[ARM] Better patterns for fp <> predicate vectors
[llvm-complete.git] / lib / Target / Mips / MipsFastISel.cpp
blob123d3cc242f0ba42b8c13ace04eae3d2477102b0
1 //===- MipsFastISel.cpp - Mips FastISel implementation --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file defines the MIPS-specific support for the FastISel class.
11 /// Some of the target-specific code is generated by tablegen in the file
12 /// MipsGenFastISel.inc, which is #included here.
13 ///
14 //===----------------------------------------------------------------------===//
16 #include "MCTargetDesc/MipsABIInfo.h"
17 #include "MCTargetDesc/MipsBaseInfo.h"
18 #include "MipsCCState.h"
19 #include "MipsISelLowering.h"
20 #include "MipsInstrInfo.h"
21 #include "MipsMachineFunction.h"
22 #include "MipsSubtarget.h"
23 #include "MipsTargetMachine.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/ArrayRef.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/CodeGen/CallingConvLower.h"
30 #include "llvm/CodeGen/FastISel.h"
31 #include "llvm/CodeGen/FunctionLoweringInfo.h"
32 #include "llvm/CodeGen/ISDOpcodes.h"
33 #include "llvm/CodeGen/MachineBasicBlock.h"
34 #include "llvm/CodeGen/MachineFrameInfo.h"
35 #include "llvm/CodeGen/MachineInstrBuilder.h"
36 #include "llvm/CodeGen/MachineMemOperand.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/TargetInstrInfo.h"
39 #include "llvm/CodeGen/TargetLowering.h"
40 #include "llvm/CodeGen/ValueTypes.h"
41 #include "llvm/IR/Attributes.h"
42 #include "llvm/IR/CallingConv.h"
43 #include "llvm/IR/Constant.h"
44 #include "llvm/IR/Constants.h"
45 #include "llvm/IR/DataLayout.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/GetElementPtrTypeIterator.h"
48 #include "llvm/IR/GlobalValue.h"
49 #include "llvm/IR/GlobalVariable.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/IntrinsicInst.h"
54 #include "llvm/IR/Operator.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/IR/User.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/MC/MCContext.h"
59 #include "llvm/MC/MCInstrDesc.h"
60 #include "llvm/MC/MCRegisterInfo.h"
61 #include "llvm/MC/MCSymbol.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/Compiler.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/MachineValueType.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include <algorithm>
70 #include <array>
71 #include <cassert>
72 #include <cstdint>
74 #define DEBUG_TYPE "mips-fastisel"
76 using namespace llvm;
78 extern cl::opt<bool> EmitJalrReloc;
80 namespace {
82 class MipsFastISel final : public FastISel {
84 // All possible address modes.
85 class Address {
86 public:
87 using BaseKind = enum { RegBase, FrameIndexBase };
89 private:
90 BaseKind Kind = RegBase;
91 union {
92 unsigned Reg;
93 int FI;
94 } Base;
96 int64_t Offset = 0;
98 const GlobalValue *GV = nullptr;
100 public:
101 // Innocuous defaults for our address.
102 Address() { Base.Reg = 0; }
104 void setKind(BaseKind K) { Kind = K; }
105 BaseKind getKind() const { return Kind; }
106 bool isRegBase() const { return Kind == RegBase; }
107 bool isFIBase() const { return Kind == FrameIndexBase; }
109 void setReg(unsigned Reg) {
110 assert(isRegBase() && "Invalid base register access!");
111 Base.Reg = Reg;
114 unsigned getReg() const {
115 assert(isRegBase() && "Invalid base register access!");
116 return Base.Reg;
119 void setFI(unsigned FI) {
120 assert(isFIBase() && "Invalid base frame index access!");
121 Base.FI = FI;
124 unsigned getFI() const {
125 assert(isFIBase() && "Invalid base frame index access!");
126 return Base.FI;
129 void setOffset(int64_t Offset_) { Offset = Offset_; }
130 int64_t getOffset() const { return Offset; }
131 void setGlobalValue(const GlobalValue *G) { GV = G; }
132 const GlobalValue *getGlobalValue() { return GV; }
135 /// Subtarget - Keep a pointer to the MipsSubtarget around so that we can
136 /// make the right decision when generating code for different targets.
137 const TargetMachine &TM;
138 const MipsSubtarget *Subtarget;
139 const TargetInstrInfo &TII;
140 const TargetLowering &TLI;
141 MipsFunctionInfo *MFI;
143 // Convenience variables to avoid some queries.
144 LLVMContext *Context;
146 bool fastLowerArguments() override;
147 bool fastLowerCall(CallLoweringInfo &CLI) override;
148 bool fastLowerIntrinsicCall(const IntrinsicInst *II) override;
150 bool UnsupportedFPMode; // To allow fast-isel to proceed and just not handle
151 // floating point but not reject doing fast-isel in other
152 // situations
154 private:
155 // Selection routines.
156 bool selectLogicalOp(const Instruction *I);
157 bool selectLoad(const Instruction *I);
158 bool selectStore(const Instruction *I);
159 bool selectBranch(const Instruction *I);
160 bool selectSelect(const Instruction *I);
161 bool selectCmp(const Instruction *I);
162 bool selectFPExt(const Instruction *I);
163 bool selectFPTrunc(const Instruction *I);
164 bool selectFPToInt(const Instruction *I, bool IsSigned);
165 bool selectRet(const Instruction *I);
166 bool selectTrunc(const Instruction *I);
167 bool selectIntExt(const Instruction *I);
168 bool selectShift(const Instruction *I);
169 bool selectDivRem(const Instruction *I, unsigned ISDOpcode);
171 // Utility helper routines.
172 bool isTypeLegal(Type *Ty, MVT &VT);
173 bool isTypeSupported(Type *Ty, MVT &VT);
174 bool isLoadTypeLegal(Type *Ty, MVT &VT);
175 bool computeAddress(const Value *Obj, Address &Addr);
176 bool computeCallAddress(const Value *V, Address &Addr);
177 void simplifyAddress(Address &Addr);
179 // Emit helper routines.
180 bool emitCmp(unsigned DestReg, const CmpInst *CI);
181 bool emitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
182 unsigned Alignment = 0);
183 bool emitStore(MVT VT, unsigned SrcReg, Address Addr,
184 MachineMemOperand *MMO = nullptr);
185 bool emitStore(MVT VT, unsigned SrcReg, Address &Addr,
186 unsigned Alignment = 0);
187 unsigned emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt);
188 bool emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg,
190 bool IsZExt);
191 bool emitIntZExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg);
193 bool emitIntSExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg);
194 bool emitIntSExt32r1(MVT SrcVT, unsigned SrcReg, MVT DestVT,
195 unsigned DestReg);
196 bool emitIntSExt32r2(MVT SrcVT, unsigned SrcReg, MVT DestVT,
197 unsigned DestReg);
199 unsigned getRegEnsuringSimpleIntegerWidening(const Value *, bool IsUnsigned);
201 unsigned emitLogicalOp(unsigned ISDOpc, MVT RetVT, const Value *LHS,
202 const Value *RHS);
204 unsigned materializeFP(const ConstantFP *CFP, MVT VT);
205 unsigned materializeGV(const GlobalValue *GV, MVT VT);
206 unsigned materializeInt(const Constant *C, MVT VT);
207 unsigned materialize32BitInt(int64_t Imm, const TargetRegisterClass *RC);
208 unsigned materializeExternalCallSym(MCSymbol *Syn);
210 MachineInstrBuilder emitInst(unsigned Opc) {
211 return BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc));
214 MachineInstrBuilder emitInst(unsigned Opc, unsigned DstReg) {
215 return BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
216 DstReg);
219 MachineInstrBuilder emitInstStore(unsigned Opc, unsigned SrcReg,
220 unsigned MemReg, int64_t MemOffset) {
221 return emitInst(Opc).addReg(SrcReg).addReg(MemReg).addImm(MemOffset);
224 MachineInstrBuilder emitInstLoad(unsigned Opc, unsigned DstReg,
225 unsigned MemReg, int64_t MemOffset) {
226 return emitInst(Opc, DstReg).addReg(MemReg).addImm(MemOffset);
229 unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
230 const TargetRegisterClass *RC,
231 unsigned Op0, bool Op0IsKill,
232 unsigned Op1, bool Op1IsKill);
234 // for some reason, this default is not generated by tablegen
235 // so we explicitly generate it here.
236 unsigned fastEmitInst_riir(uint64_t inst, const TargetRegisterClass *RC,
237 unsigned Op0, bool Op0IsKill, uint64_t imm1,
238 uint64_t imm2, unsigned Op3, bool Op3IsKill) {
239 return 0;
242 // Call handling routines.
243 private:
244 CCAssignFn *CCAssignFnForCall(CallingConv::ID CC) const;
245 bool processCallArgs(CallLoweringInfo &CLI, SmallVectorImpl<MVT> &ArgVTs,
246 unsigned &NumBytes);
247 bool finishCall(CallLoweringInfo &CLI, MVT RetVT, unsigned NumBytes);
249 const MipsABIInfo &getABI() const {
250 return static_cast<const MipsTargetMachine &>(TM).getABI();
253 public:
254 // Backend specific FastISel code.
255 explicit MipsFastISel(FunctionLoweringInfo &funcInfo,
256 const TargetLibraryInfo *libInfo)
257 : FastISel(funcInfo, libInfo), TM(funcInfo.MF->getTarget()),
258 Subtarget(&funcInfo.MF->getSubtarget<MipsSubtarget>()),
259 TII(*Subtarget->getInstrInfo()), TLI(*Subtarget->getTargetLowering()) {
260 MFI = funcInfo.MF->getInfo<MipsFunctionInfo>();
261 Context = &funcInfo.Fn->getContext();
262 UnsupportedFPMode = Subtarget->isFP64bit() || Subtarget->useSoftFloat();
265 unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
266 unsigned fastMaterializeConstant(const Constant *C) override;
267 bool fastSelectInstruction(const Instruction *I) override;
269 #include "MipsGenFastISel.inc"
272 } // end anonymous namespace
274 static bool CC_Mips(unsigned ValNo, MVT ValVT, MVT LocVT,
275 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
276 CCState &State) LLVM_ATTRIBUTE_UNUSED;
278 static bool CC_MipsO32_FP32(unsigned ValNo, MVT ValVT, MVT LocVT,
279 CCValAssign::LocInfo LocInfo,
280 ISD::ArgFlagsTy ArgFlags, CCState &State) {
281 llvm_unreachable("should not be called");
284 static bool CC_MipsO32_FP64(unsigned ValNo, MVT ValVT, MVT LocVT,
285 CCValAssign::LocInfo LocInfo,
286 ISD::ArgFlagsTy ArgFlags, CCState &State) {
287 llvm_unreachable("should not be called");
290 #include "MipsGenCallingConv.inc"
292 CCAssignFn *MipsFastISel::CCAssignFnForCall(CallingConv::ID CC) const {
293 return CC_MipsO32;
296 unsigned MipsFastISel::emitLogicalOp(unsigned ISDOpc, MVT RetVT,
297 const Value *LHS, const Value *RHS) {
298 // Canonicalize immediates to the RHS first.
299 if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS))
300 std::swap(LHS, RHS);
302 unsigned Opc;
303 switch (ISDOpc) {
304 case ISD::AND:
305 Opc = Mips::AND;
306 break;
307 case ISD::OR:
308 Opc = Mips::OR;
309 break;
310 case ISD::XOR:
311 Opc = Mips::XOR;
312 break;
313 default:
314 llvm_unreachable("unexpected opcode");
317 unsigned LHSReg = getRegForValue(LHS);
318 if (!LHSReg)
319 return 0;
321 unsigned RHSReg;
322 if (const auto *C = dyn_cast<ConstantInt>(RHS))
323 RHSReg = materializeInt(C, MVT::i32);
324 else
325 RHSReg = getRegForValue(RHS);
326 if (!RHSReg)
327 return 0;
329 unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
330 if (!ResultReg)
331 return 0;
333 emitInst(Opc, ResultReg).addReg(LHSReg).addReg(RHSReg);
334 return ResultReg;
337 unsigned MipsFastISel::fastMaterializeAlloca(const AllocaInst *AI) {
338 assert(TLI.getValueType(DL, AI->getType(), true) == MVT::i32 &&
339 "Alloca should always return a pointer.");
341 DenseMap<const AllocaInst *, int>::iterator SI =
342 FuncInfo.StaticAllocaMap.find(AI);
344 if (SI != FuncInfo.StaticAllocaMap.end()) {
345 unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
346 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Mips::LEA_ADDiu),
347 ResultReg)
348 .addFrameIndex(SI->second)
349 .addImm(0);
350 return ResultReg;
353 return 0;
356 unsigned MipsFastISel::materializeInt(const Constant *C, MVT VT) {
357 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1)
358 return 0;
359 const TargetRegisterClass *RC = &Mips::GPR32RegClass;
360 const ConstantInt *CI = cast<ConstantInt>(C);
361 return materialize32BitInt(CI->getZExtValue(), RC);
364 unsigned MipsFastISel::materialize32BitInt(int64_t Imm,
365 const TargetRegisterClass *RC) {
366 unsigned ResultReg = createResultReg(RC);
368 if (isInt<16>(Imm)) {
369 unsigned Opc = Mips::ADDiu;
370 emitInst(Opc, ResultReg).addReg(Mips::ZERO).addImm(Imm);
371 return ResultReg;
372 } else if (isUInt<16>(Imm)) {
373 emitInst(Mips::ORi, ResultReg).addReg(Mips::ZERO).addImm(Imm);
374 return ResultReg;
376 unsigned Lo = Imm & 0xFFFF;
377 unsigned Hi = (Imm >> 16) & 0xFFFF;
378 if (Lo) {
379 // Both Lo and Hi have nonzero bits.
380 unsigned TmpReg = createResultReg(RC);
381 emitInst(Mips::LUi, TmpReg).addImm(Hi);
382 emitInst(Mips::ORi, ResultReg).addReg(TmpReg).addImm(Lo);
383 } else {
384 emitInst(Mips::LUi, ResultReg).addImm(Hi);
386 return ResultReg;
389 unsigned MipsFastISel::materializeFP(const ConstantFP *CFP, MVT VT) {
390 if (UnsupportedFPMode)
391 return 0;
392 int64_t Imm = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
393 if (VT == MVT::f32) {
394 const TargetRegisterClass *RC = &Mips::FGR32RegClass;
395 unsigned DestReg = createResultReg(RC);
396 unsigned TempReg = materialize32BitInt(Imm, &Mips::GPR32RegClass);
397 emitInst(Mips::MTC1, DestReg).addReg(TempReg);
398 return DestReg;
399 } else if (VT == MVT::f64) {
400 const TargetRegisterClass *RC = &Mips::AFGR64RegClass;
401 unsigned DestReg = createResultReg(RC);
402 unsigned TempReg1 = materialize32BitInt(Imm >> 32, &Mips::GPR32RegClass);
403 unsigned TempReg2 =
404 materialize32BitInt(Imm & 0xFFFFFFFF, &Mips::GPR32RegClass);
405 emitInst(Mips::BuildPairF64, DestReg).addReg(TempReg2).addReg(TempReg1);
406 return DestReg;
408 return 0;
411 unsigned MipsFastISel::materializeGV(const GlobalValue *GV, MVT VT) {
412 // For now 32-bit only.
413 if (VT != MVT::i32)
414 return 0;
415 const TargetRegisterClass *RC = &Mips::GPR32RegClass;
416 unsigned DestReg = createResultReg(RC);
417 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
418 bool IsThreadLocal = GVar && GVar->isThreadLocal();
419 // TLS not supported at this time.
420 if (IsThreadLocal)
421 return 0;
422 emitInst(Mips::LW, DestReg)
423 .addReg(MFI->getGlobalBaseReg())
424 .addGlobalAddress(GV, 0, MipsII::MO_GOT);
425 if ((GV->hasInternalLinkage() ||
426 (GV->hasLocalLinkage() && !isa<Function>(GV)))) {
427 unsigned TempReg = createResultReg(RC);
428 emitInst(Mips::ADDiu, TempReg)
429 .addReg(DestReg)
430 .addGlobalAddress(GV, 0, MipsII::MO_ABS_LO);
431 DestReg = TempReg;
433 return DestReg;
436 unsigned MipsFastISel::materializeExternalCallSym(MCSymbol *Sym) {
437 const TargetRegisterClass *RC = &Mips::GPR32RegClass;
438 unsigned DestReg = createResultReg(RC);
439 emitInst(Mips::LW, DestReg)
440 .addReg(MFI->getGlobalBaseReg())
441 .addSym(Sym, MipsII::MO_GOT);
442 return DestReg;
445 // Materialize a constant into a register, and return the register
446 // number (or zero if we failed to handle it).
447 unsigned MipsFastISel::fastMaterializeConstant(const Constant *C) {
448 EVT CEVT = TLI.getValueType(DL, C->getType(), true);
450 // Only handle simple types.
451 if (!CEVT.isSimple())
452 return 0;
453 MVT VT = CEVT.getSimpleVT();
455 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
456 return (UnsupportedFPMode) ? 0 : materializeFP(CFP, VT);
457 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
458 return materializeGV(GV, VT);
459 else if (isa<ConstantInt>(C))
460 return materializeInt(C, VT);
462 return 0;
465 bool MipsFastISel::computeAddress(const Value *Obj, Address &Addr) {
466 const User *U = nullptr;
467 unsigned Opcode = Instruction::UserOp1;
468 if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
469 // Don't walk into other basic blocks unless the object is an alloca from
470 // another block, otherwise it may not have a virtual register assigned.
471 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
472 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
473 Opcode = I->getOpcode();
474 U = I;
476 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
477 Opcode = C->getOpcode();
478 U = C;
480 switch (Opcode) {
481 default:
482 break;
483 case Instruction::BitCast:
484 // Look through bitcasts.
485 return computeAddress(U->getOperand(0), Addr);
486 case Instruction::GetElementPtr: {
487 Address SavedAddr = Addr;
488 int64_t TmpOffset = Addr.getOffset();
489 // Iterate through the GEP folding the constants into offsets where
490 // we can.
491 gep_type_iterator GTI = gep_type_begin(U);
492 for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e;
493 ++i, ++GTI) {
494 const Value *Op = *i;
495 if (StructType *STy = GTI.getStructTypeOrNull()) {
496 const StructLayout *SL = DL.getStructLayout(STy);
497 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
498 TmpOffset += SL->getElementOffset(Idx);
499 } else {
500 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
501 while (true) {
502 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
503 // Constant-offset addressing.
504 TmpOffset += CI->getSExtValue() * S;
505 break;
507 if (canFoldAddIntoGEP(U, Op)) {
508 // A compatible add with a constant operand. Fold the constant.
509 ConstantInt *CI =
510 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
511 TmpOffset += CI->getSExtValue() * S;
512 // Iterate on the other operand.
513 Op = cast<AddOperator>(Op)->getOperand(0);
514 continue;
516 // Unsupported
517 goto unsupported_gep;
521 // Try to grab the base operand now.
522 Addr.setOffset(TmpOffset);
523 if (computeAddress(U->getOperand(0), Addr))
524 return true;
525 // We failed, restore everything and try the other options.
526 Addr = SavedAddr;
527 unsupported_gep:
528 break;
530 case Instruction::Alloca: {
531 const AllocaInst *AI = cast<AllocaInst>(Obj);
532 DenseMap<const AllocaInst *, int>::iterator SI =
533 FuncInfo.StaticAllocaMap.find(AI);
534 if (SI != FuncInfo.StaticAllocaMap.end()) {
535 Addr.setKind(Address::FrameIndexBase);
536 Addr.setFI(SI->second);
537 return true;
539 break;
542 Addr.setReg(getRegForValue(Obj));
543 return Addr.getReg() != 0;
546 bool MipsFastISel::computeCallAddress(const Value *V, Address &Addr) {
547 const User *U = nullptr;
548 unsigned Opcode = Instruction::UserOp1;
550 if (const auto *I = dyn_cast<Instruction>(V)) {
551 // Check if the value is defined in the same basic block. This information
552 // is crucial to know whether or not folding an operand is valid.
553 if (I->getParent() == FuncInfo.MBB->getBasicBlock()) {
554 Opcode = I->getOpcode();
555 U = I;
557 } else if (const auto *C = dyn_cast<ConstantExpr>(V)) {
558 Opcode = C->getOpcode();
559 U = C;
562 switch (Opcode) {
563 default:
564 break;
565 case Instruction::BitCast:
566 // Look past bitcasts if its operand is in the same BB.
567 return computeCallAddress(U->getOperand(0), Addr);
568 break;
569 case Instruction::IntToPtr:
570 // Look past no-op inttoptrs if its operand is in the same BB.
571 if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
572 TLI.getPointerTy(DL))
573 return computeCallAddress(U->getOperand(0), Addr);
574 break;
575 case Instruction::PtrToInt:
576 // Look past no-op ptrtoints if its operand is in the same BB.
577 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
578 return computeCallAddress(U->getOperand(0), Addr);
579 break;
582 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
583 Addr.setGlobalValue(GV);
584 return true;
587 // If all else fails, try to materialize the value in a register.
588 if (!Addr.getGlobalValue()) {
589 Addr.setReg(getRegForValue(V));
590 return Addr.getReg() != 0;
593 return false;
596 bool MipsFastISel::isTypeLegal(Type *Ty, MVT &VT) {
597 EVT evt = TLI.getValueType(DL, Ty, true);
598 // Only handle simple types.
599 if (evt == MVT::Other || !evt.isSimple())
600 return false;
601 VT = evt.getSimpleVT();
603 // Handle all legal types, i.e. a register that will directly hold this
604 // value.
605 return TLI.isTypeLegal(VT);
608 bool MipsFastISel::isTypeSupported(Type *Ty, MVT &VT) {
609 if (Ty->isVectorTy())
610 return false;
612 if (isTypeLegal(Ty, VT))
613 return true;
615 // If this is a type than can be sign or zero-extended to a basic operation
616 // go ahead and accept it now.
617 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
618 return true;
620 return false;
623 bool MipsFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
624 if (isTypeLegal(Ty, VT))
625 return true;
626 // We will extend this in a later patch:
627 // If this is a type than can be sign or zero-extended to a basic operation
628 // go ahead and accept it now.
629 if (VT == MVT::i8 || VT == MVT::i16)
630 return true;
631 return false;
634 // Because of how EmitCmp is called with fast-isel, you can
635 // end up with redundant "andi" instructions after the sequences emitted below.
636 // We should try and solve this issue in the future.
638 bool MipsFastISel::emitCmp(unsigned ResultReg, const CmpInst *CI) {
639 const Value *Left = CI->getOperand(0), *Right = CI->getOperand(1);
640 bool IsUnsigned = CI->isUnsigned();
641 unsigned LeftReg = getRegEnsuringSimpleIntegerWidening(Left, IsUnsigned);
642 if (LeftReg == 0)
643 return false;
644 unsigned RightReg = getRegEnsuringSimpleIntegerWidening(Right, IsUnsigned);
645 if (RightReg == 0)
646 return false;
647 CmpInst::Predicate P = CI->getPredicate();
649 switch (P) {
650 default:
651 return false;
652 case CmpInst::ICMP_EQ: {
653 unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
654 emitInst(Mips::XOR, TempReg).addReg(LeftReg).addReg(RightReg);
655 emitInst(Mips::SLTiu, ResultReg).addReg(TempReg).addImm(1);
656 break;
658 case CmpInst::ICMP_NE: {
659 unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
660 emitInst(Mips::XOR, TempReg).addReg(LeftReg).addReg(RightReg);
661 emitInst(Mips::SLTu, ResultReg).addReg(Mips::ZERO).addReg(TempReg);
662 break;
664 case CmpInst::ICMP_UGT:
665 emitInst(Mips::SLTu, ResultReg).addReg(RightReg).addReg(LeftReg);
666 break;
667 case CmpInst::ICMP_ULT:
668 emitInst(Mips::SLTu, ResultReg).addReg(LeftReg).addReg(RightReg);
669 break;
670 case CmpInst::ICMP_UGE: {
671 unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
672 emitInst(Mips::SLTu, TempReg).addReg(LeftReg).addReg(RightReg);
673 emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
674 break;
676 case CmpInst::ICMP_ULE: {
677 unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
678 emitInst(Mips::SLTu, TempReg).addReg(RightReg).addReg(LeftReg);
679 emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
680 break;
682 case CmpInst::ICMP_SGT:
683 emitInst(Mips::SLT, ResultReg).addReg(RightReg).addReg(LeftReg);
684 break;
685 case CmpInst::ICMP_SLT:
686 emitInst(Mips::SLT, ResultReg).addReg(LeftReg).addReg(RightReg);
687 break;
688 case CmpInst::ICMP_SGE: {
689 unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
690 emitInst(Mips::SLT, TempReg).addReg(LeftReg).addReg(RightReg);
691 emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
692 break;
694 case CmpInst::ICMP_SLE: {
695 unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
696 emitInst(Mips::SLT, TempReg).addReg(RightReg).addReg(LeftReg);
697 emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
698 break;
700 case CmpInst::FCMP_OEQ:
701 case CmpInst::FCMP_UNE:
702 case CmpInst::FCMP_OLT:
703 case CmpInst::FCMP_OLE:
704 case CmpInst::FCMP_OGT:
705 case CmpInst::FCMP_OGE: {
706 if (UnsupportedFPMode)
707 return false;
708 bool IsFloat = Left->getType()->isFloatTy();
709 bool IsDouble = Left->getType()->isDoubleTy();
710 if (!IsFloat && !IsDouble)
711 return false;
712 unsigned Opc, CondMovOpc;
713 switch (P) {
714 case CmpInst::FCMP_OEQ:
715 Opc = IsFloat ? Mips::C_EQ_S : Mips::C_EQ_D32;
716 CondMovOpc = Mips::MOVT_I;
717 break;
718 case CmpInst::FCMP_UNE:
719 Opc = IsFloat ? Mips::C_EQ_S : Mips::C_EQ_D32;
720 CondMovOpc = Mips::MOVF_I;
721 break;
722 case CmpInst::FCMP_OLT:
723 Opc = IsFloat ? Mips::C_OLT_S : Mips::C_OLT_D32;
724 CondMovOpc = Mips::MOVT_I;
725 break;
726 case CmpInst::FCMP_OLE:
727 Opc = IsFloat ? Mips::C_OLE_S : Mips::C_OLE_D32;
728 CondMovOpc = Mips::MOVT_I;
729 break;
730 case CmpInst::FCMP_OGT:
731 Opc = IsFloat ? Mips::C_ULE_S : Mips::C_ULE_D32;
732 CondMovOpc = Mips::MOVF_I;
733 break;
734 case CmpInst::FCMP_OGE:
735 Opc = IsFloat ? Mips::C_ULT_S : Mips::C_ULT_D32;
736 CondMovOpc = Mips::MOVF_I;
737 break;
738 default:
739 llvm_unreachable("Only switching of a subset of CCs.");
741 unsigned RegWithZero = createResultReg(&Mips::GPR32RegClass);
742 unsigned RegWithOne = createResultReg(&Mips::GPR32RegClass);
743 emitInst(Mips::ADDiu, RegWithZero).addReg(Mips::ZERO).addImm(0);
744 emitInst(Mips::ADDiu, RegWithOne).addReg(Mips::ZERO).addImm(1);
745 emitInst(Opc).addReg(Mips::FCC0, RegState::Define).addReg(LeftReg)
746 .addReg(RightReg);
747 emitInst(CondMovOpc, ResultReg)
748 .addReg(RegWithOne)
749 .addReg(Mips::FCC0)
750 .addReg(RegWithZero);
751 break;
754 return true;
757 bool MipsFastISel::emitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
758 unsigned Alignment) {
760 // more cases will be handled here in following patches.
762 unsigned Opc;
763 switch (VT.SimpleTy) {
764 case MVT::i32:
765 ResultReg = createResultReg(&Mips::GPR32RegClass);
766 Opc = Mips::LW;
767 break;
768 case MVT::i16:
769 ResultReg = createResultReg(&Mips::GPR32RegClass);
770 Opc = Mips::LHu;
771 break;
772 case MVT::i8:
773 ResultReg = createResultReg(&Mips::GPR32RegClass);
774 Opc = Mips::LBu;
775 break;
776 case MVT::f32:
777 if (UnsupportedFPMode)
778 return false;
779 ResultReg = createResultReg(&Mips::FGR32RegClass);
780 Opc = Mips::LWC1;
781 break;
782 case MVT::f64:
783 if (UnsupportedFPMode)
784 return false;
785 ResultReg = createResultReg(&Mips::AFGR64RegClass);
786 Opc = Mips::LDC1;
787 break;
788 default:
789 return false;
791 if (Addr.isRegBase()) {
792 simplifyAddress(Addr);
793 emitInstLoad(Opc, ResultReg, Addr.getReg(), Addr.getOffset());
794 return true;
796 if (Addr.isFIBase()) {
797 unsigned FI = Addr.getFI();
798 unsigned Align = 4;
799 int64_t Offset = Addr.getOffset();
800 MachineFrameInfo &MFI = MF->getFrameInfo();
801 MachineMemOperand *MMO = MF->getMachineMemOperand(
802 MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOLoad,
803 MFI.getObjectSize(FI), Align);
804 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
805 .addFrameIndex(FI)
806 .addImm(Offset)
807 .addMemOperand(MMO);
808 return true;
810 return false;
813 bool MipsFastISel::emitStore(MVT VT, unsigned SrcReg, Address &Addr,
814 unsigned Alignment) {
816 // more cases will be handled here in following patches.
818 unsigned Opc;
819 switch (VT.SimpleTy) {
820 case MVT::i8:
821 Opc = Mips::SB;
822 break;
823 case MVT::i16:
824 Opc = Mips::SH;
825 break;
826 case MVT::i32:
827 Opc = Mips::SW;
828 break;
829 case MVT::f32:
830 if (UnsupportedFPMode)
831 return false;
832 Opc = Mips::SWC1;
833 break;
834 case MVT::f64:
835 if (UnsupportedFPMode)
836 return false;
837 Opc = Mips::SDC1;
838 break;
839 default:
840 return false;
842 if (Addr.isRegBase()) {
843 simplifyAddress(Addr);
844 emitInstStore(Opc, SrcReg, Addr.getReg(), Addr.getOffset());
845 return true;
847 if (Addr.isFIBase()) {
848 unsigned FI = Addr.getFI();
849 unsigned Align = 4;
850 int64_t Offset = Addr.getOffset();
851 MachineFrameInfo &MFI = MF->getFrameInfo();
852 MachineMemOperand *MMO = MF->getMachineMemOperand(
853 MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOStore,
854 MFI.getObjectSize(FI), Align);
855 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
856 .addReg(SrcReg)
857 .addFrameIndex(FI)
858 .addImm(Offset)
859 .addMemOperand(MMO);
860 return true;
862 return false;
865 bool MipsFastISel::selectLogicalOp(const Instruction *I) {
866 MVT VT;
867 if (!isTypeSupported(I->getType(), VT))
868 return false;
870 unsigned ResultReg;
871 switch (I->getOpcode()) {
872 default:
873 llvm_unreachable("Unexpected instruction.");
874 case Instruction::And:
875 ResultReg = emitLogicalOp(ISD::AND, VT, I->getOperand(0), I->getOperand(1));
876 break;
877 case Instruction::Or:
878 ResultReg = emitLogicalOp(ISD::OR, VT, I->getOperand(0), I->getOperand(1));
879 break;
880 case Instruction::Xor:
881 ResultReg = emitLogicalOp(ISD::XOR, VT, I->getOperand(0), I->getOperand(1));
882 break;
885 if (!ResultReg)
886 return false;
888 updateValueMap(I, ResultReg);
889 return true;
892 bool MipsFastISel::selectLoad(const Instruction *I) {
893 // Atomic loads need special handling.
894 if (cast<LoadInst>(I)->isAtomic())
895 return false;
897 // Verify we have a legal type before going any further.
898 MVT VT;
899 if (!isLoadTypeLegal(I->getType(), VT))
900 return false;
902 // See if we can handle this address.
903 Address Addr;
904 if (!computeAddress(I->getOperand(0), Addr))
905 return false;
907 unsigned ResultReg;
908 if (!emitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment()))
909 return false;
910 updateValueMap(I, ResultReg);
911 return true;
914 bool MipsFastISel::selectStore(const Instruction *I) {
915 Value *Op0 = I->getOperand(0);
916 unsigned SrcReg = 0;
918 // Atomic stores need special handling.
919 if (cast<StoreInst>(I)->isAtomic())
920 return false;
922 // Verify we have a legal type before going any further.
923 MVT VT;
924 if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
925 return false;
927 // Get the value to be stored into a register.
928 SrcReg = getRegForValue(Op0);
929 if (SrcReg == 0)
930 return false;
932 // See if we can handle this address.
933 Address Addr;
934 if (!computeAddress(I->getOperand(1), Addr))
935 return false;
937 if (!emitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment()))
938 return false;
939 return true;
942 // This can cause a redundant sltiu to be generated.
943 // FIXME: try and eliminate this in a future patch.
944 bool MipsFastISel::selectBranch(const Instruction *I) {
945 const BranchInst *BI = cast<BranchInst>(I);
946 MachineBasicBlock *BrBB = FuncInfo.MBB;
948 // TBB is the basic block for the case where the comparison is true.
949 // FBB is the basic block for the case where the comparison is false.
950 // if (cond) goto TBB
951 // goto FBB
952 // TBB:
954 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
955 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
957 // Fold the common case of a conditional branch with a comparison
958 // in the same block.
959 unsigned ZExtCondReg = 0;
960 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
961 if (CI->hasOneUse() && CI->getParent() == I->getParent()) {
962 ZExtCondReg = createResultReg(&Mips::GPR32RegClass);
963 if (!emitCmp(ZExtCondReg, CI))
964 return false;
968 // For the general case, we need to mask with 1.
969 if (ZExtCondReg == 0) {
970 unsigned CondReg = getRegForValue(BI->getCondition());
971 if (CondReg == 0)
972 return false;
974 ZExtCondReg = emitIntExt(MVT::i1, CondReg, MVT::i32, true);
975 if (ZExtCondReg == 0)
976 return false;
979 BuildMI(*BrBB, FuncInfo.InsertPt, DbgLoc, TII.get(Mips::BGTZ))
980 .addReg(ZExtCondReg)
981 .addMBB(TBB);
982 finishCondBranch(BI->getParent(), TBB, FBB);
983 return true;
986 bool MipsFastISel::selectCmp(const Instruction *I) {
987 const CmpInst *CI = cast<CmpInst>(I);
988 unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
989 if (!emitCmp(ResultReg, CI))
990 return false;
991 updateValueMap(I, ResultReg);
992 return true;
995 // Attempt to fast-select a floating-point extend instruction.
996 bool MipsFastISel::selectFPExt(const Instruction *I) {
997 if (UnsupportedFPMode)
998 return false;
999 Value *Src = I->getOperand(0);
1000 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
1001 EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1003 if (SrcVT != MVT::f32 || DestVT != MVT::f64)
1004 return false;
1006 unsigned SrcReg =
1007 getRegForValue(Src); // this must be a 32bit floating point register class
1008 // maybe we should handle this differently
1009 if (!SrcReg)
1010 return false;
1012 unsigned DestReg = createResultReg(&Mips::AFGR64RegClass);
1013 emitInst(Mips::CVT_D32_S, DestReg).addReg(SrcReg);
1014 updateValueMap(I, DestReg);
1015 return true;
1018 bool MipsFastISel::selectSelect(const Instruction *I) {
1019 assert(isa<SelectInst>(I) && "Expected a select instruction.");
1021 LLVM_DEBUG(dbgs() << "selectSelect\n");
1023 MVT VT;
1024 if (!isTypeSupported(I->getType(), VT) || UnsupportedFPMode) {
1025 LLVM_DEBUG(
1026 dbgs() << ".. .. gave up (!isTypeSupported || UnsupportedFPMode)\n");
1027 return false;
1030 unsigned CondMovOpc;
1031 const TargetRegisterClass *RC;
1033 if (VT.isInteger() && !VT.isVector() && VT.getSizeInBits() <= 32) {
1034 CondMovOpc = Mips::MOVN_I_I;
1035 RC = &Mips::GPR32RegClass;
1036 } else if (VT == MVT::f32) {
1037 CondMovOpc = Mips::MOVN_I_S;
1038 RC = &Mips::FGR32RegClass;
1039 } else if (VT == MVT::f64) {
1040 CondMovOpc = Mips::MOVN_I_D32;
1041 RC = &Mips::AFGR64RegClass;
1042 } else
1043 return false;
1045 const SelectInst *SI = cast<SelectInst>(I);
1046 const Value *Cond = SI->getCondition();
1047 unsigned Src1Reg = getRegForValue(SI->getTrueValue());
1048 unsigned Src2Reg = getRegForValue(SI->getFalseValue());
1049 unsigned CondReg = getRegForValue(Cond);
1051 if (!Src1Reg || !Src2Reg || !CondReg)
1052 return false;
1054 unsigned ZExtCondReg = createResultReg(&Mips::GPR32RegClass);
1055 if (!ZExtCondReg)
1056 return false;
1058 if (!emitIntExt(MVT::i1, CondReg, MVT::i32, ZExtCondReg, true))
1059 return false;
1061 unsigned ResultReg = createResultReg(RC);
1062 unsigned TempReg = createResultReg(RC);
1064 if (!ResultReg || !TempReg)
1065 return false;
1067 emitInst(TargetOpcode::COPY, TempReg).addReg(Src2Reg);
1068 emitInst(CondMovOpc, ResultReg)
1069 .addReg(Src1Reg).addReg(ZExtCondReg).addReg(TempReg);
1070 updateValueMap(I, ResultReg);
1071 return true;
1074 // Attempt to fast-select a floating-point truncate instruction.
1075 bool MipsFastISel::selectFPTrunc(const Instruction *I) {
1076 if (UnsupportedFPMode)
1077 return false;
1078 Value *Src = I->getOperand(0);
1079 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
1080 EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1082 if (SrcVT != MVT::f64 || DestVT != MVT::f32)
1083 return false;
1085 unsigned SrcReg = getRegForValue(Src);
1086 if (!SrcReg)
1087 return false;
1089 unsigned DestReg = createResultReg(&Mips::FGR32RegClass);
1090 if (!DestReg)
1091 return false;
1093 emitInst(Mips::CVT_S_D32, DestReg).addReg(SrcReg);
1094 updateValueMap(I, DestReg);
1095 return true;
1098 // Attempt to fast-select a floating-point-to-integer conversion.
1099 bool MipsFastISel::selectFPToInt(const Instruction *I, bool IsSigned) {
1100 if (UnsupportedFPMode)
1101 return false;
1102 MVT DstVT, SrcVT;
1103 if (!IsSigned)
1104 return false; // We don't handle this case yet. There is no native
1105 // instruction for this but it can be synthesized.
1106 Type *DstTy = I->getType();
1107 if (!isTypeLegal(DstTy, DstVT))
1108 return false;
1110 if (DstVT != MVT::i32)
1111 return false;
1113 Value *Src = I->getOperand(0);
1114 Type *SrcTy = Src->getType();
1115 if (!isTypeLegal(SrcTy, SrcVT))
1116 return false;
1118 if (SrcVT != MVT::f32 && SrcVT != MVT::f64)
1119 return false;
1121 unsigned SrcReg = getRegForValue(Src);
1122 if (SrcReg == 0)
1123 return false;
1125 // Determine the opcode for the conversion, which takes place
1126 // entirely within FPRs.
1127 unsigned DestReg = createResultReg(&Mips::GPR32RegClass);
1128 unsigned TempReg = createResultReg(&Mips::FGR32RegClass);
1129 unsigned Opc = (SrcVT == MVT::f32) ? Mips::TRUNC_W_S : Mips::TRUNC_W_D32;
1131 // Generate the convert.
1132 emitInst(Opc, TempReg).addReg(SrcReg);
1133 emitInst(Mips::MFC1, DestReg).addReg(TempReg);
1135 updateValueMap(I, DestReg);
1136 return true;
1139 bool MipsFastISel::processCallArgs(CallLoweringInfo &CLI,
1140 SmallVectorImpl<MVT> &OutVTs,
1141 unsigned &NumBytes) {
1142 CallingConv::ID CC = CLI.CallConv;
1143 SmallVector<CCValAssign, 16> ArgLocs;
1144 CCState CCInfo(CC, false, *FuncInfo.MF, ArgLocs, *Context);
1145 CCInfo.AnalyzeCallOperands(OutVTs, CLI.OutFlags, CCAssignFnForCall(CC));
1146 // Get a count of how many bytes are to be pushed on the stack.
1147 NumBytes = CCInfo.getNextStackOffset();
1148 // This is the minimum argument area used for A0-A3.
1149 if (NumBytes < 16)
1150 NumBytes = 16;
1152 emitInst(Mips::ADJCALLSTACKDOWN).addImm(16).addImm(0);
1153 // Process the args.
1154 MVT firstMVT;
1155 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1156 CCValAssign &VA = ArgLocs[i];
1157 const Value *ArgVal = CLI.OutVals[VA.getValNo()];
1158 MVT ArgVT = OutVTs[VA.getValNo()];
1160 if (i == 0) {
1161 firstMVT = ArgVT;
1162 if (ArgVT == MVT::f32) {
1163 VA.convertToReg(Mips::F12);
1164 } else if (ArgVT == MVT::f64) {
1165 VA.convertToReg(Mips::D6);
1167 } else if (i == 1) {
1168 if ((firstMVT == MVT::f32) || (firstMVT == MVT::f64)) {
1169 if (ArgVT == MVT::f32) {
1170 VA.convertToReg(Mips::F14);
1171 } else if (ArgVT == MVT::f64) {
1172 VA.convertToReg(Mips::D7);
1176 if (((ArgVT == MVT::i32) || (ArgVT == MVT::f32) || (ArgVT == MVT::i16) ||
1177 (ArgVT == MVT::i8)) &&
1178 VA.isMemLoc()) {
1179 switch (VA.getLocMemOffset()) {
1180 case 0:
1181 VA.convertToReg(Mips::A0);
1182 break;
1183 case 4:
1184 VA.convertToReg(Mips::A1);
1185 break;
1186 case 8:
1187 VA.convertToReg(Mips::A2);
1188 break;
1189 case 12:
1190 VA.convertToReg(Mips::A3);
1191 break;
1192 default:
1193 break;
1196 unsigned ArgReg = getRegForValue(ArgVal);
1197 if (!ArgReg)
1198 return false;
1200 // Handle arg promotion: SExt, ZExt, AExt.
1201 switch (VA.getLocInfo()) {
1202 case CCValAssign::Full:
1203 break;
1204 case CCValAssign::AExt:
1205 case CCValAssign::SExt: {
1206 MVT DestVT = VA.getLocVT();
1207 MVT SrcVT = ArgVT;
1208 ArgReg = emitIntExt(SrcVT, ArgReg, DestVT, /*isZExt=*/false);
1209 if (!ArgReg)
1210 return false;
1211 break;
1213 case CCValAssign::ZExt: {
1214 MVT DestVT = VA.getLocVT();
1215 MVT SrcVT = ArgVT;
1216 ArgReg = emitIntExt(SrcVT, ArgReg, DestVT, /*isZExt=*/true);
1217 if (!ArgReg)
1218 return false;
1219 break;
1221 default:
1222 llvm_unreachable("Unknown arg promotion!");
1225 // Now copy/store arg to correct locations.
1226 if (VA.isRegLoc() && !VA.needsCustom()) {
1227 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1228 TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg);
1229 CLI.OutRegs.push_back(VA.getLocReg());
1230 } else if (VA.needsCustom()) {
1231 llvm_unreachable("Mips does not use custom args.");
1232 return false;
1233 } else {
1235 // FIXME: This path will currently return false. It was copied
1236 // from the AArch64 port and should be essentially fine for Mips too.
1237 // The work to finish up this path will be done in a follow-on patch.
1239 assert(VA.isMemLoc() && "Assuming store on stack.");
1240 // Don't emit stores for undef values.
1241 if (isa<UndefValue>(ArgVal))
1242 continue;
1244 // Need to store on the stack.
1245 // FIXME: This alignment is incorrect but this path is disabled
1246 // for now (will return false). We need to determine the right alignment
1247 // based on the normal alignment for the underlying machine type.
1249 unsigned ArgSize = alignTo(ArgVT.getSizeInBits(), 4);
1251 unsigned BEAlign = 0;
1252 if (ArgSize < 8 && !Subtarget->isLittle())
1253 BEAlign = 8 - ArgSize;
1255 Address Addr;
1256 Addr.setKind(Address::RegBase);
1257 Addr.setReg(Mips::SP);
1258 Addr.setOffset(VA.getLocMemOffset() + BEAlign);
1260 unsigned Alignment = DL.getABITypeAlignment(ArgVal->getType());
1261 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
1262 MachinePointerInfo::getStack(*FuncInfo.MF, Addr.getOffset()),
1263 MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment);
1264 (void)(MMO);
1265 // if (!emitStore(ArgVT, ArgReg, Addr, MMO))
1266 return false; // can't store on the stack yet.
1270 return true;
1273 bool MipsFastISel::finishCall(CallLoweringInfo &CLI, MVT RetVT,
1274 unsigned NumBytes) {
1275 CallingConv::ID CC = CLI.CallConv;
1276 emitInst(Mips::ADJCALLSTACKUP).addImm(16).addImm(0);
1277 if (RetVT != MVT::isVoid) {
1278 SmallVector<CCValAssign, 16> RVLocs;
1279 MipsCCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
1281 CCInfo.AnalyzeCallResult(CLI.Ins, RetCC_Mips, CLI.RetTy,
1282 CLI.Symbol ? CLI.Symbol->getName().data()
1283 : nullptr);
1285 // Only handle a single return value.
1286 if (RVLocs.size() != 1)
1287 return false;
1288 // Copy all of the result registers out of their specified physreg.
1289 MVT CopyVT = RVLocs[0].getValVT();
1290 // Special handling for extended integers.
1291 if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16)
1292 CopyVT = MVT::i32;
1294 unsigned ResultReg = createResultReg(TLI.getRegClassFor(CopyVT));
1295 if (!ResultReg)
1296 return false;
1297 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1298 TII.get(TargetOpcode::COPY),
1299 ResultReg).addReg(RVLocs[0].getLocReg());
1300 CLI.InRegs.push_back(RVLocs[0].getLocReg());
1302 CLI.ResultReg = ResultReg;
1303 CLI.NumResultRegs = 1;
1305 return true;
1308 bool MipsFastISel::fastLowerArguments() {
1309 LLVM_DEBUG(dbgs() << "fastLowerArguments\n");
1311 if (!FuncInfo.CanLowerReturn) {
1312 LLVM_DEBUG(dbgs() << ".. gave up (!CanLowerReturn)\n");
1313 return false;
1316 const Function *F = FuncInfo.Fn;
1317 if (F->isVarArg()) {
1318 LLVM_DEBUG(dbgs() << ".. gave up (varargs)\n");
1319 return false;
1322 CallingConv::ID CC = F->getCallingConv();
1323 if (CC != CallingConv::C) {
1324 LLVM_DEBUG(dbgs() << ".. gave up (calling convention is not C)\n");
1325 return false;
1328 std::array<MCPhysReg, 4> GPR32ArgRegs = {{Mips::A0, Mips::A1, Mips::A2,
1329 Mips::A3}};
1330 std::array<MCPhysReg, 2> FGR32ArgRegs = {{Mips::F12, Mips::F14}};
1331 std::array<MCPhysReg, 2> AFGR64ArgRegs = {{Mips::D6, Mips::D7}};
1332 auto NextGPR32 = GPR32ArgRegs.begin();
1333 auto NextFGR32 = FGR32ArgRegs.begin();
1334 auto NextAFGR64 = AFGR64ArgRegs.begin();
1336 struct AllocatedReg {
1337 const TargetRegisterClass *RC;
1338 unsigned Reg;
1339 AllocatedReg(const TargetRegisterClass *RC, unsigned Reg)
1340 : RC(RC), Reg(Reg) {}
1343 // Only handle simple cases. i.e. All arguments are directly mapped to
1344 // registers of the appropriate type.
1345 SmallVector<AllocatedReg, 4> Allocation;
1346 for (const auto &FormalArg : F->args()) {
1347 if (FormalArg.hasAttribute(Attribute::InReg) ||
1348 FormalArg.hasAttribute(Attribute::StructRet) ||
1349 FormalArg.hasAttribute(Attribute::ByVal)) {
1350 LLVM_DEBUG(dbgs() << ".. gave up (inreg, structret, byval)\n");
1351 return false;
1354 Type *ArgTy = FormalArg.getType();
1355 if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy()) {
1356 LLVM_DEBUG(dbgs() << ".. gave up (struct, array, or vector)\n");
1357 return false;
1360 EVT ArgVT = TLI.getValueType(DL, ArgTy);
1361 LLVM_DEBUG(dbgs() << ".. " << FormalArg.getArgNo() << ": "
1362 << ArgVT.getEVTString() << "\n");
1363 if (!ArgVT.isSimple()) {
1364 LLVM_DEBUG(dbgs() << ".. .. gave up (not a simple type)\n");
1365 return false;
1368 switch (ArgVT.getSimpleVT().SimpleTy) {
1369 case MVT::i1:
1370 case MVT::i8:
1371 case MVT::i16:
1372 if (!FormalArg.hasAttribute(Attribute::SExt) &&
1373 !FormalArg.hasAttribute(Attribute::ZExt)) {
1374 // It must be any extend, this shouldn't happen for clang-generated IR
1375 // so just fall back on SelectionDAG.
1376 LLVM_DEBUG(dbgs() << ".. .. gave up (i8/i16 arg is not extended)\n");
1377 return false;
1380 if (NextGPR32 == GPR32ArgRegs.end()) {
1381 LLVM_DEBUG(dbgs() << ".. .. gave up (ran out of GPR32 arguments)\n");
1382 return false;
1385 LLVM_DEBUG(dbgs() << ".. .. GPR32(" << *NextGPR32 << ")\n");
1386 Allocation.emplace_back(&Mips::GPR32RegClass, *NextGPR32++);
1388 // Allocating any GPR32 prohibits further use of floating point arguments.
1389 NextFGR32 = FGR32ArgRegs.end();
1390 NextAFGR64 = AFGR64ArgRegs.end();
1391 break;
1393 case MVT::i32:
1394 if (FormalArg.hasAttribute(Attribute::ZExt)) {
1395 // The O32 ABI does not permit a zero-extended i32.
1396 LLVM_DEBUG(dbgs() << ".. .. gave up (i32 arg is zero extended)\n");
1397 return false;
1400 if (NextGPR32 == GPR32ArgRegs.end()) {
1401 LLVM_DEBUG(dbgs() << ".. .. gave up (ran out of GPR32 arguments)\n");
1402 return false;
1405 LLVM_DEBUG(dbgs() << ".. .. GPR32(" << *NextGPR32 << ")\n");
1406 Allocation.emplace_back(&Mips::GPR32RegClass, *NextGPR32++);
1408 // Allocating any GPR32 prohibits further use of floating point arguments.
1409 NextFGR32 = FGR32ArgRegs.end();
1410 NextAFGR64 = AFGR64ArgRegs.end();
1411 break;
1413 case MVT::f32:
1414 if (UnsupportedFPMode) {
1415 LLVM_DEBUG(dbgs() << ".. .. gave up (UnsupportedFPMode)\n");
1416 return false;
1418 if (NextFGR32 == FGR32ArgRegs.end()) {
1419 LLVM_DEBUG(dbgs() << ".. .. gave up (ran out of FGR32 arguments)\n");
1420 return false;
1422 LLVM_DEBUG(dbgs() << ".. .. FGR32(" << *NextFGR32 << ")\n");
1423 Allocation.emplace_back(&Mips::FGR32RegClass, *NextFGR32++);
1424 // Allocating an FGR32 also allocates the super-register AFGR64, and
1425 // ABI rules require us to skip the corresponding GPR32.
1426 if (NextGPR32 != GPR32ArgRegs.end())
1427 NextGPR32++;
1428 if (NextAFGR64 != AFGR64ArgRegs.end())
1429 NextAFGR64++;
1430 break;
1432 case MVT::f64:
1433 if (UnsupportedFPMode) {
1434 LLVM_DEBUG(dbgs() << ".. .. gave up (UnsupportedFPMode)\n");
1435 return false;
1437 if (NextAFGR64 == AFGR64ArgRegs.end()) {
1438 LLVM_DEBUG(dbgs() << ".. .. gave up (ran out of AFGR64 arguments)\n");
1439 return false;
1441 LLVM_DEBUG(dbgs() << ".. .. AFGR64(" << *NextAFGR64 << ")\n");
1442 Allocation.emplace_back(&Mips::AFGR64RegClass, *NextAFGR64++);
1443 // Allocating an FGR32 also allocates the super-register AFGR64, and
1444 // ABI rules require us to skip the corresponding GPR32 pair.
1445 if (NextGPR32 != GPR32ArgRegs.end())
1446 NextGPR32++;
1447 if (NextGPR32 != GPR32ArgRegs.end())
1448 NextGPR32++;
1449 if (NextFGR32 != FGR32ArgRegs.end())
1450 NextFGR32++;
1451 break;
1453 default:
1454 LLVM_DEBUG(dbgs() << ".. .. gave up (unknown type)\n");
1455 return false;
1459 for (const auto &FormalArg : F->args()) {
1460 unsigned ArgNo = FormalArg.getArgNo();
1461 unsigned SrcReg = Allocation[ArgNo].Reg;
1462 unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, Allocation[ArgNo].RC);
1463 // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
1464 // Without this, EmitLiveInCopies may eliminate the livein if its only
1465 // use is a bitcast (which isn't turned into an instruction).
1466 unsigned ResultReg = createResultReg(Allocation[ArgNo].RC);
1467 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1468 TII.get(TargetOpcode::COPY), ResultReg)
1469 .addReg(DstReg, getKillRegState(true));
1470 updateValueMap(&FormalArg, ResultReg);
1473 // Calculate the size of the incoming arguments area.
1474 // We currently reject all the cases where this would be non-zero.
1475 unsigned IncomingArgSizeInBytes = 0;
1477 // Account for the reserved argument area on ABI's that have one (O32).
1478 // It seems strange to do this on the caller side but it's necessary in
1479 // SelectionDAG's implementation.
1480 IncomingArgSizeInBytes = std::min(getABI().GetCalleeAllocdArgSizeInBytes(CC),
1481 IncomingArgSizeInBytes);
1483 MF->getInfo<MipsFunctionInfo>()->setFormalArgInfo(IncomingArgSizeInBytes,
1484 false);
1486 return true;
1489 bool MipsFastISel::fastLowerCall(CallLoweringInfo &CLI) {
1490 CallingConv::ID CC = CLI.CallConv;
1491 bool IsTailCall = CLI.IsTailCall;
1492 bool IsVarArg = CLI.IsVarArg;
1493 const Value *Callee = CLI.Callee;
1494 MCSymbol *Symbol = CLI.Symbol;
1496 // Do not handle FastCC.
1497 if (CC == CallingConv::Fast)
1498 return false;
1500 // Allow SelectionDAG isel to handle tail calls.
1501 if (IsTailCall)
1502 return false;
1504 // Let SDISel handle vararg functions.
1505 if (IsVarArg)
1506 return false;
1508 // FIXME: Only handle *simple* calls for now.
1509 MVT RetVT;
1510 if (CLI.RetTy->isVoidTy())
1511 RetVT = MVT::isVoid;
1512 else if (!isTypeSupported(CLI.RetTy, RetVT))
1513 return false;
1515 for (auto Flag : CLI.OutFlags)
1516 if (Flag.isInReg() || Flag.isSRet() || Flag.isNest() || Flag.isByVal())
1517 return false;
1519 // Set up the argument vectors.
1520 SmallVector<MVT, 16> OutVTs;
1521 OutVTs.reserve(CLI.OutVals.size());
1523 for (auto *Val : CLI.OutVals) {
1524 MVT VT;
1525 if (!isTypeLegal(Val->getType(), VT) &&
1526 !(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16))
1527 return false;
1529 // We don't handle vector parameters yet.
1530 if (VT.isVector() || VT.getSizeInBits() > 64)
1531 return false;
1533 OutVTs.push_back(VT);
1536 Address Addr;
1537 if (!computeCallAddress(Callee, Addr))
1538 return false;
1540 // Handle the arguments now that we've gotten them.
1541 unsigned NumBytes;
1542 if (!processCallArgs(CLI, OutVTs, NumBytes))
1543 return false;
1545 if (!Addr.getGlobalValue())
1546 return false;
1548 // Issue the call.
1549 unsigned DestAddress;
1550 if (Symbol)
1551 DestAddress = materializeExternalCallSym(Symbol);
1552 else
1553 DestAddress = materializeGV(Addr.getGlobalValue(), MVT::i32);
1554 emitInst(TargetOpcode::COPY, Mips::T9).addReg(DestAddress);
1555 MachineInstrBuilder MIB =
1556 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Mips::JALR),
1557 Mips::RA).addReg(Mips::T9);
1559 // Add implicit physical register uses to the call.
1560 for (auto Reg : CLI.OutRegs)
1561 MIB.addReg(Reg, RegState::Implicit);
1563 // Add a register mask with the call-preserved registers.
1564 // Proper defs for return values will be added by setPhysRegsDeadExcept().
1565 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
1567 CLI.Call = MIB;
1569 if (EmitJalrReloc && !Subtarget->inMips16Mode()) {
1570 // Attach callee address to the instruction, let asm printer emit
1571 // .reloc R_MIPS_JALR.
1572 if (Symbol)
1573 MIB.addSym(Symbol, MipsII::MO_JALR);
1574 else
1575 MIB.addSym(FuncInfo.MF->getContext().getOrCreateSymbol(
1576 Addr.getGlobalValue()->getName()), MipsII::MO_JALR);
1579 // Finish off the call including any return values.
1580 return finishCall(CLI, RetVT, NumBytes);
1583 bool MipsFastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) {
1584 switch (II->getIntrinsicID()) {
1585 default:
1586 return false;
1587 case Intrinsic::bswap: {
1588 Type *RetTy = II->getCalledFunction()->getReturnType();
1590 MVT VT;
1591 if (!isTypeSupported(RetTy, VT))
1592 return false;
1594 unsigned SrcReg = getRegForValue(II->getOperand(0));
1595 if (SrcReg == 0)
1596 return false;
1597 unsigned DestReg = createResultReg(&Mips::GPR32RegClass);
1598 if (DestReg == 0)
1599 return false;
1600 if (VT == MVT::i16) {
1601 if (Subtarget->hasMips32r2()) {
1602 emitInst(Mips::WSBH, DestReg).addReg(SrcReg);
1603 updateValueMap(II, DestReg);
1604 return true;
1605 } else {
1606 unsigned TempReg[3];
1607 for (int i = 0; i < 3; i++) {
1608 TempReg[i] = createResultReg(&Mips::GPR32RegClass);
1609 if (TempReg[i] == 0)
1610 return false;
1612 emitInst(Mips::SLL, TempReg[0]).addReg(SrcReg).addImm(8);
1613 emitInst(Mips::SRL, TempReg[1]).addReg(SrcReg).addImm(8);
1614 emitInst(Mips::OR, TempReg[2]).addReg(TempReg[0]).addReg(TempReg[1]);
1615 emitInst(Mips::ANDi, DestReg).addReg(TempReg[2]).addImm(0xFFFF);
1616 updateValueMap(II, DestReg);
1617 return true;
1619 } else if (VT == MVT::i32) {
1620 if (Subtarget->hasMips32r2()) {
1621 unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
1622 emitInst(Mips::WSBH, TempReg).addReg(SrcReg);
1623 emitInst(Mips::ROTR, DestReg).addReg(TempReg).addImm(16);
1624 updateValueMap(II, DestReg);
1625 return true;
1626 } else {
1627 unsigned TempReg[8];
1628 for (int i = 0; i < 8; i++) {
1629 TempReg[i] = createResultReg(&Mips::GPR32RegClass);
1630 if (TempReg[i] == 0)
1631 return false;
1634 emitInst(Mips::SRL, TempReg[0]).addReg(SrcReg).addImm(8);
1635 emitInst(Mips::SRL, TempReg[1]).addReg(SrcReg).addImm(24);
1636 emitInst(Mips::ANDi, TempReg[2]).addReg(TempReg[0]).addImm(0xFF00);
1637 emitInst(Mips::OR, TempReg[3]).addReg(TempReg[1]).addReg(TempReg[2]);
1639 emitInst(Mips::ANDi, TempReg[4]).addReg(SrcReg).addImm(0xFF00);
1640 emitInst(Mips::SLL, TempReg[5]).addReg(TempReg[4]).addImm(8);
1642 emitInst(Mips::SLL, TempReg[6]).addReg(SrcReg).addImm(24);
1643 emitInst(Mips::OR, TempReg[7]).addReg(TempReg[3]).addReg(TempReg[5]);
1644 emitInst(Mips::OR, DestReg).addReg(TempReg[6]).addReg(TempReg[7]);
1645 updateValueMap(II, DestReg);
1646 return true;
1649 return false;
1651 case Intrinsic::memcpy:
1652 case Intrinsic::memmove: {
1653 const auto *MTI = cast<MemTransferInst>(II);
1654 // Don't handle volatile.
1655 if (MTI->isVolatile())
1656 return false;
1657 if (!MTI->getLength()->getType()->isIntegerTy(32))
1658 return false;
1659 const char *IntrMemName = isa<MemCpyInst>(II) ? "memcpy" : "memmove";
1660 return lowerCallTo(II, IntrMemName, II->getNumArgOperands() - 1);
1662 case Intrinsic::memset: {
1663 const MemSetInst *MSI = cast<MemSetInst>(II);
1664 // Don't handle volatile.
1665 if (MSI->isVolatile())
1666 return false;
1667 if (!MSI->getLength()->getType()->isIntegerTy(32))
1668 return false;
1669 return lowerCallTo(II, "memset", II->getNumArgOperands() - 1);
1672 return false;
1675 bool MipsFastISel::selectRet(const Instruction *I) {
1676 const Function &F = *I->getParent()->getParent();
1677 const ReturnInst *Ret = cast<ReturnInst>(I);
1679 LLVM_DEBUG(dbgs() << "selectRet\n");
1681 if (!FuncInfo.CanLowerReturn)
1682 return false;
1684 // Build a list of return value registers.
1685 SmallVector<unsigned, 4> RetRegs;
1687 if (Ret->getNumOperands() > 0) {
1688 CallingConv::ID CC = F.getCallingConv();
1690 // Do not handle FastCC.
1691 if (CC == CallingConv::Fast)
1692 return false;
1694 SmallVector<ISD::OutputArg, 4> Outs;
1695 GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
1697 // Analyze operands of the call, assigning locations to each operand.
1698 SmallVector<CCValAssign, 16> ValLocs;
1699 MipsCCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs,
1700 I->getContext());
1701 CCAssignFn *RetCC = RetCC_Mips;
1702 CCInfo.AnalyzeReturn(Outs, RetCC);
1704 // Only handle a single return value for now.
1705 if (ValLocs.size() != 1)
1706 return false;
1708 CCValAssign &VA = ValLocs[0];
1709 const Value *RV = Ret->getOperand(0);
1711 // Don't bother handling odd stuff for now.
1712 if ((VA.getLocInfo() != CCValAssign::Full) &&
1713 (VA.getLocInfo() != CCValAssign::BCvt))
1714 return false;
1716 // Only handle register returns for now.
1717 if (!VA.isRegLoc())
1718 return false;
1720 unsigned Reg = getRegForValue(RV);
1721 if (Reg == 0)
1722 return false;
1724 unsigned SrcReg = Reg + VA.getValNo();
1725 unsigned DestReg = VA.getLocReg();
1726 // Avoid a cross-class copy. This is very unlikely.
1727 if (!MRI.getRegClass(SrcReg)->contains(DestReg))
1728 return false;
1730 EVT RVEVT = TLI.getValueType(DL, RV->getType());
1731 if (!RVEVT.isSimple())
1732 return false;
1734 if (RVEVT.isVector())
1735 return false;
1737 MVT RVVT = RVEVT.getSimpleVT();
1738 if (RVVT == MVT::f128)
1739 return false;
1741 // Do not handle FGR64 returns for now.
1742 if (RVVT == MVT::f64 && UnsupportedFPMode) {
1743 LLVM_DEBUG(dbgs() << ".. .. gave up (UnsupportedFPMode\n");
1744 return false;
1747 MVT DestVT = VA.getValVT();
1748 // Special handling for extended integers.
1749 if (RVVT != DestVT) {
1750 if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
1751 return false;
1753 if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) {
1754 bool IsZExt = Outs[0].Flags.isZExt();
1755 SrcReg = emitIntExt(RVVT, SrcReg, DestVT, IsZExt);
1756 if (SrcReg == 0)
1757 return false;
1761 // Make the copy.
1762 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1763 TII.get(TargetOpcode::COPY), DestReg).addReg(SrcReg);
1765 // Add register to return instruction.
1766 RetRegs.push_back(VA.getLocReg());
1768 MachineInstrBuilder MIB = emitInst(Mips::RetRA);
1769 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
1770 MIB.addReg(RetRegs[i], RegState::Implicit);
1771 return true;
1774 bool MipsFastISel::selectTrunc(const Instruction *I) {
1775 // The high bits for a type smaller than the register size are assumed to be
1776 // undefined.
1777 Value *Op = I->getOperand(0);
1779 EVT SrcVT, DestVT;
1780 SrcVT = TLI.getValueType(DL, Op->getType(), true);
1781 DestVT = TLI.getValueType(DL, I->getType(), true);
1783 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
1784 return false;
1785 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
1786 return false;
1788 unsigned SrcReg = getRegForValue(Op);
1789 if (!SrcReg)
1790 return false;
1792 // Because the high bits are undefined, a truncate doesn't generate
1793 // any code.
1794 updateValueMap(I, SrcReg);
1795 return true;
1798 bool MipsFastISel::selectIntExt(const Instruction *I) {
1799 Type *DestTy = I->getType();
1800 Value *Src = I->getOperand(0);
1801 Type *SrcTy = Src->getType();
1803 bool isZExt = isa<ZExtInst>(I);
1804 unsigned SrcReg = getRegForValue(Src);
1805 if (!SrcReg)
1806 return false;
1808 EVT SrcEVT, DestEVT;
1809 SrcEVT = TLI.getValueType(DL, SrcTy, true);
1810 DestEVT = TLI.getValueType(DL, DestTy, true);
1811 if (!SrcEVT.isSimple())
1812 return false;
1813 if (!DestEVT.isSimple())
1814 return false;
1816 MVT SrcVT = SrcEVT.getSimpleVT();
1817 MVT DestVT = DestEVT.getSimpleVT();
1818 unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
1820 if (!emitIntExt(SrcVT, SrcReg, DestVT, ResultReg, isZExt))
1821 return false;
1822 updateValueMap(I, ResultReg);
1823 return true;
1826 bool MipsFastISel::emitIntSExt32r1(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1827 unsigned DestReg) {
1828 unsigned ShiftAmt;
1829 switch (SrcVT.SimpleTy) {
1830 default:
1831 return false;
1832 case MVT::i8:
1833 ShiftAmt = 24;
1834 break;
1835 case MVT::i16:
1836 ShiftAmt = 16;
1837 break;
1839 unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
1840 emitInst(Mips::SLL, TempReg).addReg(SrcReg).addImm(ShiftAmt);
1841 emitInst(Mips::SRA, DestReg).addReg(TempReg).addImm(ShiftAmt);
1842 return true;
1845 bool MipsFastISel::emitIntSExt32r2(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1846 unsigned DestReg) {
1847 switch (SrcVT.SimpleTy) {
1848 default:
1849 return false;
1850 case MVT::i8:
1851 emitInst(Mips::SEB, DestReg).addReg(SrcReg);
1852 break;
1853 case MVT::i16:
1854 emitInst(Mips::SEH, DestReg).addReg(SrcReg);
1855 break;
1857 return true;
1860 bool MipsFastISel::emitIntSExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1861 unsigned DestReg) {
1862 if ((DestVT != MVT::i32) && (DestVT != MVT::i16))
1863 return false;
1864 if (Subtarget->hasMips32r2())
1865 return emitIntSExt32r2(SrcVT, SrcReg, DestVT, DestReg);
1866 return emitIntSExt32r1(SrcVT, SrcReg, DestVT, DestReg);
1869 bool MipsFastISel::emitIntZExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1870 unsigned DestReg) {
1871 int64_t Imm;
1873 switch (SrcVT.SimpleTy) {
1874 default:
1875 return false;
1876 case MVT::i1:
1877 Imm = 1;
1878 break;
1879 case MVT::i8:
1880 Imm = 0xff;
1881 break;
1882 case MVT::i16:
1883 Imm = 0xffff;
1884 break;
1887 emitInst(Mips::ANDi, DestReg).addReg(SrcReg).addImm(Imm);
1888 return true;
1891 bool MipsFastISel::emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1892 unsigned DestReg, bool IsZExt) {
1893 // FastISel does not have plumbing to deal with extensions where the SrcVT or
1894 // DestVT are odd things, so test to make sure that they are both types we can
1895 // handle (i1/i8/i16/i32 for SrcVT and i8/i16/i32/i64 for DestVT), otherwise
1896 // bail out to SelectionDAG.
1897 if (((DestVT != MVT::i8) && (DestVT != MVT::i16) && (DestVT != MVT::i32)) ||
1898 ((SrcVT != MVT::i1) && (SrcVT != MVT::i8) && (SrcVT != MVT::i16)))
1899 return false;
1900 if (IsZExt)
1901 return emitIntZExt(SrcVT, SrcReg, DestVT, DestReg);
1902 return emitIntSExt(SrcVT, SrcReg, DestVT, DestReg);
1905 unsigned MipsFastISel::emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1906 bool isZExt) {
1907 unsigned DestReg = createResultReg(&Mips::GPR32RegClass);
1908 bool Success = emitIntExt(SrcVT, SrcReg, DestVT, DestReg, isZExt);
1909 return Success ? DestReg : 0;
1912 bool MipsFastISel::selectDivRem(const Instruction *I, unsigned ISDOpcode) {
1913 EVT DestEVT = TLI.getValueType(DL, I->getType(), true);
1914 if (!DestEVT.isSimple())
1915 return false;
1917 MVT DestVT = DestEVT.getSimpleVT();
1918 if (DestVT != MVT::i32)
1919 return false;
1921 unsigned DivOpc;
1922 switch (ISDOpcode) {
1923 default:
1924 return false;
1925 case ISD::SDIV:
1926 case ISD::SREM:
1927 DivOpc = Mips::SDIV;
1928 break;
1929 case ISD::UDIV:
1930 case ISD::UREM:
1931 DivOpc = Mips::UDIV;
1932 break;
1935 unsigned Src0Reg = getRegForValue(I->getOperand(0));
1936 unsigned Src1Reg = getRegForValue(I->getOperand(1));
1937 if (!Src0Reg || !Src1Reg)
1938 return false;
1940 emitInst(DivOpc).addReg(Src0Reg).addReg(Src1Reg);
1941 emitInst(Mips::TEQ).addReg(Src1Reg).addReg(Mips::ZERO).addImm(7);
1943 unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
1944 if (!ResultReg)
1945 return false;
1947 unsigned MFOpc = (ISDOpcode == ISD::SREM || ISDOpcode == ISD::UREM)
1948 ? Mips::MFHI
1949 : Mips::MFLO;
1950 emitInst(MFOpc, ResultReg);
1952 updateValueMap(I, ResultReg);
1953 return true;
1956 bool MipsFastISel::selectShift(const Instruction *I) {
1957 MVT RetVT;
1959 if (!isTypeSupported(I->getType(), RetVT))
1960 return false;
1962 unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
1963 if (!ResultReg)
1964 return false;
1966 unsigned Opcode = I->getOpcode();
1967 const Value *Op0 = I->getOperand(0);
1968 unsigned Op0Reg = getRegForValue(Op0);
1969 if (!Op0Reg)
1970 return false;
1972 // If AShr or LShr, then we need to make sure the operand0 is sign extended.
1973 if (Opcode == Instruction::AShr || Opcode == Instruction::LShr) {
1974 unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
1975 if (!TempReg)
1976 return false;
1978 MVT Op0MVT = TLI.getValueType(DL, Op0->getType(), true).getSimpleVT();
1979 bool IsZExt = Opcode == Instruction::LShr;
1980 if (!emitIntExt(Op0MVT, Op0Reg, MVT::i32, TempReg, IsZExt))
1981 return false;
1983 Op0Reg = TempReg;
1986 if (const auto *C = dyn_cast<ConstantInt>(I->getOperand(1))) {
1987 uint64_t ShiftVal = C->getZExtValue();
1989 switch (Opcode) {
1990 default:
1991 llvm_unreachable("Unexpected instruction.");
1992 case Instruction::Shl:
1993 Opcode = Mips::SLL;
1994 break;
1995 case Instruction::AShr:
1996 Opcode = Mips::SRA;
1997 break;
1998 case Instruction::LShr:
1999 Opcode = Mips::SRL;
2000 break;
2003 emitInst(Opcode, ResultReg).addReg(Op0Reg).addImm(ShiftVal);
2004 updateValueMap(I, ResultReg);
2005 return true;
2008 unsigned Op1Reg = getRegForValue(I->getOperand(1));
2009 if (!Op1Reg)
2010 return false;
2012 switch (Opcode) {
2013 default:
2014 llvm_unreachable("Unexpected instruction.");
2015 case Instruction::Shl:
2016 Opcode = Mips::SLLV;
2017 break;
2018 case Instruction::AShr:
2019 Opcode = Mips::SRAV;
2020 break;
2021 case Instruction::LShr:
2022 Opcode = Mips::SRLV;
2023 break;
2026 emitInst(Opcode, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
2027 updateValueMap(I, ResultReg);
2028 return true;
2031 bool MipsFastISel::fastSelectInstruction(const Instruction *I) {
2032 switch (I->getOpcode()) {
2033 default:
2034 break;
2035 case Instruction::Load:
2036 return selectLoad(I);
2037 case Instruction::Store:
2038 return selectStore(I);
2039 case Instruction::SDiv:
2040 if (!selectBinaryOp(I, ISD::SDIV))
2041 return selectDivRem(I, ISD::SDIV);
2042 return true;
2043 case Instruction::UDiv:
2044 if (!selectBinaryOp(I, ISD::UDIV))
2045 return selectDivRem(I, ISD::UDIV);
2046 return true;
2047 case Instruction::SRem:
2048 if (!selectBinaryOp(I, ISD::SREM))
2049 return selectDivRem(I, ISD::SREM);
2050 return true;
2051 case Instruction::URem:
2052 if (!selectBinaryOp(I, ISD::UREM))
2053 return selectDivRem(I, ISD::UREM);
2054 return true;
2055 case Instruction::Shl:
2056 case Instruction::LShr:
2057 case Instruction::AShr:
2058 return selectShift(I);
2059 case Instruction::And:
2060 case Instruction::Or:
2061 case Instruction::Xor:
2062 return selectLogicalOp(I);
2063 case Instruction::Br:
2064 return selectBranch(I);
2065 case Instruction::Ret:
2066 return selectRet(I);
2067 case Instruction::Trunc:
2068 return selectTrunc(I);
2069 case Instruction::ZExt:
2070 case Instruction::SExt:
2071 return selectIntExt(I);
2072 case Instruction::FPTrunc:
2073 return selectFPTrunc(I);
2074 case Instruction::FPExt:
2075 return selectFPExt(I);
2076 case Instruction::FPToSI:
2077 return selectFPToInt(I, /*isSigned*/ true);
2078 case Instruction::FPToUI:
2079 return selectFPToInt(I, /*isSigned*/ false);
2080 case Instruction::ICmp:
2081 case Instruction::FCmp:
2082 return selectCmp(I);
2083 case Instruction::Select:
2084 return selectSelect(I);
2086 return false;
2089 unsigned MipsFastISel::getRegEnsuringSimpleIntegerWidening(const Value *V,
2090 bool IsUnsigned) {
2091 unsigned VReg = getRegForValue(V);
2092 if (VReg == 0)
2093 return 0;
2094 MVT VMVT = TLI.getValueType(DL, V->getType(), true).getSimpleVT();
2096 if (VMVT == MVT::i1)
2097 return 0;
2099 if ((VMVT == MVT::i8) || (VMVT == MVT::i16)) {
2100 unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
2101 if (!emitIntExt(VMVT, VReg, MVT::i32, TempReg, IsUnsigned))
2102 return 0;
2103 VReg = TempReg;
2105 return VReg;
2108 void MipsFastISel::simplifyAddress(Address &Addr) {
2109 if (!isInt<16>(Addr.getOffset())) {
2110 unsigned TempReg =
2111 materialize32BitInt(Addr.getOffset(), &Mips::GPR32RegClass);
2112 unsigned DestReg = createResultReg(&Mips::GPR32RegClass);
2113 emitInst(Mips::ADDu, DestReg).addReg(TempReg).addReg(Addr.getReg());
2114 Addr.setReg(DestReg);
2115 Addr.setOffset(0);
2119 unsigned MipsFastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
2120 const TargetRegisterClass *RC,
2121 unsigned Op0, bool Op0IsKill,
2122 unsigned Op1, bool Op1IsKill) {
2123 // We treat the MUL instruction in a special way because it clobbers
2124 // the HI0 & LO0 registers. The TableGen definition of this instruction can
2125 // mark these registers only as implicitly defined. As a result, the
2126 // register allocator runs out of registers when this instruction is
2127 // followed by another instruction that defines the same registers too.
2128 // We can fix this by explicitly marking those registers as dead.
2129 if (MachineInstOpcode == Mips::MUL) {
2130 unsigned ResultReg = createResultReg(RC);
2131 const MCInstrDesc &II = TII.get(MachineInstOpcode);
2132 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2133 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
2134 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2135 .addReg(Op0, getKillRegState(Op0IsKill))
2136 .addReg(Op1, getKillRegState(Op1IsKill))
2137 .addReg(Mips::HI0, RegState::ImplicitDefine | RegState::Dead)
2138 .addReg(Mips::LO0, RegState::ImplicitDefine | RegState::Dead);
2139 return ResultReg;
2142 return FastISel::fastEmitInst_rr(MachineInstOpcode, RC, Op0, Op0IsKill, Op1,
2143 Op1IsKill);
2146 namespace llvm {
2148 FastISel *Mips::createFastISel(FunctionLoweringInfo &funcInfo,
2149 const TargetLibraryInfo *libInfo) {
2150 return new MipsFastISel(funcInfo, libInfo);
2153 } // end namespace llvm