[ARM] Better patterns for fp <> predicate vectors
[llvm-complete.git] / lib / Target / Mips / MipsConstantIslandPass.cpp
blobeea28df7eda1ca7930c5c81a872f632b1aa7a311
1 //===- MipsConstantIslandPass.cpp - Emit Pc Relative loads ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass is used to make Pc relative loads of constants.
10 // For now, only Mips16 will use this.
12 // Loading constants inline is expensive on Mips16 and it's in general better
13 // to place the constant nearby in code space and then it can be loaded with a
14 // simple 16 bit load instruction.
16 // The constants can be not just numbers but addresses of functions and labels.
17 // This can be particularly helpful in static relocation mode for embedded
18 // non-linux targets.
20 //===----------------------------------------------------------------------===//
22 #include "Mips.h"
23 #include "Mips16InstrInfo.h"
24 #include "MipsMachineFunction.h"
25 #include "MipsSubtarget.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/CodeGen/MachineBasicBlock.h"
32 #include "llvm/CodeGen/MachineConstantPool.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineFunctionPass.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineInstrBuilder.h"
37 #include "llvm/CodeGen/MachineOperand.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/Config/llvm-config.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/Type.h"
45 #include "llvm/Support/CommandLine.h"
46 #include "llvm/Support/Compiler.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/Format.h"
50 #include "llvm/Support/MathExtras.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include <algorithm>
53 #include <cassert>
54 #include <cstdint>
55 #include <iterator>
56 #include <vector>
58 using namespace llvm;
60 #define DEBUG_TYPE "mips-constant-islands"
62 STATISTIC(NumCPEs, "Number of constpool entries");
63 STATISTIC(NumSplit, "Number of uncond branches inserted");
64 STATISTIC(NumCBrFixed, "Number of cond branches fixed");
65 STATISTIC(NumUBrFixed, "Number of uncond branches fixed");
67 // FIXME: This option should be removed once it has received sufficient testing.
68 static cl::opt<bool>
69 AlignConstantIslands("mips-align-constant-islands", cl::Hidden, cl::init(true),
70 cl::desc("Align constant islands in code"));
72 // Rather than do make check tests with huge amounts of code, we force
73 // the test to use this amount.
74 static cl::opt<int> ConstantIslandsSmallOffset(
75 "mips-constant-islands-small-offset",
76 cl::init(0),
77 cl::desc("Make small offsets be this amount for testing purposes"),
78 cl::Hidden);
80 // For testing purposes we tell it to not use relaxed load forms so that it
81 // will split blocks.
82 static cl::opt<bool> NoLoadRelaxation(
83 "mips-constant-islands-no-load-relaxation",
84 cl::init(false),
85 cl::desc("Don't relax loads to long loads - for testing purposes"),
86 cl::Hidden);
88 static unsigned int branchTargetOperand(MachineInstr *MI) {
89 switch (MI->getOpcode()) {
90 case Mips::Bimm16:
91 case Mips::BimmX16:
92 case Mips::Bteqz16:
93 case Mips::BteqzX16:
94 case Mips::Btnez16:
95 case Mips::BtnezX16:
96 case Mips::JalB16:
97 return 0;
98 case Mips::BeqzRxImm16:
99 case Mips::BeqzRxImmX16:
100 case Mips::BnezRxImm16:
101 case Mips::BnezRxImmX16:
102 return 1;
104 llvm_unreachable("Unknown branch type");
107 static unsigned int longformBranchOpcode(unsigned int Opcode) {
108 switch (Opcode) {
109 case Mips::Bimm16:
110 case Mips::BimmX16:
111 return Mips::BimmX16;
112 case Mips::Bteqz16:
113 case Mips::BteqzX16:
114 return Mips::BteqzX16;
115 case Mips::Btnez16:
116 case Mips::BtnezX16:
117 return Mips::BtnezX16;
118 case Mips::JalB16:
119 return Mips::JalB16;
120 case Mips::BeqzRxImm16:
121 case Mips::BeqzRxImmX16:
122 return Mips::BeqzRxImmX16;
123 case Mips::BnezRxImm16:
124 case Mips::BnezRxImmX16:
125 return Mips::BnezRxImmX16;
127 llvm_unreachable("Unknown branch type");
130 // FIXME: need to go through this whole constant islands port and check the math
131 // for branch ranges and clean this up and make some functions to calculate things
132 // that are done many times identically.
133 // Need to refactor some of the code to call this routine.
134 static unsigned int branchMaxOffsets(unsigned int Opcode) {
135 unsigned Bits, Scale;
136 switch (Opcode) {
137 case Mips::Bimm16:
138 Bits = 11;
139 Scale = 2;
140 break;
141 case Mips::BimmX16:
142 Bits = 16;
143 Scale = 2;
144 break;
145 case Mips::BeqzRxImm16:
146 Bits = 8;
147 Scale = 2;
148 break;
149 case Mips::BeqzRxImmX16:
150 Bits = 16;
151 Scale = 2;
152 break;
153 case Mips::BnezRxImm16:
154 Bits = 8;
155 Scale = 2;
156 break;
157 case Mips::BnezRxImmX16:
158 Bits = 16;
159 Scale = 2;
160 break;
161 case Mips::Bteqz16:
162 Bits = 8;
163 Scale = 2;
164 break;
165 case Mips::BteqzX16:
166 Bits = 16;
167 Scale = 2;
168 break;
169 case Mips::Btnez16:
170 Bits = 8;
171 Scale = 2;
172 break;
173 case Mips::BtnezX16:
174 Bits = 16;
175 Scale = 2;
176 break;
177 default:
178 llvm_unreachable("Unknown branch type");
180 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
181 return MaxOffs;
184 namespace {
186 using Iter = MachineBasicBlock::iterator;
187 using ReverseIter = MachineBasicBlock::reverse_iterator;
189 /// MipsConstantIslands - Due to limited PC-relative displacements, Mips
190 /// requires constant pool entries to be scattered among the instructions
191 /// inside a function. To do this, it completely ignores the normal LLVM
192 /// constant pool; instead, it places constants wherever it feels like with
193 /// special instructions.
195 /// The terminology used in this pass includes:
196 /// Islands - Clumps of constants placed in the function.
197 /// Water - Potential places where an island could be formed.
198 /// CPE - A constant pool entry that has been placed somewhere, which
199 /// tracks a list of users.
201 class MipsConstantIslands : public MachineFunctionPass {
202 /// BasicBlockInfo - Information about the offset and size of a single
203 /// basic block.
204 struct BasicBlockInfo {
205 /// Offset - Distance from the beginning of the function to the beginning
206 /// of this basic block.
208 /// Offsets are computed assuming worst case padding before an aligned
209 /// block. This means that subtracting basic block offsets always gives a
210 /// conservative estimate of the real distance which may be smaller.
212 /// Because worst case padding is used, the computed offset of an aligned
213 /// block may not actually be aligned.
214 unsigned Offset = 0;
216 /// Size - Size of the basic block in bytes. If the block contains
217 /// inline assembly, this is a worst case estimate.
219 /// The size does not include any alignment padding whether from the
220 /// beginning of the block, or from an aligned jump table at the end.
221 unsigned Size = 0;
223 BasicBlockInfo() = default;
225 // FIXME: ignore LogAlign for this patch
227 unsigned postOffset(unsigned LogAlign = 0) const {
228 unsigned PO = Offset + Size;
229 return PO;
233 std::vector<BasicBlockInfo> BBInfo;
235 /// WaterList - A sorted list of basic blocks where islands could be placed
236 /// (i.e. blocks that don't fall through to the following block, due
237 /// to a return, unreachable, or unconditional branch).
238 std::vector<MachineBasicBlock*> WaterList;
240 /// NewWaterList - The subset of WaterList that was created since the
241 /// previous iteration by inserting unconditional branches.
242 SmallSet<MachineBasicBlock*, 4> NewWaterList;
244 using water_iterator = std::vector<MachineBasicBlock *>::iterator;
246 /// CPUser - One user of a constant pool, keeping the machine instruction
247 /// pointer, the constant pool being referenced, and the max displacement
248 /// allowed from the instruction to the CP. The HighWaterMark records the
249 /// highest basic block where a new CPEntry can be placed. To ensure this
250 /// pass terminates, the CP entries are initially placed at the end of the
251 /// function and then move monotonically to lower addresses. The
252 /// exception to this rule is when the current CP entry for a particular
253 /// CPUser is out of range, but there is another CP entry for the same
254 /// constant value in range. We want to use the existing in-range CP
255 /// entry, but if it later moves out of range, the search for new water
256 /// should resume where it left off. The HighWaterMark is used to record
257 /// that point.
258 struct CPUser {
259 MachineInstr *MI;
260 MachineInstr *CPEMI;
261 MachineBasicBlock *HighWaterMark;
263 private:
264 unsigned MaxDisp;
265 unsigned LongFormMaxDisp; // mips16 has 16/32 bit instructions
266 // with different displacements
267 unsigned LongFormOpcode;
269 public:
270 bool NegOk;
272 CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp,
273 bool neg,
274 unsigned longformmaxdisp, unsigned longformopcode)
275 : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp),
276 LongFormMaxDisp(longformmaxdisp), LongFormOpcode(longformopcode),
277 NegOk(neg){
278 HighWaterMark = CPEMI->getParent();
281 /// getMaxDisp - Returns the maximum displacement supported by MI.
282 unsigned getMaxDisp() const {
283 unsigned xMaxDisp = ConstantIslandsSmallOffset?
284 ConstantIslandsSmallOffset: MaxDisp;
285 return xMaxDisp;
288 void setMaxDisp(unsigned val) {
289 MaxDisp = val;
292 unsigned getLongFormMaxDisp() const {
293 return LongFormMaxDisp;
296 unsigned getLongFormOpcode() const {
297 return LongFormOpcode;
301 /// CPUsers - Keep track of all of the machine instructions that use various
302 /// constant pools and their max displacement.
303 std::vector<CPUser> CPUsers;
305 /// CPEntry - One per constant pool entry, keeping the machine instruction
306 /// pointer, the constpool index, and the number of CPUser's which
307 /// reference this entry.
308 struct CPEntry {
309 MachineInstr *CPEMI;
310 unsigned CPI;
311 unsigned RefCount;
313 CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0)
314 : CPEMI(cpemi), CPI(cpi), RefCount(rc) {}
317 /// CPEntries - Keep track of all of the constant pool entry machine
318 /// instructions. For each original constpool index (i.e. those that
319 /// existed upon entry to this pass), it keeps a vector of entries.
320 /// Original elements are cloned as we go along; the clones are
321 /// put in the vector of the original element, but have distinct CPIs.
322 std::vector<std::vector<CPEntry>> CPEntries;
324 /// ImmBranch - One per immediate branch, keeping the machine instruction
325 /// pointer, conditional or unconditional, the max displacement,
326 /// and (if isCond is true) the corresponding unconditional branch
327 /// opcode.
328 struct ImmBranch {
329 MachineInstr *MI;
330 unsigned MaxDisp : 31;
331 bool isCond : 1;
332 int UncondBr;
334 ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr)
335 : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {}
338 /// ImmBranches - Keep track of all the immediate branch instructions.
340 std::vector<ImmBranch> ImmBranches;
342 /// HasFarJump - True if any far jump instruction has been emitted during
343 /// the branch fix up pass.
344 bool HasFarJump;
346 const MipsSubtarget *STI = nullptr;
347 const Mips16InstrInfo *TII;
348 MipsFunctionInfo *MFI;
349 MachineFunction *MF = nullptr;
350 MachineConstantPool *MCP = nullptr;
352 unsigned PICLabelUId;
353 bool PrescannedForConstants = false;
355 void initPICLabelUId(unsigned UId) {
356 PICLabelUId = UId;
359 unsigned createPICLabelUId() {
360 return PICLabelUId++;
363 public:
364 static char ID;
366 MipsConstantIslands() : MachineFunctionPass(ID) {}
368 StringRef getPassName() const override { return "Mips Constant Islands"; }
370 bool runOnMachineFunction(MachineFunction &F) override;
372 MachineFunctionProperties getRequiredProperties() const override {
373 return MachineFunctionProperties().set(
374 MachineFunctionProperties::Property::NoVRegs);
377 void doInitialPlacement(std::vector<MachineInstr*> &CPEMIs);
378 CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI);
379 unsigned getCPELogAlign(const MachineInstr &CPEMI);
380 void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs);
381 unsigned getOffsetOf(MachineInstr *MI) const;
382 unsigned getUserOffset(CPUser&) const;
383 void dumpBBs();
385 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
386 unsigned Disp, bool NegativeOK);
387 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
388 const CPUser &U);
390 void computeBlockSize(MachineBasicBlock *MBB);
391 MachineBasicBlock *splitBlockBeforeInstr(MachineInstr &MI);
392 void updateForInsertedWaterBlock(MachineBasicBlock *NewBB);
393 void adjustBBOffsetsAfter(MachineBasicBlock *BB);
394 bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI);
395 int findInRangeCPEntry(CPUser& U, unsigned UserOffset);
396 int findLongFormInRangeCPEntry(CPUser& U, unsigned UserOffset);
397 bool findAvailableWater(CPUser&U, unsigned UserOffset,
398 water_iterator &WaterIter);
399 void createNewWater(unsigned CPUserIndex, unsigned UserOffset,
400 MachineBasicBlock *&NewMBB);
401 bool handleConstantPoolUser(unsigned CPUserIndex);
402 void removeDeadCPEMI(MachineInstr *CPEMI);
403 bool removeUnusedCPEntries();
404 bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
405 MachineInstr *CPEMI, unsigned Disp, bool NegOk,
406 bool DoDump = false);
407 bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water,
408 CPUser &U, unsigned &Growth);
409 bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp);
410 bool fixupImmediateBr(ImmBranch &Br);
411 bool fixupConditionalBr(ImmBranch &Br);
412 bool fixupUnconditionalBr(ImmBranch &Br);
414 void prescanForConstants();
417 } // end anonymous namespace
419 char MipsConstantIslands::ID = 0;
421 bool MipsConstantIslands::isOffsetInRange
422 (unsigned UserOffset, unsigned TrialOffset,
423 const CPUser &U) {
424 return isOffsetInRange(UserOffset, TrialOffset,
425 U.getMaxDisp(), U.NegOk);
428 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
429 /// print block size and offset information - debugging
430 LLVM_DUMP_METHOD void MipsConstantIslands::dumpBBs() {
431 for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) {
432 const BasicBlockInfo &BBI = BBInfo[J];
433 dbgs() << format("%08x %bb.%u\t", BBI.Offset, J)
434 << format(" size=%#x\n", BBInfo[J].Size);
437 #endif
439 bool MipsConstantIslands::runOnMachineFunction(MachineFunction &mf) {
440 // The intention is for this to be a mips16 only pass for now
441 // FIXME:
442 MF = &mf;
443 MCP = mf.getConstantPool();
444 STI = &static_cast<const MipsSubtarget &>(mf.getSubtarget());
445 LLVM_DEBUG(dbgs() << "constant island machine function "
446 << "\n");
447 if (!STI->inMips16Mode() || !MipsSubtarget::useConstantIslands()) {
448 return false;
450 TII = (const Mips16InstrInfo *)STI->getInstrInfo();
451 MFI = MF->getInfo<MipsFunctionInfo>();
452 LLVM_DEBUG(dbgs() << "constant island processing "
453 << "\n");
455 // will need to make predermination if there is any constants we need to
456 // put in constant islands. TBD.
458 if (!PrescannedForConstants) prescanForConstants();
460 HasFarJump = false;
461 // This pass invalidates liveness information when it splits basic blocks.
462 MF->getRegInfo().invalidateLiveness();
464 // Renumber all of the machine basic blocks in the function, guaranteeing that
465 // the numbers agree with the position of the block in the function.
466 MF->RenumberBlocks();
468 bool MadeChange = false;
470 // Perform the initial placement of the constant pool entries. To start with,
471 // we put them all at the end of the function.
472 std::vector<MachineInstr*> CPEMIs;
473 if (!MCP->isEmpty())
474 doInitialPlacement(CPEMIs);
476 /// The next UID to take is the first unused one.
477 initPICLabelUId(CPEMIs.size());
479 // Do the initial scan of the function, building up information about the
480 // sizes of each block, the location of all the water, and finding all of the
481 // constant pool users.
482 initializeFunctionInfo(CPEMIs);
483 CPEMIs.clear();
484 LLVM_DEBUG(dumpBBs());
486 /// Remove dead constant pool entries.
487 MadeChange |= removeUnusedCPEntries();
489 // Iteratively place constant pool entries and fix up branches until there
490 // is no change.
491 unsigned NoCPIters = 0, NoBRIters = 0;
492 (void)NoBRIters;
493 while (true) {
494 LLVM_DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n');
495 bool CPChange = false;
496 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
497 CPChange |= handleConstantPoolUser(i);
498 if (CPChange && ++NoCPIters > 30)
499 report_fatal_error("Constant Island pass failed to converge!");
500 LLVM_DEBUG(dumpBBs());
502 // Clear NewWaterList now. If we split a block for branches, it should
503 // appear as "new water" for the next iteration of constant pool placement.
504 NewWaterList.clear();
506 LLVM_DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n');
507 bool BRChange = false;
508 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
509 BRChange |= fixupImmediateBr(ImmBranches[i]);
510 if (BRChange && ++NoBRIters > 30)
511 report_fatal_error("Branch Fix Up pass failed to converge!");
512 LLVM_DEBUG(dumpBBs());
513 if (!CPChange && !BRChange)
514 break;
515 MadeChange = true;
518 LLVM_DEBUG(dbgs() << '\n'; dumpBBs());
520 BBInfo.clear();
521 WaterList.clear();
522 CPUsers.clear();
523 CPEntries.clear();
524 ImmBranches.clear();
525 return MadeChange;
528 /// doInitialPlacement - Perform the initial placement of the constant pool
529 /// entries. To start with, we put them all at the end of the function.
530 void
531 MipsConstantIslands::doInitialPlacement(std::vector<MachineInstr*> &CPEMIs) {
532 // Create the basic block to hold the CPE's.
533 MachineBasicBlock *BB = MF->CreateMachineBasicBlock();
534 MF->push_back(BB);
536 // MachineConstantPool measures alignment in bytes. We measure in log2(bytes).
537 unsigned MaxAlign = Log2_32(MCP->getConstantPoolAlignment());
539 // Mark the basic block as required by the const-pool.
540 // If AlignConstantIslands isn't set, use 4-byte alignment for everything.
541 BB->setAlignment(AlignConstantIslands ? MaxAlign : 2);
543 // The function needs to be as aligned as the basic blocks. The linker may
544 // move functions around based on their alignment.
545 MF->ensureAlignment(BB->getAlignment());
547 // Order the entries in BB by descending alignment. That ensures correct
548 // alignment of all entries as long as BB is sufficiently aligned. Keep
549 // track of the insertion point for each alignment. We are going to bucket
550 // sort the entries as they are created.
551 SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxAlign + 1, BB->end());
553 // Add all of the constants from the constant pool to the end block, use an
554 // identity mapping of CPI's to CPE's.
555 const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants();
557 const DataLayout &TD = MF->getDataLayout();
558 for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
559 unsigned Size = TD.getTypeAllocSize(CPs[i].getType());
560 assert(Size >= 4 && "Too small constant pool entry");
561 unsigned Align = CPs[i].getAlignment();
562 assert(isPowerOf2_32(Align) && "Invalid alignment");
563 // Verify that all constant pool entries are a multiple of their alignment.
564 // If not, we would have to pad them out so that instructions stay aligned.
565 assert((Size % Align) == 0 && "CP Entry not multiple of 4 bytes!");
567 // Insert CONSTPOOL_ENTRY before entries with a smaller alignment.
568 unsigned LogAlign = Log2_32(Align);
569 MachineBasicBlock::iterator InsAt = InsPoint[LogAlign];
571 MachineInstr *CPEMI =
572 BuildMI(*BB, InsAt, DebugLoc(), TII->get(Mips::CONSTPOOL_ENTRY))
573 .addImm(i).addConstantPoolIndex(i).addImm(Size);
575 CPEMIs.push_back(CPEMI);
577 // Ensure that future entries with higher alignment get inserted before
578 // CPEMI. This is bucket sort with iterators.
579 for (unsigned a = LogAlign + 1; a <= MaxAlign; ++a)
580 if (InsPoint[a] == InsAt)
581 InsPoint[a] = CPEMI;
582 // Add a new CPEntry, but no corresponding CPUser yet.
583 CPEntries.emplace_back(1, CPEntry(CPEMI, i));
584 ++NumCPEs;
585 LLVM_DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = "
586 << Size << ", align = " << Align << '\n');
588 LLVM_DEBUG(BB->dump());
591 /// BBHasFallthrough - Return true if the specified basic block can fallthrough
592 /// into the block immediately after it.
593 static bool BBHasFallthrough(MachineBasicBlock *MBB) {
594 // Get the next machine basic block in the function.
595 MachineFunction::iterator MBBI = MBB->getIterator();
596 // Can't fall off end of function.
597 if (std::next(MBBI) == MBB->getParent()->end())
598 return false;
600 MachineBasicBlock *NextBB = &*std::next(MBBI);
601 for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
602 E = MBB->succ_end(); I != E; ++I)
603 if (*I == NextBB)
604 return true;
606 return false;
609 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
610 /// look up the corresponding CPEntry.
611 MipsConstantIslands::CPEntry
612 *MipsConstantIslands::findConstPoolEntry(unsigned CPI,
613 const MachineInstr *CPEMI) {
614 std::vector<CPEntry> &CPEs = CPEntries[CPI];
615 // Number of entries per constpool index should be small, just do a
616 // linear search.
617 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
618 if (CPEs[i].CPEMI == CPEMI)
619 return &CPEs[i];
621 return nullptr;
624 /// getCPELogAlign - Returns the required alignment of the constant pool entry
625 /// represented by CPEMI. Alignment is measured in log2(bytes) units.
626 unsigned MipsConstantIslands::getCPELogAlign(const MachineInstr &CPEMI) {
627 assert(CPEMI.getOpcode() == Mips::CONSTPOOL_ENTRY);
629 // Everything is 4-byte aligned unless AlignConstantIslands is set.
630 if (!AlignConstantIslands)
631 return 2;
633 unsigned CPI = CPEMI.getOperand(1).getIndex();
634 assert(CPI < MCP->getConstants().size() && "Invalid constant pool index.");
635 unsigned Align = MCP->getConstants()[CPI].getAlignment();
636 assert(isPowerOf2_32(Align) && "Invalid CPE alignment");
637 return Log2_32(Align);
640 /// initializeFunctionInfo - Do the initial scan of the function, building up
641 /// information about the sizes of each block, the location of all the water,
642 /// and finding all of the constant pool users.
643 void MipsConstantIslands::
644 initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) {
645 BBInfo.clear();
646 BBInfo.resize(MF->getNumBlockIDs());
648 // First thing, compute the size of all basic blocks, and see if the function
649 // has any inline assembly in it. If so, we have to be conservative about
650 // alignment assumptions, as we don't know for sure the size of any
651 // instructions in the inline assembly.
652 for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I)
653 computeBlockSize(&*I);
655 // Compute block offsets.
656 adjustBBOffsetsAfter(&MF->front());
658 // Now go back through the instructions and build up our data structures.
659 for (MachineBasicBlock &MBB : *MF) {
660 // If this block doesn't fall through into the next MBB, then this is
661 // 'water' that a constant pool island could be placed.
662 if (!BBHasFallthrough(&MBB))
663 WaterList.push_back(&MBB);
664 for (MachineInstr &MI : MBB) {
665 if (MI.isDebugInstr())
666 continue;
668 int Opc = MI.getOpcode();
669 if (MI.isBranch()) {
670 bool isCond = false;
671 unsigned Bits = 0;
672 unsigned Scale = 1;
673 int UOpc = Opc;
674 switch (Opc) {
675 default:
676 continue; // Ignore other branches for now
677 case Mips::Bimm16:
678 Bits = 11;
679 Scale = 2;
680 isCond = false;
681 break;
682 case Mips::BimmX16:
683 Bits = 16;
684 Scale = 2;
685 isCond = false;
686 break;
687 case Mips::BeqzRxImm16:
688 UOpc=Mips::Bimm16;
689 Bits = 8;
690 Scale = 2;
691 isCond = true;
692 break;
693 case Mips::BeqzRxImmX16:
694 UOpc=Mips::Bimm16;
695 Bits = 16;
696 Scale = 2;
697 isCond = true;
698 break;
699 case Mips::BnezRxImm16:
700 UOpc=Mips::Bimm16;
701 Bits = 8;
702 Scale = 2;
703 isCond = true;
704 break;
705 case Mips::BnezRxImmX16:
706 UOpc=Mips::Bimm16;
707 Bits = 16;
708 Scale = 2;
709 isCond = true;
710 break;
711 case Mips::Bteqz16:
712 UOpc=Mips::Bimm16;
713 Bits = 8;
714 Scale = 2;
715 isCond = true;
716 break;
717 case Mips::BteqzX16:
718 UOpc=Mips::Bimm16;
719 Bits = 16;
720 Scale = 2;
721 isCond = true;
722 break;
723 case Mips::Btnez16:
724 UOpc=Mips::Bimm16;
725 Bits = 8;
726 Scale = 2;
727 isCond = true;
728 break;
729 case Mips::BtnezX16:
730 UOpc=Mips::Bimm16;
731 Bits = 16;
732 Scale = 2;
733 isCond = true;
734 break;
736 // Record this immediate branch.
737 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
738 ImmBranches.push_back(ImmBranch(&MI, MaxOffs, isCond, UOpc));
741 if (Opc == Mips::CONSTPOOL_ENTRY)
742 continue;
744 // Scan the instructions for constant pool operands.
745 for (unsigned op = 0, e = MI.getNumOperands(); op != e; ++op)
746 if (MI.getOperand(op).isCPI()) {
747 // We found one. The addressing mode tells us the max displacement
748 // from the PC that this instruction permits.
750 // Basic size info comes from the TSFlags field.
751 unsigned Bits = 0;
752 unsigned Scale = 1;
753 bool NegOk = false;
754 unsigned LongFormBits = 0;
755 unsigned LongFormScale = 0;
756 unsigned LongFormOpcode = 0;
757 switch (Opc) {
758 default:
759 llvm_unreachable("Unknown addressing mode for CP reference!");
760 case Mips::LwRxPcTcp16:
761 Bits = 8;
762 Scale = 4;
763 LongFormOpcode = Mips::LwRxPcTcpX16;
764 LongFormBits = 14;
765 LongFormScale = 1;
766 break;
767 case Mips::LwRxPcTcpX16:
768 Bits = 14;
769 Scale = 1;
770 NegOk = true;
771 break;
773 // Remember that this is a user of a CP entry.
774 unsigned CPI = MI.getOperand(op).getIndex();
775 MachineInstr *CPEMI = CPEMIs[CPI];
776 unsigned MaxOffs = ((1 << Bits)-1) * Scale;
777 unsigned LongFormMaxOffs = ((1 << LongFormBits)-1) * LongFormScale;
778 CPUsers.push_back(CPUser(&MI, CPEMI, MaxOffs, NegOk, LongFormMaxOffs,
779 LongFormOpcode));
781 // Increment corresponding CPEntry reference count.
782 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
783 assert(CPE && "Cannot find a corresponding CPEntry!");
784 CPE->RefCount++;
786 // Instructions can only use one CP entry, don't bother scanning the
787 // rest of the operands.
788 break;
794 /// computeBlockSize - Compute the size and some alignment information for MBB.
795 /// This function updates BBInfo directly.
796 void MipsConstantIslands::computeBlockSize(MachineBasicBlock *MBB) {
797 BasicBlockInfo &BBI = BBInfo[MBB->getNumber()];
798 BBI.Size = 0;
800 for (const MachineInstr &MI : *MBB)
801 BBI.Size += TII->getInstSizeInBytes(MI);
804 /// getOffsetOf - Return the current offset of the specified machine instruction
805 /// from the start of the function. This offset changes as stuff is moved
806 /// around inside the function.
807 unsigned MipsConstantIslands::getOffsetOf(MachineInstr *MI) const {
808 MachineBasicBlock *MBB = MI->getParent();
810 // The offset is composed of two things: the sum of the sizes of all MBB's
811 // before this instruction's block, and the offset from the start of the block
812 // it is in.
813 unsigned Offset = BBInfo[MBB->getNumber()].Offset;
815 // Sum instructions before MI in MBB.
816 for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) {
817 assert(I != MBB->end() && "Didn't find MI in its own basic block?");
818 Offset += TII->getInstSizeInBytes(*I);
820 return Offset;
823 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
824 /// ID.
825 static bool CompareMBBNumbers(const MachineBasicBlock *LHS,
826 const MachineBasicBlock *RHS) {
827 return LHS->getNumber() < RHS->getNumber();
830 /// updateForInsertedWaterBlock - When a block is newly inserted into the
831 /// machine function, it upsets all of the block numbers. Renumber the blocks
832 /// and update the arrays that parallel this numbering.
833 void MipsConstantIslands::updateForInsertedWaterBlock
834 (MachineBasicBlock *NewBB) {
835 // Renumber the MBB's to keep them consecutive.
836 NewBB->getParent()->RenumberBlocks(NewBB);
838 // Insert an entry into BBInfo to align it properly with the (newly
839 // renumbered) block numbers.
840 BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
842 // Next, update WaterList. Specifically, we need to add NewMBB as having
843 // available water after it.
844 water_iterator IP = llvm::lower_bound(WaterList, NewBB, CompareMBBNumbers);
845 WaterList.insert(IP, NewBB);
848 unsigned MipsConstantIslands::getUserOffset(CPUser &U) const {
849 return getOffsetOf(U.MI);
852 /// Split the basic block containing MI into two blocks, which are joined by
853 /// an unconditional branch. Update data structures and renumber blocks to
854 /// account for this change and returns the newly created block.
855 MachineBasicBlock *
856 MipsConstantIslands::splitBlockBeforeInstr(MachineInstr &MI) {
857 MachineBasicBlock *OrigBB = MI.getParent();
859 // Create a new MBB for the code after the OrigBB.
860 MachineBasicBlock *NewBB =
861 MF->CreateMachineBasicBlock(OrigBB->getBasicBlock());
862 MachineFunction::iterator MBBI = ++OrigBB->getIterator();
863 MF->insert(MBBI, NewBB);
865 // Splice the instructions starting with MI over to NewBB.
866 NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
868 // Add an unconditional branch from OrigBB to NewBB.
869 // Note the new unconditional branch is not being recorded.
870 // There doesn't seem to be meaningful DebugInfo available; this doesn't
871 // correspond to anything in the source.
872 BuildMI(OrigBB, DebugLoc(), TII->get(Mips::Bimm16)).addMBB(NewBB);
873 ++NumSplit;
875 // Update the CFG. All succs of OrigBB are now succs of NewBB.
876 NewBB->transferSuccessors(OrigBB);
878 // OrigBB branches to NewBB.
879 OrigBB->addSuccessor(NewBB);
881 // Update internal data structures to account for the newly inserted MBB.
882 // This is almost the same as updateForInsertedWaterBlock, except that
883 // the Water goes after OrigBB, not NewBB.
884 MF->RenumberBlocks(NewBB);
886 // Insert an entry into BBInfo to align it properly with the (newly
887 // renumbered) block numbers.
888 BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
890 // Next, update WaterList. Specifically, we need to add OrigMBB as having
891 // available water after it (but not if it's already there, which happens
892 // when splitting before a conditional branch that is followed by an
893 // unconditional branch - in that case we want to insert NewBB).
894 water_iterator IP = llvm::lower_bound(WaterList, OrigBB, CompareMBBNumbers);
895 MachineBasicBlock* WaterBB = *IP;
896 if (WaterBB == OrigBB)
897 WaterList.insert(std::next(IP), NewBB);
898 else
899 WaterList.insert(IP, OrigBB);
900 NewWaterList.insert(OrigBB);
902 // Figure out how large the OrigBB is. As the first half of the original
903 // block, it cannot contain a tablejump. The size includes
904 // the new jump we added. (It should be possible to do this without
905 // recounting everything, but it's very confusing, and this is rarely
906 // executed.)
907 computeBlockSize(OrigBB);
909 // Figure out how large the NewMBB is. As the second half of the original
910 // block, it may contain a tablejump.
911 computeBlockSize(NewBB);
913 // All BBOffsets following these blocks must be modified.
914 adjustBBOffsetsAfter(OrigBB);
916 return NewBB;
919 /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool
920 /// reference) is within MaxDisp of TrialOffset (a proposed location of a
921 /// constant pool entry).
922 bool MipsConstantIslands::isOffsetInRange(unsigned UserOffset,
923 unsigned TrialOffset, unsigned MaxDisp,
924 bool NegativeOK) {
925 if (UserOffset <= TrialOffset) {
926 // User before the Trial.
927 if (TrialOffset - UserOffset <= MaxDisp)
928 return true;
929 } else if (NegativeOK) {
930 if (UserOffset - TrialOffset <= MaxDisp)
931 return true;
933 return false;
936 /// isWaterInRange - Returns true if a CPE placed after the specified
937 /// Water (a basic block) will be in range for the specific MI.
939 /// Compute how much the function will grow by inserting a CPE after Water.
940 bool MipsConstantIslands::isWaterInRange(unsigned UserOffset,
941 MachineBasicBlock* Water, CPUser &U,
942 unsigned &Growth) {
943 unsigned CPELogAlign = getCPELogAlign(*U.CPEMI);
944 unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPELogAlign);
945 unsigned NextBlockOffset, NextBlockAlignment;
946 MachineFunction::const_iterator NextBlock = ++Water->getIterator();
947 if (NextBlock == MF->end()) {
948 NextBlockOffset = BBInfo[Water->getNumber()].postOffset();
949 NextBlockAlignment = 0;
950 } else {
951 NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset;
952 NextBlockAlignment = NextBlock->getAlignment();
954 unsigned Size = U.CPEMI->getOperand(2).getImm();
955 unsigned CPEEnd = CPEOffset + Size;
957 // The CPE may be able to hide in the alignment padding before the next
958 // block. It may also cause more padding to be required if it is more aligned
959 // that the next block.
960 if (CPEEnd > NextBlockOffset) {
961 Growth = CPEEnd - NextBlockOffset;
962 // Compute the padding that would go at the end of the CPE to align the next
963 // block.
964 Growth += OffsetToAlignment(CPEEnd, 1ULL << NextBlockAlignment);
966 // If the CPE is to be inserted before the instruction, that will raise
967 // the offset of the instruction. Also account for unknown alignment padding
968 // in blocks between CPE and the user.
969 if (CPEOffset < UserOffset)
970 UserOffset += Growth;
971 } else
972 // CPE fits in existing padding.
973 Growth = 0;
975 return isOffsetInRange(UserOffset, CPEOffset, U);
978 /// isCPEntryInRange - Returns true if the distance between specific MI and
979 /// specific ConstPool entry instruction can fit in MI's displacement field.
980 bool MipsConstantIslands::isCPEntryInRange
981 (MachineInstr *MI, unsigned UserOffset,
982 MachineInstr *CPEMI, unsigned MaxDisp,
983 bool NegOk, bool DoDump) {
984 unsigned CPEOffset = getOffsetOf(CPEMI);
986 if (DoDump) {
987 LLVM_DEBUG({
988 unsigned Block = MI->getParent()->getNumber();
989 const BasicBlockInfo &BBI = BBInfo[Block];
990 dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm()
991 << " max delta=" << MaxDisp
992 << format(" insn address=%#x", UserOffset) << " in "
993 << printMBBReference(*MI->getParent()) << ": "
994 << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI
995 << format("CPE address=%#x offset=%+d: ", CPEOffset,
996 int(CPEOffset - UserOffset));
1000 return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk);
1003 #ifndef NDEBUG
1004 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor
1005 /// unconditionally branches to its only successor.
1006 static bool BBIsJumpedOver(MachineBasicBlock *MBB) {
1007 if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
1008 return false;
1009 MachineBasicBlock *Succ = *MBB->succ_begin();
1010 MachineBasicBlock *Pred = *MBB->pred_begin();
1011 MachineInstr *PredMI = &Pred->back();
1012 if (PredMI->getOpcode() == Mips::Bimm16)
1013 return PredMI->getOperand(0).getMBB() == Succ;
1014 return false;
1016 #endif
1018 void MipsConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) {
1019 unsigned BBNum = BB->getNumber();
1020 for(unsigned i = BBNum + 1, e = MF->getNumBlockIDs(); i < e; ++i) {
1021 // Get the offset and known bits at the end of the layout predecessor.
1022 // Include the alignment of the current block.
1023 unsigned Offset = BBInfo[i - 1].Offset + BBInfo[i - 1].Size;
1024 BBInfo[i].Offset = Offset;
1028 /// decrementCPEReferenceCount - find the constant pool entry with index CPI
1029 /// and instruction CPEMI, and decrement its refcount. If the refcount
1030 /// becomes 0 remove the entry and instruction. Returns true if we removed
1031 /// the entry, false if we didn't.
1032 bool MipsConstantIslands::decrementCPEReferenceCount(unsigned CPI,
1033 MachineInstr *CPEMI) {
1034 // Find the old entry. Eliminate it if it is no longer used.
1035 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
1036 assert(CPE && "Unexpected!");
1037 if (--CPE->RefCount == 0) {
1038 removeDeadCPEMI(CPEMI);
1039 CPE->CPEMI = nullptr;
1040 --NumCPEs;
1041 return true;
1043 return false;
1046 /// LookForCPEntryInRange - see if the currently referenced CPE is in range;
1047 /// if not, see if an in-range clone of the CPE is in range, and if so,
1048 /// change the data structures so the user references the clone. Returns:
1049 /// 0 = no existing entry found
1050 /// 1 = entry found, and there were no code insertions or deletions
1051 /// 2 = entry found, and there were code insertions or deletions
1052 int MipsConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset)
1054 MachineInstr *UserMI = U.MI;
1055 MachineInstr *CPEMI = U.CPEMI;
1057 // Check to see if the CPE is already in-range.
1058 if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk,
1059 true)) {
1060 LLVM_DEBUG(dbgs() << "In range\n");
1061 return 1;
1064 // No. Look for previously created clones of the CPE that are in range.
1065 unsigned CPI = CPEMI->getOperand(1).getIndex();
1066 std::vector<CPEntry> &CPEs = CPEntries[CPI];
1067 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
1068 // We already tried this one
1069 if (CPEs[i].CPEMI == CPEMI)
1070 continue;
1071 // Removing CPEs can leave empty entries, skip
1072 if (CPEs[i].CPEMI == nullptr)
1073 continue;
1074 if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(),
1075 U.NegOk)) {
1076 LLVM_DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#"
1077 << CPEs[i].CPI << "\n");
1078 // Point the CPUser node to the replacement
1079 U.CPEMI = CPEs[i].CPEMI;
1080 // Change the CPI in the instruction operand to refer to the clone.
1081 for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
1082 if (UserMI->getOperand(j).isCPI()) {
1083 UserMI->getOperand(j).setIndex(CPEs[i].CPI);
1084 break;
1086 // Adjust the refcount of the clone...
1087 CPEs[i].RefCount++;
1088 // ...and the original. If we didn't remove the old entry, none of the
1089 // addresses changed, so we don't need another pass.
1090 return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
1093 return 0;
1096 /// LookForCPEntryInRange - see if the currently referenced CPE is in range;
1097 /// This version checks if the longer form of the instruction can be used to
1098 /// to satisfy things.
1099 /// if not, see if an in-range clone of the CPE is in range, and if so,
1100 /// change the data structures so the user references the clone. Returns:
1101 /// 0 = no existing entry found
1102 /// 1 = entry found, and there were no code insertions or deletions
1103 /// 2 = entry found, and there were code insertions or deletions
1104 int MipsConstantIslands::findLongFormInRangeCPEntry
1105 (CPUser& U, unsigned UserOffset)
1107 MachineInstr *UserMI = U.MI;
1108 MachineInstr *CPEMI = U.CPEMI;
1110 // Check to see if the CPE is already in-range.
1111 if (isCPEntryInRange(UserMI, UserOffset, CPEMI,
1112 U.getLongFormMaxDisp(), U.NegOk,
1113 true)) {
1114 LLVM_DEBUG(dbgs() << "In range\n");
1115 UserMI->setDesc(TII->get(U.getLongFormOpcode()));
1116 U.setMaxDisp(U.getLongFormMaxDisp());
1117 return 2; // instruction is longer length now
1120 // No. Look for previously created clones of the CPE that are in range.
1121 unsigned CPI = CPEMI->getOperand(1).getIndex();
1122 std::vector<CPEntry> &CPEs = CPEntries[CPI];
1123 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
1124 // We already tried this one
1125 if (CPEs[i].CPEMI == CPEMI)
1126 continue;
1127 // Removing CPEs can leave empty entries, skip
1128 if (CPEs[i].CPEMI == nullptr)
1129 continue;
1130 if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI,
1131 U.getLongFormMaxDisp(), U.NegOk)) {
1132 LLVM_DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#"
1133 << CPEs[i].CPI << "\n");
1134 // Point the CPUser node to the replacement
1135 U.CPEMI = CPEs[i].CPEMI;
1136 // Change the CPI in the instruction operand to refer to the clone.
1137 for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
1138 if (UserMI->getOperand(j).isCPI()) {
1139 UserMI->getOperand(j).setIndex(CPEs[i].CPI);
1140 break;
1142 // Adjust the refcount of the clone...
1143 CPEs[i].RefCount++;
1144 // ...and the original. If we didn't remove the old entry, none of the
1145 // addresses changed, so we don't need another pass.
1146 return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
1149 return 0;
1152 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in
1153 /// the specific unconditional branch instruction.
1154 static inline unsigned getUnconditionalBrDisp(int Opc) {
1155 switch (Opc) {
1156 case Mips::Bimm16:
1157 return ((1<<10)-1)*2;
1158 case Mips::BimmX16:
1159 return ((1<<16)-1)*2;
1160 default:
1161 break;
1163 return ((1<<16)-1)*2;
1166 /// findAvailableWater - Look for an existing entry in the WaterList in which
1167 /// we can place the CPE referenced from U so it's within range of U's MI.
1168 /// Returns true if found, false if not. If it returns true, WaterIter
1169 /// is set to the WaterList entry.
1170 /// To ensure that this pass
1171 /// terminates, the CPE location for a particular CPUser is only allowed to
1172 /// move to a lower address, so search backward from the end of the list and
1173 /// prefer the first water that is in range.
1174 bool MipsConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset,
1175 water_iterator &WaterIter) {
1176 if (WaterList.empty())
1177 return false;
1179 unsigned BestGrowth = ~0u;
1180 for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();;
1181 --IP) {
1182 MachineBasicBlock* WaterBB = *IP;
1183 // Check if water is in range and is either at a lower address than the
1184 // current "high water mark" or a new water block that was created since
1185 // the previous iteration by inserting an unconditional branch. In the
1186 // latter case, we want to allow resetting the high water mark back to
1187 // this new water since we haven't seen it before. Inserting branches
1188 // should be relatively uncommon and when it does happen, we want to be
1189 // sure to take advantage of it for all the CPEs near that block, so that
1190 // we don't insert more branches than necessary.
1191 unsigned Growth;
1192 if (isWaterInRange(UserOffset, WaterBB, U, Growth) &&
1193 (WaterBB->getNumber() < U.HighWaterMark->getNumber() ||
1194 NewWaterList.count(WaterBB)) && Growth < BestGrowth) {
1195 // This is the least amount of required padding seen so far.
1196 BestGrowth = Growth;
1197 WaterIter = IP;
1198 LLVM_DEBUG(dbgs() << "Found water after " << printMBBReference(*WaterBB)
1199 << " Growth=" << Growth << '\n');
1201 // Keep looking unless it is perfect.
1202 if (BestGrowth == 0)
1203 return true;
1205 if (IP == B)
1206 break;
1208 return BestGrowth != ~0u;
1211 /// createNewWater - No existing WaterList entry will work for
1212 /// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the
1213 /// block is used if in range, and the conditional branch munged so control
1214 /// flow is correct. Otherwise the block is split to create a hole with an
1215 /// unconditional branch around it. In either case NewMBB is set to a
1216 /// block following which the new island can be inserted (the WaterList
1217 /// is not adjusted).
1218 void MipsConstantIslands::createNewWater(unsigned CPUserIndex,
1219 unsigned UserOffset,
1220 MachineBasicBlock *&NewMBB) {
1221 CPUser &U = CPUsers[CPUserIndex];
1222 MachineInstr *UserMI = U.MI;
1223 MachineInstr *CPEMI = U.CPEMI;
1224 unsigned CPELogAlign = getCPELogAlign(*CPEMI);
1225 MachineBasicBlock *UserMBB = UserMI->getParent();
1226 const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()];
1228 // If the block does not end in an unconditional branch already, and if the
1229 // end of the block is within range, make new water there.
1230 if (BBHasFallthrough(UserMBB)) {
1231 // Size of branch to insert.
1232 unsigned Delta = 2;
1233 // Compute the offset where the CPE will begin.
1234 unsigned CPEOffset = UserBBI.postOffset(CPELogAlign) + Delta;
1236 if (isOffsetInRange(UserOffset, CPEOffset, U)) {
1237 LLVM_DEBUG(dbgs() << "Split at end of " << printMBBReference(*UserMBB)
1238 << format(", expected CPE offset %#x\n", CPEOffset));
1239 NewMBB = &*++UserMBB->getIterator();
1240 // Add an unconditional branch from UserMBB to fallthrough block. Record
1241 // it for branch lengthening; this new branch will not get out of range,
1242 // but if the preceding conditional branch is out of range, the targets
1243 // will be exchanged, and the altered branch may be out of range, so the
1244 // machinery has to know about it.
1245 int UncondBr = Mips::Bimm16;
1246 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB);
1247 unsigned MaxDisp = getUnconditionalBrDisp(UncondBr);
1248 ImmBranches.push_back(ImmBranch(&UserMBB->back(),
1249 MaxDisp, false, UncondBr));
1250 BBInfo[UserMBB->getNumber()].Size += Delta;
1251 adjustBBOffsetsAfter(UserMBB);
1252 return;
1256 // What a big block. Find a place within the block to split it.
1258 // Try to split the block so it's fully aligned. Compute the latest split
1259 // point where we can add a 4-byte branch instruction, and then align to
1260 // LogAlign which is the largest possible alignment in the function.
1261 unsigned LogAlign = MF->getAlignment();
1262 assert(LogAlign >= CPELogAlign && "Over-aligned constant pool entry");
1263 unsigned BaseInsertOffset = UserOffset + U.getMaxDisp();
1264 LLVM_DEBUG(dbgs() << format("Split in middle of big block before %#x",
1265 BaseInsertOffset));
1267 // The 4 in the following is for the unconditional branch we'll be inserting
1268 // Alignment of the island is handled
1269 // inside isOffsetInRange.
1270 BaseInsertOffset -= 4;
1272 LLVM_DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset)
1273 << " la=" << LogAlign << '\n');
1275 // This could point off the end of the block if we've already got constant
1276 // pool entries following this block; only the last one is in the water list.
1277 // Back past any possible branches (allow for a conditional and a maximally
1278 // long unconditional).
1279 if (BaseInsertOffset + 8 >= UserBBI.postOffset()) {
1280 BaseInsertOffset = UserBBI.postOffset() - 8;
1281 LLVM_DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset));
1283 unsigned EndInsertOffset = BaseInsertOffset + 4 +
1284 CPEMI->getOperand(2).getImm();
1285 MachineBasicBlock::iterator MI = UserMI;
1286 ++MI;
1287 unsigned CPUIndex = CPUserIndex+1;
1288 unsigned NumCPUsers = CPUsers.size();
1289 //MachineInstr *LastIT = 0;
1290 for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI);
1291 Offset < BaseInsertOffset;
1292 Offset += TII->getInstSizeInBytes(*MI), MI = std::next(MI)) {
1293 assert(MI != UserMBB->end() && "Fell off end of block");
1294 if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == MI) {
1295 CPUser &U = CPUsers[CPUIndex];
1296 if (!isOffsetInRange(Offset, EndInsertOffset, U)) {
1297 // Shift intertion point by one unit of alignment so it is within reach.
1298 BaseInsertOffset -= 1u << LogAlign;
1299 EndInsertOffset -= 1u << LogAlign;
1301 // This is overly conservative, as we don't account for CPEMIs being
1302 // reused within the block, but it doesn't matter much. Also assume CPEs
1303 // are added in order with alignment padding. We may eventually be able
1304 // to pack the aligned CPEs better.
1305 EndInsertOffset += U.CPEMI->getOperand(2).getImm();
1306 CPUIndex++;
1310 NewMBB = splitBlockBeforeInstr(*--MI);
1313 /// handleConstantPoolUser - Analyze the specified user, checking to see if it
1314 /// is out-of-range. If so, pick up the constant pool value and move it some
1315 /// place in-range. Return true if we changed any addresses (thus must run
1316 /// another pass of branch lengthening), false otherwise.
1317 bool MipsConstantIslands::handleConstantPoolUser(unsigned CPUserIndex) {
1318 CPUser &U = CPUsers[CPUserIndex];
1319 MachineInstr *UserMI = U.MI;
1320 MachineInstr *CPEMI = U.CPEMI;
1321 unsigned CPI = CPEMI->getOperand(1).getIndex();
1322 unsigned Size = CPEMI->getOperand(2).getImm();
1323 // Compute this only once, it's expensive.
1324 unsigned UserOffset = getUserOffset(U);
1326 // See if the current entry is within range, or there is a clone of it
1327 // in range.
1328 int result = findInRangeCPEntry(U, UserOffset);
1329 if (result==1) return false;
1330 else if (result==2) return true;
1332 // Look for water where we can place this CPE.
1333 MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock();
1334 MachineBasicBlock *NewMBB;
1335 water_iterator IP;
1336 if (findAvailableWater(U, UserOffset, IP)) {
1337 LLVM_DEBUG(dbgs() << "Found water in range\n");
1338 MachineBasicBlock *WaterBB = *IP;
1340 // If the original WaterList entry was "new water" on this iteration,
1341 // propagate that to the new island. This is just keeping NewWaterList
1342 // updated to match the WaterList, which will be updated below.
1343 if (NewWaterList.erase(WaterBB))
1344 NewWaterList.insert(NewIsland);
1346 // The new CPE goes before the following block (NewMBB).
1347 NewMBB = &*++WaterBB->getIterator();
1348 } else {
1349 // No water found.
1350 // we first see if a longer form of the instrucion could have reached
1351 // the constant. in that case we won't bother to split
1352 if (!NoLoadRelaxation) {
1353 result = findLongFormInRangeCPEntry(U, UserOffset);
1354 if (result != 0) return true;
1356 LLVM_DEBUG(dbgs() << "No water found\n");
1357 createNewWater(CPUserIndex, UserOffset, NewMBB);
1359 // splitBlockBeforeInstr adds to WaterList, which is important when it is
1360 // called while handling branches so that the water will be seen on the
1361 // next iteration for constant pools, but in this context, we don't want
1362 // it. Check for this so it will be removed from the WaterList.
1363 // Also remove any entry from NewWaterList.
1364 MachineBasicBlock *WaterBB = &*--NewMBB->getIterator();
1365 IP = llvm::find(WaterList, WaterBB);
1366 if (IP != WaterList.end())
1367 NewWaterList.erase(WaterBB);
1369 // We are adding new water. Update NewWaterList.
1370 NewWaterList.insert(NewIsland);
1373 // Remove the original WaterList entry; we want subsequent insertions in
1374 // this vicinity to go after the one we're about to insert. This
1375 // considerably reduces the number of times we have to move the same CPE
1376 // more than once and is also important to ensure the algorithm terminates.
1377 if (IP != WaterList.end())
1378 WaterList.erase(IP);
1380 // Okay, we know we can put an island before NewMBB now, do it!
1381 MF->insert(NewMBB->getIterator(), NewIsland);
1383 // Update internal data structures to account for the newly inserted MBB.
1384 updateForInsertedWaterBlock(NewIsland);
1386 // Decrement the old entry, and remove it if refcount becomes 0.
1387 decrementCPEReferenceCount(CPI, CPEMI);
1389 // No existing clone of this CPE is within range.
1390 // We will be generating a new clone. Get a UID for it.
1391 unsigned ID = createPICLabelUId();
1393 // Now that we have an island to add the CPE to, clone the original CPE and
1394 // add it to the island.
1395 U.HighWaterMark = NewIsland;
1396 U.CPEMI = BuildMI(NewIsland, DebugLoc(), TII->get(Mips::CONSTPOOL_ENTRY))
1397 .addImm(ID).addConstantPoolIndex(CPI).addImm(Size);
1398 CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1));
1399 ++NumCPEs;
1401 // Mark the basic block as aligned as required by the const-pool entry.
1402 NewIsland->setAlignment(getCPELogAlign(*U.CPEMI));
1404 // Increase the size of the island block to account for the new entry.
1405 BBInfo[NewIsland->getNumber()].Size += Size;
1406 adjustBBOffsetsAfter(&*--NewIsland->getIterator());
1408 // Finally, change the CPI in the instruction operand to be ID.
1409 for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i)
1410 if (UserMI->getOperand(i).isCPI()) {
1411 UserMI->getOperand(i).setIndex(ID);
1412 break;
1415 LLVM_DEBUG(
1416 dbgs() << " Moved CPE to #" << ID << " CPI=" << CPI
1417 << format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset));
1419 return true;
1422 /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update
1423 /// sizes and offsets of impacted basic blocks.
1424 void MipsConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) {
1425 MachineBasicBlock *CPEBB = CPEMI->getParent();
1426 unsigned Size = CPEMI->getOperand(2).getImm();
1427 CPEMI->eraseFromParent();
1428 BBInfo[CPEBB->getNumber()].Size -= Size;
1429 // All succeeding offsets have the current size value added in, fix this.
1430 if (CPEBB->empty()) {
1431 BBInfo[CPEBB->getNumber()].Size = 0;
1433 // This block no longer needs to be aligned.
1434 CPEBB->setAlignment(0);
1435 } else
1436 // Entries are sorted by descending alignment, so realign from the front.
1437 CPEBB->setAlignment(getCPELogAlign(*CPEBB->begin()));
1439 adjustBBOffsetsAfter(CPEBB);
1440 // An island has only one predecessor BB and one successor BB. Check if
1441 // this BB's predecessor jumps directly to this BB's successor. This
1442 // shouldn't happen currently.
1443 assert(!BBIsJumpedOver(CPEBB) && "How did this happen?");
1444 // FIXME: remove the empty blocks after all the work is done?
1447 /// removeUnusedCPEntries - Remove constant pool entries whose refcounts
1448 /// are zero.
1449 bool MipsConstantIslands::removeUnusedCPEntries() {
1450 unsigned MadeChange = false;
1451 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
1452 std::vector<CPEntry> &CPEs = CPEntries[i];
1453 for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) {
1454 if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) {
1455 removeDeadCPEMI(CPEs[j].CPEMI);
1456 CPEs[j].CPEMI = nullptr;
1457 MadeChange = true;
1461 return MadeChange;
1464 /// isBBInRange - Returns true if the distance between specific MI and
1465 /// specific BB can fit in MI's displacement field.
1466 bool MipsConstantIslands::isBBInRange
1467 (MachineInstr *MI,MachineBasicBlock *DestBB, unsigned MaxDisp) {
1468 unsigned PCAdj = 4;
1469 unsigned BrOffset = getOffsetOf(MI) + PCAdj;
1470 unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset;
1472 LLVM_DEBUG(dbgs() << "Branch of destination " << printMBBReference(*DestBB)
1473 << " from " << printMBBReference(*MI->getParent())
1474 << " max delta=" << MaxDisp << " from " << getOffsetOf(MI)
1475 << " to " << DestOffset << " offset "
1476 << int(DestOffset - BrOffset) << "\t" << *MI);
1478 if (BrOffset <= DestOffset) {
1479 // Branch before the Dest.
1480 if (DestOffset-BrOffset <= MaxDisp)
1481 return true;
1482 } else {
1483 if (BrOffset-DestOffset <= MaxDisp)
1484 return true;
1486 return false;
1489 /// fixupImmediateBr - Fix up an immediate branch whose destination is too far
1490 /// away to fit in its displacement field.
1491 bool MipsConstantIslands::fixupImmediateBr(ImmBranch &Br) {
1492 MachineInstr *MI = Br.MI;
1493 unsigned TargetOperand = branchTargetOperand(MI);
1494 MachineBasicBlock *DestBB = MI->getOperand(TargetOperand).getMBB();
1496 // Check to see if the DestBB is already in-range.
1497 if (isBBInRange(MI, DestBB, Br.MaxDisp))
1498 return false;
1500 if (!Br.isCond)
1501 return fixupUnconditionalBr(Br);
1502 return fixupConditionalBr(Br);
1505 /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is
1506 /// too far away to fit in its displacement field. If the LR register has been
1507 /// spilled in the epilogue, then we can use BL to implement a far jump.
1508 /// Otherwise, add an intermediate branch instruction to a branch.
1509 bool
1510 MipsConstantIslands::fixupUnconditionalBr(ImmBranch &Br) {
1511 MachineInstr *MI = Br.MI;
1512 MachineBasicBlock *MBB = MI->getParent();
1513 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1514 // Use BL to implement far jump.
1515 unsigned BimmX16MaxDisp = ((1 << 16)-1) * 2;
1516 if (isBBInRange(MI, DestBB, BimmX16MaxDisp)) {
1517 Br.MaxDisp = BimmX16MaxDisp;
1518 MI->setDesc(TII->get(Mips::BimmX16));
1520 else {
1521 // need to give the math a more careful look here
1522 // this is really a segment address and not
1523 // a PC relative address. FIXME. But I think that
1524 // just reducing the bits by 1 as I've done is correct.
1525 // The basic block we are branching too much be longword aligned.
1526 // we know that RA is saved because we always save it right now.
1527 // this requirement will be relaxed later but we also have an alternate
1528 // way to implement this that I will implement that does not need jal.
1529 // We should have a way to back out this alignment restriction if we "can" later.
1530 // but it is not harmful.
1532 DestBB->setAlignment(2);
1533 Br.MaxDisp = ((1<<24)-1) * 2;
1534 MI->setDesc(TII->get(Mips::JalB16));
1536 BBInfo[MBB->getNumber()].Size += 2;
1537 adjustBBOffsetsAfter(MBB);
1538 HasFarJump = true;
1539 ++NumUBrFixed;
1541 LLVM_DEBUG(dbgs() << " Changed B to long jump " << *MI);
1543 return true;
1546 /// fixupConditionalBr - Fix up a conditional branch whose destination is too
1547 /// far away to fit in its displacement field. It is converted to an inverse
1548 /// conditional branch + an unconditional branch to the destination.
1549 bool
1550 MipsConstantIslands::fixupConditionalBr(ImmBranch &Br) {
1551 MachineInstr *MI = Br.MI;
1552 unsigned TargetOperand = branchTargetOperand(MI);
1553 MachineBasicBlock *DestBB = MI->getOperand(TargetOperand).getMBB();
1554 unsigned Opcode = MI->getOpcode();
1555 unsigned LongFormOpcode = longformBranchOpcode(Opcode);
1556 unsigned LongFormMaxOff = branchMaxOffsets(LongFormOpcode);
1558 // Check to see if the DestBB is already in-range.
1559 if (isBBInRange(MI, DestBB, LongFormMaxOff)) {
1560 Br.MaxDisp = LongFormMaxOff;
1561 MI->setDesc(TII->get(LongFormOpcode));
1562 return true;
1565 // Add an unconditional branch to the destination and invert the branch
1566 // condition to jump over it:
1567 // bteqz L1
1568 // =>
1569 // bnez L2
1570 // b L1
1571 // L2:
1573 // If the branch is at the end of its MBB and that has a fall-through block,
1574 // direct the updated conditional branch to the fall-through block. Otherwise,
1575 // split the MBB before the next instruction.
1576 MachineBasicBlock *MBB = MI->getParent();
1577 MachineInstr *BMI = &MBB->back();
1578 bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB);
1579 unsigned OppositeBranchOpcode = TII->getOppositeBranchOpc(Opcode);
1581 ++NumCBrFixed;
1582 if (BMI != MI) {
1583 if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) &&
1584 BMI->isUnconditionalBranch()) {
1585 // Last MI in the BB is an unconditional branch. Can we simply invert the
1586 // condition and swap destinations:
1587 // beqz L1
1588 // b L2
1589 // =>
1590 // bnez L2
1591 // b L1
1592 unsigned BMITargetOperand = branchTargetOperand(BMI);
1593 MachineBasicBlock *NewDest =
1594 BMI->getOperand(BMITargetOperand).getMBB();
1595 if (isBBInRange(MI, NewDest, Br.MaxDisp)) {
1596 LLVM_DEBUG(
1597 dbgs() << " Invert Bcc condition and swap its destination with "
1598 << *BMI);
1599 MI->setDesc(TII->get(OppositeBranchOpcode));
1600 BMI->getOperand(BMITargetOperand).setMBB(DestBB);
1601 MI->getOperand(TargetOperand).setMBB(NewDest);
1602 return true;
1607 if (NeedSplit) {
1608 splitBlockBeforeInstr(*MI);
1609 // No need for the branch to the next block. We're adding an unconditional
1610 // branch to the destination.
1611 int delta = TII->getInstSizeInBytes(MBB->back());
1612 BBInfo[MBB->getNumber()].Size -= delta;
1613 MBB->back().eraseFromParent();
1614 // BBInfo[SplitBB].Offset is wrong temporarily, fixed below
1616 MachineBasicBlock *NextBB = &*++MBB->getIterator();
1618 LLVM_DEBUG(dbgs() << " Insert B to " << printMBBReference(*DestBB)
1619 << " also invert condition and change dest. to "
1620 << printMBBReference(*NextBB) << "\n");
1622 // Insert a new conditional branch and a new unconditional branch.
1623 // Also update the ImmBranch as well as adding a new entry for the new branch.
1624 if (MI->getNumExplicitOperands() == 2) {
1625 BuildMI(MBB, DebugLoc(), TII->get(OppositeBranchOpcode))
1626 .addReg(MI->getOperand(0).getReg())
1627 .addMBB(NextBB);
1628 } else {
1629 BuildMI(MBB, DebugLoc(), TII->get(OppositeBranchOpcode))
1630 .addMBB(NextBB);
1632 Br.MI = &MBB->back();
1633 BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back());
1634 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB);
1635 BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back());
1636 unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr);
1637 ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr));
1639 // Remove the old conditional branch. It may or may not still be in MBB.
1640 BBInfo[MI->getParent()->getNumber()].Size -= TII->getInstSizeInBytes(*MI);
1641 MI->eraseFromParent();
1642 adjustBBOffsetsAfter(MBB);
1643 return true;
1646 void MipsConstantIslands::prescanForConstants() {
1647 unsigned J = 0;
1648 (void)J;
1649 for (MachineFunction::iterator B =
1650 MF->begin(), E = MF->end(); B != E; ++B) {
1651 for (MachineBasicBlock::instr_iterator I =
1652 B->instr_begin(), EB = B->instr_end(); I != EB; ++I) {
1653 switch(I->getDesc().getOpcode()) {
1654 case Mips::LwConstant32: {
1655 PrescannedForConstants = true;
1656 LLVM_DEBUG(dbgs() << "constant island constant " << *I << "\n");
1657 J = I->getNumOperands();
1658 LLVM_DEBUG(dbgs() << "num operands " << J << "\n");
1659 MachineOperand& Literal = I->getOperand(1);
1660 if (Literal.isImm()) {
1661 int64_t V = Literal.getImm();
1662 LLVM_DEBUG(dbgs() << "literal " << V << "\n");
1663 Type *Int32Ty =
1664 Type::getInt32Ty(MF->getFunction().getContext());
1665 const Constant *C = ConstantInt::get(Int32Ty, V);
1666 unsigned index = MCP->getConstantPoolIndex(C, 4);
1667 I->getOperand(2).ChangeToImmediate(index);
1668 LLVM_DEBUG(dbgs() << "constant island constant " << *I << "\n");
1669 I->setDesc(TII->get(Mips::LwRxPcTcp16));
1670 I->RemoveOperand(1);
1671 I->RemoveOperand(1);
1672 I->addOperand(MachineOperand::CreateCPI(index, 0));
1673 I->addOperand(MachineOperand::CreateImm(4));
1675 break;
1677 default:
1678 break;
1684 /// Returns a pass that converts branches to long branches.
1685 FunctionPass *llvm::createMipsConstantIslandPass() {
1686 return new MipsConstantIslands();