1 //===- MipsISelLowering.cpp - Mips DAG Lowering Implementation ------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the interfaces that Mips uses to lower LLVM code into a
12 //===----------------------------------------------------------------------===//
14 #include "MipsISelLowering.h"
15 #include "MCTargetDesc/MipsBaseInfo.h"
16 #include "MCTargetDesc/MipsInstPrinter.h"
17 #include "MCTargetDesc/MipsMCTargetDesc.h"
18 #include "MipsCCState.h"
19 #include "MipsInstrInfo.h"
20 #include "MipsMachineFunction.h"
21 #include "MipsRegisterInfo.h"
22 #include "MipsSubtarget.h"
23 #include "MipsTargetMachine.h"
24 #include "MipsTargetObjectFile.h"
25 #include "llvm/ADT/APFloat.h"
26 #include "llvm/ADT/ArrayRef.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/StringSwitch.h"
31 #include "llvm/CodeGen/CallingConvLower.h"
32 #include "llvm/CodeGen/FunctionLoweringInfo.h"
33 #include "llvm/CodeGen/ISDOpcodes.h"
34 #include "llvm/CodeGen/MachineBasicBlock.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineInstr.h"
38 #include "llvm/CodeGen/MachineInstrBuilder.h"
39 #include "llvm/CodeGen/MachineJumpTableInfo.h"
40 #include "llvm/CodeGen/MachineMemOperand.h"
41 #include "llvm/CodeGen/MachineOperand.h"
42 #include "llvm/CodeGen/MachineRegisterInfo.h"
43 #include "llvm/CodeGen/RuntimeLibcalls.h"
44 #include "llvm/CodeGen/SelectionDAG.h"
45 #include "llvm/CodeGen/SelectionDAGNodes.h"
46 #include "llvm/CodeGen/TargetFrameLowering.h"
47 #include "llvm/CodeGen/TargetInstrInfo.h"
48 #include "llvm/CodeGen/TargetRegisterInfo.h"
49 #include "llvm/CodeGen/ValueTypes.h"
50 #include "llvm/IR/CallingConv.h"
51 #include "llvm/IR/Constants.h"
52 #include "llvm/IR/DataLayout.h"
53 #include "llvm/IR/DebugLoc.h"
54 #include "llvm/IR/DerivedTypes.h"
55 #include "llvm/IR/Function.h"
56 #include "llvm/IR/GlobalValue.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Value.h"
59 #include "llvm/MC/MCContext.h"
60 #include "llvm/MC/MCRegisterInfo.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CodeGen.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Compiler.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/MachineValueType.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Target/TargetMachine.h"
69 #include "llvm/Target/TargetOptions.h"
81 #define DEBUG_TYPE "mips-lower"
83 STATISTIC(NumTailCalls
, "Number of tail calls");
86 LargeGOT("mxgot", cl::Hidden
,
87 cl::desc("MIPS: Enable GOT larger than 64k."), cl::init(false));
90 NoZeroDivCheck("mno-check-zero-division", cl::Hidden
,
91 cl::desc("MIPS: Don't trap on integer division by zero."),
94 extern cl::opt
<bool> EmitJalrReloc
;
96 static const MCPhysReg Mips64DPRegs
[8] = {
97 Mips::D12_64
, Mips::D13_64
, Mips::D14_64
, Mips::D15_64
,
98 Mips::D16_64
, Mips::D17_64
, Mips::D18_64
, Mips::D19_64
101 // If I is a shifted mask, set the size (Size) and the first bit of the
102 // mask (Pos), and return true.
103 // For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
104 static bool isShiftedMask(uint64_t I
, uint64_t &Pos
, uint64_t &Size
) {
105 if (!isShiftedMask_64(I
))
108 Size
= countPopulation(I
);
109 Pos
= countTrailingZeros(I
);
113 // The MIPS MSA ABI passes vector arguments in the integer register set.
114 // The number of integer registers used is dependant on the ABI used.
115 MVT
MipsTargetLowering::getRegisterTypeForCallingConv(LLVMContext
&Context
,
119 if (Subtarget
.isABI_O32()) {
122 return (VT
.getSizeInBits() == 32) ? MVT::i32
: MVT::i64
;
125 return MipsTargetLowering::getRegisterType(Context
, VT
);
128 unsigned MipsTargetLowering::getNumRegistersForCallingConv(LLVMContext
&Context
,
132 return std::max((VT
.getSizeInBits() / (Subtarget
.isABI_O32() ? 32 : 64)),
134 return MipsTargetLowering::getNumRegisters(Context
, VT
);
137 unsigned MipsTargetLowering::getVectorTypeBreakdownForCallingConv(
138 LLVMContext
&Context
, CallingConv::ID CC
, EVT VT
, EVT
&IntermediateVT
,
139 unsigned &NumIntermediates
, MVT
&RegisterVT
) const {
140 // Break down vector types to either 2 i64s or 4 i32s.
141 RegisterVT
= getRegisterTypeForCallingConv(Context
, CC
, VT
);
142 IntermediateVT
= RegisterVT
;
143 NumIntermediates
= VT
.getSizeInBits() < RegisterVT
.getSizeInBits()
144 ? VT
.getVectorNumElements()
145 : VT
.getSizeInBits() / RegisterVT
.getSizeInBits();
147 return NumIntermediates
;
150 SDValue
MipsTargetLowering::getGlobalReg(SelectionDAG
&DAG
, EVT Ty
) const {
151 MipsFunctionInfo
*FI
= DAG
.getMachineFunction().getInfo
<MipsFunctionInfo
>();
152 return DAG
.getRegister(FI
->getGlobalBaseReg(), Ty
);
155 SDValue
MipsTargetLowering::getTargetNode(GlobalAddressSDNode
*N
, EVT Ty
,
157 unsigned Flag
) const {
158 return DAG
.getTargetGlobalAddress(N
->getGlobal(), SDLoc(N
), Ty
, 0, Flag
);
161 SDValue
MipsTargetLowering::getTargetNode(ExternalSymbolSDNode
*N
, EVT Ty
,
163 unsigned Flag
) const {
164 return DAG
.getTargetExternalSymbol(N
->getSymbol(), Ty
, Flag
);
167 SDValue
MipsTargetLowering::getTargetNode(BlockAddressSDNode
*N
, EVT Ty
,
169 unsigned Flag
) const {
170 return DAG
.getTargetBlockAddress(N
->getBlockAddress(), Ty
, 0, Flag
);
173 SDValue
MipsTargetLowering::getTargetNode(JumpTableSDNode
*N
, EVT Ty
,
175 unsigned Flag
) const {
176 return DAG
.getTargetJumpTable(N
->getIndex(), Ty
, Flag
);
179 SDValue
MipsTargetLowering::getTargetNode(ConstantPoolSDNode
*N
, EVT Ty
,
181 unsigned Flag
) const {
182 return DAG
.getTargetConstantPool(N
->getConstVal(), Ty
, N
->getAlignment(),
183 N
->getOffset(), Flag
);
186 const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode
) const {
187 switch ((MipsISD::NodeType
)Opcode
) {
188 case MipsISD::FIRST_NUMBER
: break;
189 case MipsISD::JmpLink
: return "MipsISD::JmpLink";
190 case MipsISD::TailCall
: return "MipsISD::TailCall";
191 case MipsISD::Highest
: return "MipsISD::Highest";
192 case MipsISD::Higher
: return "MipsISD::Higher";
193 case MipsISD::Hi
: return "MipsISD::Hi";
194 case MipsISD::Lo
: return "MipsISD::Lo";
195 case MipsISD::GotHi
: return "MipsISD::GotHi";
196 case MipsISD::TlsHi
: return "MipsISD::TlsHi";
197 case MipsISD::GPRel
: return "MipsISD::GPRel";
198 case MipsISD::ThreadPointer
: return "MipsISD::ThreadPointer";
199 case MipsISD::Ret
: return "MipsISD::Ret";
200 case MipsISD::ERet
: return "MipsISD::ERet";
201 case MipsISD::EH_RETURN
: return "MipsISD::EH_RETURN";
202 case MipsISD::FMS
: return "MipsISD::FMS";
203 case MipsISD::FPBrcond
: return "MipsISD::FPBrcond";
204 case MipsISD::FPCmp
: return "MipsISD::FPCmp";
205 case MipsISD::FSELECT
: return "MipsISD::FSELECT";
206 case MipsISD::MTC1_D64
: return "MipsISD::MTC1_D64";
207 case MipsISD::CMovFP_T
: return "MipsISD::CMovFP_T";
208 case MipsISD::CMovFP_F
: return "MipsISD::CMovFP_F";
209 case MipsISD::TruncIntFP
: return "MipsISD::TruncIntFP";
210 case MipsISD::MFHI
: return "MipsISD::MFHI";
211 case MipsISD::MFLO
: return "MipsISD::MFLO";
212 case MipsISD::MTLOHI
: return "MipsISD::MTLOHI";
213 case MipsISD::Mult
: return "MipsISD::Mult";
214 case MipsISD::Multu
: return "MipsISD::Multu";
215 case MipsISD::MAdd
: return "MipsISD::MAdd";
216 case MipsISD::MAddu
: return "MipsISD::MAddu";
217 case MipsISD::MSub
: return "MipsISD::MSub";
218 case MipsISD::MSubu
: return "MipsISD::MSubu";
219 case MipsISD::DivRem
: return "MipsISD::DivRem";
220 case MipsISD::DivRemU
: return "MipsISD::DivRemU";
221 case MipsISD::DivRem16
: return "MipsISD::DivRem16";
222 case MipsISD::DivRemU16
: return "MipsISD::DivRemU16";
223 case MipsISD::BuildPairF64
: return "MipsISD::BuildPairF64";
224 case MipsISD::ExtractElementF64
: return "MipsISD::ExtractElementF64";
225 case MipsISD::Wrapper
: return "MipsISD::Wrapper";
226 case MipsISD::DynAlloc
: return "MipsISD::DynAlloc";
227 case MipsISD::Sync
: return "MipsISD::Sync";
228 case MipsISD::Ext
: return "MipsISD::Ext";
229 case MipsISD::Ins
: return "MipsISD::Ins";
230 case MipsISD::CIns
: return "MipsISD::CIns";
231 case MipsISD::LWL
: return "MipsISD::LWL";
232 case MipsISD::LWR
: return "MipsISD::LWR";
233 case MipsISD::SWL
: return "MipsISD::SWL";
234 case MipsISD::SWR
: return "MipsISD::SWR";
235 case MipsISD::LDL
: return "MipsISD::LDL";
236 case MipsISD::LDR
: return "MipsISD::LDR";
237 case MipsISD::SDL
: return "MipsISD::SDL";
238 case MipsISD::SDR
: return "MipsISD::SDR";
239 case MipsISD::EXTP
: return "MipsISD::EXTP";
240 case MipsISD::EXTPDP
: return "MipsISD::EXTPDP";
241 case MipsISD::EXTR_S_H
: return "MipsISD::EXTR_S_H";
242 case MipsISD::EXTR_W
: return "MipsISD::EXTR_W";
243 case MipsISD::EXTR_R_W
: return "MipsISD::EXTR_R_W";
244 case MipsISD::EXTR_RS_W
: return "MipsISD::EXTR_RS_W";
245 case MipsISD::SHILO
: return "MipsISD::SHILO";
246 case MipsISD::MTHLIP
: return "MipsISD::MTHLIP";
247 case MipsISD::MULSAQ_S_W_PH
: return "MipsISD::MULSAQ_S_W_PH";
248 case MipsISD::MAQ_S_W_PHL
: return "MipsISD::MAQ_S_W_PHL";
249 case MipsISD::MAQ_S_W_PHR
: return "MipsISD::MAQ_S_W_PHR";
250 case MipsISD::MAQ_SA_W_PHL
: return "MipsISD::MAQ_SA_W_PHL";
251 case MipsISD::MAQ_SA_W_PHR
: return "MipsISD::MAQ_SA_W_PHR";
252 case MipsISD::DPAU_H_QBL
: return "MipsISD::DPAU_H_QBL";
253 case MipsISD::DPAU_H_QBR
: return "MipsISD::DPAU_H_QBR";
254 case MipsISD::DPSU_H_QBL
: return "MipsISD::DPSU_H_QBL";
255 case MipsISD::DPSU_H_QBR
: return "MipsISD::DPSU_H_QBR";
256 case MipsISD::DPAQ_S_W_PH
: return "MipsISD::DPAQ_S_W_PH";
257 case MipsISD::DPSQ_S_W_PH
: return "MipsISD::DPSQ_S_W_PH";
258 case MipsISD::DPAQ_SA_L_W
: return "MipsISD::DPAQ_SA_L_W";
259 case MipsISD::DPSQ_SA_L_W
: return "MipsISD::DPSQ_SA_L_W";
260 case MipsISD::DPA_W_PH
: return "MipsISD::DPA_W_PH";
261 case MipsISD::DPS_W_PH
: return "MipsISD::DPS_W_PH";
262 case MipsISD::DPAQX_S_W_PH
: return "MipsISD::DPAQX_S_W_PH";
263 case MipsISD::DPAQX_SA_W_PH
: return "MipsISD::DPAQX_SA_W_PH";
264 case MipsISD::DPAX_W_PH
: return "MipsISD::DPAX_W_PH";
265 case MipsISD::DPSX_W_PH
: return "MipsISD::DPSX_W_PH";
266 case MipsISD::DPSQX_S_W_PH
: return "MipsISD::DPSQX_S_W_PH";
267 case MipsISD::DPSQX_SA_W_PH
: return "MipsISD::DPSQX_SA_W_PH";
268 case MipsISD::MULSA_W_PH
: return "MipsISD::MULSA_W_PH";
269 case MipsISD::MULT
: return "MipsISD::MULT";
270 case MipsISD::MULTU
: return "MipsISD::MULTU";
271 case MipsISD::MADD_DSP
: return "MipsISD::MADD_DSP";
272 case MipsISD::MADDU_DSP
: return "MipsISD::MADDU_DSP";
273 case MipsISD::MSUB_DSP
: return "MipsISD::MSUB_DSP";
274 case MipsISD::MSUBU_DSP
: return "MipsISD::MSUBU_DSP";
275 case MipsISD::SHLL_DSP
: return "MipsISD::SHLL_DSP";
276 case MipsISD::SHRA_DSP
: return "MipsISD::SHRA_DSP";
277 case MipsISD::SHRL_DSP
: return "MipsISD::SHRL_DSP";
278 case MipsISD::SETCC_DSP
: return "MipsISD::SETCC_DSP";
279 case MipsISD::SELECT_CC_DSP
: return "MipsISD::SELECT_CC_DSP";
280 case MipsISD::VALL_ZERO
: return "MipsISD::VALL_ZERO";
281 case MipsISD::VANY_ZERO
: return "MipsISD::VANY_ZERO";
282 case MipsISD::VALL_NONZERO
: return "MipsISD::VALL_NONZERO";
283 case MipsISD::VANY_NONZERO
: return "MipsISD::VANY_NONZERO";
284 case MipsISD::VCEQ
: return "MipsISD::VCEQ";
285 case MipsISD::VCLE_S
: return "MipsISD::VCLE_S";
286 case MipsISD::VCLE_U
: return "MipsISD::VCLE_U";
287 case MipsISD::VCLT_S
: return "MipsISD::VCLT_S";
288 case MipsISD::VCLT_U
: return "MipsISD::VCLT_U";
289 case MipsISD::VEXTRACT_SEXT_ELT
: return "MipsISD::VEXTRACT_SEXT_ELT";
290 case MipsISD::VEXTRACT_ZEXT_ELT
: return "MipsISD::VEXTRACT_ZEXT_ELT";
291 case MipsISD::VNOR
: return "MipsISD::VNOR";
292 case MipsISD::VSHF
: return "MipsISD::VSHF";
293 case MipsISD::SHF
: return "MipsISD::SHF";
294 case MipsISD::ILVEV
: return "MipsISD::ILVEV";
295 case MipsISD::ILVOD
: return "MipsISD::ILVOD";
296 case MipsISD::ILVL
: return "MipsISD::ILVL";
297 case MipsISD::ILVR
: return "MipsISD::ILVR";
298 case MipsISD::PCKEV
: return "MipsISD::PCKEV";
299 case MipsISD::PCKOD
: return "MipsISD::PCKOD";
300 case MipsISD::INSVE
: return "MipsISD::INSVE";
305 MipsTargetLowering::MipsTargetLowering(const MipsTargetMachine
&TM
,
306 const MipsSubtarget
&STI
)
307 : TargetLowering(TM
), Subtarget(STI
), ABI(TM
.getABI()) {
308 // Mips does not have i1 type, so use i32 for
309 // setcc operations results (slt, sgt, ...).
310 setBooleanContents(ZeroOrOneBooleanContent
);
311 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent
);
312 // The cmp.cond.fmt instruction in MIPS32r6/MIPS64r6 uses 0 and -1 like MSA
313 // does. Integer booleans still use 0 and 1.
314 if (Subtarget
.hasMips32r6())
315 setBooleanContents(ZeroOrOneBooleanContent
,
316 ZeroOrNegativeOneBooleanContent
);
318 // Load extented operations for i1 types must be promoted
319 for (MVT VT
: MVT::integer_valuetypes()) {
320 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::i1
, Promote
);
321 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::i1
, Promote
);
322 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::i1
, Promote
);
325 // MIPS doesn't have extending float->double load/store. Set LoadExtAction
327 for (MVT VT
: MVT::fp_valuetypes()) {
328 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::f32
, Expand
);
329 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::f16
, Expand
);
332 // Set LoadExtAction for f16 vectors to Expand
333 for (MVT VT
: MVT::fp_vector_valuetypes()) {
334 MVT F16VT
= MVT::getVectorVT(MVT::f16
, VT
.getVectorNumElements());
336 setLoadExtAction(ISD::EXTLOAD
, VT
, F16VT
, Expand
);
339 setTruncStoreAction(MVT::f32
, MVT::f16
, Expand
);
340 setTruncStoreAction(MVT::f64
, MVT::f16
, Expand
);
342 setTruncStoreAction(MVT::f64
, MVT::f32
, Expand
);
344 // Used by legalize types to correctly generate the setcc result.
345 // Without this, every float setcc comes with a AND/OR with the result,
346 // we don't want this, since the fpcmp result goes to a flag register,
347 // which is used implicitly by brcond and select operations.
348 AddPromotedToType(ISD::SETCC
, MVT::i1
, MVT::i32
);
350 // Mips Custom Operations
351 setOperationAction(ISD::BR_JT
, MVT::Other
, Expand
);
352 setOperationAction(ISD::GlobalAddress
, MVT::i32
, Custom
);
353 setOperationAction(ISD::BlockAddress
, MVT::i32
, Custom
);
354 setOperationAction(ISD::GlobalTLSAddress
, MVT::i32
, Custom
);
355 setOperationAction(ISD::JumpTable
, MVT::i32
, Custom
);
356 setOperationAction(ISD::ConstantPool
, MVT::i32
, Custom
);
357 setOperationAction(ISD::SELECT
, MVT::f32
, Custom
);
358 setOperationAction(ISD::SELECT
, MVT::f64
, Custom
);
359 setOperationAction(ISD::SELECT
, MVT::i32
, Custom
);
360 setOperationAction(ISD::SETCC
, MVT::f32
, Custom
);
361 setOperationAction(ISD::SETCC
, MVT::f64
, Custom
);
362 setOperationAction(ISD::BRCOND
, MVT::Other
, Custom
);
363 setOperationAction(ISD::FCOPYSIGN
, MVT::f32
, Custom
);
364 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Custom
);
365 setOperationAction(ISD::FP_TO_SINT
, MVT::i32
, Custom
);
367 if (!(TM
.Options
.NoNaNsFPMath
|| Subtarget
.inAbs2008Mode())) {
368 setOperationAction(ISD::FABS
, MVT::f32
, Custom
);
369 setOperationAction(ISD::FABS
, MVT::f64
, Custom
);
372 if (Subtarget
.isGP64bit()) {
373 setOperationAction(ISD::GlobalAddress
, MVT::i64
, Custom
);
374 setOperationAction(ISD::BlockAddress
, MVT::i64
, Custom
);
375 setOperationAction(ISD::GlobalTLSAddress
, MVT::i64
, Custom
);
376 setOperationAction(ISD::JumpTable
, MVT::i64
, Custom
);
377 setOperationAction(ISD::ConstantPool
, MVT::i64
, Custom
);
378 setOperationAction(ISD::SELECT
, MVT::i64
, Custom
);
379 setOperationAction(ISD::LOAD
, MVT::i64
, Custom
);
380 setOperationAction(ISD::STORE
, MVT::i64
, Custom
);
381 setOperationAction(ISD::FP_TO_SINT
, MVT::i64
, Custom
);
382 setOperationAction(ISD::SHL_PARTS
, MVT::i64
, Custom
);
383 setOperationAction(ISD::SRA_PARTS
, MVT::i64
, Custom
);
384 setOperationAction(ISD::SRL_PARTS
, MVT::i64
, Custom
);
387 if (!Subtarget
.isGP64bit()) {
388 setOperationAction(ISD::SHL_PARTS
, MVT::i32
, Custom
);
389 setOperationAction(ISD::SRA_PARTS
, MVT::i32
, Custom
);
390 setOperationAction(ISD::SRL_PARTS
, MVT::i32
, Custom
);
393 setOperationAction(ISD::EH_DWARF_CFA
, MVT::i32
, Custom
);
394 if (Subtarget
.isGP64bit())
395 setOperationAction(ISD::EH_DWARF_CFA
, MVT::i64
, Custom
);
397 setOperationAction(ISD::SDIV
, MVT::i32
, Expand
);
398 setOperationAction(ISD::SREM
, MVT::i32
, Expand
);
399 setOperationAction(ISD::UDIV
, MVT::i32
, Expand
);
400 setOperationAction(ISD::UREM
, MVT::i32
, Expand
);
401 setOperationAction(ISD::SDIV
, MVT::i64
, Expand
);
402 setOperationAction(ISD::SREM
, MVT::i64
, Expand
);
403 setOperationAction(ISD::UDIV
, MVT::i64
, Expand
);
404 setOperationAction(ISD::UREM
, MVT::i64
, Expand
);
406 // Operations not directly supported by Mips.
407 setOperationAction(ISD::BR_CC
, MVT::f32
, Expand
);
408 setOperationAction(ISD::BR_CC
, MVT::f64
, Expand
);
409 setOperationAction(ISD::BR_CC
, MVT::i32
, Expand
);
410 setOperationAction(ISD::BR_CC
, MVT::i64
, Expand
);
411 setOperationAction(ISD::SELECT_CC
, MVT::i32
, Expand
);
412 setOperationAction(ISD::SELECT_CC
, MVT::i64
, Expand
);
413 setOperationAction(ISD::SELECT_CC
, MVT::f32
, Expand
);
414 setOperationAction(ISD::SELECT_CC
, MVT::f64
, Expand
);
415 setOperationAction(ISD::UINT_TO_FP
, MVT::i32
, Expand
);
416 setOperationAction(ISD::UINT_TO_FP
, MVT::i64
, Expand
);
417 setOperationAction(ISD::FP_TO_UINT
, MVT::i32
, Expand
);
418 setOperationAction(ISD::FP_TO_UINT
, MVT::i64
, Expand
);
419 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i1
, Expand
);
420 if (Subtarget
.hasCnMips()) {
421 setOperationAction(ISD::CTPOP
, MVT::i32
, Legal
);
422 setOperationAction(ISD::CTPOP
, MVT::i64
, Legal
);
424 setOperationAction(ISD::CTPOP
, MVT::i32
, Expand
);
425 setOperationAction(ISD::CTPOP
, MVT::i64
, Expand
);
427 setOperationAction(ISD::CTTZ
, MVT::i32
, Expand
);
428 setOperationAction(ISD::CTTZ
, MVT::i64
, Expand
);
429 setOperationAction(ISD::ROTL
, MVT::i32
, Expand
);
430 setOperationAction(ISD::ROTL
, MVT::i64
, Expand
);
431 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i32
, Expand
);
432 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i64
, Expand
);
434 if (!Subtarget
.hasMips32r2())
435 setOperationAction(ISD::ROTR
, MVT::i32
, Expand
);
437 if (!Subtarget
.hasMips64r2())
438 setOperationAction(ISD::ROTR
, MVT::i64
, Expand
);
440 setOperationAction(ISD::FSIN
, MVT::f32
, Expand
);
441 setOperationAction(ISD::FSIN
, MVT::f64
, Expand
);
442 setOperationAction(ISD::FCOS
, MVT::f32
, Expand
);
443 setOperationAction(ISD::FCOS
, MVT::f64
, Expand
);
444 setOperationAction(ISD::FSINCOS
, MVT::f32
, Expand
);
445 setOperationAction(ISD::FSINCOS
, MVT::f64
, Expand
);
446 setOperationAction(ISD::FPOW
, MVT::f32
, Expand
);
447 setOperationAction(ISD::FPOW
, MVT::f64
, Expand
);
448 setOperationAction(ISD::FLOG
, MVT::f32
, Expand
);
449 setOperationAction(ISD::FLOG2
, MVT::f32
, Expand
);
450 setOperationAction(ISD::FLOG10
, MVT::f32
, Expand
);
451 setOperationAction(ISD::FEXP
, MVT::f32
, Expand
);
452 setOperationAction(ISD::FMA
, MVT::f32
, Expand
);
453 setOperationAction(ISD::FMA
, MVT::f64
, Expand
);
454 setOperationAction(ISD::FREM
, MVT::f32
, Expand
);
455 setOperationAction(ISD::FREM
, MVT::f64
, Expand
);
457 // Lower f16 conversion operations into library calls
458 setOperationAction(ISD::FP16_TO_FP
, MVT::f32
, Expand
);
459 setOperationAction(ISD::FP_TO_FP16
, MVT::f32
, Expand
);
460 setOperationAction(ISD::FP16_TO_FP
, MVT::f64
, Expand
);
461 setOperationAction(ISD::FP_TO_FP16
, MVT::f64
, Expand
);
463 setOperationAction(ISD::EH_RETURN
, MVT::Other
, Custom
);
465 setOperationAction(ISD::VASTART
, MVT::Other
, Custom
);
466 setOperationAction(ISD::VAARG
, MVT::Other
, Custom
);
467 setOperationAction(ISD::VACOPY
, MVT::Other
, Expand
);
468 setOperationAction(ISD::VAEND
, MVT::Other
, Expand
);
470 // Use the default for now
471 setOperationAction(ISD::STACKSAVE
, MVT::Other
, Expand
);
472 setOperationAction(ISD::STACKRESTORE
, MVT::Other
, Expand
);
474 if (!Subtarget
.isGP64bit()) {
475 setOperationAction(ISD::ATOMIC_LOAD
, MVT::i64
, Expand
);
476 setOperationAction(ISD::ATOMIC_STORE
, MVT::i64
, Expand
);
479 if (!Subtarget
.hasMips32r2()) {
480 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i8
, Expand
);
481 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i16
, Expand
);
484 // MIPS16 lacks MIPS32's clz and clo instructions.
485 if (!Subtarget
.hasMips32() || Subtarget
.inMips16Mode())
486 setOperationAction(ISD::CTLZ
, MVT::i32
, Expand
);
487 if (!Subtarget
.hasMips64())
488 setOperationAction(ISD::CTLZ
, MVT::i64
, Expand
);
490 if (!Subtarget
.hasMips32r2())
491 setOperationAction(ISD::BSWAP
, MVT::i32
, Expand
);
492 if (!Subtarget
.hasMips64r2())
493 setOperationAction(ISD::BSWAP
, MVT::i64
, Expand
);
495 if (Subtarget
.isGP64bit()) {
496 setLoadExtAction(ISD::SEXTLOAD
, MVT::i64
, MVT::i32
, Custom
);
497 setLoadExtAction(ISD::ZEXTLOAD
, MVT::i64
, MVT::i32
, Custom
);
498 setLoadExtAction(ISD::EXTLOAD
, MVT::i64
, MVT::i32
, Custom
);
499 setTruncStoreAction(MVT::i64
, MVT::i32
, Custom
);
502 setOperationAction(ISD::TRAP
, MVT::Other
, Legal
);
504 setTargetDAGCombine(ISD::SDIVREM
);
505 setTargetDAGCombine(ISD::UDIVREM
);
506 setTargetDAGCombine(ISD::SELECT
);
507 setTargetDAGCombine(ISD::AND
);
508 setTargetDAGCombine(ISD::OR
);
509 setTargetDAGCombine(ISD::ADD
);
510 setTargetDAGCombine(ISD::SUB
);
511 setTargetDAGCombine(ISD::AssertZext
);
512 setTargetDAGCombine(ISD::SHL
);
515 // These libcalls are not available in 32-bit.
516 setLibcallName(RTLIB::SHL_I128
, nullptr);
517 setLibcallName(RTLIB::SRL_I128
, nullptr);
518 setLibcallName(RTLIB::SRA_I128
, nullptr);
521 setMinFunctionAlignment(Subtarget
.isGP64bit() ? 3 : 2);
523 // The arguments on the stack are defined in terms of 4-byte slots on O32
524 // and 8-byte slots on N32/N64.
525 setMinStackArgumentAlignment((ABI
.IsN32() || ABI
.IsN64()) ? 8 : 4);
527 setStackPointerRegisterToSaveRestore(ABI
.IsN64() ? Mips::SP_64
: Mips::SP
);
529 MaxStoresPerMemcpy
= 16;
531 isMicroMips
= Subtarget
.inMicroMipsMode();
534 const MipsTargetLowering
*MipsTargetLowering::create(const MipsTargetMachine
&TM
,
535 const MipsSubtarget
&STI
) {
536 if (STI
.inMips16Mode())
537 return createMips16TargetLowering(TM
, STI
);
539 return createMipsSETargetLowering(TM
, STI
);
542 // Create a fast isel object.
544 MipsTargetLowering::createFastISel(FunctionLoweringInfo
&funcInfo
,
545 const TargetLibraryInfo
*libInfo
) const {
546 const MipsTargetMachine
&TM
=
547 static_cast<const MipsTargetMachine
&>(funcInfo
.MF
->getTarget());
549 // We support only the standard encoding [MIPS32,MIPS32R5] ISAs.
550 bool UseFastISel
= TM
.Options
.EnableFastISel
&& Subtarget
.hasMips32() &&
551 !Subtarget
.hasMips32r6() && !Subtarget
.inMips16Mode() &&
552 !Subtarget
.inMicroMipsMode();
554 // Disable if either of the following is true:
555 // We do not generate PIC, the ABI is not O32, LargeGOT is being used.
556 if (!TM
.isPositionIndependent() || !TM
.getABI().IsO32() || LargeGOT
)
559 return UseFastISel
? Mips::createFastISel(funcInfo
, libInfo
) : nullptr;
562 EVT
MipsTargetLowering::getSetCCResultType(const DataLayout
&, LLVMContext
&,
566 return VT
.changeVectorElementTypeToInteger();
569 static SDValue
performDivRemCombine(SDNode
*N
, SelectionDAG
&DAG
,
570 TargetLowering::DAGCombinerInfo
&DCI
,
571 const MipsSubtarget
&Subtarget
) {
572 if (DCI
.isBeforeLegalizeOps())
575 EVT Ty
= N
->getValueType(0);
576 unsigned LO
= (Ty
== MVT::i32
) ? Mips::LO0
: Mips::LO0_64
;
577 unsigned HI
= (Ty
== MVT::i32
) ? Mips::HI0
: Mips::HI0_64
;
578 unsigned Opc
= N
->getOpcode() == ISD::SDIVREM
? MipsISD::DivRem16
:
582 SDValue DivRem
= DAG
.getNode(Opc
, DL
, MVT::Glue
,
583 N
->getOperand(0), N
->getOperand(1));
584 SDValue InChain
= DAG
.getEntryNode();
585 SDValue InGlue
= DivRem
;
588 if (N
->hasAnyUseOfValue(0)) {
589 SDValue CopyFromLo
= DAG
.getCopyFromReg(InChain
, DL
, LO
, Ty
,
591 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), CopyFromLo
);
592 InChain
= CopyFromLo
.getValue(1);
593 InGlue
= CopyFromLo
.getValue(2);
597 if (N
->hasAnyUseOfValue(1)) {
598 SDValue CopyFromHi
= DAG
.getCopyFromReg(InChain
, DL
,
600 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), CopyFromHi
);
606 static Mips::CondCode
condCodeToFCC(ISD::CondCode CC
) {
608 default: llvm_unreachable("Unknown fp condition code!");
610 case ISD::SETOEQ
: return Mips::FCOND_OEQ
;
611 case ISD::SETUNE
: return Mips::FCOND_UNE
;
613 case ISD::SETOLT
: return Mips::FCOND_OLT
;
615 case ISD::SETOGT
: return Mips::FCOND_OGT
;
617 case ISD::SETOLE
: return Mips::FCOND_OLE
;
619 case ISD::SETOGE
: return Mips::FCOND_OGE
;
620 case ISD::SETULT
: return Mips::FCOND_ULT
;
621 case ISD::SETULE
: return Mips::FCOND_ULE
;
622 case ISD::SETUGT
: return Mips::FCOND_UGT
;
623 case ISD::SETUGE
: return Mips::FCOND_UGE
;
624 case ISD::SETUO
: return Mips::FCOND_UN
;
625 case ISD::SETO
: return Mips::FCOND_OR
;
627 case ISD::SETONE
: return Mips::FCOND_ONE
;
628 case ISD::SETUEQ
: return Mips::FCOND_UEQ
;
632 /// This function returns true if the floating point conditional branches and
633 /// conditional moves which use condition code CC should be inverted.
634 static bool invertFPCondCodeUser(Mips::CondCode CC
) {
635 if (CC
>= Mips::FCOND_F
&& CC
<= Mips::FCOND_NGT
)
638 assert((CC
>= Mips::FCOND_T
&& CC
<= Mips::FCOND_GT
) &&
639 "Illegal Condition Code");
644 // Creates and returns an FPCmp node from a setcc node.
645 // Returns Op if setcc is not a floating point comparison.
646 static SDValue
createFPCmp(SelectionDAG
&DAG
, const SDValue
&Op
) {
647 // must be a SETCC node
648 if (Op
.getOpcode() != ISD::SETCC
)
651 SDValue LHS
= Op
.getOperand(0);
653 if (!LHS
.getValueType().isFloatingPoint())
656 SDValue RHS
= Op
.getOperand(1);
659 // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
660 // node if necessary.
661 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(2))->get();
663 return DAG
.getNode(MipsISD::FPCmp
, DL
, MVT::Glue
, LHS
, RHS
,
664 DAG
.getConstant(condCodeToFCC(CC
), DL
, MVT::i32
));
667 // Creates and returns a CMovFPT/F node.
668 static SDValue
createCMovFP(SelectionDAG
&DAG
, SDValue Cond
, SDValue True
,
669 SDValue False
, const SDLoc
&DL
) {
670 ConstantSDNode
*CC
= cast
<ConstantSDNode
>(Cond
.getOperand(2));
671 bool invert
= invertFPCondCodeUser((Mips::CondCode
)CC
->getSExtValue());
672 SDValue FCC0
= DAG
.getRegister(Mips::FCC0
, MVT::i32
);
674 return DAG
.getNode((invert
? MipsISD::CMovFP_F
: MipsISD::CMovFP_T
), DL
,
675 True
.getValueType(), True
, FCC0
, False
, Cond
);
678 static SDValue
performSELECTCombine(SDNode
*N
, SelectionDAG
&DAG
,
679 TargetLowering::DAGCombinerInfo
&DCI
,
680 const MipsSubtarget
&Subtarget
) {
681 if (DCI
.isBeforeLegalizeOps())
684 SDValue SetCC
= N
->getOperand(0);
686 if ((SetCC
.getOpcode() != ISD::SETCC
) ||
687 !SetCC
.getOperand(0).getValueType().isInteger())
690 SDValue False
= N
->getOperand(2);
691 EVT FalseTy
= False
.getValueType();
693 if (!FalseTy
.isInteger())
696 ConstantSDNode
*FalseC
= dyn_cast
<ConstantSDNode
>(False
);
698 // If the RHS (False) is 0, we swap the order of the operands
699 // of ISD::SELECT (obviously also inverting the condition) so that we can
700 // take advantage of conditional moves using the $0 register.
702 // return (a != 0) ? x : 0;
710 if (!FalseC
->getZExtValue()) {
711 ISD::CondCode CC
= cast
<CondCodeSDNode
>(SetCC
.getOperand(2))->get();
712 SDValue True
= N
->getOperand(1);
714 SetCC
= DAG
.getSetCC(DL
, SetCC
.getValueType(), SetCC
.getOperand(0),
715 SetCC
.getOperand(1), ISD::getSetCCInverse(CC
, true));
717 return DAG
.getNode(ISD::SELECT
, DL
, FalseTy
, SetCC
, False
, True
);
720 // If both operands are integer constants there's a possibility that we
721 // can do some interesting optimizations.
722 SDValue True
= N
->getOperand(1);
723 ConstantSDNode
*TrueC
= dyn_cast
<ConstantSDNode
>(True
);
725 if (!TrueC
|| !True
.getValueType().isInteger())
728 // We'll also ignore MVT::i64 operands as this optimizations proves
729 // to be ineffective because of the required sign extensions as the result
730 // of a SETCC operator is always MVT::i32 for non-vector types.
731 if (True
.getValueType() == MVT::i64
)
734 int64_t Diff
= TrueC
->getSExtValue() - FalseC
->getSExtValue();
736 // 1) (a < x) ? y : y-1
738 // addiu $reg2, $reg1, y-1
740 return DAG
.getNode(ISD::ADD
, DL
, SetCC
.getValueType(), SetCC
, False
);
742 // 2) (a < x) ? y-1 : y
744 // xor $reg1, $reg1, 1
745 // addiu $reg2, $reg1, y-1
747 ISD::CondCode CC
= cast
<CondCodeSDNode
>(SetCC
.getOperand(2))->get();
748 SetCC
= DAG
.getSetCC(DL
, SetCC
.getValueType(), SetCC
.getOperand(0),
749 SetCC
.getOperand(1), ISD::getSetCCInverse(CC
, true));
750 return DAG
.getNode(ISD::ADD
, DL
, SetCC
.getValueType(), SetCC
, True
);
753 // Could not optimize.
757 static SDValue
performCMovFPCombine(SDNode
*N
, SelectionDAG
&DAG
,
758 TargetLowering::DAGCombinerInfo
&DCI
,
759 const MipsSubtarget
&Subtarget
) {
760 if (DCI
.isBeforeLegalizeOps())
763 SDValue ValueIfTrue
= N
->getOperand(0), ValueIfFalse
= N
->getOperand(2);
765 ConstantSDNode
*FalseC
= dyn_cast
<ConstantSDNode
>(ValueIfFalse
);
766 if (!FalseC
|| FalseC
->getZExtValue())
769 // Since RHS (False) is 0, we swap the order of the True/False operands
770 // (obviously also inverting the condition) so that we can
771 // take advantage of conditional moves using the $0 register.
773 // return (a != 0) ? x : 0;
776 unsigned Opc
= (N
->getOpcode() == MipsISD::CMovFP_T
) ? MipsISD::CMovFP_F
:
779 SDValue FCC
= N
->getOperand(1), Glue
= N
->getOperand(3);
780 return DAG
.getNode(Opc
, SDLoc(N
), ValueIfFalse
.getValueType(),
781 ValueIfFalse
, FCC
, ValueIfTrue
, Glue
);
784 static SDValue
performANDCombine(SDNode
*N
, SelectionDAG
&DAG
,
785 TargetLowering::DAGCombinerInfo
&DCI
,
786 const MipsSubtarget
&Subtarget
) {
787 if (DCI
.isBeforeLegalizeOps() || !Subtarget
.hasExtractInsert())
790 SDValue FirstOperand
= N
->getOperand(0);
791 unsigned FirstOperandOpc
= FirstOperand
.getOpcode();
792 SDValue Mask
= N
->getOperand(1);
793 EVT ValTy
= N
->getValueType(0);
796 uint64_t Pos
= 0, SMPos
, SMSize
;
801 // Op's second operand must be a shifted mask.
802 if (!(CN
= dyn_cast
<ConstantSDNode
>(Mask
)) ||
803 !isShiftedMask(CN
->getZExtValue(), SMPos
, SMSize
))
806 if (FirstOperandOpc
== ISD::SRA
|| FirstOperandOpc
== ISD::SRL
) {
807 // Pattern match EXT.
808 // $dst = and ((sra or srl) $src , pos), (2**size - 1)
809 // => ext $dst, $src, pos, size
811 // The second operand of the shift must be an immediate.
812 if (!(CN
= dyn_cast
<ConstantSDNode
>(FirstOperand
.getOperand(1))))
815 Pos
= CN
->getZExtValue();
817 // Return if the shifted mask does not start at bit 0 or the sum of its size
818 // and Pos exceeds the word's size.
819 if (SMPos
!= 0 || Pos
+ SMSize
> ValTy
.getSizeInBits())
823 NewOperand
= FirstOperand
.getOperand(0);
824 } else if (FirstOperandOpc
== ISD::SHL
&& Subtarget
.hasCnMips()) {
825 // Pattern match CINS.
826 // $dst = and (shl $src , pos), mask
827 // => cins $dst, $src, pos, size
828 // mask is a shifted mask with consecutive 1's, pos = shift amount,
829 // size = population count.
831 // The second operand of the shift must be an immediate.
832 if (!(CN
= dyn_cast
<ConstantSDNode
>(FirstOperand
.getOperand(1))))
835 Pos
= CN
->getZExtValue();
837 if (SMPos
!= Pos
|| Pos
>= ValTy
.getSizeInBits() || SMSize
>= 32 ||
838 Pos
+ SMSize
> ValTy
.getSizeInBits())
841 NewOperand
= FirstOperand
.getOperand(0);
842 // SMSize is 'location' (position) in this case, not size.
846 // Pattern match EXT.
847 // $dst = and $src, (2**size - 1) , if size > 16
848 // => ext $dst, $src, pos, size , pos = 0
850 // If the mask is <= 0xffff, andi can be used instead.
851 if (CN
->getZExtValue() <= 0xffff)
854 // Return if the mask doesn't start at position 0.
859 NewOperand
= FirstOperand
;
861 return DAG
.getNode(Opc
, DL
, ValTy
, NewOperand
,
862 DAG
.getConstant(Pos
, DL
, MVT::i32
),
863 DAG
.getConstant(SMSize
, DL
, MVT::i32
));
866 static SDValue
performORCombine(SDNode
*N
, SelectionDAG
&DAG
,
867 TargetLowering::DAGCombinerInfo
&DCI
,
868 const MipsSubtarget
&Subtarget
) {
869 // Pattern match INS.
870 // $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
871 // where mask1 = (2**size - 1) << pos, mask0 = ~mask1
872 // => ins $dst, $src, size, pos, $src1
873 if (DCI
.isBeforeLegalizeOps() || !Subtarget
.hasExtractInsert())
876 SDValue And0
= N
->getOperand(0), And1
= N
->getOperand(1);
877 uint64_t SMPos0
, SMSize0
, SMPos1
, SMSize1
;
878 ConstantSDNode
*CN
, *CN1
;
880 // See if Op's first operand matches (and $src1 , mask0).
881 if (And0
.getOpcode() != ISD::AND
)
884 if (!(CN
= dyn_cast
<ConstantSDNode
>(And0
.getOperand(1))) ||
885 !isShiftedMask(~CN
->getSExtValue(), SMPos0
, SMSize0
))
888 // See if Op's second operand matches (and (shl $src, pos), mask1).
889 if (And1
.getOpcode() == ISD::AND
&&
890 And1
.getOperand(0).getOpcode() == ISD::SHL
) {
892 if (!(CN
= dyn_cast
<ConstantSDNode
>(And1
.getOperand(1))) ||
893 !isShiftedMask(CN
->getZExtValue(), SMPos1
, SMSize1
))
896 // The shift masks must have the same position and size.
897 if (SMPos0
!= SMPos1
|| SMSize0
!= SMSize1
)
900 SDValue Shl
= And1
.getOperand(0);
902 if (!(CN
= dyn_cast
<ConstantSDNode
>(Shl
.getOperand(1))))
905 unsigned Shamt
= CN
->getZExtValue();
907 // Return if the shift amount and the first bit position of mask are not the
909 EVT ValTy
= N
->getValueType(0);
910 if ((Shamt
!= SMPos0
) || (SMPos0
+ SMSize0
> ValTy
.getSizeInBits()))
914 return DAG
.getNode(MipsISD::Ins
, DL
, ValTy
, Shl
.getOperand(0),
915 DAG
.getConstant(SMPos0
, DL
, MVT::i32
),
916 DAG
.getConstant(SMSize0
, DL
, MVT::i32
),
919 // Pattern match DINS.
920 // $dst = or (and $src, mask0), mask1
921 // where mask0 = ((1 << SMSize0) -1) << SMPos0
922 // => dins $dst, $src, pos, size
923 if (~CN
->getSExtValue() == ((((int64_t)1 << SMSize0
) - 1) << SMPos0
) &&
924 ((SMSize0
+ SMPos0
<= 64 && Subtarget
.hasMips64r2()) ||
925 (SMSize0
+ SMPos0
<= 32))) {
926 // Check if AND instruction has constant as argument
927 bool isConstCase
= And1
.getOpcode() != ISD::AND
;
928 if (And1
.getOpcode() == ISD::AND
) {
929 if (!(CN1
= dyn_cast
<ConstantSDNode
>(And1
->getOperand(1))))
932 if (!(CN1
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1))))
935 // Don't generate INS if constant OR operand doesn't fit into bits
936 // cleared by constant AND operand.
937 if (CN
->getSExtValue() & CN1
->getSExtValue())
941 EVT ValTy
= N
->getOperand(0)->getValueType(0);
945 Const1
= DAG
.getConstant(SMPos0
, DL
, MVT::i32
);
946 SrlX
= DAG
.getNode(ISD::SRL
, DL
, And1
->getValueType(0), And1
, Const1
);
949 MipsISD::Ins
, DL
, N
->getValueType(0),
951 ? DAG
.getConstant(CN1
->getSExtValue() >> SMPos0
, DL
, ValTy
)
953 DAG
.getConstant(SMPos0
, DL
, MVT::i32
),
954 DAG
.getConstant(ValTy
.getSizeInBits() / 8 < 8 ? SMSize0
& 31
957 And0
->getOperand(0));
964 static SDValue
performMADD_MSUBCombine(SDNode
*ROOTNode
, SelectionDAG
&CurDAG
,
965 const MipsSubtarget
&Subtarget
) {
966 // ROOTNode must have a multiplication as an operand for the match to be
968 if (ROOTNode
->getOperand(0).getOpcode() != ISD::MUL
&&
969 ROOTNode
->getOperand(1).getOpcode() != ISD::MUL
)
972 // We don't handle vector types here.
973 if (ROOTNode
->getValueType(0).isVector())
976 // For MIPS64, madd / msub instructions are inefficent to use with 64 bit
978 // (add (mul a b) c) =>
979 // let res = (madd (mthi (drotr c 32))x(mtlo c) a b) in
980 // MIPS64: (or (dsll (mfhi res) 32) (dsrl (dsll (mflo res) 32) 32)
982 // MIPS64R2: (dins (mflo res) (mfhi res) 32 32)
984 // The overhead of setting up the Hi/Lo registers and reassembling the
985 // result makes this a dubious optimzation for MIPS64. The core of the
986 // problem is that Hi/Lo contain the upper and lower 32 bits of the
987 // operand and result.
989 // It requires a chain of 4 add/mul for MIPS64R2 to get better code
990 // density than doing it naively, 5 for MIPS64. Additionally, using
991 // madd/msub on MIPS64 requires the operands actually be 32 bit sign
992 // extended operands, not true 64 bit values.
994 // FIXME: For the moment, disable this completely for MIPS64.
995 if (Subtarget
.hasMips64())
998 SDValue Mult
= ROOTNode
->getOperand(0).getOpcode() == ISD::MUL
999 ? ROOTNode
->getOperand(0)
1000 : ROOTNode
->getOperand(1);
1002 SDValue AddOperand
= ROOTNode
->getOperand(0).getOpcode() == ISD::MUL
1003 ? ROOTNode
->getOperand(1)
1004 : ROOTNode
->getOperand(0);
1006 // Transform this to a MADD only if the user of this node is the add.
1007 // If there are other users of the mul, this function returns here.
1008 if (!Mult
.hasOneUse())
1011 // maddu and madd are unusual instructions in that on MIPS64 bits 63..31
1012 // must be in canonical form, i.e. sign extended. For MIPS32, the operands
1013 // of the multiply must have 32 or more sign bits, otherwise we cannot
1014 // perform this optimization. We have to check this here as we're performing
1015 // this optimization pre-legalization.
1016 SDValue MultLHS
= Mult
->getOperand(0);
1017 SDValue MultRHS
= Mult
->getOperand(1);
1019 bool IsSigned
= MultLHS
->getOpcode() == ISD::SIGN_EXTEND
&&
1020 MultRHS
->getOpcode() == ISD::SIGN_EXTEND
;
1021 bool IsUnsigned
= MultLHS
->getOpcode() == ISD::ZERO_EXTEND
&&
1022 MultRHS
->getOpcode() == ISD::ZERO_EXTEND
;
1024 if (!IsSigned
&& !IsUnsigned
)
1027 // Initialize accumulator.
1031 BottomHalf
= CurDAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, AddOperand
,
1032 CurDAG
.getIntPtrConstant(0, DL
));
1034 TopHalf
= CurDAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, AddOperand
,
1035 CurDAG
.getIntPtrConstant(1, DL
));
1036 SDValue ACCIn
= CurDAG
.getNode(MipsISD::MTLOHI
, DL
, MVT::Untyped
,
1040 // Create MipsMAdd(u) / MipsMSub(u) node.
1041 bool IsAdd
= ROOTNode
->getOpcode() == ISD::ADD
;
1042 unsigned Opcode
= IsAdd
? (IsUnsigned
? MipsISD::MAddu
: MipsISD::MAdd
)
1043 : (IsUnsigned
? MipsISD::MSubu
: MipsISD::MSub
);
1044 SDValue MAddOps
[3] = {
1045 CurDAG
.getNode(ISD::TRUNCATE
, DL
, MVT::i32
, Mult
->getOperand(0)),
1046 CurDAG
.getNode(ISD::TRUNCATE
, DL
, MVT::i32
, Mult
->getOperand(1)), ACCIn
};
1047 EVT VTs
[2] = {MVT::i32
, MVT::i32
};
1048 SDValue MAdd
= CurDAG
.getNode(Opcode
, DL
, VTs
, MAddOps
);
1050 SDValue ResLo
= CurDAG
.getNode(MipsISD::MFLO
, DL
, MVT::i32
, MAdd
);
1051 SDValue ResHi
= CurDAG
.getNode(MipsISD::MFHI
, DL
, MVT::i32
, MAdd
);
1053 CurDAG
.getNode(ISD::BUILD_PAIR
, DL
, MVT::i64
, ResLo
, ResHi
);
1057 static SDValue
performSUBCombine(SDNode
*N
, SelectionDAG
&DAG
,
1058 TargetLowering::DAGCombinerInfo
&DCI
,
1059 const MipsSubtarget
&Subtarget
) {
1060 // (sub v0 (mul v1, v2)) => (msub v1, v2, v0)
1061 if (DCI
.isBeforeLegalizeOps()) {
1062 if (Subtarget
.hasMips32() && !Subtarget
.hasMips32r6() &&
1063 !Subtarget
.inMips16Mode() && N
->getValueType(0) == MVT::i64
)
1064 return performMADD_MSUBCombine(N
, DAG
, Subtarget
);
1072 static SDValue
performADDCombine(SDNode
*N
, SelectionDAG
&DAG
,
1073 TargetLowering::DAGCombinerInfo
&DCI
,
1074 const MipsSubtarget
&Subtarget
) {
1075 // (add v0 (mul v1, v2)) => (madd v1, v2, v0)
1076 if (DCI
.isBeforeLegalizeOps()) {
1077 if (Subtarget
.hasMips32() && !Subtarget
.hasMips32r6() &&
1078 !Subtarget
.inMips16Mode() && N
->getValueType(0) == MVT::i64
)
1079 return performMADD_MSUBCombine(N
, DAG
, Subtarget
);
1084 // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt))
1085 SDValue Add
= N
->getOperand(1);
1087 if (Add
.getOpcode() != ISD::ADD
)
1090 SDValue Lo
= Add
.getOperand(1);
1092 if ((Lo
.getOpcode() != MipsISD::Lo
) ||
1093 (Lo
.getOperand(0).getOpcode() != ISD::TargetJumpTable
))
1096 EVT ValTy
= N
->getValueType(0);
1099 SDValue Add1
= DAG
.getNode(ISD::ADD
, DL
, ValTy
, N
->getOperand(0),
1101 return DAG
.getNode(ISD::ADD
, DL
, ValTy
, Add1
, Lo
);
1104 static SDValue
performSHLCombine(SDNode
*N
, SelectionDAG
&DAG
,
1105 TargetLowering::DAGCombinerInfo
&DCI
,
1106 const MipsSubtarget
&Subtarget
) {
1107 // Pattern match CINS.
1108 // $dst = shl (and $src , imm), pos
1109 // => cins $dst, $src, pos, size
1111 if (DCI
.isBeforeLegalizeOps() || !Subtarget
.hasCnMips())
1114 SDValue FirstOperand
= N
->getOperand(0);
1115 unsigned FirstOperandOpc
= FirstOperand
.getOpcode();
1116 SDValue SecondOperand
= N
->getOperand(1);
1117 EVT ValTy
= N
->getValueType(0);
1120 uint64_t Pos
= 0, SMPos
, SMSize
;
1124 // The second operand of the shift must be an immediate.
1125 if (!(CN
= dyn_cast
<ConstantSDNode
>(SecondOperand
)))
1128 Pos
= CN
->getZExtValue();
1130 if (Pos
>= ValTy
.getSizeInBits())
1133 if (FirstOperandOpc
!= ISD::AND
)
1136 // AND's second operand must be a shifted mask.
1137 if (!(CN
= dyn_cast
<ConstantSDNode
>(FirstOperand
.getOperand(1))) ||
1138 !isShiftedMask(CN
->getZExtValue(), SMPos
, SMSize
))
1141 // Return if the shifted mask does not start at bit 0 or the sum of its size
1142 // and Pos exceeds the word's size.
1143 if (SMPos
!= 0 || SMSize
> 32 || Pos
+ SMSize
> ValTy
.getSizeInBits())
1146 NewOperand
= FirstOperand
.getOperand(0);
1147 // SMSize is 'location' (position) in this case, not size.
1150 return DAG
.getNode(MipsISD::CIns
, DL
, ValTy
, NewOperand
,
1151 DAG
.getConstant(Pos
, DL
, MVT::i32
),
1152 DAG
.getConstant(SMSize
, DL
, MVT::i32
));
1155 SDValue
MipsTargetLowering::PerformDAGCombine(SDNode
*N
, DAGCombinerInfo
&DCI
)
1157 SelectionDAG
&DAG
= DCI
.DAG
;
1158 unsigned Opc
= N
->getOpcode();
1164 return performDivRemCombine(N
, DAG
, DCI
, Subtarget
);
1166 return performSELECTCombine(N
, DAG
, DCI
, Subtarget
);
1167 case MipsISD::CMovFP_F
:
1168 case MipsISD::CMovFP_T
:
1169 return performCMovFPCombine(N
, DAG
, DCI
, Subtarget
);
1171 return performANDCombine(N
, DAG
, DCI
, Subtarget
);
1173 return performORCombine(N
, DAG
, DCI
, Subtarget
);
1175 return performADDCombine(N
, DAG
, DCI
, Subtarget
);
1177 return performSHLCombine(N
, DAG
, DCI
, Subtarget
);
1179 return performSUBCombine(N
, DAG
, DCI
, Subtarget
);
1185 bool MipsTargetLowering::isCheapToSpeculateCttz() const {
1186 return Subtarget
.hasMips32();
1189 bool MipsTargetLowering::isCheapToSpeculateCtlz() const {
1190 return Subtarget
.hasMips32();
1193 bool MipsTargetLowering::shouldFoldConstantShiftPairToMask(
1194 const SDNode
*N
, CombineLevel Level
) const {
1195 if (N
->getOperand(0).getValueType().isVector())
1201 MipsTargetLowering::LowerOperationWrapper(SDNode
*N
,
1202 SmallVectorImpl
<SDValue
> &Results
,
1203 SelectionDAG
&DAG
) const {
1204 SDValue Res
= LowerOperation(SDValue(N
, 0), DAG
);
1207 for (unsigned I
= 0, E
= Res
->getNumValues(); I
!= E
; ++I
)
1208 Results
.push_back(Res
.getValue(I
));
1212 MipsTargetLowering::ReplaceNodeResults(SDNode
*N
,
1213 SmallVectorImpl
<SDValue
> &Results
,
1214 SelectionDAG
&DAG
) const {
1215 return LowerOperationWrapper(N
, Results
, DAG
);
1218 SDValue
MipsTargetLowering::
1219 LowerOperation(SDValue Op
, SelectionDAG
&DAG
) const
1221 switch (Op
.getOpcode())
1223 case ISD::BRCOND
: return lowerBRCOND(Op
, DAG
);
1224 case ISD::ConstantPool
: return lowerConstantPool(Op
, DAG
);
1225 case ISD::GlobalAddress
: return lowerGlobalAddress(Op
, DAG
);
1226 case ISD::BlockAddress
: return lowerBlockAddress(Op
, DAG
);
1227 case ISD::GlobalTLSAddress
: return lowerGlobalTLSAddress(Op
, DAG
);
1228 case ISD::JumpTable
: return lowerJumpTable(Op
, DAG
);
1229 case ISD::SELECT
: return lowerSELECT(Op
, DAG
);
1230 case ISD::SETCC
: return lowerSETCC(Op
, DAG
);
1231 case ISD::VASTART
: return lowerVASTART(Op
, DAG
);
1232 case ISD::VAARG
: return lowerVAARG(Op
, DAG
);
1233 case ISD::FCOPYSIGN
: return lowerFCOPYSIGN(Op
, DAG
);
1234 case ISD::FABS
: return lowerFABS(Op
, DAG
);
1235 case ISD::FRAMEADDR
: return lowerFRAMEADDR(Op
, DAG
);
1236 case ISD::RETURNADDR
: return lowerRETURNADDR(Op
, DAG
);
1237 case ISD::EH_RETURN
: return lowerEH_RETURN(Op
, DAG
);
1238 case ISD::ATOMIC_FENCE
: return lowerATOMIC_FENCE(Op
, DAG
);
1239 case ISD::SHL_PARTS
: return lowerShiftLeftParts(Op
, DAG
);
1240 case ISD::SRA_PARTS
: return lowerShiftRightParts(Op
, DAG
, true);
1241 case ISD::SRL_PARTS
: return lowerShiftRightParts(Op
, DAG
, false);
1242 case ISD::LOAD
: return lowerLOAD(Op
, DAG
);
1243 case ISD::STORE
: return lowerSTORE(Op
, DAG
);
1244 case ISD::EH_DWARF_CFA
: return lowerEH_DWARF_CFA(Op
, DAG
);
1245 case ISD::FP_TO_SINT
: return lowerFP_TO_SINT(Op
, DAG
);
1250 //===----------------------------------------------------------------------===//
1251 // Lower helper functions
1252 //===----------------------------------------------------------------------===//
1254 // addLiveIn - This helper function adds the specified physical register to the
1255 // MachineFunction as a live in value. It also creates a corresponding
1256 // virtual register for it.
1258 addLiveIn(MachineFunction
&MF
, unsigned PReg
, const TargetRegisterClass
*RC
)
1260 unsigned VReg
= MF
.getRegInfo().createVirtualRegister(RC
);
1261 MF
.getRegInfo().addLiveIn(PReg
, VReg
);
1265 static MachineBasicBlock
*insertDivByZeroTrap(MachineInstr
&MI
,
1266 MachineBasicBlock
&MBB
,
1267 const TargetInstrInfo
&TII
,
1268 bool Is64Bit
, bool IsMicroMips
) {
1272 // Insert instruction "teq $divisor_reg, $zero, 7".
1273 MachineBasicBlock::iterator
I(MI
);
1274 MachineInstrBuilder MIB
;
1275 MachineOperand
&Divisor
= MI
.getOperand(2);
1276 MIB
= BuildMI(MBB
, std::next(I
), MI
.getDebugLoc(),
1277 TII
.get(IsMicroMips
? Mips::TEQ_MM
: Mips::TEQ
))
1278 .addReg(Divisor
.getReg(), getKillRegState(Divisor
.isKill()))
1282 // Use the 32-bit sub-register if this is a 64-bit division.
1284 MIB
->getOperand(0).setSubReg(Mips::sub_32
);
1286 // Clear Divisor's kill flag.
1287 Divisor
.setIsKill(false);
1289 // We would normally delete the original instruction here but in this case
1290 // we only needed to inject an additional instruction rather than replace it.
1296 MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr
&MI
,
1297 MachineBasicBlock
*BB
) const {
1298 switch (MI
.getOpcode()) {
1300 llvm_unreachable("Unexpected instr type to insert");
1301 case Mips::ATOMIC_LOAD_ADD_I8
:
1302 return emitAtomicBinaryPartword(MI
, BB
, 1);
1303 case Mips::ATOMIC_LOAD_ADD_I16
:
1304 return emitAtomicBinaryPartword(MI
, BB
, 2);
1305 case Mips::ATOMIC_LOAD_ADD_I32
:
1306 return emitAtomicBinary(MI
, BB
);
1307 case Mips::ATOMIC_LOAD_ADD_I64
:
1308 return emitAtomicBinary(MI
, BB
);
1310 case Mips::ATOMIC_LOAD_AND_I8
:
1311 return emitAtomicBinaryPartword(MI
, BB
, 1);
1312 case Mips::ATOMIC_LOAD_AND_I16
:
1313 return emitAtomicBinaryPartword(MI
, BB
, 2);
1314 case Mips::ATOMIC_LOAD_AND_I32
:
1315 return emitAtomicBinary(MI
, BB
);
1316 case Mips::ATOMIC_LOAD_AND_I64
:
1317 return emitAtomicBinary(MI
, BB
);
1319 case Mips::ATOMIC_LOAD_OR_I8
:
1320 return emitAtomicBinaryPartword(MI
, BB
, 1);
1321 case Mips::ATOMIC_LOAD_OR_I16
:
1322 return emitAtomicBinaryPartword(MI
, BB
, 2);
1323 case Mips::ATOMIC_LOAD_OR_I32
:
1324 return emitAtomicBinary(MI
, BB
);
1325 case Mips::ATOMIC_LOAD_OR_I64
:
1326 return emitAtomicBinary(MI
, BB
);
1328 case Mips::ATOMIC_LOAD_XOR_I8
:
1329 return emitAtomicBinaryPartword(MI
, BB
, 1);
1330 case Mips::ATOMIC_LOAD_XOR_I16
:
1331 return emitAtomicBinaryPartword(MI
, BB
, 2);
1332 case Mips::ATOMIC_LOAD_XOR_I32
:
1333 return emitAtomicBinary(MI
, BB
);
1334 case Mips::ATOMIC_LOAD_XOR_I64
:
1335 return emitAtomicBinary(MI
, BB
);
1337 case Mips::ATOMIC_LOAD_NAND_I8
:
1338 return emitAtomicBinaryPartword(MI
, BB
, 1);
1339 case Mips::ATOMIC_LOAD_NAND_I16
:
1340 return emitAtomicBinaryPartword(MI
, BB
, 2);
1341 case Mips::ATOMIC_LOAD_NAND_I32
:
1342 return emitAtomicBinary(MI
, BB
);
1343 case Mips::ATOMIC_LOAD_NAND_I64
:
1344 return emitAtomicBinary(MI
, BB
);
1346 case Mips::ATOMIC_LOAD_SUB_I8
:
1347 return emitAtomicBinaryPartword(MI
, BB
, 1);
1348 case Mips::ATOMIC_LOAD_SUB_I16
:
1349 return emitAtomicBinaryPartword(MI
, BB
, 2);
1350 case Mips::ATOMIC_LOAD_SUB_I32
:
1351 return emitAtomicBinary(MI
, BB
);
1352 case Mips::ATOMIC_LOAD_SUB_I64
:
1353 return emitAtomicBinary(MI
, BB
);
1355 case Mips::ATOMIC_SWAP_I8
:
1356 return emitAtomicBinaryPartword(MI
, BB
, 1);
1357 case Mips::ATOMIC_SWAP_I16
:
1358 return emitAtomicBinaryPartword(MI
, BB
, 2);
1359 case Mips::ATOMIC_SWAP_I32
:
1360 return emitAtomicBinary(MI
, BB
);
1361 case Mips::ATOMIC_SWAP_I64
:
1362 return emitAtomicBinary(MI
, BB
);
1364 case Mips::ATOMIC_CMP_SWAP_I8
:
1365 return emitAtomicCmpSwapPartword(MI
, BB
, 1);
1366 case Mips::ATOMIC_CMP_SWAP_I16
:
1367 return emitAtomicCmpSwapPartword(MI
, BB
, 2);
1368 case Mips::ATOMIC_CMP_SWAP_I32
:
1369 return emitAtomicCmpSwap(MI
, BB
);
1370 case Mips::ATOMIC_CMP_SWAP_I64
:
1371 return emitAtomicCmpSwap(MI
, BB
);
1372 case Mips::PseudoSDIV
:
1373 case Mips::PseudoUDIV
:
1378 return insertDivByZeroTrap(MI
, *BB
, *Subtarget
.getInstrInfo(), false,
1380 case Mips::SDIV_MM_Pseudo
:
1381 case Mips::UDIV_MM_Pseudo
:
1384 case Mips::DIV_MMR6
:
1385 case Mips::DIVU_MMR6
:
1386 case Mips::MOD_MMR6
:
1387 case Mips::MODU_MMR6
:
1388 return insertDivByZeroTrap(MI
, *BB
, *Subtarget
.getInstrInfo(), false, true);
1389 case Mips::PseudoDSDIV
:
1390 case Mips::PseudoDUDIV
:
1395 return insertDivByZeroTrap(MI
, *BB
, *Subtarget
.getInstrInfo(), true, false);
1397 case Mips::PseudoSELECT_I
:
1398 case Mips::PseudoSELECT_I64
:
1399 case Mips::PseudoSELECT_S
:
1400 case Mips::PseudoSELECT_D32
:
1401 case Mips::PseudoSELECT_D64
:
1402 return emitPseudoSELECT(MI
, BB
, false, Mips::BNE
);
1403 case Mips::PseudoSELECTFP_F_I
:
1404 case Mips::PseudoSELECTFP_F_I64
:
1405 case Mips::PseudoSELECTFP_F_S
:
1406 case Mips::PseudoSELECTFP_F_D32
:
1407 case Mips::PseudoSELECTFP_F_D64
:
1408 return emitPseudoSELECT(MI
, BB
, true, Mips::BC1F
);
1409 case Mips::PseudoSELECTFP_T_I
:
1410 case Mips::PseudoSELECTFP_T_I64
:
1411 case Mips::PseudoSELECTFP_T_S
:
1412 case Mips::PseudoSELECTFP_T_D32
:
1413 case Mips::PseudoSELECTFP_T_D64
:
1414 return emitPseudoSELECT(MI
, BB
, true, Mips::BC1T
);
1415 case Mips::PseudoD_SELECT_I
:
1416 case Mips::PseudoD_SELECT_I64
:
1417 return emitPseudoD_SELECT(MI
, BB
);
1421 // This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
1422 // Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
1424 MipsTargetLowering::emitAtomicBinary(MachineInstr
&MI
,
1425 MachineBasicBlock
*BB
) const {
1427 MachineFunction
*MF
= BB
->getParent();
1428 MachineRegisterInfo
&RegInfo
= MF
->getRegInfo();
1429 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
1430 DebugLoc DL
= MI
.getDebugLoc();
1433 switch (MI
.getOpcode()) {
1434 case Mips::ATOMIC_LOAD_ADD_I32
:
1435 AtomicOp
= Mips::ATOMIC_LOAD_ADD_I32_POSTRA
;
1437 case Mips::ATOMIC_LOAD_SUB_I32
:
1438 AtomicOp
= Mips::ATOMIC_LOAD_SUB_I32_POSTRA
;
1440 case Mips::ATOMIC_LOAD_AND_I32
:
1441 AtomicOp
= Mips::ATOMIC_LOAD_AND_I32_POSTRA
;
1443 case Mips::ATOMIC_LOAD_OR_I32
:
1444 AtomicOp
= Mips::ATOMIC_LOAD_OR_I32_POSTRA
;
1446 case Mips::ATOMIC_LOAD_XOR_I32
:
1447 AtomicOp
= Mips::ATOMIC_LOAD_XOR_I32_POSTRA
;
1449 case Mips::ATOMIC_LOAD_NAND_I32
:
1450 AtomicOp
= Mips::ATOMIC_LOAD_NAND_I32_POSTRA
;
1452 case Mips::ATOMIC_SWAP_I32
:
1453 AtomicOp
= Mips::ATOMIC_SWAP_I32_POSTRA
;
1455 case Mips::ATOMIC_LOAD_ADD_I64
:
1456 AtomicOp
= Mips::ATOMIC_LOAD_ADD_I64_POSTRA
;
1458 case Mips::ATOMIC_LOAD_SUB_I64
:
1459 AtomicOp
= Mips::ATOMIC_LOAD_SUB_I64_POSTRA
;
1461 case Mips::ATOMIC_LOAD_AND_I64
:
1462 AtomicOp
= Mips::ATOMIC_LOAD_AND_I64_POSTRA
;
1464 case Mips::ATOMIC_LOAD_OR_I64
:
1465 AtomicOp
= Mips::ATOMIC_LOAD_OR_I64_POSTRA
;
1467 case Mips::ATOMIC_LOAD_XOR_I64
:
1468 AtomicOp
= Mips::ATOMIC_LOAD_XOR_I64_POSTRA
;
1470 case Mips::ATOMIC_LOAD_NAND_I64
:
1471 AtomicOp
= Mips::ATOMIC_LOAD_NAND_I64_POSTRA
;
1473 case Mips::ATOMIC_SWAP_I64
:
1474 AtomicOp
= Mips::ATOMIC_SWAP_I64_POSTRA
;
1477 llvm_unreachable("Unknown pseudo atomic for replacement!");
1480 unsigned OldVal
= MI
.getOperand(0).getReg();
1481 unsigned Ptr
= MI
.getOperand(1).getReg();
1482 unsigned Incr
= MI
.getOperand(2).getReg();
1483 unsigned Scratch
= RegInfo
.createVirtualRegister(RegInfo
.getRegClass(OldVal
));
1485 MachineBasicBlock::iterator
II(MI
);
1487 // The scratch registers here with the EarlyClobber | Define | Implicit
1488 // flags is used to persuade the register allocator and the machine
1489 // verifier to accept the usage of this register. This has to be a real
1490 // register which has an UNDEF value but is dead after the instruction which
1491 // is unique among the registers chosen for the instruction.
1493 // The EarlyClobber flag has the semantic properties that the operand it is
1494 // attached to is clobbered before the rest of the inputs are read. Hence it
1495 // must be unique among the operands to the instruction.
1496 // The Define flag is needed to coerce the machine verifier that an Undef
1497 // value isn't a problem.
1498 // The Dead flag is needed as the value in scratch isn't used by any other
1499 // instruction. Kill isn't used as Dead is more precise.
1500 // The implicit flag is here due to the interaction between the other flags
1501 // and the machine verifier.
1503 // For correctness purpose, a new pseudo is introduced here. We need this
1504 // new pseudo, so that FastRegisterAllocator does not see an ll/sc sequence
1505 // that is spread over >1 basic blocks. A register allocator which
1506 // introduces (or any codegen infact) a store, can violate the expectations
1509 // An atomic read-modify-write sequence starts with a linked load
1510 // instruction and ends with a store conditional instruction. The atomic
1511 // read-modify-write sequence fails if any of the following conditions
1512 // occur between the execution of ll and sc:
1513 // * A coherent store is completed by another process or coherent I/O
1514 // module into the block of synchronizable physical memory containing
1515 // the word. The size and alignment of the block is
1516 // implementation-dependent.
1517 // * A coherent store is executed between an LL and SC sequence on the
1518 // same processor to the block of synchornizable physical memory
1519 // containing the word.
1522 unsigned PtrCopy
= RegInfo
.createVirtualRegister(RegInfo
.getRegClass(Ptr
));
1523 unsigned IncrCopy
= RegInfo
.createVirtualRegister(RegInfo
.getRegClass(Incr
));
1525 BuildMI(*BB
, II
, DL
, TII
->get(Mips::COPY
), IncrCopy
).addReg(Incr
);
1526 BuildMI(*BB
, II
, DL
, TII
->get(Mips::COPY
), PtrCopy
).addReg(Ptr
);
1528 BuildMI(*BB
, II
, DL
, TII
->get(AtomicOp
))
1529 .addReg(OldVal
, RegState::Define
| RegState::EarlyClobber
)
1532 .addReg(Scratch
, RegState::Define
| RegState::EarlyClobber
|
1533 RegState::Implicit
| RegState::Dead
);
1535 MI
.eraseFromParent();
1540 MachineBasicBlock
*MipsTargetLowering::emitSignExtendToI32InReg(
1541 MachineInstr
&MI
, MachineBasicBlock
*BB
, unsigned Size
, unsigned DstReg
,
1542 unsigned SrcReg
) const {
1543 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
1544 const DebugLoc
&DL
= MI
.getDebugLoc();
1546 if (Subtarget
.hasMips32r2() && Size
== 1) {
1547 BuildMI(BB
, DL
, TII
->get(Mips::SEB
), DstReg
).addReg(SrcReg
);
1551 if (Subtarget
.hasMips32r2() && Size
== 2) {
1552 BuildMI(BB
, DL
, TII
->get(Mips::SEH
), DstReg
).addReg(SrcReg
);
1556 MachineFunction
*MF
= BB
->getParent();
1557 MachineRegisterInfo
&RegInfo
= MF
->getRegInfo();
1558 const TargetRegisterClass
*RC
= getRegClassFor(MVT::i32
);
1559 unsigned ScrReg
= RegInfo
.createVirtualRegister(RC
);
1562 int64_t ShiftImm
= 32 - (Size
* 8);
1564 BuildMI(BB
, DL
, TII
->get(Mips::SLL
), ScrReg
).addReg(SrcReg
).addImm(ShiftImm
);
1565 BuildMI(BB
, DL
, TII
->get(Mips::SRA
), DstReg
).addReg(ScrReg
).addImm(ShiftImm
);
1570 MachineBasicBlock
*MipsTargetLowering::emitAtomicBinaryPartword(
1571 MachineInstr
&MI
, MachineBasicBlock
*BB
, unsigned Size
) const {
1572 assert((Size
== 1 || Size
== 2) &&
1573 "Unsupported size for EmitAtomicBinaryPartial.");
1575 MachineFunction
*MF
= BB
->getParent();
1576 MachineRegisterInfo
&RegInfo
= MF
->getRegInfo();
1577 const TargetRegisterClass
*RC
= getRegClassFor(MVT::i32
);
1578 const bool ArePtrs64bit
= ABI
.ArePtrs64bit();
1579 const TargetRegisterClass
*RCp
=
1580 getRegClassFor(ArePtrs64bit
? MVT::i64
: MVT::i32
);
1581 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
1582 DebugLoc DL
= MI
.getDebugLoc();
1584 unsigned Dest
= MI
.getOperand(0).getReg();
1585 unsigned Ptr
= MI
.getOperand(1).getReg();
1586 unsigned Incr
= MI
.getOperand(2).getReg();
1588 unsigned AlignedAddr
= RegInfo
.createVirtualRegister(RCp
);
1589 unsigned ShiftAmt
= RegInfo
.createVirtualRegister(RC
);
1590 unsigned Mask
= RegInfo
.createVirtualRegister(RC
);
1591 unsigned Mask2
= RegInfo
.createVirtualRegister(RC
);
1592 unsigned Incr2
= RegInfo
.createVirtualRegister(RC
);
1593 unsigned MaskLSB2
= RegInfo
.createVirtualRegister(RCp
);
1594 unsigned PtrLSB2
= RegInfo
.createVirtualRegister(RC
);
1595 unsigned MaskUpper
= RegInfo
.createVirtualRegister(RC
);
1596 unsigned Scratch
= RegInfo
.createVirtualRegister(RC
);
1597 unsigned Scratch2
= RegInfo
.createVirtualRegister(RC
);
1598 unsigned Scratch3
= RegInfo
.createVirtualRegister(RC
);
1600 unsigned AtomicOp
= 0;
1601 switch (MI
.getOpcode()) {
1602 case Mips::ATOMIC_LOAD_NAND_I8
:
1603 AtomicOp
= Mips::ATOMIC_LOAD_NAND_I8_POSTRA
;
1605 case Mips::ATOMIC_LOAD_NAND_I16
:
1606 AtomicOp
= Mips::ATOMIC_LOAD_NAND_I16_POSTRA
;
1608 case Mips::ATOMIC_SWAP_I8
:
1609 AtomicOp
= Mips::ATOMIC_SWAP_I8_POSTRA
;
1611 case Mips::ATOMIC_SWAP_I16
:
1612 AtomicOp
= Mips::ATOMIC_SWAP_I16_POSTRA
;
1614 case Mips::ATOMIC_LOAD_ADD_I8
:
1615 AtomicOp
= Mips::ATOMIC_LOAD_ADD_I8_POSTRA
;
1617 case Mips::ATOMIC_LOAD_ADD_I16
:
1618 AtomicOp
= Mips::ATOMIC_LOAD_ADD_I16_POSTRA
;
1620 case Mips::ATOMIC_LOAD_SUB_I8
:
1621 AtomicOp
= Mips::ATOMIC_LOAD_SUB_I8_POSTRA
;
1623 case Mips::ATOMIC_LOAD_SUB_I16
:
1624 AtomicOp
= Mips::ATOMIC_LOAD_SUB_I16_POSTRA
;
1626 case Mips::ATOMIC_LOAD_AND_I8
:
1627 AtomicOp
= Mips::ATOMIC_LOAD_AND_I8_POSTRA
;
1629 case Mips::ATOMIC_LOAD_AND_I16
:
1630 AtomicOp
= Mips::ATOMIC_LOAD_AND_I16_POSTRA
;
1632 case Mips::ATOMIC_LOAD_OR_I8
:
1633 AtomicOp
= Mips::ATOMIC_LOAD_OR_I8_POSTRA
;
1635 case Mips::ATOMIC_LOAD_OR_I16
:
1636 AtomicOp
= Mips::ATOMIC_LOAD_OR_I16_POSTRA
;
1638 case Mips::ATOMIC_LOAD_XOR_I8
:
1639 AtomicOp
= Mips::ATOMIC_LOAD_XOR_I8_POSTRA
;
1641 case Mips::ATOMIC_LOAD_XOR_I16
:
1642 AtomicOp
= Mips::ATOMIC_LOAD_XOR_I16_POSTRA
;
1645 llvm_unreachable("Unknown subword atomic pseudo for expansion!");
1648 // insert new blocks after the current block
1649 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
1650 MachineBasicBlock
*exitMBB
= MF
->CreateMachineBasicBlock(LLVM_BB
);
1651 MachineFunction::iterator It
= ++BB
->getIterator();
1652 MF
->insert(It
, exitMBB
);
1654 // Transfer the remainder of BB and its successor edges to exitMBB.
1655 exitMBB
->splice(exitMBB
->begin(), BB
,
1656 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
1657 exitMBB
->transferSuccessorsAndUpdatePHIs(BB
);
1659 BB
->addSuccessor(exitMBB
, BranchProbability::getOne());
1662 // addiu masklsb2,$0,-4 # 0xfffffffc
1663 // and alignedaddr,ptr,masklsb2
1664 // andi ptrlsb2,ptr,3
1665 // sll shiftamt,ptrlsb2,3
1666 // ori maskupper,$0,255 # 0xff
1667 // sll mask,maskupper,shiftamt
1668 // nor mask2,$0,mask
1669 // sll incr2,incr,shiftamt
1671 int64_t MaskImm
= (Size
== 1) ? 255 : 65535;
1672 BuildMI(BB
, DL
, TII
->get(ABI
.GetPtrAddiuOp()), MaskLSB2
)
1673 .addReg(ABI
.GetNullPtr()).addImm(-4);
1674 BuildMI(BB
, DL
, TII
->get(ABI
.GetPtrAndOp()), AlignedAddr
)
1675 .addReg(Ptr
).addReg(MaskLSB2
);
1676 BuildMI(BB
, DL
, TII
->get(Mips::ANDi
), PtrLSB2
)
1677 .addReg(Ptr
, 0, ArePtrs64bit
? Mips::sub_32
: 0).addImm(3);
1678 if (Subtarget
.isLittle()) {
1679 BuildMI(BB
, DL
, TII
->get(Mips::SLL
), ShiftAmt
).addReg(PtrLSB2
).addImm(3);
1681 unsigned Off
= RegInfo
.createVirtualRegister(RC
);
1682 BuildMI(BB
, DL
, TII
->get(Mips::XORi
), Off
)
1683 .addReg(PtrLSB2
).addImm((Size
== 1) ? 3 : 2);
1684 BuildMI(BB
, DL
, TII
->get(Mips::SLL
), ShiftAmt
).addReg(Off
).addImm(3);
1686 BuildMI(BB
, DL
, TII
->get(Mips::ORi
), MaskUpper
)
1687 .addReg(Mips::ZERO
).addImm(MaskImm
);
1688 BuildMI(BB
, DL
, TII
->get(Mips::SLLV
), Mask
)
1689 .addReg(MaskUpper
).addReg(ShiftAmt
);
1690 BuildMI(BB
, DL
, TII
->get(Mips::NOR
), Mask2
).addReg(Mips::ZERO
).addReg(Mask
);
1691 BuildMI(BB
, DL
, TII
->get(Mips::SLLV
), Incr2
).addReg(Incr
).addReg(ShiftAmt
);
1694 // The purposes of the flags on the scratch registers is explained in
1695 // emitAtomicBinary. In summary, we need a scratch register which is going to
1696 // be undef, that is unique among registers chosen for the instruction.
1698 BuildMI(BB
, DL
, TII
->get(AtomicOp
))
1699 .addReg(Dest
, RegState::Define
| RegState::EarlyClobber
)
1700 .addReg(AlignedAddr
)
1705 .addReg(Scratch
, RegState::EarlyClobber
| RegState::Define
|
1706 RegState::Dead
| RegState::Implicit
)
1707 .addReg(Scratch2
, RegState::EarlyClobber
| RegState::Define
|
1708 RegState::Dead
| RegState::Implicit
)
1709 .addReg(Scratch3
, RegState::EarlyClobber
| RegState::Define
|
1710 RegState::Dead
| RegState::Implicit
);
1712 MI
.eraseFromParent(); // The instruction is gone now.
1717 // Lower atomic compare and swap to a pseudo instruction, taking care to
1718 // define a scratch register for the pseudo instruction's expansion. The
1719 // instruction is expanded after the register allocator as to prevent
1720 // the insertion of stores between the linked load and the store conditional.
1723 MipsTargetLowering::emitAtomicCmpSwap(MachineInstr
&MI
,
1724 MachineBasicBlock
*BB
) const {
1726 assert((MI
.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32
||
1727 MI
.getOpcode() == Mips::ATOMIC_CMP_SWAP_I64
) &&
1728 "Unsupported atomic pseudo for EmitAtomicCmpSwap.");
1730 const unsigned Size
= MI
.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32
? 4 : 8;
1732 MachineFunction
*MF
= BB
->getParent();
1733 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
1734 const TargetRegisterClass
*RC
= getRegClassFor(MVT::getIntegerVT(Size
* 8));
1735 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
1736 DebugLoc DL
= MI
.getDebugLoc();
1738 unsigned AtomicOp
= MI
.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32
1739 ? Mips::ATOMIC_CMP_SWAP_I32_POSTRA
1740 : Mips::ATOMIC_CMP_SWAP_I64_POSTRA
;
1741 unsigned Dest
= MI
.getOperand(0).getReg();
1742 unsigned Ptr
= MI
.getOperand(1).getReg();
1743 unsigned OldVal
= MI
.getOperand(2).getReg();
1744 unsigned NewVal
= MI
.getOperand(3).getReg();
1746 unsigned Scratch
= MRI
.createVirtualRegister(RC
);
1747 MachineBasicBlock::iterator
II(MI
);
1749 // We need to create copies of the various registers and kill them at the
1750 // atomic pseudo. If the copies are not made, when the atomic is expanded
1751 // after fast register allocation, the spills will end up outside of the
1752 // blocks that their values are defined in, causing livein errors.
1754 unsigned PtrCopy
= MRI
.createVirtualRegister(MRI
.getRegClass(Ptr
));
1755 unsigned OldValCopy
= MRI
.createVirtualRegister(MRI
.getRegClass(OldVal
));
1756 unsigned NewValCopy
= MRI
.createVirtualRegister(MRI
.getRegClass(NewVal
));
1758 BuildMI(*BB
, II
, DL
, TII
->get(Mips::COPY
), PtrCopy
).addReg(Ptr
);
1759 BuildMI(*BB
, II
, DL
, TII
->get(Mips::COPY
), OldValCopy
).addReg(OldVal
);
1760 BuildMI(*BB
, II
, DL
, TII
->get(Mips::COPY
), NewValCopy
).addReg(NewVal
);
1762 // The purposes of the flags on the scratch registers is explained in
1763 // emitAtomicBinary. In summary, we need a scratch register which is going to
1764 // be undef, that is unique among registers chosen for the instruction.
1766 BuildMI(*BB
, II
, DL
, TII
->get(AtomicOp
))
1767 .addReg(Dest
, RegState::Define
| RegState::EarlyClobber
)
1768 .addReg(PtrCopy
, RegState::Kill
)
1769 .addReg(OldValCopy
, RegState::Kill
)
1770 .addReg(NewValCopy
, RegState::Kill
)
1771 .addReg(Scratch
, RegState::EarlyClobber
| RegState::Define
|
1772 RegState::Dead
| RegState::Implicit
);
1774 MI
.eraseFromParent(); // The instruction is gone now.
1779 MachineBasicBlock
*MipsTargetLowering::emitAtomicCmpSwapPartword(
1780 MachineInstr
&MI
, MachineBasicBlock
*BB
, unsigned Size
) const {
1781 assert((Size
== 1 || Size
== 2) &&
1782 "Unsupported size for EmitAtomicCmpSwapPartial.");
1784 MachineFunction
*MF
= BB
->getParent();
1785 MachineRegisterInfo
&RegInfo
= MF
->getRegInfo();
1786 const TargetRegisterClass
*RC
= getRegClassFor(MVT::i32
);
1787 const bool ArePtrs64bit
= ABI
.ArePtrs64bit();
1788 const TargetRegisterClass
*RCp
=
1789 getRegClassFor(ArePtrs64bit
? MVT::i64
: MVT::i32
);
1790 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
1791 DebugLoc DL
= MI
.getDebugLoc();
1793 unsigned Dest
= MI
.getOperand(0).getReg();
1794 unsigned Ptr
= MI
.getOperand(1).getReg();
1795 unsigned CmpVal
= MI
.getOperand(2).getReg();
1796 unsigned NewVal
= MI
.getOperand(3).getReg();
1798 unsigned AlignedAddr
= RegInfo
.createVirtualRegister(RCp
);
1799 unsigned ShiftAmt
= RegInfo
.createVirtualRegister(RC
);
1800 unsigned Mask
= RegInfo
.createVirtualRegister(RC
);
1801 unsigned Mask2
= RegInfo
.createVirtualRegister(RC
);
1802 unsigned ShiftedCmpVal
= RegInfo
.createVirtualRegister(RC
);
1803 unsigned ShiftedNewVal
= RegInfo
.createVirtualRegister(RC
);
1804 unsigned MaskLSB2
= RegInfo
.createVirtualRegister(RCp
);
1805 unsigned PtrLSB2
= RegInfo
.createVirtualRegister(RC
);
1806 unsigned MaskUpper
= RegInfo
.createVirtualRegister(RC
);
1807 unsigned MaskedCmpVal
= RegInfo
.createVirtualRegister(RC
);
1808 unsigned MaskedNewVal
= RegInfo
.createVirtualRegister(RC
);
1809 unsigned AtomicOp
= MI
.getOpcode() == Mips::ATOMIC_CMP_SWAP_I8
1810 ? Mips::ATOMIC_CMP_SWAP_I8_POSTRA
1811 : Mips::ATOMIC_CMP_SWAP_I16_POSTRA
;
1813 // The scratch registers here with the EarlyClobber | Define | Dead | Implicit
1814 // flags are used to coerce the register allocator and the machine verifier to
1815 // accept the usage of these registers.
1816 // The EarlyClobber flag has the semantic properties that the operand it is
1817 // attached to is clobbered before the rest of the inputs are read. Hence it
1818 // must be unique among the operands to the instruction.
1819 // The Define flag is needed to coerce the machine verifier that an Undef
1820 // value isn't a problem.
1821 // The Dead flag is needed as the value in scratch isn't used by any other
1822 // instruction. Kill isn't used as Dead is more precise.
1823 unsigned Scratch
= RegInfo
.createVirtualRegister(RC
);
1824 unsigned Scratch2
= RegInfo
.createVirtualRegister(RC
);
1826 // insert new blocks after the current block
1827 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
1828 MachineBasicBlock
*exitMBB
= MF
->CreateMachineBasicBlock(LLVM_BB
);
1829 MachineFunction::iterator It
= ++BB
->getIterator();
1830 MF
->insert(It
, exitMBB
);
1832 // Transfer the remainder of BB and its successor edges to exitMBB.
1833 exitMBB
->splice(exitMBB
->begin(), BB
,
1834 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
1835 exitMBB
->transferSuccessorsAndUpdatePHIs(BB
);
1837 BB
->addSuccessor(exitMBB
, BranchProbability::getOne());
1840 // addiu masklsb2,$0,-4 # 0xfffffffc
1841 // and alignedaddr,ptr,masklsb2
1842 // andi ptrlsb2,ptr,3
1843 // xori ptrlsb2,ptrlsb2,3 # Only for BE
1844 // sll shiftamt,ptrlsb2,3
1845 // ori maskupper,$0,255 # 0xff
1846 // sll mask,maskupper,shiftamt
1847 // nor mask2,$0,mask
1848 // andi maskedcmpval,cmpval,255
1849 // sll shiftedcmpval,maskedcmpval,shiftamt
1850 // andi maskednewval,newval,255
1851 // sll shiftednewval,maskednewval,shiftamt
1852 int64_t MaskImm
= (Size
== 1) ? 255 : 65535;
1853 BuildMI(BB
, DL
, TII
->get(ArePtrs64bit
? Mips::DADDiu
: Mips::ADDiu
), MaskLSB2
)
1854 .addReg(ABI
.GetNullPtr()).addImm(-4);
1855 BuildMI(BB
, DL
, TII
->get(ArePtrs64bit
? Mips::AND64
: Mips::AND
), AlignedAddr
)
1856 .addReg(Ptr
).addReg(MaskLSB2
);
1857 BuildMI(BB
, DL
, TII
->get(Mips::ANDi
), PtrLSB2
)
1858 .addReg(Ptr
, 0, ArePtrs64bit
? Mips::sub_32
: 0).addImm(3);
1859 if (Subtarget
.isLittle()) {
1860 BuildMI(BB
, DL
, TII
->get(Mips::SLL
), ShiftAmt
).addReg(PtrLSB2
).addImm(3);
1862 unsigned Off
= RegInfo
.createVirtualRegister(RC
);
1863 BuildMI(BB
, DL
, TII
->get(Mips::XORi
), Off
)
1864 .addReg(PtrLSB2
).addImm((Size
== 1) ? 3 : 2);
1865 BuildMI(BB
, DL
, TII
->get(Mips::SLL
), ShiftAmt
).addReg(Off
).addImm(3);
1867 BuildMI(BB
, DL
, TII
->get(Mips::ORi
), MaskUpper
)
1868 .addReg(Mips::ZERO
).addImm(MaskImm
);
1869 BuildMI(BB
, DL
, TII
->get(Mips::SLLV
), Mask
)
1870 .addReg(MaskUpper
).addReg(ShiftAmt
);
1871 BuildMI(BB
, DL
, TII
->get(Mips::NOR
), Mask2
).addReg(Mips::ZERO
).addReg(Mask
);
1872 BuildMI(BB
, DL
, TII
->get(Mips::ANDi
), MaskedCmpVal
)
1873 .addReg(CmpVal
).addImm(MaskImm
);
1874 BuildMI(BB
, DL
, TII
->get(Mips::SLLV
), ShiftedCmpVal
)
1875 .addReg(MaskedCmpVal
).addReg(ShiftAmt
);
1876 BuildMI(BB
, DL
, TII
->get(Mips::ANDi
), MaskedNewVal
)
1877 .addReg(NewVal
).addImm(MaskImm
);
1878 BuildMI(BB
, DL
, TII
->get(Mips::SLLV
), ShiftedNewVal
)
1879 .addReg(MaskedNewVal
).addReg(ShiftAmt
);
1881 // The purposes of the flags on the scratch registers are explained in
1882 // emitAtomicBinary. In summary, we need a scratch register which is going to
1883 // be undef, that is unique among the register chosen for the instruction.
1885 BuildMI(BB
, DL
, TII
->get(AtomicOp
))
1886 .addReg(Dest
, RegState::Define
| RegState::EarlyClobber
)
1887 .addReg(AlignedAddr
)
1889 .addReg(ShiftedCmpVal
)
1891 .addReg(ShiftedNewVal
)
1893 .addReg(Scratch
, RegState::EarlyClobber
| RegState::Define
|
1894 RegState::Dead
| RegState::Implicit
)
1895 .addReg(Scratch2
, RegState::EarlyClobber
| RegState::Define
|
1896 RegState::Dead
| RegState::Implicit
);
1898 MI
.eraseFromParent(); // The instruction is gone now.
1903 SDValue
MipsTargetLowering::lowerBRCOND(SDValue Op
, SelectionDAG
&DAG
) const {
1904 // The first operand is the chain, the second is the condition, the third is
1905 // the block to branch to if the condition is true.
1906 SDValue Chain
= Op
.getOperand(0);
1907 SDValue Dest
= Op
.getOperand(2);
1910 assert(!Subtarget
.hasMips32r6() && !Subtarget
.hasMips64r6());
1911 SDValue CondRes
= createFPCmp(DAG
, Op
.getOperand(1));
1913 // Return if flag is not set by a floating point comparison.
1914 if (CondRes
.getOpcode() != MipsISD::FPCmp
)
1917 SDValue CCNode
= CondRes
.getOperand(2);
1919 (Mips::CondCode
)cast
<ConstantSDNode
>(CCNode
)->getZExtValue();
1920 unsigned Opc
= invertFPCondCodeUser(CC
) ? Mips::BRANCH_F
: Mips::BRANCH_T
;
1921 SDValue BrCode
= DAG
.getConstant(Opc
, DL
, MVT::i32
);
1922 SDValue FCC0
= DAG
.getRegister(Mips::FCC0
, MVT::i32
);
1923 return DAG
.getNode(MipsISD::FPBrcond
, DL
, Op
.getValueType(), Chain
, BrCode
,
1924 FCC0
, Dest
, CondRes
);
1927 SDValue
MipsTargetLowering::
1928 lowerSELECT(SDValue Op
, SelectionDAG
&DAG
) const
1930 assert(!Subtarget
.hasMips32r6() && !Subtarget
.hasMips64r6());
1931 SDValue Cond
= createFPCmp(DAG
, Op
.getOperand(0));
1933 // Return if flag is not set by a floating point comparison.
1934 if (Cond
.getOpcode() != MipsISD::FPCmp
)
1937 return createCMovFP(DAG
, Cond
, Op
.getOperand(1), Op
.getOperand(2),
1941 SDValue
MipsTargetLowering::lowerSETCC(SDValue Op
, SelectionDAG
&DAG
) const {
1942 assert(!Subtarget
.hasMips32r6() && !Subtarget
.hasMips64r6());
1943 SDValue Cond
= createFPCmp(DAG
, Op
);
1945 assert(Cond
.getOpcode() == MipsISD::FPCmp
&&
1946 "Floating point operand expected.");
1949 SDValue True
= DAG
.getConstant(1, DL
, MVT::i32
);
1950 SDValue False
= DAG
.getConstant(0, DL
, MVT::i32
);
1952 return createCMovFP(DAG
, Cond
, True
, False
, DL
);
1955 SDValue
MipsTargetLowering::lowerGlobalAddress(SDValue Op
,
1956 SelectionDAG
&DAG
) const {
1957 EVT Ty
= Op
.getValueType();
1958 GlobalAddressSDNode
*N
= cast
<GlobalAddressSDNode
>(Op
);
1959 const GlobalValue
*GV
= N
->getGlobal();
1961 if (!isPositionIndependent()) {
1962 const MipsTargetObjectFile
*TLOF
=
1963 static_cast<const MipsTargetObjectFile
*>(
1964 getTargetMachine().getObjFileLowering());
1965 const GlobalObject
*GO
= GV
->getBaseObject();
1966 if (GO
&& TLOF
->IsGlobalInSmallSection(GO
, getTargetMachine()))
1967 // %gp_rel relocation
1968 return getAddrGPRel(N
, SDLoc(N
), Ty
, DAG
, ABI
.IsN64());
1970 // %hi/%lo relocation
1971 return Subtarget
.hasSym32() ? getAddrNonPIC(N
, SDLoc(N
), Ty
, DAG
)
1972 // %highest/%higher/%hi/%lo relocation
1973 : getAddrNonPICSym64(N
, SDLoc(N
), Ty
, DAG
);
1976 // Every other architecture would use shouldAssumeDSOLocal in here, but
1978 // * In PIC code mips requires got loads even for local statics!
1979 // * To save on got entries, for local statics the got entry contains the
1980 // page and an additional add instruction takes care of the low bits.
1981 // * It is legal to access a hidden symbol with a non hidden undefined,
1982 // so one cannot guarantee that all access to a hidden symbol will know
1984 // * Mips linkers don't support creating a page and a full got entry for
1986 // * Given all that, we have to use a full got entry for hidden symbols :-(
1987 if (GV
->hasLocalLinkage())
1988 return getAddrLocal(N
, SDLoc(N
), Ty
, DAG
, ABI
.IsN32() || ABI
.IsN64());
1991 return getAddrGlobalLargeGOT(
1992 N
, SDLoc(N
), Ty
, DAG
, MipsII::MO_GOT_HI16
, MipsII::MO_GOT_LO16
,
1994 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
1996 return getAddrGlobal(
1997 N
, SDLoc(N
), Ty
, DAG
,
1998 (ABI
.IsN32() || ABI
.IsN64()) ? MipsII::MO_GOT_DISP
: MipsII::MO_GOT
,
1999 DAG
.getEntryNode(), MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
2002 SDValue
MipsTargetLowering::lowerBlockAddress(SDValue Op
,
2003 SelectionDAG
&DAG
) const {
2004 BlockAddressSDNode
*N
= cast
<BlockAddressSDNode
>(Op
);
2005 EVT Ty
= Op
.getValueType();
2007 if (!isPositionIndependent())
2008 return Subtarget
.hasSym32() ? getAddrNonPIC(N
, SDLoc(N
), Ty
, DAG
)
2009 : getAddrNonPICSym64(N
, SDLoc(N
), Ty
, DAG
);
2011 return getAddrLocal(N
, SDLoc(N
), Ty
, DAG
, ABI
.IsN32() || ABI
.IsN64());
2014 SDValue
MipsTargetLowering::
2015 lowerGlobalTLSAddress(SDValue Op
, SelectionDAG
&DAG
) const
2017 // If the relocation model is PIC, use the General Dynamic TLS Model or
2018 // Local Dynamic TLS model, otherwise use the Initial Exec or
2019 // Local Exec TLS Model.
2021 GlobalAddressSDNode
*GA
= cast
<GlobalAddressSDNode
>(Op
);
2022 if (DAG
.getTarget().useEmulatedTLS())
2023 return LowerToTLSEmulatedModel(GA
, DAG
);
2026 const GlobalValue
*GV
= GA
->getGlobal();
2027 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
2029 TLSModel::Model model
= getTargetMachine().getTLSModel(GV
);
2031 if (model
== TLSModel::GeneralDynamic
|| model
== TLSModel::LocalDynamic
) {
2032 // General Dynamic and Local Dynamic TLS Model.
2033 unsigned Flag
= (model
== TLSModel::LocalDynamic
) ? MipsII::MO_TLSLDM
2036 SDValue TGA
= DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, 0, Flag
);
2037 SDValue Argument
= DAG
.getNode(MipsISD::Wrapper
, DL
, PtrVT
,
2038 getGlobalReg(DAG
, PtrVT
), TGA
);
2039 unsigned PtrSize
= PtrVT
.getSizeInBits();
2040 IntegerType
*PtrTy
= Type::getIntNTy(*DAG
.getContext(), PtrSize
);
2042 SDValue TlsGetAddr
= DAG
.getExternalSymbol("__tls_get_addr", PtrVT
);
2046 Entry
.Node
= Argument
;
2048 Args
.push_back(Entry
);
2050 TargetLowering::CallLoweringInfo
CLI(DAG
);
2052 .setChain(DAG
.getEntryNode())
2053 .setLibCallee(CallingConv::C
, PtrTy
, TlsGetAddr
, std::move(Args
));
2054 std::pair
<SDValue
, SDValue
> CallResult
= LowerCallTo(CLI
);
2056 SDValue Ret
= CallResult
.first
;
2058 if (model
!= TLSModel::LocalDynamic
)
2061 SDValue TGAHi
= DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, 0,
2062 MipsII::MO_DTPREL_HI
);
2063 SDValue Hi
= DAG
.getNode(MipsISD::TlsHi
, DL
, PtrVT
, TGAHi
);
2064 SDValue TGALo
= DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, 0,
2065 MipsII::MO_DTPREL_LO
);
2066 SDValue Lo
= DAG
.getNode(MipsISD::Lo
, DL
, PtrVT
, TGALo
);
2067 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, PtrVT
, Hi
, Ret
);
2068 return DAG
.getNode(ISD::ADD
, DL
, PtrVT
, Add
, Lo
);
2072 if (model
== TLSModel::InitialExec
) {
2073 // Initial Exec TLS Model
2074 SDValue TGA
= DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, 0,
2075 MipsII::MO_GOTTPREL
);
2076 TGA
= DAG
.getNode(MipsISD::Wrapper
, DL
, PtrVT
, getGlobalReg(DAG
, PtrVT
),
2079 DAG
.getLoad(PtrVT
, DL
, DAG
.getEntryNode(), TGA
, MachinePointerInfo());
2081 // Local Exec TLS Model
2082 assert(model
== TLSModel::LocalExec
);
2083 SDValue TGAHi
= DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, 0,
2084 MipsII::MO_TPREL_HI
);
2085 SDValue TGALo
= DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, 0,
2086 MipsII::MO_TPREL_LO
);
2087 SDValue Hi
= DAG
.getNode(MipsISD::TlsHi
, DL
, PtrVT
, TGAHi
);
2088 SDValue Lo
= DAG
.getNode(MipsISD::Lo
, DL
, PtrVT
, TGALo
);
2089 Offset
= DAG
.getNode(ISD::ADD
, DL
, PtrVT
, Hi
, Lo
);
2092 SDValue ThreadPointer
= DAG
.getNode(MipsISD::ThreadPointer
, DL
, PtrVT
);
2093 return DAG
.getNode(ISD::ADD
, DL
, PtrVT
, ThreadPointer
, Offset
);
2096 SDValue
MipsTargetLowering::
2097 lowerJumpTable(SDValue Op
, SelectionDAG
&DAG
) const
2099 JumpTableSDNode
*N
= cast
<JumpTableSDNode
>(Op
);
2100 EVT Ty
= Op
.getValueType();
2102 if (!isPositionIndependent())
2103 return Subtarget
.hasSym32() ? getAddrNonPIC(N
, SDLoc(N
), Ty
, DAG
)
2104 : getAddrNonPICSym64(N
, SDLoc(N
), Ty
, DAG
);
2106 return getAddrLocal(N
, SDLoc(N
), Ty
, DAG
, ABI
.IsN32() || ABI
.IsN64());
2109 SDValue
MipsTargetLowering::
2110 lowerConstantPool(SDValue Op
, SelectionDAG
&DAG
) const
2112 ConstantPoolSDNode
*N
= cast
<ConstantPoolSDNode
>(Op
);
2113 EVT Ty
= Op
.getValueType();
2115 if (!isPositionIndependent()) {
2116 const MipsTargetObjectFile
*TLOF
=
2117 static_cast<const MipsTargetObjectFile
*>(
2118 getTargetMachine().getObjFileLowering());
2120 if (TLOF
->IsConstantInSmallSection(DAG
.getDataLayout(), N
->getConstVal(),
2121 getTargetMachine()))
2122 // %gp_rel relocation
2123 return getAddrGPRel(N
, SDLoc(N
), Ty
, DAG
, ABI
.IsN64());
2125 return Subtarget
.hasSym32() ? getAddrNonPIC(N
, SDLoc(N
), Ty
, DAG
)
2126 : getAddrNonPICSym64(N
, SDLoc(N
), Ty
, DAG
);
2129 return getAddrLocal(N
, SDLoc(N
), Ty
, DAG
, ABI
.IsN32() || ABI
.IsN64());
2132 SDValue
MipsTargetLowering::lowerVASTART(SDValue Op
, SelectionDAG
&DAG
) const {
2133 MachineFunction
&MF
= DAG
.getMachineFunction();
2134 MipsFunctionInfo
*FuncInfo
= MF
.getInfo
<MipsFunctionInfo
>();
2137 SDValue FI
= DAG
.getFrameIndex(FuncInfo
->getVarArgsFrameIndex(),
2138 getPointerTy(MF
.getDataLayout()));
2140 // vastart just stores the address of the VarArgsFrameIndex slot into the
2141 // memory location argument.
2142 const Value
*SV
= cast
<SrcValueSDNode
>(Op
.getOperand(2))->getValue();
2143 return DAG
.getStore(Op
.getOperand(0), DL
, FI
, Op
.getOperand(1),
2144 MachinePointerInfo(SV
));
2147 SDValue
MipsTargetLowering::lowerVAARG(SDValue Op
, SelectionDAG
&DAG
) const {
2148 SDNode
*Node
= Op
.getNode();
2149 EVT VT
= Node
->getValueType(0);
2150 SDValue Chain
= Node
->getOperand(0);
2151 SDValue VAListPtr
= Node
->getOperand(1);
2152 unsigned Align
= Node
->getConstantOperandVal(3);
2153 const Value
*SV
= cast
<SrcValueSDNode
>(Node
->getOperand(2))->getValue();
2155 unsigned ArgSlotSizeInBytes
= (ABI
.IsN32() || ABI
.IsN64()) ? 8 : 4;
2157 SDValue VAListLoad
= DAG
.getLoad(getPointerTy(DAG
.getDataLayout()), DL
, Chain
,
2158 VAListPtr
, MachinePointerInfo(SV
));
2159 SDValue VAList
= VAListLoad
;
2161 // Re-align the pointer if necessary.
2162 // It should only ever be necessary for 64-bit types on O32 since the minimum
2163 // argument alignment is the same as the maximum type alignment for N32/N64.
2165 // FIXME: We currently align too often. The code generator doesn't notice
2166 // when the pointer is still aligned from the last va_arg (or pair of
2167 // va_args for the i64 on O32 case).
2168 if (Align
> getMinStackArgumentAlignment()) {
2169 assert(((Align
& (Align
-1)) == 0) && "Expected Align to be a power of 2");
2171 VAList
= DAG
.getNode(ISD::ADD
, DL
, VAList
.getValueType(), VAList
,
2172 DAG
.getConstant(Align
- 1, DL
, VAList
.getValueType()));
2174 VAList
= DAG
.getNode(ISD::AND
, DL
, VAList
.getValueType(), VAList
,
2175 DAG
.getConstant(-(int64_t)Align
, DL
,
2176 VAList
.getValueType()));
2179 // Increment the pointer, VAList, to the next vaarg.
2180 auto &TD
= DAG
.getDataLayout();
2181 unsigned ArgSizeInBytes
=
2182 TD
.getTypeAllocSize(VT
.getTypeForEVT(*DAG
.getContext()));
2184 DAG
.getNode(ISD::ADD
, DL
, VAList
.getValueType(), VAList
,
2185 DAG
.getConstant(alignTo(ArgSizeInBytes
, ArgSlotSizeInBytes
),
2186 DL
, VAList
.getValueType()));
2187 // Store the incremented VAList to the legalized pointer
2188 Chain
= DAG
.getStore(VAListLoad
.getValue(1), DL
, Tmp3
, VAListPtr
,
2189 MachinePointerInfo(SV
));
2191 // In big-endian mode we must adjust the pointer when the load size is smaller
2192 // than the argument slot size. We must also reduce the known alignment to
2193 // match. For example in the N64 ABI, we must add 4 bytes to the offset to get
2194 // the correct half of the slot, and reduce the alignment from 8 (slot
2195 // alignment) down to 4 (type alignment).
2196 if (!Subtarget
.isLittle() && ArgSizeInBytes
< ArgSlotSizeInBytes
) {
2197 unsigned Adjustment
= ArgSlotSizeInBytes
- ArgSizeInBytes
;
2198 VAList
= DAG
.getNode(ISD::ADD
, DL
, VAListPtr
.getValueType(), VAList
,
2199 DAG
.getIntPtrConstant(Adjustment
, DL
));
2201 // Load the actual argument out of the pointer VAList
2202 return DAG
.getLoad(VT
, DL
, Chain
, VAList
, MachinePointerInfo());
2205 static SDValue
lowerFCOPYSIGN32(SDValue Op
, SelectionDAG
&DAG
,
2206 bool HasExtractInsert
) {
2207 EVT TyX
= Op
.getOperand(0).getValueType();
2208 EVT TyY
= Op
.getOperand(1).getValueType();
2210 SDValue Const1
= DAG
.getConstant(1, DL
, MVT::i32
);
2211 SDValue Const31
= DAG
.getConstant(31, DL
, MVT::i32
);
2214 // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
2216 SDValue X
= (TyX
== MVT::f32
) ?
2217 DAG
.getNode(ISD::BITCAST
, DL
, MVT::i32
, Op
.getOperand(0)) :
2218 DAG
.getNode(MipsISD::ExtractElementF64
, DL
, MVT::i32
, Op
.getOperand(0),
2220 SDValue Y
= (TyY
== MVT::f32
) ?
2221 DAG
.getNode(ISD::BITCAST
, DL
, MVT::i32
, Op
.getOperand(1)) :
2222 DAG
.getNode(MipsISD::ExtractElementF64
, DL
, MVT::i32
, Op
.getOperand(1),
2225 if (HasExtractInsert
) {
2226 // ext E, Y, 31, 1 ; extract bit31 of Y
2227 // ins X, E, 31, 1 ; insert extracted bit at bit31 of X
2228 SDValue E
= DAG
.getNode(MipsISD::Ext
, DL
, MVT::i32
, Y
, Const31
, Const1
);
2229 Res
= DAG
.getNode(MipsISD::Ins
, DL
, MVT::i32
, E
, Const31
, Const1
, X
);
2232 // srl SrlX, SllX, 1
2234 // sll SllY, SrlX, 31
2235 // or Or, SrlX, SllY
2236 SDValue SllX
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, X
, Const1
);
2237 SDValue SrlX
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, SllX
, Const1
);
2238 SDValue SrlY
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, Y
, Const31
);
2239 SDValue SllY
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, SrlY
, Const31
);
2240 Res
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
, SrlX
, SllY
);
2243 if (TyX
== MVT::f32
)
2244 return DAG
.getNode(ISD::BITCAST
, DL
, Op
.getOperand(0).getValueType(), Res
);
2246 SDValue LowX
= DAG
.getNode(MipsISD::ExtractElementF64
, DL
, MVT::i32
,
2248 DAG
.getConstant(0, DL
, MVT::i32
));
2249 return DAG
.getNode(MipsISD::BuildPairF64
, DL
, MVT::f64
, LowX
, Res
);
2252 static SDValue
lowerFCOPYSIGN64(SDValue Op
, SelectionDAG
&DAG
,
2253 bool HasExtractInsert
) {
2254 unsigned WidthX
= Op
.getOperand(0).getValueSizeInBits();
2255 unsigned WidthY
= Op
.getOperand(1).getValueSizeInBits();
2256 EVT TyX
= MVT::getIntegerVT(WidthX
), TyY
= MVT::getIntegerVT(WidthY
);
2258 SDValue Const1
= DAG
.getConstant(1, DL
, MVT::i32
);
2260 // Bitcast to integer nodes.
2261 SDValue X
= DAG
.getNode(ISD::BITCAST
, DL
, TyX
, Op
.getOperand(0));
2262 SDValue Y
= DAG
.getNode(ISD::BITCAST
, DL
, TyY
, Op
.getOperand(1));
2264 if (HasExtractInsert
) {
2265 // ext E, Y, width(Y) - 1, 1 ; extract bit width(Y)-1 of Y
2266 // ins X, E, width(X) - 1, 1 ; insert extracted bit at bit width(X)-1 of X
2267 SDValue E
= DAG
.getNode(MipsISD::Ext
, DL
, TyY
, Y
,
2268 DAG
.getConstant(WidthY
- 1, DL
, MVT::i32
), Const1
);
2270 if (WidthX
> WidthY
)
2271 E
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, TyX
, E
);
2272 else if (WidthY
> WidthX
)
2273 E
= DAG
.getNode(ISD::TRUNCATE
, DL
, TyX
, E
);
2275 SDValue I
= DAG
.getNode(MipsISD::Ins
, DL
, TyX
, E
,
2276 DAG
.getConstant(WidthX
- 1, DL
, MVT::i32
), Const1
,
2278 return DAG
.getNode(ISD::BITCAST
, DL
, Op
.getOperand(0).getValueType(), I
);
2281 // (d)sll SllX, X, 1
2282 // (d)srl SrlX, SllX, 1
2283 // (d)srl SrlY, Y, width(Y)-1
2284 // (d)sll SllY, SrlX, width(Y)-1
2285 // or Or, SrlX, SllY
2286 SDValue SllX
= DAG
.getNode(ISD::SHL
, DL
, TyX
, X
, Const1
);
2287 SDValue SrlX
= DAG
.getNode(ISD::SRL
, DL
, TyX
, SllX
, Const1
);
2288 SDValue SrlY
= DAG
.getNode(ISD::SRL
, DL
, TyY
, Y
,
2289 DAG
.getConstant(WidthY
- 1, DL
, MVT::i32
));
2291 if (WidthX
> WidthY
)
2292 SrlY
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, TyX
, SrlY
);
2293 else if (WidthY
> WidthX
)
2294 SrlY
= DAG
.getNode(ISD::TRUNCATE
, DL
, TyX
, SrlY
);
2296 SDValue SllY
= DAG
.getNode(ISD::SHL
, DL
, TyX
, SrlY
,
2297 DAG
.getConstant(WidthX
- 1, DL
, MVT::i32
));
2298 SDValue Or
= DAG
.getNode(ISD::OR
, DL
, TyX
, SrlX
, SllY
);
2299 return DAG
.getNode(ISD::BITCAST
, DL
, Op
.getOperand(0).getValueType(), Or
);
2303 MipsTargetLowering::lowerFCOPYSIGN(SDValue Op
, SelectionDAG
&DAG
) const {
2304 if (Subtarget
.isGP64bit())
2305 return lowerFCOPYSIGN64(Op
, DAG
, Subtarget
.hasExtractInsert());
2307 return lowerFCOPYSIGN32(Op
, DAG
, Subtarget
.hasExtractInsert());
2310 static SDValue
lowerFABS32(SDValue Op
, SelectionDAG
&DAG
,
2311 bool HasExtractInsert
) {
2313 SDValue Res
, Const1
= DAG
.getConstant(1, DL
, MVT::i32
);
2315 // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
2317 SDValue X
= (Op
.getValueType() == MVT::f32
)
2318 ? DAG
.getNode(ISD::BITCAST
, DL
, MVT::i32
, Op
.getOperand(0))
2319 : DAG
.getNode(MipsISD::ExtractElementF64
, DL
, MVT::i32
,
2320 Op
.getOperand(0), Const1
);
2323 if (HasExtractInsert
)
2324 Res
= DAG
.getNode(MipsISD::Ins
, DL
, MVT::i32
,
2325 DAG
.getRegister(Mips::ZERO
, MVT::i32
),
2326 DAG
.getConstant(31, DL
, MVT::i32
), Const1
, X
);
2328 // TODO: Provide DAG patterns which transform (and x, cst)
2329 // back to a (shl (srl x (clz cst)) (clz cst)) sequence.
2330 SDValue SllX
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, X
, Const1
);
2331 Res
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, SllX
, Const1
);
2334 if (Op
.getValueType() == MVT::f32
)
2335 return DAG
.getNode(ISD::BITCAST
, DL
, MVT::f32
, Res
);
2337 // FIXME: For mips32r2, the sequence of (BuildPairF64 (ins (ExtractElementF64
2338 // Op 1), $zero, 31 1) (ExtractElementF64 Op 0)) and the Op has one use, we
2339 // should be able to drop the usage of mfc1/mtc1 and rewrite the register in
2342 DAG
.getNode(MipsISD::ExtractElementF64
, DL
, MVT::i32
, Op
.getOperand(0),
2343 DAG
.getConstant(0, DL
, MVT::i32
));
2344 return DAG
.getNode(MipsISD::BuildPairF64
, DL
, MVT::f64
, LowX
, Res
);
2347 static SDValue
lowerFABS64(SDValue Op
, SelectionDAG
&DAG
,
2348 bool HasExtractInsert
) {
2350 SDValue Res
, Const1
= DAG
.getConstant(1, DL
, MVT::i32
);
2352 // Bitcast to integer node.
2353 SDValue X
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::i64
, Op
.getOperand(0));
2356 if (HasExtractInsert
)
2357 Res
= DAG
.getNode(MipsISD::Ins
, DL
, MVT::i64
,
2358 DAG
.getRegister(Mips::ZERO_64
, MVT::i64
),
2359 DAG
.getConstant(63, DL
, MVT::i32
), Const1
, X
);
2361 SDValue SllX
= DAG
.getNode(ISD::SHL
, DL
, MVT::i64
, X
, Const1
);
2362 Res
= DAG
.getNode(ISD::SRL
, DL
, MVT::i64
, SllX
, Const1
);
2365 return DAG
.getNode(ISD::BITCAST
, DL
, MVT::f64
, Res
);
2368 SDValue
MipsTargetLowering::lowerFABS(SDValue Op
, SelectionDAG
&DAG
) const {
2369 if ((ABI
.IsN32() || ABI
.IsN64()) && (Op
.getValueType() == MVT::f64
))
2370 return lowerFABS64(Op
, DAG
, Subtarget
.hasExtractInsert());
2372 return lowerFABS32(Op
, DAG
, Subtarget
.hasExtractInsert());
2375 SDValue
MipsTargetLowering::
2376 lowerFRAMEADDR(SDValue Op
, SelectionDAG
&DAG
) const {
2378 if (cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue() != 0) {
2379 DAG
.getContext()->emitError(
2380 "return address can be determined only for current frame");
2384 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
2385 MFI
.setFrameAddressIsTaken(true);
2386 EVT VT
= Op
.getValueType();
2388 SDValue FrameAddr
= DAG
.getCopyFromReg(
2389 DAG
.getEntryNode(), DL
, ABI
.IsN64() ? Mips::FP_64
: Mips::FP
, VT
);
2393 SDValue
MipsTargetLowering::lowerRETURNADDR(SDValue Op
,
2394 SelectionDAG
&DAG
) const {
2395 if (verifyReturnAddressArgumentIsConstant(Op
, DAG
))
2399 if (cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue() != 0) {
2400 DAG
.getContext()->emitError(
2401 "return address can be determined only for current frame");
2405 MachineFunction
&MF
= DAG
.getMachineFunction();
2406 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
2407 MVT VT
= Op
.getSimpleValueType();
2408 unsigned RA
= ABI
.IsN64() ? Mips::RA_64
: Mips::RA
;
2409 MFI
.setReturnAddressIsTaken(true);
2411 // Return RA, which contains the return address. Mark it an implicit live-in.
2412 unsigned Reg
= MF
.addLiveIn(RA
, getRegClassFor(VT
));
2413 return DAG
.getCopyFromReg(DAG
.getEntryNode(), SDLoc(Op
), Reg
, VT
);
2416 // An EH_RETURN is the result of lowering llvm.eh.return which in turn is
2417 // generated from __builtin_eh_return (offset, handler)
2418 // The effect of this is to adjust the stack pointer by "offset"
2419 // and then branch to "handler".
2420 SDValue
MipsTargetLowering::lowerEH_RETURN(SDValue Op
, SelectionDAG
&DAG
)
2422 MachineFunction
&MF
= DAG
.getMachineFunction();
2423 MipsFunctionInfo
*MipsFI
= MF
.getInfo
<MipsFunctionInfo
>();
2425 MipsFI
->setCallsEhReturn();
2426 SDValue Chain
= Op
.getOperand(0);
2427 SDValue Offset
= Op
.getOperand(1);
2428 SDValue Handler
= Op
.getOperand(2);
2430 EVT Ty
= ABI
.IsN64() ? MVT::i64
: MVT::i32
;
2432 // Store stack offset in V1, store jump target in V0. Glue CopyToReg and
2433 // EH_RETURN nodes, so that instructions are emitted back-to-back.
2434 unsigned OffsetReg
= ABI
.IsN64() ? Mips::V1_64
: Mips::V1
;
2435 unsigned AddrReg
= ABI
.IsN64() ? Mips::V0_64
: Mips::V0
;
2436 Chain
= DAG
.getCopyToReg(Chain
, DL
, OffsetReg
, Offset
, SDValue());
2437 Chain
= DAG
.getCopyToReg(Chain
, DL
, AddrReg
, Handler
, Chain
.getValue(1));
2438 return DAG
.getNode(MipsISD::EH_RETURN
, DL
, MVT::Other
, Chain
,
2439 DAG
.getRegister(OffsetReg
, Ty
),
2440 DAG
.getRegister(AddrReg
, getPointerTy(MF
.getDataLayout())),
2444 SDValue
MipsTargetLowering::lowerATOMIC_FENCE(SDValue Op
,
2445 SelectionDAG
&DAG
) const {
2446 // FIXME: Need pseudo-fence for 'singlethread' fences
2447 // FIXME: Set SType for weaker fences where supported/appropriate.
2450 return DAG
.getNode(MipsISD::Sync
, DL
, MVT::Other
, Op
.getOperand(0),
2451 DAG
.getConstant(SType
, DL
, MVT::i32
));
2454 SDValue
MipsTargetLowering::lowerShiftLeftParts(SDValue Op
,
2455 SelectionDAG
&DAG
) const {
2457 MVT VT
= Subtarget
.isGP64bit() ? MVT::i64
: MVT::i32
;
2459 SDValue Lo
= Op
.getOperand(0), Hi
= Op
.getOperand(1);
2460 SDValue Shamt
= Op
.getOperand(2);
2461 // if shamt < (VT.bits):
2462 // lo = (shl lo, shamt)
2463 // hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt))
2466 // hi = (shl lo, shamt[4:0])
2467 SDValue Not
= DAG
.getNode(ISD::XOR
, DL
, MVT::i32
, Shamt
,
2468 DAG
.getConstant(-1, DL
, MVT::i32
));
2469 SDValue ShiftRight1Lo
= DAG
.getNode(ISD::SRL
, DL
, VT
, Lo
,
2470 DAG
.getConstant(1, DL
, VT
));
2471 SDValue ShiftRightLo
= DAG
.getNode(ISD::SRL
, DL
, VT
, ShiftRight1Lo
, Not
);
2472 SDValue ShiftLeftHi
= DAG
.getNode(ISD::SHL
, DL
, VT
, Hi
, Shamt
);
2473 SDValue Or
= DAG
.getNode(ISD::OR
, DL
, VT
, ShiftLeftHi
, ShiftRightLo
);
2474 SDValue ShiftLeftLo
= DAG
.getNode(ISD::SHL
, DL
, VT
, Lo
, Shamt
);
2475 SDValue Cond
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, Shamt
,
2476 DAG
.getConstant(VT
.getSizeInBits(), DL
, MVT::i32
));
2477 Lo
= DAG
.getNode(ISD::SELECT
, DL
, VT
, Cond
,
2478 DAG
.getConstant(0, DL
, VT
), ShiftLeftLo
);
2479 Hi
= DAG
.getNode(ISD::SELECT
, DL
, VT
, Cond
, ShiftLeftLo
, Or
);
2481 SDValue Ops
[2] = {Lo
, Hi
};
2482 return DAG
.getMergeValues(Ops
, DL
);
2485 SDValue
MipsTargetLowering::lowerShiftRightParts(SDValue Op
, SelectionDAG
&DAG
,
2488 SDValue Lo
= Op
.getOperand(0), Hi
= Op
.getOperand(1);
2489 SDValue Shamt
= Op
.getOperand(2);
2490 MVT VT
= Subtarget
.isGP64bit() ? MVT::i64
: MVT::i32
;
2492 // if shamt < (VT.bits):
2493 // lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt))
2495 // hi = (sra hi, shamt)
2497 // hi = (srl hi, shamt)
2500 // lo = (sra hi, shamt[4:0])
2501 // hi = (sra hi, 31)
2503 // lo = (srl hi, shamt[4:0])
2505 SDValue Not
= DAG
.getNode(ISD::XOR
, DL
, MVT::i32
, Shamt
,
2506 DAG
.getConstant(-1, DL
, MVT::i32
));
2507 SDValue ShiftLeft1Hi
= DAG
.getNode(ISD::SHL
, DL
, VT
, Hi
,
2508 DAG
.getConstant(1, DL
, VT
));
2509 SDValue ShiftLeftHi
= DAG
.getNode(ISD::SHL
, DL
, VT
, ShiftLeft1Hi
, Not
);
2510 SDValue ShiftRightLo
= DAG
.getNode(ISD::SRL
, DL
, VT
, Lo
, Shamt
);
2511 SDValue Or
= DAG
.getNode(ISD::OR
, DL
, VT
, ShiftLeftHi
, ShiftRightLo
);
2512 SDValue ShiftRightHi
= DAG
.getNode(IsSRA
? ISD::SRA
: ISD::SRL
,
2514 SDValue Cond
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, Shamt
,
2515 DAG
.getConstant(VT
.getSizeInBits(), DL
, MVT::i32
));
2516 SDValue Ext
= DAG
.getNode(ISD::SRA
, DL
, VT
, Hi
,
2517 DAG
.getConstant(VT
.getSizeInBits() - 1, DL
, VT
));
2519 if (!(Subtarget
.hasMips4() || Subtarget
.hasMips32())) {
2520 SDVTList VTList
= DAG
.getVTList(VT
, VT
);
2521 return DAG
.getNode(Subtarget
.isGP64bit() ? Mips::PseudoD_SELECT_I64
2522 : Mips::PseudoD_SELECT_I
,
2523 DL
, VTList
, Cond
, ShiftRightHi
,
2524 IsSRA
? Ext
: DAG
.getConstant(0, DL
, VT
), Or
,
2528 Lo
= DAG
.getNode(ISD::SELECT
, DL
, VT
, Cond
, ShiftRightHi
, Or
);
2529 Hi
= DAG
.getNode(ISD::SELECT
, DL
, VT
, Cond
,
2530 IsSRA
? Ext
: DAG
.getConstant(0, DL
, VT
), ShiftRightHi
);
2532 SDValue Ops
[2] = {Lo
, Hi
};
2533 return DAG
.getMergeValues(Ops
, DL
);
2536 static SDValue
createLoadLR(unsigned Opc
, SelectionDAG
&DAG
, LoadSDNode
*LD
,
2537 SDValue Chain
, SDValue Src
, unsigned Offset
) {
2538 SDValue Ptr
= LD
->getBasePtr();
2539 EVT VT
= LD
->getValueType(0), MemVT
= LD
->getMemoryVT();
2540 EVT BasePtrVT
= Ptr
.getValueType();
2542 SDVTList VTList
= DAG
.getVTList(VT
, MVT::Other
);
2545 Ptr
= DAG
.getNode(ISD::ADD
, DL
, BasePtrVT
, Ptr
,
2546 DAG
.getConstant(Offset
, DL
, BasePtrVT
));
2548 SDValue Ops
[] = { Chain
, Ptr
, Src
};
2549 return DAG
.getMemIntrinsicNode(Opc
, DL
, VTList
, Ops
, MemVT
,
2550 LD
->getMemOperand());
2553 // Expand an unaligned 32 or 64-bit integer load node.
2554 SDValue
MipsTargetLowering::lowerLOAD(SDValue Op
, SelectionDAG
&DAG
) const {
2555 LoadSDNode
*LD
= cast
<LoadSDNode
>(Op
);
2556 EVT MemVT
= LD
->getMemoryVT();
2558 if (Subtarget
.systemSupportsUnalignedAccess())
2561 // Return if load is aligned or if MemVT is neither i32 nor i64.
2562 if ((LD
->getAlignment() >= MemVT
.getSizeInBits() / 8) ||
2563 ((MemVT
!= MVT::i32
) && (MemVT
!= MVT::i64
)))
2566 bool IsLittle
= Subtarget
.isLittle();
2567 EVT VT
= Op
.getValueType();
2568 ISD::LoadExtType ExtType
= LD
->getExtensionType();
2569 SDValue Chain
= LD
->getChain(), Undef
= DAG
.getUNDEF(VT
);
2571 assert((VT
== MVT::i32
) || (VT
== MVT::i64
));
2574 // (set dst, (i64 (load baseptr)))
2576 // (set tmp, (ldl (add baseptr, 7), undef))
2577 // (set dst, (ldr baseptr, tmp))
2578 if ((VT
== MVT::i64
) && (ExtType
== ISD::NON_EXTLOAD
)) {
2579 SDValue LDL
= createLoadLR(MipsISD::LDL
, DAG
, LD
, Chain
, Undef
,
2581 return createLoadLR(MipsISD::LDR
, DAG
, LD
, LDL
.getValue(1), LDL
,
2585 SDValue LWL
= createLoadLR(MipsISD::LWL
, DAG
, LD
, Chain
, Undef
,
2587 SDValue LWR
= createLoadLR(MipsISD::LWR
, DAG
, LD
, LWL
.getValue(1), LWL
,
2591 // (set dst, (i32 (load baseptr))) or
2592 // (set dst, (i64 (sextload baseptr))) or
2593 // (set dst, (i64 (extload baseptr)))
2595 // (set tmp, (lwl (add baseptr, 3), undef))
2596 // (set dst, (lwr baseptr, tmp))
2597 if ((VT
== MVT::i32
) || (ExtType
== ISD::SEXTLOAD
) ||
2598 (ExtType
== ISD::EXTLOAD
))
2601 assert((VT
== MVT::i64
) && (ExtType
== ISD::ZEXTLOAD
));
2604 // (set dst, (i64 (zextload baseptr)))
2606 // (set tmp0, (lwl (add baseptr, 3), undef))
2607 // (set tmp1, (lwr baseptr, tmp0))
2608 // (set tmp2, (shl tmp1, 32))
2609 // (set dst, (srl tmp2, 32))
2611 SDValue Const32
= DAG
.getConstant(32, DL
, MVT::i32
);
2612 SDValue SLL
= DAG
.getNode(ISD::SHL
, DL
, MVT::i64
, LWR
, Const32
);
2613 SDValue SRL
= DAG
.getNode(ISD::SRL
, DL
, MVT::i64
, SLL
, Const32
);
2614 SDValue Ops
[] = { SRL
, LWR
.getValue(1) };
2615 return DAG
.getMergeValues(Ops
, DL
);
2618 static SDValue
createStoreLR(unsigned Opc
, SelectionDAG
&DAG
, StoreSDNode
*SD
,
2619 SDValue Chain
, unsigned Offset
) {
2620 SDValue Ptr
= SD
->getBasePtr(), Value
= SD
->getValue();
2621 EVT MemVT
= SD
->getMemoryVT(), BasePtrVT
= Ptr
.getValueType();
2623 SDVTList VTList
= DAG
.getVTList(MVT::Other
);
2626 Ptr
= DAG
.getNode(ISD::ADD
, DL
, BasePtrVT
, Ptr
,
2627 DAG
.getConstant(Offset
, DL
, BasePtrVT
));
2629 SDValue Ops
[] = { Chain
, Value
, Ptr
};
2630 return DAG
.getMemIntrinsicNode(Opc
, DL
, VTList
, Ops
, MemVT
,
2631 SD
->getMemOperand());
2634 // Expand an unaligned 32 or 64-bit integer store node.
2635 static SDValue
lowerUnalignedIntStore(StoreSDNode
*SD
, SelectionDAG
&DAG
,
2637 SDValue Value
= SD
->getValue(), Chain
= SD
->getChain();
2638 EVT VT
= Value
.getValueType();
2641 // (store val, baseptr) or
2642 // (truncstore val, baseptr)
2644 // (swl val, (add baseptr, 3))
2645 // (swr val, baseptr)
2646 if ((VT
== MVT::i32
) || SD
->isTruncatingStore()) {
2647 SDValue SWL
= createStoreLR(MipsISD::SWL
, DAG
, SD
, Chain
,
2649 return createStoreLR(MipsISD::SWR
, DAG
, SD
, SWL
, IsLittle
? 0 : 3);
2652 assert(VT
== MVT::i64
);
2655 // (store val, baseptr)
2657 // (sdl val, (add baseptr, 7))
2658 // (sdr val, baseptr)
2659 SDValue SDL
= createStoreLR(MipsISD::SDL
, DAG
, SD
, Chain
, IsLittle
? 7 : 0);
2660 return createStoreLR(MipsISD::SDR
, DAG
, SD
, SDL
, IsLittle
? 0 : 7);
2663 // Lower (store (fp_to_sint $fp) $ptr) to (store (TruncIntFP $fp), $ptr).
2664 static SDValue
lowerFP_TO_SINT_STORE(StoreSDNode
*SD
, SelectionDAG
&DAG
,
2666 SDValue Val
= SD
->getValue();
2668 if (Val
.getOpcode() != ISD::FP_TO_SINT
||
2669 (Val
.getValueSizeInBits() > 32 && SingleFloat
))
2672 EVT FPTy
= EVT::getFloatingPointVT(Val
.getValueSizeInBits());
2673 SDValue Tr
= DAG
.getNode(MipsISD::TruncIntFP
, SDLoc(Val
), FPTy
,
2675 return DAG
.getStore(SD
->getChain(), SDLoc(SD
), Tr
, SD
->getBasePtr(),
2676 SD
->getPointerInfo(), SD
->getAlignment(),
2677 SD
->getMemOperand()->getFlags());
2680 SDValue
MipsTargetLowering::lowerSTORE(SDValue Op
, SelectionDAG
&DAG
) const {
2681 StoreSDNode
*SD
= cast
<StoreSDNode
>(Op
);
2682 EVT MemVT
= SD
->getMemoryVT();
2684 // Lower unaligned integer stores.
2685 if (!Subtarget
.systemSupportsUnalignedAccess() &&
2686 (SD
->getAlignment() < MemVT
.getSizeInBits() / 8) &&
2687 ((MemVT
== MVT::i32
) || (MemVT
== MVT::i64
)))
2688 return lowerUnalignedIntStore(SD
, DAG
, Subtarget
.isLittle());
2690 return lowerFP_TO_SINT_STORE(SD
, DAG
, Subtarget
.isSingleFloat());
2693 SDValue
MipsTargetLowering::lowerEH_DWARF_CFA(SDValue Op
,
2694 SelectionDAG
&DAG
) const {
2696 // Return a fixed StackObject with offset 0 which points to the old stack
2698 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
2699 EVT ValTy
= Op
->getValueType(0);
2700 int FI
= MFI
.CreateFixedObject(Op
.getValueSizeInBits() / 8, 0, false);
2701 return DAG
.getFrameIndex(FI
, ValTy
);
2704 SDValue
MipsTargetLowering::lowerFP_TO_SINT(SDValue Op
,
2705 SelectionDAG
&DAG
) const {
2706 if (Op
.getValueSizeInBits() > 32 && Subtarget
.isSingleFloat())
2709 EVT FPTy
= EVT::getFloatingPointVT(Op
.getValueSizeInBits());
2710 SDValue Trunc
= DAG
.getNode(MipsISD::TruncIntFP
, SDLoc(Op
), FPTy
,
2712 return DAG
.getNode(ISD::BITCAST
, SDLoc(Op
), Op
.getValueType(), Trunc
);
2715 //===----------------------------------------------------------------------===//
2716 // Calling Convention Implementation
2717 //===----------------------------------------------------------------------===//
2719 //===----------------------------------------------------------------------===//
2720 // TODO: Implement a generic logic using tblgen that can support this.
2721 // Mips O32 ABI rules:
2723 // i32 - Passed in A0, A1, A2, A3 and stack
2724 // f32 - Only passed in f32 registers if no int reg has been used yet to hold
2725 // an argument. Otherwise, passed in A1, A2, A3 and stack.
2726 // f64 - Only passed in two aliased f32 registers if no int reg has been used
2727 // yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
2728 // not used, it must be shadowed. If only A3 is available, shadow it and
2730 // vXiX - Received as scalarized i32s, passed in A0 - A3 and the stack.
2731 // vXf32 - Passed in either a pair of registers {A0, A1}, {A2, A3} or {A0 - A3}
2732 // with the remainder spilled to the stack.
2733 // vXf64 - Passed in either {A0, A1, A2, A3} or {A2, A3} and in both cases
2734 // spilling the remainder to the stack.
2736 // For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
2737 //===----------------------------------------------------------------------===//
2739 static bool CC_MipsO32(unsigned ValNo
, MVT ValVT
, MVT LocVT
,
2740 CCValAssign::LocInfo LocInfo
, ISD::ArgFlagsTy ArgFlags
,
2741 CCState
&State
, ArrayRef
<MCPhysReg
> F64Regs
) {
2742 const MipsSubtarget
&Subtarget
= static_cast<const MipsSubtarget
&>(
2743 State
.getMachineFunction().getSubtarget());
2745 static const MCPhysReg IntRegs
[] = { Mips::A0
, Mips::A1
, Mips::A2
, Mips::A3
};
2747 const MipsCCState
* MipsState
= static_cast<MipsCCState
*>(&State
);
2749 static const MCPhysReg F32Regs
[] = { Mips::F12
, Mips::F14
};
2751 static const MCPhysReg FloatVectorIntRegs
[] = { Mips::A0
, Mips::A2
};
2753 // Do not process byval args here.
2754 if (ArgFlags
.isByVal())
2757 // Promote i8 and i16
2758 if (ArgFlags
.isInReg() && !Subtarget
.isLittle()) {
2759 if (LocVT
== MVT::i8
|| LocVT
== MVT::i16
|| LocVT
== MVT::i32
) {
2761 if (ArgFlags
.isSExt())
2762 LocInfo
= CCValAssign::SExtUpper
;
2763 else if (ArgFlags
.isZExt())
2764 LocInfo
= CCValAssign::ZExtUpper
;
2766 LocInfo
= CCValAssign::AExtUpper
;
2770 // Promote i8 and i16
2771 if (LocVT
== MVT::i8
|| LocVT
== MVT::i16
) {
2773 if (ArgFlags
.isSExt())
2774 LocInfo
= CCValAssign::SExt
;
2775 else if (ArgFlags
.isZExt())
2776 LocInfo
= CCValAssign::ZExt
;
2778 LocInfo
= CCValAssign::AExt
;
2783 // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
2784 // is true: function is vararg, argument is 3rd or higher, there is previous
2785 // argument which is not f32 or f64.
2786 bool AllocateFloatsInIntReg
= State
.isVarArg() || ValNo
> 1 ||
2787 State
.getFirstUnallocated(F32Regs
) != ValNo
;
2788 unsigned OrigAlign
= ArgFlags
.getOrigAlign();
2789 bool isI64
= (ValVT
== MVT::i32
&& OrigAlign
== 8);
2790 bool isVectorFloat
= MipsState
->WasOriginalArgVectorFloat(ValNo
);
2792 // The MIPS vector ABI for floats passes them in a pair of registers
2793 if (ValVT
== MVT::i32
&& isVectorFloat
) {
2794 // This is the start of an vector that was scalarized into an unknown number
2795 // of components. It doesn't matter how many there are. Allocate one of the
2796 // notional 8 byte aligned registers which map onto the argument stack, and
2797 // shadow the register lost to alignment requirements.
2798 if (ArgFlags
.isSplit()) {
2799 Reg
= State
.AllocateReg(FloatVectorIntRegs
);
2800 if (Reg
== Mips::A2
)
2801 State
.AllocateReg(Mips::A1
);
2803 State
.AllocateReg(Mips::A3
);
2805 // If we're an intermediate component of the split, we can just attempt to
2806 // allocate a register directly.
2807 Reg
= State
.AllocateReg(IntRegs
);
2809 } else if (ValVT
== MVT::i32
|| (ValVT
== MVT::f32
&& AllocateFloatsInIntReg
)) {
2810 Reg
= State
.AllocateReg(IntRegs
);
2811 // If this is the first part of an i64 arg,
2812 // the allocated register must be either A0 or A2.
2813 if (isI64
&& (Reg
== Mips::A1
|| Reg
== Mips::A3
))
2814 Reg
= State
.AllocateReg(IntRegs
);
2816 } else if (ValVT
== MVT::f64
&& AllocateFloatsInIntReg
) {
2817 // Allocate int register and shadow next int register. If first
2818 // available register is Mips::A1 or Mips::A3, shadow it too.
2819 Reg
= State
.AllocateReg(IntRegs
);
2820 if (Reg
== Mips::A1
|| Reg
== Mips::A3
)
2821 Reg
= State
.AllocateReg(IntRegs
);
2822 State
.AllocateReg(IntRegs
);
2824 } else if (ValVT
.isFloatingPoint() && !AllocateFloatsInIntReg
) {
2825 // we are guaranteed to find an available float register
2826 if (ValVT
== MVT::f32
) {
2827 Reg
= State
.AllocateReg(F32Regs
);
2828 // Shadow int register
2829 State
.AllocateReg(IntRegs
);
2831 Reg
= State
.AllocateReg(F64Regs
);
2832 // Shadow int registers
2833 unsigned Reg2
= State
.AllocateReg(IntRegs
);
2834 if (Reg2
== Mips::A1
|| Reg2
== Mips::A3
)
2835 State
.AllocateReg(IntRegs
);
2836 State
.AllocateReg(IntRegs
);
2839 llvm_unreachable("Cannot handle this ValVT.");
2842 unsigned Offset
= State
.AllocateStack(ValVT
.getStoreSize(), OrigAlign
);
2843 State
.addLoc(CCValAssign::getMem(ValNo
, ValVT
, Offset
, LocVT
, LocInfo
));
2845 State
.addLoc(CCValAssign::getReg(ValNo
, ValVT
, Reg
, LocVT
, LocInfo
));
2850 static bool CC_MipsO32_FP32(unsigned ValNo
, MVT ValVT
,
2851 MVT LocVT
, CCValAssign::LocInfo LocInfo
,
2852 ISD::ArgFlagsTy ArgFlags
, CCState
&State
) {
2853 static const MCPhysReg F64Regs
[] = { Mips::D6
, Mips::D7
};
2855 return CC_MipsO32(ValNo
, ValVT
, LocVT
, LocInfo
, ArgFlags
, State
, F64Regs
);
2858 static bool CC_MipsO32_FP64(unsigned ValNo
, MVT ValVT
,
2859 MVT LocVT
, CCValAssign::LocInfo LocInfo
,
2860 ISD::ArgFlagsTy ArgFlags
, CCState
&State
) {
2861 static const MCPhysReg F64Regs
[] = { Mips::D12_64
, Mips::D14_64
};
2863 return CC_MipsO32(ValNo
, ValVT
, LocVT
, LocInfo
, ArgFlags
, State
, F64Regs
);
2866 static bool CC_MipsO32(unsigned ValNo
, MVT ValVT
, MVT LocVT
,
2867 CCValAssign::LocInfo LocInfo
, ISD::ArgFlagsTy ArgFlags
,
2868 CCState
&State
) LLVM_ATTRIBUTE_UNUSED
;
2870 #include "MipsGenCallingConv.inc"
2872 CCAssignFn
*MipsTargetLowering::CCAssignFnForCall() const{
2876 CCAssignFn
*MipsTargetLowering::CCAssignFnForReturn() const{
2879 //===----------------------------------------------------------------------===//
2880 // Call Calling Convention Implementation
2881 //===----------------------------------------------------------------------===//
2883 // Return next O32 integer argument register.
2884 static unsigned getNextIntArgReg(unsigned Reg
) {
2885 assert((Reg
== Mips::A0
) || (Reg
== Mips::A2
));
2886 return (Reg
== Mips::A0
) ? Mips::A1
: Mips::A3
;
2889 SDValue
MipsTargetLowering::passArgOnStack(SDValue StackPtr
, unsigned Offset
,
2890 SDValue Chain
, SDValue Arg
,
2891 const SDLoc
&DL
, bool IsTailCall
,
2892 SelectionDAG
&DAG
) const {
2895 DAG
.getNode(ISD::ADD
, DL
, getPointerTy(DAG
.getDataLayout()), StackPtr
,
2896 DAG
.getIntPtrConstant(Offset
, DL
));
2897 return DAG
.getStore(Chain
, DL
, Arg
, PtrOff
, MachinePointerInfo());
2900 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
2901 int FI
= MFI
.CreateFixedObject(Arg
.getValueSizeInBits() / 8, Offset
, false);
2902 SDValue FIN
= DAG
.getFrameIndex(FI
, getPointerTy(DAG
.getDataLayout()));
2903 return DAG
.getStore(Chain
, DL
, Arg
, FIN
, MachinePointerInfo(),
2904 /* Alignment = */ 0, MachineMemOperand::MOVolatile
);
2907 void MipsTargetLowering::
2908 getOpndList(SmallVectorImpl
<SDValue
> &Ops
,
2909 std::deque
<std::pair
<unsigned, SDValue
>> &RegsToPass
,
2910 bool IsPICCall
, bool GlobalOrExternal
, bool InternalLinkage
,
2911 bool IsCallReloc
, CallLoweringInfo
&CLI
, SDValue Callee
,
2912 SDValue Chain
) const {
2913 // Insert node "GP copy globalreg" before call to function.
2915 // R_MIPS_CALL* operators (emitted when non-internal functions are called
2916 // in PIC mode) allow symbols to be resolved via lazy binding.
2917 // The lazy binding stub requires GP to point to the GOT.
2918 // Note that we don't need GP to point to the GOT for indirect calls
2919 // (when R_MIPS_CALL* is not used for the call) because Mips linker generates
2920 // lazy binding stub for a function only when R_MIPS_CALL* are the only relocs
2921 // used for the function (that is, Mips linker doesn't generate lazy binding
2922 // stub for a function whose address is taken in the program).
2923 if (IsPICCall
&& !InternalLinkage
&& IsCallReloc
) {
2924 unsigned GPReg
= ABI
.IsN64() ? Mips::GP_64
: Mips::GP
;
2925 EVT Ty
= ABI
.IsN64() ? MVT::i64
: MVT::i32
;
2926 RegsToPass
.push_back(std::make_pair(GPReg
, getGlobalReg(CLI
.DAG
, Ty
)));
2929 // Build a sequence of copy-to-reg nodes chained together with token
2930 // chain and flag operands which copy the outgoing args into registers.
2931 // The InFlag in necessary since all emitted instructions must be
2935 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
) {
2936 Chain
= CLI
.DAG
.getCopyToReg(Chain
, CLI
.DL
, RegsToPass
[i
].first
,
2937 RegsToPass
[i
].second
, InFlag
);
2938 InFlag
= Chain
.getValue(1);
2941 // Add argument registers to the end of the list so that they are
2942 // known live into the call.
2943 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
)
2944 Ops
.push_back(CLI
.DAG
.getRegister(RegsToPass
[i
].first
,
2945 RegsToPass
[i
].second
.getValueType()));
2947 // Add a register mask operand representing the call-preserved registers.
2948 const TargetRegisterInfo
*TRI
= Subtarget
.getRegisterInfo();
2949 const uint32_t *Mask
=
2950 TRI
->getCallPreservedMask(CLI
.DAG
.getMachineFunction(), CLI
.CallConv
);
2951 assert(Mask
&& "Missing call preserved mask for calling convention");
2952 if (Subtarget
.inMips16HardFloat()) {
2953 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(CLI
.Callee
)) {
2954 StringRef Sym
= G
->getGlobal()->getName();
2955 Function
*F
= G
->getGlobal()->getParent()->getFunction(Sym
);
2956 if (F
&& F
->hasFnAttribute("__Mips16RetHelper")) {
2957 Mask
= MipsRegisterInfo::getMips16RetHelperMask();
2961 Ops
.push_back(CLI
.DAG
.getRegisterMask(Mask
));
2963 if (InFlag
.getNode())
2964 Ops
.push_back(InFlag
);
2967 void MipsTargetLowering::AdjustInstrPostInstrSelection(MachineInstr
&MI
,
2968 SDNode
*Node
) const {
2969 switch (MI
.getOpcode()) {
2973 case Mips::JALRPseudo
:
2975 case Mips::JALR64Pseudo
:
2976 case Mips::JALR16_MM
:
2977 case Mips::JALRC16_MMR6
:
2978 case Mips::TAILCALLREG
:
2979 case Mips::TAILCALLREG64
:
2980 case Mips::TAILCALLR6REG
:
2981 case Mips::TAILCALL64R6REG
:
2982 case Mips::TAILCALLREG_MM
:
2983 case Mips::TAILCALLREG_MMR6
: {
2984 if (!EmitJalrReloc
||
2985 Subtarget
.inMips16Mode() ||
2986 !isPositionIndependent() ||
2987 Node
->getNumOperands() < 1 ||
2988 Node
->getOperand(0).getNumOperands() < 2) {
2991 // We are after the callee address, set by LowerCall().
2992 // If added to MI, asm printer will emit .reloc R_MIPS_JALR for the
2994 const SDValue TargetAddr
= Node
->getOperand(0).getOperand(1);
2996 if (const GlobalAddressSDNode
*G
=
2997 dyn_cast_or_null
<const GlobalAddressSDNode
>(TargetAddr
)) {
2998 Sym
= G
->getGlobal()->getName();
3000 else if (const ExternalSymbolSDNode
*ES
=
3001 dyn_cast_or_null
<const ExternalSymbolSDNode
>(TargetAddr
)) {
3002 Sym
= ES
->getSymbol();
3008 MachineFunction
*MF
= MI
.getParent()->getParent();
3009 MCSymbol
*S
= MF
->getContext().getOrCreateSymbol(Sym
);
3010 MI
.addOperand(MachineOperand::CreateMCSymbol(S
, MipsII::MO_JALR
));
3015 /// LowerCall - functions arguments are copied from virtual regs to
3016 /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
3018 MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo
&CLI
,
3019 SmallVectorImpl
<SDValue
> &InVals
) const {
3020 SelectionDAG
&DAG
= CLI
.DAG
;
3022 SmallVectorImpl
<ISD::OutputArg
> &Outs
= CLI
.Outs
;
3023 SmallVectorImpl
<SDValue
> &OutVals
= CLI
.OutVals
;
3024 SmallVectorImpl
<ISD::InputArg
> &Ins
= CLI
.Ins
;
3025 SDValue Chain
= CLI
.Chain
;
3026 SDValue Callee
= CLI
.Callee
;
3027 bool &IsTailCall
= CLI
.IsTailCall
;
3028 CallingConv::ID CallConv
= CLI
.CallConv
;
3029 bool IsVarArg
= CLI
.IsVarArg
;
3031 MachineFunction
&MF
= DAG
.getMachineFunction();
3032 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3033 const TargetFrameLowering
*TFL
= Subtarget
.getFrameLowering();
3034 MipsFunctionInfo
*FuncInfo
= MF
.getInfo
<MipsFunctionInfo
>();
3035 bool IsPIC
= isPositionIndependent();
3037 // Analyze operands of the call, assigning locations to each operand.
3038 SmallVector
<CCValAssign
, 16> ArgLocs
;
3040 CallConv
, IsVarArg
, DAG
.getMachineFunction(), ArgLocs
, *DAG
.getContext(),
3041 MipsCCState::getSpecialCallingConvForCallee(Callee
.getNode(), Subtarget
));
3043 const ExternalSymbolSDNode
*ES
=
3044 dyn_cast_or_null
<const ExternalSymbolSDNode
>(Callee
.getNode());
3046 // There is one case where CALLSEQ_START..CALLSEQ_END can be nested, which
3047 // is during the lowering of a call with a byval argument which produces
3048 // a call to memcpy. For the O32 case, this causes the caller to allocate
3049 // stack space for the reserved argument area for the callee, then recursively
3050 // again for the memcpy call. In the NEWABI case, this doesn't occur as those
3051 // ABIs mandate that the callee allocates the reserved argument area. We do
3052 // still produce nested CALLSEQ_START..CALLSEQ_END with zero space though.
3054 // If the callee has a byval argument and memcpy is used, we are mandated
3055 // to already have produced a reserved argument area for the callee for O32.
3056 // Therefore, the reserved argument area can be reused for both calls.
3058 // Other cases of calling memcpy cannot have a chain with a CALLSEQ_START
3059 // present, as we have yet to hook that node onto the chain.
3061 // Hence, the CALLSEQ_START and CALLSEQ_END nodes can be eliminated in this
3062 // case. GCC does a similar trick, in that wherever possible, it calculates
3063 // the maximum out going argument area (including the reserved area), and
3064 // preallocates the stack space on entrance to the caller.
3066 // FIXME: We should do the same for efficiency and space.
3068 // Note: The check on the calling convention below must match
3069 // MipsABIInfo::GetCalleeAllocdArgSizeInBytes().
3070 bool MemcpyInByVal
= ES
&&
3071 StringRef(ES
->getSymbol()) == StringRef("memcpy") &&
3072 CallConv
!= CallingConv::Fast
&&
3073 Chain
.getOpcode() == ISD::CALLSEQ_START
;
3075 // Allocate the reserved argument area. It seems strange to do this from the
3076 // caller side but removing it breaks the frame size calculation.
3077 unsigned ReservedArgArea
=
3078 MemcpyInByVal
? 0 : ABI
.GetCalleeAllocdArgSizeInBytes(CallConv
);
3079 CCInfo
.AllocateStack(ReservedArgArea
, 1);
3081 CCInfo
.AnalyzeCallOperands(Outs
, CC_Mips
, CLI
.getArgs(),
3082 ES
? ES
->getSymbol() : nullptr);
3084 // Get a count of how many bytes are to be pushed on the stack.
3085 unsigned NextStackOffset
= CCInfo
.getNextStackOffset();
3087 // Check if it's really possible to do a tail call. Restrict it to functions
3088 // that are part of this compilation unit.
3089 bool InternalLinkage
= false;
3091 IsTailCall
= isEligibleForTailCallOptimization(
3092 CCInfo
, NextStackOffset
, *MF
.getInfo
<MipsFunctionInfo
>());
3093 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
)) {
3094 InternalLinkage
= G
->getGlobal()->hasInternalLinkage();
3095 IsTailCall
&= (InternalLinkage
|| G
->getGlobal()->hasLocalLinkage() ||
3096 G
->getGlobal()->hasPrivateLinkage() ||
3097 G
->getGlobal()->hasHiddenVisibility() ||
3098 G
->getGlobal()->hasProtectedVisibility());
3101 if (!IsTailCall
&& CLI
.CS
&& CLI
.CS
.isMustTailCall())
3102 report_fatal_error("failed to perform tail call elimination on a call "
3103 "site marked musttail");
3108 // Chain is the output chain of the last Load/Store or CopyToReg node.
3109 // ByValChain is the output chain of the last Memcpy node created for copying
3110 // byval arguments to the stack.
3111 unsigned StackAlignment
= TFL
->getStackAlignment();
3112 NextStackOffset
= alignTo(NextStackOffset
, StackAlignment
);
3113 SDValue NextStackOffsetVal
= DAG
.getIntPtrConstant(NextStackOffset
, DL
, true);
3115 if (!(IsTailCall
|| MemcpyInByVal
))
3116 Chain
= DAG
.getCALLSEQ_START(Chain
, NextStackOffset
, 0, DL
);
3119 DAG
.getCopyFromReg(Chain
, DL
, ABI
.IsN64() ? Mips::SP_64
: Mips::SP
,
3120 getPointerTy(DAG
.getDataLayout()));
3122 std::deque
<std::pair
<unsigned, SDValue
>> RegsToPass
;
3123 SmallVector
<SDValue
, 8> MemOpChains
;
3125 CCInfo
.rewindByValRegsInfo();
3127 // Walk the register/memloc assignments, inserting copies/loads.
3128 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
3129 SDValue Arg
= OutVals
[i
];
3130 CCValAssign
&VA
= ArgLocs
[i
];
3131 MVT ValVT
= VA
.getValVT(), LocVT
= VA
.getLocVT();
3132 ISD::ArgFlagsTy Flags
= Outs
[i
].Flags
;
3133 bool UseUpperBits
= false;
3136 if (Flags
.isByVal()) {
3137 unsigned FirstByValReg
, LastByValReg
;
3138 unsigned ByValIdx
= CCInfo
.getInRegsParamsProcessed();
3139 CCInfo
.getInRegsParamInfo(ByValIdx
, FirstByValReg
, LastByValReg
);
3141 assert(Flags
.getByValSize() &&
3142 "ByVal args of size 0 should have been ignored by front-end.");
3143 assert(ByValIdx
< CCInfo
.getInRegsParamsCount());
3144 assert(!IsTailCall
&&
3145 "Do not tail-call optimize if there is a byval argument.");
3146 passByValArg(Chain
, DL
, RegsToPass
, MemOpChains
, StackPtr
, MFI
, DAG
, Arg
,
3147 FirstByValReg
, LastByValReg
, Flags
, Subtarget
.isLittle(),
3149 CCInfo
.nextInRegsParam();
3153 // Promote the value if needed.
3154 switch (VA
.getLocInfo()) {
3156 llvm_unreachable("Unknown loc info!");
3157 case CCValAssign::Full
:
3158 if (VA
.isRegLoc()) {
3159 if ((ValVT
== MVT::f32
&& LocVT
== MVT::i32
) ||
3160 (ValVT
== MVT::f64
&& LocVT
== MVT::i64
) ||
3161 (ValVT
== MVT::i64
&& LocVT
== MVT::f64
))
3162 Arg
= DAG
.getNode(ISD::BITCAST
, DL
, LocVT
, Arg
);
3163 else if (ValVT
== MVT::f64
&& LocVT
== MVT::i32
) {
3164 SDValue Lo
= DAG
.getNode(MipsISD::ExtractElementF64
, DL
, MVT::i32
,
3165 Arg
, DAG
.getConstant(0, DL
, MVT::i32
));
3166 SDValue Hi
= DAG
.getNode(MipsISD::ExtractElementF64
, DL
, MVT::i32
,
3167 Arg
, DAG
.getConstant(1, DL
, MVT::i32
));
3168 if (!Subtarget
.isLittle())
3170 unsigned LocRegLo
= VA
.getLocReg();
3171 unsigned LocRegHigh
= getNextIntArgReg(LocRegLo
);
3172 RegsToPass
.push_back(std::make_pair(LocRegLo
, Lo
));
3173 RegsToPass
.push_back(std::make_pair(LocRegHigh
, Hi
));
3178 case CCValAssign::BCvt
:
3179 Arg
= DAG
.getNode(ISD::BITCAST
, DL
, LocVT
, Arg
);
3181 case CCValAssign::SExtUpper
:
3182 UseUpperBits
= true;
3184 case CCValAssign::SExt
:
3185 Arg
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, LocVT
, Arg
);
3187 case CCValAssign::ZExtUpper
:
3188 UseUpperBits
= true;
3190 case CCValAssign::ZExt
:
3191 Arg
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, LocVT
, Arg
);
3193 case CCValAssign::AExtUpper
:
3194 UseUpperBits
= true;
3196 case CCValAssign::AExt
:
3197 Arg
= DAG
.getNode(ISD::ANY_EXTEND
, DL
, LocVT
, Arg
);
3202 unsigned ValSizeInBits
= Outs
[i
].ArgVT
.getSizeInBits();
3203 unsigned LocSizeInBits
= VA
.getLocVT().getSizeInBits();
3205 ISD::SHL
, DL
, VA
.getLocVT(), Arg
,
3206 DAG
.getConstant(LocSizeInBits
- ValSizeInBits
, DL
, VA
.getLocVT()));
3209 // Arguments that can be passed on register must be kept at
3210 // RegsToPass vector
3211 if (VA
.isRegLoc()) {
3212 RegsToPass
.push_back(std::make_pair(VA
.getLocReg(), Arg
));
3216 // Register can't get to this point...
3217 assert(VA
.isMemLoc());
3219 // emit ISD::STORE whichs stores the
3220 // parameter value to a stack Location
3221 MemOpChains
.push_back(passArgOnStack(StackPtr
, VA
.getLocMemOffset(),
3222 Chain
, Arg
, DL
, IsTailCall
, DAG
));
3225 // Transform all store nodes into one single node because all store
3226 // nodes are independent of each other.
3227 if (!MemOpChains
.empty())
3228 Chain
= DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, MemOpChains
);
3230 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
3231 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
3232 // node so that legalize doesn't hack it.
3234 EVT Ty
= Callee
.getValueType();
3235 bool GlobalOrExternal
= false, IsCallReloc
= false;
3237 // The long-calls feature is ignored in case of PIC.
3238 // While we do not support -mshared / -mno-shared properly,
3239 // ignore long-calls in case of -mabicalls too.
3240 if (!Subtarget
.isABICalls() && !IsPIC
) {
3241 // If the function should be called using "long call",
3242 // get its address into a register to prevent using
3243 // of the `jal` instruction for the direct call.
3244 if (auto *N
= dyn_cast
<ExternalSymbolSDNode
>(Callee
)) {
3245 if (Subtarget
.useLongCalls())
3246 Callee
= Subtarget
.hasSym32()
3247 ? getAddrNonPIC(N
, SDLoc(N
), Ty
, DAG
)
3248 : getAddrNonPICSym64(N
, SDLoc(N
), Ty
, DAG
);
3249 } else if (auto *N
= dyn_cast
<GlobalAddressSDNode
>(Callee
)) {
3250 bool UseLongCalls
= Subtarget
.useLongCalls();
3251 // If the function has long-call/far/near attribute
3252 // it overrides command line switch pased to the backend.
3253 if (auto *F
= dyn_cast
<Function
>(N
->getGlobal())) {
3254 if (F
->hasFnAttribute("long-call"))
3255 UseLongCalls
= true;
3256 else if (F
->hasFnAttribute("short-call"))
3257 UseLongCalls
= false;
3260 Callee
= Subtarget
.hasSym32()
3261 ? getAddrNonPIC(N
, SDLoc(N
), Ty
, DAG
)
3262 : getAddrNonPICSym64(N
, SDLoc(N
), Ty
, DAG
);
3266 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
)) {
3268 const GlobalValue
*Val
= G
->getGlobal();
3269 InternalLinkage
= Val
->hasInternalLinkage();
3271 if (InternalLinkage
)
3272 Callee
= getAddrLocal(G
, DL
, Ty
, DAG
, ABI
.IsN32() || ABI
.IsN64());
3273 else if (LargeGOT
) {
3274 Callee
= getAddrGlobalLargeGOT(G
, DL
, Ty
, DAG
, MipsII::MO_CALL_HI16
,
3275 MipsII::MO_CALL_LO16
, Chain
,
3276 FuncInfo
->callPtrInfo(Val
));
3279 Callee
= getAddrGlobal(G
, DL
, Ty
, DAG
, MipsII::MO_GOT_CALL
, Chain
,
3280 FuncInfo
->callPtrInfo(Val
));
3284 Callee
= DAG
.getTargetGlobalAddress(G
->getGlobal(), DL
,
3285 getPointerTy(DAG
.getDataLayout()), 0,
3286 MipsII::MO_NO_FLAG
);
3287 GlobalOrExternal
= true;
3289 else if (ExternalSymbolSDNode
*S
= dyn_cast
<ExternalSymbolSDNode
>(Callee
)) {
3290 const char *Sym
= S
->getSymbol();
3292 if (!IsPIC
) // static
3293 Callee
= DAG
.getTargetExternalSymbol(
3294 Sym
, getPointerTy(DAG
.getDataLayout()), MipsII::MO_NO_FLAG
);
3295 else if (LargeGOT
) {
3296 Callee
= getAddrGlobalLargeGOT(S
, DL
, Ty
, DAG
, MipsII::MO_CALL_HI16
,
3297 MipsII::MO_CALL_LO16
, Chain
,
3298 FuncInfo
->callPtrInfo(Sym
));
3301 Callee
= getAddrGlobal(S
, DL
, Ty
, DAG
, MipsII::MO_GOT_CALL
, Chain
,
3302 FuncInfo
->callPtrInfo(Sym
));
3306 GlobalOrExternal
= true;
3309 SmallVector
<SDValue
, 8> Ops(1, Chain
);
3310 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
3312 getOpndList(Ops
, RegsToPass
, IsPIC
, GlobalOrExternal
, InternalLinkage
,
3313 IsCallReloc
, CLI
, Callee
, Chain
);
3316 MF
.getFrameInfo().setHasTailCall();
3317 return DAG
.getNode(MipsISD::TailCall
, DL
, MVT::Other
, Ops
);
3320 Chain
= DAG
.getNode(MipsISD::JmpLink
, DL
, NodeTys
, Ops
);
3321 SDValue InFlag
= Chain
.getValue(1);
3323 // Create the CALLSEQ_END node in the case of where it is not a call to
3325 if (!(MemcpyInByVal
)) {
3326 Chain
= DAG
.getCALLSEQ_END(Chain
, NextStackOffsetVal
,
3327 DAG
.getIntPtrConstant(0, DL
, true), InFlag
, DL
);
3328 InFlag
= Chain
.getValue(1);
3331 // Handle result values, copying them out of physregs into vregs that we
3333 return LowerCallResult(Chain
, InFlag
, CallConv
, IsVarArg
, Ins
, DL
, DAG
,
3337 /// LowerCallResult - Lower the result values of a call into the
3338 /// appropriate copies out of appropriate physical registers.
3339 SDValue
MipsTargetLowering::LowerCallResult(
3340 SDValue Chain
, SDValue InFlag
, CallingConv::ID CallConv
, bool IsVarArg
,
3341 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&DL
,
3342 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
,
3343 TargetLowering::CallLoweringInfo
&CLI
) const {
3344 // Assign locations to each value returned by this call.
3345 SmallVector
<CCValAssign
, 16> RVLocs
;
3346 MipsCCState
CCInfo(CallConv
, IsVarArg
, DAG
.getMachineFunction(), RVLocs
,
3349 const ExternalSymbolSDNode
*ES
=
3350 dyn_cast_or_null
<const ExternalSymbolSDNode
>(CLI
.Callee
.getNode());
3351 CCInfo
.AnalyzeCallResult(Ins
, RetCC_Mips
, CLI
.RetTy
,
3352 ES
? ES
->getSymbol() : nullptr);
3354 // Copy all of the result registers out of their specified physreg.
3355 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
) {
3356 CCValAssign
&VA
= RVLocs
[i
];
3357 assert(VA
.isRegLoc() && "Can only return in registers!");
3359 SDValue Val
= DAG
.getCopyFromReg(Chain
, DL
, RVLocs
[i
].getLocReg(),
3360 RVLocs
[i
].getLocVT(), InFlag
);
3361 Chain
= Val
.getValue(1);
3362 InFlag
= Val
.getValue(2);
3364 if (VA
.isUpperBitsInLoc()) {
3365 unsigned ValSizeInBits
= Ins
[i
].ArgVT
.getSizeInBits();
3366 unsigned LocSizeInBits
= VA
.getLocVT().getSizeInBits();
3368 VA
.getLocInfo() == CCValAssign::ZExtUpper
? ISD::SRL
: ISD::SRA
;
3370 Shift
, DL
, VA
.getLocVT(), Val
,
3371 DAG
.getConstant(LocSizeInBits
- ValSizeInBits
, DL
, VA
.getLocVT()));
3374 switch (VA
.getLocInfo()) {
3376 llvm_unreachable("Unknown loc info!");
3377 case CCValAssign::Full
:
3379 case CCValAssign::BCvt
:
3380 Val
= DAG
.getNode(ISD::BITCAST
, DL
, VA
.getValVT(), Val
);
3382 case CCValAssign::AExt
:
3383 case CCValAssign::AExtUpper
:
3384 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, VA
.getValVT(), Val
);
3386 case CCValAssign::ZExt
:
3387 case CCValAssign::ZExtUpper
:
3388 Val
= DAG
.getNode(ISD::AssertZext
, DL
, VA
.getLocVT(), Val
,
3389 DAG
.getValueType(VA
.getValVT()));
3390 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, VA
.getValVT(), Val
);
3392 case CCValAssign::SExt
:
3393 case CCValAssign::SExtUpper
:
3394 Val
= DAG
.getNode(ISD::AssertSext
, DL
, VA
.getLocVT(), Val
,
3395 DAG
.getValueType(VA
.getValVT()));
3396 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, VA
.getValVT(), Val
);
3400 InVals
.push_back(Val
);
3406 static SDValue
UnpackFromArgumentSlot(SDValue Val
, const CCValAssign
&VA
,
3407 EVT ArgVT
, const SDLoc
&DL
,
3408 SelectionDAG
&DAG
) {
3409 MVT LocVT
= VA
.getLocVT();
3410 EVT ValVT
= VA
.getValVT();
3412 // Shift into the upper bits if necessary.
3413 switch (VA
.getLocInfo()) {
3416 case CCValAssign::AExtUpper
:
3417 case CCValAssign::SExtUpper
:
3418 case CCValAssign::ZExtUpper
: {
3419 unsigned ValSizeInBits
= ArgVT
.getSizeInBits();
3420 unsigned LocSizeInBits
= VA
.getLocVT().getSizeInBits();
3422 VA
.getLocInfo() == CCValAssign::ZExtUpper
? ISD::SRL
: ISD::SRA
;
3424 Opcode
, DL
, VA
.getLocVT(), Val
,
3425 DAG
.getConstant(LocSizeInBits
- ValSizeInBits
, DL
, VA
.getLocVT()));
3430 // If this is an value smaller than the argument slot size (32-bit for O32,
3431 // 64-bit for N32/N64), it has been promoted in some way to the argument slot
3432 // size. Extract the value and insert any appropriate assertions regarding
3433 // sign/zero extension.
3434 switch (VA
.getLocInfo()) {
3436 llvm_unreachable("Unknown loc info!");
3437 case CCValAssign::Full
:
3439 case CCValAssign::AExtUpper
:
3440 case CCValAssign::AExt
:
3441 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, ValVT
, Val
);
3443 case CCValAssign::SExtUpper
:
3444 case CCValAssign::SExt
:
3445 Val
= DAG
.getNode(ISD::AssertSext
, DL
, LocVT
, Val
, DAG
.getValueType(ValVT
));
3446 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, ValVT
, Val
);
3448 case CCValAssign::ZExtUpper
:
3449 case CCValAssign::ZExt
:
3450 Val
= DAG
.getNode(ISD::AssertZext
, DL
, LocVT
, Val
, DAG
.getValueType(ValVT
));
3451 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, ValVT
, Val
);
3453 case CCValAssign::BCvt
:
3454 Val
= DAG
.getNode(ISD::BITCAST
, DL
, ValVT
, Val
);
3461 //===----------------------------------------------------------------------===//
3462 // Formal Arguments Calling Convention Implementation
3463 //===----------------------------------------------------------------------===//
3464 /// LowerFormalArguments - transform physical registers into virtual registers
3465 /// and generate load operations for arguments places on the stack.
3466 SDValue
MipsTargetLowering::LowerFormalArguments(
3467 SDValue Chain
, CallingConv::ID CallConv
, bool IsVarArg
,
3468 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&DL
,
3469 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
) const {
3470 MachineFunction
&MF
= DAG
.getMachineFunction();
3471 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3472 MipsFunctionInfo
*MipsFI
= MF
.getInfo
<MipsFunctionInfo
>();
3474 MipsFI
->setVarArgsFrameIndex(0);
3476 // Used with vargs to acumulate store chains.
3477 std::vector
<SDValue
> OutChains
;
3479 // Assign locations to all of the incoming arguments.
3480 SmallVector
<CCValAssign
, 16> ArgLocs
;
3481 MipsCCState
CCInfo(CallConv
, IsVarArg
, DAG
.getMachineFunction(), ArgLocs
,
3483 CCInfo
.AllocateStack(ABI
.GetCalleeAllocdArgSizeInBytes(CallConv
), 1);
3484 const Function
&Func
= DAG
.getMachineFunction().getFunction();
3485 Function::const_arg_iterator FuncArg
= Func
.arg_begin();
3487 if (Func
.hasFnAttribute("interrupt") && !Func
.arg_empty())
3489 "Functions with the interrupt attribute cannot have arguments!");
3491 CCInfo
.AnalyzeFormalArguments(Ins
, CC_Mips_FixedArg
);
3492 MipsFI
->setFormalArgInfo(CCInfo
.getNextStackOffset(),
3493 CCInfo
.getInRegsParamsCount() > 0);
3495 unsigned CurArgIdx
= 0;
3496 CCInfo
.rewindByValRegsInfo();
3498 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
3499 CCValAssign
&VA
= ArgLocs
[i
];
3500 if (Ins
[i
].isOrigArg()) {
3501 std::advance(FuncArg
, Ins
[i
].getOrigArgIndex() - CurArgIdx
);
3502 CurArgIdx
= Ins
[i
].getOrigArgIndex();
3504 EVT ValVT
= VA
.getValVT();
3505 ISD::ArgFlagsTy Flags
= Ins
[i
].Flags
;
3506 bool IsRegLoc
= VA
.isRegLoc();
3508 if (Flags
.isByVal()) {
3509 assert(Ins
[i
].isOrigArg() && "Byval arguments cannot be implicit");
3510 unsigned FirstByValReg
, LastByValReg
;
3511 unsigned ByValIdx
= CCInfo
.getInRegsParamsProcessed();
3512 CCInfo
.getInRegsParamInfo(ByValIdx
, FirstByValReg
, LastByValReg
);
3514 assert(Flags
.getByValSize() &&
3515 "ByVal args of size 0 should have been ignored by front-end.");
3516 assert(ByValIdx
< CCInfo
.getInRegsParamsCount());
3517 copyByValRegs(Chain
, DL
, OutChains
, DAG
, Flags
, InVals
, &*FuncArg
,
3518 FirstByValReg
, LastByValReg
, VA
, CCInfo
);
3519 CCInfo
.nextInRegsParam();
3523 // Arguments stored on registers
3525 MVT RegVT
= VA
.getLocVT();
3526 unsigned ArgReg
= VA
.getLocReg();
3527 const TargetRegisterClass
*RC
= getRegClassFor(RegVT
);
3529 // Transform the arguments stored on
3530 // physical registers into virtual ones
3531 unsigned Reg
= addLiveIn(DAG
.getMachineFunction(), ArgReg
, RC
);
3532 SDValue ArgValue
= DAG
.getCopyFromReg(Chain
, DL
, Reg
, RegVT
);
3534 ArgValue
= UnpackFromArgumentSlot(ArgValue
, VA
, Ins
[i
].ArgVT
, DL
, DAG
);
3536 // Handle floating point arguments passed in integer registers and
3537 // long double arguments passed in floating point registers.
3538 if ((RegVT
== MVT::i32
&& ValVT
== MVT::f32
) ||
3539 (RegVT
== MVT::i64
&& ValVT
== MVT::f64
) ||
3540 (RegVT
== MVT::f64
&& ValVT
== MVT::i64
))
3541 ArgValue
= DAG
.getNode(ISD::BITCAST
, DL
, ValVT
, ArgValue
);
3542 else if (ABI
.IsO32() && RegVT
== MVT::i32
&&
3543 ValVT
== MVT::f64
) {
3544 unsigned Reg2
= addLiveIn(DAG
.getMachineFunction(),
3545 getNextIntArgReg(ArgReg
), RC
);
3546 SDValue ArgValue2
= DAG
.getCopyFromReg(Chain
, DL
, Reg2
, RegVT
);
3547 if (!Subtarget
.isLittle())
3548 std::swap(ArgValue
, ArgValue2
);
3549 ArgValue
= DAG
.getNode(MipsISD::BuildPairF64
, DL
, MVT::f64
,
3550 ArgValue
, ArgValue2
);
3553 InVals
.push_back(ArgValue
);
3554 } else { // VA.isRegLoc()
3555 MVT LocVT
= VA
.getLocVT();
3558 // We ought to be able to use LocVT directly but O32 sets it to i32
3559 // when allocating floating point values to integer registers.
3560 // This shouldn't influence how we load the value into registers unless
3561 // we are targeting softfloat.
3562 if (VA
.getValVT().isFloatingPoint() && !Subtarget
.useSoftFloat())
3563 LocVT
= VA
.getValVT();
3567 assert(VA
.isMemLoc());
3569 // The stack pointer offset is relative to the caller stack frame.
3570 int FI
= MFI
.CreateFixedObject(LocVT
.getSizeInBits() / 8,
3571 VA
.getLocMemOffset(), true);
3573 // Create load nodes to retrieve arguments from the stack
3574 SDValue FIN
= DAG
.getFrameIndex(FI
, getPointerTy(DAG
.getDataLayout()));
3575 SDValue ArgValue
= DAG
.getLoad(
3576 LocVT
, DL
, Chain
, FIN
,
3577 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), FI
));
3578 OutChains
.push_back(ArgValue
.getValue(1));
3580 ArgValue
= UnpackFromArgumentSlot(ArgValue
, VA
, Ins
[i
].ArgVT
, DL
, DAG
);
3582 InVals
.push_back(ArgValue
);
3586 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
3587 // The mips ABIs for returning structs by value requires that we copy
3588 // the sret argument into $v0 for the return. Save the argument into
3589 // a virtual register so that we can access it from the return points.
3590 if (Ins
[i
].Flags
.isSRet()) {
3591 unsigned Reg
= MipsFI
->getSRetReturnReg();
3593 Reg
= MF
.getRegInfo().createVirtualRegister(
3594 getRegClassFor(ABI
.IsN64() ? MVT::i64
: MVT::i32
));
3595 MipsFI
->setSRetReturnReg(Reg
);
3597 SDValue Copy
= DAG
.getCopyToReg(DAG
.getEntryNode(), DL
, Reg
, InVals
[i
]);
3598 Chain
= DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, Copy
, Chain
);
3604 writeVarArgRegs(OutChains
, Chain
, DL
, DAG
, CCInfo
);
3606 // All stores are grouped in one node to allow the matching between
3607 // the size of Ins and InVals. This only happens when on varg functions
3608 if (!OutChains
.empty()) {
3609 OutChains
.push_back(Chain
);
3610 Chain
= DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, OutChains
);
3616 //===----------------------------------------------------------------------===//
3617 // Return Value Calling Convention Implementation
3618 //===----------------------------------------------------------------------===//
3621 MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv
,
3622 MachineFunction
&MF
, bool IsVarArg
,
3623 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
3624 LLVMContext
&Context
) const {
3625 SmallVector
<CCValAssign
, 16> RVLocs
;
3626 MipsCCState
CCInfo(CallConv
, IsVarArg
, MF
, RVLocs
, Context
);
3627 return CCInfo
.CheckReturn(Outs
, RetCC_Mips
);
3631 MipsTargetLowering::shouldSignExtendTypeInLibCall(EVT Type
, bool IsSigned
) const {
3632 if ((ABI
.IsN32() || ABI
.IsN64()) && Type
== MVT::i32
)
3639 MipsTargetLowering::LowerInterruptReturn(SmallVectorImpl
<SDValue
> &RetOps
,
3641 SelectionDAG
&DAG
) const {
3642 MachineFunction
&MF
= DAG
.getMachineFunction();
3643 MipsFunctionInfo
*MipsFI
= MF
.getInfo
<MipsFunctionInfo
>();
3647 return DAG
.getNode(MipsISD::ERet
, DL
, MVT::Other
, RetOps
);
3651 MipsTargetLowering::LowerReturn(SDValue Chain
, CallingConv::ID CallConv
,
3653 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
3654 const SmallVectorImpl
<SDValue
> &OutVals
,
3655 const SDLoc
&DL
, SelectionDAG
&DAG
) const {
3656 // CCValAssign - represent the assignment of
3657 // the return value to a location
3658 SmallVector
<CCValAssign
, 16> RVLocs
;
3659 MachineFunction
&MF
= DAG
.getMachineFunction();
3661 // CCState - Info about the registers and stack slot.
3662 MipsCCState
CCInfo(CallConv
, IsVarArg
, MF
, RVLocs
, *DAG
.getContext());
3664 // Analyze return values.
3665 CCInfo
.AnalyzeReturn(Outs
, RetCC_Mips
);
3668 SmallVector
<SDValue
, 4> RetOps(1, Chain
);
3670 // Copy the result values into the output registers.
3671 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
) {
3672 SDValue Val
= OutVals
[i
];
3673 CCValAssign
&VA
= RVLocs
[i
];
3674 assert(VA
.isRegLoc() && "Can only return in registers!");
3675 bool UseUpperBits
= false;
3677 switch (VA
.getLocInfo()) {
3679 llvm_unreachable("Unknown loc info!");
3680 case CCValAssign::Full
:
3682 case CCValAssign::BCvt
:
3683 Val
= DAG
.getNode(ISD::BITCAST
, DL
, VA
.getLocVT(), Val
);
3685 case CCValAssign::AExtUpper
:
3686 UseUpperBits
= true;
3688 case CCValAssign::AExt
:
3689 Val
= DAG
.getNode(ISD::ANY_EXTEND
, DL
, VA
.getLocVT(), Val
);
3691 case CCValAssign::ZExtUpper
:
3692 UseUpperBits
= true;
3694 case CCValAssign::ZExt
:
3695 Val
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VA
.getLocVT(), Val
);
3697 case CCValAssign::SExtUpper
:
3698 UseUpperBits
= true;
3700 case CCValAssign::SExt
:
3701 Val
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VA
.getLocVT(), Val
);
3706 unsigned ValSizeInBits
= Outs
[i
].ArgVT
.getSizeInBits();
3707 unsigned LocSizeInBits
= VA
.getLocVT().getSizeInBits();
3709 ISD::SHL
, DL
, VA
.getLocVT(), Val
,
3710 DAG
.getConstant(LocSizeInBits
- ValSizeInBits
, DL
, VA
.getLocVT()));
3713 Chain
= DAG
.getCopyToReg(Chain
, DL
, VA
.getLocReg(), Val
, Flag
);
3715 // Guarantee that all emitted copies are stuck together with flags.
3716 Flag
= Chain
.getValue(1);
3717 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(), VA
.getLocVT()));
3720 // The mips ABIs for returning structs by value requires that we copy
3721 // the sret argument into $v0 for the return. We saved the argument into
3722 // a virtual register in the entry block, so now we copy the value out
3724 if (MF
.getFunction().hasStructRetAttr()) {
3725 MipsFunctionInfo
*MipsFI
= MF
.getInfo
<MipsFunctionInfo
>();
3726 unsigned Reg
= MipsFI
->getSRetReturnReg();
3729 llvm_unreachable("sret virtual register not created in the entry block");
3731 DAG
.getCopyFromReg(Chain
, DL
, Reg
, getPointerTy(DAG
.getDataLayout()));
3732 unsigned V0
= ABI
.IsN64() ? Mips::V0_64
: Mips::V0
;
3734 Chain
= DAG
.getCopyToReg(Chain
, DL
, V0
, Val
, Flag
);
3735 Flag
= Chain
.getValue(1);
3736 RetOps
.push_back(DAG
.getRegister(V0
, getPointerTy(DAG
.getDataLayout())));
3739 RetOps
[0] = Chain
; // Update chain.
3741 // Add the flag if we have it.
3743 RetOps
.push_back(Flag
);
3745 // ISRs must use "eret".
3746 if (DAG
.getMachineFunction().getFunction().hasFnAttribute("interrupt"))
3747 return LowerInterruptReturn(RetOps
, DL
, DAG
);
3749 // Standard return on Mips is a "jr $ra"
3750 return DAG
.getNode(MipsISD::Ret
, DL
, MVT::Other
, RetOps
);
3753 //===----------------------------------------------------------------------===//
3754 // Mips Inline Assembly Support
3755 //===----------------------------------------------------------------------===//
3757 /// getConstraintType - Given a constraint letter, return the type of
3758 /// constraint it is for this target.
3759 MipsTargetLowering::ConstraintType
3760 MipsTargetLowering::getConstraintType(StringRef Constraint
) const {
3761 // Mips specific constraints
3762 // GCC config/mips/constraints.md
3764 // 'd' : An address register. Equivalent to r
3765 // unless generating MIPS16 code.
3766 // 'y' : Equivalent to r; retained for
3767 // backwards compatibility.
3768 // 'c' : A register suitable for use in an indirect
3769 // jump. This will always be $25 for -mabicalls.
3770 // 'l' : The lo register. 1 word storage.
3771 // 'x' : The hilo register pair. Double word storage.
3772 if (Constraint
.size() == 1) {
3773 switch (Constraint
[0]) {
3781 return C_RegisterClass
;
3787 if (Constraint
== "ZC")
3790 return TargetLowering::getConstraintType(Constraint
);
3793 /// Examine constraint type and operand type and determine a weight value.
3794 /// This object must already have been set up with the operand type
3795 /// and the current alternative constraint selected.
3796 TargetLowering::ConstraintWeight
3797 MipsTargetLowering::getSingleConstraintMatchWeight(
3798 AsmOperandInfo
&info
, const char *constraint
) const {
3799 ConstraintWeight weight
= CW_Invalid
;
3800 Value
*CallOperandVal
= info
.CallOperandVal
;
3801 // If we don't have a value, we can't do a match,
3802 // but allow it at the lowest weight.
3803 if (!CallOperandVal
)
3805 Type
*type
= CallOperandVal
->getType();
3806 // Look at the constraint type.
3807 switch (*constraint
) {
3809 weight
= TargetLowering::getSingleConstraintMatchWeight(info
, constraint
);
3813 if (type
->isIntegerTy())
3814 weight
= CW_Register
;
3816 case 'f': // FPU or MSA register
3817 if (Subtarget
.hasMSA() && type
->isVectorTy() &&
3818 cast
<VectorType
>(type
)->getBitWidth() == 128)
3819 weight
= CW_Register
;
3820 else if (type
->isFloatTy())
3821 weight
= CW_Register
;
3823 case 'c': // $25 for indirect jumps
3824 case 'l': // lo register
3825 case 'x': // hilo register pair
3826 if (type
->isIntegerTy())
3827 weight
= CW_SpecificReg
;
3829 case 'I': // signed 16 bit immediate
3830 case 'J': // integer zero
3831 case 'K': // unsigned 16 bit immediate
3832 case 'L': // signed 32 bit immediate where lower 16 bits are 0
3833 case 'N': // immediate in the range of -65535 to -1 (inclusive)
3834 case 'O': // signed 15 bit immediate (+- 16383)
3835 case 'P': // immediate in the range of 65535 to 1 (inclusive)
3836 if (isa
<ConstantInt
>(CallOperandVal
))
3837 weight
= CW_Constant
;
3846 /// This is a helper function to parse a physical register string and split it
3847 /// into non-numeric and numeric parts (Prefix and Reg). The first boolean flag
3848 /// that is returned indicates whether parsing was successful. The second flag
3849 /// is true if the numeric part exists.
3850 static std::pair
<bool, bool> parsePhysicalReg(StringRef C
, StringRef
&Prefix
,
3851 unsigned long long &Reg
) {
3852 if (C
.front() != '{' || C
.back() != '}')
3853 return std::make_pair(false, false);
3855 // Search for the first numeric character.
3856 StringRef::const_iterator I
, B
= C
.begin() + 1, E
= C
.end() - 1;
3857 I
= std::find_if(B
, E
, isdigit
);
3859 Prefix
= StringRef(B
, I
- B
);
3861 // The second flag is set to false if no numeric characters were found.
3863 return std::make_pair(true, false);
3865 // Parse the numeric characters.
3866 return std::make_pair(!getAsUnsignedInteger(StringRef(I
, E
- I
), 10, Reg
),
3870 EVT
MipsTargetLowering::getTypeForExtReturn(LLVMContext
&Context
, EVT VT
,
3871 ISD::NodeType
) const {
3872 bool Cond
= !Subtarget
.isABI_O32() && VT
.getSizeInBits() == 32;
3873 EVT MinVT
= getRegisterType(Context
, Cond
? MVT::i64
: MVT::i32
);
3874 return VT
.bitsLT(MinVT
) ? MinVT
: VT
;
3877 std::pair
<unsigned, const TargetRegisterClass
*> MipsTargetLowering::
3878 parseRegForInlineAsmConstraint(StringRef C
, MVT VT
) const {
3879 const TargetRegisterInfo
*TRI
=
3880 Subtarget
.getRegisterInfo();
3881 const TargetRegisterClass
*RC
;
3883 unsigned long long Reg
;
3885 std::pair
<bool, bool> R
= parsePhysicalReg(C
, Prefix
, Reg
);
3888 return std::make_pair(0U, nullptr);
3890 if ((Prefix
== "hi" || Prefix
== "lo")) { // Parse hi/lo.
3891 // No numeric characters follow "hi" or "lo".
3893 return std::make_pair(0U, nullptr);
3895 RC
= TRI
->getRegClass(Prefix
== "hi" ?
3896 Mips::HI32RegClassID
: Mips::LO32RegClassID
);
3897 return std::make_pair(*(RC
->begin()), RC
);
3898 } else if (Prefix
.startswith("$msa")) {
3899 // Parse $msa(ir|csr|access|save|modify|request|map|unmap)
3901 // No numeric characters follow the name.
3903 return std::make_pair(0U, nullptr);
3905 Reg
= StringSwitch
<unsigned long long>(Prefix
)
3906 .Case("$msair", Mips::MSAIR
)
3907 .Case("$msacsr", Mips::MSACSR
)
3908 .Case("$msaaccess", Mips::MSAAccess
)
3909 .Case("$msasave", Mips::MSASave
)
3910 .Case("$msamodify", Mips::MSAModify
)
3911 .Case("$msarequest", Mips::MSARequest
)
3912 .Case("$msamap", Mips::MSAMap
)
3913 .Case("$msaunmap", Mips::MSAUnmap
)
3917 return std::make_pair(0U, nullptr);
3919 RC
= TRI
->getRegClass(Mips::MSACtrlRegClassID
);
3920 return std::make_pair(Reg
, RC
);
3924 return std::make_pair(0U, nullptr);
3926 if (Prefix
== "$f") { // Parse $f0-$f31.
3927 // If the size of FP registers is 64-bit or Reg is an even number, select
3928 // the 64-bit register class. Otherwise, select the 32-bit register class.
3929 if (VT
== MVT::Other
)
3930 VT
= (Subtarget
.isFP64bit() || !(Reg
% 2)) ? MVT::f64
: MVT::f32
;
3932 RC
= getRegClassFor(VT
);
3934 if (RC
== &Mips::AFGR64RegClass
) {
3935 assert(Reg
% 2 == 0);
3938 } else if (Prefix
== "$fcc") // Parse $fcc0-$fcc7.
3939 RC
= TRI
->getRegClass(Mips::FCCRegClassID
);
3940 else if (Prefix
== "$w") { // Parse $w0-$w31.
3941 RC
= getRegClassFor((VT
== MVT::Other
) ? MVT::v16i8
: VT
);
3942 } else { // Parse $0-$31.
3943 assert(Prefix
== "$");
3944 RC
= getRegClassFor((VT
== MVT::Other
) ? MVT::i32
: VT
);
3947 assert(Reg
< RC
->getNumRegs());
3948 return std::make_pair(*(RC
->begin() + Reg
), RC
);
3951 /// Given a register class constraint, like 'r', if this corresponds directly
3952 /// to an LLVM register class, return a register of 0 and the register class
3954 std::pair
<unsigned, const TargetRegisterClass
*>
3955 MipsTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo
*TRI
,
3956 StringRef Constraint
,
3958 if (Constraint
.size() == 1) {
3959 switch (Constraint
[0]) {
3960 case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
3961 case 'y': // Same as 'r'. Exists for compatibility.
3963 if (VT
== MVT::i32
|| VT
== MVT::i16
|| VT
== MVT::i8
) {
3964 if (Subtarget
.inMips16Mode())
3965 return std::make_pair(0U, &Mips::CPU16RegsRegClass
);
3966 return std::make_pair(0U, &Mips::GPR32RegClass
);
3968 if (VT
== MVT::i64
&& !Subtarget
.isGP64bit())
3969 return std::make_pair(0U, &Mips::GPR32RegClass
);
3970 if (VT
== MVT::i64
&& Subtarget
.isGP64bit())
3971 return std::make_pair(0U, &Mips::GPR64RegClass
);
3972 // This will generate an error message
3973 return std::make_pair(0U, nullptr);
3974 case 'f': // FPU or MSA register
3975 if (VT
== MVT::v16i8
)
3976 return std::make_pair(0U, &Mips::MSA128BRegClass
);
3977 else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
)
3978 return std::make_pair(0U, &Mips::MSA128HRegClass
);
3979 else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
)
3980 return std::make_pair(0U, &Mips::MSA128WRegClass
);
3981 else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
)
3982 return std::make_pair(0U, &Mips::MSA128DRegClass
);
3983 else if (VT
== MVT::f32
)
3984 return std::make_pair(0U, &Mips::FGR32RegClass
);
3985 else if ((VT
== MVT::f64
) && (!Subtarget
.isSingleFloat())) {
3986 if (Subtarget
.isFP64bit())
3987 return std::make_pair(0U, &Mips::FGR64RegClass
);
3988 return std::make_pair(0U, &Mips::AFGR64RegClass
);
3991 case 'c': // register suitable for indirect jump
3993 return std::make_pair((unsigned)Mips::T9
, &Mips::GPR32RegClass
);
3995 return std::make_pair((unsigned)Mips::T9_64
, &Mips::GPR64RegClass
);
3996 // This will generate an error message
3997 return std::make_pair(0U, nullptr);
3998 case 'l': // use the `lo` register to store values
3999 // that are no bigger than a word
4000 if (VT
== MVT::i32
|| VT
== MVT::i16
|| VT
== MVT::i8
)
4001 return std::make_pair((unsigned)Mips::LO0
, &Mips::LO32RegClass
);
4002 return std::make_pair((unsigned)Mips::LO0_64
, &Mips::LO64RegClass
);
4003 case 'x': // use the concatenated `hi` and `lo` registers
4004 // to store doubleword values
4005 // Fixme: Not triggering the use of both hi and low
4006 // This will generate an error message
4007 return std::make_pair(0U, nullptr);
4011 std::pair
<unsigned, const TargetRegisterClass
*> R
;
4012 R
= parseRegForInlineAsmConstraint(Constraint
, VT
);
4017 return TargetLowering::getRegForInlineAsmConstraint(TRI
, Constraint
, VT
);
4020 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
4021 /// vector. If it is invalid, don't add anything to Ops.
4022 void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op
,
4023 std::string
&Constraint
,
4024 std::vector
<SDValue
>&Ops
,
4025 SelectionDAG
&DAG
) const {
4029 // Only support length 1 constraints for now.
4030 if (Constraint
.length() > 1) return;
4032 char ConstraintLetter
= Constraint
[0];
4033 switch (ConstraintLetter
) {
4034 default: break; // This will fall through to the generic implementation
4035 case 'I': // Signed 16 bit constant
4036 // If this fails, the parent routine will give an error
4037 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
4038 EVT Type
= Op
.getValueType();
4039 int64_t Val
= C
->getSExtValue();
4040 if (isInt
<16>(Val
)) {
4041 Result
= DAG
.getTargetConstant(Val
, DL
, Type
);
4046 case 'J': // integer zero
4047 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
4048 EVT Type
= Op
.getValueType();
4049 int64_t Val
= C
->getZExtValue();
4051 Result
= DAG
.getTargetConstant(0, DL
, Type
);
4056 case 'K': // unsigned 16 bit immediate
4057 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
4058 EVT Type
= Op
.getValueType();
4059 uint64_t Val
= (uint64_t)C
->getZExtValue();
4060 if (isUInt
<16>(Val
)) {
4061 Result
= DAG
.getTargetConstant(Val
, DL
, Type
);
4066 case 'L': // signed 32 bit immediate where lower 16 bits are 0
4067 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
4068 EVT Type
= Op
.getValueType();
4069 int64_t Val
= C
->getSExtValue();
4070 if ((isInt
<32>(Val
)) && ((Val
& 0xffff) == 0)){
4071 Result
= DAG
.getTargetConstant(Val
, DL
, Type
);
4076 case 'N': // immediate in the range of -65535 to -1 (inclusive)
4077 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
4078 EVT Type
= Op
.getValueType();
4079 int64_t Val
= C
->getSExtValue();
4080 if ((Val
>= -65535) && (Val
<= -1)) {
4081 Result
= DAG
.getTargetConstant(Val
, DL
, Type
);
4086 case 'O': // signed 15 bit immediate
4087 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
4088 EVT Type
= Op
.getValueType();
4089 int64_t Val
= C
->getSExtValue();
4090 if ((isInt
<15>(Val
))) {
4091 Result
= DAG
.getTargetConstant(Val
, DL
, Type
);
4096 case 'P': // immediate in the range of 1 to 65535 (inclusive)
4097 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
4098 EVT Type
= Op
.getValueType();
4099 int64_t Val
= C
->getSExtValue();
4100 if ((Val
<= 65535) && (Val
>= 1)) {
4101 Result
= DAG
.getTargetConstant(Val
, DL
, Type
);
4108 if (Result
.getNode()) {
4109 Ops
.push_back(Result
);
4113 TargetLowering::LowerAsmOperandForConstraint(Op
, Constraint
, Ops
, DAG
);
4116 bool MipsTargetLowering::isLegalAddressingMode(const DataLayout
&DL
,
4117 const AddrMode
&AM
, Type
*Ty
,
4118 unsigned AS
, Instruction
*I
) const {
4119 // No global is ever allowed as a base.
4124 case 0: // "r+i" or just "i", depending on HasBaseReg.
4127 if (!AM
.HasBaseReg
) // allow "r+i".
4129 return false; // disallow "r+r" or "r+r+i".
4138 MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode
*GA
) const {
4139 // The Mips target isn't yet aware of offsets.
4143 EVT
MipsTargetLowering::getOptimalMemOpType(
4144 uint64_t Size
, unsigned DstAlign
, unsigned SrcAlign
, bool IsMemset
,
4145 bool ZeroMemset
, bool MemcpyStrSrc
,
4146 const AttributeList
&FuncAttributes
) const {
4147 if (Subtarget
.hasMips64())
4153 bool MipsTargetLowering::isFPImmLegal(const APFloat
&Imm
, EVT VT
,
4154 bool ForCodeSize
) const {
4155 if (VT
!= MVT::f32
&& VT
!= MVT::f64
)
4157 if (Imm
.isNegZero())
4159 return Imm
.isZero();
4162 unsigned MipsTargetLowering::getJumpTableEncoding() const {
4164 // FIXME: For space reasons this should be: EK_GPRel32BlockAddress.
4165 if (ABI
.IsN64() && isPositionIndependent())
4166 return MachineJumpTableInfo::EK_GPRel64BlockAddress
;
4168 return TargetLowering::getJumpTableEncoding();
4171 bool MipsTargetLowering::useSoftFloat() const {
4172 return Subtarget
.useSoftFloat();
4175 void MipsTargetLowering::copyByValRegs(
4176 SDValue Chain
, const SDLoc
&DL
, std::vector
<SDValue
> &OutChains
,
4177 SelectionDAG
&DAG
, const ISD::ArgFlagsTy
&Flags
,
4178 SmallVectorImpl
<SDValue
> &InVals
, const Argument
*FuncArg
,
4179 unsigned FirstReg
, unsigned LastReg
, const CCValAssign
&VA
,
4180 MipsCCState
&State
) const {
4181 MachineFunction
&MF
= DAG
.getMachineFunction();
4182 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
4183 unsigned GPRSizeInBytes
= Subtarget
.getGPRSizeInBytes();
4184 unsigned NumRegs
= LastReg
- FirstReg
;
4185 unsigned RegAreaSize
= NumRegs
* GPRSizeInBytes
;
4186 unsigned FrameObjSize
= std::max(Flags
.getByValSize(), RegAreaSize
);
4188 ArrayRef
<MCPhysReg
> ByValArgRegs
= ABI
.GetByValArgRegs();
4192 (int)ABI
.GetCalleeAllocdArgSizeInBytes(State
.getCallingConv()) -
4193 (int)((ByValArgRegs
.size() - FirstReg
) * GPRSizeInBytes
);
4195 FrameObjOffset
= VA
.getLocMemOffset();
4197 // Create frame object.
4198 EVT PtrTy
= getPointerTy(DAG
.getDataLayout());
4199 // Make the fixed object stored to mutable so that the load instructions
4200 // referencing it have their memory dependencies added.
4201 // Set the frame object as isAliased which clears the underlying objects
4202 // vector in ScheduleDAGInstrs::buildSchedGraph() resulting in addition of all
4203 // stores as dependencies for loads referencing this fixed object.
4204 int FI
= MFI
.CreateFixedObject(FrameObjSize
, FrameObjOffset
, false, true);
4205 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrTy
);
4206 InVals
.push_back(FIN
);
4211 // Copy arg registers.
4212 MVT RegTy
= MVT::getIntegerVT(GPRSizeInBytes
* 8);
4213 const TargetRegisterClass
*RC
= getRegClassFor(RegTy
);
4215 for (unsigned I
= 0; I
< NumRegs
; ++I
) {
4216 unsigned ArgReg
= ByValArgRegs
[FirstReg
+ I
];
4217 unsigned VReg
= addLiveIn(MF
, ArgReg
, RC
);
4218 unsigned Offset
= I
* GPRSizeInBytes
;
4219 SDValue StorePtr
= DAG
.getNode(ISD::ADD
, DL
, PtrTy
, FIN
,
4220 DAG
.getConstant(Offset
, DL
, PtrTy
));
4221 SDValue Store
= DAG
.getStore(Chain
, DL
, DAG
.getRegister(VReg
, RegTy
),
4222 StorePtr
, MachinePointerInfo(FuncArg
, Offset
));
4223 OutChains
.push_back(Store
);
4227 // Copy byVal arg to registers and stack.
4228 void MipsTargetLowering::passByValArg(
4229 SDValue Chain
, const SDLoc
&DL
,
4230 std::deque
<std::pair
<unsigned, SDValue
>> &RegsToPass
,
4231 SmallVectorImpl
<SDValue
> &MemOpChains
, SDValue StackPtr
,
4232 MachineFrameInfo
&MFI
, SelectionDAG
&DAG
, SDValue Arg
, unsigned FirstReg
,
4233 unsigned LastReg
, const ISD::ArgFlagsTy
&Flags
, bool isLittle
,
4234 const CCValAssign
&VA
) const {
4235 unsigned ByValSizeInBytes
= Flags
.getByValSize();
4236 unsigned OffsetInBytes
= 0; // From beginning of struct
4237 unsigned RegSizeInBytes
= Subtarget
.getGPRSizeInBytes();
4238 unsigned Alignment
= std::min(Flags
.getByValAlign(), RegSizeInBytes
);
4239 EVT PtrTy
= getPointerTy(DAG
.getDataLayout()),
4240 RegTy
= MVT::getIntegerVT(RegSizeInBytes
* 8);
4241 unsigned NumRegs
= LastReg
- FirstReg
;
4244 ArrayRef
<MCPhysReg
> ArgRegs
= ABI
.GetByValArgRegs();
4245 bool LeftoverBytes
= (NumRegs
* RegSizeInBytes
> ByValSizeInBytes
);
4248 // Copy words to registers.
4249 for (; I
< NumRegs
- LeftoverBytes
; ++I
, OffsetInBytes
+= RegSizeInBytes
) {
4250 SDValue LoadPtr
= DAG
.getNode(ISD::ADD
, DL
, PtrTy
, Arg
,
4251 DAG
.getConstant(OffsetInBytes
, DL
, PtrTy
));
4252 SDValue LoadVal
= DAG
.getLoad(RegTy
, DL
, Chain
, LoadPtr
,
4253 MachinePointerInfo(), Alignment
);
4254 MemOpChains
.push_back(LoadVal
.getValue(1));
4255 unsigned ArgReg
= ArgRegs
[FirstReg
+ I
];
4256 RegsToPass
.push_back(std::make_pair(ArgReg
, LoadVal
));
4259 // Return if the struct has been fully copied.
4260 if (ByValSizeInBytes
== OffsetInBytes
)
4263 // Copy the remainder of the byval argument with sub-word loads and shifts.
4264 if (LeftoverBytes
) {
4267 for (unsigned LoadSizeInBytes
= RegSizeInBytes
/ 2, TotalBytesLoaded
= 0;
4268 OffsetInBytes
< ByValSizeInBytes
; LoadSizeInBytes
/= 2) {
4269 unsigned RemainingSizeInBytes
= ByValSizeInBytes
- OffsetInBytes
;
4271 if (RemainingSizeInBytes
< LoadSizeInBytes
)
4275 SDValue LoadPtr
= DAG
.getNode(ISD::ADD
, DL
, PtrTy
, Arg
,
4276 DAG
.getConstant(OffsetInBytes
, DL
,
4278 SDValue LoadVal
= DAG
.getExtLoad(
4279 ISD::ZEXTLOAD
, DL
, RegTy
, Chain
, LoadPtr
, MachinePointerInfo(),
4280 MVT::getIntegerVT(LoadSizeInBytes
* 8), Alignment
);
4281 MemOpChains
.push_back(LoadVal
.getValue(1));
4283 // Shift the loaded value.
4287 Shamt
= TotalBytesLoaded
* 8;
4289 Shamt
= (RegSizeInBytes
- (TotalBytesLoaded
+ LoadSizeInBytes
)) * 8;
4291 SDValue Shift
= DAG
.getNode(ISD::SHL
, DL
, RegTy
, LoadVal
,
4292 DAG
.getConstant(Shamt
, DL
, MVT::i32
));
4295 Val
= DAG
.getNode(ISD::OR
, DL
, RegTy
, Val
, Shift
);
4299 OffsetInBytes
+= LoadSizeInBytes
;
4300 TotalBytesLoaded
+= LoadSizeInBytes
;
4301 Alignment
= std::min(Alignment
, LoadSizeInBytes
);
4304 unsigned ArgReg
= ArgRegs
[FirstReg
+ I
];
4305 RegsToPass
.push_back(std::make_pair(ArgReg
, Val
));
4310 // Copy remainder of byval arg to it with memcpy.
4311 unsigned MemCpySize
= ByValSizeInBytes
- OffsetInBytes
;
4312 SDValue Src
= DAG
.getNode(ISD::ADD
, DL
, PtrTy
, Arg
,
4313 DAG
.getConstant(OffsetInBytes
, DL
, PtrTy
));
4314 SDValue Dst
= DAG
.getNode(ISD::ADD
, DL
, PtrTy
, StackPtr
,
4315 DAG
.getIntPtrConstant(VA
.getLocMemOffset(), DL
));
4316 Chain
= DAG
.getMemcpy(Chain
, DL
, Dst
, Src
,
4317 DAG
.getConstant(MemCpySize
, DL
, PtrTy
),
4318 Alignment
, /*isVolatile=*/false, /*AlwaysInline=*/false,
4319 /*isTailCall=*/false,
4320 MachinePointerInfo(), MachinePointerInfo());
4321 MemOpChains
.push_back(Chain
);
4324 void MipsTargetLowering::writeVarArgRegs(std::vector
<SDValue
> &OutChains
,
4325 SDValue Chain
, const SDLoc
&DL
,
4327 CCState
&State
) const {
4328 ArrayRef
<MCPhysReg
> ArgRegs
= ABI
.GetVarArgRegs();
4329 unsigned Idx
= State
.getFirstUnallocated(ArgRegs
);
4330 unsigned RegSizeInBytes
= Subtarget
.getGPRSizeInBytes();
4331 MVT RegTy
= MVT::getIntegerVT(RegSizeInBytes
* 8);
4332 const TargetRegisterClass
*RC
= getRegClassFor(RegTy
);
4333 MachineFunction
&MF
= DAG
.getMachineFunction();
4334 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
4335 MipsFunctionInfo
*MipsFI
= MF
.getInfo
<MipsFunctionInfo
>();
4337 // Offset of the first variable argument from stack pointer.
4340 if (ArgRegs
.size() == Idx
)
4341 VaArgOffset
= alignTo(State
.getNextStackOffset(), RegSizeInBytes
);
4344 (int)ABI
.GetCalleeAllocdArgSizeInBytes(State
.getCallingConv()) -
4345 (int)(RegSizeInBytes
* (ArgRegs
.size() - Idx
));
4348 // Record the frame index of the first variable argument
4349 // which is a value necessary to VASTART.
4350 int FI
= MFI
.CreateFixedObject(RegSizeInBytes
, VaArgOffset
, true);
4351 MipsFI
->setVarArgsFrameIndex(FI
);
4353 // Copy the integer registers that have not been used for argument passing
4354 // to the argument register save area. For O32, the save area is allocated
4355 // in the caller's stack frame, while for N32/64, it is allocated in the
4356 // callee's stack frame.
4357 for (unsigned I
= Idx
; I
< ArgRegs
.size();
4358 ++I
, VaArgOffset
+= RegSizeInBytes
) {
4359 unsigned Reg
= addLiveIn(MF
, ArgRegs
[I
], RC
);
4360 SDValue ArgValue
= DAG
.getCopyFromReg(Chain
, DL
, Reg
, RegTy
);
4361 FI
= MFI
.CreateFixedObject(RegSizeInBytes
, VaArgOffset
, true);
4362 SDValue PtrOff
= DAG
.getFrameIndex(FI
, getPointerTy(DAG
.getDataLayout()));
4364 DAG
.getStore(Chain
, DL
, ArgValue
, PtrOff
, MachinePointerInfo());
4365 cast
<StoreSDNode
>(Store
.getNode())->getMemOperand()->setValue(
4367 OutChains
.push_back(Store
);
4371 void MipsTargetLowering::HandleByVal(CCState
*State
, unsigned &Size
,
4372 unsigned Align
) const {
4373 const TargetFrameLowering
*TFL
= Subtarget
.getFrameLowering();
4375 assert(Size
&& "Byval argument's size shouldn't be 0.");
4377 Align
= std::min(Align
, TFL
->getStackAlignment());
4379 unsigned FirstReg
= 0;
4380 unsigned NumRegs
= 0;
4382 if (State
->getCallingConv() != CallingConv::Fast
) {
4383 unsigned RegSizeInBytes
= Subtarget
.getGPRSizeInBytes();
4384 ArrayRef
<MCPhysReg
> IntArgRegs
= ABI
.GetByValArgRegs();
4385 // FIXME: The O32 case actually describes no shadow registers.
4386 const MCPhysReg
*ShadowRegs
=
4387 ABI
.IsO32() ? IntArgRegs
.data() : Mips64DPRegs
;
4389 // We used to check the size as well but we can't do that anymore since
4390 // CCState::HandleByVal() rounds up the size after calling this function.
4391 assert(!(Align
% RegSizeInBytes
) &&
4392 "Byval argument's alignment should be a multiple of"
4395 FirstReg
= State
->getFirstUnallocated(IntArgRegs
);
4397 // If Align > RegSizeInBytes, the first arg register must be even.
4398 // FIXME: This condition happens to do the right thing but it's not the
4399 // right way to test it. We want to check that the stack frame offset
4400 // of the register is aligned.
4401 if ((Align
> RegSizeInBytes
) && (FirstReg
% 2)) {
4402 State
->AllocateReg(IntArgRegs
[FirstReg
], ShadowRegs
[FirstReg
]);
4406 // Mark the registers allocated.
4407 Size
= alignTo(Size
, RegSizeInBytes
);
4408 for (unsigned I
= FirstReg
; Size
> 0 && (I
< IntArgRegs
.size());
4409 Size
-= RegSizeInBytes
, ++I
, ++NumRegs
)
4410 State
->AllocateReg(IntArgRegs
[I
], ShadowRegs
[I
]);
4413 State
->addInRegsParamInfo(FirstReg
, FirstReg
+ NumRegs
);
4416 MachineBasicBlock
*MipsTargetLowering::emitPseudoSELECT(MachineInstr
&MI
,
4417 MachineBasicBlock
*BB
,
4419 unsigned Opc
) const {
4420 assert(!(Subtarget
.hasMips4() || Subtarget
.hasMips32()) &&
4421 "Subtarget already supports SELECT nodes with the use of"
4422 "conditional-move instructions.");
4424 const TargetInstrInfo
*TII
=
4425 Subtarget
.getInstrInfo();
4426 DebugLoc DL
= MI
.getDebugLoc();
4428 // To "insert" a SELECT instruction, we actually have to insert the
4429 // diamond control-flow pattern. The incoming instruction knows the
4430 // destination vreg to set, the condition code register to branch on, the
4431 // true/false values to select between, and a branch opcode to use.
4432 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
4433 MachineFunction::iterator It
= ++BB
->getIterator();
4439 // bNE r1, r0, copy1MBB
4440 // fallthrough --> copy0MBB
4441 MachineBasicBlock
*thisMBB
= BB
;
4442 MachineFunction
*F
= BB
->getParent();
4443 MachineBasicBlock
*copy0MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4444 MachineBasicBlock
*sinkMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4445 F
->insert(It
, copy0MBB
);
4446 F
->insert(It
, sinkMBB
);
4448 // Transfer the remainder of BB and its successor edges to sinkMBB.
4449 sinkMBB
->splice(sinkMBB
->begin(), BB
,
4450 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
4451 sinkMBB
->transferSuccessorsAndUpdatePHIs(BB
);
4453 // Next, add the true and fallthrough blocks as its successors.
4454 BB
->addSuccessor(copy0MBB
);
4455 BB
->addSuccessor(sinkMBB
);
4458 // bc1[tf] cc, sinkMBB
4459 BuildMI(BB
, DL
, TII
->get(Opc
))
4460 .addReg(MI
.getOperand(1).getReg())
4463 // bne rs, $0, sinkMBB
4464 BuildMI(BB
, DL
, TII
->get(Opc
))
4465 .addReg(MI
.getOperand(1).getReg())
4471 // %FalseValue = ...
4472 // # fallthrough to sinkMBB
4475 // Update machine-CFG edges
4476 BB
->addSuccessor(sinkMBB
);
4479 // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
4483 BuildMI(*BB
, BB
->begin(), DL
, TII
->get(Mips::PHI
), MI
.getOperand(0).getReg())
4484 .addReg(MI
.getOperand(2).getReg())
4486 .addReg(MI
.getOperand(3).getReg())
4489 MI
.eraseFromParent(); // The pseudo instruction is gone now.
4494 MachineBasicBlock
*MipsTargetLowering::emitPseudoD_SELECT(MachineInstr
&MI
,
4495 MachineBasicBlock
*BB
) const {
4496 assert(!(Subtarget
.hasMips4() || Subtarget
.hasMips32()) &&
4497 "Subtarget already supports SELECT nodes with the use of"
4498 "conditional-move instructions.");
4500 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
4501 DebugLoc DL
= MI
.getDebugLoc();
4503 // D_SELECT substitutes two SELECT nodes that goes one after another and
4504 // have the same condition operand. On machines which don't have
4505 // conditional-move instruction, it reduces unnecessary branch instructions
4506 // which are result of using two diamond patterns that are result of two
4507 // SELECT pseudo instructions.
4508 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
4509 MachineFunction::iterator It
= ++BB
->getIterator();
4515 // bNE r1, r0, copy1MBB
4516 // fallthrough --> copy0MBB
4517 MachineBasicBlock
*thisMBB
= BB
;
4518 MachineFunction
*F
= BB
->getParent();
4519 MachineBasicBlock
*copy0MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4520 MachineBasicBlock
*sinkMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4521 F
->insert(It
, copy0MBB
);
4522 F
->insert(It
, sinkMBB
);
4524 // Transfer the remainder of BB and its successor edges to sinkMBB.
4525 sinkMBB
->splice(sinkMBB
->begin(), BB
,
4526 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
4527 sinkMBB
->transferSuccessorsAndUpdatePHIs(BB
);
4529 // Next, add the true and fallthrough blocks as its successors.
4530 BB
->addSuccessor(copy0MBB
);
4531 BB
->addSuccessor(sinkMBB
);
4533 // bne rs, $0, sinkMBB
4534 BuildMI(BB
, DL
, TII
->get(Mips::BNE
))
4535 .addReg(MI
.getOperand(2).getReg())
4540 // %FalseValue = ...
4541 // # fallthrough to sinkMBB
4544 // Update machine-CFG edges
4545 BB
->addSuccessor(sinkMBB
);
4548 // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
4552 // Use two PHI nodes to select two reults
4553 BuildMI(*BB
, BB
->begin(), DL
, TII
->get(Mips::PHI
), MI
.getOperand(0).getReg())
4554 .addReg(MI
.getOperand(3).getReg())
4556 .addReg(MI
.getOperand(5).getReg())
4558 BuildMI(*BB
, BB
->begin(), DL
, TII
->get(Mips::PHI
), MI
.getOperand(1).getReg())
4559 .addReg(MI
.getOperand(4).getReg())
4561 .addReg(MI
.getOperand(6).getReg())
4564 MI
.eraseFromParent(); // The pseudo instruction is gone now.
4569 // FIXME? Maybe this could be a TableGen attribute on some registers and
4570 // this table could be generated automatically from RegInfo.
4571 unsigned MipsTargetLowering::getRegisterByName(const char* RegName
, EVT VT
,
4572 SelectionDAG
&DAG
) const {
4573 // Named registers is expected to be fairly rare. For now, just support $28
4574 // since the linux kernel uses it.
4575 if (Subtarget
.isGP64bit()) {
4576 unsigned Reg
= StringSwitch
<unsigned>(RegName
)
4577 .Case("$28", Mips::GP_64
)
4582 unsigned Reg
= StringSwitch
<unsigned>(RegName
)
4583 .Case("$28", Mips::GP
)
4588 report_fatal_error("Invalid register name global variable");