1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the Jump Threading pass.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Transforms/Scalar/JumpThreading.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/DenseSet.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/BlockFrequencyInfo.h"
23 #include "llvm/Analysis/BranchProbabilityInfo.h"
24 #include "llvm/Analysis/CFG.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/DomTreeUpdater.h"
27 #include "llvm/Analysis/GlobalsModRef.h"
28 #include "llvm/Analysis/GuardUtils.h"
29 #include "llvm/Analysis/InstructionSimplify.h"
30 #include "llvm/Analysis/LazyValueInfo.h"
31 #include "llvm/Analysis/Loads.h"
32 #include "llvm/Analysis/LoopInfo.h"
33 #include "llvm/Analysis/TargetLibraryInfo.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/IR/BasicBlock.h"
36 #include "llvm/IR/CFG.h"
37 #include "llvm/IR/Constant.h"
38 #include "llvm/IR/ConstantRange.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/InstrTypes.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/LLVMContext.h"
49 #include "llvm/IR/MDBuilder.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/PassManager.h"
53 #include "llvm/IR/PatternMatch.h"
54 #include "llvm/IR/Type.h"
55 #include "llvm/IR/Use.h"
56 #include "llvm/IR/User.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/Pass.h"
59 #include "llvm/Support/BlockFrequency.h"
60 #include "llvm/Support/BranchProbability.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include "llvm/Transforms/Scalar.h"
66 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
67 #include "llvm/Transforms/Utils/Cloning.h"
68 #include "llvm/Transforms/Utils/Local.h"
69 #include "llvm/Transforms/Utils/SSAUpdater.h"
70 #include "llvm/Transforms/Utils/ValueMapper.h"
80 using namespace jumpthreading
;
82 #define DEBUG_TYPE "jump-threading"
84 STATISTIC(NumThreads
, "Number of jumps threaded");
85 STATISTIC(NumFolds
, "Number of terminators folded");
86 STATISTIC(NumDupes
, "Number of branch blocks duplicated to eliminate phi");
88 static cl::opt
<unsigned>
89 BBDuplicateThreshold("jump-threading-threshold",
90 cl::desc("Max block size to duplicate for jump threading"),
91 cl::init(6), cl::Hidden
);
93 static cl::opt
<unsigned>
94 ImplicationSearchThreshold(
95 "jump-threading-implication-search-threshold",
96 cl::desc("The number of predecessors to search for a stronger "
97 "condition to use to thread over a weaker condition"),
98 cl::init(3), cl::Hidden
);
100 static cl::opt
<bool> PrintLVIAfterJumpThreading(
101 "print-lvi-after-jump-threading",
102 cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false),
105 static cl::opt
<bool> ThreadAcrossLoopHeaders(
106 "jump-threading-across-loop-headers",
107 cl::desc("Allow JumpThreading to thread across loop headers, for testing"),
108 cl::init(false), cl::Hidden
);
113 /// This pass performs 'jump threading', which looks at blocks that have
114 /// multiple predecessors and multiple successors. If one or more of the
115 /// predecessors of the block can be proven to always jump to one of the
116 /// successors, we forward the edge from the predecessor to the successor by
117 /// duplicating the contents of this block.
119 /// An example of when this can occur is code like this:
126 /// In this case, the unconditional branch at the end of the first if can be
127 /// revectored to the false side of the second if.
128 class JumpThreading
: public FunctionPass
{
129 JumpThreadingPass Impl
;
132 static char ID
; // Pass identification
134 JumpThreading(int T
= -1) : FunctionPass(ID
), Impl(T
) {
135 initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
138 bool runOnFunction(Function
&F
) override
;
140 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
141 AU
.addRequired
<DominatorTreeWrapperPass
>();
142 AU
.addPreserved
<DominatorTreeWrapperPass
>();
143 AU
.addRequired
<AAResultsWrapperPass
>();
144 AU
.addRequired
<LazyValueInfoWrapperPass
>();
145 AU
.addPreserved
<LazyValueInfoWrapperPass
>();
146 AU
.addPreserved
<GlobalsAAWrapperPass
>();
147 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
150 void releaseMemory() override
{ Impl
.releaseMemory(); }
153 } // end anonymous namespace
155 char JumpThreading::ID
= 0;
157 INITIALIZE_PASS_BEGIN(JumpThreading
, "jump-threading",
158 "Jump Threading", false, false)
159 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
160 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass
)
161 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass
)
162 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass
)
163 INITIALIZE_PASS_END(JumpThreading
, "jump-threading",
164 "Jump Threading", false, false)
166 // Public interface to the Jump Threading pass
167 FunctionPass
*llvm::createJumpThreadingPass(int Threshold
) {
168 return new JumpThreading(Threshold
);
171 JumpThreadingPass::JumpThreadingPass(int T
) {
172 BBDupThreshold
= (T
== -1) ? BBDuplicateThreshold
: unsigned(T
);
175 // Update branch probability information according to conditional
176 // branch probability. This is usually made possible for cloned branches
177 // in inline instances by the context specific profile in the caller.
189 // cond = PN([true, %A], [..., %B]); // PHI node
192 // ... // P(cond == true) = 1%
195 // Here we know that when block A is taken, cond must be true, which means
196 // P(cond == true | A) = 1
198 // Given that P(cond == true) = P(cond == true | A) * P(A) +
199 // P(cond == true | B) * P(B)
201 // P(cond == true ) = P(A) + P(cond == true | B) * P(B)
204 // P(A) is less than P(cond == true), i.e.
205 // P(t == true) <= P(cond == true)
207 // In other words, if we know P(cond == true) is unlikely, we know
208 // that P(t == true) is also unlikely.
210 static void updatePredecessorProfileMetadata(PHINode
*PN
, BasicBlock
*BB
) {
211 BranchInst
*CondBr
= dyn_cast
<BranchInst
>(BB
->getTerminator());
215 BranchProbability BP
;
216 uint64_t TrueWeight
, FalseWeight
;
217 if (!CondBr
->extractProfMetadata(TrueWeight
, FalseWeight
))
220 // Returns the outgoing edge of the dominating predecessor block
221 // that leads to the PhiNode's incoming block:
222 auto GetPredOutEdge
=
223 [](BasicBlock
*IncomingBB
,
224 BasicBlock
*PhiBB
) -> std::pair
<BasicBlock
*, BasicBlock
*> {
225 auto *PredBB
= IncomingBB
;
226 auto *SuccBB
= PhiBB
;
228 BranchInst
*PredBr
= dyn_cast
<BranchInst
>(PredBB
->getTerminator());
229 if (PredBr
&& PredBr
->isConditional())
230 return {PredBB
, SuccBB
};
231 auto *SinglePredBB
= PredBB
->getSinglePredecessor();
233 return {nullptr, nullptr};
235 PredBB
= SinglePredBB
;
239 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
240 Value
*PhiOpnd
= PN
->getIncomingValue(i
);
241 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(PhiOpnd
);
243 if (!CI
|| !CI
->getType()->isIntegerTy(1))
246 BP
= (CI
->isOne() ? BranchProbability::getBranchProbability(
247 TrueWeight
, TrueWeight
+ FalseWeight
)
248 : BranchProbability::getBranchProbability(
249 FalseWeight
, TrueWeight
+ FalseWeight
));
251 auto PredOutEdge
= GetPredOutEdge(PN
->getIncomingBlock(i
), BB
);
252 if (!PredOutEdge
.first
)
255 BasicBlock
*PredBB
= PredOutEdge
.first
;
256 BranchInst
*PredBr
= cast
<BranchInst
>(PredBB
->getTerminator());
258 uint64_t PredTrueWeight
, PredFalseWeight
;
259 // FIXME: We currently only set the profile data when it is missing.
260 // With PGO, this can be used to refine even existing profile data with
261 // context information. This needs to be done after more performance
263 if (PredBr
->extractProfMetadata(PredTrueWeight
, PredFalseWeight
))
266 // We can not infer anything useful when BP >= 50%, because BP is the
267 // upper bound probability value.
268 if (BP
>= BranchProbability(50, 100))
271 SmallVector
<uint32_t, 2> Weights
;
272 if (PredBr
->getSuccessor(0) == PredOutEdge
.second
) {
273 Weights
.push_back(BP
.getNumerator());
274 Weights
.push_back(BP
.getCompl().getNumerator());
276 Weights
.push_back(BP
.getCompl().getNumerator());
277 Weights
.push_back(BP
.getNumerator());
279 PredBr
->setMetadata(LLVMContext::MD_prof
,
280 MDBuilder(PredBr
->getParent()->getContext())
281 .createBranchWeights(Weights
));
285 /// runOnFunction - Toplevel algorithm.
286 bool JumpThreading::runOnFunction(Function
&F
) {
289 auto TLI
= &getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI();
290 // Get DT analysis before LVI. When LVI is initialized it conditionally adds
291 // DT if it's available.
292 auto DT
= &getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
293 auto LVI
= &getAnalysis
<LazyValueInfoWrapperPass
>().getLVI();
294 auto AA
= &getAnalysis
<AAResultsWrapperPass
>().getAAResults();
295 DomTreeUpdater
DTU(*DT
, DomTreeUpdater::UpdateStrategy::Lazy
);
296 std::unique_ptr
<BlockFrequencyInfo
> BFI
;
297 std::unique_ptr
<BranchProbabilityInfo
> BPI
;
298 bool HasProfileData
= F
.hasProfileData();
299 if (HasProfileData
) {
300 LoopInfo LI
{DominatorTree(F
)};
301 BPI
.reset(new BranchProbabilityInfo(F
, LI
, TLI
));
302 BFI
.reset(new BlockFrequencyInfo(F
, *BPI
, LI
));
305 bool Changed
= Impl
.runImpl(F
, TLI
, LVI
, AA
, &DTU
, HasProfileData
,
306 std::move(BFI
), std::move(BPI
));
307 if (PrintLVIAfterJumpThreading
) {
308 dbgs() << "LVI for function '" << F
.getName() << "':\n";
309 LVI
->printLVI(F
, *DT
, dbgs());
314 PreservedAnalyses
JumpThreadingPass::run(Function
&F
,
315 FunctionAnalysisManager
&AM
) {
316 auto &TLI
= AM
.getResult
<TargetLibraryAnalysis
>(F
);
317 // Get DT analysis before LVI. When LVI is initialized it conditionally adds
318 // DT if it's available.
319 auto &DT
= AM
.getResult
<DominatorTreeAnalysis
>(F
);
320 auto &LVI
= AM
.getResult
<LazyValueAnalysis
>(F
);
321 auto &AA
= AM
.getResult
<AAManager
>(F
);
322 DomTreeUpdater
DTU(DT
, DomTreeUpdater::UpdateStrategy::Lazy
);
324 std::unique_ptr
<BlockFrequencyInfo
> BFI
;
325 std::unique_ptr
<BranchProbabilityInfo
> BPI
;
326 if (F
.hasProfileData()) {
327 LoopInfo LI
{DominatorTree(F
)};
328 BPI
.reset(new BranchProbabilityInfo(F
, LI
, &TLI
));
329 BFI
.reset(new BlockFrequencyInfo(F
, *BPI
, LI
));
332 bool Changed
= runImpl(F
, &TLI
, &LVI
, &AA
, &DTU
, HasProfileData
,
333 std::move(BFI
), std::move(BPI
));
336 return PreservedAnalyses::all();
337 PreservedAnalyses PA
;
338 PA
.preserve
<GlobalsAA
>();
339 PA
.preserve
<DominatorTreeAnalysis
>();
340 PA
.preserve
<LazyValueAnalysis
>();
344 bool JumpThreadingPass::runImpl(Function
&F
, TargetLibraryInfo
*TLI_
,
345 LazyValueInfo
*LVI_
, AliasAnalysis
*AA_
,
346 DomTreeUpdater
*DTU_
, bool HasProfileData_
,
347 std::unique_ptr
<BlockFrequencyInfo
> BFI_
,
348 std::unique_ptr
<BranchProbabilityInfo
> BPI_
) {
349 LLVM_DEBUG(dbgs() << "Jump threading on function '" << F
.getName() << "'\n");
356 // When profile data is available, we need to update edge weights after
357 // successful jump threading, which requires both BPI and BFI being available.
358 HasProfileData
= HasProfileData_
;
359 auto *GuardDecl
= F
.getParent()->getFunction(
360 Intrinsic::getName(Intrinsic::experimental_guard
));
361 HasGuards
= GuardDecl
&& !GuardDecl
->use_empty();
362 if (HasProfileData
) {
363 BPI
= std::move(BPI_
);
364 BFI
= std::move(BFI_
);
367 // JumpThreading must not processes blocks unreachable from entry. It's a
368 // waste of compute time and can potentially lead to hangs.
369 SmallPtrSet
<BasicBlock
*, 16> Unreachable
;
370 assert(DTU
&& "DTU isn't passed into JumpThreading before using it.");
371 assert(DTU
->hasDomTree() && "JumpThreading relies on DomTree to proceed.");
372 DominatorTree
&DT
= DTU
->getDomTree();
374 if (!DT
.isReachableFromEntry(&BB
))
375 Unreachable
.insert(&BB
);
377 if (!ThreadAcrossLoopHeaders
)
380 bool EverChanged
= false;
385 if (Unreachable
.count(&BB
))
387 while (ProcessBlock(&BB
)) // Thread all of the branches we can over BB.
389 // Stop processing BB if it's the entry or is now deleted. The following
390 // routines attempt to eliminate BB and locating a suitable replacement
391 // for the entry is non-trivial.
392 if (&BB
== &F
.getEntryBlock() || DTU
->isBBPendingDeletion(&BB
))
395 if (pred_empty(&BB
)) {
396 // When ProcessBlock makes BB unreachable it doesn't bother to fix up
397 // the instructions in it. We must remove BB to prevent invalid IR.
398 LLVM_DEBUG(dbgs() << " JT: Deleting dead block '" << BB
.getName()
399 << "' with terminator: " << *BB
.getTerminator()
401 LoopHeaders
.erase(&BB
);
402 LVI
->eraseBlock(&BB
);
403 DeleteDeadBlock(&BB
, DTU
);
408 // ProcessBlock doesn't thread BBs with unconditional TIs. However, if BB
409 // is "almost empty", we attempt to merge BB with its sole successor.
410 auto *BI
= dyn_cast
<BranchInst
>(BB
.getTerminator());
411 if (BI
&& BI
->isUnconditional() &&
412 // The terminator must be the only non-phi instruction in BB.
413 BB
.getFirstNonPHIOrDbg()->isTerminator() &&
414 // Don't alter Loop headers and latches to ensure another pass can
415 // detect and transform nested loops later.
416 !LoopHeaders
.count(&BB
) && !LoopHeaders
.count(BI
->getSuccessor(0)) &&
417 TryToSimplifyUncondBranchFromEmptyBlock(&BB
, DTU
)) {
418 // BB is valid for cleanup here because we passed in DTU. F remains
419 // BB's parent until a DTU->getDomTree() event.
420 LVI
->eraseBlock(&BB
);
424 EverChanged
|= Changed
;
428 // Flush only the Dominator Tree.
434 // Replace uses of Cond with ToVal when safe to do so. If all uses are
435 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond
436 // because we may incorrectly replace uses when guards/assumes are uses of
437 // of `Cond` and we used the guards/assume to reason about the `Cond` value
438 // at the end of block. RAUW unconditionally replaces all uses
439 // including the guards/assumes themselves and the uses before the
441 static void ReplaceFoldableUses(Instruction
*Cond
, Value
*ToVal
) {
442 assert(Cond
->getType() == ToVal
->getType());
443 auto *BB
= Cond
->getParent();
444 // We can unconditionally replace all uses in non-local blocks (i.e. uses
445 // strictly dominated by BB), since LVI information is true from the
447 replaceNonLocalUsesWith(Cond
, ToVal
);
448 for (Instruction
&I
: reverse(*BB
)) {
449 // Reached the Cond whose uses we are trying to replace, so there are no
453 // We only replace uses in instructions that are guaranteed to reach the end
454 // of BB, where we know Cond is ToVal.
455 if (!isGuaranteedToTransferExecutionToSuccessor(&I
))
457 I
.replaceUsesOfWith(Cond
, ToVal
);
459 if (Cond
->use_empty() && !Cond
->mayHaveSideEffects())
460 Cond
->eraseFromParent();
463 /// Return the cost of duplicating a piece of this block from first non-phi
464 /// and before StopAt instruction to thread across it. Stop scanning the block
465 /// when exceeding the threshold. If duplication is impossible, returns ~0U.
466 static unsigned getJumpThreadDuplicationCost(BasicBlock
*BB
,
468 unsigned Threshold
) {
469 assert(StopAt
->getParent() == BB
&& "Not an instruction from proper BB?");
470 /// Ignore PHI nodes, these will be flattened when duplication happens.
471 BasicBlock::const_iterator
I(BB
->getFirstNonPHI());
473 // FIXME: THREADING will delete values that are just used to compute the
474 // branch, so they shouldn't count against the duplication cost.
477 if (BB
->getTerminator() == StopAt
) {
478 // Threading through a switch statement is particularly profitable. If this
479 // block ends in a switch, decrease its cost to make it more likely to
481 if (isa
<SwitchInst
>(StopAt
))
484 // The same holds for indirect branches, but slightly more so.
485 if (isa
<IndirectBrInst
>(StopAt
))
489 // Bump the threshold up so the early exit from the loop doesn't skip the
490 // terminator-based Size adjustment at the end.
493 // Sum up the cost of each instruction until we get to the terminator. Don't
494 // include the terminator because the copy won't include it.
496 for (; &*I
!= StopAt
; ++I
) {
498 // Stop scanning the block if we've reached the threshold.
499 if (Size
> Threshold
)
502 // Debugger intrinsics don't incur code size.
503 if (isa
<DbgInfoIntrinsic
>(I
)) continue;
505 // If this is a pointer->pointer bitcast, it is free.
506 if (isa
<BitCastInst
>(I
) && I
->getType()->isPointerTy())
509 // Bail out if this instruction gives back a token type, it is not possible
510 // to duplicate it if it is used outside this BB.
511 if (I
->getType()->isTokenTy() && I
->isUsedOutsideOfBlock(BB
))
514 // All other instructions count for at least one unit.
517 // Calls are more expensive. If they are non-intrinsic calls, we model them
518 // as having cost of 4. If they are a non-vector intrinsic, we model them
519 // as having cost of 2 total, and if they are a vector intrinsic, we model
520 // them as having cost 1.
521 if (const CallInst
*CI
= dyn_cast
<CallInst
>(I
)) {
522 if (CI
->cannotDuplicate() || CI
->isConvergent())
523 // Blocks with NoDuplicate are modelled as having infinite cost, so they
524 // are never duplicated.
526 else if (!isa
<IntrinsicInst
>(CI
))
528 else if (!CI
->getType()->isVectorTy())
533 return Size
> Bonus
? Size
- Bonus
: 0;
536 /// FindLoopHeaders - We do not want jump threading to turn proper loop
537 /// structures into irreducible loops. Doing this breaks up the loop nesting
538 /// hierarchy and pessimizes later transformations. To prevent this from
539 /// happening, we first have to find the loop headers. Here we approximate this
540 /// by finding targets of backedges in the CFG.
542 /// Note that there definitely are cases when we want to allow threading of
543 /// edges across a loop header. For example, threading a jump from outside the
544 /// loop (the preheader) to an exit block of the loop is definitely profitable.
545 /// It is also almost always profitable to thread backedges from within the loop
546 /// to exit blocks, and is often profitable to thread backedges to other blocks
547 /// within the loop (forming a nested loop). This simple analysis is not rich
548 /// enough to track all of these properties and keep it up-to-date as the CFG
549 /// mutates, so we don't allow any of these transformations.
550 void JumpThreadingPass::FindLoopHeaders(Function
&F
) {
551 SmallVector
<std::pair
<const BasicBlock
*,const BasicBlock
*>, 32> Edges
;
552 FindFunctionBackedges(F
, Edges
);
554 for (const auto &Edge
: Edges
)
555 LoopHeaders
.insert(Edge
.second
);
558 /// getKnownConstant - Helper method to determine if we can thread over a
559 /// terminator with the given value as its condition, and if so what value to
560 /// use for that. What kind of value this is depends on whether we want an
561 /// integer or a block address, but an undef is always accepted.
562 /// Returns null if Val is null or not an appropriate constant.
563 static Constant
*getKnownConstant(Value
*Val
, ConstantPreference Preference
) {
567 // Undef is "known" enough.
568 if (UndefValue
*U
= dyn_cast
<UndefValue
>(Val
))
571 if (Preference
== WantBlockAddress
)
572 return dyn_cast
<BlockAddress
>(Val
->stripPointerCasts());
574 return dyn_cast
<ConstantInt
>(Val
);
577 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
578 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
579 /// in any of our predecessors. If so, return the known list of value and pred
580 /// BB in the result vector.
582 /// This returns true if there were any known values.
583 bool JumpThreadingPass::ComputeValueKnownInPredecessorsImpl(
584 Value
*V
, BasicBlock
*BB
, PredValueInfo
&Result
,
585 ConstantPreference Preference
,
586 DenseSet
<std::pair
<Value
*, BasicBlock
*>> &RecursionSet
,
588 // This method walks up use-def chains recursively. Because of this, we could
589 // get into an infinite loop going around loops in the use-def chain. To
590 // prevent this, keep track of what (value, block) pairs we've already visited
591 // and terminate the search if we loop back to them
592 if (!RecursionSet
.insert(std::make_pair(V
, BB
)).second
)
595 // If V is a constant, then it is known in all predecessors.
596 if (Constant
*KC
= getKnownConstant(V
, Preference
)) {
597 for (BasicBlock
*Pred
: predecessors(BB
))
598 Result
.push_back(std::make_pair(KC
, Pred
));
600 return !Result
.empty();
603 // If V is a non-instruction value, or an instruction in a different block,
604 // then it can't be derived from a PHI.
605 Instruction
*I
= dyn_cast
<Instruction
>(V
);
606 if (!I
|| I
->getParent() != BB
) {
608 // Okay, if this is a live-in value, see if it has a known value at the end
609 // of any of our predecessors.
611 // FIXME: This should be an edge property, not a block end property.
612 /// TODO: Per PR2563, we could infer value range information about a
613 /// predecessor based on its terminator.
615 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
616 // "I" is a non-local compare-with-a-constant instruction. This would be
617 // able to handle value inequalities better, for example if the compare is
618 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
619 // Perhaps getConstantOnEdge should be smart enough to do this?
621 if (DTU
->hasPendingDomTreeUpdates())
625 for (BasicBlock
*P
: predecessors(BB
)) {
626 // If the value is known by LazyValueInfo to be a constant in a
627 // predecessor, use that information to try to thread this block.
628 Constant
*PredCst
= LVI
->getConstantOnEdge(V
, P
, BB
, CxtI
);
629 if (Constant
*KC
= getKnownConstant(PredCst
, Preference
))
630 Result
.push_back(std::make_pair(KC
, P
));
633 return !Result
.empty();
636 /// If I is a PHI node, then we know the incoming values for any constants.
637 if (PHINode
*PN
= dyn_cast
<PHINode
>(I
)) {
638 if (DTU
->hasPendingDomTreeUpdates())
642 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
643 Value
*InVal
= PN
->getIncomingValue(i
);
644 if (Constant
*KC
= getKnownConstant(InVal
, Preference
)) {
645 Result
.push_back(std::make_pair(KC
, PN
->getIncomingBlock(i
)));
647 Constant
*CI
= LVI
->getConstantOnEdge(InVal
,
648 PN
->getIncomingBlock(i
),
650 if (Constant
*KC
= getKnownConstant(CI
, Preference
))
651 Result
.push_back(std::make_pair(KC
, PN
->getIncomingBlock(i
)));
655 return !Result
.empty();
658 // Handle Cast instructions. Only see through Cast when the source operand is
659 // PHI or Cmp to save the compilation time.
660 if (CastInst
*CI
= dyn_cast
<CastInst
>(I
)) {
661 Value
*Source
= CI
->getOperand(0);
662 if (!isa
<PHINode
>(Source
) && !isa
<CmpInst
>(Source
))
664 ComputeValueKnownInPredecessorsImpl(Source
, BB
, Result
, Preference
,
669 // Convert the known values.
670 for (auto &R
: Result
)
671 R
.first
= ConstantExpr::getCast(CI
->getOpcode(), R
.first
, CI
->getType());
676 // Handle some boolean conditions.
677 if (I
->getType()->getPrimitiveSizeInBits() == 1) {
678 assert(Preference
== WantInteger
&& "One-bit non-integer type?");
680 // X & false -> false
681 if (I
->getOpcode() == Instruction::Or
||
682 I
->getOpcode() == Instruction::And
) {
683 PredValueInfoTy LHSVals
, RHSVals
;
685 ComputeValueKnownInPredecessorsImpl(I
->getOperand(0), BB
, LHSVals
,
686 WantInteger
, RecursionSet
, CxtI
);
687 ComputeValueKnownInPredecessorsImpl(I
->getOperand(1), BB
, RHSVals
,
688 WantInteger
, RecursionSet
, CxtI
);
690 if (LHSVals
.empty() && RHSVals
.empty())
693 ConstantInt
*InterestingVal
;
694 if (I
->getOpcode() == Instruction::Or
)
695 InterestingVal
= ConstantInt::getTrue(I
->getContext());
697 InterestingVal
= ConstantInt::getFalse(I
->getContext());
699 SmallPtrSet
<BasicBlock
*, 4> LHSKnownBBs
;
701 // Scan for the sentinel. If we find an undef, force it to the
702 // interesting value: x|undef -> true and x&undef -> false.
703 for (const auto &LHSVal
: LHSVals
)
704 if (LHSVal
.first
== InterestingVal
|| isa
<UndefValue
>(LHSVal
.first
)) {
705 Result
.emplace_back(InterestingVal
, LHSVal
.second
);
706 LHSKnownBBs
.insert(LHSVal
.second
);
708 for (const auto &RHSVal
: RHSVals
)
709 if (RHSVal
.first
== InterestingVal
|| isa
<UndefValue
>(RHSVal
.first
)) {
710 // If we already inferred a value for this block on the LHS, don't
712 if (!LHSKnownBBs
.count(RHSVal
.second
))
713 Result
.emplace_back(InterestingVal
, RHSVal
.second
);
716 return !Result
.empty();
719 // Handle the NOT form of XOR.
720 if (I
->getOpcode() == Instruction::Xor
&&
721 isa
<ConstantInt
>(I
->getOperand(1)) &&
722 cast
<ConstantInt
>(I
->getOperand(1))->isOne()) {
723 ComputeValueKnownInPredecessorsImpl(I
->getOperand(0), BB
, Result
,
724 WantInteger
, RecursionSet
, CxtI
);
728 // Invert the known values.
729 for (auto &R
: Result
)
730 R
.first
= ConstantExpr::getNot(R
.first
);
735 // Try to simplify some other binary operator values.
736 } else if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(I
)) {
737 assert(Preference
!= WantBlockAddress
738 && "A binary operator creating a block address?");
739 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(BO
->getOperand(1))) {
740 PredValueInfoTy LHSVals
;
741 ComputeValueKnownInPredecessorsImpl(BO
->getOperand(0), BB
, LHSVals
,
742 WantInteger
, RecursionSet
, CxtI
);
744 // Try to use constant folding to simplify the binary operator.
745 for (const auto &LHSVal
: LHSVals
) {
746 Constant
*V
= LHSVal
.first
;
747 Constant
*Folded
= ConstantExpr::get(BO
->getOpcode(), V
, CI
);
749 if (Constant
*KC
= getKnownConstant(Folded
, WantInteger
))
750 Result
.push_back(std::make_pair(KC
, LHSVal
.second
));
754 return !Result
.empty();
757 // Handle compare with phi operand, where the PHI is defined in this block.
758 if (CmpInst
*Cmp
= dyn_cast
<CmpInst
>(I
)) {
759 assert(Preference
== WantInteger
&& "Compares only produce integers");
760 Type
*CmpType
= Cmp
->getType();
761 Value
*CmpLHS
= Cmp
->getOperand(0);
762 Value
*CmpRHS
= Cmp
->getOperand(1);
763 CmpInst::Predicate Pred
= Cmp
->getPredicate();
765 PHINode
*PN
= dyn_cast
<PHINode
>(CmpLHS
);
767 PN
= dyn_cast
<PHINode
>(CmpRHS
);
768 if (PN
&& PN
->getParent() == BB
) {
769 const DataLayout
&DL
= PN
->getModule()->getDataLayout();
770 // We can do this simplification if any comparisons fold to true or false.
772 if (DTU
->hasPendingDomTreeUpdates())
776 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
777 BasicBlock
*PredBB
= PN
->getIncomingBlock(i
);
780 LHS
= PN
->getIncomingValue(i
);
781 RHS
= CmpRHS
->DoPHITranslation(BB
, PredBB
);
783 LHS
= CmpLHS
->DoPHITranslation(BB
, PredBB
);
784 RHS
= PN
->getIncomingValue(i
);
786 Value
*Res
= SimplifyCmpInst(Pred
, LHS
, RHS
, {DL
});
788 if (!isa
<Constant
>(RHS
))
791 // getPredicateOnEdge call will make no sense if LHS is defined in BB.
792 auto LHSInst
= dyn_cast
<Instruction
>(LHS
);
793 if (LHSInst
&& LHSInst
->getParent() == BB
)
796 LazyValueInfo::Tristate
797 ResT
= LVI
->getPredicateOnEdge(Pred
, LHS
,
798 cast
<Constant
>(RHS
), PredBB
, BB
,
800 if (ResT
== LazyValueInfo::Unknown
)
802 Res
= ConstantInt::get(Type::getInt1Ty(LHS
->getContext()), ResT
);
805 if (Constant
*KC
= getKnownConstant(Res
, WantInteger
))
806 Result
.push_back(std::make_pair(KC
, PredBB
));
809 return !Result
.empty();
812 // If comparing a live-in value against a constant, see if we know the
813 // live-in value on any predecessors.
814 if (isa
<Constant
>(CmpRHS
) && !CmpType
->isVectorTy()) {
815 Constant
*CmpConst
= cast
<Constant
>(CmpRHS
);
817 if (!isa
<Instruction
>(CmpLHS
) ||
818 cast
<Instruction
>(CmpLHS
)->getParent() != BB
) {
819 if (DTU
->hasPendingDomTreeUpdates())
823 for (BasicBlock
*P
: predecessors(BB
)) {
824 // If the value is known by LazyValueInfo to be a constant in a
825 // predecessor, use that information to try to thread this block.
826 LazyValueInfo::Tristate Res
=
827 LVI
->getPredicateOnEdge(Pred
, CmpLHS
,
828 CmpConst
, P
, BB
, CxtI
? CxtI
: Cmp
);
829 if (Res
== LazyValueInfo::Unknown
)
832 Constant
*ResC
= ConstantInt::get(CmpType
, Res
);
833 Result
.push_back(std::make_pair(ResC
, P
));
836 return !Result
.empty();
839 // InstCombine can fold some forms of constant range checks into
840 // (icmp (add (x, C1)), C2). See if we have we have such a thing with
843 using namespace PatternMatch
;
846 ConstantInt
*AddConst
;
847 if (isa
<ConstantInt
>(CmpConst
) &&
848 match(CmpLHS
, m_Add(m_Value(AddLHS
), m_ConstantInt(AddConst
)))) {
849 if (!isa
<Instruction
>(AddLHS
) ||
850 cast
<Instruction
>(AddLHS
)->getParent() != BB
) {
851 if (DTU
->hasPendingDomTreeUpdates())
855 for (BasicBlock
*P
: predecessors(BB
)) {
856 // If the value is known by LazyValueInfo to be a ConstantRange in
857 // a predecessor, use that information to try to thread this
859 ConstantRange CR
= LVI
->getConstantRangeOnEdge(
860 AddLHS
, P
, BB
, CxtI
? CxtI
: cast
<Instruction
>(CmpLHS
));
861 // Propagate the range through the addition.
862 CR
= CR
.add(AddConst
->getValue());
864 // Get the range where the compare returns true.
865 ConstantRange CmpRange
= ConstantRange::makeExactICmpRegion(
866 Pred
, cast
<ConstantInt
>(CmpConst
)->getValue());
869 if (CmpRange
.contains(CR
))
870 ResC
= ConstantInt::getTrue(CmpType
);
871 else if (CmpRange
.inverse().contains(CR
))
872 ResC
= ConstantInt::getFalse(CmpType
);
876 Result
.push_back(std::make_pair(ResC
, P
));
879 return !Result
.empty();
884 // Try to find a constant value for the LHS of a comparison,
885 // and evaluate it statically if we can.
886 PredValueInfoTy LHSVals
;
887 ComputeValueKnownInPredecessorsImpl(I
->getOperand(0), BB
, LHSVals
,
888 WantInteger
, RecursionSet
, CxtI
);
890 for (const auto &LHSVal
: LHSVals
) {
891 Constant
*V
= LHSVal
.first
;
892 Constant
*Folded
= ConstantExpr::getCompare(Pred
, V
, CmpConst
);
893 if (Constant
*KC
= getKnownConstant(Folded
, WantInteger
))
894 Result
.push_back(std::make_pair(KC
, LHSVal
.second
));
897 return !Result
.empty();
901 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(I
)) {
902 // Handle select instructions where at least one operand is a known constant
903 // and we can figure out the condition value for any predecessor block.
904 Constant
*TrueVal
= getKnownConstant(SI
->getTrueValue(), Preference
);
905 Constant
*FalseVal
= getKnownConstant(SI
->getFalseValue(), Preference
);
906 PredValueInfoTy Conds
;
907 if ((TrueVal
|| FalseVal
) &&
908 ComputeValueKnownInPredecessorsImpl(SI
->getCondition(), BB
, Conds
,
909 WantInteger
, RecursionSet
, CxtI
)) {
910 for (auto &C
: Conds
) {
911 Constant
*Cond
= C
.first
;
913 // Figure out what value to use for the condition.
915 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Cond
)) {
917 KnownCond
= CI
->isOne();
919 assert(isa
<UndefValue
>(Cond
) && "Unexpected condition value");
920 // Either operand will do, so be sure to pick the one that's a known
922 // FIXME: Do this more cleverly if both values are known constants?
923 KnownCond
= (TrueVal
!= nullptr);
926 // See if the select has a known constant value for this predecessor.
927 if (Constant
*Val
= KnownCond
? TrueVal
: FalseVal
)
928 Result
.push_back(std::make_pair(Val
, C
.second
));
931 return !Result
.empty();
935 // If all else fails, see if LVI can figure out a constant value for us.
936 if (DTU
->hasPendingDomTreeUpdates())
940 Constant
*CI
= LVI
->getConstant(V
, BB
, CxtI
);
941 if (Constant
*KC
= getKnownConstant(CI
, Preference
)) {
942 for (BasicBlock
*Pred
: predecessors(BB
))
943 Result
.push_back(std::make_pair(KC
, Pred
));
946 return !Result
.empty();
949 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
950 /// in an undefined jump, decide which block is best to revector to.
952 /// Since we can pick an arbitrary destination, we pick the successor with the
953 /// fewest predecessors. This should reduce the in-degree of the others.
954 static unsigned GetBestDestForJumpOnUndef(BasicBlock
*BB
) {
955 Instruction
*BBTerm
= BB
->getTerminator();
956 unsigned MinSucc
= 0;
957 BasicBlock
*TestBB
= BBTerm
->getSuccessor(MinSucc
);
958 // Compute the successor with the minimum number of predecessors.
959 unsigned MinNumPreds
= pred_size(TestBB
);
960 for (unsigned i
= 1, e
= BBTerm
->getNumSuccessors(); i
!= e
; ++i
) {
961 TestBB
= BBTerm
->getSuccessor(i
);
962 unsigned NumPreds
= pred_size(TestBB
);
963 if (NumPreds
< MinNumPreds
) {
965 MinNumPreds
= NumPreds
;
972 static bool hasAddressTakenAndUsed(BasicBlock
*BB
) {
973 if (!BB
->hasAddressTaken()) return false;
975 // If the block has its address taken, it may be a tree of dead constants
976 // hanging off of it. These shouldn't keep the block alive.
977 BlockAddress
*BA
= BlockAddress::get(BB
);
978 BA
->removeDeadConstantUsers();
979 return !BA
->use_empty();
982 /// ProcessBlock - If there are any predecessors whose control can be threaded
983 /// through to a successor, transform them now.
984 bool JumpThreadingPass::ProcessBlock(BasicBlock
*BB
) {
985 // If the block is trivially dead, just return and let the caller nuke it.
986 // This simplifies other transformations.
987 if (DTU
->isBBPendingDeletion(BB
) ||
988 (pred_empty(BB
) && BB
!= &BB
->getParent()->getEntryBlock()))
991 // If this block has a single predecessor, and if that pred has a single
992 // successor, merge the blocks. This encourages recursive jump threading
993 // because now the condition in this block can be threaded through
994 // predecessors of our predecessor block.
995 if (BasicBlock
*SinglePred
= BB
->getSinglePredecessor()) {
996 const Instruction
*TI
= SinglePred
->getTerminator();
997 if (!TI
->isExceptionalTerminator() && TI
->getNumSuccessors() == 1 &&
998 SinglePred
!= BB
&& !hasAddressTakenAndUsed(BB
)) {
999 // If SinglePred was a loop header, BB becomes one.
1000 if (LoopHeaders
.erase(SinglePred
))
1001 LoopHeaders
.insert(BB
);
1003 LVI
->eraseBlock(SinglePred
);
1004 MergeBasicBlockIntoOnlyPred(BB
, DTU
);
1006 // Now that BB is merged into SinglePred (i.e. SinglePred Code followed by
1007 // BB code within one basic block `BB`), we need to invalidate the LVI
1008 // information associated with BB, because the LVI information need not be
1009 // true for all of BB after the merge. For example,
1010 // Before the merge, LVI info and code is as follows:
1011 // SinglePred: <LVI info1 for %p val>
1013 // call @exit() // need not transfer execution to successor.
1014 // assume(%p) // from this point on %p is true
1016 // BB: <LVI info2 for %p val, i.e. %p is true>
1020 // Note that this LVI info for blocks BB and SinglPred is correct for %p
1021 // (info2 and info1 respectively). After the merge and the deletion of the
1022 // LVI info1 for SinglePred. We have the following code:
1023 // BB: <LVI info2 for %p val>
1027 // %x = use of %p <-- LVI info2 is correct from here onwards.
1029 // LVI info2 for BB is incorrect at the beginning of BB.
1031 // Invalidate LVI information for BB if the LVI is not provably true for
1033 if (!isGuaranteedToTransferExecutionToSuccessor(BB
))
1034 LVI
->eraseBlock(BB
);
1039 if (TryToUnfoldSelectInCurrBB(BB
))
1042 // Look if we can propagate guards to predecessors.
1043 if (HasGuards
&& ProcessGuards(BB
))
1046 // What kind of constant we're looking for.
1047 ConstantPreference Preference
= WantInteger
;
1049 // Look to see if the terminator is a conditional branch, switch or indirect
1050 // branch, if not we can't thread it.
1052 Instruction
*Terminator
= BB
->getTerminator();
1053 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(Terminator
)) {
1054 // Can't thread an unconditional jump.
1055 if (BI
->isUnconditional()) return false;
1056 Condition
= BI
->getCondition();
1057 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(Terminator
)) {
1058 Condition
= SI
->getCondition();
1059 } else if (IndirectBrInst
*IB
= dyn_cast
<IndirectBrInst
>(Terminator
)) {
1060 // Can't thread indirect branch with no successors.
1061 if (IB
->getNumSuccessors() == 0) return false;
1062 Condition
= IB
->getAddress()->stripPointerCasts();
1063 Preference
= WantBlockAddress
;
1065 return false; // Must be an invoke or callbr.
1068 // Run constant folding to see if we can reduce the condition to a simple
1070 if (Instruction
*I
= dyn_cast
<Instruction
>(Condition
)) {
1072 ConstantFoldInstruction(I
, BB
->getModule()->getDataLayout(), TLI
);
1074 I
->replaceAllUsesWith(SimpleVal
);
1075 if (isInstructionTriviallyDead(I
, TLI
))
1076 I
->eraseFromParent();
1077 Condition
= SimpleVal
;
1081 // If the terminator is branching on an undef, we can pick any of the
1082 // successors to branch to. Let GetBestDestForJumpOnUndef decide.
1083 if (isa
<UndefValue
>(Condition
)) {
1084 unsigned BestSucc
= GetBestDestForJumpOnUndef(BB
);
1085 std::vector
<DominatorTree::UpdateType
> Updates
;
1087 // Fold the branch/switch.
1088 Instruction
*BBTerm
= BB
->getTerminator();
1089 Updates
.reserve(BBTerm
->getNumSuccessors());
1090 for (unsigned i
= 0, e
= BBTerm
->getNumSuccessors(); i
!= e
; ++i
) {
1091 if (i
== BestSucc
) continue;
1092 BasicBlock
*Succ
= BBTerm
->getSuccessor(i
);
1093 Succ
->removePredecessor(BB
, true);
1094 Updates
.push_back({DominatorTree::Delete
, BB
, Succ
});
1097 LLVM_DEBUG(dbgs() << " In block '" << BB
->getName()
1098 << "' folding undef terminator: " << *BBTerm
<< '\n');
1099 BranchInst::Create(BBTerm
->getSuccessor(BestSucc
), BBTerm
);
1100 BBTerm
->eraseFromParent();
1101 DTU
->applyUpdatesPermissive(Updates
);
1105 // If the terminator of this block is branching on a constant, simplify the
1106 // terminator to an unconditional branch. This can occur due to threading in
1108 if (getKnownConstant(Condition
, Preference
)) {
1109 LLVM_DEBUG(dbgs() << " In block '" << BB
->getName()
1110 << "' folding terminator: " << *BB
->getTerminator()
1113 ConstantFoldTerminator(BB
, true, nullptr, DTU
);
1117 Instruction
*CondInst
= dyn_cast
<Instruction
>(Condition
);
1119 // All the rest of our checks depend on the condition being an instruction.
1121 // FIXME: Unify this with code below.
1122 if (ProcessThreadableEdges(Condition
, BB
, Preference
, Terminator
))
1127 if (CmpInst
*CondCmp
= dyn_cast
<CmpInst
>(CondInst
)) {
1128 // If we're branching on a conditional, LVI might be able to determine
1129 // it's value at the branch instruction. We only handle comparisons
1130 // against a constant at this time.
1131 // TODO: This should be extended to handle switches as well.
1132 BranchInst
*CondBr
= dyn_cast
<BranchInst
>(BB
->getTerminator());
1133 Constant
*CondConst
= dyn_cast
<Constant
>(CondCmp
->getOperand(1));
1134 if (CondBr
&& CondConst
) {
1135 // We should have returned as soon as we turn a conditional branch to
1136 // unconditional. Because its no longer interesting as far as jump
1137 // threading is concerned.
1138 assert(CondBr
->isConditional() && "Threading on unconditional terminator");
1140 if (DTU
->hasPendingDomTreeUpdates())
1144 LazyValueInfo::Tristate Ret
=
1145 LVI
->getPredicateAt(CondCmp
->getPredicate(), CondCmp
->getOperand(0),
1147 if (Ret
!= LazyValueInfo::Unknown
) {
1148 unsigned ToRemove
= Ret
== LazyValueInfo::True
? 1 : 0;
1149 unsigned ToKeep
= Ret
== LazyValueInfo::True
? 0 : 1;
1150 BasicBlock
*ToRemoveSucc
= CondBr
->getSuccessor(ToRemove
);
1151 ToRemoveSucc
->removePredecessor(BB
, true);
1152 BranchInst
*UncondBr
=
1153 BranchInst::Create(CondBr
->getSuccessor(ToKeep
), CondBr
);
1154 UncondBr
->setDebugLoc(CondBr
->getDebugLoc());
1155 CondBr
->eraseFromParent();
1156 if (CondCmp
->use_empty())
1157 CondCmp
->eraseFromParent();
1158 // We can safely replace *some* uses of the CondInst if it has
1159 // exactly one value as returned by LVI. RAUW is incorrect in the
1160 // presence of guards and assumes, that have the `Cond` as the use. This
1161 // is because we use the guards/assume to reason about the `Cond` value
1162 // at the end of block, but RAUW unconditionally replaces all uses
1163 // including the guards/assumes themselves and the uses before the
1165 else if (CondCmp
->getParent() == BB
) {
1166 auto *CI
= Ret
== LazyValueInfo::True
?
1167 ConstantInt::getTrue(CondCmp
->getType()) :
1168 ConstantInt::getFalse(CondCmp
->getType());
1169 ReplaceFoldableUses(CondCmp
, CI
);
1171 DTU
->applyUpdatesPermissive(
1172 {{DominatorTree::Delete
, BB
, ToRemoveSucc
}});
1176 // We did not manage to simplify this branch, try to see whether
1177 // CondCmp depends on a known phi-select pattern.
1178 if (TryToUnfoldSelect(CondCmp
, BB
))
1183 if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(BB
->getTerminator()))
1184 if (TryToUnfoldSelect(SI
, BB
))
1187 // Check for some cases that are worth simplifying. Right now we want to look
1188 // for loads that are used by a switch or by the condition for the branch. If
1189 // we see one, check to see if it's partially redundant. If so, insert a PHI
1190 // which can then be used to thread the values.
1191 Value
*SimplifyValue
= CondInst
;
1192 if (CmpInst
*CondCmp
= dyn_cast
<CmpInst
>(SimplifyValue
))
1193 if (isa
<Constant
>(CondCmp
->getOperand(1)))
1194 SimplifyValue
= CondCmp
->getOperand(0);
1196 // TODO: There are other places where load PRE would be profitable, such as
1197 // more complex comparisons.
1198 if (LoadInst
*LoadI
= dyn_cast
<LoadInst
>(SimplifyValue
))
1199 if (SimplifyPartiallyRedundantLoad(LoadI
))
1202 // Before threading, try to propagate profile data backwards:
1203 if (PHINode
*PN
= dyn_cast
<PHINode
>(CondInst
))
1204 if (PN
->getParent() == BB
&& isa
<BranchInst
>(BB
->getTerminator()))
1205 updatePredecessorProfileMetadata(PN
, BB
);
1207 // Handle a variety of cases where we are branching on something derived from
1208 // a PHI node in the current block. If we can prove that any predecessors
1209 // compute a predictable value based on a PHI node, thread those predecessors.
1210 if (ProcessThreadableEdges(CondInst
, BB
, Preference
, Terminator
))
1213 // If this is an otherwise-unfoldable branch on a phi node in the current
1214 // block, see if we can simplify.
1215 if (PHINode
*PN
= dyn_cast
<PHINode
>(CondInst
))
1216 if (PN
->getParent() == BB
&& isa
<BranchInst
>(BB
->getTerminator()))
1217 return ProcessBranchOnPHI(PN
);
1219 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
1220 if (CondInst
->getOpcode() == Instruction::Xor
&&
1221 CondInst
->getParent() == BB
&& isa
<BranchInst
>(BB
->getTerminator()))
1222 return ProcessBranchOnXOR(cast
<BinaryOperator
>(CondInst
));
1224 // Search for a stronger dominating condition that can be used to simplify a
1225 // conditional branch leaving BB.
1226 if (ProcessImpliedCondition(BB
))
1232 bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock
*BB
) {
1233 auto *BI
= dyn_cast
<BranchInst
>(BB
->getTerminator());
1234 if (!BI
|| !BI
->isConditional())
1237 Value
*Cond
= BI
->getCondition();
1238 BasicBlock
*CurrentBB
= BB
;
1239 BasicBlock
*CurrentPred
= BB
->getSinglePredecessor();
1242 auto &DL
= BB
->getModule()->getDataLayout();
1244 while (CurrentPred
&& Iter
++ < ImplicationSearchThreshold
) {
1245 auto *PBI
= dyn_cast
<BranchInst
>(CurrentPred
->getTerminator());
1246 if (!PBI
|| !PBI
->isConditional())
1248 if (PBI
->getSuccessor(0) != CurrentBB
&& PBI
->getSuccessor(1) != CurrentBB
)
1251 bool CondIsTrue
= PBI
->getSuccessor(0) == CurrentBB
;
1252 Optional
<bool> Implication
=
1253 isImpliedCondition(PBI
->getCondition(), Cond
, DL
, CondIsTrue
);
1255 BasicBlock
*KeepSucc
= BI
->getSuccessor(*Implication
? 0 : 1);
1256 BasicBlock
*RemoveSucc
= BI
->getSuccessor(*Implication
? 1 : 0);
1257 RemoveSucc
->removePredecessor(BB
);
1258 BranchInst
*UncondBI
= BranchInst::Create(KeepSucc
, BI
);
1259 UncondBI
->setDebugLoc(BI
->getDebugLoc());
1260 BI
->eraseFromParent();
1261 DTU
->applyUpdatesPermissive({{DominatorTree::Delete
, BB
, RemoveSucc
}});
1264 CurrentBB
= CurrentPred
;
1265 CurrentPred
= CurrentBB
->getSinglePredecessor();
1271 /// Return true if Op is an instruction defined in the given block.
1272 static bool isOpDefinedInBlock(Value
*Op
, BasicBlock
*BB
) {
1273 if (Instruction
*OpInst
= dyn_cast
<Instruction
>(Op
))
1274 if (OpInst
->getParent() == BB
)
1279 /// SimplifyPartiallyRedundantLoad - If LoadI is an obviously partially
1280 /// redundant load instruction, eliminate it by replacing it with a PHI node.
1281 /// This is an important optimization that encourages jump threading, and needs
1282 /// to be run interlaced with other jump threading tasks.
1283 bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst
*LoadI
) {
1284 // Don't hack volatile and ordered loads.
1285 if (!LoadI
->isUnordered()) return false;
1287 // If the load is defined in a block with exactly one predecessor, it can't be
1288 // partially redundant.
1289 BasicBlock
*LoadBB
= LoadI
->getParent();
1290 if (LoadBB
->getSinglePredecessor())
1293 // If the load is defined in an EH pad, it can't be partially redundant,
1294 // because the edges between the invoke and the EH pad cannot have other
1295 // instructions between them.
1296 if (LoadBB
->isEHPad())
1299 Value
*LoadedPtr
= LoadI
->getOperand(0);
1301 // If the loaded operand is defined in the LoadBB and its not a phi,
1302 // it can't be available in predecessors.
1303 if (isOpDefinedInBlock(LoadedPtr
, LoadBB
) && !isa
<PHINode
>(LoadedPtr
))
1306 // Scan a few instructions up from the load, to see if it is obviously live at
1307 // the entry to its block.
1308 BasicBlock::iterator
BBIt(LoadI
);
1310 if (Value
*AvailableVal
= FindAvailableLoadedValue(
1311 LoadI
, LoadBB
, BBIt
, DefMaxInstsToScan
, AA
, &IsLoadCSE
)) {
1312 // If the value of the load is locally available within the block, just use
1313 // it. This frequently occurs for reg2mem'd allocas.
1316 LoadInst
*NLoadI
= cast
<LoadInst
>(AvailableVal
);
1317 combineMetadataForCSE(NLoadI
, LoadI
, false);
1320 // If the returned value is the load itself, replace with an undef. This can
1321 // only happen in dead loops.
1322 if (AvailableVal
== LoadI
)
1323 AvailableVal
= UndefValue::get(LoadI
->getType());
1324 if (AvailableVal
->getType() != LoadI
->getType())
1325 AvailableVal
= CastInst::CreateBitOrPointerCast(
1326 AvailableVal
, LoadI
->getType(), "", LoadI
);
1327 LoadI
->replaceAllUsesWith(AvailableVal
);
1328 LoadI
->eraseFromParent();
1332 // Otherwise, if we scanned the whole block and got to the top of the block,
1333 // we know the block is locally transparent to the load. If not, something
1334 // might clobber its value.
1335 if (BBIt
!= LoadBB
->begin())
1338 // If all of the loads and stores that feed the value have the same AA tags,
1339 // then we can propagate them onto any newly inserted loads.
1341 LoadI
->getAAMetadata(AATags
);
1343 SmallPtrSet
<BasicBlock
*, 8> PredsScanned
;
1345 using AvailablePredsTy
= SmallVector
<std::pair
<BasicBlock
*, Value
*>, 8>;
1347 AvailablePredsTy AvailablePreds
;
1348 BasicBlock
*OneUnavailablePred
= nullptr;
1349 SmallVector
<LoadInst
*, 8> CSELoads
;
1351 // If we got here, the loaded value is transparent through to the start of the
1352 // block. Check to see if it is available in any of the predecessor blocks.
1353 for (BasicBlock
*PredBB
: predecessors(LoadBB
)) {
1354 // If we already scanned this predecessor, skip it.
1355 if (!PredsScanned
.insert(PredBB
).second
)
1358 BBIt
= PredBB
->end();
1359 unsigned NumScanedInst
= 0;
1360 Value
*PredAvailable
= nullptr;
1361 // NOTE: We don't CSE load that is volatile or anything stronger than
1362 // unordered, that should have been checked when we entered the function.
1363 assert(LoadI
->isUnordered() &&
1364 "Attempting to CSE volatile or atomic loads");
1365 // If this is a load on a phi pointer, phi-translate it and search
1366 // for available load/store to the pointer in predecessors.
1367 Value
*Ptr
= LoadedPtr
->DoPHITranslation(LoadBB
, PredBB
);
1368 PredAvailable
= FindAvailablePtrLoadStore(
1369 Ptr
, LoadI
->getType(), LoadI
->isAtomic(), PredBB
, BBIt
,
1370 DefMaxInstsToScan
, AA
, &IsLoadCSE
, &NumScanedInst
);
1372 // If PredBB has a single predecessor, continue scanning through the
1373 // single predecessor.
1374 BasicBlock
*SinglePredBB
= PredBB
;
1375 while (!PredAvailable
&& SinglePredBB
&& BBIt
== SinglePredBB
->begin() &&
1376 NumScanedInst
< DefMaxInstsToScan
) {
1377 SinglePredBB
= SinglePredBB
->getSinglePredecessor();
1379 BBIt
= SinglePredBB
->end();
1380 PredAvailable
= FindAvailablePtrLoadStore(
1381 Ptr
, LoadI
->getType(), LoadI
->isAtomic(), SinglePredBB
, BBIt
,
1382 (DefMaxInstsToScan
- NumScanedInst
), AA
, &IsLoadCSE
,
1387 if (!PredAvailable
) {
1388 OneUnavailablePred
= PredBB
;
1393 CSELoads
.push_back(cast
<LoadInst
>(PredAvailable
));
1395 // If so, this load is partially redundant. Remember this info so that we
1396 // can create a PHI node.
1397 AvailablePreds
.push_back(std::make_pair(PredBB
, PredAvailable
));
1400 // If the loaded value isn't available in any predecessor, it isn't partially
1402 if (AvailablePreds
.empty()) return false;
1404 // Okay, the loaded value is available in at least one (and maybe all!)
1405 // predecessors. If the value is unavailable in more than one unique
1406 // predecessor, we want to insert a merge block for those common predecessors.
1407 // This ensures that we only have to insert one reload, thus not increasing
1409 BasicBlock
*UnavailablePred
= nullptr;
1411 // If the value is unavailable in one of predecessors, we will end up
1412 // inserting a new instruction into them. It is only valid if all the
1413 // instructions before LoadI are guaranteed to pass execution to its
1414 // successor, or if LoadI is safe to speculate.
1415 // TODO: If this logic becomes more complex, and we will perform PRE insertion
1416 // farther than to a predecessor, we need to reuse the code from GVN's PRE.
1417 // It requires domination tree analysis, so for this simple case it is an
1419 if (PredsScanned
.size() != AvailablePreds
.size() &&
1420 !isSafeToSpeculativelyExecute(LoadI
))
1421 for (auto I
= LoadBB
->begin(); &*I
!= LoadI
; ++I
)
1422 if (!isGuaranteedToTransferExecutionToSuccessor(&*I
))
1425 // If there is exactly one predecessor where the value is unavailable, the
1426 // already computed 'OneUnavailablePred' block is it. If it ends in an
1427 // unconditional branch, we know that it isn't a critical edge.
1428 if (PredsScanned
.size() == AvailablePreds
.size()+1 &&
1429 OneUnavailablePred
->getTerminator()->getNumSuccessors() == 1) {
1430 UnavailablePred
= OneUnavailablePred
;
1431 } else if (PredsScanned
.size() != AvailablePreds
.size()) {
1432 // Otherwise, we had multiple unavailable predecessors or we had a critical
1433 // edge from the one.
1434 SmallVector
<BasicBlock
*, 8> PredsToSplit
;
1435 SmallPtrSet
<BasicBlock
*, 8> AvailablePredSet
;
1437 for (const auto &AvailablePred
: AvailablePreds
)
1438 AvailablePredSet
.insert(AvailablePred
.first
);
1440 // Add all the unavailable predecessors to the PredsToSplit list.
1441 for (BasicBlock
*P
: predecessors(LoadBB
)) {
1442 // If the predecessor is an indirect goto, we can't split the edge.
1444 if (isa
<IndirectBrInst
>(P
->getTerminator()) ||
1445 isa
<CallBrInst
>(P
->getTerminator()))
1448 if (!AvailablePredSet
.count(P
))
1449 PredsToSplit
.push_back(P
);
1452 // Split them out to their own block.
1453 UnavailablePred
= SplitBlockPreds(LoadBB
, PredsToSplit
, "thread-pre-split");
1456 // If the value isn't available in all predecessors, then there will be
1457 // exactly one where it isn't available. Insert a load on that edge and add
1458 // it to the AvailablePreds list.
1459 if (UnavailablePred
) {
1460 assert(UnavailablePred
->getTerminator()->getNumSuccessors() == 1 &&
1461 "Can't handle critical edge here!");
1462 LoadInst
*NewVal
= new LoadInst(
1463 LoadI
->getType(), LoadedPtr
->DoPHITranslation(LoadBB
, UnavailablePred
),
1464 LoadI
->getName() + ".pr", false, LoadI
->getAlignment(),
1465 LoadI
->getOrdering(), LoadI
->getSyncScopeID(),
1466 UnavailablePred
->getTerminator());
1467 NewVal
->setDebugLoc(LoadI
->getDebugLoc());
1469 NewVal
->setAAMetadata(AATags
);
1471 AvailablePreds
.push_back(std::make_pair(UnavailablePred
, NewVal
));
1474 // Now we know that each predecessor of this block has a value in
1475 // AvailablePreds, sort them for efficient access as we're walking the preds.
1476 array_pod_sort(AvailablePreds
.begin(), AvailablePreds
.end());
1478 // Create a PHI node at the start of the block for the PRE'd load value.
1479 pred_iterator PB
= pred_begin(LoadBB
), PE
= pred_end(LoadBB
);
1480 PHINode
*PN
= PHINode::Create(LoadI
->getType(), std::distance(PB
, PE
), "",
1482 PN
->takeName(LoadI
);
1483 PN
->setDebugLoc(LoadI
->getDebugLoc());
1485 // Insert new entries into the PHI for each predecessor. A single block may
1486 // have multiple entries here.
1487 for (pred_iterator PI
= PB
; PI
!= PE
; ++PI
) {
1488 BasicBlock
*P
= *PI
;
1489 AvailablePredsTy::iterator I
=
1490 llvm::lower_bound(AvailablePreds
, std::make_pair(P
, (Value
*)nullptr));
1492 assert(I
!= AvailablePreds
.end() && I
->first
== P
&&
1493 "Didn't find entry for predecessor!");
1495 // If we have an available predecessor but it requires casting, insert the
1496 // cast in the predecessor and use the cast. Note that we have to update the
1497 // AvailablePreds vector as we go so that all of the PHI entries for this
1498 // predecessor use the same bitcast.
1499 Value
*&PredV
= I
->second
;
1500 if (PredV
->getType() != LoadI
->getType())
1501 PredV
= CastInst::CreateBitOrPointerCast(PredV
, LoadI
->getType(), "",
1502 P
->getTerminator());
1504 PN
->addIncoming(PredV
, I
->first
);
1507 for (LoadInst
*PredLoadI
: CSELoads
) {
1508 combineMetadataForCSE(PredLoadI
, LoadI
, true);
1511 LoadI
->replaceAllUsesWith(PN
);
1512 LoadI
->eraseFromParent();
1517 /// FindMostPopularDest - The specified list contains multiple possible
1518 /// threadable destinations. Pick the one that occurs the most frequently in
1521 FindMostPopularDest(BasicBlock
*BB
,
1522 const SmallVectorImpl
<std::pair
<BasicBlock
*,
1523 BasicBlock
*>> &PredToDestList
) {
1524 assert(!PredToDestList
.empty());
1526 // Determine popularity. If there are multiple possible destinations, we
1527 // explicitly choose to ignore 'undef' destinations. We prefer to thread
1528 // blocks with known and real destinations to threading undef. We'll handle
1529 // them later if interesting.
1530 DenseMap
<BasicBlock
*, unsigned> DestPopularity
;
1531 for (const auto &PredToDest
: PredToDestList
)
1532 if (PredToDest
.second
)
1533 DestPopularity
[PredToDest
.second
]++;
1535 if (DestPopularity
.empty())
1538 // Find the most popular dest.
1539 DenseMap
<BasicBlock
*, unsigned>::iterator DPI
= DestPopularity
.begin();
1540 BasicBlock
*MostPopularDest
= DPI
->first
;
1541 unsigned Popularity
= DPI
->second
;
1542 SmallVector
<BasicBlock
*, 4> SamePopularity
;
1544 for (++DPI
; DPI
!= DestPopularity
.end(); ++DPI
) {
1545 // If the popularity of this entry isn't higher than the popularity we've
1546 // seen so far, ignore it.
1547 if (DPI
->second
< Popularity
)
1549 else if (DPI
->second
== Popularity
) {
1550 // If it is the same as what we've seen so far, keep track of it.
1551 SamePopularity
.push_back(DPI
->first
);
1553 // If it is more popular, remember it.
1554 SamePopularity
.clear();
1555 MostPopularDest
= DPI
->first
;
1556 Popularity
= DPI
->second
;
1560 // Okay, now we know the most popular destination. If there is more than one
1561 // destination, we need to determine one. This is arbitrary, but we need
1562 // to make a deterministic decision. Pick the first one that appears in the
1564 if (!SamePopularity
.empty()) {
1565 SamePopularity
.push_back(MostPopularDest
);
1566 Instruction
*TI
= BB
->getTerminator();
1567 for (unsigned i
= 0; ; ++i
) {
1568 assert(i
!= TI
->getNumSuccessors() && "Didn't find any successor!");
1570 if (!is_contained(SamePopularity
, TI
->getSuccessor(i
)))
1573 MostPopularDest
= TI
->getSuccessor(i
);
1578 // Okay, we have finally picked the most popular destination.
1579 return MostPopularDest
;
1582 bool JumpThreadingPass::ProcessThreadableEdges(Value
*Cond
, BasicBlock
*BB
,
1583 ConstantPreference Preference
,
1584 Instruction
*CxtI
) {
1585 // If threading this would thread across a loop header, don't even try to
1587 if (LoopHeaders
.count(BB
))
1590 PredValueInfoTy PredValues
;
1591 if (!ComputeValueKnownInPredecessors(Cond
, BB
, PredValues
, Preference
, CxtI
))
1594 assert(!PredValues
.empty() &&
1595 "ComputeValueKnownInPredecessors returned true with no values");
1597 LLVM_DEBUG(dbgs() << "IN BB: " << *BB
;
1598 for (const auto &PredValue
: PredValues
) {
1599 dbgs() << " BB '" << BB
->getName()
1600 << "': FOUND condition = " << *PredValue
.first
1601 << " for pred '" << PredValue
.second
->getName() << "'.\n";
1604 // Decide what we want to thread through. Convert our list of known values to
1605 // a list of known destinations for each pred. This also discards duplicate
1606 // predecessors and keeps track of the undefined inputs (which are represented
1607 // as a null dest in the PredToDestList).
1608 SmallPtrSet
<BasicBlock
*, 16> SeenPreds
;
1609 SmallVector
<std::pair
<BasicBlock
*, BasicBlock
*>, 16> PredToDestList
;
1611 BasicBlock
*OnlyDest
= nullptr;
1612 BasicBlock
*MultipleDestSentinel
= (BasicBlock
*)(intptr_t)~0ULL;
1613 Constant
*OnlyVal
= nullptr;
1614 Constant
*MultipleVal
= (Constant
*)(intptr_t)~0ULL;
1616 for (const auto &PredValue
: PredValues
) {
1617 BasicBlock
*Pred
= PredValue
.second
;
1618 if (!SeenPreds
.insert(Pred
).second
)
1619 continue; // Duplicate predecessor entry.
1621 Constant
*Val
= PredValue
.first
;
1624 if (isa
<UndefValue
>(Val
))
1626 else if (BranchInst
*BI
= dyn_cast
<BranchInst
>(BB
->getTerminator())) {
1627 assert(isa
<ConstantInt
>(Val
) && "Expecting a constant integer");
1628 DestBB
= BI
->getSuccessor(cast
<ConstantInt
>(Val
)->isZero());
1629 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(BB
->getTerminator())) {
1630 assert(isa
<ConstantInt
>(Val
) && "Expecting a constant integer");
1631 DestBB
= SI
->findCaseValue(cast
<ConstantInt
>(Val
))->getCaseSuccessor();
1633 assert(isa
<IndirectBrInst
>(BB
->getTerminator())
1634 && "Unexpected terminator");
1635 assert(isa
<BlockAddress
>(Val
) && "Expecting a constant blockaddress");
1636 DestBB
= cast
<BlockAddress
>(Val
)->getBasicBlock();
1639 // If we have exactly one destination, remember it for efficiency below.
1640 if (PredToDestList
.empty()) {
1644 if (OnlyDest
!= DestBB
)
1645 OnlyDest
= MultipleDestSentinel
;
1646 // It possible we have same destination, but different value, e.g. default
1647 // case in switchinst.
1649 OnlyVal
= MultipleVal
;
1652 // If the predecessor ends with an indirect goto, we can't change its
1653 // destination. Same for CallBr.
1654 if (isa
<IndirectBrInst
>(Pred
->getTerminator()) ||
1655 isa
<CallBrInst
>(Pred
->getTerminator()))
1658 PredToDestList
.push_back(std::make_pair(Pred
, DestBB
));
1661 // If all edges were unthreadable, we fail.
1662 if (PredToDestList
.empty())
1665 // If all the predecessors go to a single known successor, we want to fold,
1666 // not thread. By doing so, we do not need to duplicate the current block and
1667 // also miss potential opportunities in case we dont/cant duplicate.
1668 if (OnlyDest
&& OnlyDest
!= MultipleDestSentinel
) {
1669 if (BB
->hasNPredecessors(PredToDestList
.size())) {
1670 bool SeenFirstBranchToOnlyDest
= false;
1671 std::vector
<DominatorTree::UpdateType
> Updates
;
1672 Updates
.reserve(BB
->getTerminator()->getNumSuccessors() - 1);
1673 for (BasicBlock
*SuccBB
: successors(BB
)) {
1674 if (SuccBB
== OnlyDest
&& !SeenFirstBranchToOnlyDest
) {
1675 SeenFirstBranchToOnlyDest
= true; // Don't modify the first branch.
1677 SuccBB
->removePredecessor(BB
, true); // This is unreachable successor.
1678 Updates
.push_back({DominatorTree::Delete
, BB
, SuccBB
});
1682 // Finally update the terminator.
1683 Instruction
*Term
= BB
->getTerminator();
1684 BranchInst::Create(OnlyDest
, Term
);
1685 Term
->eraseFromParent();
1686 DTU
->applyUpdatesPermissive(Updates
);
1688 // If the condition is now dead due to the removal of the old terminator,
1690 if (auto *CondInst
= dyn_cast
<Instruction
>(Cond
)) {
1691 if (CondInst
->use_empty() && !CondInst
->mayHaveSideEffects())
1692 CondInst
->eraseFromParent();
1693 // We can safely replace *some* uses of the CondInst if it has
1694 // exactly one value as returned by LVI. RAUW is incorrect in the
1695 // presence of guards and assumes, that have the `Cond` as the use. This
1696 // is because we use the guards/assume to reason about the `Cond` value
1697 // at the end of block, but RAUW unconditionally replaces all uses
1698 // including the guards/assumes themselves and the uses before the
1700 else if (OnlyVal
&& OnlyVal
!= MultipleVal
&&
1701 CondInst
->getParent() == BB
)
1702 ReplaceFoldableUses(CondInst
, OnlyVal
);
1708 // Determine which is the most common successor. If we have many inputs and
1709 // this block is a switch, we want to start by threading the batch that goes
1710 // to the most popular destination first. If we only know about one
1711 // threadable destination (the common case) we can avoid this.
1712 BasicBlock
*MostPopularDest
= OnlyDest
;
1714 if (MostPopularDest
== MultipleDestSentinel
) {
1715 // Remove any loop headers from the Dest list, ThreadEdge conservatively
1716 // won't process them, but we might have other destination that are eligible
1717 // and we still want to process.
1718 erase_if(PredToDestList
,
1719 [&](const std::pair
<BasicBlock
*, BasicBlock
*> &PredToDest
) {
1720 return LoopHeaders
.count(PredToDest
.second
) != 0;
1723 if (PredToDestList
.empty())
1726 MostPopularDest
= FindMostPopularDest(BB
, PredToDestList
);
1729 // Now that we know what the most popular destination is, factor all
1730 // predecessors that will jump to it into a single predecessor.
1731 SmallVector
<BasicBlock
*, 16> PredsToFactor
;
1732 for (const auto &PredToDest
: PredToDestList
)
1733 if (PredToDest
.second
== MostPopularDest
) {
1734 BasicBlock
*Pred
= PredToDest
.first
;
1736 // This predecessor may be a switch or something else that has multiple
1737 // edges to the block. Factor each of these edges by listing them
1738 // according to # occurrences in PredsToFactor.
1739 for (BasicBlock
*Succ
: successors(Pred
))
1741 PredsToFactor
.push_back(Pred
);
1744 // If the threadable edges are branching on an undefined value, we get to pick
1745 // the destination that these predecessors should get to.
1746 if (!MostPopularDest
)
1747 MostPopularDest
= BB
->getTerminator()->
1748 getSuccessor(GetBestDestForJumpOnUndef(BB
));
1750 // Ok, try to thread it!
1751 return ThreadEdge(BB
, PredsToFactor
, MostPopularDest
);
1754 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1755 /// a PHI node in the current block. See if there are any simplifications we
1756 /// can do based on inputs to the phi node.
1757 bool JumpThreadingPass::ProcessBranchOnPHI(PHINode
*PN
) {
1758 BasicBlock
*BB
= PN
->getParent();
1760 // TODO: We could make use of this to do it once for blocks with common PHI
1762 SmallVector
<BasicBlock
*, 1> PredBBs
;
1765 // If any of the predecessor blocks end in an unconditional branch, we can
1766 // *duplicate* the conditional branch into that block in order to further
1767 // encourage jump threading and to eliminate cases where we have branch on a
1768 // phi of an icmp (branch on icmp is much better).
1769 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
1770 BasicBlock
*PredBB
= PN
->getIncomingBlock(i
);
1771 if (BranchInst
*PredBr
= dyn_cast
<BranchInst
>(PredBB
->getTerminator()))
1772 if (PredBr
->isUnconditional()) {
1773 PredBBs
[0] = PredBB
;
1774 // Try to duplicate BB into PredBB.
1775 if (DuplicateCondBranchOnPHIIntoPred(BB
, PredBBs
))
1783 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1784 /// a xor instruction in the current block. See if there are any
1785 /// simplifications we can do based on inputs to the xor.
1786 bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator
*BO
) {
1787 BasicBlock
*BB
= BO
->getParent();
1789 // If either the LHS or RHS of the xor is a constant, don't do this
1791 if (isa
<ConstantInt
>(BO
->getOperand(0)) ||
1792 isa
<ConstantInt
>(BO
->getOperand(1)))
1795 // If the first instruction in BB isn't a phi, we won't be able to infer
1796 // anything special about any particular predecessor.
1797 if (!isa
<PHINode
>(BB
->front()))
1800 // If this BB is a landing pad, we won't be able to split the edge into it.
1804 // If we have a xor as the branch input to this block, and we know that the
1805 // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1806 // the condition into the predecessor and fix that value to true, saving some
1807 // logical ops on that path and encouraging other paths to simplify.
1809 // This copies something like this:
1812 // %X = phi i1 [1], [%X']
1813 // %Y = icmp eq i32 %A, %B
1814 // %Z = xor i1 %X, %Y
1819 // %Y = icmp ne i32 %A, %B
1822 PredValueInfoTy XorOpValues
;
1824 if (!ComputeValueKnownInPredecessors(BO
->getOperand(0), BB
, XorOpValues
,
1826 assert(XorOpValues
.empty());
1827 if (!ComputeValueKnownInPredecessors(BO
->getOperand(1), BB
, XorOpValues
,
1833 assert(!XorOpValues
.empty() &&
1834 "ComputeValueKnownInPredecessors returned true with no values");
1836 // Scan the information to see which is most popular: true or false. The
1837 // predecessors can be of the set true, false, or undef.
1838 unsigned NumTrue
= 0, NumFalse
= 0;
1839 for (const auto &XorOpValue
: XorOpValues
) {
1840 if (isa
<UndefValue
>(XorOpValue
.first
))
1841 // Ignore undefs for the count.
1843 if (cast
<ConstantInt
>(XorOpValue
.first
)->isZero())
1849 // Determine which value to split on, true, false, or undef if neither.
1850 ConstantInt
*SplitVal
= nullptr;
1851 if (NumTrue
> NumFalse
)
1852 SplitVal
= ConstantInt::getTrue(BB
->getContext());
1853 else if (NumTrue
!= 0 || NumFalse
!= 0)
1854 SplitVal
= ConstantInt::getFalse(BB
->getContext());
1856 // Collect all of the blocks that this can be folded into so that we can
1857 // factor this once and clone it once.
1858 SmallVector
<BasicBlock
*, 8> BlocksToFoldInto
;
1859 for (const auto &XorOpValue
: XorOpValues
) {
1860 if (XorOpValue
.first
!= SplitVal
&& !isa
<UndefValue
>(XorOpValue
.first
))
1863 BlocksToFoldInto
.push_back(XorOpValue
.second
);
1866 // If we inferred a value for all of the predecessors, then duplication won't
1867 // help us. However, we can just replace the LHS or RHS with the constant.
1868 if (BlocksToFoldInto
.size() ==
1869 cast
<PHINode
>(BB
->front()).getNumIncomingValues()) {
1871 // If all preds provide undef, just nuke the xor, because it is undef too.
1872 BO
->replaceAllUsesWith(UndefValue::get(BO
->getType()));
1873 BO
->eraseFromParent();
1874 } else if (SplitVal
->isZero()) {
1875 // If all preds provide 0, replace the xor with the other input.
1876 BO
->replaceAllUsesWith(BO
->getOperand(isLHS
));
1877 BO
->eraseFromParent();
1879 // If all preds provide 1, set the computed value to 1.
1880 BO
->setOperand(!isLHS
, SplitVal
);
1886 // Try to duplicate BB into PredBB.
1887 return DuplicateCondBranchOnPHIIntoPred(BB
, BlocksToFoldInto
);
1890 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1891 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for
1892 /// NewPred using the entries from OldPred (suitably mapped).
1893 static void AddPHINodeEntriesForMappedBlock(BasicBlock
*PHIBB
,
1894 BasicBlock
*OldPred
,
1895 BasicBlock
*NewPred
,
1896 DenseMap
<Instruction
*, Value
*> &ValueMap
) {
1897 for (PHINode
&PN
: PHIBB
->phis()) {
1898 // Ok, we have a PHI node. Figure out what the incoming value was for the
1900 Value
*IV
= PN
.getIncomingValueForBlock(OldPred
);
1902 // Remap the value if necessary.
1903 if (Instruction
*Inst
= dyn_cast
<Instruction
>(IV
)) {
1904 DenseMap
<Instruction
*, Value
*>::iterator I
= ValueMap
.find(Inst
);
1905 if (I
!= ValueMap
.end())
1909 PN
.addIncoming(IV
, NewPred
);
1913 /// ThreadEdge - We have decided that it is safe and profitable to factor the
1914 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1915 /// across BB. Transform the IR to reflect this change.
1916 bool JumpThreadingPass::ThreadEdge(BasicBlock
*BB
,
1917 const SmallVectorImpl
<BasicBlock
*> &PredBBs
,
1918 BasicBlock
*SuccBB
) {
1919 // If threading to the same block as we come from, we would infinite loop.
1921 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB
->getName()
1922 << "' - would thread to self!\n");
1926 // If threading this would thread across a loop header, don't thread the edge.
1927 // See the comments above FindLoopHeaders for justifications and caveats.
1928 if (LoopHeaders
.count(BB
) || LoopHeaders
.count(SuccBB
)) {
1930 bool BBIsHeader
= LoopHeaders
.count(BB
);
1931 bool SuccIsHeader
= LoopHeaders
.count(SuccBB
);
1932 dbgs() << " Not threading across "
1933 << (BBIsHeader
? "loop header BB '" : "block BB '") << BB
->getName()
1934 << "' to dest " << (SuccIsHeader
? "loop header BB '" : "block BB '")
1935 << SuccBB
->getName() << "' - it might create an irreducible loop!\n";
1940 unsigned JumpThreadCost
=
1941 getJumpThreadDuplicationCost(BB
, BB
->getTerminator(), BBDupThreshold
);
1942 if (JumpThreadCost
> BBDupThreshold
) {
1943 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB
->getName()
1944 << "' - Cost is too high: " << JumpThreadCost
<< "\n");
1948 // And finally, do it! Start by factoring the predecessors if needed.
1950 if (PredBBs
.size() == 1)
1951 PredBB
= PredBBs
[0];
1953 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs
.size()
1954 << " common predecessors.\n");
1955 PredBB
= SplitBlockPreds(BB
, PredBBs
, ".thr_comm");
1958 // And finally, do it!
1959 LLVM_DEBUG(dbgs() << " Threading edge from '" << PredBB
->getName()
1960 << "' to '" << SuccBB
->getName()
1961 << "' with cost: " << JumpThreadCost
1962 << ", across block:\n " << *BB
<< "\n");
1964 if (DTU
->hasPendingDomTreeUpdates())
1968 LVI
->threadEdge(PredBB
, BB
, SuccBB
);
1970 // We are going to have to map operands from the original BB block to the new
1971 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to
1972 // account for entry from PredBB.
1973 DenseMap
<Instruction
*, Value
*> ValueMapping
;
1975 BasicBlock
*NewBB
= BasicBlock::Create(BB
->getContext(),
1976 BB
->getName()+".thread",
1977 BB
->getParent(), BB
);
1978 NewBB
->moveAfter(PredBB
);
1980 // Set the block frequency of NewBB.
1981 if (HasProfileData
) {
1983 BFI
->getBlockFreq(PredBB
) * BPI
->getEdgeProbability(PredBB
, BB
);
1984 BFI
->setBlockFreq(NewBB
, NewBBFreq
.getFrequency());
1987 BasicBlock::iterator BI
= BB
->begin();
1988 // Clone the phi nodes of BB into NewBB. The resulting phi nodes are trivial,
1989 // since NewBB only has one predecessor, but SSAUpdater might need to rewrite
1990 // the operand of the cloned phi.
1991 for (; PHINode
*PN
= dyn_cast
<PHINode
>(BI
); ++BI
) {
1992 PHINode
*NewPN
= PHINode::Create(PN
->getType(), 1, PN
->getName(), NewBB
);
1993 NewPN
->addIncoming(PN
->getIncomingValueForBlock(PredBB
), PredBB
);
1994 ValueMapping
[PN
] = NewPN
;
1997 // Clone the non-phi instructions of BB into NewBB, keeping track of the
1998 // mapping and using it to remap operands in the cloned instructions.
1999 for (; !BI
->isTerminator(); ++BI
) {
2000 Instruction
*New
= BI
->clone();
2001 New
->setName(BI
->getName());
2002 NewBB
->getInstList().push_back(New
);
2003 ValueMapping
[&*BI
] = New
;
2005 // Remap operands to patch up intra-block references.
2006 for (unsigned i
= 0, e
= New
->getNumOperands(); i
!= e
; ++i
)
2007 if (Instruction
*Inst
= dyn_cast
<Instruction
>(New
->getOperand(i
))) {
2008 DenseMap
<Instruction
*, Value
*>::iterator I
= ValueMapping
.find(Inst
);
2009 if (I
!= ValueMapping
.end())
2010 New
->setOperand(i
, I
->second
);
2014 // We didn't copy the terminator from BB over to NewBB, because there is now
2015 // an unconditional jump to SuccBB. Insert the unconditional jump.
2016 BranchInst
*NewBI
= BranchInst::Create(SuccBB
, NewBB
);
2017 NewBI
->setDebugLoc(BB
->getTerminator()->getDebugLoc());
2019 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
2020 // PHI nodes for NewBB now.
2021 AddPHINodeEntriesForMappedBlock(SuccBB
, BB
, NewBB
, ValueMapping
);
2023 // Update the terminator of PredBB to jump to NewBB instead of BB. This
2024 // eliminates predecessors from BB, which requires us to simplify any PHI
2026 Instruction
*PredTerm
= PredBB
->getTerminator();
2027 for (unsigned i
= 0, e
= PredTerm
->getNumSuccessors(); i
!= e
; ++i
)
2028 if (PredTerm
->getSuccessor(i
) == BB
) {
2029 BB
->removePredecessor(PredBB
, true);
2030 PredTerm
->setSuccessor(i
, NewBB
);
2033 // Enqueue required DT updates.
2034 DTU
->applyUpdatesPermissive({{DominatorTree::Insert
, NewBB
, SuccBB
},
2035 {DominatorTree::Insert
, PredBB
, NewBB
},
2036 {DominatorTree::Delete
, PredBB
, BB
}});
2038 // If there were values defined in BB that are used outside the block, then we
2039 // now have to update all uses of the value to use either the original value,
2040 // the cloned value, or some PHI derived value. This can require arbitrary
2041 // PHI insertion, of which we are prepared to do, clean these up now.
2042 SSAUpdater SSAUpdate
;
2043 SmallVector
<Use
*, 16> UsesToRename
;
2045 for (Instruction
&I
: *BB
) {
2046 // Scan all uses of this instruction to see if their uses are no longer
2047 // dominated by the previous def and if so, record them in UsesToRename.
2048 // Also, skip phi operands from PredBB - we'll remove them anyway.
2049 for (Use
&U
: I
.uses()) {
2050 Instruction
*User
= cast
<Instruction
>(U
.getUser());
2051 if (PHINode
*UserPN
= dyn_cast
<PHINode
>(User
)) {
2052 if (UserPN
->getIncomingBlock(U
) == BB
)
2054 } else if (User
->getParent() == BB
)
2057 UsesToRename
.push_back(&U
);
2060 // If there are no uses outside the block, we're done with this instruction.
2061 if (UsesToRename
.empty())
2063 LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I
<< "\n");
2065 // We found a use of I outside of BB. Rename all uses of I that are outside
2066 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
2067 // with the two values we know.
2068 SSAUpdate
.Initialize(I
.getType(), I
.getName());
2069 SSAUpdate
.AddAvailableValue(BB
, &I
);
2070 SSAUpdate
.AddAvailableValue(NewBB
, ValueMapping
[&I
]);
2072 while (!UsesToRename
.empty())
2073 SSAUpdate
.RewriteUse(*UsesToRename
.pop_back_val());
2074 LLVM_DEBUG(dbgs() << "\n");
2077 // At this point, the IR is fully up to date and consistent. Do a quick scan
2078 // over the new instructions and zap any that are constants or dead. This
2079 // frequently happens because of phi translation.
2080 SimplifyInstructionsInBlock(NewBB
, TLI
);
2082 // Update the edge weight from BB to SuccBB, which should be less than before.
2083 UpdateBlockFreqAndEdgeWeight(PredBB
, BB
, NewBB
, SuccBB
);
2085 // Threaded an edge!
2090 /// Create a new basic block that will be the predecessor of BB and successor of
2091 /// all blocks in Preds. When profile data is available, update the frequency of
2093 BasicBlock
*JumpThreadingPass::SplitBlockPreds(BasicBlock
*BB
,
2094 ArrayRef
<BasicBlock
*> Preds
,
2095 const char *Suffix
) {
2096 SmallVector
<BasicBlock
*, 2> NewBBs
;
2098 // Collect the frequencies of all predecessors of BB, which will be used to
2099 // update the edge weight of the result of splitting predecessors.
2100 DenseMap
<BasicBlock
*, BlockFrequency
> FreqMap
;
2102 for (auto Pred
: Preds
)
2103 FreqMap
.insert(std::make_pair(
2104 Pred
, BFI
->getBlockFreq(Pred
) * BPI
->getEdgeProbability(Pred
, BB
)));
2106 // In the case when BB is a LandingPad block we create 2 new predecessors
2107 // instead of just one.
2108 if (BB
->isLandingPad()) {
2109 std::string NewName
= std::string(Suffix
) + ".split-lp";
2110 SplitLandingPadPredecessors(BB
, Preds
, Suffix
, NewName
.c_str(), NewBBs
);
2112 NewBBs
.push_back(SplitBlockPredecessors(BB
, Preds
, Suffix
));
2115 std::vector
<DominatorTree::UpdateType
> Updates
;
2116 Updates
.reserve((2 * Preds
.size()) + NewBBs
.size());
2117 for (auto NewBB
: NewBBs
) {
2118 BlockFrequency
NewBBFreq(0);
2119 Updates
.push_back({DominatorTree::Insert
, NewBB
, BB
});
2120 for (auto Pred
: predecessors(NewBB
)) {
2121 Updates
.push_back({DominatorTree::Delete
, Pred
, BB
});
2122 Updates
.push_back({DominatorTree::Insert
, Pred
, NewBB
});
2123 if (HasProfileData
) // Update frequencies between Pred -> NewBB.
2124 NewBBFreq
+= FreqMap
.lookup(Pred
);
2126 if (HasProfileData
) // Apply the summed frequency to NewBB.
2127 BFI
->setBlockFreq(NewBB
, NewBBFreq
.getFrequency());
2130 DTU
->applyUpdatesPermissive(Updates
);
2134 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock
*BB
) {
2135 const Instruction
*TI
= BB
->getTerminator();
2136 assert(TI
->getNumSuccessors() > 1 && "not a split");
2138 MDNode
*WeightsNode
= TI
->getMetadata(LLVMContext::MD_prof
);
2142 MDString
*MDName
= cast
<MDString
>(WeightsNode
->getOperand(0));
2143 if (MDName
->getString() != "branch_weights")
2146 // Ensure there are weights for all of the successors. Note that the first
2147 // operand to the metadata node is a name, not a weight.
2148 return WeightsNode
->getNumOperands() == TI
->getNumSuccessors() + 1;
2151 /// Update the block frequency of BB and branch weight and the metadata on the
2152 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
2153 /// Freq(PredBB->BB) / Freq(BB->SuccBB).
2154 void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock
*PredBB
,
2157 BasicBlock
*SuccBB
) {
2158 if (!HasProfileData
)
2161 assert(BFI
&& BPI
&& "BFI & BPI should have been created here");
2163 // As the edge from PredBB to BB is deleted, we have to update the block
2165 auto BBOrigFreq
= BFI
->getBlockFreq(BB
);
2166 auto NewBBFreq
= BFI
->getBlockFreq(NewBB
);
2167 auto BB2SuccBBFreq
= BBOrigFreq
* BPI
->getEdgeProbability(BB
, SuccBB
);
2168 auto BBNewFreq
= BBOrigFreq
- NewBBFreq
;
2169 BFI
->setBlockFreq(BB
, BBNewFreq
.getFrequency());
2171 // Collect updated outgoing edges' frequencies from BB and use them to update
2172 // edge probabilities.
2173 SmallVector
<uint64_t, 4> BBSuccFreq
;
2174 for (BasicBlock
*Succ
: successors(BB
)) {
2175 auto SuccFreq
= (Succ
== SuccBB
)
2176 ? BB2SuccBBFreq
- NewBBFreq
2177 : BBOrigFreq
* BPI
->getEdgeProbability(BB
, Succ
);
2178 BBSuccFreq
.push_back(SuccFreq
.getFrequency());
2181 uint64_t MaxBBSuccFreq
=
2182 *std::max_element(BBSuccFreq
.begin(), BBSuccFreq
.end());
2184 SmallVector
<BranchProbability
, 4> BBSuccProbs
;
2185 if (MaxBBSuccFreq
== 0)
2186 BBSuccProbs
.assign(BBSuccFreq
.size(),
2187 {1, static_cast<unsigned>(BBSuccFreq
.size())});
2189 for (uint64_t Freq
: BBSuccFreq
)
2190 BBSuccProbs
.push_back(
2191 BranchProbability::getBranchProbability(Freq
, MaxBBSuccFreq
));
2192 // Normalize edge probabilities so that they sum up to one.
2193 BranchProbability::normalizeProbabilities(BBSuccProbs
.begin(),
2197 // Update edge probabilities in BPI.
2198 for (int I
= 0, E
= BBSuccProbs
.size(); I
< E
; I
++)
2199 BPI
->setEdgeProbability(BB
, I
, BBSuccProbs
[I
]);
2201 // Update the profile metadata as well.
2203 // Don't do this if the profile of the transformed blocks was statically
2204 // estimated. (This could occur despite the function having an entry
2205 // frequency in completely cold parts of the CFG.)
2207 // In this case we don't want to suggest to subsequent passes that the
2208 // calculated weights are fully consistent. Consider this graph:
2223 // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
2224 // the overall probabilities are inconsistent; the total probability that the
2225 // value is either 1, 2 or 3 is 150%.
2227 // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
2228 // becomes 0%. This is even worse if the edge whose probability becomes 0% is
2229 // the loop exit edge. Then based solely on static estimation we would assume
2230 // the loop was extremely hot.
2232 // FIXME this locally as well so that BPI and BFI are consistent as well. We
2233 // shouldn't make edges extremely likely or unlikely based solely on static
2235 if (BBSuccProbs
.size() >= 2 && doesBlockHaveProfileData(BB
)) {
2236 SmallVector
<uint32_t, 4> Weights
;
2237 for (auto Prob
: BBSuccProbs
)
2238 Weights
.push_back(Prob
.getNumerator());
2240 auto TI
= BB
->getTerminator();
2242 LLVMContext::MD_prof
,
2243 MDBuilder(TI
->getParent()->getContext()).createBranchWeights(Weights
));
2247 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
2248 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
2249 /// If we can duplicate the contents of BB up into PredBB do so now, this
2250 /// improves the odds that the branch will be on an analyzable instruction like
2252 bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred(
2253 BasicBlock
*BB
, const SmallVectorImpl
<BasicBlock
*> &PredBBs
) {
2254 assert(!PredBBs
.empty() && "Can't handle an empty set");
2256 // If BB is a loop header, then duplicating this block outside the loop would
2257 // cause us to transform this into an irreducible loop, don't do this.
2258 // See the comments above FindLoopHeaders for justifications and caveats.
2259 if (LoopHeaders
.count(BB
)) {
2260 LLVM_DEBUG(dbgs() << " Not duplicating loop header '" << BB
->getName()
2261 << "' into predecessor block '" << PredBBs
[0]->getName()
2262 << "' - it might create an irreducible loop!\n");
2266 unsigned DuplicationCost
=
2267 getJumpThreadDuplicationCost(BB
, BB
->getTerminator(), BBDupThreshold
);
2268 if (DuplicationCost
> BBDupThreshold
) {
2269 LLVM_DEBUG(dbgs() << " Not duplicating BB '" << BB
->getName()
2270 << "' - Cost is too high: " << DuplicationCost
<< "\n");
2274 // And finally, do it! Start by factoring the predecessors if needed.
2275 std::vector
<DominatorTree::UpdateType
> Updates
;
2277 if (PredBBs
.size() == 1)
2278 PredBB
= PredBBs
[0];
2280 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs
.size()
2281 << " common predecessors.\n");
2282 PredBB
= SplitBlockPreds(BB
, PredBBs
, ".thr_comm");
2284 Updates
.push_back({DominatorTree::Delete
, PredBB
, BB
});
2286 // Okay, we decided to do this! Clone all the instructions in BB onto the end
2288 LLVM_DEBUG(dbgs() << " Duplicating block '" << BB
->getName()
2289 << "' into end of '" << PredBB
->getName()
2290 << "' to eliminate branch on phi. Cost: "
2291 << DuplicationCost
<< " block is:" << *BB
<< "\n");
2293 // Unless PredBB ends with an unconditional branch, split the edge so that we
2294 // can just clone the bits from BB into the end of the new PredBB.
2295 BranchInst
*OldPredBranch
= dyn_cast
<BranchInst
>(PredBB
->getTerminator());
2297 if (!OldPredBranch
|| !OldPredBranch
->isUnconditional()) {
2298 BasicBlock
*OldPredBB
= PredBB
;
2299 PredBB
= SplitEdge(OldPredBB
, BB
);
2300 Updates
.push_back({DominatorTree::Insert
, OldPredBB
, PredBB
});
2301 Updates
.push_back({DominatorTree::Insert
, PredBB
, BB
});
2302 Updates
.push_back({DominatorTree::Delete
, OldPredBB
, BB
});
2303 OldPredBranch
= cast
<BranchInst
>(PredBB
->getTerminator());
2306 // We are going to have to map operands from the original BB block into the
2307 // PredBB block. Evaluate PHI nodes in BB.
2308 DenseMap
<Instruction
*, Value
*> ValueMapping
;
2310 BasicBlock::iterator BI
= BB
->begin();
2311 for (; PHINode
*PN
= dyn_cast
<PHINode
>(BI
); ++BI
)
2312 ValueMapping
[PN
] = PN
->getIncomingValueForBlock(PredBB
);
2313 // Clone the non-phi instructions of BB into PredBB, keeping track of the
2314 // mapping and using it to remap operands in the cloned instructions.
2315 for (; BI
!= BB
->end(); ++BI
) {
2316 Instruction
*New
= BI
->clone();
2318 // Remap operands to patch up intra-block references.
2319 for (unsigned i
= 0, e
= New
->getNumOperands(); i
!= e
; ++i
)
2320 if (Instruction
*Inst
= dyn_cast
<Instruction
>(New
->getOperand(i
))) {
2321 DenseMap
<Instruction
*, Value
*>::iterator I
= ValueMapping
.find(Inst
);
2322 if (I
!= ValueMapping
.end())
2323 New
->setOperand(i
, I
->second
);
2326 // If this instruction can be simplified after the operands are updated,
2327 // just use the simplified value instead. This frequently happens due to
2329 if (Value
*IV
= SimplifyInstruction(
2331 {BB
->getModule()->getDataLayout(), TLI
, nullptr, nullptr, New
})) {
2332 ValueMapping
[&*BI
] = IV
;
2333 if (!New
->mayHaveSideEffects()) {
2338 ValueMapping
[&*BI
] = New
;
2341 // Otherwise, insert the new instruction into the block.
2342 New
->setName(BI
->getName());
2343 PredBB
->getInstList().insert(OldPredBranch
->getIterator(), New
);
2344 // Update Dominance from simplified New instruction operands.
2345 for (unsigned i
= 0, e
= New
->getNumOperands(); i
!= e
; ++i
)
2346 if (BasicBlock
*SuccBB
= dyn_cast
<BasicBlock
>(New
->getOperand(i
)))
2347 Updates
.push_back({DominatorTree::Insert
, PredBB
, SuccBB
});
2351 // Check to see if the targets of the branch had PHI nodes. If so, we need to
2352 // add entries to the PHI nodes for branch from PredBB now.
2353 BranchInst
*BBBranch
= cast
<BranchInst
>(BB
->getTerminator());
2354 AddPHINodeEntriesForMappedBlock(BBBranch
->getSuccessor(0), BB
, PredBB
,
2356 AddPHINodeEntriesForMappedBlock(BBBranch
->getSuccessor(1), BB
, PredBB
,
2359 // If there were values defined in BB that are used outside the block, then we
2360 // now have to update all uses of the value to use either the original value,
2361 // the cloned value, or some PHI derived value. This can require arbitrary
2362 // PHI insertion, of which we are prepared to do, clean these up now.
2363 SSAUpdater SSAUpdate
;
2364 SmallVector
<Use
*, 16> UsesToRename
;
2365 for (Instruction
&I
: *BB
) {
2366 // Scan all uses of this instruction to see if it is used outside of its
2367 // block, and if so, record them in UsesToRename.
2368 for (Use
&U
: I
.uses()) {
2369 Instruction
*User
= cast
<Instruction
>(U
.getUser());
2370 if (PHINode
*UserPN
= dyn_cast
<PHINode
>(User
)) {
2371 if (UserPN
->getIncomingBlock(U
) == BB
)
2373 } else if (User
->getParent() == BB
)
2376 UsesToRename
.push_back(&U
);
2379 // If there are no uses outside the block, we're done with this instruction.
2380 if (UsesToRename
.empty())
2383 LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I
<< "\n");
2385 // We found a use of I outside of BB. Rename all uses of I that are outside
2386 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
2387 // with the two values we know.
2388 SSAUpdate
.Initialize(I
.getType(), I
.getName());
2389 SSAUpdate
.AddAvailableValue(BB
, &I
);
2390 SSAUpdate
.AddAvailableValue(PredBB
, ValueMapping
[&I
]);
2392 while (!UsesToRename
.empty())
2393 SSAUpdate
.RewriteUse(*UsesToRename
.pop_back_val());
2394 LLVM_DEBUG(dbgs() << "\n");
2397 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
2399 BB
->removePredecessor(PredBB
, true);
2401 // Remove the unconditional branch at the end of the PredBB block.
2402 OldPredBranch
->eraseFromParent();
2403 DTU
->applyUpdatesPermissive(Updates
);
2409 // Pred is a predecessor of BB with an unconditional branch to BB. SI is
2410 // a Select instruction in Pred. BB has other predecessors and SI is used in
2411 // a PHI node in BB. SI has no other use.
2412 // A new basic block, NewBB, is created and SI is converted to compare and
2413 // conditional branch. SI is erased from parent.
2414 void JumpThreadingPass::UnfoldSelectInstr(BasicBlock
*Pred
, BasicBlock
*BB
,
2415 SelectInst
*SI
, PHINode
*SIUse
,
2417 // Expand the select.
2426 BranchInst
*PredTerm
= dyn_cast
<BranchInst
>(Pred
->getTerminator());
2427 BasicBlock
*NewBB
= BasicBlock::Create(BB
->getContext(), "select.unfold",
2428 BB
->getParent(), BB
);
2429 // Move the unconditional branch to NewBB.
2430 PredTerm
->removeFromParent();
2431 NewBB
->getInstList().insert(NewBB
->end(), PredTerm
);
2432 // Create a conditional branch and update PHI nodes.
2433 BranchInst::Create(NewBB
, BB
, SI
->getCondition(), Pred
);
2434 SIUse
->setIncomingValue(Idx
, SI
->getFalseValue());
2435 SIUse
->addIncoming(SI
->getTrueValue(), NewBB
);
2437 // The select is now dead.
2438 SI
->eraseFromParent();
2439 DTU
->applyUpdatesPermissive({{DominatorTree::Insert
, NewBB
, BB
},
2440 {DominatorTree::Insert
, Pred
, NewBB
}});
2442 // Update any other PHI nodes in BB.
2443 for (BasicBlock::iterator BI
= BB
->begin();
2444 PHINode
*Phi
= dyn_cast
<PHINode
>(BI
); ++BI
)
2446 Phi
->addIncoming(Phi
->getIncomingValueForBlock(Pred
), NewBB
);
2449 bool JumpThreadingPass::TryToUnfoldSelect(SwitchInst
*SI
, BasicBlock
*BB
) {
2450 PHINode
*CondPHI
= dyn_cast
<PHINode
>(SI
->getCondition());
2452 if (!CondPHI
|| CondPHI
->getParent() != BB
)
2455 for (unsigned I
= 0, E
= CondPHI
->getNumIncomingValues(); I
!= E
; ++I
) {
2456 BasicBlock
*Pred
= CondPHI
->getIncomingBlock(I
);
2457 SelectInst
*PredSI
= dyn_cast
<SelectInst
>(CondPHI
->getIncomingValue(I
));
2459 // The second and third condition can be potentially relaxed. Currently
2460 // the conditions help to simplify the code and allow us to reuse existing
2461 // code, developed for TryToUnfoldSelect(CmpInst *, BasicBlock *)
2462 if (!PredSI
|| PredSI
->getParent() != Pred
|| !PredSI
->hasOneUse())
2465 BranchInst
*PredTerm
= dyn_cast
<BranchInst
>(Pred
->getTerminator());
2466 if (!PredTerm
|| !PredTerm
->isUnconditional())
2469 UnfoldSelectInstr(Pred
, BB
, PredSI
, CondPHI
, I
);
2475 /// TryToUnfoldSelect - Look for blocks of the form
2481 /// %p = phi [%a, %bb1] ...
2485 /// And expand the select into a branch structure if one of its arms allows %c
2486 /// to be folded. This later enables threading from bb1 over bb2.
2487 bool JumpThreadingPass::TryToUnfoldSelect(CmpInst
*CondCmp
, BasicBlock
*BB
) {
2488 BranchInst
*CondBr
= dyn_cast
<BranchInst
>(BB
->getTerminator());
2489 PHINode
*CondLHS
= dyn_cast
<PHINode
>(CondCmp
->getOperand(0));
2490 Constant
*CondRHS
= cast
<Constant
>(CondCmp
->getOperand(1));
2492 if (!CondBr
|| !CondBr
->isConditional() || !CondLHS
||
2493 CondLHS
->getParent() != BB
)
2496 for (unsigned I
= 0, E
= CondLHS
->getNumIncomingValues(); I
!= E
; ++I
) {
2497 BasicBlock
*Pred
= CondLHS
->getIncomingBlock(I
);
2498 SelectInst
*SI
= dyn_cast
<SelectInst
>(CondLHS
->getIncomingValue(I
));
2500 // Look if one of the incoming values is a select in the corresponding
2502 if (!SI
|| SI
->getParent() != Pred
|| !SI
->hasOneUse())
2505 BranchInst
*PredTerm
= dyn_cast
<BranchInst
>(Pred
->getTerminator());
2506 if (!PredTerm
|| !PredTerm
->isUnconditional())
2509 // Now check if one of the select values would allow us to constant fold the
2510 // terminator in BB. We don't do the transform if both sides fold, those
2511 // cases will be threaded in any case.
2512 if (DTU
->hasPendingDomTreeUpdates())
2516 LazyValueInfo::Tristate LHSFolds
=
2517 LVI
->getPredicateOnEdge(CondCmp
->getPredicate(), SI
->getOperand(1),
2518 CondRHS
, Pred
, BB
, CondCmp
);
2519 LazyValueInfo::Tristate RHSFolds
=
2520 LVI
->getPredicateOnEdge(CondCmp
->getPredicate(), SI
->getOperand(2),
2521 CondRHS
, Pred
, BB
, CondCmp
);
2522 if ((LHSFolds
!= LazyValueInfo::Unknown
||
2523 RHSFolds
!= LazyValueInfo::Unknown
) &&
2524 LHSFolds
!= RHSFolds
) {
2525 UnfoldSelectInstr(Pred
, BB
, SI
, CondLHS
, I
);
2532 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the
2533 /// same BB in the form
2535 /// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
2536 /// %s = select %p, trueval, falseval
2541 /// %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ...
2543 /// %s = select %c, trueval, falseval
2545 /// And expand the select into a branch structure. This later enables
2546 /// jump-threading over bb in this pass.
2548 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
2549 /// select if the associated PHI has at least one constant. If the unfolded
2550 /// select is not jump-threaded, it will be folded again in the later
2552 bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock
*BB
) {
2553 // If threading this would thread across a loop header, don't thread the edge.
2554 // See the comments above FindLoopHeaders for justifications and caveats.
2555 if (LoopHeaders
.count(BB
))
2558 for (BasicBlock::iterator BI
= BB
->begin();
2559 PHINode
*PN
= dyn_cast
<PHINode
>(BI
); ++BI
) {
2560 // Look for a Phi having at least one constant incoming value.
2561 if (llvm::all_of(PN
->incoming_values(),
2562 [](Value
*V
) { return !isa
<ConstantInt
>(V
); }))
2565 auto isUnfoldCandidate
= [BB
](SelectInst
*SI
, Value
*V
) {
2566 // Check if SI is in BB and use V as condition.
2567 if (SI
->getParent() != BB
)
2569 Value
*Cond
= SI
->getCondition();
2570 return (Cond
&& Cond
== V
&& Cond
->getType()->isIntegerTy(1));
2573 SelectInst
*SI
= nullptr;
2574 for (Use
&U
: PN
->uses()) {
2575 if (ICmpInst
*Cmp
= dyn_cast
<ICmpInst
>(U
.getUser())) {
2576 // Look for a ICmp in BB that compares PN with a constant and is the
2577 // condition of a Select.
2578 if (Cmp
->getParent() == BB
&& Cmp
->hasOneUse() &&
2579 isa
<ConstantInt
>(Cmp
->getOperand(1 - U
.getOperandNo())))
2580 if (SelectInst
*SelectI
= dyn_cast
<SelectInst
>(Cmp
->user_back()))
2581 if (isUnfoldCandidate(SelectI
, Cmp
->use_begin()->get())) {
2585 } else if (SelectInst
*SelectI
= dyn_cast
<SelectInst
>(U
.getUser())) {
2586 // Look for a Select in BB that uses PN as condition.
2587 if (isUnfoldCandidate(SelectI
, U
.get())) {
2596 // Expand the select.
2598 SplitBlockAndInsertIfThen(SI
->getCondition(), SI
, false);
2599 BasicBlock
*SplitBB
= SI
->getParent();
2600 BasicBlock
*NewBB
= Term
->getParent();
2601 PHINode
*NewPN
= PHINode::Create(SI
->getType(), 2, "", SI
);
2602 NewPN
->addIncoming(SI
->getTrueValue(), Term
->getParent());
2603 NewPN
->addIncoming(SI
->getFalseValue(), BB
);
2604 SI
->replaceAllUsesWith(NewPN
);
2605 SI
->eraseFromParent();
2606 // NewBB and SplitBB are newly created blocks which require insertion.
2607 std::vector
<DominatorTree::UpdateType
> Updates
;
2608 Updates
.reserve((2 * SplitBB
->getTerminator()->getNumSuccessors()) + 3);
2609 Updates
.push_back({DominatorTree::Insert
, BB
, SplitBB
});
2610 Updates
.push_back({DominatorTree::Insert
, BB
, NewBB
});
2611 Updates
.push_back({DominatorTree::Insert
, NewBB
, SplitBB
});
2612 // BB's successors were moved to SplitBB, update DTU accordingly.
2613 for (auto *Succ
: successors(SplitBB
)) {
2614 Updates
.push_back({DominatorTree::Delete
, BB
, Succ
});
2615 Updates
.push_back({DominatorTree::Insert
, SplitBB
, Succ
});
2617 DTU
->applyUpdatesPermissive(Updates
);
2623 /// Try to propagate a guard from the current BB into one of its predecessors
2624 /// in case if another branch of execution implies that the condition of this
2625 /// guard is always true. Currently we only process the simplest case that
2630 /// br i1 %cond, label %T1, label %F1
2636 /// %condGuard = ...
2637 /// call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ]
2639 /// And cond either implies condGuard or !condGuard. In this case all the
2640 /// instructions before the guard can be duplicated in both branches, and the
2641 /// guard is then threaded to one of them.
2642 bool JumpThreadingPass::ProcessGuards(BasicBlock
*BB
) {
2643 using namespace PatternMatch
;
2645 // We only want to deal with two predecessors.
2646 BasicBlock
*Pred1
, *Pred2
;
2647 auto PI
= pred_begin(BB
), PE
= pred_end(BB
);
2659 // Try to thread one of the guards of the block.
2660 // TODO: Look up deeper than to immediate predecessor?
2661 auto *Parent
= Pred1
->getSinglePredecessor();
2662 if (!Parent
|| Parent
!= Pred2
->getSinglePredecessor())
2665 if (auto *BI
= dyn_cast
<BranchInst
>(Parent
->getTerminator()))
2667 if (isGuard(&I
) && ThreadGuard(BB
, cast
<IntrinsicInst
>(&I
), BI
))
2673 /// Try to propagate the guard from BB which is the lower block of a diamond
2674 /// to one of its branches, in case if diamond's condition implies guard's
2676 bool JumpThreadingPass::ThreadGuard(BasicBlock
*BB
, IntrinsicInst
*Guard
,
2678 assert(BI
->getNumSuccessors() == 2 && "Wrong number of successors?");
2679 assert(BI
->isConditional() && "Unconditional branch has 2 successors?");
2680 Value
*GuardCond
= Guard
->getArgOperand(0);
2681 Value
*BranchCond
= BI
->getCondition();
2682 BasicBlock
*TrueDest
= BI
->getSuccessor(0);
2683 BasicBlock
*FalseDest
= BI
->getSuccessor(1);
2685 auto &DL
= BB
->getModule()->getDataLayout();
2686 bool TrueDestIsSafe
= false;
2687 bool FalseDestIsSafe
= false;
2689 // True dest is safe if BranchCond => GuardCond.
2690 auto Impl
= isImpliedCondition(BranchCond
, GuardCond
, DL
);
2692 TrueDestIsSafe
= true;
2694 // False dest is safe if !BranchCond => GuardCond.
2695 Impl
= isImpliedCondition(BranchCond
, GuardCond
, DL
, /* LHSIsTrue */ false);
2697 FalseDestIsSafe
= true;
2700 if (!TrueDestIsSafe
&& !FalseDestIsSafe
)
2703 BasicBlock
*PredUnguardedBlock
= TrueDestIsSafe
? TrueDest
: FalseDest
;
2704 BasicBlock
*PredGuardedBlock
= FalseDestIsSafe
? TrueDest
: FalseDest
;
2706 ValueToValueMapTy UnguardedMapping
, GuardedMapping
;
2707 Instruction
*AfterGuard
= Guard
->getNextNode();
2708 unsigned Cost
= getJumpThreadDuplicationCost(BB
, AfterGuard
, BBDupThreshold
);
2709 if (Cost
> BBDupThreshold
)
2711 // Duplicate all instructions before the guard and the guard itself to the
2712 // branch where implication is not proved.
2713 BasicBlock
*GuardedBlock
= DuplicateInstructionsInSplitBetween(
2714 BB
, PredGuardedBlock
, AfterGuard
, GuardedMapping
, *DTU
);
2715 assert(GuardedBlock
&& "Could not create the guarded block?");
2716 // Duplicate all instructions before the guard in the unguarded branch.
2717 // Since we have successfully duplicated the guarded block and this block
2718 // has fewer instructions, we expect it to succeed.
2719 BasicBlock
*UnguardedBlock
= DuplicateInstructionsInSplitBetween(
2720 BB
, PredUnguardedBlock
, Guard
, UnguardedMapping
, *DTU
);
2721 assert(UnguardedBlock
&& "Could not create the unguarded block?");
2722 LLVM_DEBUG(dbgs() << "Moved guard " << *Guard
<< " to block "
2723 << GuardedBlock
->getName() << "\n");
2724 // Some instructions before the guard may still have uses. For them, we need
2725 // to create Phi nodes merging their copies in both guarded and unguarded
2726 // branches. Those instructions that have no uses can be just removed.
2727 SmallVector
<Instruction
*, 4> ToRemove
;
2728 for (auto BI
= BB
->begin(); &*BI
!= AfterGuard
; ++BI
)
2729 if (!isa
<PHINode
>(&*BI
))
2730 ToRemove
.push_back(&*BI
);
2732 Instruction
*InsertionPoint
= &*BB
->getFirstInsertionPt();
2733 assert(InsertionPoint
&& "Empty block?");
2734 // Substitute with Phis & remove.
2735 for (auto *Inst
: reverse(ToRemove
)) {
2736 if (!Inst
->use_empty()) {
2737 PHINode
*NewPN
= PHINode::Create(Inst
->getType(), 2);
2738 NewPN
->addIncoming(UnguardedMapping
[Inst
], UnguardedBlock
);
2739 NewPN
->addIncoming(GuardedMapping
[Inst
], GuardedBlock
);
2740 NewPN
->insertBefore(InsertionPoint
);
2741 Inst
->replaceAllUsesWith(NewPN
);
2743 Inst
->eraseFromParent();