>;
1761 // For constants, llvm transforms this to:
1762 // x > (k - 1) and then reverses the operands to use setlt. So this pattern
1763 // is not used now by the compiler. (Presumably checking that k-1 does not
1764 // overflow). The compiler never uses this at the current time, due to
1765 // other optimizations.
1767 //def: Mips16Pat
1768 //  <(setge CPU16Regs:$lhs, immSExt16:$rhs),
1769 //   (XorRxRxRy16 (SltiCCRxImmX16 CPU16Regs:$lhs, immSExt16:$rhs),
1770 //   (LiRxImmX16 1))>;
1772 // This catches the x >= -32768 case by transforming it to  x > -32769
1774 def: Mips16Pat
1775   <(setgt CPU16Regs:$lhs, -32769),
1776    (XorRxRxRy16 (SltiCCRxImmX16 CPU16Regs:$lhs, -32768),
1777    (LiRxImmX16 1))>;
1780 // setgt
1784 def: Mips16Pat
1785   <(setgt CPU16Regs:$lhs, CPU16Regs:$rhs),
1786    (SltCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs)>;
1789 // setle
1791 def: Mips16Pat
1792   <(setle CPU16Regs:$lhs, CPU16Regs:$rhs),
1793    (XorRxRxRy16 (SltCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs), (LiRxImm16 1))>;
1796 // setlt
1798 def: SetCC_R16<setlt, SltCCRxRy16>;
1800 def: SetCC_I16<setlt, immSExt16, SltiCCRxImmX16>;
1803 // setne
1805 def : Mips16Pat
1806   <(setne CPU16Regs:$lhs,CPU16Regs:$rhs),
1807    (SltuCCRxRy16 (LiRxImmX16 0),
1808    (XorRxRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs))>;
1812 // setuge
1814 def: Mips16Pat
1815   <(setuge CPU16Regs:$lhs, CPU16Regs:$rhs),
1816    (XorRxRxRy16 (SltuCCRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs),
1817    (LiRxImmX16 1))>;
1819 // this pattern will never be used because the compiler will transform
1820 // x >= k to x > (k - 1) and then use SLT
1822 //def: Mips16Pat
1823 //  <(setuge CPU16Regs:$lhs, immZExt16:$rhs),
1824 //   (XorRxRxRy16 (SltiuCCRxImmX16 CPU16Regs:$lhs, immZExt16:$rhs),
1825 //   (LiRxImmX16 1))>;
1828 // setugt
1830 def: Mips16Pat
1831   <(setugt CPU16Regs:$lhs, CPU16Regs:$rhs),
1832    (SltuCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs)>;
1835 // setule
1837 def: Mips16Pat
1838   <(setule CPU16Regs:$lhs, CPU16Regs:$rhs),
1839    (XorRxRxRy16 (SltuCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs), (LiRxImmX16 1))>;
1842 // setult
1844 def: SetCC_R16<setult, SltuCCRxRy16>;
1846 def: SetCC_I16<setult, immSExt16, SltiuCCRxImmX16>;
1848 def: Mips16Pat<(add CPU16Regs:$hi, (MipsLo tglobaladdr:$lo)),
1849                (AddiuRxRxImmX16 CPU16Regs:$hi, tglobaladdr:$lo)>;
1851 // hi/lo relocs
1852 def : Mips16Pat<(MipsHi tblockaddress:$in),
1853                 (SllX16 (LiRxImmX16 tblockaddress:$in), 16)>;
1854 def : Mips16Pat<(MipsHi tglobaladdr:$in),
1855                 (SllX16 (LiRxImmX16 tglobaladdr:$in), 16)>;
1856 def : Mips16Pat<(MipsHi tjumptable:$in),
1857                 (SllX16 (LiRxImmX16 tjumptable:$in), 16)>;
1859 def : Mips16Pat<(MipsLo tblockaddress:$in), (LiRxImmX16 tblockaddress:$in)>;
1861 def : Mips16Pat<(MipsTlsHi tglobaltlsaddr:$in),
1862                 (SllX16 (LiRxImmX16 tglobaltlsaddr:$in), 16)>;
1864 // wrapper_pic
1865 class Wrapper16Pat<SDNode node, Instruction ADDiuOp, RegisterClass RC>:
1866   Mips16Pat<(MipsWrapper RC:$gp, node:$in),
1867             (ADDiuOp RC:$gp, node:$in)>;
1870 def : Wrapper16Pat<tglobaladdr, AddiuRxRxImmX16, CPU16Regs>;
1871 def : Wrapper16Pat<tglobaltlsaddr, AddiuRxRxImmX16, CPU16Regs>;
1873 def : Mips16Pat<(i32 (extloadi8   addr16:$src)),
1874                 (LbuRxRyOffMemX16  addr16:$src)>;
1875 def : Mips16Pat<(i32 (extloadi16  addr16:$src)),
1876                 (LhuRxRyOffMemX16  addr16:$src)>;
1878 def: Mips16Pat<(trap), (Break16)>;
1880 def : Mips16Pat<(sext_inreg CPU16Regs:$val, i8),
1881                 (SebRx16 CPU16Regs:$val)>;
1883 def : Mips16Pat<(sext_inreg CPU16Regs:$val, i16),
1884                 (SehRx16 CPU16Regs:$val)>;
1886 def GotPrologue16:   
1887   MipsPseudo16<
1888     (outs CPU16Regs:$rh, CPU16Regs:$rl),
1889     (ins simm16:$immHi, simm16:$immLo),
1890     "li\t$rh, $immHi\n\taddiu\t$rl, $$pc, $immLo\n ",[]> ;
1892 // An operand for the CONSTPOOL_ENTRY pseudo-instruction.
1893 def cpinst_operand : Operand<i32> {
1894   // let PrintMethod = "printCPInstOperand";
1897 // CONSTPOOL_ENTRY - This instruction represents a floating constant pool in
1898 // the function.  The first operand is the ID# for this instruction, the second
1899 // is the index into the MachineConstantPool that this is, the third is the
1900 // size in bytes of this constant pool entry.
1902 let hasSideEffects = 0, isNotDuplicable = 1 in
1903 def CONSTPOOL_ENTRY :
1904 MipsPseudo16<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx,
1905                       i32imm:$size), "foo", []>;
1907 // Instruction Aliases
1909 let EncodingPredicates = [InMips16Mode] in
1910 def : MipsInstAlias<"nop", (Move32R16 ZERO, S0)>;