1 //===-- MipsSEISelDAGToDAG.cpp - A Dag to Dag Inst Selector for MipsSE ----===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Subclass of MipsDAGToDAGISel specialized for mips32/64.
11 //===----------------------------------------------------------------------===//
13 #include "MipsSEISelDAGToDAG.h"
14 #include "MCTargetDesc/MipsBaseInfo.h"
16 #include "MipsAnalyzeImmediate.h"
17 #include "MipsMachineFunction.h"
18 #include "MipsRegisterInfo.h"
19 #include "llvm/CodeGen/MachineConstantPool.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/SelectionDAGNodes.h"
25 #include "llvm/IR/CFG.h"
26 #include "llvm/IR/Dominators.h"
27 #include "llvm/IR/GlobalValue.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/Type.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Target/TargetMachine.h"
37 #define DEBUG_TYPE "mips-isel"
39 bool MipsSEDAGToDAGISel::runOnMachineFunction(MachineFunction
&MF
) {
40 Subtarget
= &static_cast<const MipsSubtarget
&>(MF
.getSubtarget());
41 if (Subtarget
->inMips16Mode())
43 return MipsDAGToDAGISel::runOnMachineFunction(MF
);
46 void MipsSEDAGToDAGISel::getAnalysisUsage(AnalysisUsage
&AU
) const {
47 AU
.addRequired
<DominatorTreeWrapperPass
>();
48 SelectionDAGISel::getAnalysisUsage(AU
);
51 void MipsSEDAGToDAGISel::addDSPCtrlRegOperands(bool IsDef
, MachineInstr
&MI
,
52 MachineFunction
&MF
) {
53 MachineInstrBuilder
MIB(MF
, &MI
);
54 unsigned Mask
= MI
.getOperand(1).getImm();
56 IsDef
? RegState::ImplicitDefine
: RegState::Implicit
| RegState::Undef
;
59 MIB
.addReg(Mips::DSPPos
, Flag
);
62 MIB
.addReg(Mips::DSPSCount
, Flag
);
65 MIB
.addReg(Mips::DSPCarry
, Flag
);
68 MIB
.addReg(Mips::DSPOutFlag
, Flag
);
71 MIB
.addReg(Mips::DSPCCond
, Flag
);
74 MIB
.addReg(Mips::DSPEFI
, Flag
);
77 unsigned MipsSEDAGToDAGISel::getMSACtrlReg(const SDValue RegIdx
) const {
78 uint64_t RegNum
= cast
<ConstantSDNode
>(RegIdx
)->getZExtValue();
79 return Mips::MSACtrlRegClass
.getRegister(RegNum
);
82 bool MipsSEDAGToDAGISel::replaceUsesWithZeroReg(MachineRegisterInfo
*MRI
,
83 const MachineInstr
& MI
) {
84 unsigned DstReg
= 0, ZeroReg
= 0;
86 // Check if MI is "addiu $dst, $zero, 0" or "daddiu $dst, $zero, 0".
87 if ((MI
.getOpcode() == Mips::ADDiu
) &&
88 (MI
.getOperand(1).getReg() == Mips::ZERO
) &&
89 (MI
.getOperand(2).isImm()) &&
90 (MI
.getOperand(2).getImm() == 0)) {
91 DstReg
= MI
.getOperand(0).getReg();
93 } else if ((MI
.getOpcode() == Mips::DADDiu
) &&
94 (MI
.getOperand(1).getReg() == Mips::ZERO_64
) &&
95 (MI
.getOperand(2).isImm()) &&
96 (MI
.getOperand(2).getImm() == 0)) {
97 DstReg
= MI
.getOperand(0).getReg();
98 ZeroReg
= Mips::ZERO_64
;
104 // Replace uses with ZeroReg.
105 for (MachineRegisterInfo::use_iterator U
= MRI
->use_begin(DstReg
),
106 E
= MRI
->use_end(); U
!= E
;) {
107 MachineOperand
&MO
= *U
;
108 unsigned OpNo
= U
.getOperandNo();
109 MachineInstr
*MI
= MO
.getParent();
112 // Do not replace if it is a phi's operand or is tied to def operand.
113 if (MI
->isPHI() || MI
->isRegTiedToDefOperand(OpNo
) || MI
->isPseudo())
116 // Also, we have to check that the register class of the operand
117 // contains the zero register.
118 if (!MRI
->getRegClass(MO
.getReg())->contains(ZeroReg
))
127 void MipsSEDAGToDAGISel::processFunctionAfterISel(MachineFunction
&MF
) {
128 MF
.getInfo
<MipsFunctionInfo
>()->initGlobalBaseReg();
130 MachineRegisterInfo
*MRI
= &MF
.getRegInfo();
132 for (auto &MBB
: MF
) {
133 for (auto &MI
: MBB
) {
134 switch (MI
.getOpcode()) {
136 addDSPCtrlRegOperands(false, MI
, MF
);
139 addDSPCtrlRegOperands(true, MI
, MF
);
141 case Mips::BuildPairF64_64
:
142 case Mips::ExtractElementF64_64
:
143 if (!Subtarget
->useOddSPReg()) {
144 MI
.addOperand(MachineOperand::CreateReg(Mips::SP
, false, true));
148 case Mips::BuildPairF64
:
149 case Mips::ExtractElementF64
:
150 if (Subtarget
->isABI_FPXX() && !Subtarget
->hasMTHC1())
151 MI
.addOperand(MachineOperand::CreateReg(Mips::SP
, false, true));
154 replaceUsesWithZeroReg(MRI
, MI
);
160 void MipsSEDAGToDAGISel::selectAddE(SDNode
*Node
, const SDLoc
&DL
) const {
161 SDValue InFlag
= Node
->getOperand(2);
162 unsigned Opc
= InFlag
.getOpcode();
163 SDValue LHS
= Node
->getOperand(0), RHS
= Node
->getOperand(1);
164 EVT VT
= LHS
.getValueType();
166 // In the base case, we can rely on the carry bit from the addsc
168 if (Opc
== ISD::ADDC
) {
169 SDValue Ops
[3] = {LHS
, RHS
, InFlag
};
170 CurDAG
->SelectNodeTo(Node
, Mips::ADDWC
, VT
, MVT::Glue
, Ops
);
174 assert(Opc
== ISD::ADDE
&& "ISD::ADDE not in a chain of ADDE nodes!");
176 // The more complex case is when there is a chain of ISD::ADDE nodes like:
177 // (adde (adde (adde (addc a b) c) d) e).
179 // The addwc instruction does not write to the carry bit, instead it writes
180 // to bit 20 of the dsp control register. To match this series of nodes, each
181 // intermediate adde node must be expanded to write the carry bit before the
184 // Start by reading the overflow field for addsc and moving the value to the
185 // carry field. The usage of 1 here with MipsISD::RDDSP / Mips::WRDSP
186 // corresponds to reading/writing the entire control register to/from a GPR.
188 SDValue CstOne
= CurDAG
->getTargetConstant(1, DL
, MVT::i32
);
190 SDValue OuFlag
= CurDAG
->getTargetConstant(20, DL
, MVT::i32
);
192 SDNode
*DSPCtrlField
=
193 CurDAG
->getMachineNode(Mips::RDDSP
, DL
, MVT::i32
, MVT::Glue
, CstOne
, InFlag
);
195 SDNode
*Carry
= CurDAG
->getMachineNode(
196 Mips::EXT
, DL
, MVT::i32
, SDValue(DSPCtrlField
, 0), OuFlag
, CstOne
);
198 SDValue Ops
[4] = {SDValue(DSPCtrlField
, 0),
199 CurDAG
->getTargetConstant(6, DL
, MVT::i32
), CstOne
,
201 SDNode
*DSPCFWithCarry
= CurDAG
->getMachineNode(Mips::INS
, DL
, MVT::i32
, Ops
);
203 // My reading of the MIPS DSP 3.01 specification isn't as clear as I
204 // would like about whether bit 20 always gets overwritten by addwc.
205 // Hence take an extremely conservative view and presume it's sticky. We
206 // therefore need to clear it.
208 SDValue Zero
= CurDAG
->getRegister(Mips::ZERO
, MVT::i32
);
210 SDValue InsOps
[4] = {Zero
, OuFlag
, CstOne
, SDValue(DSPCFWithCarry
, 0)};
211 SDNode
*DSPCtrlFinal
= CurDAG
->getMachineNode(Mips::INS
, DL
, MVT::i32
, InsOps
);
213 SDNode
*WrDSP
= CurDAG
->getMachineNode(Mips::WRDSP
, DL
, MVT::Glue
,
214 SDValue(DSPCtrlFinal
, 0), CstOne
);
216 SDValue Operands
[3] = {LHS
, RHS
, SDValue(WrDSP
, 0)};
217 CurDAG
->SelectNodeTo(Node
, Mips::ADDWC
, VT
, MVT::Glue
, Operands
);
221 bool MipsSEDAGToDAGISel::selectAddrFrameIndex(SDValue Addr
, SDValue
&Base
,
222 SDValue
&Offset
) const {
223 if (FrameIndexSDNode
*FIN
= dyn_cast
<FrameIndexSDNode
>(Addr
)) {
224 EVT ValTy
= Addr
.getValueType();
226 Base
= CurDAG
->getTargetFrameIndex(FIN
->getIndex(), ValTy
);
227 Offset
= CurDAG
->getTargetConstant(0, SDLoc(Addr
), ValTy
);
233 /// Match frameindex+offset and frameindex|offset
234 bool MipsSEDAGToDAGISel::selectAddrFrameIndexOffset(
235 SDValue Addr
, SDValue
&Base
, SDValue
&Offset
, unsigned OffsetBits
,
236 unsigned ShiftAmount
= 0) const {
237 if (CurDAG
->isBaseWithConstantOffset(Addr
)) {
238 ConstantSDNode
*CN
= dyn_cast
<ConstantSDNode
>(Addr
.getOperand(1));
239 if (isIntN(OffsetBits
+ ShiftAmount
, CN
->getSExtValue())) {
240 EVT ValTy
= Addr
.getValueType();
242 // If the first operand is a FI, get the TargetFI Node
243 if (FrameIndexSDNode
*FIN
=
244 dyn_cast
<FrameIndexSDNode
>(Addr
.getOperand(0)))
245 Base
= CurDAG
->getTargetFrameIndex(FIN
->getIndex(), ValTy
);
247 Base
= Addr
.getOperand(0);
248 // If base is a FI, additional offset calculation is done in
249 // eliminateFrameIndex, otherwise we need to check the alignment
250 if (OffsetToAlignment(CN
->getZExtValue(), 1ull << ShiftAmount
) != 0)
254 Offset
= CurDAG
->getTargetConstant(CN
->getZExtValue(), SDLoc(Addr
),
262 /// ComplexPattern used on MipsInstrInfo
263 /// Used on Mips Load/Store instructions
264 bool MipsSEDAGToDAGISel::selectAddrRegImm(SDValue Addr
, SDValue
&Base
,
265 SDValue
&Offset
) const {
266 // if Address is FI, get the TargetFrameIndex.
267 if (selectAddrFrameIndex(Addr
, Base
, Offset
))
270 // on PIC code Load GA
271 if (Addr
.getOpcode() == MipsISD::Wrapper
) {
272 Base
= Addr
.getOperand(0);
273 Offset
= Addr
.getOperand(1);
277 if (!TM
.isPositionIndependent()) {
278 if ((Addr
.getOpcode() == ISD::TargetExternalSymbol
||
279 Addr
.getOpcode() == ISD::TargetGlobalAddress
))
283 // Addresses of the form FI+const or FI|const
284 if (selectAddrFrameIndexOffset(Addr
, Base
, Offset
, 16))
287 // Operand is a result from an ADD.
288 if (Addr
.getOpcode() == ISD::ADD
) {
289 // When loading from constant pools, load the lower address part in
290 // the instruction itself. Example, instead of:
291 // lui $2, %hi($CPI1_0)
292 // addiu $2, $2, %lo($CPI1_0)
295 // lui $2, %hi($CPI1_0)
296 // lwc1 $f0, %lo($CPI1_0)($2)
297 if (Addr
.getOperand(1).getOpcode() == MipsISD::Lo
||
298 Addr
.getOperand(1).getOpcode() == MipsISD::GPRel
) {
299 SDValue Opnd0
= Addr
.getOperand(1).getOperand(0);
300 if (isa
<ConstantPoolSDNode
>(Opnd0
) || isa
<GlobalAddressSDNode
>(Opnd0
) ||
301 isa
<JumpTableSDNode
>(Opnd0
)) {
302 Base
= Addr
.getOperand(0);
312 /// ComplexPattern used on MipsInstrInfo
313 /// Used on Mips Load/Store instructions
314 bool MipsSEDAGToDAGISel::selectAddrDefault(SDValue Addr
, SDValue
&Base
,
315 SDValue
&Offset
) const {
317 Offset
= CurDAG
->getTargetConstant(0, SDLoc(Addr
), Addr
.getValueType());
321 bool MipsSEDAGToDAGISel::selectIntAddr(SDValue Addr
, SDValue
&Base
,
322 SDValue
&Offset
) const {
323 return selectAddrRegImm(Addr
, Base
, Offset
) ||
324 selectAddrDefault(Addr
, Base
, Offset
);
327 bool MipsSEDAGToDAGISel::selectAddrRegImm9(SDValue Addr
, SDValue
&Base
,
328 SDValue
&Offset
) const {
329 if (selectAddrFrameIndex(Addr
, Base
, Offset
))
332 if (selectAddrFrameIndexOffset(Addr
, Base
, Offset
, 9))
338 /// Used on microMIPS LWC2, LDC2, SWC2 and SDC2 instructions (11-bit offset)
339 bool MipsSEDAGToDAGISel::selectAddrRegImm11(SDValue Addr
, SDValue
&Base
,
340 SDValue
&Offset
) const {
341 if (selectAddrFrameIndex(Addr
, Base
, Offset
))
344 if (selectAddrFrameIndexOffset(Addr
, Base
, Offset
, 11))
350 /// Used on microMIPS Load/Store unaligned instructions (12-bit offset)
351 bool MipsSEDAGToDAGISel::selectAddrRegImm12(SDValue Addr
, SDValue
&Base
,
352 SDValue
&Offset
) const {
353 if (selectAddrFrameIndex(Addr
, Base
, Offset
))
356 if (selectAddrFrameIndexOffset(Addr
, Base
, Offset
, 12))
362 bool MipsSEDAGToDAGISel::selectAddrRegImm16(SDValue Addr
, SDValue
&Base
,
363 SDValue
&Offset
) const {
364 if (selectAddrFrameIndex(Addr
, Base
, Offset
))
367 if (selectAddrFrameIndexOffset(Addr
, Base
, Offset
, 16))
373 bool MipsSEDAGToDAGISel::selectIntAddr11MM(SDValue Addr
, SDValue
&Base
,
374 SDValue
&Offset
) const {
375 return selectAddrRegImm11(Addr
, Base
, Offset
) ||
376 selectAddrDefault(Addr
, Base
, Offset
);
379 bool MipsSEDAGToDAGISel::selectIntAddr12MM(SDValue Addr
, SDValue
&Base
,
380 SDValue
&Offset
) const {
381 return selectAddrRegImm12(Addr
, Base
, Offset
) ||
382 selectAddrDefault(Addr
, Base
, Offset
);
385 bool MipsSEDAGToDAGISel::selectIntAddr16MM(SDValue Addr
, SDValue
&Base
,
386 SDValue
&Offset
) const {
387 return selectAddrRegImm16(Addr
, Base
, Offset
) ||
388 selectAddrDefault(Addr
, Base
, Offset
);
391 bool MipsSEDAGToDAGISel::selectIntAddrLSL2MM(SDValue Addr
, SDValue
&Base
,
392 SDValue
&Offset
) const {
393 if (selectAddrFrameIndexOffset(Addr
, Base
, Offset
, 7)) {
394 if (isa
<FrameIndexSDNode
>(Base
))
397 if (ConstantSDNode
*CN
= dyn_cast
<ConstantSDNode
>(Offset
)) {
398 unsigned CnstOff
= CN
->getZExtValue();
399 return (CnstOff
== (CnstOff
& 0x3c));
405 // For all other cases where "lw" would be selected, don't select "lw16"
406 // because it would result in additional instructions to prepare operands.
407 if (selectAddrRegImm(Addr
, Base
, Offset
))
410 return selectAddrDefault(Addr
, Base
, Offset
);
413 bool MipsSEDAGToDAGISel::selectIntAddrSImm10(SDValue Addr
, SDValue
&Base
,
414 SDValue
&Offset
) const {
416 if (selectAddrFrameIndex(Addr
, Base
, Offset
))
419 if (selectAddrFrameIndexOffset(Addr
, Base
, Offset
, 10))
422 return selectAddrDefault(Addr
, Base
, Offset
);
425 bool MipsSEDAGToDAGISel::selectIntAddrSImm10Lsl1(SDValue Addr
, SDValue
&Base
,
426 SDValue
&Offset
) const {
427 if (selectAddrFrameIndex(Addr
, Base
, Offset
))
430 if (selectAddrFrameIndexOffset(Addr
, Base
, Offset
, 10, 1))
433 return selectAddrDefault(Addr
, Base
, Offset
);
436 bool MipsSEDAGToDAGISel::selectIntAddrSImm10Lsl2(SDValue Addr
, SDValue
&Base
,
437 SDValue
&Offset
) const {
438 if (selectAddrFrameIndex(Addr
, Base
, Offset
))
441 if (selectAddrFrameIndexOffset(Addr
, Base
, Offset
, 10, 2))
444 return selectAddrDefault(Addr
, Base
, Offset
);
447 bool MipsSEDAGToDAGISel::selectIntAddrSImm10Lsl3(SDValue Addr
, SDValue
&Base
,
448 SDValue
&Offset
) const {
449 if (selectAddrFrameIndex(Addr
, Base
, Offset
))
452 if (selectAddrFrameIndexOffset(Addr
, Base
, Offset
, 10, 3))
455 return selectAddrDefault(Addr
, Base
, Offset
);
458 // Select constant vector splats.
460 // Returns true and sets Imm if:
462 // * N is a ISD::BUILD_VECTOR representing a constant splat
463 bool MipsSEDAGToDAGISel::selectVSplat(SDNode
*N
, APInt
&Imm
,
464 unsigned MinSizeInBits
) const {
465 if (!Subtarget
->hasMSA())
468 BuildVectorSDNode
*Node
= dyn_cast
<BuildVectorSDNode
>(N
);
473 APInt SplatValue
, SplatUndef
;
474 unsigned SplatBitSize
;
477 if (!Node
->isConstantSplat(SplatValue
, SplatUndef
, SplatBitSize
, HasAnyUndefs
,
478 MinSizeInBits
, !Subtarget
->isLittle()))
486 // Select constant vector splats.
488 // In addition to the requirements of selectVSplat(), this function returns
489 // true and sets Imm if:
490 // * The splat value is the same width as the elements of the vector
491 // * The splat value fits in an integer with the specified signed-ness and
494 // This function looks through ISD::BITCAST nodes.
495 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
496 // sometimes a shuffle in big-endian mode.
498 // It's worth noting that this function is not used as part of the selection
499 // of ldi.[bhwd] since it does not permit using the wrong-typed ldi.[bhwd]
500 // instruction to achieve the desired bit pattern. ldi.[bhwd] is selected in
501 // MipsSEDAGToDAGISel::selectNode.
502 bool MipsSEDAGToDAGISel::
503 selectVSplatCommon(SDValue N
, SDValue
&Imm
, bool Signed
,
504 unsigned ImmBitSize
) const {
506 EVT EltTy
= N
->getValueType(0).getVectorElementType();
508 if (N
->getOpcode() == ISD::BITCAST
)
509 N
= N
->getOperand(0);
511 if (selectVSplat(N
.getNode(), ImmValue
, EltTy
.getSizeInBits()) &&
512 ImmValue
.getBitWidth() == EltTy
.getSizeInBits()) {
514 if (( Signed
&& ImmValue
.isSignedIntN(ImmBitSize
)) ||
515 (!Signed
&& ImmValue
.isIntN(ImmBitSize
))) {
516 Imm
= CurDAG
->getTargetConstant(ImmValue
, SDLoc(N
), EltTy
);
524 // Select constant vector splats.
525 bool MipsSEDAGToDAGISel::
526 selectVSplatUimm1(SDValue N
, SDValue
&Imm
) const {
527 return selectVSplatCommon(N
, Imm
, false, 1);
530 bool MipsSEDAGToDAGISel::
531 selectVSplatUimm2(SDValue N
, SDValue
&Imm
) const {
532 return selectVSplatCommon(N
, Imm
, false, 2);
535 bool MipsSEDAGToDAGISel::
536 selectVSplatUimm3(SDValue N
, SDValue
&Imm
) const {
537 return selectVSplatCommon(N
, Imm
, false, 3);
540 // Select constant vector splats.
541 bool MipsSEDAGToDAGISel::
542 selectVSplatUimm4(SDValue N
, SDValue
&Imm
) const {
543 return selectVSplatCommon(N
, Imm
, false, 4);
546 // Select constant vector splats.
547 bool MipsSEDAGToDAGISel::
548 selectVSplatUimm5(SDValue N
, SDValue
&Imm
) const {
549 return selectVSplatCommon(N
, Imm
, false, 5);
552 // Select constant vector splats.
553 bool MipsSEDAGToDAGISel::
554 selectVSplatUimm6(SDValue N
, SDValue
&Imm
) const {
555 return selectVSplatCommon(N
, Imm
, false, 6);
558 // Select constant vector splats.
559 bool MipsSEDAGToDAGISel::
560 selectVSplatUimm8(SDValue N
, SDValue
&Imm
) const {
561 return selectVSplatCommon(N
, Imm
, false, 8);
564 // Select constant vector splats.
565 bool MipsSEDAGToDAGISel::
566 selectVSplatSimm5(SDValue N
, SDValue
&Imm
) const {
567 return selectVSplatCommon(N
, Imm
, true, 5);
570 // Select constant vector splats whose value is a power of 2.
572 // In addition to the requirements of selectVSplat(), this function returns
573 // true and sets Imm if:
574 // * The splat value is the same width as the elements of the vector
575 // * The splat value is a power of two.
577 // This function looks through ISD::BITCAST nodes.
578 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
579 // sometimes a shuffle in big-endian mode.
580 bool MipsSEDAGToDAGISel::selectVSplatUimmPow2(SDValue N
, SDValue
&Imm
) const {
582 EVT EltTy
= N
->getValueType(0).getVectorElementType();
584 if (N
->getOpcode() == ISD::BITCAST
)
585 N
= N
->getOperand(0);
587 if (selectVSplat(N
.getNode(), ImmValue
, EltTy
.getSizeInBits()) &&
588 ImmValue
.getBitWidth() == EltTy
.getSizeInBits()) {
589 int32_t Log2
= ImmValue
.exactLogBase2();
592 Imm
= CurDAG
->getTargetConstant(Log2
, SDLoc(N
), EltTy
);
600 // Select constant vector splats whose value only has a consecutive sequence
601 // of left-most bits set (e.g. 0b11...1100...00).
603 // In addition to the requirements of selectVSplat(), this function returns
604 // true and sets Imm if:
605 // * The splat value is the same width as the elements of the vector
606 // * The splat value is a consecutive sequence of left-most bits.
608 // This function looks through ISD::BITCAST nodes.
609 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
610 // sometimes a shuffle in big-endian mode.
611 bool MipsSEDAGToDAGISel::selectVSplatMaskL(SDValue N
, SDValue
&Imm
) const {
613 EVT EltTy
= N
->getValueType(0).getVectorElementType();
615 if (N
->getOpcode() == ISD::BITCAST
)
616 N
= N
->getOperand(0);
618 if (selectVSplat(N
.getNode(), ImmValue
, EltTy
.getSizeInBits()) &&
619 ImmValue
.getBitWidth() == EltTy
.getSizeInBits()) {
620 // Extract the run of set bits starting with bit zero from the bitwise
621 // inverse of ImmValue, and test that the inverse of this is the same
622 // as the original value.
623 if (ImmValue
== ~(~ImmValue
& ~(~ImmValue
+ 1))) {
625 Imm
= CurDAG
->getTargetConstant(ImmValue
.countPopulation() - 1, SDLoc(N
),
634 // Select constant vector splats whose value only has a consecutive sequence
635 // of right-most bits set (e.g. 0b00...0011...11).
637 // In addition to the requirements of selectVSplat(), this function returns
638 // true and sets Imm if:
639 // * The splat value is the same width as the elements of the vector
640 // * The splat value is a consecutive sequence of right-most bits.
642 // This function looks through ISD::BITCAST nodes.
643 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
644 // sometimes a shuffle in big-endian mode.
645 bool MipsSEDAGToDAGISel::selectVSplatMaskR(SDValue N
, SDValue
&Imm
) const {
647 EVT EltTy
= N
->getValueType(0).getVectorElementType();
649 if (N
->getOpcode() == ISD::BITCAST
)
650 N
= N
->getOperand(0);
652 if (selectVSplat(N
.getNode(), ImmValue
, EltTy
.getSizeInBits()) &&
653 ImmValue
.getBitWidth() == EltTy
.getSizeInBits()) {
654 // Extract the run of set bits starting with bit zero, and test that the
655 // result is the same as the original value
656 if (ImmValue
== (ImmValue
& ~(ImmValue
+ 1))) {
657 Imm
= CurDAG
->getTargetConstant(ImmValue
.countPopulation() - 1, SDLoc(N
),
666 bool MipsSEDAGToDAGISel::selectVSplatUimmInvPow2(SDValue N
,
667 SDValue
&Imm
) const {
669 EVT EltTy
= N
->getValueType(0).getVectorElementType();
671 if (N
->getOpcode() == ISD::BITCAST
)
672 N
= N
->getOperand(0);
674 if (selectVSplat(N
.getNode(), ImmValue
, EltTy
.getSizeInBits()) &&
675 ImmValue
.getBitWidth() == EltTy
.getSizeInBits()) {
676 int32_t Log2
= (~ImmValue
).exactLogBase2();
679 Imm
= CurDAG
->getTargetConstant(Log2
, SDLoc(N
), EltTy
);
687 bool MipsSEDAGToDAGISel::trySelect(SDNode
*Node
) {
688 unsigned Opcode
= Node
->getOpcode();
692 // Instruction Selection not handled by the auto-generated
693 // tablegen selection should be handled here.
698 case Mips::PseudoD_SELECT_I
:
699 case Mips::PseudoD_SELECT_I64
: {
700 MVT VT
= Subtarget
->isGP64bit() ? MVT::i64
: MVT::i32
;
701 SDValue cond
= Node
->getOperand(0);
702 SDValue Hi1
= Node
->getOperand(1);
703 SDValue Lo1
= Node
->getOperand(2);
704 SDValue Hi2
= Node
->getOperand(3);
705 SDValue Lo2
= Node
->getOperand(4);
707 SDValue ops
[] = {cond
, Hi1
, Lo1
, Hi2
, Lo2
};
708 EVT NodeTys
[] = {VT
, VT
};
709 ReplaceNode(Node
, CurDAG
->getMachineNode(Subtarget
->isGP64bit()
710 ? Mips::PseudoD_SELECT_I64
711 : Mips::PseudoD_SELECT_I
,
717 selectAddE(Node
, DL
);
721 case ISD::ConstantFP
: {
722 ConstantFPSDNode
*CN
= dyn_cast
<ConstantFPSDNode
>(Node
);
723 if (Node
->getValueType(0) == MVT::f64
&& CN
->isExactlyValue(+0.0)) {
724 if (Subtarget
->isGP64bit()) {
725 SDValue Zero
= CurDAG
->getCopyFromReg(CurDAG
->getEntryNode(), DL
,
726 Mips::ZERO_64
, MVT::i64
);
728 CurDAG
->getMachineNode(Mips::DMTC1
, DL
, MVT::f64
, Zero
));
729 } else if (Subtarget
->isFP64bit()) {
730 SDValue Zero
= CurDAG
->getCopyFromReg(CurDAG
->getEntryNode(), DL
,
731 Mips::ZERO
, MVT::i32
);
732 ReplaceNode(Node
, CurDAG
->getMachineNode(Mips::BuildPairF64_64
, DL
,
733 MVT::f64
, Zero
, Zero
));
735 SDValue Zero
= CurDAG
->getCopyFromReg(CurDAG
->getEntryNode(), DL
,
736 Mips::ZERO
, MVT::i32
);
737 ReplaceNode(Node
, CurDAG
->getMachineNode(Mips::BuildPairF64
, DL
,
738 MVT::f64
, Zero
, Zero
));
745 case ISD::Constant
: {
746 const ConstantSDNode
*CN
= dyn_cast
<ConstantSDNode
>(Node
);
747 int64_t Imm
= CN
->getSExtValue();
748 unsigned Size
= CN
->getValueSizeInBits(0);
753 MipsAnalyzeImmediate AnalyzeImm
;
755 const MipsAnalyzeImmediate::InstSeq
&Seq
=
756 AnalyzeImm
.Analyze(Imm
, Size
, false);
758 MipsAnalyzeImmediate::InstSeq::const_iterator Inst
= Seq
.begin();
761 SDValue ImmOpnd
= CurDAG
->getTargetConstant(SignExtend64
<16>(Inst
->ImmOpnd
),
764 // The first instruction can be a LUi which is different from other
765 // instructions (ADDiu, ORI and SLL) in that it does not have a register
767 if (Inst
->Opc
== Mips::LUi64
)
768 RegOpnd
= CurDAG
->getMachineNode(Inst
->Opc
, DL
, MVT::i64
, ImmOpnd
);
771 CurDAG
->getMachineNode(Inst
->Opc
, DL
, MVT::i64
,
772 CurDAG
->getRegister(Mips::ZERO_64
, MVT::i64
),
775 // The remaining instructions in the sequence are handled here.
776 for (++Inst
; Inst
!= Seq
.end(); ++Inst
) {
777 ImmOpnd
= CurDAG
->getTargetConstant(SignExtend64
<16>(Inst
->ImmOpnd
), DL
,
779 RegOpnd
= CurDAG
->getMachineNode(Inst
->Opc
, DL
, MVT::i64
,
780 SDValue(RegOpnd
, 0), ImmOpnd
);
783 ReplaceNode(Node
, RegOpnd
);
787 case ISD::INTRINSIC_W_CHAIN
: {
788 switch (cast
<ConstantSDNode
>(Node
->getOperand(1))->getZExtValue()) {
792 case Intrinsic::mips_cfcmsa
: {
793 SDValue ChainIn
= Node
->getOperand(0);
794 SDValue RegIdx
= Node
->getOperand(2);
795 SDValue Reg
= CurDAG
->getCopyFromReg(ChainIn
, DL
,
796 getMSACtrlReg(RegIdx
), MVT::i32
);
797 ReplaceNode(Node
, Reg
.getNode());
804 case ISD::INTRINSIC_WO_CHAIN
: {
805 switch (cast
<ConstantSDNode
>(Node
->getOperand(0))->getZExtValue()) {
809 case Intrinsic::mips_move_v
:
810 // Like an assignment but will always produce a move.v even if
812 ReplaceNode(Node
, CurDAG
->getMachineNode(Mips::MOVE_V
, DL
,
813 Node
->getValueType(0),
814 Node
->getOperand(1)));
820 case ISD::INTRINSIC_VOID
: {
821 switch (cast
<ConstantSDNode
>(Node
->getOperand(1))->getZExtValue()) {
825 case Intrinsic::mips_ctcmsa
: {
826 SDValue ChainIn
= Node
->getOperand(0);
827 SDValue RegIdx
= Node
->getOperand(2);
828 SDValue Value
= Node
->getOperand(3);
829 SDValue ChainOut
= CurDAG
->getCopyToReg(ChainIn
, DL
,
830 getMSACtrlReg(RegIdx
), Value
);
831 ReplaceNode(Node
, ChainOut
.getNode());
838 // Manually match MipsISD::Ins nodes to get the correct instruction. It has
839 // to be done in this fashion so that we respect the differences between
840 // dins and dinsm, as the difference is that the size operand has the range
841 // 0 < size <= 32 for dins while dinsm has the range 2 <= size <= 64 which
842 // means SelectionDAGISel would have to test all the operands at once to
843 // match the instruction.
846 // Sanity checking for the node operands.
847 if (Node
->getValueType(0) != MVT::i32
&& Node
->getValueType(0) != MVT::i64
)
850 if (Node
->getNumOperands() != 4)
853 if (Node
->getOperand(1)->getOpcode() != ISD::Constant
||
854 Node
->getOperand(2)->getOpcode() != ISD::Constant
)
857 MVT ResTy
= Node
->getSimpleValueType(0);
858 uint64_t Pos
= Node
->getConstantOperandVal(1);
859 uint64_t Size
= Node
->getConstantOperandVal(2);
861 // Size has to be >0 for 'ins', 'dins' and 'dinsu'.
868 if (ResTy
!= MVT::i32
&& ResTy
!= MVT::i64
)
872 if (ResTy
== MVT::i32
) {
873 if (Pos
+ Size
<= 32)
876 if (Pos
+ Size
<= 32)
878 else if (Pos
< 32 && 1 < Size
)
879 Opcode
= Mips::DINSM
;
881 Opcode
= Mips::DINSU
;
886 Node
->getOperand(0), CurDAG
->getTargetConstant(Pos
, DL
, MVT::i32
),
887 CurDAG
->getTargetConstant(Size
, DL
, MVT::i32
), Node
->getOperand(3)};
889 ReplaceNode(Node
, CurDAG
->getMachineNode(Opcode
, DL
, ResTy
, Ops
));
896 case MipsISD::ThreadPointer
: {
897 EVT PtrVT
= getTargetLowering()->getPointerTy(CurDAG
->getDataLayout());
898 unsigned RdhwrOpc
, DestReg
;
900 if (PtrVT
== MVT::i32
) {
901 RdhwrOpc
= Mips::RDHWR
;
904 RdhwrOpc
= Mips::RDHWR64
;
905 DestReg
= Mips::V1_64
;
909 CurDAG
->getMachineNode(RdhwrOpc
, DL
, Node
->getValueType(0),
910 CurDAG
->getRegister(Mips::HWR29
, MVT::i32
),
911 CurDAG
->getTargetConstant(0, DL
, MVT::i32
));
912 SDValue Chain
= CurDAG
->getCopyToReg(CurDAG
->getEntryNode(), DL
, DestReg
,
914 SDValue ResNode
= CurDAG
->getCopyFromReg(Chain
, DL
, DestReg
, PtrVT
);
915 ReplaceNode(Node
, ResNode
.getNode());
919 case ISD::BUILD_VECTOR
: {
920 // Select appropriate ldi.[bhwd] instructions for constant splats of
921 // 128-bit when MSA is enabled. Fixup any register class mismatches that
922 // occur as a result.
924 // This allows the compiler to use a wider range of immediates than would
925 // otherwise be allowed. If, for example, v4i32 could only use ldi.h then
926 // it would not be possible to load { 0x01010101, 0x01010101, 0x01010101,
927 // 0x01010101 } without using a constant pool. This would be sub-optimal
928 // when // 'ldi.b wd, 1' is capable of producing that bit-pattern in the
929 // same set/ of registers. Similarly, ldi.h isn't capable of producing {
930 // 0x00000000, 0x00000001, 0x00000000, 0x00000001 } but 'ldi.d wd, 1' can.
932 const MipsABIInfo
&ABI
=
933 static_cast<const MipsTargetMachine
&>(TM
).getABI();
935 BuildVectorSDNode
*BVN
= cast
<BuildVectorSDNode
>(Node
);
936 APInt SplatValue
, SplatUndef
;
937 unsigned SplatBitSize
;
940 EVT ResVecTy
= BVN
->getValueType(0);
943 if (!Subtarget
->hasMSA() || !BVN
->getValueType(0).is128BitVector())
946 if (!BVN
->isConstantSplat(SplatValue
, SplatUndef
, SplatBitSize
,
948 !Subtarget
->isLittle()))
951 switch (SplatBitSize
) {
956 ViaVecTy
= MVT::v16i8
;
960 ViaVecTy
= MVT::v8i16
;
964 ViaVecTy
= MVT::v4i32
;
968 ViaVecTy
= MVT::v2i64
;
974 // If we have a signed 10 bit integer, we can splat it directly.
976 // If we have something bigger we can synthesize the value into a GPR and
978 if (SplatValue
.isSignedIntN(10)) {
979 SDValue Imm
= CurDAG
->getTargetConstant(SplatValue
, DL
,
980 ViaVecTy
.getVectorElementType());
982 Res
= CurDAG
->getMachineNode(LdiOp
, DL
, ViaVecTy
, Imm
);
983 } else if (SplatValue
.isSignedIntN(16) &&
984 ((ABI
.IsO32() && SplatBitSize
< 64) ||
985 (ABI
.IsN32() || ABI
.IsN64()))) {
986 // Only handle signed 16 bit values when the element size is GPR width.
987 // MIPS64 can handle all the cases but MIPS32 would need to handle
988 // negative cases specifically here. Instead, handle those cases as
991 bool Is32BitSplat
= ABI
.IsO32() || SplatBitSize
< 64;
992 const unsigned ADDiuOp
= Is32BitSplat
? Mips::ADDiu
: Mips::DADDiu
;
993 const MVT SplatMVT
= Is32BitSplat
? MVT::i32
: MVT::i64
;
994 SDValue ZeroVal
= CurDAG
->getRegister(
995 Is32BitSplat
? Mips::ZERO
: Mips::ZERO_64
, SplatMVT
);
997 const unsigned FILLOp
=
1000 : (SplatBitSize
== 32 ? Mips::FILL_W
1001 : (SplatBitSize
== 64 ? Mips::FILL_D
: 0));
1003 assert(FILLOp
!= 0 && "Unknown FILL Op for splat synthesis!");
1004 assert((!ABI
.IsO32() || (FILLOp
!= Mips::FILL_D
)) &&
1005 "Attempting to use fill.d on MIPS32!");
1007 const unsigned Lo
= SplatValue
.getLoBits(16).getZExtValue();
1008 SDValue LoVal
= CurDAG
->getTargetConstant(Lo
, DL
, SplatMVT
);
1010 Res
= CurDAG
->getMachineNode(ADDiuOp
, DL
, SplatMVT
, ZeroVal
, LoVal
);
1011 Res
= CurDAG
->getMachineNode(FILLOp
, DL
, ViaVecTy
, SDValue(Res
, 0));
1013 } else if (SplatValue
.isSignedIntN(32) && SplatBitSize
== 32) {
1014 // Only handle the cases where the splat size agrees with the size
1015 // of the SplatValue here.
1016 const unsigned Lo
= SplatValue
.getLoBits(16).getZExtValue();
1017 const unsigned Hi
= SplatValue
.lshr(16).getLoBits(16).getZExtValue();
1018 SDValue ZeroVal
= CurDAG
->getRegister(Mips::ZERO
, MVT::i32
);
1020 SDValue LoVal
= CurDAG
->getTargetConstant(Lo
, DL
, MVT::i32
);
1021 SDValue HiVal
= CurDAG
->getTargetConstant(Hi
, DL
, MVT::i32
);
1024 Res
= CurDAG
->getMachineNode(Mips::LUi
, DL
, MVT::i32
, HiVal
);
1027 Res
= CurDAG
->getMachineNode(Mips::ORi
, DL
, MVT::i32
,
1028 Hi
? SDValue(Res
, 0) : ZeroVal
, LoVal
);
1030 assert((Hi
|| Lo
) && "Zero case reached 32 bit case splat synthesis!");
1031 Res
= CurDAG
->getMachineNode(Mips::FILL_W
, DL
, MVT::v4i32
, SDValue(Res
, 0));
1033 } else if (SplatValue
.isSignedIntN(32) && SplatBitSize
== 64 &&
1034 (ABI
.IsN32() || ABI
.IsN64())) {
1035 // N32 and N64 can perform some tricks that O32 can't for signed 32 bit
1036 // integers due to having 64bit registers. lui will cause the necessary
1037 // zero/sign extension.
1038 const unsigned Lo
= SplatValue
.getLoBits(16).getZExtValue();
1039 const unsigned Hi
= SplatValue
.lshr(16).getLoBits(16).getZExtValue();
1040 SDValue ZeroVal
= CurDAG
->getRegister(Mips::ZERO
, MVT::i32
);
1042 SDValue LoVal
= CurDAG
->getTargetConstant(Lo
, DL
, MVT::i32
);
1043 SDValue HiVal
= CurDAG
->getTargetConstant(Hi
, DL
, MVT::i32
);
1046 Res
= CurDAG
->getMachineNode(Mips::LUi
, DL
, MVT::i32
, HiVal
);
1049 Res
= CurDAG
->getMachineNode(Mips::ORi
, DL
, MVT::i32
,
1050 Hi
? SDValue(Res
, 0) : ZeroVal
, LoVal
);
1052 Res
= CurDAG
->getMachineNode(
1053 Mips::SUBREG_TO_REG
, DL
, MVT::i64
,
1054 CurDAG
->getTargetConstant(((Hi
>> 15) & 0x1), DL
, MVT::i64
),
1056 CurDAG
->getTargetConstant(Mips::sub_32
, DL
, MVT::i64
));
1059 CurDAG
->getMachineNode(Mips::FILL_D
, DL
, MVT::v2i64
, SDValue(Res
, 0));
1061 } else if (SplatValue
.isSignedIntN(64)) {
1062 // If we have a 64 bit Splat value, we perform a similar sequence to the
1066 // lui $res, %highest(val) lui $res, %highest(val)
1067 // ori $res, $res, %higher(val) ori $res, $res, %higher(val)
1068 // lui $res2, %hi(val) lui $res2, %hi(val)
1069 // ori $res2, %res2, %lo(val) ori $res2, %res2, %lo(val)
1070 // $res3 = fill $res2 dinsu $res, $res2, 0, 32
1071 // $res4 = insert.w $res3[1], $res fill.d $res
1074 // The ability to use dinsu is guaranteed as MSA requires MIPSR5. This saves
1075 // having to materialize the value by shifts and ors.
1077 // FIXME: Implement the preferred sequence for MIPS64R6:
1080 // ori $res, $zero, %lo(val)
1081 // daui $res, $res, %hi(val)
1082 // dahi $res, $res, %higher(val)
1083 // dati $res, $res, %highest(cal)
1087 const unsigned Lo
= SplatValue
.getLoBits(16).getZExtValue();
1088 const unsigned Hi
= SplatValue
.lshr(16).getLoBits(16).getZExtValue();
1089 const unsigned Higher
= SplatValue
.lshr(32).getLoBits(16).getZExtValue();
1090 const unsigned Highest
= SplatValue
.lshr(48).getLoBits(16).getZExtValue();
1092 SDValue LoVal
= CurDAG
->getTargetConstant(Lo
, DL
, MVT::i32
);
1093 SDValue HiVal
= CurDAG
->getTargetConstant(Hi
, DL
, MVT::i32
);
1094 SDValue HigherVal
= CurDAG
->getTargetConstant(Higher
, DL
, MVT::i32
);
1095 SDValue HighestVal
= CurDAG
->getTargetConstant(Highest
, DL
, MVT::i32
);
1096 SDValue ZeroVal
= CurDAG
->getRegister(Mips::ZERO
, MVT::i32
);
1098 // Independent of whether we're targeting MIPS64 or not, the basic
1099 // operations are the same. Also, directly use the $zero register if
1100 // the 16 bit chunk is zero.
1102 // For optimization purposes we always synthesize the splat value as
1103 // an i32 value, then if we're targetting MIPS64, use SUBREG_TO_REG
1104 // just before combining the values with dinsu to produce an i64. This
1105 // enables SelectionDAG to aggressively share components of splat values
1108 // FIXME: This is the general constant synthesis problem. This code
1109 // should be factored out into a class shared between all the
1110 // classes that need it. Specifically, for a splat size of 64
1111 // bits that's a negative number we can do better than LUi/ORi
1112 // for the upper 32bits.
1115 Res
= CurDAG
->getMachineNode(Mips::LUi
, DL
, MVT::i32
, HiVal
);
1118 Res
= CurDAG
->getMachineNode(Mips::ORi
, DL
, MVT::i32
,
1119 Hi
? SDValue(Res
, 0) : ZeroVal
, LoVal
);
1123 HiRes
= CurDAG
->getMachineNode(Mips::LUi
, DL
, MVT::i32
, HighestVal
);
1126 HiRes
= CurDAG
->getMachineNode(Mips::ORi
, DL
, MVT::i32
,
1127 Highest
? SDValue(HiRes
, 0) : ZeroVal
,
1132 Res
= CurDAG
->getMachineNode(Mips::FILL_W
, DL
, MVT::v4i32
,
1133 (Hi
|| Lo
) ? SDValue(Res
, 0) : ZeroVal
);
1135 Res
= CurDAG
->getMachineNode(
1136 Mips::INSERT_W
, DL
, MVT::v4i32
, SDValue(Res
, 0),
1137 (Highest
|| Higher
) ? SDValue(HiRes
, 0) : ZeroVal
,
1138 CurDAG
->getTargetConstant(1, DL
, MVT::i32
));
1140 const TargetLowering
*TLI
= getTargetLowering();
1141 const TargetRegisterClass
*RC
=
1142 TLI
->getRegClassFor(ViaVecTy
.getSimpleVT());
1144 Res
= CurDAG
->getMachineNode(
1145 Mips::COPY_TO_REGCLASS
, DL
, ViaVecTy
, SDValue(Res
, 0),
1146 CurDAG
->getTargetConstant(RC
->getID(), DL
, MVT::i32
));
1148 Res
= CurDAG
->getMachineNode(
1149 Mips::SPLATI_D
, DL
, MVT::v2i64
, SDValue(Res
, 0),
1150 CurDAG
->getTargetConstant(0, DL
, MVT::i32
));
1151 } else if (ABI
.IsN64() || ABI
.IsN32()) {
1153 SDValue Zero64Val
= CurDAG
->getRegister(Mips::ZERO_64
, MVT::i64
);
1154 const bool HiResNonZero
= Highest
|| Higher
;
1155 const bool ResNonZero
= Hi
|| Lo
;
1158 HiRes
= CurDAG
->getMachineNode(
1159 Mips::SUBREG_TO_REG
, DL
, MVT::i64
,
1160 CurDAG
->getTargetConstant(((Highest
>> 15) & 0x1), DL
, MVT::i64
),
1162 CurDAG
->getTargetConstant(Mips::sub_32
, DL
, MVT::i64
));
1165 Res
= CurDAG
->getMachineNode(
1166 Mips::SUBREG_TO_REG
, DL
, MVT::i64
,
1167 CurDAG
->getTargetConstant(((Hi
>> 15) & 0x1), DL
, MVT::i64
),
1169 CurDAG
->getTargetConstant(Mips::sub_32
, DL
, MVT::i64
));
1172 // The HiRes is nonzero but Res is $zero => dsll32 HiRes, 0
1173 // The Res is nonzero but HiRes is $zero => dinsu Res, $zero, 32, 32
1174 // Both are non zero => dinsu Res, HiRes, 32, 32
1176 // The obvious "missing" case is when both are zero, but that case is
1177 // handled by the ldi case.
1179 IntegerType
*Int32Ty
=
1180 IntegerType::get(MF
->getFunction().getContext(), 32);
1181 const ConstantInt
*Const32
= ConstantInt::get(Int32Ty
, 32);
1182 SDValue Ops
[4] = {HiResNonZero
? SDValue(HiRes
, 0) : Zero64Val
,
1183 CurDAG
->getConstant(*Const32
, DL
, MVT::i32
),
1184 CurDAG
->getConstant(*Const32
, DL
, MVT::i32
),
1187 Res
= CurDAG
->getMachineNode(Mips::DINSU
, DL
, MVT::i64
, Ops
);
1188 } else if (HiResNonZero
) {
1189 Res
= CurDAG
->getMachineNode(
1190 Mips::DSLL32
, DL
, MVT::i64
, SDValue(HiRes
, 0),
1191 CurDAG
->getTargetConstant(0, DL
, MVT::i32
));
1194 "Zero splat value handled by non-zero 64bit splat synthesis!");
1196 Res
= CurDAG
->getMachineNode(Mips::FILL_D
, DL
, MVT::v2i64
, SDValue(Res
, 0));
1198 llvm_unreachable("Unknown ABI in MipsISelDAGToDAG!");
1203 if (ResVecTy
!= ViaVecTy
) {
1204 // If LdiOp is writing to a different register class to ResVecTy, then
1205 // fix it up here. This COPY_TO_REGCLASS should never cause a move.v
1206 // since the source and destination register sets contain the same
1208 const TargetLowering
*TLI
= getTargetLowering();
1209 MVT ResVecTySimple
= ResVecTy
.getSimpleVT();
1210 const TargetRegisterClass
*RC
= TLI
->getRegClassFor(ResVecTySimple
);
1211 Res
= CurDAG
->getMachineNode(Mips::COPY_TO_REGCLASS
, DL
,
1212 ResVecTy
, SDValue(Res
, 0),
1213 CurDAG
->getTargetConstant(RC
->getID(), DL
,
1217 ReplaceNode(Node
, Res
);
1226 bool MipsSEDAGToDAGISel::
1227 SelectInlineAsmMemoryOperand(const SDValue
&Op
, unsigned ConstraintID
,
1228 std::vector
<SDValue
> &OutOps
) {
1229 SDValue Base
, Offset
;
1231 switch(ConstraintID
) {
1233 llvm_unreachable("Unexpected asm memory constraint");
1234 // All memory constraints can at least accept raw pointers.
1235 case InlineAsm::Constraint_i
:
1236 OutOps
.push_back(Op
);
1237 OutOps
.push_back(CurDAG
->getTargetConstant(0, SDLoc(Op
), MVT::i32
));
1239 case InlineAsm::Constraint_m
:
1240 case InlineAsm::Constraint_o
:
1241 if (selectAddrRegImm16(Op
, Base
, Offset
)) {
1242 OutOps
.push_back(Base
);
1243 OutOps
.push_back(Offset
);
1246 OutOps
.push_back(Op
);
1247 OutOps
.push_back(CurDAG
->getTargetConstant(0, SDLoc(Op
), MVT::i32
));
1249 case InlineAsm::Constraint_R
:
1250 // The 'R' constraint is supposed to be much more complicated than this.
1251 // However, it's becoming less useful due to architectural changes and
1252 // ought to be replaced by other constraints such as 'ZC'.
1253 // For now, support 9-bit signed offsets which is supportable by all
1254 // subtargets for all instructions.
1255 if (selectAddrRegImm9(Op
, Base
, Offset
)) {
1256 OutOps
.push_back(Base
);
1257 OutOps
.push_back(Offset
);
1260 OutOps
.push_back(Op
);
1261 OutOps
.push_back(CurDAG
->getTargetConstant(0, SDLoc(Op
), MVT::i32
));
1263 case InlineAsm::Constraint_ZC
:
1264 // ZC matches whatever the pref, ll, and sc instructions can handle for the
1266 if (Subtarget
->inMicroMipsMode()) {
1267 // On microMIPS, they can handle 12-bit offsets.
1268 if (selectAddrRegImm12(Op
, Base
, Offset
)) {
1269 OutOps
.push_back(Base
);
1270 OutOps
.push_back(Offset
);
1273 } else if (Subtarget
->hasMips32r6()) {
1274 // On MIPS32r6/MIPS64r6, they can only handle 9-bit offsets.
1275 if (selectAddrRegImm9(Op
, Base
, Offset
)) {
1276 OutOps
.push_back(Base
);
1277 OutOps
.push_back(Offset
);
1280 } else if (selectAddrRegImm16(Op
, Base
, Offset
)) {
1281 // Prior to MIPS32r6/MIPS64r6, they can handle 16-bit offsets.
1282 OutOps
.push_back(Base
);
1283 OutOps
.push_back(Offset
);
1286 // In all cases, 0-bit offsets are acceptable.
1287 OutOps
.push_back(Op
);
1288 OutOps
.push_back(CurDAG
->getTargetConstant(0, SDLoc(Op
), MVT::i32
));
1294 FunctionPass
*llvm::createMipsSEISelDag(MipsTargetMachine
&TM
,
1295 CodeGenOpt::Level OptLevel
) {
1296 return new MipsSEDAGToDAGISel(TM
, OptLevel
);