[llvm-objcopy] - Reimplement strip-dwo-groups.test to stop using the precompiled...
[llvm-complete.git] / lib / Analysis / CFLGraph.h
blob21842ed364876e6cb9279dd0f9b0fceec1807cb7
1 //===- CFLGraph.h - Abstract stratified sets implementation. -----*- C++-*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file defines CFLGraph, an auxiliary data structure used by CFL-based
11 /// alias analysis.
13 //===----------------------------------------------------------------------===//
15 #ifndef LLVM_LIB_ANALYSIS_CFLGRAPH_H
16 #define LLVM_LIB_ANALYSIS_CFLGRAPH_H
18 #include "AliasAnalysisSummary.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Analysis/MemoryBuiltins.h"
24 #include "llvm/Analysis/TargetLibraryInfo.h"
25 #include "llvm/IR/Argument.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GlobalValue.h"
31 #include "llvm/IR/InstVisitor.h"
32 #include "llvm/IR/InstrTypes.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/Operator.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/IR/Value.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include <cassert>
41 #include <cstdint>
42 #include <vector>
44 namespace llvm {
45 namespace cflaa {
47 /// The Program Expression Graph (PEG) of CFL analysis
48 /// CFLGraph is auxiliary data structure used by CFL-based alias analysis to
49 /// describe flow-insensitive pointer-related behaviors. Given an LLVM function,
50 /// the main purpose of this graph is to abstract away unrelated facts and
51 /// translate the rest into a form that can be easily digested by CFL analyses.
52 /// Each Node in the graph is an InstantiatedValue, and each edge represent a
53 /// pointer assignment between InstantiatedValue. Pointer
54 /// references/dereferences are not explicitly stored in the graph: we
55 /// implicitly assume that for each node (X, I) it has a dereference edge to (X,
56 /// I+1) and a reference edge to (X, I-1).
57 class CFLGraph {
58 public:
59 using Node = InstantiatedValue;
61 struct Edge {
62 Node Other;
63 int64_t Offset;
66 using EdgeList = std::vector<Edge>;
68 struct NodeInfo {
69 EdgeList Edges, ReverseEdges;
70 AliasAttrs Attr;
73 class ValueInfo {
74 std::vector<NodeInfo> Levels;
76 public:
77 bool addNodeToLevel(unsigned Level) {
78 auto NumLevels = Levels.size();
79 if (NumLevels > Level)
80 return false;
81 Levels.resize(Level + 1);
82 return true;
85 NodeInfo &getNodeInfoAtLevel(unsigned Level) {
86 assert(Level < Levels.size());
87 return Levels[Level];
89 const NodeInfo &getNodeInfoAtLevel(unsigned Level) const {
90 assert(Level < Levels.size());
91 return Levels[Level];
94 unsigned getNumLevels() const { return Levels.size(); }
97 private:
98 using ValueMap = DenseMap<Value *, ValueInfo>;
100 ValueMap ValueImpls;
102 NodeInfo *getNode(Node N) {
103 auto Itr = ValueImpls.find(N.Val);
104 if (Itr == ValueImpls.end() || Itr->second.getNumLevels() <= N.DerefLevel)
105 return nullptr;
106 return &Itr->second.getNodeInfoAtLevel(N.DerefLevel);
109 public:
110 using const_value_iterator = ValueMap::const_iterator;
112 bool addNode(Node N, AliasAttrs Attr = AliasAttrs()) {
113 assert(N.Val != nullptr);
114 auto &ValInfo = ValueImpls[N.Val];
115 auto Changed = ValInfo.addNodeToLevel(N.DerefLevel);
116 ValInfo.getNodeInfoAtLevel(N.DerefLevel).Attr |= Attr;
117 return Changed;
120 void addAttr(Node N, AliasAttrs Attr) {
121 auto *Info = getNode(N);
122 assert(Info != nullptr);
123 Info->Attr |= Attr;
126 void addEdge(Node From, Node To, int64_t Offset = 0) {
127 auto *FromInfo = getNode(From);
128 assert(FromInfo != nullptr);
129 auto *ToInfo = getNode(To);
130 assert(ToInfo != nullptr);
132 FromInfo->Edges.push_back(Edge{To, Offset});
133 ToInfo->ReverseEdges.push_back(Edge{From, Offset});
136 const NodeInfo *getNode(Node N) const {
137 auto Itr = ValueImpls.find(N.Val);
138 if (Itr == ValueImpls.end() || Itr->second.getNumLevels() <= N.DerefLevel)
139 return nullptr;
140 return &Itr->second.getNodeInfoAtLevel(N.DerefLevel);
143 AliasAttrs attrFor(Node N) const {
144 auto *Info = getNode(N);
145 assert(Info != nullptr);
146 return Info->Attr;
149 iterator_range<const_value_iterator> value_mappings() const {
150 return make_range<const_value_iterator>(ValueImpls.begin(),
151 ValueImpls.end());
155 /// A builder class used to create CFLGraph instance from a given function
156 /// The CFL-AA that uses this builder must provide its own type as a template
157 /// argument. This is necessary for interprocedural processing: CFLGraphBuilder
158 /// needs a way of obtaining the summary of other functions when callinsts are
159 /// encountered.
160 /// As a result, we expect the said CFL-AA to expose a getAliasSummary() public
161 /// member function that takes a Function& and returns the corresponding summary
162 /// as a const AliasSummary*.
163 template <typename CFLAA> class CFLGraphBuilder {
164 // Input of the builder
165 CFLAA &Analysis;
166 const TargetLibraryInfo &TLI;
168 // Output of the builder
169 CFLGraph Graph;
170 SmallVector<Value *, 4> ReturnedValues;
172 // Helper class
173 /// Gets the edges our graph should have, based on an Instruction*
174 class GetEdgesVisitor : public InstVisitor<GetEdgesVisitor, void> {
175 CFLAA &AA;
176 const DataLayout &DL;
177 const TargetLibraryInfo &TLI;
179 CFLGraph &Graph;
180 SmallVectorImpl<Value *> &ReturnValues;
182 static bool hasUsefulEdges(ConstantExpr *CE) {
183 // ConstantExpr doesn't have terminators, invokes, or fences, so only
184 // needs to check for compares.
185 return CE->getOpcode() != Instruction::ICmp &&
186 CE->getOpcode() != Instruction::FCmp;
189 // Returns possible functions called by CS into the given SmallVectorImpl.
190 // Returns true if targets found, false otherwise.
191 static bool getPossibleTargets(CallBase &Call,
192 SmallVectorImpl<Function *> &Output) {
193 if (auto *Fn = Call.getCalledFunction()) {
194 Output.push_back(Fn);
195 return true;
198 // TODO: If the call is indirect, we might be able to enumerate all
199 // potential targets of the call and return them, rather than just
200 // failing.
201 return false;
204 void addNode(Value *Val, AliasAttrs Attr = AliasAttrs()) {
205 assert(Val != nullptr && Val->getType()->isPointerTy());
206 if (auto GVal = dyn_cast<GlobalValue>(Val)) {
207 if (Graph.addNode(InstantiatedValue{GVal, 0},
208 getGlobalOrArgAttrFromValue(*GVal)))
209 Graph.addNode(InstantiatedValue{GVal, 1}, getAttrUnknown());
210 } else if (auto CExpr = dyn_cast<ConstantExpr>(Val)) {
211 if (hasUsefulEdges(CExpr)) {
212 if (Graph.addNode(InstantiatedValue{CExpr, 0}))
213 visitConstantExpr(CExpr);
215 } else
216 Graph.addNode(InstantiatedValue{Val, 0}, Attr);
219 void addAssignEdge(Value *From, Value *To, int64_t Offset = 0) {
220 assert(From != nullptr && To != nullptr);
221 if (!From->getType()->isPointerTy() || !To->getType()->isPointerTy())
222 return;
223 addNode(From);
224 if (To != From) {
225 addNode(To);
226 Graph.addEdge(InstantiatedValue{From, 0}, InstantiatedValue{To, 0},
227 Offset);
231 void addDerefEdge(Value *From, Value *To, bool IsRead) {
232 assert(From != nullptr && To != nullptr);
233 // FIXME: This is subtly broken, due to how we model some instructions
234 // (e.g. extractvalue, extractelement) as loads. Since those take
235 // non-pointer operands, we'll entirely skip adding edges for those.
237 // addAssignEdge seems to have a similar issue with insertvalue, etc.
238 if (!From->getType()->isPointerTy() || !To->getType()->isPointerTy())
239 return;
240 addNode(From);
241 addNode(To);
242 if (IsRead) {
243 Graph.addNode(InstantiatedValue{From, 1});
244 Graph.addEdge(InstantiatedValue{From, 1}, InstantiatedValue{To, 0});
245 } else {
246 Graph.addNode(InstantiatedValue{To, 1});
247 Graph.addEdge(InstantiatedValue{From, 0}, InstantiatedValue{To, 1});
251 void addLoadEdge(Value *From, Value *To) { addDerefEdge(From, To, true); }
252 void addStoreEdge(Value *From, Value *To) { addDerefEdge(From, To, false); }
254 public:
255 GetEdgesVisitor(CFLGraphBuilder &Builder, const DataLayout &DL)
256 : AA(Builder.Analysis), DL(DL), TLI(Builder.TLI), Graph(Builder.Graph),
257 ReturnValues(Builder.ReturnedValues) {}
259 void visitInstruction(Instruction &) {
260 llvm_unreachable("Unsupported instruction encountered");
263 void visitReturnInst(ReturnInst &Inst) {
264 if (auto RetVal = Inst.getReturnValue()) {
265 if (RetVal->getType()->isPointerTy()) {
266 addNode(RetVal);
267 ReturnValues.push_back(RetVal);
272 void visitPtrToIntInst(PtrToIntInst &Inst) {
273 auto *Ptr = Inst.getOperand(0);
274 addNode(Ptr, getAttrEscaped());
277 void visitIntToPtrInst(IntToPtrInst &Inst) {
278 auto *Ptr = &Inst;
279 addNode(Ptr, getAttrUnknown());
282 void visitCastInst(CastInst &Inst) {
283 auto *Src = Inst.getOperand(0);
284 addAssignEdge(Src, &Inst);
287 void visitBinaryOperator(BinaryOperator &Inst) {
288 auto *Op1 = Inst.getOperand(0);
289 auto *Op2 = Inst.getOperand(1);
290 addAssignEdge(Op1, &Inst);
291 addAssignEdge(Op2, &Inst);
294 void visitUnaryOperator(UnaryOperator &Inst) {
295 auto *Src = Inst.getOperand(0);
296 addAssignEdge(Src, &Inst);
299 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &Inst) {
300 auto *Ptr = Inst.getPointerOperand();
301 auto *Val = Inst.getNewValOperand();
302 addStoreEdge(Val, Ptr);
305 void visitAtomicRMWInst(AtomicRMWInst &Inst) {
306 auto *Ptr = Inst.getPointerOperand();
307 auto *Val = Inst.getValOperand();
308 addStoreEdge(Val, Ptr);
311 void visitPHINode(PHINode &Inst) {
312 for (Value *Val : Inst.incoming_values())
313 addAssignEdge(Val, &Inst);
316 void visitGEP(GEPOperator &GEPOp) {
317 uint64_t Offset = UnknownOffset;
318 APInt APOffset(DL.getPointerSizeInBits(GEPOp.getPointerAddressSpace()),
320 if (GEPOp.accumulateConstantOffset(DL, APOffset))
321 Offset = APOffset.getSExtValue();
323 auto *Op = GEPOp.getPointerOperand();
324 addAssignEdge(Op, &GEPOp, Offset);
327 void visitGetElementPtrInst(GetElementPtrInst &Inst) {
328 auto *GEPOp = cast<GEPOperator>(&Inst);
329 visitGEP(*GEPOp);
332 void visitSelectInst(SelectInst &Inst) {
333 // Condition is not processed here (The actual statement producing
334 // the condition result is processed elsewhere). For select, the
335 // condition is evaluated, but not loaded, stored, or assigned
336 // simply as a result of being the condition of a select.
338 auto *TrueVal = Inst.getTrueValue();
339 auto *FalseVal = Inst.getFalseValue();
340 addAssignEdge(TrueVal, &Inst);
341 addAssignEdge(FalseVal, &Inst);
344 void visitAllocaInst(AllocaInst &Inst) { addNode(&Inst); }
346 void visitLoadInst(LoadInst &Inst) {
347 auto *Ptr = Inst.getPointerOperand();
348 auto *Val = &Inst;
349 addLoadEdge(Ptr, Val);
352 void visitStoreInst(StoreInst &Inst) {
353 auto *Ptr = Inst.getPointerOperand();
354 auto *Val = Inst.getValueOperand();
355 addStoreEdge(Val, Ptr);
358 void visitVAArgInst(VAArgInst &Inst) {
359 // We can't fully model va_arg here. For *Ptr = Inst.getOperand(0), it
360 // does
361 // two things:
362 // 1. Loads a value from *((T*)*Ptr).
363 // 2. Increments (stores to) *Ptr by some target-specific amount.
364 // For now, we'll handle this like a landingpad instruction (by placing
365 // the
366 // result in its own group, and having that group alias externals).
367 if (Inst.getType()->isPointerTy())
368 addNode(&Inst, getAttrUnknown());
371 static bool isFunctionExternal(Function *Fn) {
372 return !Fn->hasExactDefinition();
375 bool tryInterproceduralAnalysis(CallBase &Call,
376 const SmallVectorImpl<Function *> &Fns) {
377 assert(Fns.size() > 0);
379 if (Call.arg_size() > MaxSupportedArgsInSummary)
380 return false;
382 // Exit early if we'll fail anyway
383 for (auto *Fn : Fns) {
384 if (isFunctionExternal(Fn) || Fn->isVarArg())
385 return false;
386 // Fail if the caller does not provide enough arguments
387 assert(Fn->arg_size() <= Call.arg_size());
388 if (!AA.getAliasSummary(*Fn))
389 return false;
392 for (auto *Fn : Fns) {
393 auto Summary = AA.getAliasSummary(*Fn);
394 assert(Summary != nullptr);
396 auto &RetParamRelations = Summary->RetParamRelations;
397 for (auto &Relation : RetParamRelations) {
398 auto IRelation = instantiateExternalRelation(Relation, Call);
399 if (IRelation.hasValue()) {
400 Graph.addNode(IRelation->From);
401 Graph.addNode(IRelation->To);
402 Graph.addEdge(IRelation->From, IRelation->To);
406 auto &RetParamAttributes = Summary->RetParamAttributes;
407 for (auto &Attribute : RetParamAttributes) {
408 auto IAttr = instantiateExternalAttribute(Attribute, Call);
409 if (IAttr.hasValue())
410 Graph.addNode(IAttr->IValue, IAttr->Attr);
414 return true;
417 void visitCallBase(CallBase &Call) {
418 // Make sure all arguments and return value are added to the graph first
419 for (Value *V : Call.args())
420 if (V->getType()->isPointerTy())
421 addNode(V);
422 if (Call.getType()->isPointerTy())
423 addNode(&Call);
425 // Check if Inst is a call to a library function that
426 // allocates/deallocates on the heap. Those kinds of functions do not
427 // introduce any aliases.
428 // TODO: address other common library functions such as realloc(),
429 // strdup(), etc.
430 if (isMallocOrCallocLikeFn(&Call, &TLI) || isFreeCall(&Call, &TLI))
431 return;
433 // TODO: Add support for noalias args/all the other fun function
434 // attributes that we can tack on.
435 SmallVector<Function *, 4> Targets;
436 if (getPossibleTargets(Call, Targets))
437 if (tryInterproceduralAnalysis(Call, Targets))
438 return;
440 // Because the function is opaque, we need to note that anything
441 // could have happened to the arguments (unless the function is marked
442 // readonly or readnone), and that the result could alias just about
443 // anything, too (unless the result is marked noalias).
444 if (!Call.onlyReadsMemory())
445 for (Value *V : Call.args()) {
446 if (V->getType()->isPointerTy()) {
447 // The argument itself escapes.
448 Graph.addAttr(InstantiatedValue{V, 0}, getAttrEscaped());
449 // The fate of argument memory is unknown. Note that since
450 // AliasAttrs is transitive with respect to dereference, we only
451 // need to specify it for the first-level memory.
452 Graph.addNode(InstantiatedValue{V, 1}, getAttrUnknown());
456 if (Call.getType()->isPointerTy()) {
457 auto *Fn = Call.getCalledFunction();
458 if (Fn == nullptr || !Fn->returnDoesNotAlias())
459 // No need to call addNode() since we've added Inst at the
460 // beginning of this function and we know it is not a global.
461 Graph.addAttr(InstantiatedValue{&Call, 0}, getAttrUnknown());
465 /// Because vectors/aggregates are immutable and unaddressable, there's
466 /// nothing we can do to coax a value out of them, other than calling
467 /// Extract{Element,Value}. We can effectively treat them as pointers to
468 /// arbitrary memory locations we can store in and load from.
469 void visitExtractElementInst(ExtractElementInst &Inst) {
470 auto *Ptr = Inst.getVectorOperand();
471 auto *Val = &Inst;
472 addLoadEdge(Ptr, Val);
475 void visitInsertElementInst(InsertElementInst &Inst) {
476 auto *Vec = Inst.getOperand(0);
477 auto *Val = Inst.getOperand(1);
478 addAssignEdge(Vec, &Inst);
479 addStoreEdge(Val, &Inst);
482 void visitLandingPadInst(LandingPadInst &Inst) {
483 // Exceptions come from "nowhere", from our analysis' perspective.
484 // So we place the instruction its own group, noting that said group may
485 // alias externals
486 if (Inst.getType()->isPointerTy())
487 addNode(&Inst, getAttrUnknown());
490 void visitInsertValueInst(InsertValueInst &Inst) {
491 auto *Agg = Inst.getOperand(0);
492 auto *Val = Inst.getOperand(1);
493 addAssignEdge(Agg, &Inst);
494 addStoreEdge(Val, &Inst);
497 void visitExtractValueInst(ExtractValueInst &Inst) {
498 auto *Ptr = Inst.getAggregateOperand();
499 addLoadEdge(Ptr, &Inst);
502 void visitShuffleVectorInst(ShuffleVectorInst &Inst) {
503 auto *From1 = Inst.getOperand(0);
504 auto *From2 = Inst.getOperand(1);
505 addAssignEdge(From1, &Inst);
506 addAssignEdge(From2, &Inst);
509 void visitConstantExpr(ConstantExpr *CE) {
510 switch (CE->getOpcode()) {
511 case Instruction::GetElementPtr: {
512 auto GEPOp = cast<GEPOperator>(CE);
513 visitGEP(*GEPOp);
514 break;
517 case Instruction::PtrToInt: {
518 addNode(CE->getOperand(0), getAttrEscaped());
519 break;
522 case Instruction::IntToPtr: {
523 addNode(CE, getAttrUnknown());
524 break;
527 case Instruction::BitCast:
528 case Instruction::AddrSpaceCast:
529 case Instruction::Trunc:
530 case Instruction::ZExt:
531 case Instruction::SExt:
532 case Instruction::FPExt:
533 case Instruction::FPTrunc:
534 case Instruction::UIToFP:
535 case Instruction::SIToFP:
536 case Instruction::FPToUI:
537 case Instruction::FPToSI: {
538 addAssignEdge(CE->getOperand(0), CE);
539 break;
542 case Instruction::Select: {
543 addAssignEdge(CE->getOperand(1), CE);
544 addAssignEdge(CE->getOperand(2), CE);
545 break;
548 case Instruction::InsertElement:
549 case Instruction::InsertValue: {
550 addAssignEdge(CE->getOperand(0), CE);
551 addStoreEdge(CE->getOperand(1), CE);
552 break;
555 case Instruction::ExtractElement:
556 case Instruction::ExtractValue: {
557 addLoadEdge(CE->getOperand(0), CE);
558 break;
561 case Instruction::Add:
562 case Instruction::FAdd:
563 case Instruction::Sub:
564 case Instruction::FSub:
565 case Instruction::Mul:
566 case Instruction::FMul:
567 case Instruction::UDiv:
568 case Instruction::SDiv:
569 case Instruction::FDiv:
570 case Instruction::URem:
571 case Instruction::SRem:
572 case Instruction::FRem:
573 case Instruction::And:
574 case Instruction::Or:
575 case Instruction::Xor:
576 case Instruction::Shl:
577 case Instruction::LShr:
578 case Instruction::AShr:
579 case Instruction::ICmp:
580 case Instruction::FCmp:
581 case Instruction::ShuffleVector: {
582 addAssignEdge(CE->getOperand(0), CE);
583 addAssignEdge(CE->getOperand(1), CE);
584 break;
587 case Instruction::FNeg: {
588 addAssignEdge(CE->getOperand(0), CE);
589 break;
592 default:
593 llvm_unreachable("Unknown instruction type encountered!");
598 // Helper functions
600 // Determines whether or not we an instruction is useless to us (e.g.
601 // FenceInst)
602 static bool hasUsefulEdges(Instruction *Inst) {
603 bool IsNonInvokeRetTerminator = Inst->isTerminator() &&
604 !isa<InvokeInst>(Inst) &&
605 !isa<ReturnInst>(Inst);
606 return !isa<CmpInst>(Inst) && !isa<FenceInst>(Inst) &&
607 !IsNonInvokeRetTerminator;
610 void addArgumentToGraph(Argument &Arg) {
611 if (Arg.getType()->isPointerTy()) {
612 Graph.addNode(InstantiatedValue{&Arg, 0},
613 getGlobalOrArgAttrFromValue(Arg));
614 // Pointees of a formal parameter is known to the caller
615 Graph.addNode(InstantiatedValue{&Arg, 1}, getAttrCaller());
619 // Given an Instruction, this will add it to the graph, along with any
620 // Instructions that are potentially only available from said Instruction
621 // For example, given the following line:
622 // %0 = load i16* getelementptr ([1 x i16]* @a, 0, 0), align 2
623 // addInstructionToGraph would add both the `load` and `getelementptr`
624 // instructions to the graph appropriately.
625 void addInstructionToGraph(GetEdgesVisitor &Visitor, Instruction &Inst) {
626 if (!hasUsefulEdges(&Inst))
627 return;
629 Visitor.visit(Inst);
632 // Builds the graph needed for constructing the StratifiedSets for the given
633 // function
634 void buildGraphFrom(Function &Fn) {
635 GetEdgesVisitor Visitor(*this, Fn.getParent()->getDataLayout());
637 for (auto &Bb : Fn.getBasicBlockList())
638 for (auto &Inst : Bb.getInstList())
639 addInstructionToGraph(Visitor, Inst);
641 for (auto &Arg : Fn.args())
642 addArgumentToGraph(Arg);
645 public:
646 CFLGraphBuilder(CFLAA &Analysis, const TargetLibraryInfo &TLI, Function &Fn)
647 : Analysis(Analysis), TLI(TLI) {
648 buildGraphFrom(Fn);
651 const CFLGraph &getCFLGraph() const { return Graph; }
652 const SmallVector<Value *, 4> &getReturnValues() const {
653 return ReturnedValues;
657 } // end namespace cflaa
658 } // end namespace llvm
660 #endif // LLVM_LIB_ANALYSIS_CFLGRAPH_H