[obj2yaml] - Stop triggering UB when dumping corrupted strings.
[llvm-complete.git] / docs / CMakePrimer.rst
blob72ebffa5bdd6dddb03bde7381704e46d02e032e2
1 ============
2 CMake Primer
3 ============
5 .. contents::
6    :local:
8 .. warning::
9    Disclaimer: This documentation is written by LLVM project contributors `not`
10    anyone affiliated with the CMake project. This document may contain
11    inaccurate terminology, phrasing, or technical details. It is provided with
12    the best intentions.
15 Introduction
16 ============
18 The LLVM project and many of the core projects built on LLVM build using CMake.
19 This document aims to provide a brief overview of CMake for developers modifying
20 LLVM projects or building their own projects on top of LLVM.
22 The official CMake language references is available in the cmake-language
23 manpage and `cmake-language online documentation
24 <https://cmake.org/cmake/help/v3.4/manual/cmake-language.7.html>`_.
26 10,000 ft View
27 ==============
29 CMake is a tool that reads script files in its own language that describe how a
30 software project builds. As CMake evaluates the scripts it constructs an
31 internal representation of the software project. Once the scripts have been
32 fully processed, if there are no errors, CMake will generate build files to
33 actually build the project. CMake supports generating build files for a variety
34 of command line build tools as well as for popular IDEs.
36 When a user runs CMake it performs a variety of checks similar to how autoconf
37 worked historically. During the checks and the evaluation of the build
38 description scripts CMake caches values into the CMakeCache. This is useful
39 because it allows the build system to skip long-running checks during
40 incremental development. CMake caching also has some drawbacks, but that will be
41 discussed later.
43 Scripting Overview
44 ==================
46 CMake's scripting language has a very simple grammar. Every language construct
47 is a command that matches the pattern _name_(_args_). Commands come in three
48 primary types: language-defined (commands implemented in C++ in CMake), defined
49 functions, and defined macros. The CMake distribution also contains a suite of
50 CMake modules that contain definitions for useful functionality.
52 The example below is the full CMake build for building a C++ "Hello World"
53 program. The example uses only CMake language-defined functions.
55 .. code-block:: cmake
57    cmake_minimum_required(VERSION 3.2)
58    project(HelloWorld)
59    add_executable(HelloWorld HelloWorld.cpp)
61 The CMake language provides control flow constructs in the form of foreach loops
62 and if blocks. To make the example above more complicated you could add an if
63 block to define "APPLE" when targeting Apple platforms:
65 .. code-block:: cmake
67    cmake_minimum_required(VERSION 3.2)
68    project(HelloWorld)
69    add_executable(HelloWorld HelloWorld.cpp)
70    if(APPLE)
71      target_compile_definitions(HelloWorld PUBLIC APPLE)
72    endif()
73    
74 Variables, Types, and Scope
75 ===========================
77 Dereferencing
78 -------------
80 In CMake variables are "stringly" typed. All variables are represented as
81 strings throughout evaluation. Wrapping a variable in ``${}`` dereferences it
82 and results in a literal substitution of the name for the value. CMake refers to
83 this as "variable evaluation" in their documentation. Dereferences are performed
84 *before* the command being called receives the arguments. This means
85 dereferencing a list results in multiple separate arguments being passed to the
86 command.
88 Variable dereferences can be nested and be used to model complex data. For
89 example:
91 .. code-block:: cmake
93    set(var_name var1)
94    set(${var_name} foo) # same as "set(var1 foo)"
95    set(${${var_name}}_var bar) # same as "set(foo_var bar)"
96    
97 Dereferencing an unset variable results in an empty expansion. It is a common
98 pattern in CMake to conditionally set variables knowing that it will be used in
99 code paths that the variable isn't set. There are examples of this throughout
100 the LLVM CMake build system.
102 An example of variable empty expansion is:
104 .. code-block:: cmake
106    if(APPLE)
107      set(extra_sources Apple.cpp)
108    endif()
109    add_executable(HelloWorld HelloWorld.cpp ${extra_sources})
110    
111 In this example the ``extra_sources`` variable is only defined if you're
112 targeting an Apple platform. For all other targets the ``extra_sources`` will be
113 evaluated as empty before add_executable is given its arguments.
115 Lists
116 -----
118 In CMake lists are semi-colon delimited strings, and it is strongly advised that
119 you avoid using semi-colons in lists; it doesn't go smoothly. A few examples of
120 defining lists:
122 .. code-block:: cmake
124    # Creates a list with members a, b, c, and d
125    set(my_list a b c d)
126    set(my_list "a;b;c;d")
127    
128    # Creates a string "a b c d"
129    set(my_string "a b c d")
131 Lists of Lists
132 --------------
134 One of the more complicated patterns in CMake is lists of lists. Because a list
135 cannot contain an element with a semi-colon to construct a list of lists you
136 make a list of variable names that refer to other lists. For example:
138 .. code-block:: cmake
140    set(list_of_lists a b c)
141    set(a 1 2 3)
142    set(b 4 5 6)
143    set(c 7 8 9)
144    
145 With this layout you can iterate through the list of lists printing each value
146 with the following code:
148 .. code-block:: cmake
150    foreach(list_name IN LISTS list_of_lists)
151      foreach(value IN LISTS ${list_name})
152        message(${value})
153      endforeach()
154    endforeach()
155    
156 You'll notice that the inner foreach loop's list is doubly dereferenced. This is
157 because the first dereference turns ``list_name`` into the name of the sub-list
158 (a, b, or c in the example), then the second dereference is to get the value of
159 the list.
161 This pattern is used throughout CMake, the most common example is the compiler
162 flags options, which CMake refers to using the following variable expansions:
163 CMAKE_${LANGUAGE}_FLAGS and CMAKE_${LANGUAGE}_FLAGS_${CMAKE_BUILD_TYPE}.
165 Other Types
166 -----------
168 Variables that are cached or specified on the command line can have types
169 associated with them. The variable's type is used by CMake's UI tool to display
170 the right input field. A variable's type generally doesn't impact evaluation,
171 however CMake does have special handling for some variables such as PATH.
172 You can read more about the special handling in `CMake's set documentation
173 <https://cmake.org/cmake/help/v3.5/command/set.html#set-cache-entry>`_.
175 Scope
176 -----
178 CMake inherently has a directory-based scoping. Setting a variable in a
179 CMakeLists file, will set the variable for that file, and all subdirectories.
180 Variables set in a CMake module that is included in a CMakeLists file will be
181 set in the scope they are included from, and all subdirectories.
183 When a variable that is already set is set again in a subdirectory it overrides
184 the value in that scope and any deeper subdirectories.
186 The CMake set command provides two scope-related options. PARENT_SCOPE sets a
187 variable into the parent scope, and not the current scope. The CACHE option sets
188 the variable in the CMakeCache, which results in it being set in all scopes. The
189 CACHE option will not set a variable that already exists in the CACHE unless the
190 FORCE option is specified.
192 In addition to directory-based scope, CMake functions also have their own scope.
193 This means variables set inside functions do not bleed into the parent scope.
194 This is not true of macros, and it is for this reason LLVM prefers functions
195 over macros whenever reasonable.
197 .. note::
198   Unlike C-based languages, CMake's loop and control flow blocks do not have
199   their own scopes.
201 Control Flow
202 ============
204 CMake features the same basic control flow constructs you would expect in any
205 scripting language, but there are a few quirks because, as with everything in
206 CMake, control flow constructs are commands.
208 If, ElseIf, Else
209 ----------------
211 .. note::
212   For the full documentation on the CMake if command go
213   `here <https://cmake.org/cmake/help/v3.4/command/if.html>`_. That resource is
214   far more complete.
216 In general CMake if blocks work the way you'd expect:
218 .. code-block:: cmake
220   if(<condition>)
221     message("do stuff")
222   elseif(<condition>)
223     message("do other stuff")
224   else()
225     message("do other other stuff")
226   endif()
228 The single most important thing to know about CMake's if blocks coming from a C
229 background is that they do not have their own scope. Variables set inside
230 conditional blocks persist after the ``endif()``.
232 Loops
233 -----
235 The most common form of the CMake ``foreach`` block is:
237 .. code-block:: cmake
239   foreach(var ...)
240     message("do stuff")
241   endforeach()
243 The variable argument portion of the ``foreach`` block can contain dereferenced
244 lists, values to iterate, or a mix of both:
246 .. code-block:: cmake
248   foreach(var foo bar baz)
249     message(${var})
250   endforeach()
251   # prints:
252   #  foo
253   #  bar
254   #  baz
256   set(my_list 1 2 3)
257   foreach(var ${my_list})
258     message(${var})
259   endforeach()
260   # prints:
261   #  1
262   #  2
263   #  3
265   foreach(var ${my_list} out_of_bounds)
266     message(${var})
267   endforeach()
268   # prints:
269   #  1
270   #  2
271   #  3
272   #  out_of_bounds
274 There is also a more modern CMake foreach syntax. The code below is equivalent
275 to the code above:
277 .. code-block:: cmake
279   foreach(var IN ITEMS foo bar baz)
280     message(${var})
281   endforeach()
282   # prints:
283   #  foo
284   #  bar
285   #  baz
287   set(my_list 1 2 3)
288   foreach(var IN LISTS my_list)
289     message(${var})
290   endforeach()
291   # prints:
292   #  1
293   #  2
294   #  3
296   foreach(var IN LISTS my_list ITEMS out_of_bounds)
297     message(${var})
298   endforeach()
299   # prints:
300   #  1
301   #  2
302   #  3
303   #  out_of_bounds
305 Similar to the conditional statements, these generally behave how you would
306 expect, and they do not have their own scope.
308 CMake also supports ``while`` loops, although they are not widely used in LLVM.
310 Modules, Functions and Macros
311 =============================
313 Modules
314 -------
316 Modules are CMake's vehicle for enabling code reuse. CMake modules are just
317 CMake script files. They can contain code to execute on include as well as
318 definitions for commands.
320 In CMake macros and functions are universally referred to as commands, and they
321 are the primary method of defining code that can be called multiple times.
323 In LLVM we have several CMake modules that are included as part of our
324 distribution for developers who don't build our project from source. Those
325 modules are the fundamental pieces needed to build LLVM-based projects with
326 CMake. We also rely on modules as a way of organizing the build system's
327 functionality for maintainability and re-use within LLVM projects.
329 Argument Handling
330 -----------------
332 When defining a CMake command handling arguments is very useful. The examples
333 in this section will all use the CMake ``function`` block, but this all applies
334 to the ``macro`` block as well.
336 CMake commands can have named arguments that are requried at every call site. In
337 addition, all commands will implicitly accept a variable number of extra
338 arguments (In C parlance, all commands are varargs functions). When a command is
339 invoked with extra arguments (beyond the named ones) CMake will store the full
340 list of arguments (both named and unnamed) in a list named ``ARGV``, and the
341 sublist of unnamed arguments in ``ARGN``. Below is a trivial example of
342 providing a wrapper function for CMake's built in function ``add_dependencies``.
344 .. code-block:: cmake
346    function(add_deps target)
347      add_dependencies(${target} ${ARGN})
348    endfunction()
350 This example defines a new macro named ``add_deps`` which takes a required first
351 argument, and just calls another function passing through the first argument and
352 all trailing arguments.
354 CMake provides a module ``CMakeParseArguments`` which provides an implementation
355 of advanced argument parsing. We use this all over LLVM, and it is recommended
356 for any function that has complex argument-based behaviors or optional
357 arguments. CMake's official documentation for the module is in the
358 ``cmake-modules`` manpage, and is also available at the
359 `cmake-modules online documentation
360 <https://cmake.org/cmake/help/v3.4/module/CMakeParseArguments.html>`_.
362 .. note::
363   As of CMake 3.5 the cmake_parse_arguments command has become a native command
364   and the CMakeParseArguments module is empty and only left around for
365   compatibility.
367 Functions Vs Macros
368 -------------------
370 Functions and Macros look very similar in how they are used, but there is one
371 fundamental difference between the two. Functions have their own scope, and
372 macros don't. This means variables set in macros will bleed out into the calling
373 scope. That makes macros suitable for defining very small bits of functionality
374 only.
376 The other difference between CMake functions and macros is how arguments are
377 passed. Arguments to macros are not set as variables, instead dereferences to
378 the parameters are resolved across the macro before executing it. This can
379 result in some unexpected behavior if using unreferenced variables. For example:
381 .. code-block:: cmake
383    macro(print_list my_list)
384      foreach(var IN LISTS my_list)
385        message("${var}")
386      endforeach()
387    endmacro()
388    
389    set(my_list a b c d)
390    set(my_list_of_numbers 1 2 3 4)
391    print_list(my_list_of_numbers)
392    # prints:
393    # a
394    # b
395    # c
396    # d
398 Generally speaking this issue is uncommon because it requires using
399 non-dereferenced variables with names that overlap in the parent scope, but it
400 is important to be aware of because it can lead to subtle bugs.
402 LLVM Project Wrappers
403 =====================
405 LLVM projects provide lots of wrappers around critical CMake built-in commands.
406 We use these wrappers to provide consistent behaviors across LLVM components
407 and to reduce code duplication.
409 We generally (but not always) follow the convention that commands prefaced with
410 ``llvm_`` are intended to be used only as building blocks for other commands.
411 Wrapper commands that are intended for direct use are generally named following
412 with the project in the middle of the command name (i.e. ``add_llvm_executable``
413 is the wrapper for ``add_executable``). The LLVM ``add_*`` wrapper functions are
414 all defined in ``AddLLVM.cmake`` which is installed as part of the LLVM
415 distribution. It can be included and used by any LLVM sub-project that requires
416 LLVM.
418 .. note::
420    Not all LLVM projects require LLVM for all use cases. For example compiler-rt
421    can be built without LLVM, and the compiler-rt sanitizer libraries are used
422    with GCC.
424 Useful Built-in Commands
425 ========================
427 CMake has a bunch of useful built-in commands. This document isn't going to
428 go into details about them because The CMake project has excellent
429 documentation. To highlight a few useful functions see:
431 * `add_custom_command <https://cmake.org/cmake/help/v3.4/command/add_custom_command.html>`_
432 * `add_custom_target <https://cmake.org/cmake/help/v3.4/command/add_custom_target.html>`_
433 * `file <https://cmake.org/cmake/help/v3.4/command/file.html>`_
434 * `list <https://cmake.org/cmake/help/v3.4/command/list.html>`_
435 * `math <https://cmake.org/cmake/help/v3.4/command/math.html>`_
436 * `string <https://cmake.org/cmake/help/v3.4/command/string.html>`_
438 The full documentation for CMake commands is in the ``cmake-commands`` manpage
439 and available on `CMake's website <https://cmake.org/cmake/help/v3.4/manual/cmake-commands.7.html>`_