[llvm-objdump] - Import the test/Object/X86/no-start-symbol.test test case and rewrit...
[llvm-complete.git] / lib / Transforms / Scalar / JumpThreading.cpp
blobb86bf2fefbe51a40fdeb7b610fd80af68ab0473d
1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Jump Threading pass.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Transforms/Scalar/JumpThreading.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/DenseSet.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/BlockFrequencyInfo.h"
23 #include "llvm/Analysis/BranchProbabilityInfo.h"
24 #include "llvm/Analysis/CFG.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/DomTreeUpdater.h"
27 #include "llvm/Analysis/GlobalsModRef.h"
28 #include "llvm/Analysis/GuardUtils.h"
29 #include "llvm/Analysis/InstructionSimplify.h"
30 #include "llvm/Analysis/LazyValueInfo.h"
31 #include "llvm/Analysis/Loads.h"
32 #include "llvm/Analysis/LoopInfo.h"
33 #include "llvm/Analysis/TargetLibraryInfo.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/IR/BasicBlock.h"
36 #include "llvm/IR/CFG.h"
37 #include "llvm/IR/Constant.h"
38 #include "llvm/IR/ConstantRange.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/InstrTypes.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/LLVMContext.h"
49 #include "llvm/IR/MDBuilder.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/PassManager.h"
53 #include "llvm/IR/PatternMatch.h"
54 #include "llvm/IR/Type.h"
55 #include "llvm/IR/Use.h"
56 #include "llvm/IR/User.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/Pass.h"
59 #include "llvm/Support/BlockFrequency.h"
60 #include "llvm/Support/BranchProbability.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include "llvm/Transforms/Scalar.h"
66 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
67 #include "llvm/Transforms/Utils/Cloning.h"
68 #include "llvm/Transforms/Utils/Local.h"
69 #include "llvm/Transforms/Utils/SSAUpdater.h"
70 #include "llvm/Transforms/Utils/ValueMapper.h"
71 #include <algorithm>
72 #include <cassert>
73 #include <cstddef>
74 #include <cstdint>
75 #include <iterator>
76 #include <memory>
77 #include <utility>
79 using namespace llvm;
80 using namespace jumpthreading;
82 #define DEBUG_TYPE "jump-threading"
84 STATISTIC(NumThreads, "Number of jumps threaded");
85 STATISTIC(NumFolds, "Number of terminators folded");
86 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi");
88 static cl::opt<unsigned>
89 BBDuplicateThreshold("jump-threading-threshold",
90 cl::desc("Max block size to duplicate for jump threading"),
91 cl::init(6), cl::Hidden);
93 static cl::opt<unsigned>
94 ImplicationSearchThreshold(
95 "jump-threading-implication-search-threshold",
96 cl::desc("The number of predecessors to search for a stronger "
97 "condition to use to thread over a weaker condition"),
98 cl::init(3), cl::Hidden);
100 static cl::opt<bool> PrintLVIAfterJumpThreading(
101 "print-lvi-after-jump-threading",
102 cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false),
103 cl::Hidden);
105 static cl::opt<bool> ThreadAcrossLoopHeaders(
106 "jump-threading-across-loop-headers",
107 cl::desc("Allow JumpThreading to thread across loop headers, for testing"),
108 cl::init(false), cl::Hidden);
111 namespace {
113 /// This pass performs 'jump threading', which looks at blocks that have
114 /// multiple predecessors and multiple successors. If one or more of the
115 /// predecessors of the block can be proven to always jump to one of the
116 /// successors, we forward the edge from the predecessor to the successor by
117 /// duplicating the contents of this block.
119 /// An example of when this can occur is code like this:
121 /// if () { ...
122 /// X = 4;
123 /// }
124 /// if (X < 3) {
126 /// In this case, the unconditional branch at the end of the first if can be
127 /// revectored to the false side of the second if.
128 class JumpThreading : public FunctionPass {
129 JumpThreadingPass Impl;
131 public:
132 static char ID; // Pass identification
134 JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) {
135 initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
138 bool runOnFunction(Function &F) override;
140 void getAnalysisUsage(AnalysisUsage &AU) const override {
141 AU.addRequired<DominatorTreeWrapperPass>();
142 AU.addPreserved<DominatorTreeWrapperPass>();
143 AU.addRequired<AAResultsWrapperPass>();
144 AU.addRequired<LazyValueInfoWrapperPass>();
145 AU.addPreserved<LazyValueInfoWrapperPass>();
146 AU.addPreserved<GlobalsAAWrapperPass>();
147 AU.addRequired<TargetLibraryInfoWrapperPass>();
150 void releaseMemory() override { Impl.releaseMemory(); }
153 } // end anonymous namespace
155 char JumpThreading::ID = 0;
157 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
158 "Jump Threading", false, false)
159 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
160 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
161 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
162 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
163 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
164 "Jump Threading", false, false)
166 // Public interface to the Jump Threading pass
167 FunctionPass *llvm::createJumpThreadingPass(int Threshold) {
168 return new JumpThreading(Threshold);
171 JumpThreadingPass::JumpThreadingPass(int T) {
172 BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
175 // Update branch probability information according to conditional
176 // branch probability. This is usually made possible for cloned branches
177 // in inline instances by the context specific profile in the caller.
178 // For instance,
180 // [Block PredBB]
181 // [Branch PredBr]
182 // if (t) {
183 // Block A;
184 // } else {
185 // Block B;
186 // }
188 // [Block BB]
189 // cond = PN([true, %A], [..., %B]); // PHI node
190 // [Branch CondBr]
191 // if (cond) {
192 // ... // P(cond == true) = 1%
193 // }
195 // Here we know that when block A is taken, cond must be true, which means
196 // P(cond == true | A) = 1
198 // Given that P(cond == true) = P(cond == true | A) * P(A) +
199 // P(cond == true | B) * P(B)
200 // we get:
201 // P(cond == true ) = P(A) + P(cond == true | B) * P(B)
203 // which gives us:
204 // P(A) is less than P(cond == true), i.e.
205 // P(t == true) <= P(cond == true)
207 // In other words, if we know P(cond == true) is unlikely, we know
208 // that P(t == true) is also unlikely.
210 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) {
211 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
212 if (!CondBr)
213 return;
215 BranchProbability BP;
216 uint64_t TrueWeight, FalseWeight;
217 if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight))
218 return;
220 // Returns the outgoing edge of the dominating predecessor block
221 // that leads to the PhiNode's incoming block:
222 auto GetPredOutEdge =
223 [](BasicBlock *IncomingBB,
224 BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> {
225 auto *PredBB = IncomingBB;
226 auto *SuccBB = PhiBB;
227 while (true) {
228 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
229 if (PredBr && PredBr->isConditional())
230 return {PredBB, SuccBB};
231 auto *SinglePredBB = PredBB->getSinglePredecessor();
232 if (!SinglePredBB)
233 return {nullptr, nullptr};
234 SuccBB = PredBB;
235 PredBB = SinglePredBB;
239 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
240 Value *PhiOpnd = PN->getIncomingValue(i);
241 ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd);
243 if (!CI || !CI->getType()->isIntegerTy(1))
244 continue;
246 BP = (CI->isOne() ? BranchProbability::getBranchProbability(
247 TrueWeight, TrueWeight + FalseWeight)
248 : BranchProbability::getBranchProbability(
249 FalseWeight, TrueWeight + FalseWeight));
251 auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB);
252 if (!PredOutEdge.first)
253 return;
255 BasicBlock *PredBB = PredOutEdge.first;
256 BranchInst *PredBr = cast<BranchInst>(PredBB->getTerminator());
258 uint64_t PredTrueWeight, PredFalseWeight;
259 // FIXME: We currently only set the profile data when it is missing.
260 // With PGO, this can be used to refine even existing profile data with
261 // context information. This needs to be done after more performance
262 // testing.
263 if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight))
264 continue;
266 // We can not infer anything useful when BP >= 50%, because BP is the
267 // upper bound probability value.
268 if (BP >= BranchProbability(50, 100))
269 continue;
271 SmallVector<uint32_t, 2> Weights;
272 if (PredBr->getSuccessor(0) == PredOutEdge.second) {
273 Weights.push_back(BP.getNumerator());
274 Weights.push_back(BP.getCompl().getNumerator());
275 } else {
276 Weights.push_back(BP.getCompl().getNumerator());
277 Weights.push_back(BP.getNumerator());
279 PredBr->setMetadata(LLVMContext::MD_prof,
280 MDBuilder(PredBr->getParent()->getContext())
281 .createBranchWeights(Weights));
285 /// runOnFunction - Toplevel algorithm.
286 bool JumpThreading::runOnFunction(Function &F) {
287 if (skipFunction(F))
288 return false;
289 auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
290 // Get DT analysis before LVI. When LVI is initialized it conditionally adds
291 // DT if it's available.
292 auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
293 auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
294 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
295 DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy);
296 std::unique_ptr<BlockFrequencyInfo> BFI;
297 std::unique_ptr<BranchProbabilityInfo> BPI;
298 bool HasProfileData = F.hasProfileData();
299 if (HasProfileData) {
300 LoopInfo LI{DominatorTree(F)};
301 BPI.reset(new BranchProbabilityInfo(F, LI, TLI));
302 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
305 bool Changed = Impl.runImpl(F, TLI, LVI, AA, &DTU, HasProfileData,
306 std::move(BFI), std::move(BPI));
307 if (PrintLVIAfterJumpThreading) {
308 dbgs() << "LVI for function '" << F.getName() << "':\n";
309 LVI->printLVI(F, *DT, dbgs());
311 return Changed;
314 PreservedAnalyses JumpThreadingPass::run(Function &F,
315 FunctionAnalysisManager &AM) {
316 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
317 // Get DT analysis before LVI. When LVI is initialized it conditionally adds
318 // DT if it's available.
319 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
320 auto &LVI = AM.getResult<LazyValueAnalysis>(F);
321 auto &AA = AM.getResult<AAManager>(F);
322 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
324 std::unique_ptr<BlockFrequencyInfo> BFI;
325 std::unique_ptr<BranchProbabilityInfo> BPI;
326 if (F.hasProfileData()) {
327 LoopInfo LI{DominatorTree(F)};
328 BPI.reset(new BranchProbabilityInfo(F, LI, &TLI));
329 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
332 bool Changed = runImpl(F, &TLI, &LVI, &AA, &DTU, HasProfileData,
333 std::move(BFI), std::move(BPI));
335 if (!Changed)
336 return PreservedAnalyses::all();
337 PreservedAnalyses PA;
338 PA.preserve<GlobalsAA>();
339 PA.preserve<DominatorTreeAnalysis>();
340 PA.preserve<LazyValueAnalysis>();
341 return PA;
344 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_,
345 LazyValueInfo *LVI_, AliasAnalysis *AA_,
346 DomTreeUpdater *DTU_, bool HasProfileData_,
347 std::unique_ptr<BlockFrequencyInfo> BFI_,
348 std::unique_ptr<BranchProbabilityInfo> BPI_) {
349 LLVM_DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
350 TLI = TLI_;
351 LVI = LVI_;
352 AA = AA_;
353 DTU = DTU_;
354 BFI.reset();
355 BPI.reset();
356 // When profile data is available, we need to update edge weights after
357 // successful jump threading, which requires both BPI and BFI being available.
358 HasProfileData = HasProfileData_;
359 auto *GuardDecl = F.getParent()->getFunction(
360 Intrinsic::getName(Intrinsic::experimental_guard));
361 HasGuards = GuardDecl && !GuardDecl->use_empty();
362 if (HasProfileData) {
363 BPI = std::move(BPI_);
364 BFI = std::move(BFI_);
367 // JumpThreading must not processes blocks unreachable from entry. It's a
368 // waste of compute time and can potentially lead to hangs.
369 SmallPtrSet<BasicBlock *, 16> Unreachable;
370 assert(DTU && "DTU isn't passed into JumpThreading before using it.");
371 assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed.");
372 DominatorTree &DT = DTU->getDomTree();
373 for (auto &BB : F)
374 if (!DT.isReachableFromEntry(&BB))
375 Unreachable.insert(&BB);
377 if (!ThreadAcrossLoopHeaders)
378 FindLoopHeaders(F);
380 bool EverChanged = false;
381 bool Changed;
382 do {
383 Changed = false;
384 for (auto &BB : F) {
385 if (Unreachable.count(&BB))
386 continue;
387 while (ProcessBlock(&BB)) // Thread all of the branches we can over BB.
388 Changed = true;
389 // Stop processing BB if it's the entry or is now deleted. The following
390 // routines attempt to eliminate BB and locating a suitable replacement
391 // for the entry is non-trivial.
392 if (&BB == &F.getEntryBlock() || DTU->isBBPendingDeletion(&BB))
393 continue;
395 if (pred_empty(&BB)) {
396 // When ProcessBlock makes BB unreachable it doesn't bother to fix up
397 // the instructions in it. We must remove BB to prevent invalid IR.
398 LLVM_DEBUG(dbgs() << " JT: Deleting dead block '" << BB.getName()
399 << "' with terminator: " << *BB.getTerminator()
400 << '\n');
401 LoopHeaders.erase(&BB);
402 LVI->eraseBlock(&BB);
403 DeleteDeadBlock(&BB, DTU);
404 Changed = true;
405 continue;
408 // ProcessBlock doesn't thread BBs with unconditional TIs. However, if BB
409 // is "almost empty", we attempt to merge BB with its sole successor.
410 auto *BI = dyn_cast<BranchInst>(BB.getTerminator());
411 if (BI && BI->isUnconditional() &&
412 // The terminator must be the only non-phi instruction in BB.
413 BB.getFirstNonPHIOrDbg()->isTerminator() &&
414 // Don't alter Loop headers and latches to ensure another pass can
415 // detect and transform nested loops later.
416 !LoopHeaders.count(&BB) && !LoopHeaders.count(BI->getSuccessor(0)) &&
417 TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU)) {
418 // BB is valid for cleanup here because we passed in DTU. F remains
419 // BB's parent until a DTU->getDomTree() event.
420 LVI->eraseBlock(&BB);
421 Changed = true;
424 EverChanged |= Changed;
425 } while (Changed);
427 LoopHeaders.clear();
428 // Flush only the Dominator Tree.
429 DTU->getDomTree();
430 LVI->enableDT();
431 return EverChanged;
434 // Replace uses of Cond with ToVal when safe to do so. If all uses are
435 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond
436 // because we may incorrectly replace uses when guards/assumes are uses of
437 // of `Cond` and we used the guards/assume to reason about the `Cond` value
438 // at the end of block. RAUW unconditionally replaces all uses
439 // including the guards/assumes themselves and the uses before the
440 // guard/assume.
441 static void ReplaceFoldableUses(Instruction *Cond, Value *ToVal) {
442 assert(Cond->getType() == ToVal->getType());
443 auto *BB = Cond->getParent();
444 // We can unconditionally replace all uses in non-local blocks (i.e. uses
445 // strictly dominated by BB), since LVI information is true from the
446 // terminator of BB.
447 replaceNonLocalUsesWith(Cond, ToVal);
448 for (Instruction &I : reverse(*BB)) {
449 // Reached the Cond whose uses we are trying to replace, so there are no
450 // more uses.
451 if (&I == Cond)
452 break;
453 // We only replace uses in instructions that are guaranteed to reach the end
454 // of BB, where we know Cond is ToVal.
455 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
456 break;
457 I.replaceUsesOfWith(Cond, ToVal);
459 if (Cond->use_empty() && !Cond->mayHaveSideEffects())
460 Cond->eraseFromParent();
463 /// Return the cost of duplicating a piece of this block from first non-phi
464 /// and before StopAt instruction to thread across it. Stop scanning the block
465 /// when exceeding the threshold. If duplication is impossible, returns ~0U.
466 static unsigned getJumpThreadDuplicationCost(BasicBlock *BB,
467 Instruction *StopAt,
468 unsigned Threshold) {
469 assert(StopAt->getParent() == BB && "Not an instruction from proper BB?");
470 /// Ignore PHI nodes, these will be flattened when duplication happens.
471 BasicBlock::const_iterator I(BB->getFirstNonPHI());
473 // FIXME: THREADING will delete values that are just used to compute the
474 // branch, so they shouldn't count against the duplication cost.
476 unsigned Bonus = 0;
477 if (BB->getTerminator() == StopAt) {
478 // Threading through a switch statement is particularly profitable. If this
479 // block ends in a switch, decrease its cost to make it more likely to
480 // happen.
481 if (isa<SwitchInst>(StopAt))
482 Bonus = 6;
484 // The same holds for indirect branches, but slightly more so.
485 if (isa<IndirectBrInst>(StopAt))
486 Bonus = 8;
489 // Bump the threshold up so the early exit from the loop doesn't skip the
490 // terminator-based Size adjustment at the end.
491 Threshold += Bonus;
493 // Sum up the cost of each instruction until we get to the terminator. Don't
494 // include the terminator because the copy won't include it.
495 unsigned Size = 0;
496 for (; &*I != StopAt; ++I) {
498 // Stop scanning the block if we've reached the threshold.
499 if (Size > Threshold)
500 return Size;
502 // Debugger intrinsics don't incur code size.
503 if (isa<DbgInfoIntrinsic>(I)) continue;
505 // If this is a pointer->pointer bitcast, it is free.
506 if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
507 continue;
509 // Bail out if this instruction gives back a token type, it is not possible
510 // to duplicate it if it is used outside this BB.
511 if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
512 return ~0U;
514 // All other instructions count for at least one unit.
515 ++Size;
517 // Calls are more expensive. If they are non-intrinsic calls, we model them
518 // as having cost of 4. If they are a non-vector intrinsic, we model them
519 // as having cost of 2 total, and if they are a vector intrinsic, we model
520 // them as having cost 1.
521 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
522 if (CI->cannotDuplicate() || CI->isConvergent())
523 // Blocks with NoDuplicate are modelled as having infinite cost, so they
524 // are never duplicated.
525 return ~0U;
526 else if (!isa<IntrinsicInst>(CI))
527 Size += 3;
528 else if (!CI->getType()->isVectorTy())
529 Size += 1;
533 return Size > Bonus ? Size - Bonus : 0;
536 /// FindLoopHeaders - We do not want jump threading to turn proper loop
537 /// structures into irreducible loops. Doing this breaks up the loop nesting
538 /// hierarchy and pessimizes later transformations. To prevent this from
539 /// happening, we first have to find the loop headers. Here we approximate this
540 /// by finding targets of backedges in the CFG.
542 /// Note that there definitely are cases when we want to allow threading of
543 /// edges across a loop header. For example, threading a jump from outside the
544 /// loop (the preheader) to an exit block of the loop is definitely profitable.
545 /// It is also almost always profitable to thread backedges from within the loop
546 /// to exit blocks, and is often profitable to thread backedges to other blocks
547 /// within the loop (forming a nested loop). This simple analysis is not rich
548 /// enough to track all of these properties and keep it up-to-date as the CFG
549 /// mutates, so we don't allow any of these transformations.
550 void JumpThreadingPass::FindLoopHeaders(Function &F) {
551 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
552 FindFunctionBackedges(F, Edges);
554 for (const auto &Edge : Edges)
555 LoopHeaders.insert(Edge.second);
558 /// getKnownConstant - Helper method to determine if we can thread over a
559 /// terminator with the given value as its condition, and if so what value to
560 /// use for that. What kind of value this is depends on whether we want an
561 /// integer or a block address, but an undef is always accepted.
562 /// Returns null if Val is null or not an appropriate constant.
563 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
564 if (!Val)
565 return nullptr;
567 // Undef is "known" enough.
568 if (UndefValue *U = dyn_cast<UndefValue>(Val))
569 return U;
571 if (Preference == WantBlockAddress)
572 return dyn_cast<BlockAddress>(Val->stripPointerCasts());
574 return dyn_cast<ConstantInt>(Val);
577 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
578 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
579 /// in any of our predecessors. If so, return the known list of value and pred
580 /// BB in the result vector.
582 /// This returns true if there were any known values.
583 bool JumpThreadingPass::ComputeValueKnownInPredecessorsImpl(
584 Value *V, BasicBlock *BB, PredValueInfo &Result,
585 ConstantPreference Preference,
586 DenseSet<std::pair<Value *, BasicBlock *>> &RecursionSet,
587 Instruction *CxtI) {
588 // This method walks up use-def chains recursively. Because of this, we could
589 // get into an infinite loop going around loops in the use-def chain. To
590 // prevent this, keep track of what (value, block) pairs we've already visited
591 // and terminate the search if we loop back to them
592 if (!RecursionSet.insert(std::make_pair(V, BB)).second)
593 return false;
595 // If V is a constant, then it is known in all predecessors.
596 if (Constant *KC = getKnownConstant(V, Preference)) {
597 for (BasicBlock *Pred : predecessors(BB))
598 Result.push_back(std::make_pair(KC, Pred));
600 return !Result.empty();
603 // If V is a non-instruction value, or an instruction in a different block,
604 // then it can't be derived from a PHI.
605 Instruction *I = dyn_cast<Instruction>(V);
606 if (!I || I->getParent() != BB) {
608 // Okay, if this is a live-in value, see if it has a known value at the end
609 // of any of our predecessors.
611 // FIXME: This should be an edge property, not a block end property.
612 /// TODO: Per PR2563, we could infer value range information about a
613 /// predecessor based on its terminator.
615 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
616 // "I" is a non-local compare-with-a-constant instruction. This would be
617 // able to handle value inequalities better, for example if the compare is
618 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
619 // Perhaps getConstantOnEdge should be smart enough to do this?
621 if (DTU->hasPendingDomTreeUpdates())
622 LVI->disableDT();
623 else
624 LVI->enableDT();
625 for (BasicBlock *P : predecessors(BB)) {
626 // If the value is known by LazyValueInfo to be a constant in a
627 // predecessor, use that information to try to thread this block.
628 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
629 if (Constant *KC = getKnownConstant(PredCst, Preference))
630 Result.push_back(std::make_pair(KC, P));
633 return !Result.empty();
636 /// If I is a PHI node, then we know the incoming values for any constants.
637 if (PHINode *PN = dyn_cast<PHINode>(I)) {
638 if (DTU->hasPendingDomTreeUpdates())
639 LVI->disableDT();
640 else
641 LVI->enableDT();
642 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
643 Value *InVal = PN->getIncomingValue(i);
644 if (Constant *KC = getKnownConstant(InVal, Preference)) {
645 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
646 } else {
647 Constant *CI = LVI->getConstantOnEdge(InVal,
648 PN->getIncomingBlock(i),
649 BB, CxtI);
650 if (Constant *KC = getKnownConstant(CI, Preference))
651 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
655 return !Result.empty();
658 // Handle Cast instructions. Only see through Cast when the source operand is
659 // PHI or Cmp to save the compilation time.
660 if (CastInst *CI = dyn_cast<CastInst>(I)) {
661 Value *Source = CI->getOperand(0);
662 if (!isa<PHINode>(Source) && !isa<CmpInst>(Source))
663 return false;
664 ComputeValueKnownInPredecessorsImpl(Source, BB, Result, Preference,
665 RecursionSet, CxtI);
666 if (Result.empty())
667 return false;
669 // Convert the known values.
670 for (auto &R : Result)
671 R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType());
673 return true;
676 // Handle some boolean conditions.
677 if (I->getType()->getPrimitiveSizeInBits() == 1) {
678 assert(Preference == WantInteger && "One-bit non-integer type?");
679 // X | true -> true
680 // X & false -> false
681 if (I->getOpcode() == Instruction::Or ||
682 I->getOpcode() == Instruction::And) {
683 PredValueInfoTy LHSVals, RHSVals;
685 ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals,
686 WantInteger, RecursionSet, CxtI);
687 ComputeValueKnownInPredecessorsImpl(I->getOperand(1), BB, RHSVals,
688 WantInteger, RecursionSet, CxtI);
690 if (LHSVals.empty() && RHSVals.empty())
691 return false;
693 ConstantInt *InterestingVal;
694 if (I->getOpcode() == Instruction::Or)
695 InterestingVal = ConstantInt::getTrue(I->getContext());
696 else
697 InterestingVal = ConstantInt::getFalse(I->getContext());
699 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
701 // Scan for the sentinel. If we find an undef, force it to the
702 // interesting value: x|undef -> true and x&undef -> false.
703 for (const auto &LHSVal : LHSVals)
704 if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
705 Result.emplace_back(InterestingVal, LHSVal.second);
706 LHSKnownBBs.insert(LHSVal.second);
708 for (const auto &RHSVal : RHSVals)
709 if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
710 // If we already inferred a value for this block on the LHS, don't
711 // re-add it.
712 if (!LHSKnownBBs.count(RHSVal.second))
713 Result.emplace_back(InterestingVal, RHSVal.second);
716 return !Result.empty();
719 // Handle the NOT form of XOR.
720 if (I->getOpcode() == Instruction::Xor &&
721 isa<ConstantInt>(I->getOperand(1)) &&
722 cast<ConstantInt>(I->getOperand(1))->isOne()) {
723 ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result,
724 WantInteger, RecursionSet, CxtI);
725 if (Result.empty())
726 return false;
728 // Invert the known values.
729 for (auto &R : Result)
730 R.first = ConstantExpr::getNot(R.first);
732 return true;
735 // Try to simplify some other binary operator values.
736 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
737 assert(Preference != WantBlockAddress
738 && "A binary operator creating a block address?");
739 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
740 PredValueInfoTy LHSVals;
741 ComputeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals,
742 WantInteger, RecursionSet, CxtI);
744 // Try to use constant folding to simplify the binary operator.
745 for (const auto &LHSVal : LHSVals) {
746 Constant *V = LHSVal.first;
747 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
749 if (Constant *KC = getKnownConstant(Folded, WantInteger))
750 Result.push_back(std::make_pair(KC, LHSVal.second));
754 return !Result.empty();
757 // Handle compare with phi operand, where the PHI is defined in this block.
758 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
759 assert(Preference == WantInteger && "Compares only produce integers");
760 Type *CmpType = Cmp->getType();
761 Value *CmpLHS = Cmp->getOperand(0);
762 Value *CmpRHS = Cmp->getOperand(1);
763 CmpInst::Predicate Pred = Cmp->getPredicate();
765 PHINode *PN = dyn_cast<PHINode>(CmpLHS);
766 if (!PN)
767 PN = dyn_cast<PHINode>(CmpRHS);
768 if (PN && PN->getParent() == BB) {
769 const DataLayout &DL = PN->getModule()->getDataLayout();
770 // We can do this simplification if any comparisons fold to true or false.
771 // See if any do.
772 if (DTU->hasPendingDomTreeUpdates())
773 LVI->disableDT();
774 else
775 LVI->enableDT();
776 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
777 BasicBlock *PredBB = PN->getIncomingBlock(i);
778 Value *LHS, *RHS;
779 if (PN == CmpLHS) {
780 LHS = PN->getIncomingValue(i);
781 RHS = CmpRHS->DoPHITranslation(BB, PredBB);
782 } else {
783 LHS = CmpLHS->DoPHITranslation(BB, PredBB);
784 RHS = PN->getIncomingValue(i);
786 Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL});
787 if (!Res) {
788 if (!isa<Constant>(RHS))
789 continue;
791 // getPredicateOnEdge call will make no sense if LHS is defined in BB.
792 auto LHSInst = dyn_cast<Instruction>(LHS);
793 if (LHSInst && LHSInst->getParent() == BB)
794 continue;
796 LazyValueInfo::Tristate
797 ResT = LVI->getPredicateOnEdge(Pred, LHS,
798 cast<Constant>(RHS), PredBB, BB,
799 CxtI ? CxtI : Cmp);
800 if (ResT == LazyValueInfo::Unknown)
801 continue;
802 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
805 if (Constant *KC = getKnownConstant(Res, WantInteger))
806 Result.push_back(std::make_pair(KC, PredBB));
809 return !Result.empty();
812 // If comparing a live-in value against a constant, see if we know the
813 // live-in value on any predecessors.
814 if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) {
815 Constant *CmpConst = cast<Constant>(CmpRHS);
817 if (!isa<Instruction>(CmpLHS) ||
818 cast<Instruction>(CmpLHS)->getParent() != BB) {
819 if (DTU->hasPendingDomTreeUpdates())
820 LVI->disableDT();
821 else
822 LVI->enableDT();
823 for (BasicBlock *P : predecessors(BB)) {
824 // If the value is known by LazyValueInfo to be a constant in a
825 // predecessor, use that information to try to thread this block.
826 LazyValueInfo::Tristate Res =
827 LVI->getPredicateOnEdge(Pred, CmpLHS,
828 CmpConst, P, BB, CxtI ? CxtI : Cmp);
829 if (Res == LazyValueInfo::Unknown)
830 continue;
832 Constant *ResC = ConstantInt::get(CmpType, Res);
833 Result.push_back(std::make_pair(ResC, P));
836 return !Result.empty();
839 // InstCombine can fold some forms of constant range checks into
840 // (icmp (add (x, C1)), C2). See if we have we have such a thing with
841 // x as a live-in.
843 using namespace PatternMatch;
845 Value *AddLHS;
846 ConstantInt *AddConst;
847 if (isa<ConstantInt>(CmpConst) &&
848 match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) {
849 if (!isa<Instruction>(AddLHS) ||
850 cast<Instruction>(AddLHS)->getParent() != BB) {
851 if (DTU->hasPendingDomTreeUpdates())
852 LVI->disableDT();
853 else
854 LVI->enableDT();
855 for (BasicBlock *P : predecessors(BB)) {
856 // If the value is known by LazyValueInfo to be a ConstantRange in
857 // a predecessor, use that information to try to thread this
858 // block.
859 ConstantRange CR = LVI->getConstantRangeOnEdge(
860 AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS));
861 // Propagate the range through the addition.
862 CR = CR.add(AddConst->getValue());
864 // Get the range where the compare returns true.
865 ConstantRange CmpRange = ConstantRange::makeExactICmpRegion(
866 Pred, cast<ConstantInt>(CmpConst)->getValue());
868 Constant *ResC;
869 if (CmpRange.contains(CR))
870 ResC = ConstantInt::getTrue(CmpType);
871 else if (CmpRange.inverse().contains(CR))
872 ResC = ConstantInt::getFalse(CmpType);
873 else
874 continue;
876 Result.push_back(std::make_pair(ResC, P));
879 return !Result.empty();
884 // Try to find a constant value for the LHS of a comparison,
885 // and evaluate it statically if we can.
886 PredValueInfoTy LHSVals;
887 ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals,
888 WantInteger, RecursionSet, CxtI);
890 for (const auto &LHSVal : LHSVals) {
891 Constant *V = LHSVal.first;
892 Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst);
893 if (Constant *KC = getKnownConstant(Folded, WantInteger))
894 Result.push_back(std::make_pair(KC, LHSVal.second));
897 return !Result.empty();
901 if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
902 // Handle select instructions where at least one operand is a known constant
903 // and we can figure out the condition value for any predecessor block.
904 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
905 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
906 PredValueInfoTy Conds;
907 if ((TrueVal || FalseVal) &&
908 ComputeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds,
909 WantInteger, RecursionSet, CxtI)) {
910 for (auto &C : Conds) {
911 Constant *Cond = C.first;
913 // Figure out what value to use for the condition.
914 bool KnownCond;
915 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
916 // A known boolean.
917 KnownCond = CI->isOne();
918 } else {
919 assert(isa<UndefValue>(Cond) && "Unexpected condition value");
920 // Either operand will do, so be sure to pick the one that's a known
921 // constant.
922 // FIXME: Do this more cleverly if both values are known constants?
923 KnownCond = (TrueVal != nullptr);
926 // See if the select has a known constant value for this predecessor.
927 if (Constant *Val = KnownCond ? TrueVal : FalseVal)
928 Result.push_back(std::make_pair(Val, C.second));
931 return !Result.empty();
935 // If all else fails, see if LVI can figure out a constant value for us.
936 if (DTU->hasPendingDomTreeUpdates())
937 LVI->disableDT();
938 else
939 LVI->enableDT();
940 Constant *CI = LVI->getConstant(V, BB, CxtI);
941 if (Constant *KC = getKnownConstant(CI, Preference)) {
942 for (BasicBlock *Pred : predecessors(BB))
943 Result.push_back(std::make_pair(KC, Pred));
946 return !Result.empty();
949 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
950 /// in an undefined jump, decide which block is best to revector to.
952 /// Since we can pick an arbitrary destination, we pick the successor with the
953 /// fewest predecessors. This should reduce the in-degree of the others.
954 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
955 Instruction *BBTerm = BB->getTerminator();
956 unsigned MinSucc = 0;
957 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
958 // Compute the successor with the minimum number of predecessors.
959 unsigned MinNumPreds = pred_size(TestBB);
960 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
961 TestBB = BBTerm->getSuccessor(i);
962 unsigned NumPreds = pred_size(TestBB);
963 if (NumPreds < MinNumPreds) {
964 MinSucc = i;
965 MinNumPreds = NumPreds;
969 return MinSucc;
972 static bool hasAddressTakenAndUsed(BasicBlock *BB) {
973 if (!BB->hasAddressTaken()) return false;
975 // If the block has its address taken, it may be a tree of dead constants
976 // hanging off of it. These shouldn't keep the block alive.
977 BlockAddress *BA = BlockAddress::get(BB);
978 BA->removeDeadConstantUsers();
979 return !BA->use_empty();
982 /// ProcessBlock - If there are any predecessors whose control can be threaded
983 /// through to a successor, transform them now.
984 bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) {
985 // If the block is trivially dead, just return and let the caller nuke it.
986 // This simplifies other transformations.
987 if (DTU->isBBPendingDeletion(BB) ||
988 (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()))
989 return false;
991 // If this block has a single predecessor, and if that pred has a single
992 // successor, merge the blocks. This encourages recursive jump threading
993 // because now the condition in this block can be threaded through
994 // predecessors of our predecessor block.
995 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
996 const Instruction *TI = SinglePred->getTerminator();
997 if (!TI->isExceptionalTerminator() && TI->getNumSuccessors() == 1 &&
998 SinglePred != BB && !hasAddressTakenAndUsed(BB)) {
999 // If SinglePred was a loop header, BB becomes one.
1000 if (LoopHeaders.erase(SinglePred))
1001 LoopHeaders.insert(BB);
1003 LVI->eraseBlock(SinglePred);
1004 MergeBasicBlockIntoOnlyPred(BB, DTU);
1006 // Now that BB is merged into SinglePred (i.e. SinglePred Code followed by
1007 // BB code within one basic block `BB`), we need to invalidate the LVI
1008 // information associated with BB, because the LVI information need not be
1009 // true for all of BB after the merge. For example,
1010 // Before the merge, LVI info and code is as follows:
1011 // SinglePred: <LVI info1 for %p val>
1012 // %y = use of %p
1013 // call @exit() // need not transfer execution to successor.
1014 // assume(%p) // from this point on %p is true
1015 // br label %BB
1016 // BB: <LVI info2 for %p val, i.e. %p is true>
1017 // %x = use of %p
1018 // br label exit
1020 // Note that this LVI info for blocks BB and SinglPred is correct for %p
1021 // (info2 and info1 respectively). After the merge and the deletion of the
1022 // LVI info1 for SinglePred. We have the following code:
1023 // BB: <LVI info2 for %p val>
1024 // %y = use of %p
1025 // call @exit()
1026 // assume(%p)
1027 // %x = use of %p <-- LVI info2 is correct from here onwards.
1028 // br label exit
1029 // LVI info2 for BB is incorrect at the beginning of BB.
1031 // Invalidate LVI information for BB if the LVI is not provably true for
1032 // all of BB.
1033 if (!isGuaranteedToTransferExecutionToSuccessor(BB))
1034 LVI->eraseBlock(BB);
1035 return true;
1039 if (TryToUnfoldSelectInCurrBB(BB))
1040 return true;
1042 // Look if we can propagate guards to predecessors.
1043 if (HasGuards && ProcessGuards(BB))
1044 return true;
1046 // What kind of constant we're looking for.
1047 ConstantPreference Preference = WantInteger;
1049 // Look to see if the terminator is a conditional branch, switch or indirect
1050 // branch, if not we can't thread it.
1051 Value *Condition;
1052 Instruction *Terminator = BB->getTerminator();
1053 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
1054 // Can't thread an unconditional jump.
1055 if (BI->isUnconditional()) return false;
1056 Condition = BI->getCondition();
1057 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
1058 Condition = SI->getCondition();
1059 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
1060 // Can't thread indirect branch with no successors.
1061 if (IB->getNumSuccessors() == 0) return false;
1062 Condition = IB->getAddress()->stripPointerCasts();
1063 Preference = WantBlockAddress;
1064 } else {
1065 return false; // Must be an invoke or callbr.
1068 // Run constant folding to see if we can reduce the condition to a simple
1069 // constant.
1070 if (Instruction *I = dyn_cast<Instruction>(Condition)) {
1071 Value *SimpleVal =
1072 ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
1073 if (SimpleVal) {
1074 I->replaceAllUsesWith(SimpleVal);
1075 if (isInstructionTriviallyDead(I, TLI))
1076 I->eraseFromParent();
1077 Condition = SimpleVal;
1081 // If the terminator is branching on an undef, we can pick any of the
1082 // successors to branch to. Let GetBestDestForJumpOnUndef decide.
1083 if (isa<UndefValue>(Condition)) {
1084 unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
1085 std::vector<DominatorTree::UpdateType> Updates;
1087 // Fold the branch/switch.
1088 Instruction *BBTerm = BB->getTerminator();
1089 Updates.reserve(BBTerm->getNumSuccessors());
1090 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
1091 if (i == BestSucc) continue;
1092 BasicBlock *Succ = BBTerm->getSuccessor(i);
1093 Succ->removePredecessor(BB, true);
1094 Updates.push_back({DominatorTree::Delete, BB, Succ});
1097 LLVM_DEBUG(dbgs() << " In block '" << BB->getName()
1098 << "' folding undef terminator: " << *BBTerm << '\n');
1099 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
1100 BBTerm->eraseFromParent();
1101 DTU->applyUpdatesPermissive(Updates);
1102 return true;
1105 // If the terminator of this block is branching on a constant, simplify the
1106 // terminator to an unconditional branch. This can occur due to threading in
1107 // other blocks.
1108 if (getKnownConstant(Condition, Preference)) {
1109 LLVM_DEBUG(dbgs() << " In block '" << BB->getName()
1110 << "' folding terminator: " << *BB->getTerminator()
1111 << '\n');
1112 ++NumFolds;
1113 ConstantFoldTerminator(BB, true, nullptr, DTU);
1114 return true;
1117 Instruction *CondInst = dyn_cast<Instruction>(Condition);
1119 // All the rest of our checks depend on the condition being an instruction.
1120 if (!CondInst) {
1121 // FIXME: Unify this with code below.
1122 if (ProcessThreadableEdges(Condition, BB, Preference, Terminator))
1123 return true;
1124 return false;
1127 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
1128 // If we're branching on a conditional, LVI might be able to determine
1129 // it's value at the branch instruction. We only handle comparisons
1130 // against a constant at this time.
1131 // TODO: This should be extended to handle switches as well.
1132 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
1133 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
1134 if (CondBr && CondConst) {
1135 // We should have returned as soon as we turn a conditional branch to
1136 // unconditional. Because its no longer interesting as far as jump
1137 // threading is concerned.
1138 assert(CondBr->isConditional() && "Threading on unconditional terminator");
1140 if (DTU->hasPendingDomTreeUpdates())
1141 LVI->disableDT();
1142 else
1143 LVI->enableDT();
1144 LazyValueInfo::Tristate Ret =
1145 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
1146 CondConst, CondBr);
1147 if (Ret != LazyValueInfo::Unknown) {
1148 unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0;
1149 unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1;
1150 BasicBlock *ToRemoveSucc = CondBr->getSuccessor(ToRemove);
1151 ToRemoveSucc->removePredecessor(BB, true);
1152 BranchInst *UncondBr =
1153 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
1154 UncondBr->setDebugLoc(CondBr->getDebugLoc());
1155 CondBr->eraseFromParent();
1156 if (CondCmp->use_empty())
1157 CondCmp->eraseFromParent();
1158 // We can safely replace *some* uses of the CondInst if it has
1159 // exactly one value as returned by LVI. RAUW is incorrect in the
1160 // presence of guards and assumes, that have the `Cond` as the use. This
1161 // is because we use the guards/assume to reason about the `Cond` value
1162 // at the end of block, but RAUW unconditionally replaces all uses
1163 // including the guards/assumes themselves and the uses before the
1164 // guard/assume.
1165 else if (CondCmp->getParent() == BB) {
1166 auto *CI = Ret == LazyValueInfo::True ?
1167 ConstantInt::getTrue(CondCmp->getType()) :
1168 ConstantInt::getFalse(CondCmp->getType());
1169 ReplaceFoldableUses(CondCmp, CI);
1171 DTU->applyUpdatesPermissive(
1172 {{DominatorTree::Delete, BB, ToRemoveSucc}});
1173 return true;
1176 // We did not manage to simplify this branch, try to see whether
1177 // CondCmp depends on a known phi-select pattern.
1178 if (TryToUnfoldSelect(CondCmp, BB))
1179 return true;
1183 if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
1184 if (TryToUnfoldSelect(SI, BB))
1185 return true;
1187 // Check for some cases that are worth simplifying. Right now we want to look
1188 // for loads that are used by a switch or by the condition for the branch. If
1189 // we see one, check to see if it's partially redundant. If so, insert a PHI
1190 // which can then be used to thread the values.
1191 Value *SimplifyValue = CondInst;
1192 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
1193 if (isa<Constant>(CondCmp->getOperand(1)))
1194 SimplifyValue = CondCmp->getOperand(0);
1196 // TODO: There are other places where load PRE would be profitable, such as
1197 // more complex comparisons.
1198 if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue))
1199 if (SimplifyPartiallyRedundantLoad(LoadI))
1200 return true;
1202 // Before threading, try to propagate profile data backwards:
1203 if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1204 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1205 updatePredecessorProfileMetadata(PN, BB);
1207 // Handle a variety of cases where we are branching on something derived from
1208 // a PHI node in the current block. If we can prove that any predecessors
1209 // compute a predictable value based on a PHI node, thread those predecessors.
1210 if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator))
1211 return true;
1213 // If this is an otherwise-unfoldable branch on a phi node in the current
1214 // block, see if we can simplify.
1215 if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1216 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1217 return ProcessBranchOnPHI(PN);
1219 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
1220 if (CondInst->getOpcode() == Instruction::Xor &&
1221 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1222 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
1224 // Search for a stronger dominating condition that can be used to simplify a
1225 // conditional branch leaving BB.
1226 if (ProcessImpliedCondition(BB))
1227 return true;
1229 return false;
1232 bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) {
1233 auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
1234 if (!BI || !BI->isConditional())
1235 return false;
1237 Value *Cond = BI->getCondition();
1238 BasicBlock *CurrentBB = BB;
1239 BasicBlock *CurrentPred = BB->getSinglePredecessor();
1240 unsigned Iter = 0;
1242 auto &DL = BB->getModule()->getDataLayout();
1244 while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
1245 auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
1246 if (!PBI || !PBI->isConditional())
1247 return false;
1248 if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
1249 return false;
1251 bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB;
1252 Optional<bool> Implication =
1253 isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue);
1254 if (Implication) {
1255 BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1);
1256 BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0);
1257 RemoveSucc->removePredecessor(BB);
1258 BranchInst *UncondBI = BranchInst::Create(KeepSucc, BI);
1259 UncondBI->setDebugLoc(BI->getDebugLoc());
1260 BI->eraseFromParent();
1261 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, RemoveSucc}});
1262 return true;
1264 CurrentBB = CurrentPred;
1265 CurrentPred = CurrentBB->getSinglePredecessor();
1268 return false;
1271 /// Return true if Op is an instruction defined in the given block.
1272 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) {
1273 if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1274 if (OpInst->getParent() == BB)
1275 return true;
1276 return false;
1279 /// SimplifyPartiallyRedundantLoad - If LoadI is an obviously partially
1280 /// redundant load instruction, eliminate it by replacing it with a PHI node.
1281 /// This is an important optimization that encourages jump threading, and needs
1282 /// to be run interlaced with other jump threading tasks.
1283 bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LoadI) {
1284 // Don't hack volatile and ordered loads.
1285 if (!LoadI->isUnordered()) return false;
1287 // If the load is defined in a block with exactly one predecessor, it can't be
1288 // partially redundant.
1289 BasicBlock *LoadBB = LoadI->getParent();
1290 if (LoadBB->getSinglePredecessor())
1291 return false;
1293 // If the load is defined in an EH pad, it can't be partially redundant,
1294 // because the edges between the invoke and the EH pad cannot have other
1295 // instructions between them.
1296 if (LoadBB->isEHPad())
1297 return false;
1299 Value *LoadedPtr = LoadI->getOperand(0);
1301 // If the loaded operand is defined in the LoadBB and its not a phi,
1302 // it can't be available in predecessors.
1303 if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr))
1304 return false;
1306 // Scan a few instructions up from the load, to see if it is obviously live at
1307 // the entry to its block.
1308 BasicBlock::iterator BBIt(LoadI);
1309 bool IsLoadCSE;
1310 if (Value *AvailableVal = FindAvailableLoadedValue(
1311 LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) {
1312 // If the value of the load is locally available within the block, just use
1313 // it. This frequently occurs for reg2mem'd allocas.
1315 if (IsLoadCSE) {
1316 LoadInst *NLoadI = cast<LoadInst>(AvailableVal);
1317 combineMetadataForCSE(NLoadI, LoadI, false);
1320 // If the returned value is the load itself, replace with an undef. This can
1321 // only happen in dead loops.
1322 if (AvailableVal == LoadI)
1323 AvailableVal = UndefValue::get(LoadI->getType());
1324 if (AvailableVal->getType() != LoadI->getType())
1325 AvailableVal = CastInst::CreateBitOrPointerCast(
1326 AvailableVal, LoadI->getType(), "", LoadI);
1327 LoadI->replaceAllUsesWith(AvailableVal);
1328 LoadI->eraseFromParent();
1329 return true;
1332 // Otherwise, if we scanned the whole block and got to the top of the block,
1333 // we know the block is locally transparent to the load. If not, something
1334 // might clobber its value.
1335 if (BBIt != LoadBB->begin())
1336 return false;
1338 // If all of the loads and stores that feed the value have the same AA tags,
1339 // then we can propagate them onto any newly inserted loads.
1340 AAMDNodes AATags;
1341 LoadI->getAAMetadata(AATags);
1343 SmallPtrSet<BasicBlock*, 8> PredsScanned;
1345 using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>;
1347 AvailablePredsTy AvailablePreds;
1348 BasicBlock *OneUnavailablePred = nullptr;
1349 SmallVector<LoadInst*, 8> CSELoads;
1351 // If we got here, the loaded value is transparent through to the start of the
1352 // block. Check to see if it is available in any of the predecessor blocks.
1353 for (BasicBlock *PredBB : predecessors(LoadBB)) {
1354 // If we already scanned this predecessor, skip it.
1355 if (!PredsScanned.insert(PredBB).second)
1356 continue;
1358 BBIt = PredBB->end();
1359 unsigned NumScanedInst = 0;
1360 Value *PredAvailable = nullptr;
1361 // NOTE: We don't CSE load that is volatile or anything stronger than
1362 // unordered, that should have been checked when we entered the function.
1363 assert(LoadI->isUnordered() &&
1364 "Attempting to CSE volatile or atomic loads");
1365 // If this is a load on a phi pointer, phi-translate it and search
1366 // for available load/store to the pointer in predecessors.
1367 Value *Ptr = LoadedPtr->DoPHITranslation(LoadBB, PredBB);
1368 PredAvailable = FindAvailablePtrLoadStore(
1369 Ptr, LoadI->getType(), LoadI->isAtomic(), PredBB, BBIt,
1370 DefMaxInstsToScan, AA, &IsLoadCSE, &NumScanedInst);
1372 // If PredBB has a single predecessor, continue scanning through the
1373 // single predecessor.
1374 BasicBlock *SinglePredBB = PredBB;
1375 while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() &&
1376 NumScanedInst < DefMaxInstsToScan) {
1377 SinglePredBB = SinglePredBB->getSinglePredecessor();
1378 if (SinglePredBB) {
1379 BBIt = SinglePredBB->end();
1380 PredAvailable = FindAvailablePtrLoadStore(
1381 Ptr, LoadI->getType(), LoadI->isAtomic(), SinglePredBB, BBIt,
1382 (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE,
1383 &NumScanedInst);
1387 if (!PredAvailable) {
1388 OneUnavailablePred = PredBB;
1389 continue;
1392 if (IsLoadCSE)
1393 CSELoads.push_back(cast<LoadInst>(PredAvailable));
1395 // If so, this load is partially redundant. Remember this info so that we
1396 // can create a PHI node.
1397 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
1400 // If the loaded value isn't available in any predecessor, it isn't partially
1401 // redundant.
1402 if (AvailablePreds.empty()) return false;
1404 // Okay, the loaded value is available in at least one (and maybe all!)
1405 // predecessors. If the value is unavailable in more than one unique
1406 // predecessor, we want to insert a merge block for those common predecessors.
1407 // This ensures that we only have to insert one reload, thus not increasing
1408 // code size.
1409 BasicBlock *UnavailablePred = nullptr;
1411 // If the value is unavailable in one of predecessors, we will end up
1412 // inserting a new instruction into them. It is only valid if all the
1413 // instructions before LoadI are guaranteed to pass execution to its
1414 // successor, or if LoadI is safe to speculate.
1415 // TODO: If this logic becomes more complex, and we will perform PRE insertion
1416 // farther than to a predecessor, we need to reuse the code from GVN's PRE.
1417 // It requires domination tree analysis, so for this simple case it is an
1418 // overkill.
1419 if (PredsScanned.size() != AvailablePreds.size() &&
1420 !isSafeToSpeculativelyExecute(LoadI))
1421 for (auto I = LoadBB->begin(); &*I != LoadI; ++I)
1422 if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
1423 return false;
1425 // If there is exactly one predecessor where the value is unavailable, the
1426 // already computed 'OneUnavailablePred' block is it. If it ends in an
1427 // unconditional branch, we know that it isn't a critical edge.
1428 if (PredsScanned.size() == AvailablePreds.size()+1 &&
1429 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
1430 UnavailablePred = OneUnavailablePred;
1431 } else if (PredsScanned.size() != AvailablePreds.size()) {
1432 // Otherwise, we had multiple unavailable predecessors or we had a critical
1433 // edge from the one.
1434 SmallVector<BasicBlock*, 8> PredsToSplit;
1435 SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
1437 for (const auto &AvailablePred : AvailablePreds)
1438 AvailablePredSet.insert(AvailablePred.first);
1440 // Add all the unavailable predecessors to the PredsToSplit list.
1441 for (BasicBlock *P : predecessors(LoadBB)) {
1442 // If the predecessor is an indirect goto, we can't split the edge.
1443 // Same for CallBr.
1444 if (isa<IndirectBrInst>(P->getTerminator()) ||
1445 isa<CallBrInst>(P->getTerminator()))
1446 return false;
1448 if (!AvailablePredSet.count(P))
1449 PredsToSplit.push_back(P);
1452 // Split them out to their own block.
1453 UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
1456 // If the value isn't available in all predecessors, then there will be
1457 // exactly one where it isn't available. Insert a load on that edge and add
1458 // it to the AvailablePreds list.
1459 if (UnavailablePred) {
1460 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
1461 "Can't handle critical edge here!");
1462 LoadInst *NewVal = new LoadInst(
1463 LoadI->getType(), LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred),
1464 LoadI->getName() + ".pr", false, LoadI->getAlignment(),
1465 LoadI->getOrdering(), LoadI->getSyncScopeID(),
1466 UnavailablePred->getTerminator());
1467 NewVal->setDebugLoc(LoadI->getDebugLoc());
1468 if (AATags)
1469 NewVal->setAAMetadata(AATags);
1471 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
1474 // Now we know that each predecessor of this block has a value in
1475 // AvailablePreds, sort them for efficient access as we're walking the preds.
1476 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1478 // Create a PHI node at the start of the block for the PRE'd load value.
1479 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
1480 PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "",
1481 &LoadBB->front());
1482 PN->takeName(LoadI);
1483 PN->setDebugLoc(LoadI->getDebugLoc());
1485 // Insert new entries into the PHI for each predecessor. A single block may
1486 // have multiple entries here.
1487 for (pred_iterator PI = PB; PI != PE; ++PI) {
1488 BasicBlock *P = *PI;
1489 AvailablePredsTy::iterator I =
1490 llvm::lower_bound(AvailablePreds, std::make_pair(P, (Value *)nullptr));
1492 assert(I != AvailablePreds.end() && I->first == P &&
1493 "Didn't find entry for predecessor!");
1495 // If we have an available predecessor but it requires casting, insert the
1496 // cast in the predecessor and use the cast. Note that we have to update the
1497 // AvailablePreds vector as we go so that all of the PHI entries for this
1498 // predecessor use the same bitcast.
1499 Value *&PredV = I->second;
1500 if (PredV->getType() != LoadI->getType())
1501 PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "",
1502 P->getTerminator());
1504 PN->addIncoming(PredV, I->first);
1507 for (LoadInst *PredLoadI : CSELoads) {
1508 combineMetadataForCSE(PredLoadI, LoadI, true);
1511 LoadI->replaceAllUsesWith(PN);
1512 LoadI->eraseFromParent();
1514 return true;
1517 /// FindMostPopularDest - The specified list contains multiple possible
1518 /// threadable destinations. Pick the one that occurs the most frequently in
1519 /// the list.
1520 static BasicBlock *
1521 FindMostPopularDest(BasicBlock *BB,
1522 const SmallVectorImpl<std::pair<BasicBlock *,
1523 BasicBlock *>> &PredToDestList) {
1524 assert(!PredToDestList.empty());
1526 // Determine popularity. If there are multiple possible destinations, we
1527 // explicitly choose to ignore 'undef' destinations. We prefer to thread
1528 // blocks with known and real destinations to threading undef. We'll handle
1529 // them later if interesting.
1530 DenseMap<BasicBlock*, unsigned> DestPopularity;
1531 for (const auto &PredToDest : PredToDestList)
1532 if (PredToDest.second)
1533 DestPopularity[PredToDest.second]++;
1535 if (DestPopularity.empty())
1536 return nullptr;
1538 // Find the most popular dest.
1539 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
1540 BasicBlock *MostPopularDest = DPI->first;
1541 unsigned Popularity = DPI->second;
1542 SmallVector<BasicBlock*, 4> SamePopularity;
1544 for (++DPI; DPI != DestPopularity.end(); ++DPI) {
1545 // If the popularity of this entry isn't higher than the popularity we've
1546 // seen so far, ignore it.
1547 if (DPI->second < Popularity)
1548 ; // ignore.
1549 else if (DPI->second == Popularity) {
1550 // If it is the same as what we've seen so far, keep track of it.
1551 SamePopularity.push_back(DPI->first);
1552 } else {
1553 // If it is more popular, remember it.
1554 SamePopularity.clear();
1555 MostPopularDest = DPI->first;
1556 Popularity = DPI->second;
1560 // Okay, now we know the most popular destination. If there is more than one
1561 // destination, we need to determine one. This is arbitrary, but we need
1562 // to make a deterministic decision. Pick the first one that appears in the
1563 // successor list.
1564 if (!SamePopularity.empty()) {
1565 SamePopularity.push_back(MostPopularDest);
1566 Instruction *TI = BB->getTerminator();
1567 for (unsigned i = 0; ; ++i) {
1568 assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
1570 if (!is_contained(SamePopularity, TI->getSuccessor(i)))
1571 continue;
1573 MostPopularDest = TI->getSuccessor(i);
1574 break;
1578 // Okay, we have finally picked the most popular destination.
1579 return MostPopularDest;
1582 bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
1583 ConstantPreference Preference,
1584 Instruction *CxtI) {
1585 // If threading this would thread across a loop header, don't even try to
1586 // thread the edge.
1587 if (LoopHeaders.count(BB))
1588 return false;
1590 PredValueInfoTy PredValues;
1591 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI))
1592 return false;
1594 assert(!PredValues.empty() &&
1595 "ComputeValueKnownInPredecessors returned true with no values");
1597 LLVM_DEBUG(dbgs() << "IN BB: " << *BB;
1598 for (const auto &PredValue : PredValues) {
1599 dbgs() << " BB '" << BB->getName()
1600 << "': FOUND condition = " << *PredValue.first
1601 << " for pred '" << PredValue.second->getName() << "'.\n";
1604 // Decide what we want to thread through. Convert our list of known values to
1605 // a list of known destinations for each pred. This also discards duplicate
1606 // predecessors and keeps track of the undefined inputs (which are represented
1607 // as a null dest in the PredToDestList).
1608 SmallPtrSet<BasicBlock*, 16> SeenPreds;
1609 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1611 BasicBlock *OnlyDest = nullptr;
1612 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1613 Constant *OnlyVal = nullptr;
1614 Constant *MultipleVal = (Constant *)(intptr_t)~0ULL;
1616 for (const auto &PredValue : PredValues) {
1617 BasicBlock *Pred = PredValue.second;
1618 if (!SeenPreds.insert(Pred).second)
1619 continue; // Duplicate predecessor entry.
1621 Constant *Val = PredValue.first;
1623 BasicBlock *DestBB;
1624 if (isa<UndefValue>(Val))
1625 DestBB = nullptr;
1626 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
1627 assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1628 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1629 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1630 assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1631 DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor();
1632 } else {
1633 assert(isa<IndirectBrInst>(BB->getTerminator())
1634 && "Unexpected terminator");
1635 assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress");
1636 DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1639 // If we have exactly one destination, remember it for efficiency below.
1640 if (PredToDestList.empty()) {
1641 OnlyDest = DestBB;
1642 OnlyVal = Val;
1643 } else {
1644 if (OnlyDest != DestBB)
1645 OnlyDest = MultipleDestSentinel;
1646 // It possible we have same destination, but different value, e.g. default
1647 // case in switchinst.
1648 if (Val != OnlyVal)
1649 OnlyVal = MultipleVal;
1652 // If the predecessor ends with an indirect goto, we can't change its
1653 // destination. Same for CallBr.
1654 if (isa<IndirectBrInst>(Pred->getTerminator()) ||
1655 isa<CallBrInst>(Pred->getTerminator()))
1656 continue;
1658 PredToDestList.push_back(std::make_pair(Pred, DestBB));
1661 // If all edges were unthreadable, we fail.
1662 if (PredToDestList.empty())
1663 return false;
1665 // If all the predecessors go to a single known successor, we want to fold,
1666 // not thread. By doing so, we do not need to duplicate the current block and
1667 // also miss potential opportunities in case we dont/cant duplicate.
1668 if (OnlyDest && OnlyDest != MultipleDestSentinel) {
1669 if (BB->hasNPredecessors(PredToDestList.size())) {
1670 bool SeenFirstBranchToOnlyDest = false;
1671 std::vector <DominatorTree::UpdateType> Updates;
1672 Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1);
1673 for (BasicBlock *SuccBB : successors(BB)) {
1674 if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) {
1675 SeenFirstBranchToOnlyDest = true; // Don't modify the first branch.
1676 } else {
1677 SuccBB->removePredecessor(BB, true); // This is unreachable successor.
1678 Updates.push_back({DominatorTree::Delete, BB, SuccBB});
1682 // Finally update the terminator.
1683 Instruction *Term = BB->getTerminator();
1684 BranchInst::Create(OnlyDest, Term);
1685 Term->eraseFromParent();
1686 DTU->applyUpdatesPermissive(Updates);
1688 // If the condition is now dead due to the removal of the old terminator,
1689 // erase it.
1690 if (auto *CondInst = dyn_cast<Instruction>(Cond)) {
1691 if (CondInst->use_empty() && !CondInst->mayHaveSideEffects())
1692 CondInst->eraseFromParent();
1693 // We can safely replace *some* uses of the CondInst if it has
1694 // exactly one value as returned by LVI. RAUW is incorrect in the
1695 // presence of guards and assumes, that have the `Cond` as the use. This
1696 // is because we use the guards/assume to reason about the `Cond` value
1697 // at the end of block, but RAUW unconditionally replaces all uses
1698 // including the guards/assumes themselves and the uses before the
1699 // guard/assume.
1700 else if (OnlyVal && OnlyVal != MultipleVal &&
1701 CondInst->getParent() == BB)
1702 ReplaceFoldableUses(CondInst, OnlyVal);
1704 return true;
1708 // Determine which is the most common successor. If we have many inputs and
1709 // this block is a switch, we want to start by threading the batch that goes
1710 // to the most popular destination first. If we only know about one
1711 // threadable destination (the common case) we can avoid this.
1712 BasicBlock *MostPopularDest = OnlyDest;
1714 if (MostPopularDest == MultipleDestSentinel) {
1715 // Remove any loop headers from the Dest list, ThreadEdge conservatively
1716 // won't process them, but we might have other destination that are eligible
1717 // and we still want to process.
1718 erase_if(PredToDestList,
1719 [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) {
1720 return LoopHeaders.count(PredToDest.second) != 0;
1723 if (PredToDestList.empty())
1724 return false;
1726 MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1729 // Now that we know what the most popular destination is, factor all
1730 // predecessors that will jump to it into a single predecessor.
1731 SmallVector<BasicBlock*, 16> PredsToFactor;
1732 for (const auto &PredToDest : PredToDestList)
1733 if (PredToDest.second == MostPopularDest) {
1734 BasicBlock *Pred = PredToDest.first;
1736 // This predecessor may be a switch or something else that has multiple
1737 // edges to the block. Factor each of these edges by listing them
1738 // according to # occurrences in PredsToFactor.
1739 for (BasicBlock *Succ : successors(Pred))
1740 if (Succ == BB)
1741 PredsToFactor.push_back(Pred);
1744 // If the threadable edges are branching on an undefined value, we get to pick
1745 // the destination that these predecessors should get to.
1746 if (!MostPopularDest)
1747 MostPopularDest = BB->getTerminator()->
1748 getSuccessor(GetBestDestForJumpOnUndef(BB));
1750 // Ok, try to thread it!
1751 return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1754 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1755 /// a PHI node in the current block. See if there are any simplifications we
1756 /// can do based on inputs to the phi node.
1757 bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) {
1758 BasicBlock *BB = PN->getParent();
1760 // TODO: We could make use of this to do it once for blocks with common PHI
1761 // values.
1762 SmallVector<BasicBlock*, 1> PredBBs;
1763 PredBBs.resize(1);
1765 // If any of the predecessor blocks end in an unconditional branch, we can
1766 // *duplicate* the conditional branch into that block in order to further
1767 // encourage jump threading and to eliminate cases where we have branch on a
1768 // phi of an icmp (branch on icmp is much better).
1769 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1770 BasicBlock *PredBB = PN->getIncomingBlock(i);
1771 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1772 if (PredBr->isUnconditional()) {
1773 PredBBs[0] = PredBB;
1774 // Try to duplicate BB into PredBB.
1775 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1776 return true;
1780 return false;
1783 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1784 /// a xor instruction in the current block. See if there are any
1785 /// simplifications we can do based on inputs to the xor.
1786 bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) {
1787 BasicBlock *BB = BO->getParent();
1789 // If either the LHS or RHS of the xor is a constant, don't do this
1790 // optimization.
1791 if (isa<ConstantInt>(BO->getOperand(0)) ||
1792 isa<ConstantInt>(BO->getOperand(1)))
1793 return false;
1795 // If the first instruction in BB isn't a phi, we won't be able to infer
1796 // anything special about any particular predecessor.
1797 if (!isa<PHINode>(BB->front()))
1798 return false;
1800 // If this BB is a landing pad, we won't be able to split the edge into it.
1801 if (BB->isEHPad())
1802 return false;
1804 // If we have a xor as the branch input to this block, and we know that the
1805 // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1806 // the condition into the predecessor and fix that value to true, saving some
1807 // logical ops on that path and encouraging other paths to simplify.
1809 // This copies something like this:
1811 // BB:
1812 // %X = phi i1 [1], [%X']
1813 // %Y = icmp eq i32 %A, %B
1814 // %Z = xor i1 %X, %Y
1815 // br i1 %Z, ...
1817 // Into:
1818 // BB':
1819 // %Y = icmp ne i32 %A, %B
1820 // br i1 %Y, ...
1822 PredValueInfoTy XorOpValues;
1823 bool isLHS = true;
1824 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1825 WantInteger, BO)) {
1826 assert(XorOpValues.empty());
1827 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1828 WantInteger, BO))
1829 return false;
1830 isLHS = false;
1833 assert(!XorOpValues.empty() &&
1834 "ComputeValueKnownInPredecessors returned true with no values");
1836 // Scan the information to see which is most popular: true or false. The
1837 // predecessors can be of the set true, false, or undef.
1838 unsigned NumTrue = 0, NumFalse = 0;
1839 for (const auto &XorOpValue : XorOpValues) {
1840 if (isa<UndefValue>(XorOpValue.first))
1841 // Ignore undefs for the count.
1842 continue;
1843 if (cast<ConstantInt>(XorOpValue.first)->isZero())
1844 ++NumFalse;
1845 else
1846 ++NumTrue;
1849 // Determine which value to split on, true, false, or undef if neither.
1850 ConstantInt *SplitVal = nullptr;
1851 if (NumTrue > NumFalse)
1852 SplitVal = ConstantInt::getTrue(BB->getContext());
1853 else if (NumTrue != 0 || NumFalse != 0)
1854 SplitVal = ConstantInt::getFalse(BB->getContext());
1856 // Collect all of the blocks that this can be folded into so that we can
1857 // factor this once and clone it once.
1858 SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1859 for (const auto &XorOpValue : XorOpValues) {
1860 if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
1861 continue;
1863 BlocksToFoldInto.push_back(XorOpValue.second);
1866 // If we inferred a value for all of the predecessors, then duplication won't
1867 // help us. However, we can just replace the LHS or RHS with the constant.
1868 if (BlocksToFoldInto.size() ==
1869 cast<PHINode>(BB->front()).getNumIncomingValues()) {
1870 if (!SplitVal) {
1871 // If all preds provide undef, just nuke the xor, because it is undef too.
1872 BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1873 BO->eraseFromParent();
1874 } else if (SplitVal->isZero()) {
1875 // If all preds provide 0, replace the xor with the other input.
1876 BO->replaceAllUsesWith(BO->getOperand(isLHS));
1877 BO->eraseFromParent();
1878 } else {
1879 // If all preds provide 1, set the computed value to 1.
1880 BO->setOperand(!isLHS, SplitVal);
1883 return true;
1886 // Try to duplicate BB into PredBB.
1887 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1890 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1891 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for
1892 /// NewPred using the entries from OldPred (suitably mapped).
1893 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1894 BasicBlock *OldPred,
1895 BasicBlock *NewPred,
1896 DenseMap<Instruction*, Value*> &ValueMap) {
1897 for (PHINode &PN : PHIBB->phis()) {
1898 // Ok, we have a PHI node. Figure out what the incoming value was for the
1899 // DestBlock.
1900 Value *IV = PN.getIncomingValueForBlock(OldPred);
1902 // Remap the value if necessary.
1903 if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1904 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1905 if (I != ValueMap.end())
1906 IV = I->second;
1909 PN.addIncoming(IV, NewPred);
1913 /// ThreadEdge - We have decided that it is safe and profitable to factor the
1914 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1915 /// across BB. Transform the IR to reflect this change.
1916 bool JumpThreadingPass::ThreadEdge(BasicBlock *BB,
1917 const SmallVectorImpl<BasicBlock *> &PredBBs,
1918 BasicBlock *SuccBB) {
1919 // If threading to the same block as we come from, we would infinite loop.
1920 if (SuccBB == BB) {
1921 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB->getName()
1922 << "' - would thread to self!\n");
1923 return false;
1926 // If threading this would thread across a loop header, don't thread the edge.
1927 // See the comments above FindLoopHeaders for justifications and caveats.
1928 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
1929 LLVM_DEBUG({
1930 bool BBIsHeader = LoopHeaders.count(BB);
1931 bool SuccIsHeader = LoopHeaders.count(SuccBB);
1932 dbgs() << " Not threading across "
1933 << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName()
1934 << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '")
1935 << SuccBB->getName() << "' - it might create an irreducible loop!\n";
1937 return false;
1940 unsigned JumpThreadCost =
1941 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
1942 if (JumpThreadCost > BBDupThreshold) {
1943 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB->getName()
1944 << "' - Cost is too high: " << JumpThreadCost << "\n");
1945 return false;
1948 // And finally, do it! Start by factoring the predecessors if needed.
1949 BasicBlock *PredBB;
1950 if (PredBBs.size() == 1)
1951 PredBB = PredBBs[0];
1952 else {
1953 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size()
1954 << " common predecessors.\n");
1955 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
1958 // And finally, do it!
1959 LLVM_DEBUG(dbgs() << " Threading edge from '" << PredBB->getName()
1960 << "' to '" << SuccBB->getName()
1961 << "' with cost: " << JumpThreadCost
1962 << ", across block:\n " << *BB << "\n");
1964 if (DTU->hasPendingDomTreeUpdates())
1965 LVI->disableDT();
1966 else
1967 LVI->enableDT();
1968 LVI->threadEdge(PredBB, BB, SuccBB);
1970 // We are going to have to map operands from the original BB block to the new
1971 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to
1972 // account for entry from PredBB.
1973 DenseMap<Instruction*, Value*> ValueMapping;
1975 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1976 BB->getName()+".thread",
1977 BB->getParent(), BB);
1978 NewBB->moveAfter(PredBB);
1980 // Set the block frequency of NewBB.
1981 if (HasProfileData) {
1982 auto NewBBFreq =
1983 BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
1984 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
1987 BasicBlock::iterator BI = BB->begin();
1988 // Clone the phi nodes of BB into NewBB. The resulting phi nodes are trivial,
1989 // since NewBB only has one predecessor, but SSAUpdater might need to rewrite
1990 // the operand of the cloned phi.
1991 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
1992 PHINode *NewPN = PHINode::Create(PN->getType(), 1, PN->getName(), NewBB);
1993 NewPN->addIncoming(PN->getIncomingValueForBlock(PredBB), PredBB);
1994 ValueMapping[PN] = NewPN;
1997 // Clone the non-phi instructions of BB into NewBB, keeping track of the
1998 // mapping and using it to remap operands in the cloned instructions.
1999 for (; !BI->isTerminator(); ++BI) {
2000 Instruction *New = BI->clone();
2001 New->setName(BI->getName());
2002 NewBB->getInstList().push_back(New);
2003 ValueMapping[&*BI] = New;
2005 // Remap operands to patch up intra-block references.
2006 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2007 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2008 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
2009 if (I != ValueMapping.end())
2010 New->setOperand(i, I->second);
2014 // We didn't copy the terminator from BB over to NewBB, because there is now
2015 // an unconditional jump to SuccBB. Insert the unconditional jump.
2016 BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
2017 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
2019 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
2020 // PHI nodes for NewBB now.
2021 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
2023 // Update the terminator of PredBB to jump to NewBB instead of BB. This
2024 // eliminates predecessors from BB, which requires us to simplify any PHI
2025 // nodes in BB.
2026 Instruction *PredTerm = PredBB->getTerminator();
2027 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
2028 if (PredTerm->getSuccessor(i) == BB) {
2029 BB->removePredecessor(PredBB, true);
2030 PredTerm->setSuccessor(i, NewBB);
2033 // Enqueue required DT updates.
2034 DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, SuccBB},
2035 {DominatorTree::Insert, PredBB, NewBB},
2036 {DominatorTree::Delete, PredBB, BB}});
2038 // If there were values defined in BB that are used outside the block, then we
2039 // now have to update all uses of the value to use either the original value,
2040 // the cloned value, or some PHI derived value. This can require arbitrary
2041 // PHI insertion, of which we are prepared to do, clean these up now.
2042 SSAUpdater SSAUpdate;
2043 SmallVector<Use*, 16> UsesToRename;
2045 for (Instruction &I : *BB) {
2046 // Scan all uses of this instruction to see if their uses are no longer
2047 // dominated by the previous def and if so, record them in UsesToRename.
2048 // Also, skip phi operands from PredBB - we'll remove them anyway.
2049 for (Use &U : I.uses()) {
2050 Instruction *User = cast<Instruction>(U.getUser());
2051 if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
2052 if (UserPN->getIncomingBlock(U) == BB)
2053 continue;
2054 } else if (User->getParent() == BB)
2055 continue;
2057 UsesToRename.push_back(&U);
2060 // If there are no uses outside the block, we're done with this instruction.
2061 if (UsesToRename.empty())
2062 continue;
2063 LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
2065 // We found a use of I outside of BB. Rename all uses of I that are outside
2066 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
2067 // with the two values we know.
2068 SSAUpdate.Initialize(I.getType(), I.getName());
2069 SSAUpdate.AddAvailableValue(BB, &I);
2070 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
2072 while (!UsesToRename.empty())
2073 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
2074 LLVM_DEBUG(dbgs() << "\n");
2077 // At this point, the IR is fully up to date and consistent. Do a quick scan
2078 // over the new instructions and zap any that are constants or dead. This
2079 // frequently happens because of phi translation.
2080 SimplifyInstructionsInBlock(NewBB, TLI);
2082 // Update the edge weight from BB to SuccBB, which should be less than before.
2083 UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB);
2085 // Threaded an edge!
2086 ++NumThreads;
2087 return true;
2090 /// Create a new basic block that will be the predecessor of BB and successor of
2091 /// all blocks in Preds. When profile data is available, update the frequency of
2092 /// this new block.
2093 BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB,
2094 ArrayRef<BasicBlock *> Preds,
2095 const char *Suffix) {
2096 SmallVector<BasicBlock *, 2> NewBBs;
2098 // Collect the frequencies of all predecessors of BB, which will be used to
2099 // update the edge weight of the result of splitting predecessors.
2100 DenseMap<BasicBlock *, BlockFrequency> FreqMap;
2101 if (HasProfileData)
2102 for (auto Pred : Preds)
2103 FreqMap.insert(std::make_pair(
2104 Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB)));
2106 // In the case when BB is a LandingPad block we create 2 new predecessors
2107 // instead of just one.
2108 if (BB->isLandingPad()) {
2109 std::string NewName = std::string(Suffix) + ".split-lp";
2110 SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs);
2111 } else {
2112 NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix));
2115 std::vector<DominatorTree::UpdateType> Updates;
2116 Updates.reserve((2 * Preds.size()) + NewBBs.size());
2117 for (auto NewBB : NewBBs) {
2118 BlockFrequency NewBBFreq(0);
2119 Updates.push_back({DominatorTree::Insert, NewBB, BB});
2120 for (auto Pred : predecessors(NewBB)) {
2121 Updates.push_back({DominatorTree::Delete, Pred, BB});
2122 Updates.push_back({DominatorTree::Insert, Pred, NewBB});
2123 if (HasProfileData) // Update frequencies between Pred -> NewBB.
2124 NewBBFreq += FreqMap.lookup(Pred);
2126 if (HasProfileData) // Apply the summed frequency to NewBB.
2127 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2130 DTU->applyUpdatesPermissive(Updates);
2131 return NewBBs[0];
2134 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) {
2135 const Instruction *TI = BB->getTerminator();
2136 assert(TI->getNumSuccessors() > 1 && "not a split");
2138 MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
2139 if (!WeightsNode)
2140 return false;
2142 MDString *MDName = cast<MDString>(WeightsNode->getOperand(0));
2143 if (MDName->getString() != "branch_weights")
2144 return false;
2146 // Ensure there are weights for all of the successors. Note that the first
2147 // operand to the metadata node is a name, not a weight.
2148 return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1;
2151 /// Update the block frequency of BB and branch weight and the metadata on the
2152 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
2153 /// Freq(PredBB->BB) / Freq(BB->SuccBB).
2154 void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
2155 BasicBlock *BB,
2156 BasicBlock *NewBB,
2157 BasicBlock *SuccBB) {
2158 if (!HasProfileData)
2159 return;
2161 assert(BFI && BPI && "BFI & BPI should have been created here");
2163 // As the edge from PredBB to BB is deleted, we have to update the block
2164 // frequency of BB.
2165 auto BBOrigFreq = BFI->getBlockFreq(BB);
2166 auto NewBBFreq = BFI->getBlockFreq(NewBB);
2167 auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
2168 auto BBNewFreq = BBOrigFreq - NewBBFreq;
2169 BFI->setBlockFreq(BB, BBNewFreq.getFrequency());
2171 // Collect updated outgoing edges' frequencies from BB and use them to update
2172 // edge probabilities.
2173 SmallVector<uint64_t, 4> BBSuccFreq;
2174 for (BasicBlock *Succ : successors(BB)) {
2175 auto SuccFreq = (Succ == SuccBB)
2176 ? BB2SuccBBFreq - NewBBFreq
2177 : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
2178 BBSuccFreq.push_back(SuccFreq.getFrequency());
2181 uint64_t MaxBBSuccFreq =
2182 *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end());
2184 SmallVector<BranchProbability, 4> BBSuccProbs;
2185 if (MaxBBSuccFreq == 0)
2186 BBSuccProbs.assign(BBSuccFreq.size(),
2187 {1, static_cast<unsigned>(BBSuccFreq.size())});
2188 else {
2189 for (uint64_t Freq : BBSuccFreq)
2190 BBSuccProbs.push_back(
2191 BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
2192 // Normalize edge probabilities so that they sum up to one.
2193 BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
2194 BBSuccProbs.end());
2197 // Update edge probabilities in BPI.
2198 for (int I = 0, E = BBSuccProbs.size(); I < E; I++)
2199 BPI->setEdgeProbability(BB, I, BBSuccProbs[I]);
2201 // Update the profile metadata as well.
2203 // Don't do this if the profile of the transformed blocks was statically
2204 // estimated. (This could occur despite the function having an entry
2205 // frequency in completely cold parts of the CFG.)
2207 // In this case we don't want to suggest to subsequent passes that the
2208 // calculated weights are fully consistent. Consider this graph:
2210 // check_1
2211 // 50% / |
2212 // eq_1 | 50%
2213 // \ |
2214 // check_2
2215 // 50% / |
2216 // eq_2 | 50%
2217 // \ |
2218 // check_3
2219 // 50% / |
2220 // eq_3 | 50%
2221 // \ |
2223 // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
2224 // the overall probabilities are inconsistent; the total probability that the
2225 // value is either 1, 2 or 3 is 150%.
2227 // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
2228 // becomes 0%. This is even worse if the edge whose probability becomes 0% is
2229 // the loop exit edge. Then based solely on static estimation we would assume
2230 // the loop was extremely hot.
2232 // FIXME this locally as well so that BPI and BFI are consistent as well. We
2233 // shouldn't make edges extremely likely or unlikely based solely on static
2234 // estimation.
2235 if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) {
2236 SmallVector<uint32_t, 4> Weights;
2237 for (auto Prob : BBSuccProbs)
2238 Weights.push_back(Prob.getNumerator());
2240 auto TI = BB->getTerminator();
2241 TI->setMetadata(
2242 LLVMContext::MD_prof,
2243 MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights));
2247 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
2248 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
2249 /// If we can duplicate the contents of BB up into PredBB do so now, this
2250 /// improves the odds that the branch will be on an analyzable instruction like
2251 /// a compare.
2252 bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred(
2253 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
2254 assert(!PredBBs.empty() && "Can't handle an empty set");
2256 // If BB is a loop header, then duplicating this block outside the loop would
2257 // cause us to transform this into an irreducible loop, don't do this.
2258 // See the comments above FindLoopHeaders for justifications and caveats.
2259 if (LoopHeaders.count(BB)) {
2260 LLVM_DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName()
2261 << "' into predecessor block '" << PredBBs[0]->getName()
2262 << "' - it might create an irreducible loop!\n");
2263 return false;
2266 unsigned DuplicationCost =
2267 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
2268 if (DuplicationCost > BBDupThreshold) {
2269 LLVM_DEBUG(dbgs() << " Not duplicating BB '" << BB->getName()
2270 << "' - Cost is too high: " << DuplicationCost << "\n");
2271 return false;
2274 // And finally, do it! Start by factoring the predecessors if needed.
2275 std::vector<DominatorTree::UpdateType> Updates;
2276 BasicBlock *PredBB;
2277 if (PredBBs.size() == 1)
2278 PredBB = PredBBs[0];
2279 else {
2280 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size()
2281 << " common predecessors.\n");
2282 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
2284 Updates.push_back({DominatorTree::Delete, PredBB, BB});
2286 // Okay, we decided to do this! Clone all the instructions in BB onto the end
2287 // of PredBB.
2288 LLVM_DEBUG(dbgs() << " Duplicating block '" << BB->getName()
2289 << "' into end of '" << PredBB->getName()
2290 << "' to eliminate branch on phi. Cost: "
2291 << DuplicationCost << " block is:" << *BB << "\n");
2293 // Unless PredBB ends with an unconditional branch, split the edge so that we
2294 // can just clone the bits from BB into the end of the new PredBB.
2295 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2297 if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
2298 BasicBlock *OldPredBB = PredBB;
2299 PredBB = SplitEdge(OldPredBB, BB);
2300 Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB});
2301 Updates.push_back({DominatorTree::Insert, PredBB, BB});
2302 Updates.push_back({DominatorTree::Delete, OldPredBB, BB});
2303 OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
2306 // We are going to have to map operands from the original BB block into the
2307 // PredBB block. Evaluate PHI nodes in BB.
2308 DenseMap<Instruction*, Value*> ValueMapping;
2310 BasicBlock::iterator BI = BB->begin();
2311 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
2312 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
2313 // Clone the non-phi instructions of BB into PredBB, keeping track of the
2314 // mapping and using it to remap operands in the cloned instructions.
2315 for (; BI != BB->end(); ++BI) {
2316 Instruction *New = BI->clone();
2318 // Remap operands to patch up intra-block references.
2319 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2320 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2321 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
2322 if (I != ValueMapping.end())
2323 New->setOperand(i, I->second);
2326 // If this instruction can be simplified after the operands are updated,
2327 // just use the simplified value instead. This frequently happens due to
2328 // phi translation.
2329 if (Value *IV = SimplifyInstruction(
2330 New,
2331 {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) {
2332 ValueMapping[&*BI] = IV;
2333 if (!New->mayHaveSideEffects()) {
2334 New->deleteValue();
2335 New = nullptr;
2337 } else {
2338 ValueMapping[&*BI] = New;
2340 if (New) {
2341 // Otherwise, insert the new instruction into the block.
2342 New->setName(BI->getName());
2343 PredBB->getInstList().insert(OldPredBranch->getIterator(), New);
2344 // Update Dominance from simplified New instruction operands.
2345 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2346 if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i)))
2347 Updates.push_back({DominatorTree::Insert, PredBB, SuccBB});
2351 // Check to see if the targets of the branch had PHI nodes. If so, we need to
2352 // add entries to the PHI nodes for branch from PredBB now.
2353 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
2354 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
2355 ValueMapping);
2356 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
2357 ValueMapping);
2359 // If there were values defined in BB that are used outside the block, then we
2360 // now have to update all uses of the value to use either the original value,
2361 // the cloned value, or some PHI derived value. This can require arbitrary
2362 // PHI insertion, of which we are prepared to do, clean these up now.
2363 SSAUpdater SSAUpdate;
2364 SmallVector<Use*, 16> UsesToRename;
2365 for (Instruction &I : *BB) {
2366 // Scan all uses of this instruction to see if it is used outside of its
2367 // block, and if so, record them in UsesToRename.
2368 for (Use &U : I.uses()) {
2369 Instruction *User = cast<Instruction>(U.getUser());
2370 if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
2371 if (UserPN->getIncomingBlock(U) == BB)
2372 continue;
2373 } else if (User->getParent() == BB)
2374 continue;
2376 UsesToRename.push_back(&U);
2379 // If there are no uses outside the block, we're done with this instruction.
2380 if (UsesToRename.empty())
2381 continue;
2383 LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
2385 // We found a use of I outside of BB. Rename all uses of I that are outside
2386 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
2387 // with the two values we know.
2388 SSAUpdate.Initialize(I.getType(), I.getName());
2389 SSAUpdate.AddAvailableValue(BB, &I);
2390 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&I]);
2392 while (!UsesToRename.empty())
2393 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
2394 LLVM_DEBUG(dbgs() << "\n");
2397 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
2398 // that we nuked.
2399 BB->removePredecessor(PredBB, true);
2401 // Remove the unconditional branch at the end of the PredBB block.
2402 OldPredBranch->eraseFromParent();
2403 DTU->applyUpdatesPermissive(Updates);
2405 ++NumDupes;
2406 return true;
2409 // Pred is a predecessor of BB with an unconditional branch to BB. SI is
2410 // a Select instruction in Pred. BB has other predecessors and SI is used in
2411 // a PHI node in BB. SI has no other use.
2412 // A new basic block, NewBB, is created and SI is converted to compare and
2413 // conditional branch. SI is erased from parent.
2414 void JumpThreadingPass::UnfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB,
2415 SelectInst *SI, PHINode *SIUse,
2416 unsigned Idx) {
2417 // Expand the select.
2419 // Pred --
2420 // | v
2421 // | NewBB
2422 // | |
2423 // |-----
2424 // v
2425 // BB
2426 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2427 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
2428 BB->getParent(), BB);
2429 // Move the unconditional branch to NewBB.
2430 PredTerm->removeFromParent();
2431 NewBB->getInstList().insert(NewBB->end(), PredTerm);
2432 // Create a conditional branch and update PHI nodes.
2433 BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
2434 SIUse->setIncomingValue(Idx, SI->getFalseValue());
2435 SIUse->addIncoming(SI->getTrueValue(), NewBB);
2437 // The select is now dead.
2438 SI->eraseFromParent();
2439 DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, BB},
2440 {DominatorTree::Insert, Pred, NewBB}});
2442 // Update any other PHI nodes in BB.
2443 for (BasicBlock::iterator BI = BB->begin();
2444 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
2445 if (Phi != SIUse)
2446 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
2449 bool JumpThreadingPass::TryToUnfoldSelect(SwitchInst *SI, BasicBlock *BB) {
2450 PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition());
2452 if (!CondPHI || CondPHI->getParent() != BB)
2453 return false;
2455 for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) {
2456 BasicBlock *Pred = CondPHI->getIncomingBlock(I);
2457 SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I));
2459 // The second and third condition can be potentially relaxed. Currently
2460 // the conditions help to simplify the code and allow us to reuse existing
2461 // code, developed for TryToUnfoldSelect(CmpInst *, BasicBlock *)
2462 if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse())
2463 continue;
2465 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2466 if (!PredTerm || !PredTerm->isUnconditional())
2467 continue;
2469 UnfoldSelectInstr(Pred, BB, PredSI, CondPHI, I);
2470 return true;
2472 return false;
2475 /// TryToUnfoldSelect - Look for blocks of the form
2476 /// bb1:
2477 /// %a = select
2478 /// br bb2
2480 /// bb2:
2481 /// %p = phi [%a, %bb1] ...
2482 /// %c = icmp %p
2483 /// br i1 %c
2485 /// And expand the select into a branch structure if one of its arms allows %c
2486 /// to be folded. This later enables threading from bb1 over bb2.
2487 bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
2488 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2489 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
2490 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
2492 if (!CondBr || !CondBr->isConditional() || !CondLHS ||
2493 CondLHS->getParent() != BB)
2494 return false;
2496 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
2497 BasicBlock *Pred = CondLHS->getIncomingBlock(I);
2498 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
2500 // Look if one of the incoming values is a select in the corresponding
2501 // predecessor.
2502 if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
2503 continue;
2505 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2506 if (!PredTerm || !PredTerm->isUnconditional())
2507 continue;
2509 // Now check if one of the select values would allow us to constant fold the
2510 // terminator in BB. We don't do the transform if both sides fold, those
2511 // cases will be threaded in any case.
2512 if (DTU->hasPendingDomTreeUpdates())
2513 LVI->disableDT();
2514 else
2515 LVI->enableDT();
2516 LazyValueInfo::Tristate LHSFolds =
2517 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
2518 CondRHS, Pred, BB, CondCmp);
2519 LazyValueInfo::Tristate RHSFolds =
2520 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
2521 CondRHS, Pred, BB, CondCmp);
2522 if ((LHSFolds != LazyValueInfo::Unknown ||
2523 RHSFolds != LazyValueInfo::Unknown) &&
2524 LHSFolds != RHSFolds) {
2525 UnfoldSelectInstr(Pred, BB, SI, CondLHS, I);
2526 return true;
2529 return false;
2532 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the
2533 /// same BB in the form
2534 /// bb:
2535 /// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
2536 /// %s = select %p, trueval, falseval
2538 /// or
2540 /// bb:
2541 /// %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ...
2542 /// %c = cmp %p, 0
2543 /// %s = select %c, trueval, falseval
2545 /// And expand the select into a branch structure. This later enables
2546 /// jump-threading over bb in this pass.
2548 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
2549 /// select if the associated PHI has at least one constant. If the unfolded
2550 /// select is not jump-threaded, it will be folded again in the later
2551 /// optimizations.
2552 bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) {
2553 // If threading this would thread across a loop header, don't thread the edge.
2554 // See the comments above FindLoopHeaders for justifications and caveats.
2555 if (LoopHeaders.count(BB))
2556 return false;
2558 for (BasicBlock::iterator BI = BB->begin();
2559 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2560 // Look for a Phi having at least one constant incoming value.
2561 if (llvm::all_of(PN->incoming_values(),
2562 [](Value *V) { return !isa<ConstantInt>(V); }))
2563 continue;
2565 auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) {
2566 // Check if SI is in BB and use V as condition.
2567 if (SI->getParent() != BB)
2568 return false;
2569 Value *Cond = SI->getCondition();
2570 return (Cond && Cond == V && Cond->getType()->isIntegerTy(1));
2573 SelectInst *SI = nullptr;
2574 for (Use &U : PN->uses()) {
2575 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
2576 // Look for a ICmp in BB that compares PN with a constant and is the
2577 // condition of a Select.
2578 if (Cmp->getParent() == BB && Cmp->hasOneUse() &&
2579 isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo())))
2580 if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back()))
2581 if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) {
2582 SI = SelectI;
2583 break;
2585 } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) {
2586 // Look for a Select in BB that uses PN as condition.
2587 if (isUnfoldCandidate(SelectI, U.get())) {
2588 SI = SelectI;
2589 break;
2594 if (!SI)
2595 continue;
2596 // Expand the select.
2597 Instruction *Term =
2598 SplitBlockAndInsertIfThen(SI->getCondition(), SI, false);
2599 BasicBlock *SplitBB = SI->getParent();
2600 BasicBlock *NewBB = Term->getParent();
2601 PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI);
2602 NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
2603 NewPN->addIncoming(SI->getFalseValue(), BB);
2604 SI->replaceAllUsesWith(NewPN);
2605 SI->eraseFromParent();
2606 // NewBB and SplitBB are newly created blocks which require insertion.
2607 std::vector<DominatorTree::UpdateType> Updates;
2608 Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3);
2609 Updates.push_back({DominatorTree::Insert, BB, SplitBB});
2610 Updates.push_back({DominatorTree::Insert, BB, NewBB});
2611 Updates.push_back({DominatorTree::Insert, NewBB, SplitBB});
2612 // BB's successors were moved to SplitBB, update DTU accordingly.
2613 for (auto *Succ : successors(SplitBB)) {
2614 Updates.push_back({DominatorTree::Delete, BB, Succ});
2615 Updates.push_back({DominatorTree::Insert, SplitBB, Succ});
2617 DTU->applyUpdatesPermissive(Updates);
2618 return true;
2620 return false;
2623 /// Try to propagate a guard from the current BB into one of its predecessors
2624 /// in case if another branch of execution implies that the condition of this
2625 /// guard is always true. Currently we only process the simplest case that
2626 /// looks like:
2628 /// Start:
2629 /// %cond = ...
2630 /// br i1 %cond, label %T1, label %F1
2631 /// T1:
2632 /// br label %Merge
2633 /// F1:
2634 /// br label %Merge
2635 /// Merge:
2636 /// %condGuard = ...
2637 /// call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ]
2639 /// And cond either implies condGuard or !condGuard. In this case all the
2640 /// instructions before the guard can be duplicated in both branches, and the
2641 /// guard is then threaded to one of them.
2642 bool JumpThreadingPass::ProcessGuards(BasicBlock *BB) {
2643 using namespace PatternMatch;
2645 // We only want to deal with two predecessors.
2646 BasicBlock *Pred1, *Pred2;
2647 auto PI = pred_begin(BB), PE = pred_end(BB);
2648 if (PI == PE)
2649 return false;
2650 Pred1 = *PI++;
2651 if (PI == PE)
2652 return false;
2653 Pred2 = *PI++;
2654 if (PI != PE)
2655 return false;
2656 if (Pred1 == Pred2)
2657 return false;
2659 // Try to thread one of the guards of the block.
2660 // TODO: Look up deeper than to immediate predecessor?
2661 auto *Parent = Pred1->getSinglePredecessor();
2662 if (!Parent || Parent != Pred2->getSinglePredecessor())
2663 return false;
2665 if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator()))
2666 for (auto &I : *BB)
2667 if (isGuard(&I) && ThreadGuard(BB, cast<IntrinsicInst>(&I), BI))
2668 return true;
2670 return false;
2673 /// Try to propagate the guard from BB which is the lower block of a diamond
2674 /// to one of its branches, in case if diamond's condition implies guard's
2675 /// condition.
2676 bool JumpThreadingPass::ThreadGuard(BasicBlock *BB, IntrinsicInst *Guard,
2677 BranchInst *BI) {
2678 assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?");
2679 assert(BI->isConditional() && "Unconditional branch has 2 successors?");
2680 Value *GuardCond = Guard->getArgOperand(0);
2681 Value *BranchCond = BI->getCondition();
2682 BasicBlock *TrueDest = BI->getSuccessor(0);
2683 BasicBlock *FalseDest = BI->getSuccessor(1);
2685 auto &DL = BB->getModule()->getDataLayout();
2686 bool TrueDestIsSafe = false;
2687 bool FalseDestIsSafe = false;
2689 // True dest is safe if BranchCond => GuardCond.
2690 auto Impl = isImpliedCondition(BranchCond, GuardCond, DL);
2691 if (Impl && *Impl)
2692 TrueDestIsSafe = true;
2693 else {
2694 // False dest is safe if !BranchCond => GuardCond.
2695 Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false);
2696 if (Impl && *Impl)
2697 FalseDestIsSafe = true;
2700 if (!TrueDestIsSafe && !FalseDestIsSafe)
2701 return false;
2703 BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest;
2704 BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest;
2706 ValueToValueMapTy UnguardedMapping, GuardedMapping;
2707 Instruction *AfterGuard = Guard->getNextNode();
2708 unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold);
2709 if (Cost > BBDupThreshold)
2710 return false;
2711 // Duplicate all instructions before the guard and the guard itself to the
2712 // branch where implication is not proved.
2713 BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween(
2714 BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU);
2715 assert(GuardedBlock && "Could not create the guarded block?");
2716 // Duplicate all instructions before the guard in the unguarded branch.
2717 // Since we have successfully duplicated the guarded block and this block
2718 // has fewer instructions, we expect it to succeed.
2719 BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween(
2720 BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU);
2721 assert(UnguardedBlock && "Could not create the unguarded block?");
2722 LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block "
2723 << GuardedBlock->getName() << "\n");
2724 // Some instructions before the guard may still have uses. For them, we need
2725 // to create Phi nodes merging their copies in both guarded and unguarded
2726 // branches. Those instructions that have no uses can be just removed.
2727 SmallVector<Instruction *, 4> ToRemove;
2728 for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI)
2729 if (!isa<PHINode>(&*BI))
2730 ToRemove.push_back(&*BI);
2732 Instruction *InsertionPoint = &*BB->getFirstInsertionPt();
2733 assert(InsertionPoint && "Empty block?");
2734 // Substitute with Phis & remove.
2735 for (auto *Inst : reverse(ToRemove)) {
2736 if (!Inst->use_empty()) {
2737 PHINode *NewPN = PHINode::Create(Inst->getType(), 2);
2738 NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock);
2739 NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock);
2740 NewPN->insertBefore(InsertionPoint);
2741 Inst->replaceAllUsesWith(NewPN);
2743 Inst->eraseFromParent();
2745 return true;