1 //===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines routines for folding instructions into constants.
11 // Also, to supplement the basic IR ConstantExpr simplifications,
12 // this file defines some additional folding routines that can make use of
13 // DataLayout information. These functions cannot go in IR due to library
16 //===----------------------------------------------------------------------===//
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/ADT/APFloat.h"
20 #include "llvm/ADT/APInt.h"
21 #include "llvm/ADT/ArrayRef.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/Analysis/TargetLibraryInfo.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/Analysis/VectorUtils.h"
29 #include "llvm/Config/config.h"
30 #include "llvm/IR/Constant.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/DerivedTypes.h"
34 #include "llvm/IR/Function.h"
35 #include "llvm/IR/GlobalValue.h"
36 #include "llvm/IR/GlobalVariable.h"
37 #include "llvm/IR/InstrTypes.h"
38 #include "llvm/IR/Instruction.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/Operator.h"
41 #include "llvm/IR/Type.h"
42 #include "llvm/IR/Value.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/KnownBits.h"
46 #include "llvm/Support/MathExtras.h"
58 //===----------------------------------------------------------------------===//
59 // Constant Folding internal helper functions
60 //===----------------------------------------------------------------------===//
62 static Constant
*foldConstVectorToAPInt(APInt
&Result
, Type
*DestTy
,
63 Constant
*C
, Type
*SrcEltTy
,
65 const DataLayout
&DL
) {
66 // Now that we know that the input value is a vector of integers, just shift
67 // and insert them into our result.
68 unsigned BitShift
= DL
.getTypeSizeInBits(SrcEltTy
);
69 for (unsigned i
= 0; i
!= NumSrcElts
; ++i
) {
71 if (DL
.isLittleEndian())
72 Element
= C
->getAggregateElement(NumSrcElts
- i
- 1);
74 Element
= C
->getAggregateElement(i
);
76 if (Element
&& isa
<UndefValue
>(Element
)) {
81 auto *ElementCI
= dyn_cast_or_null
<ConstantInt
>(Element
);
83 return ConstantExpr::getBitCast(C
, DestTy
);
86 Result
|= ElementCI
->getValue().zextOrSelf(Result
.getBitWidth());
92 /// Constant fold bitcast, symbolically evaluating it with DataLayout.
93 /// This always returns a non-null constant, but it may be a
94 /// ConstantExpr if unfoldable.
95 Constant
*FoldBitCast(Constant
*C
, Type
*DestTy
, const DataLayout
&DL
) {
96 // Catch the obvious splat cases.
97 if (C
->isNullValue() && !DestTy
->isX86_MMXTy())
98 return Constant::getNullValue(DestTy
);
99 if (C
->isAllOnesValue() && !DestTy
->isX86_MMXTy() &&
100 !DestTy
->isPtrOrPtrVectorTy()) // Don't get ones for ptr types!
101 return Constant::getAllOnesValue(DestTy
);
103 if (auto *VTy
= dyn_cast
<VectorType
>(C
->getType())) {
104 // Handle a vector->scalar integer/fp cast.
105 if (isa
<IntegerType
>(DestTy
) || DestTy
->isFloatingPointTy()) {
106 unsigned NumSrcElts
= VTy
->getNumElements();
107 Type
*SrcEltTy
= VTy
->getElementType();
109 // If the vector is a vector of floating point, convert it to vector of int
110 // to simplify things.
111 if (SrcEltTy
->isFloatingPointTy()) {
112 unsigned FPWidth
= SrcEltTy
->getPrimitiveSizeInBits();
114 VectorType::get(IntegerType::get(C
->getContext(), FPWidth
), NumSrcElts
);
115 // Ask IR to do the conversion now that #elts line up.
116 C
= ConstantExpr::getBitCast(C
, SrcIVTy
);
119 APInt
Result(DL
.getTypeSizeInBits(DestTy
), 0);
120 if (Constant
*CE
= foldConstVectorToAPInt(Result
, DestTy
, C
,
121 SrcEltTy
, NumSrcElts
, DL
))
124 if (isa
<IntegerType
>(DestTy
))
125 return ConstantInt::get(DestTy
, Result
);
127 APFloat
FP(DestTy
->getFltSemantics(), Result
);
128 return ConstantFP::get(DestTy
->getContext(), FP
);
132 // The code below only handles casts to vectors currently.
133 auto *DestVTy
= dyn_cast
<VectorType
>(DestTy
);
135 return ConstantExpr::getBitCast(C
, DestTy
);
137 // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
138 // vector so the code below can handle it uniformly.
139 if (isa
<ConstantFP
>(C
) || isa
<ConstantInt
>(C
)) {
140 Constant
*Ops
= C
; // don't take the address of C!
141 return FoldBitCast(ConstantVector::get(Ops
), DestTy
, DL
);
144 // If this is a bitcast from constant vector -> vector, fold it.
145 if (!isa
<ConstantDataVector
>(C
) && !isa
<ConstantVector
>(C
))
146 return ConstantExpr::getBitCast(C
, DestTy
);
148 // If the element types match, IR can fold it.
149 unsigned NumDstElt
= DestVTy
->getNumElements();
150 unsigned NumSrcElt
= C
->getType()->getVectorNumElements();
151 if (NumDstElt
== NumSrcElt
)
152 return ConstantExpr::getBitCast(C
, DestTy
);
154 Type
*SrcEltTy
= C
->getType()->getVectorElementType();
155 Type
*DstEltTy
= DestVTy
->getElementType();
157 // Otherwise, we're changing the number of elements in a vector, which
158 // requires endianness information to do the right thing. For example,
159 // bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
160 // folds to (little endian):
161 // <4 x i32> <i32 0, i32 0, i32 1, i32 0>
162 // and to (big endian):
163 // <4 x i32> <i32 0, i32 0, i32 0, i32 1>
165 // First thing is first. We only want to think about integer here, so if
166 // we have something in FP form, recast it as integer.
167 if (DstEltTy
->isFloatingPointTy()) {
168 // Fold to an vector of integers with same size as our FP type.
169 unsigned FPWidth
= DstEltTy
->getPrimitiveSizeInBits();
171 VectorType::get(IntegerType::get(C
->getContext(), FPWidth
), NumDstElt
);
172 // Recursively handle this integer conversion, if possible.
173 C
= FoldBitCast(C
, DestIVTy
, DL
);
175 // Finally, IR can handle this now that #elts line up.
176 return ConstantExpr::getBitCast(C
, DestTy
);
179 // Okay, we know the destination is integer, if the input is FP, convert
180 // it to integer first.
181 if (SrcEltTy
->isFloatingPointTy()) {
182 unsigned FPWidth
= SrcEltTy
->getPrimitiveSizeInBits();
184 VectorType::get(IntegerType::get(C
->getContext(), FPWidth
), NumSrcElt
);
185 // Ask IR to do the conversion now that #elts line up.
186 C
= ConstantExpr::getBitCast(C
, SrcIVTy
);
187 // If IR wasn't able to fold it, bail out.
188 if (!isa
<ConstantVector
>(C
) && // FIXME: Remove ConstantVector.
189 !isa
<ConstantDataVector
>(C
))
193 // Now we know that the input and output vectors are both integer vectors
194 // of the same size, and that their #elements is not the same. Do the
195 // conversion here, which depends on whether the input or output has
197 bool isLittleEndian
= DL
.isLittleEndian();
199 SmallVector
<Constant
*, 32> Result
;
200 if (NumDstElt
< NumSrcElt
) {
201 // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
202 Constant
*Zero
= Constant::getNullValue(DstEltTy
);
203 unsigned Ratio
= NumSrcElt
/NumDstElt
;
204 unsigned SrcBitSize
= SrcEltTy
->getPrimitiveSizeInBits();
206 for (unsigned i
= 0; i
!= NumDstElt
; ++i
) {
207 // Build each element of the result.
208 Constant
*Elt
= Zero
;
209 unsigned ShiftAmt
= isLittleEndian
? 0 : SrcBitSize
*(Ratio
-1);
210 for (unsigned j
= 0; j
!= Ratio
; ++j
) {
211 Constant
*Src
= C
->getAggregateElement(SrcElt
++);
212 if (Src
&& isa
<UndefValue
>(Src
))
213 Src
= Constant::getNullValue(C
->getType()->getVectorElementType());
215 Src
= dyn_cast_or_null
<ConstantInt
>(Src
);
216 if (!Src
) // Reject constantexpr elements.
217 return ConstantExpr::getBitCast(C
, DestTy
);
219 // Zero extend the element to the right size.
220 Src
= ConstantExpr::getZExt(Src
, Elt
->getType());
222 // Shift it to the right place, depending on endianness.
223 Src
= ConstantExpr::getShl(Src
,
224 ConstantInt::get(Src
->getType(), ShiftAmt
));
225 ShiftAmt
+= isLittleEndian
? SrcBitSize
: -SrcBitSize
;
228 Elt
= ConstantExpr::getOr(Elt
, Src
);
230 Result
.push_back(Elt
);
232 return ConstantVector::get(Result
);
235 // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
236 unsigned Ratio
= NumDstElt
/NumSrcElt
;
237 unsigned DstBitSize
= DL
.getTypeSizeInBits(DstEltTy
);
239 // Loop over each source value, expanding into multiple results.
240 for (unsigned i
= 0; i
!= NumSrcElt
; ++i
) {
241 auto *Element
= C
->getAggregateElement(i
);
243 if (!Element
) // Reject constantexpr elements.
244 return ConstantExpr::getBitCast(C
, DestTy
);
246 if (isa
<UndefValue
>(Element
)) {
247 // Correctly Propagate undef values.
248 Result
.append(Ratio
, UndefValue::get(DstEltTy
));
252 auto *Src
= dyn_cast
<ConstantInt
>(Element
);
254 return ConstantExpr::getBitCast(C
, DestTy
);
256 unsigned ShiftAmt
= isLittleEndian
? 0 : DstBitSize
*(Ratio
-1);
257 for (unsigned j
= 0; j
!= Ratio
; ++j
) {
258 // Shift the piece of the value into the right place, depending on
260 Constant
*Elt
= ConstantExpr::getLShr(Src
,
261 ConstantInt::get(Src
->getType(), ShiftAmt
));
262 ShiftAmt
+= isLittleEndian
? DstBitSize
: -DstBitSize
;
264 // Truncate the element to an integer with the same pointer size and
265 // convert the element back to a pointer using a inttoptr.
266 if (DstEltTy
->isPointerTy()) {
267 IntegerType
*DstIntTy
= Type::getIntNTy(C
->getContext(), DstBitSize
);
268 Constant
*CE
= ConstantExpr::getTrunc(Elt
, DstIntTy
);
269 Result
.push_back(ConstantExpr::getIntToPtr(CE
, DstEltTy
));
273 // Truncate and remember this piece.
274 Result
.push_back(ConstantExpr::getTrunc(Elt
, DstEltTy
));
278 return ConstantVector::get(Result
);
281 } // end anonymous namespace
283 /// If this constant is a constant offset from a global, return the global and
284 /// the constant. Because of constantexprs, this function is recursive.
285 bool llvm::IsConstantOffsetFromGlobal(Constant
*C
, GlobalValue
*&GV
,
286 APInt
&Offset
, const DataLayout
&DL
) {
287 // Trivial case, constant is the global.
288 if ((GV
= dyn_cast
<GlobalValue
>(C
))) {
289 unsigned BitWidth
= DL
.getIndexTypeSizeInBits(GV
->getType());
290 Offset
= APInt(BitWidth
, 0);
294 // Otherwise, if this isn't a constant expr, bail out.
295 auto *CE
= dyn_cast
<ConstantExpr
>(C
);
296 if (!CE
) return false;
298 // Look through ptr->int and ptr->ptr casts.
299 if (CE
->getOpcode() == Instruction::PtrToInt
||
300 CE
->getOpcode() == Instruction::BitCast
)
301 return IsConstantOffsetFromGlobal(CE
->getOperand(0), GV
, Offset
, DL
);
303 // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
304 auto *GEP
= dyn_cast
<GEPOperator
>(CE
);
308 unsigned BitWidth
= DL
.getIndexTypeSizeInBits(GEP
->getType());
309 APInt
TmpOffset(BitWidth
, 0);
311 // If the base isn't a global+constant, we aren't either.
312 if (!IsConstantOffsetFromGlobal(CE
->getOperand(0), GV
, TmpOffset
, DL
))
315 // Otherwise, add any offset that our operands provide.
316 if (!GEP
->accumulateConstantOffset(DL
, TmpOffset
))
323 Constant
*llvm::ConstantFoldLoadThroughBitcast(Constant
*C
, Type
*DestTy
,
324 const DataLayout
&DL
) {
326 Type
*SrcTy
= C
->getType();
328 // If the type sizes are the same and a cast is legal, just directly
329 // cast the constant.
330 if (DL
.getTypeSizeInBits(DestTy
) == DL
.getTypeSizeInBits(SrcTy
)) {
331 Instruction::CastOps Cast
= Instruction::BitCast
;
332 // If we are going from a pointer to int or vice versa, we spell the cast
334 if (SrcTy
->isIntegerTy() && DestTy
->isPointerTy())
335 Cast
= Instruction::IntToPtr
;
336 else if (SrcTy
->isPointerTy() && DestTy
->isIntegerTy())
337 Cast
= Instruction::PtrToInt
;
339 if (CastInst::castIsValid(Cast
, C
, DestTy
))
340 return ConstantExpr::getCast(Cast
, C
, DestTy
);
343 // If this isn't an aggregate type, there is nothing we can do to drill down
344 // and find a bitcastable constant.
345 if (!SrcTy
->isAggregateType())
348 // We're simulating a load through a pointer that was bitcast to point to
349 // a different type, so we can try to walk down through the initial
350 // elements of an aggregate to see if some part of the aggregate is
351 // castable to implement the "load" semantic model.
352 if (SrcTy
->isStructTy()) {
353 // Struct types might have leading zero-length elements like [0 x i32],
354 // which are certainly not what we are looking for, so skip them.
358 ElemC
= C
->getAggregateElement(Elem
++);
359 } while (ElemC
&& DL
.getTypeSizeInBits(ElemC
->getType()) == 0);
362 C
= C
->getAggregateElement(0u);
371 /// Recursive helper to read bits out of global. C is the constant being copied
372 /// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy
373 /// results into and BytesLeft is the number of bytes left in
374 /// the CurPtr buffer. DL is the DataLayout.
375 bool ReadDataFromGlobal(Constant
*C
, uint64_t ByteOffset
, unsigned char *CurPtr
,
376 unsigned BytesLeft
, const DataLayout
&DL
) {
377 assert(ByteOffset
<= DL
.getTypeAllocSize(C
->getType()) &&
378 "Out of range access");
380 // If this element is zero or undefined, we can just return since *CurPtr is
382 if (isa
<ConstantAggregateZero
>(C
) || isa
<UndefValue
>(C
))
385 if (auto *CI
= dyn_cast
<ConstantInt
>(C
)) {
386 if (CI
->getBitWidth() > 64 ||
387 (CI
->getBitWidth() & 7) != 0)
390 uint64_t Val
= CI
->getZExtValue();
391 unsigned IntBytes
= unsigned(CI
->getBitWidth()/8);
393 for (unsigned i
= 0; i
!= BytesLeft
&& ByteOffset
!= IntBytes
; ++i
) {
395 if (!DL
.isLittleEndian())
396 n
= IntBytes
- n
- 1;
397 CurPtr
[i
] = (unsigned char)(Val
>> (n
* 8));
403 if (auto *CFP
= dyn_cast
<ConstantFP
>(C
)) {
404 if (CFP
->getType()->isDoubleTy()) {
405 C
= FoldBitCast(C
, Type::getInt64Ty(C
->getContext()), DL
);
406 return ReadDataFromGlobal(C
, ByteOffset
, CurPtr
, BytesLeft
, DL
);
408 if (CFP
->getType()->isFloatTy()){
409 C
= FoldBitCast(C
, Type::getInt32Ty(C
->getContext()), DL
);
410 return ReadDataFromGlobal(C
, ByteOffset
, CurPtr
, BytesLeft
, DL
);
412 if (CFP
->getType()->isHalfTy()){
413 C
= FoldBitCast(C
, Type::getInt16Ty(C
->getContext()), DL
);
414 return ReadDataFromGlobal(C
, ByteOffset
, CurPtr
, BytesLeft
, DL
);
419 if (auto *CS
= dyn_cast
<ConstantStruct
>(C
)) {
420 const StructLayout
*SL
= DL
.getStructLayout(CS
->getType());
421 unsigned Index
= SL
->getElementContainingOffset(ByteOffset
);
422 uint64_t CurEltOffset
= SL
->getElementOffset(Index
);
423 ByteOffset
-= CurEltOffset
;
426 // If the element access is to the element itself and not to tail padding,
427 // read the bytes from the element.
428 uint64_t EltSize
= DL
.getTypeAllocSize(CS
->getOperand(Index
)->getType());
430 if (ByteOffset
< EltSize
&&
431 !ReadDataFromGlobal(CS
->getOperand(Index
), ByteOffset
, CurPtr
,
437 // Check to see if we read from the last struct element, if so we're done.
438 if (Index
== CS
->getType()->getNumElements())
441 // If we read all of the bytes we needed from this element we're done.
442 uint64_t NextEltOffset
= SL
->getElementOffset(Index
);
444 if (BytesLeft
<= NextEltOffset
- CurEltOffset
- ByteOffset
)
447 // Move to the next element of the struct.
448 CurPtr
+= NextEltOffset
- CurEltOffset
- ByteOffset
;
449 BytesLeft
-= NextEltOffset
- CurEltOffset
- ByteOffset
;
451 CurEltOffset
= NextEltOffset
;
456 if (isa
<ConstantArray
>(C
) || isa
<ConstantVector
>(C
) ||
457 isa
<ConstantDataSequential
>(C
)) {
458 Type
*EltTy
= C
->getType()->getSequentialElementType();
459 uint64_t EltSize
= DL
.getTypeAllocSize(EltTy
);
460 uint64_t Index
= ByteOffset
/ EltSize
;
461 uint64_t Offset
= ByteOffset
- Index
* EltSize
;
463 if (auto *AT
= dyn_cast
<ArrayType
>(C
->getType()))
464 NumElts
= AT
->getNumElements();
466 NumElts
= C
->getType()->getVectorNumElements();
468 for (; Index
!= NumElts
; ++Index
) {
469 if (!ReadDataFromGlobal(C
->getAggregateElement(Index
), Offset
, CurPtr
,
473 uint64_t BytesWritten
= EltSize
- Offset
;
474 assert(BytesWritten
<= EltSize
&& "Not indexing into this element?");
475 if (BytesWritten
>= BytesLeft
)
479 BytesLeft
-= BytesWritten
;
480 CurPtr
+= BytesWritten
;
485 if (auto *CE
= dyn_cast
<ConstantExpr
>(C
)) {
486 if (CE
->getOpcode() == Instruction::IntToPtr
&&
487 CE
->getOperand(0)->getType() == DL
.getIntPtrType(CE
->getType())) {
488 return ReadDataFromGlobal(CE
->getOperand(0), ByteOffset
, CurPtr
,
493 // Otherwise, unknown initializer type.
497 Constant
*FoldReinterpretLoadFromConstPtr(Constant
*C
, Type
*LoadTy
,
498 const DataLayout
&DL
) {
499 auto *PTy
= cast
<PointerType
>(C
->getType());
500 auto *IntType
= dyn_cast
<IntegerType
>(LoadTy
);
502 // If this isn't an integer load we can't fold it directly.
504 unsigned AS
= PTy
->getAddressSpace();
506 // If this is a float/double load, we can try folding it as an int32/64 load
507 // and then bitcast the result. This can be useful for union cases. Note
508 // that address spaces don't matter here since we're not going to result in
509 // an actual new load.
511 if (LoadTy
->isHalfTy())
512 MapTy
= Type::getInt16Ty(C
->getContext());
513 else if (LoadTy
->isFloatTy())
514 MapTy
= Type::getInt32Ty(C
->getContext());
515 else if (LoadTy
->isDoubleTy())
516 MapTy
= Type::getInt64Ty(C
->getContext());
517 else if (LoadTy
->isVectorTy()) {
518 MapTy
= PointerType::getIntNTy(C
->getContext(),
519 DL
.getTypeSizeInBits(LoadTy
));
523 C
= FoldBitCast(C
, MapTy
->getPointerTo(AS
), DL
);
524 if (Constant
*Res
= FoldReinterpretLoadFromConstPtr(C
, MapTy
, DL
))
525 return FoldBitCast(Res
, LoadTy
, DL
);
529 unsigned BytesLoaded
= (IntType
->getBitWidth() + 7) / 8;
530 if (BytesLoaded
> 32 || BytesLoaded
== 0)
535 if (!IsConstantOffsetFromGlobal(C
, GVal
, OffsetAI
, DL
))
538 auto *GV
= dyn_cast
<GlobalVariable
>(GVal
);
539 if (!GV
|| !GV
->isConstant() || !GV
->hasDefinitiveInitializer() ||
540 !GV
->getInitializer()->getType()->isSized())
543 int64_t Offset
= OffsetAI
.getSExtValue();
544 int64_t InitializerSize
= DL
.getTypeAllocSize(GV
->getInitializer()->getType());
546 // If we're not accessing anything in this constant, the result is undefined.
547 if (Offset
+ BytesLoaded
<= 0)
548 return UndefValue::get(IntType
);
550 // If we're not accessing anything in this constant, the result is undefined.
551 if (Offset
>= InitializerSize
)
552 return UndefValue::get(IntType
);
554 unsigned char RawBytes
[32] = {0};
555 unsigned char *CurPtr
= RawBytes
;
556 unsigned BytesLeft
= BytesLoaded
;
558 // If we're loading off the beginning of the global, some bytes may be valid.
565 if (!ReadDataFromGlobal(GV
->getInitializer(), Offset
, CurPtr
, BytesLeft
, DL
))
568 APInt ResultVal
= APInt(IntType
->getBitWidth(), 0);
569 if (DL
.isLittleEndian()) {
570 ResultVal
= RawBytes
[BytesLoaded
- 1];
571 for (unsigned i
= 1; i
!= BytesLoaded
; ++i
) {
573 ResultVal
|= RawBytes
[BytesLoaded
- 1 - i
];
576 ResultVal
= RawBytes
[0];
577 for (unsigned i
= 1; i
!= BytesLoaded
; ++i
) {
579 ResultVal
|= RawBytes
[i
];
583 return ConstantInt::get(IntType
->getContext(), ResultVal
);
586 Constant
*ConstantFoldLoadThroughBitcastExpr(ConstantExpr
*CE
, Type
*DestTy
,
587 const DataLayout
&DL
) {
588 auto *SrcPtr
= CE
->getOperand(0);
589 auto *SrcPtrTy
= dyn_cast
<PointerType
>(SrcPtr
->getType());
592 Type
*SrcTy
= SrcPtrTy
->getPointerElementType();
594 Constant
*C
= ConstantFoldLoadFromConstPtr(SrcPtr
, SrcTy
, DL
);
598 return llvm::ConstantFoldLoadThroughBitcast(C
, DestTy
, DL
);
601 } // end anonymous namespace
603 Constant
*llvm::ConstantFoldLoadFromConstPtr(Constant
*C
, Type
*Ty
,
604 const DataLayout
&DL
) {
605 // First, try the easy cases:
606 if (auto *GV
= dyn_cast
<GlobalVariable
>(C
))
607 if (GV
->isConstant() && GV
->hasDefinitiveInitializer())
608 return GV
->getInitializer();
610 if (auto *GA
= dyn_cast
<GlobalAlias
>(C
))
611 if (GA
->getAliasee() && !GA
->isInterposable())
612 return ConstantFoldLoadFromConstPtr(GA
->getAliasee(), Ty
, DL
);
614 // If the loaded value isn't a constant expr, we can't handle it.
615 auto *CE
= dyn_cast
<ConstantExpr
>(C
);
619 if (CE
->getOpcode() == Instruction::GetElementPtr
) {
620 if (auto *GV
= dyn_cast
<GlobalVariable
>(CE
->getOperand(0))) {
621 if (GV
->isConstant() && GV
->hasDefinitiveInitializer()) {
623 ConstantFoldLoadThroughGEPConstantExpr(GV
->getInitializer(), CE
))
629 if (CE
->getOpcode() == Instruction::BitCast
)
630 if (Constant
*LoadedC
= ConstantFoldLoadThroughBitcastExpr(CE
, Ty
, DL
))
633 // Instead of loading constant c string, use corresponding integer value
634 // directly if string length is small enough.
636 if (getConstantStringInfo(CE
, Str
) && !Str
.empty()) {
637 size_t StrLen
= Str
.size();
638 unsigned NumBits
= Ty
->getPrimitiveSizeInBits();
639 // Replace load with immediate integer if the result is an integer or fp
641 if ((NumBits
>> 3) == StrLen
+ 1 && (NumBits
& 7) == 0 &&
642 (isa
<IntegerType
>(Ty
) || Ty
->isFloatingPointTy())) {
643 APInt
StrVal(NumBits
, 0);
644 APInt
SingleChar(NumBits
, 0);
645 if (DL
.isLittleEndian()) {
646 for (unsigned char C
: reverse(Str
.bytes())) {
647 SingleChar
= static_cast<uint64_t>(C
);
648 StrVal
= (StrVal
<< 8) | SingleChar
;
651 for (unsigned char C
: Str
.bytes()) {
652 SingleChar
= static_cast<uint64_t>(C
);
653 StrVal
= (StrVal
<< 8) | SingleChar
;
655 // Append NULL at the end.
657 StrVal
= (StrVal
<< 8) | SingleChar
;
660 Constant
*Res
= ConstantInt::get(CE
->getContext(), StrVal
);
661 if (Ty
->isFloatingPointTy())
662 Res
= ConstantExpr::getBitCast(Res
, Ty
);
667 // If this load comes from anywhere in a constant global, and if the global
668 // is all undef or zero, we know what it loads.
669 if (auto *GV
= dyn_cast
<GlobalVariable
>(GetUnderlyingObject(CE
, DL
))) {
670 if (GV
->isConstant() && GV
->hasDefinitiveInitializer()) {
671 if (GV
->getInitializer()->isNullValue())
672 return Constant::getNullValue(Ty
);
673 if (isa
<UndefValue
>(GV
->getInitializer()))
674 return UndefValue::get(Ty
);
678 // Try hard to fold loads from bitcasted strange and non-type-safe things.
679 return FoldReinterpretLoadFromConstPtr(CE
, Ty
, DL
);
684 Constant
*ConstantFoldLoadInst(const LoadInst
*LI
, const DataLayout
&DL
) {
685 if (LI
->isVolatile()) return nullptr;
687 if (auto *C
= dyn_cast
<Constant
>(LI
->getOperand(0)))
688 return ConstantFoldLoadFromConstPtr(C
, LI
->getType(), DL
);
693 /// One of Op0/Op1 is a constant expression.
694 /// Attempt to symbolically evaluate the result of a binary operator merging
695 /// these together. If target data info is available, it is provided as DL,
696 /// otherwise DL is null.
697 Constant
*SymbolicallyEvaluateBinop(unsigned Opc
, Constant
*Op0
, Constant
*Op1
,
698 const DataLayout
&DL
) {
701 // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
702 // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
705 if (Opc
== Instruction::And
) {
706 KnownBits Known0
= computeKnownBits(Op0
, DL
);
707 KnownBits Known1
= computeKnownBits(Op1
, DL
);
708 if ((Known1
.One
| Known0
.Zero
).isAllOnesValue()) {
709 // All the bits of Op0 that the 'and' could be masking are already zero.
712 if ((Known0
.One
| Known1
.Zero
).isAllOnesValue()) {
713 // All the bits of Op1 that the 'and' could be masking are already zero.
717 Known0
.Zero
|= Known1
.Zero
;
718 Known0
.One
&= Known1
.One
;
719 if (Known0
.isConstant())
720 return ConstantInt::get(Op0
->getType(), Known0
.getConstant());
723 // If the constant expr is something like &A[123] - &A[4].f, fold this into a
724 // constant. This happens frequently when iterating over a global array.
725 if (Opc
== Instruction::Sub
) {
726 GlobalValue
*GV1
, *GV2
;
729 if (IsConstantOffsetFromGlobal(Op0
, GV1
, Offs1
, DL
))
730 if (IsConstantOffsetFromGlobal(Op1
, GV2
, Offs2
, DL
) && GV1
== GV2
) {
731 unsigned OpSize
= DL
.getTypeSizeInBits(Op0
->getType());
733 // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
734 // PtrToInt may change the bitwidth so we have convert to the right size
736 return ConstantInt::get(Op0
->getType(), Offs1
.zextOrTrunc(OpSize
) -
737 Offs2
.zextOrTrunc(OpSize
));
744 /// If array indices are not pointer-sized integers, explicitly cast them so
745 /// that they aren't implicitly casted by the getelementptr.
746 Constant
*CastGEPIndices(Type
*SrcElemTy
, ArrayRef
<Constant
*> Ops
,
747 Type
*ResultTy
, Optional
<unsigned> InRangeIndex
,
748 const DataLayout
&DL
, const TargetLibraryInfo
*TLI
) {
749 Type
*IntPtrTy
= DL
.getIntPtrType(ResultTy
);
750 Type
*IntPtrScalarTy
= IntPtrTy
->getScalarType();
753 SmallVector
<Constant
*, 32> NewIdxs
;
754 for (unsigned i
= 1, e
= Ops
.size(); i
!= e
; ++i
) {
756 !isa
<StructType
>(GetElementPtrInst::getIndexedType(
757 SrcElemTy
, Ops
.slice(1, i
- 1)))) &&
758 Ops
[i
]->getType()->getScalarType() != IntPtrScalarTy
) {
760 Type
*NewType
= Ops
[i
]->getType()->isVectorTy()
762 : IntPtrTy
->getScalarType();
763 NewIdxs
.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops
[i
],
769 NewIdxs
.push_back(Ops
[i
]);
775 Constant
*C
= ConstantExpr::getGetElementPtr(
776 SrcElemTy
, Ops
[0], NewIdxs
, /*InBounds=*/false, InRangeIndex
);
777 if (Constant
*Folded
= ConstantFoldConstant(C
, DL
, TLI
))
783 /// Strip the pointer casts, but preserve the address space information.
784 Constant
* StripPtrCastKeepAS(Constant
* Ptr
, Type
*&ElemTy
) {
785 assert(Ptr
->getType()->isPointerTy() && "Not a pointer type");
786 auto *OldPtrTy
= cast
<PointerType
>(Ptr
->getType());
787 Ptr
= cast
<Constant
>(Ptr
->stripPointerCastsNoFollowAliases());
788 auto *NewPtrTy
= cast
<PointerType
>(Ptr
->getType());
790 ElemTy
= NewPtrTy
->getPointerElementType();
792 // Preserve the address space number of the pointer.
793 if (NewPtrTy
->getAddressSpace() != OldPtrTy
->getAddressSpace()) {
794 NewPtrTy
= ElemTy
->getPointerTo(OldPtrTy
->getAddressSpace());
795 Ptr
= ConstantExpr::getPointerCast(Ptr
, NewPtrTy
);
800 /// If we can symbolically evaluate the GEP constant expression, do so.
801 Constant
*SymbolicallyEvaluateGEP(const GEPOperator
*GEP
,
802 ArrayRef
<Constant
*> Ops
,
803 const DataLayout
&DL
,
804 const TargetLibraryInfo
*TLI
) {
805 const GEPOperator
*InnermostGEP
= GEP
;
806 bool InBounds
= GEP
->isInBounds();
808 Type
*SrcElemTy
= GEP
->getSourceElementType();
809 Type
*ResElemTy
= GEP
->getResultElementType();
810 Type
*ResTy
= GEP
->getType();
811 if (!SrcElemTy
->isSized())
814 if (Constant
*C
= CastGEPIndices(SrcElemTy
, Ops
, ResTy
,
815 GEP
->getInRangeIndex(), DL
, TLI
))
818 Constant
*Ptr
= Ops
[0];
819 if (!Ptr
->getType()->isPointerTy())
822 Type
*IntPtrTy
= DL
.getIntPtrType(Ptr
->getType());
824 // If this is a constant expr gep that is effectively computing an
825 // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
826 for (unsigned i
= 1, e
= Ops
.size(); i
!= e
; ++i
)
827 if (!isa
<ConstantInt
>(Ops
[i
])) {
829 // If this is "gep i8* Ptr, (sub 0, V)", fold this as:
830 // "inttoptr (sub (ptrtoint Ptr), V)"
831 if (Ops
.size() == 2 && ResElemTy
->isIntegerTy(8)) {
832 auto *CE
= dyn_cast
<ConstantExpr
>(Ops
[1]);
833 assert((!CE
|| CE
->getType() == IntPtrTy
) &&
834 "CastGEPIndices didn't canonicalize index types!");
835 if (CE
&& CE
->getOpcode() == Instruction::Sub
&&
836 CE
->getOperand(0)->isNullValue()) {
837 Constant
*Res
= ConstantExpr::getPtrToInt(Ptr
, CE
->getType());
838 Res
= ConstantExpr::getSub(Res
, CE
->getOperand(1));
839 Res
= ConstantExpr::getIntToPtr(Res
, ResTy
);
840 if (auto *FoldedRes
= ConstantFoldConstant(Res
, DL
, TLI
))
848 unsigned BitWidth
= DL
.getTypeSizeInBits(IntPtrTy
);
851 DL
.getIndexedOffsetInType(
853 makeArrayRef((Value
* const *)Ops
.data() + 1, Ops
.size() - 1)));
854 Ptr
= StripPtrCastKeepAS(Ptr
, SrcElemTy
);
856 // If this is a GEP of a GEP, fold it all into a single GEP.
857 while (auto *GEP
= dyn_cast
<GEPOperator
>(Ptr
)) {
859 InBounds
&= GEP
->isInBounds();
861 SmallVector
<Value
*, 4> NestedOps(GEP
->op_begin() + 1, GEP
->op_end());
863 // Do not try the incorporate the sub-GEP if some index is not a number.
864 bool AllConstantInt
= true;
865 for (Value
*NestedOp
: NestedOps
)
866 if (!isa
<ConstantInt
>(NestedOp
)) {
867 AllConstantInt
= false;
873 Ptr
= cast
<Constant
>(GEP
->getOperand(0));
874 SrcElemTy
= GEP
->getSourceElementType();
875 Offset
+= APInt(BitWidth
, DL
.getIndexedOffsetInType(SrcElemTy
, NestedOps
));
876 Ptr
= StripPtrCastKeepAS(Ptr
, SrcElemTy
);
879 // If the base value for this address is a literal integer value, fold the
880 // getelementptr to the resulting integer value casted to the pointer type.
881 APInt
BasePtr(BitWidth
, 0);
882 if (auto *CE
= dyn_cast
<ConstantExpr
>(Ptr
)) {
883 if (CE
->getOpcode() == Instruction::IntToPtr
) {
884 if (auto *Base
= dyn_cast
<ConstantInt
>(CE
->getOperand(0)))
885 BasePtr
= Base
->getValue().zextOrTrunc(BitWidth
);
889 auto *PTy
= cast
<PointerType
>(Ptr
->getType());
890 if ((Ptr
->isNullValue() || BasePtr
!= 0) &&
891 !DL
.isNonIntegralPointerType(PTy
)) {
892 Constant
*C
= ConstantInt::get(Ptr
->getContext(), Offset
+ BasePtr
);
893 return ConstantExpr::getIntToPtr(C
, ResTy
);
896 // Otherwise form a regular getelementptr. Recompute the indices so that
897 // we eliminate over-indexing of the notional static type array bounds.
898 // This makes it easy to determine if the getelementptr is "inbounds".
899 // Also, this helps GlobalOpt do SROA on GlobalVariables.
901 SmallVector
<Constant
*, 32> NewIdxs
;
904 if (!Ty
->isStructTy()) {
905 if (Ty
->isPointerTy()) {
906 // The only pointer indexing we'll do is on the first index of the GEP.
907 if (!NewIdxs
.empty())
912 // Only handle pointers to sized types, not pointers to functions.
915 } else if (auto *ATy
= dyn_cast
<SequentialType
>(Ty
)) {
916 Ty
= ATy
->getElementType();
918 // We've reached some non-indexable type.
922 // Determine which element of the array the offset points into.
923 APInt
ElemSize(BitWidth
, DL
.getTypeAllocSize(Ty
));
925 // The element size is 0. This may be [0 x Ty]*, so just use a zero
926 // index for this level and proceed to the next level to see if it can
927 // accommodate the offset.
928 NewIdxs
.push_back(ConstantInt::get(IntPtrTy
, 0));
930 // The element size is non-zero divide the offset by the element
931 // size (rounding down), to compute the index at this level.
933 APInt NewIdx
= Offset
.sdiv_ov(ElemSize
, Overflow
);
936 Offset
-= NewIdx
* ElemSize
;
937 NewIdxs
.push_back(ConstantInt::get(IntPtrTy
, NewIdx
));
940 auto *STy
= cast
<StructType
>(Ty
);
941 // If we end up with an offset that isn't valid for this struct type, we
942 // can't re-form this GEP in a regular form, so bail out. The pointer
943 // operand likely went through casts that are necessary to make the GEP
945 const StructLayout
&SL
= *DL
.getStructLayout(STy
);
946 if (Offset
.isNegative() || Offset
.uge(SL
.getSizeInBytes()))
949 // Determine which field of the struct the offset points into. The
950 // getZExtValue is fine as we've already ensured that the offset is
951 // within the range representable by the StructLayout API.
952 unsigned ElIdx
= SL
.getElementContainingOffset(Offset
.getZExtValue());
953 NewIdxs
.push_back(ConstantInt::get(Type::getInt32Ty(Ty
->getContext()),
955 Offset
-= APInt(BitWidth
, SL
.getElementOffset(ElIdx
));
956 Ty
= STy
->getTypeAtIndex(ElIdx
);
958 } while (Ty
!= ResElemTy
);
960 // If we haven't used up the entire offset by descending the static
961 // type, then the offset is pointing into the middle of an indivisible
962 // member, so we can't simplify it.
966 // Preserve the inrange index from the innermost GEP if possible. We must
967 // have calculated the same indices up to and including the inrange index.
968 Optional
<unsigned> InRangeIndex
;
969 if (Optional
<unsigned> LastIRIndex
= InnermostGEP
->getInRangeIndex())
970 if (SrcElemTy
== InnermostGEP
->getSourceElementType() &&
971 NewIdxs
.size() > *LastIRIndex
) {
972 InRangeIndex
= LastIRIndex
;
973 for (unsigned I
= 0; I
<= *LastIRIndex
; ++I
)
974 if (NewIdxs
[I
] != InnermostGEP
->getOperand(I
+ 1))
979 Constant
*C
= ConstantExpr::getGetElementPtr(SrcElemTy
, Ptr
, NewIdxs
,
980 InBounds
, InRangeIndex
);
981 assert(C
->getType()->getPointerElementType() == Ty
&&
982 "Computed GetElementPtr has unexpected type!");
984 // If we ended up indexing a member with a type that doesn't match
985 // the type of what the original indices indexed, add a cast.
987 C
= FoldBitCast(C
, ResTy
, DL
);
992 /// Attempt to constant fold an instruction with the
993 /// specified opcode and operands. If successful, the constant result is
994 /// returned, if not, null is returned. Note that this function can fail when
995 /// attempting to fold instructions like loads and stores, which have no
996 /// constant expression form.
997 Constant
*ConstantFoldInstOperandsImpl(const Value
*InstOrCE
, unsigned Opcode
,
998 ArrayRef
<Constant
*> Ops
,
999 const DataLayout
&DL
,
1000 const TargetLibraryInfo
*TLI
) {
1001 Type
*DestTy
= InstOrCE
->getType();
1003 if (Instruction::isUnaryOp(Opcode
))
1004 return ConstantFoldUnaryOpOperand(Opcode
, Ops
[0], DL
);
1006 if (Instruction::isBinaryOp(Opcode
))
1007 return ConstantFoldBinaryOpOperands(Opcode
, Ops
[0], Ops
[1], DL
);
1009 if (Instruction::isCast(Opcode
))
1010 return ConstantFoldCastOperand(Opcode
, Ops
[0], DestTy
, DL
);
1012 if (auto *GEP
= dyn_cast
<GEPOperator
>(InstOrCE
)) {
1013 if (Constant
*C
= SymbolicallyEvaluateGEP(GEP
, Ops
, DL
, TLI
))
1016 return ConstantExpr::getGetElementPtr(GEP
->getSourceElementType(), Ops
[0],
1017 Ops
.slice(1), GEP
->isInBounds(),
1018 GEP
->getInRangeIndex());
1021 if (auto *CE
= dyn_cast
<ConstantExpr
>(InstOrCE
))
1022 return CE
->getWithOperands(Ops
);
1025 default: return nullptr;
1026 case Instruction::ICmp
:
1027 case Instruction::FCmp
: llvm_unreachable("Invalid for compares");
1028 case Instruction::Call
:
1029 if (auto *F
= dyn_cast
<Function
>(Ops
.back())) {
1030 const auto *Call
= cast
<CallBase
>(InstOrCE
);
1031 if (canConstantFoldCallTo(Call
, F
))
1032 return ConstantFoldCall(Call
, F
, Ops
.slice(0, Ops
.size() - 1), TLI
);
1035 case Instruction::Select
:
1036 return ConstantExpr::getSelect(Ops
[0], Ops
[1], Ops
[2]);
1037 case Instruction::ExtractElement
:
1038 return ConstantExpr::getExtractElement(Ops
[0], Ops
[1]);
1039 case Instruction::ExtractValue
:
1040 return ConstantExpr::getExtractValue(
1041 Ops
[0], dyn_cast
<ExtractValueInst
>(InstOrCE
)->getIndices());
1042 case Instruction::InsertElement
:
1043 return ConstantExpr::getInsertElement(Ops
[0], Ops
[1], Ops
[2]);
1044 case Instruction::ShuffleVector
:
1045 return ConstantExpr::getShuffleVector(Ops
[0], Ops
[1], Ops
[2]);
1049 } // end anonymous namespace
1051 //===----------------------------------------------------------------------===//
1052 // Constant Folding public APIs
1053 //===----------------------------------------------------------------------===//
1058 ConstantFoldConstantImpl(const Constant
*C
, const DataLayout
&DL
,
1059 const TargetLibraryInfo
*TLI
,
1060 SmallDenseMap
<Constant
*, Constant
*> &FoldedOps
) {
1061 if (!isa
<ConstantVector
>(C
) && !isa
<ConstantExpr
>(C
))
1064 SmallVector
<Constant
*, 8> Ops
;
1065 for (const Use
&NewU
: C
->operands()) {
1066 auto *NewC
= cast
<Constant
>(&NewU
);
1067 // Recursively fold the ConstantExpr's operands. If we have already folded
1068 // a ConstantExpr, we don't have to process it again.
1069 if (isa
<ConstantVector
>(NewC
) || isa
<ConstantExpr
>(NewC
)) {
1070 auto It
= FoldedOps
.find(NewC
);
1071 if (It
== FoldedOps
.end()) {
1073 ConstantFoldConstantImpl(NewC
, DL
, TLI
, FoldedOps
)) {
1074 FoldedOps
.insert({NewC
, FoldedC
});
1077 FoldedOps
.insert({NewC
, NewC
});
1083 Ops
.push_back(NewC
);
1086 if (auto *CE
= dyn_cast
<ConstantExpr
>(C
)) {
1087 if (CE
->isCompare())
1088 return ConstantFoldCompareInstOperands(CE
->getPredicate(), Ops
[0], Ops
[1],
1091 return ConstantFoldInstOperandsImpl(CE
, CE
->getOpcode(), Ops
, DL
, TLI
);
1094 assert(isa
<ConstantVector
>(C
));
1095 return ConstantVector::get(Ops
);
1098 } // end anonymous namespace
1100 Constant
*llvm::ConstantFoldInstruction(Instruction
*I
, const DataLayout
&DL
,
1101 const TargetLibraryInfo
*TLI
) {
1102 // Handle PHI nodes quickly here...
1103 if (auto *PN
= dyn_cast
<PHINode
>(I
)) {
1104 Constant
*CommonValue
= nullptr;
1106 SmallDenseMap
<Constant
*, Constant
*> FoldedOps
;
1107 for (Value
*Incoming
: PN
->incoming_values()) {
1108 // If the incoming value is undef then skip it. Note that while we could
1109 // skip the value if it is equal to the phi node itself we choose not to
1110 // because that would break the rule that constant folding only applies if
1111 // all operands are constants.
1112 if (isa
<UndefValue
>(Incoming
))
1114 // If the incoming value is not a constant, then give up.
1115 auto *C
= dyn_cast
<Constant
>(Incoming
);
1118 // Fold the PHI's operands.
1119 if (auto *FoldedC
= ConstantFoldConstantImpl(C
, DL
, TLI
, FoldedOps
))
1121 // If the incoming value is a different constant to
1122 // the one we saw previously, then give up.
1123 if (CommonValue
&& C
!= CommonValue
)
1128 // If we reach here, all incoming values are the same constant or undef.
1129 return CommonValue
? CommonValue
: UndefValue::get(PN
->getType());
1132 // Scan the operand list, checking to see if they are all constants, if so,
1133 // hand off to ConstantFoldInstOperandsImpl.
1134 if (!all_of(I
->operands(), [](Use
&U
) { return isa
<Constant
>(U
); }))
1137 SmallDenseMap
<Constant
*, Constant
*> FoldedOps
;
1138 SmallVector
<Constant
*, 8> Ops
;
1139 for (const Use
&OpU
: I
->operands()) {
1140 auto *Op
= cast
<Constant
>(&OpU
);
1141 // Fold the Instruction's operands.
1142 if (auto *FoldedOp
= ConstantFoldConstantImpl(Op
, DL
, TLI
, FoldedOps
))
1148 if (const auto *CI
= dyn_cast
<CmpInst
>(I
))
1149 return ConstantFoldCompareInstOperands(CI
->getPredicate(), Ops
[0], Ops
[1],
1152 if (const auto *LI
= dyn_cast
<LoadInst
>(I
))
1153 return ConstantFoldLoadInst(LI
, DL
);
1155 if (auto *IVI
= dyn_cast
<InsertValueInst
>(I
)) {
1156 return ConstantExpr::getInsertValue(
1157 cast
<Constant
>(IVI
->getAggregateOperand()),
1158 cast
<Constant
>(IVI
->getInsertedValueOperand()),
1162 if (auto *EVI
= dyn_cast
<ExtractValueInst
>(I
)) {
1163 return ConstantExpr::getExtractValue(
1164 cast
<Constant
>(EVI
->getAggregateOperand()),
1168 return ConstantFoldInstOperands(I
, Ops
, DL
, TLI
);
1171 Constant
*llvm::ConstantFoldConstant(const Constant
*C
, const DataLayout
&DL
,
1172 const TargetLibraryInfo
*TLI
) {
1173 SmallDenseMap
<Constant
*, Constant
*> FoldedOps
;
1174 return ConstantFoldConstantImpl(C
, DL
, TLI
, FoldedOps
);
1177 Constant
*llvm::ConstantFoldInstOperands(Instruction
*I
,
1178 ArrayRef
<Constant
*> Ops
,
1179 const DataLayout
&DL
,
1180 const TargetLibraryInfo
*TLI
) {
1181 return ConstantFoldInstOperandsImpl(I
, I
->getOpcode(), Ops
, DL
, TLI
);
1184 Constant
*llvm::ConstantFoldCompareInstOperands(unsigned Predicate
,
1185 Constant
*Ops0
, Constant
*Ops1
,
1186 const DataLayout
&DL
,
1187 const TargetLibraryInfo
*TLI
) {
1188 // fold: icmp (inttoptr x), null -> icmp x, 0
1189 // fold: icmp null, (inttoptr x) -> icmp 0, x
1190 // fold: icmp (ptrtoint x), 0 -> icmp x, null
1191 // fold: icmp 0, (ptrtoint x) -> icmp null, x
1192 // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
1193 // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
1195 // FIXME: The following comment is out of data and the DataLayout is here now.
1196 // ConstantExpr::getCompare cannot do this, because it doesn't have DL
1197 // around to know if bit truncation is happening.
1198 if (auto *CE0
= dyn_cast
<ConstantExpr
>(Ops0
)) {
1199 if (Ops1
->isNullValue()) {
1200 if (CE0
->getOpcode() == Instruction::IntToPtr
) {
1201 Type
*IntPtrTy
= DL
.getIntPtrType(CE0
->getType());
1202 // Convert the integer value to the right size to ensure we get the
1203 // proper extension or truncation.
1204 Constant
*C
= ConstantExpr::getIntegerCast(CE0
->getOperand(0),
1206 Constant
*Null
= Constant::getNullValue(C
->getType());
1207 return ConstantFoldCompareInstOperands(Predicate
, C
, Null
, DL
, TLI
);
1210 // Only do this transformation if the int is intptrty in size, otherwise
1211 // there is a truncation or extension that we aren't modeling.
1212 if (CE0
->getOpcode() == Instruction::PtrToInt
) {
1213 Type
*IntPtrTy
= DL
.getIntPtrType(CE0
->getOperand(0)->getType());
1214 if (CE0
->getType() == IntPtrTy
) {
1215 Constant
*C
= CE0
->getOperand(0);
1216 Constant
*Null
= Constant::getNullValue(C
->getType());
1217 return ConstantFoldCompareInstOperands(Predicate
, C
, Null
, DL
, TLI
);
1222 if (auto *CE1
= dyn_cast
<ConstantExpr
>(Ops1
)) {
1223 if (CE0
->getOpcode() == CE1
->getOpcode()) {
1224 if (CE0
->getOpcode() == Instruction::IntToPtr
) {
1225 Type
*IntPtrTy
= DL
.getIntPtrType(CE0
->getType());
1227 // Convert the integer value to the right size to ensure we get the
1228 // proper extension or truncation.
1229 Constant
*C0
= ConstantExpr::getIntegerCast(CE0
->getOperand(0),
1231 Constant
*C1
= ConstantExpr::getIntegerCast(CE1
->getOperand(0),
1233 return ConstantFoldCompareInstOperands(Predicate
, C0
, C1
, DL
, TLI
);
1236 // Only do this transformation if the int is intptrty in size, otherwise
1237 // there is a truncation or extension that we aren't modeling.
1238 if (CE0
->getOpcode() == Instruction::PtrToInt
) {
1239 Type
*IntPtrTy
= DL
.getIntPtrType(CE0
->getOperand(0)->getType());
1240 if (CE0
->getType() == IntPtrTy
&&
1241 CE0
->getOperand(0)->getType() == CE1
->getOperand(0)->getType()) {
1242 return ConstantFoldCompareInstOperands(
1243 Predicate
, CE0
->getOperand(0), CE1
->getOperand(0), DL
, TLI
);
1249 // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
1250 // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
1251 if ((Predicate
== ICmpInst::ICMP_EQ
|| Predicate
== ICmpInst::ICMP_NE
) &&
1252 CE0
->getOpcode() == Instruction::Or
&& Ops1
->isNullValue()) {
1253 Constant
*LHS
= ConstantFoldCompareInstOperands(
1254 Predicate
, CE0
->getOperand(0), Ops1
, DL
, TLI
);
1255 Constant
*RHS
= ConstantFoldCompareInstOperands(
1256 Predicate
, CE0
->getOperand(1), Ops1
, DL
, TLI
);
1258 Predicate
== ICmpInst::ICMP_EQ
? Instruction::And
: Instruction::Or
;
1259 return ConstantFoldBinaryOpOperands(OpC
, LHS
, RHS
, DL
);
1261 } else if (isa
<ConstantExpr
>(Ops1
)) {
1262 // If RHS is a constant expression, but the left side isn't, swap the
1263 // operands and try again.
1264 Predicate
= ICmpInst::getSwappedPredicate((ICmpInst::Predicate
)Predicate
);
1265 return ConstantFoldCompareInstOperands(Predicate
, Ops1
, Ops0
, DL
, TLI
);
1268 return ConstantExpr::getCompare(Predicate
, Ops0
, Ops1
);
1271 Constant
*llvm::ConstantFoldUnaryOpOperand(unsigned Opcode
, Constant
*Op
,
1272 const DataLayout
&DL
) {
1273 assert(Instruction::isUnaryOp(Opcode
));
1275 return ConstantExpr::get(Opcode
, Op
);
1278 Constant
*llvm::ConstantFoldBinaryOpOperands(unsigned Opcode
, Constant
*LHS
,
1280 const DataLayout
&DL
) {
1281 assert(Instruction::isBinaryOp(Opcode
));
1282 if (isa
<ConstantExpr
>(LHS
) || isa
<ConstantExpr
>(RHS
))
1283 if (Constant
*C
= SymbolicallyEvaluateBinop(Opcode
, LHS
, RHS
, DL
))
1286 return ConstantExpr::get(Opcode
, LHS
, RHS
);
1289 Constant
*llvm::ConstantFoldCastOperand(unsigned Opcode
, Constant
*C
,
1290 Type
*DestTy
, const DataLayout
&DL
) {
1291 assert(Instruction::isCast(Opcode
));
1294 llvm_unreachable("Missing case");
1295 case Instruction::PtrToInt
:
1296 // If the input is a inttoptr, eliminate the pair. This requires knowing
1297 // the width of a pointer, so it can't be done in ConstantExpr::getCast.
1298 if (auto *CE
= dyn_cast
<ConstantExpr
>(C
)) {
1299 if (CE
->getOpcode() == Instruction::IntToPtr
) {
1300 Constant
*Input
= CE
->getOperand(0);
1301 unsigned InWidth
= Input
->getType()->getScalarSizeInBits();
1302 unsigned PtrWidth
= DL
.getPointerTypeSizeInBits(CE
->getType());
1303 if (PtrWidth
< InWidth
) {
1305 ConstantInt::get(CE
->getContext(),
1306 APInt::getLowBitsSet(InWidth
, PtrWidth
));
1307 Input
= ConstantExpr::getAnd(Input
, Mask
);
1309 // Do a zext or trunc to get to the dest size.
1310 return ConstantExpr::getIntegerCast(Input
, DestTy
, false);
1313 return ConstantExpr::getCast(Opcode
, C
, DestTy
);
1314 case Instruction::IntToPtr
:
1315 // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
1316 // the int size is >= the ptr size and the address spaces are the same.
1317 // This requires knowing the width of a pointer, so it can't be done in
1318 // ConstantExpr::getCast.
1319 if (auto *CE
= dyn_cast
<ConstantExpr
>(C
)) {
1320 if (CE
->getOpcode() == Instruction::PtrToInt
) {
1321 Constant
*SrcPtr
= CE
->getOperand(0);
1322 unsigned SrcPtrSize
= DL
.getPointerTypeSizeInBits(SrcPtr
->getType());
1323 unsigned MidIntSize
= CE
->getType()->getScalarSizeInBits();
1325 if (MidIntSize
>= SrcPtrSize
) {
1326 unsigned SrcAS
= SrcPtr
->getType()->getPointerAddressSpace();
1327 if (SrcAS
== DestTy
->getPointerAddressSpace())
1328 return FoldBitCast(CE
->getOperand(0), DestTy
, DL
);
1333 return ConstantExpr::getCast(Opcode
, C
, DestTy
);
1334 case Instruction::Trunc
:
1335 case Instruction::ZExt
:
1336 case Instruction::SExt
:
1337 case Instruction::FPTrunc
:
1338 case Instruction::FPExt
:
1339 case Instruction::UIToFP
:
1340 case Instruction::SIToFP
:
1341 case Instruction::FPToUI
:
1342 case Instruction::FPToSI
:
1343 case Instruction::AddrSpaceCast
:
1344 return ConstantExpr::getCast(Opcode
, C
, DestTy
);
1345 case Instruction::BitCast
:
1346 return FoldBitCast(C
, DestTy
, DL
);
1350 Constant
*llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant
*C
,
1352 if (!CE
->getOperand(1)->isNullValue())
1353 return nullptr; // Do not allow stepping over the value!
1355 // Loop over all of the operands, tracking down which value we are
1357 for (unsigned i
= 2, e
= CE
->getNumOperands(); i
!= e
; ++i
) {
1358 C
= C
->getAggregateElement(CE
->getOperand(i
));
1366 llvm::ConstantFoldLoadThroughGEPIndices(Constant
*C
,
1367 ArrayRef
<Constant
*> Indices
) {
1368 // Loop over all of the operands, tracking down which value we are
1370 for (Constant
*Index
: Indices
) {
1371 C
= C
->getAggregateElement(Index
);
1378 //===----------------------------------------------------------------------===//
1379 // Constant Folding for Calls
1382 bool llvm::canConstantFoldCallTo(const CallBase
*Call
, const Function
*F
) {
1383 if (Call
->isNoBuiltin() || Call
->isStrictFP())
1385 switch (F
->getIntrinsicID()) {
1386 case Intrinsic::fabs
:
1387 case Intrinsic::minnum
:
1388 case Intrinsic::maxnum
:
1389 case Intrinsic::minimum
:
1390 case Intrinsic::maximum
:
1391 case Intrinsic::log
:
1392 case Intrinsic::log2
:
1393 case Intrinsic::log10
:
1394 case Intrinsic::exp
:
1395 case Intrinsic::exp2
:
1396 case Intrinsic::floor
:
1397 case Intrinsic::ceil
:
1398 case Intrinsic::sqrt
:
1399 case Intrinsic::sin
:
1400 case Intrinsic::cos
:
1401 case Intrinsic::trunc
:
1402 case Intrinsic::rint
:
1403 case Intrinsic::nearbyint
:
1404 case Intrinsic::pow
:
1405 case Intrinsic::powi
:
1406 case Intrinsic::bswap
:
1407 case Intrinsic::ctpop
:
1408 case Intrinsic::ctlz
:
1409 case Intrinsic::cttz
:
1410 case Intrinsic::fshl
:
1411 case Intrinsic::fshr
:
1412 case Intrinsic::fma
:
1413 case Intrinsic::fmuladd
:
1414 case Intrinsic::copysign
:
1415 case Intrinsic::launder_invariant_group
:
1416 case Intrinsic::strip_invariant_group
:
1417 case Intrinsic::round
:
1418 case Intrinsic::masked_load
:
1419 case Intrinsic::sadd_with_overflow
:
1420 case Intrinsic::uadd_with_overflow
:
1421 case Intrinsic::ssub_with_overflow
:
1422 case Intrinsic::usub_with_overflow
:
1423 case Intrinsic::smul_with_overflow
:
1424 case Intrinsic::umul_with_overflow
:
1425 case Intrinsic::sadd_sat
:
1426 case Intrinsic::uadd_sat
:
1427 case Intrinsic::ssub_sat
:
1428 case Intrinsic::usub_sat
:
1429 case Intrinsic::smul_fix
:
1430 case Intrinsic::smul_fix_sat
:
1431 case Intrinsic::convert_from_fp16
:
1432 case Intrinsic::convert_to_fp16
:
1433 case Intrinsic::bitreverse
:
1434 case Intrinsic::x86_sse_cvtss2si
:
1435 case Intrinsic::x86_sse_cvtss2si64
:
1436 case Intrinsic::x86_sse_cvttss2si
:
1437 case Intrinsic::x86_sse_cvttss2si64
:
1438 case Intrinsic::x86_sse2_cvtsd2si
:
1439 case Intrinsic::x86_sse2_cvtsd2si64
:
1440 case Intrinsic::x86_sse2_cvttsd2si
:
1441 case Intrinsic::x86_sse2_cvttsd2si64
:
1442 case Intrinsic::x86_avx512_vcvtss2si32
:
1443 case Intrinsic::x86_avx512_vcvtss2si64
:
1444 case Intrinsic::x86_avx512_cvttss2si
:
1445 case Intrinsic::x86_avx512_cvttss2si64
:
1446 case Intrinsic::x86_avx512_vcvtsd2si32
:
1447 case Intrinsic::x86_avx512_vcvtsd2si64
:
1448 case Intrinsic::x86_avx512_cvttsd2si
:
1449 case Intrinsic::x86_avx512_cvttsd2si64
:
1450 case Intrinsic::x86_avx512_vcvtss2usi32
:
1451 case Intrinsic::x86_avx512_vcvtss2usi64
:
1452 case Intrinsic::x86_avx512_cvttss2usi
:
1453 case Intrinsic::x86_avx512_cvttss2usi64
:
1454 case Intrinsic::x86_avx512_vcvtsd2usi32
:
1455 case Intrinsic::x86_avx512_vcvtsd2usi64
:
1456 case Intrinsic::x86_avx512_cvttsd2usi
:
1457 case Intrinsic::x86_avx512_cvttsd2usi64
:
1458 case Intrinsic::is_constant
:
1462 case Intrinsic::not_intrinsic
: break;
1467 StringRef Name
= F
->getName();
1469 // In these cases, the check of the length is required. We don't want to
1470 // return true for a name like "cos\0blah" which strcmp would return equal to
1471 // "cos", but has length 8.
1476 return Name
== "acos" || Name
== "asin" || Name
== "atan" ||
1477 Name
== "atan2" || Name
== "acosf" || Name
== "asinf" ||
1478 Name
== "atanf" || Name
== "atan2f";
1480 return Name
== "ceil" || Name
== "cos" || Name
== "cosh" ||
1481 Name
== "ceilf" || Name
== "cosf" || Name
== "coshf";
1483 return Name
== "exp" || Name
== "exp2" || Name
== "expf" || Name
== "exp2f";
1485 return Name
== "fabs" || Name
== "floor" || Name
== "fmod" ||
1486 Name
== "fabsf" || Name
== "floorf" || Name
== "fmodf";
1488 return Name
== "log" || Name
== "log10" || Name
== "logf" ||
1491 return Name
== "pow" || Name
== "powf";
1493 return Name
== "round" || Name
== "roundf";
1495 return Name
== "sin" || Name
== "sinh" || Name
== "sqrt" ||
1496 Name
== "sinf" || Name
== "sinhf" || Name
== "sqrtf";
1498 return Name
== "tan" || Name
== "tanh" || Name
== "tanf" || Name
== "tanhf";
1501 // Check for various function names that get used for the math functions
1502 // when the header files are preprocessed with the macro
1503 // __FINITE_MATH_ONLY__ enabled.
1504 // The '12' here is the length of the shortest name that can match.
1505 // We need to check the size before looking at Name[1] and Name[2]
1506 // so we may as well check a limit that will eliminate mismatches.
1507 if (Name
.size() < 12 || Name
[1] != '_')
1513 return Name
== "__acos_finite" || Name
== "__acosf_finite" ||
1514 Name
== "__asin_finite" || Name
== "__asinf_finite" ||
1515 Name
== "__atan2_finite" || Name
== "__atan2f_finite";
1517 return Name
== "__cosh_finite" || Name
== "__coshf_finite";
1519 return Name
== "__exp_finite" || Name
== "__expf_finite" ||
1520 Name
== "__exp2_finite" || Name
== "__exp2f_finite";
1522 return Name
== "__log_finite" || Name
== "__logf_finite" ||
1523 Name
== "__log10_finite" || Name
== "__log10f_finite";
1525 return Name
== "__pow_finite" || Name
== "__powf_finite";
1527 return Name
== "__sinh_finite" || Name
== "__sinhf_finite";
1534 Constant
*GetConstantFoldFPValue(double V
, Type
*Ty
) {
1535 if (Ty
->isHalfTy() || Ty
->isFloatTy()) {
1538 APF
.convert(Ty
->getFltSemantics(), APFloat::rmNearestTiesToEven
, &unused
);
1539 return ConstantFP::get(Ty
->getContext(), APF
);
1541 if (Ty
->isDoubleTy())
1542 return ConstantFP::get(Ty
->getContext(), APFloat(V
));
1543 llvm_unreachable("Can only constant fold half/float/double");
1546 /// Clear the floating-point exception state.
1547 inline void llvm_fenv_clearexcept() {
1548 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT
1549 feclearexcept(FE_ALL_EXCEPT
);
1554 /// Test if a floating-point exception was raised.
1555 inline bool llvm_fenv_testexcept() {
1556 int errno_val
= errno
;
1557 if (errno_val
== ERANGE
|| errno_val
== EDOM
)
1559 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
1560 if (fetestexcept(FE_ALL_EXCEPT
& ~FE_INEXACT
))
1566 Constant
*ConstantFoldFP(double (*NativeFP
)(double), double V
, Type
*Ty
) {
1567 llvm_fenv_clearexcept();
1569 if (llvm_fenv_testexcept()) {
1570 llvm_fenv_clearexcept();
1574 return GetConstantFoldFPValue(V
, Ty
);
1577 Constant
*ConstantFoldBinaryFP(double (*NativeFP
)(double, double), double V
,
1578 double W
, Type
*Ty
) {
1579 llvm_fenv_clearexcept();
1581 if (llvm_fenv_testexcept()) {
1582 llvm_fenv_clearexcept();
1586 return GetConstantFoldFPValue(V
, Ty
);
1589 /// Attempt to fold an SSE floating point to integer conversion of a constant
1590 /// floating point. If roundTowardZero is false, the default IEEE rounding is
1591 /// used (toward nearest, ties to even). This matches the behavior of the
1592 /// non-truncating SSE instructions in the default rounding mode. The desired
1593 /// integer type Ty is used to select how many bits are available for the
1594 /// result. Returns null if the conversion cannot be performed, otherwise
1595 /// returns the Constant value resulting from the conversion.
1596 Constant
*ConstantFoldSSEConvertToInt(const APFloat
&Val
, bool roundTowardZero
,
1597 Type
*Ty
, bool IsSigned
) {
1598 // All of these conversion intrinsics form an integer of at most 64bits.
1599 unsigned ResultWidth
= Ty
->getIntegerBitWidth();
1600 assert(ResultWidth
<= 64 &&
1601 "Can only constant fold conversions to 64 and 32 bit ints");
1604 bool isExact
= false;
1605 APFloat::roundingMode mode
= roundTowardZero
? APFloat::rmTowardZero
1606 : APFloat::rmNearestTiesToEven
;
1607 APFloat::opStatus status
=
1608 Val
.convertToInteger(makeMutableArrayRef(UIntVal
), ResultWidth
,
1609 IsSigned
, mode
, &isExact
);
1610 if (status
!= APFloat::opOK
&&
1611 (!roundTowardZero
|| status
!= APFloat::opInexact
))
1613 return ConstantInt::get(Ty
, UIntVal
, IsSigned
);
1616 double getValueAsDouble(ConstantFP
*Op
) {
1617 Type
*Ty
= Op
->getType();
1619 if (Ty
->isFloatTy())
1620 return Op
->getValueAPF().convertToFloat();
1622 if (Ty
->isDoubleTy())
1623 return Op
->getValueAPF().convertToDouble();
1626 APFloat APF
= Op
->getValueAPF();
1627 APF
.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven
, &unused
);
1628 return APF
.convertToDouble();
1631 static bool isManifestConstant(const Constant
*c
) {
1632 if (isa
<ConstantData
>(c
)) {
1634 } else if (isa
<ConstantAggregate
>(c
) || isa
<ConstantExpr
>(c
)) {
1635 for (const Value
*subc
: c
->operand_values()) {
1636 if (!isManifestConstant(cast
<Constant
>(subc
)))
1644 static bool getConstIntOrUndef(Value
*Op
, const APInt
*&C
) {
1645 if (auto *CI
= dyn_cast
<ConstantInt
>(Op
)) {
1646 C
= &CI
->getValue();
1649 if (isa
<UndefValue
>(Op
)) {
1656 static Constant
*ConstantFoldScalarCall1(StringRef Name
,
1657 Intrinsic::ID IntrinsicID
,
1659 ArrayRef
<Constant
*> Operands
,
1660 const TargetLibraryInfo
*TLI
,
1661 const CallBase
*Call
) {
1662 assert(Operands
.size() == 1 && "Wrong number of operands.");
1664 if (IntrinsicID
== Intrinsic::is_constant
) {
1665 // We know we have a "Constant" argument. But we want to only
1666 // return true for manifest constants, not those that depend on
1667 // constants with unknowable values, e.g. GlobalValue or BlockAddress.
1668 if (isManifestConstant(Operands
[0]))
1669 return ConstantInt::getTrue(Ty
->getContext());
1672 if (isa
<UndefValue
>(Operands
[0])) {
1673 // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN.
1674 // ctpop() is between 0 and bitwidth, pick 0 for undef.
1675 if (IntrinsicID
== Intrinsic::cos
||
1676 IntrinsicID
== Intrinsic::ctpop
)
1677 return Constant::getNullValue(Ty
);
1678 if (IntrinsicID
== Intrinsic::bswap
||
1679 IntrinsicID
== Intrinsic::bitreverse
||
1680 IntrinsicID
== Intrinsic::launder_invariant_group
||
1681 IntrinsicID
== Intrinsic::strip_invariant_group
)
1685 if (isa
<ConstantPointerNull
>(Operands
[0])) {
1686 // launder(null) == null == strip(null) iff in addrspace 0
1687 if (IntrinsicID
== Intrinsic::launder_invariant_group
||
1688 IntrinsicID
== Intrinsic::strip_invariant_group
) {
1689 // If instruction is not yet put in a basic block (e.g. when cloning
1690 // a function during inlining), Call's caller may not be available.
1691 // So check Call's BB first before querying Call->getCaller.
1692 const Function
*Caller
=
1693 Call
->getParent() ? Call
->getCaller() : nullptr;
1695 !NullPointerIsDefined(
1696 Caller
, Operands
[0]->getType()->getPointerAddressSpace())) {
1703 if (auto *Op
= dyn_cast
<ConstantFP
>(Operands
[0])) {
1704 if (IntrinsicID
== Intrinsic::convert_to_fp16
) {
1705 APFloat
Val(Op
->getValueAPF());
1708 Val
.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven
, &lost
);
1710 return ConstantInt::get(Ty
->getContext(), Val
.bitcastToAPInt());
1713 if (!Ty
->isHalfTy() && !Ty
->isFloatTy() && !Ty
->isDoubleTy())
1716 if (IntrinsicID
== Intrinsic::round
) {
1717 APFloat V
= Op
->getValueAPF();
1718 V
.roundToIntegral(APFloat::rmNearestTiesToAway
);
1719 return ConstantFP::get(Ty
->getContext(), V
);
1722 if (IntrinsicID
== Intrinsic::floor
) {
1723 APFloat V
= Op
->getValueAPF();
1724 V
.roundToIntegral(APFloat::rmTowardNegative
);
1725 return ConstantFP::get(Ty
->getContext(), V
);
1728 if (IntrinsicID
== Intrinsic::ceil
) {
1729 APFloat V
= Op
->getValueAPF();
1730 V
.roundToIntegral(APFloat::rmTowardPositive
);
1731 return ConstantFP::get(Ty
->getContext(), V
);
1734 if (IntrinsicID
== Intrinsic::trunc
) {
1735 APFloat V
= Op
->getValueAPF();
1736 V
.roundToIntegral(APFloat::rmTowardZero
);
1737 return ConstantFP::get(Ty
->getContext(), V
);
1740 if (IntrinsicID
== Intrinsic::rint
) {
1741 APFloat V
= Op
->getValueAPF();
1742 V
.roundToIntegral(APFloat::rmNearestTiesToEven
);
1743 return ConstantFP::get(Ty
->getContext(), V
);
1746 if (IntrinsicID
== Intrinsic::nearbyint
) {
1747 APFloat V
= Op
->getValueAPF();
1748 V
.roundToIntegral(APFloat::rmNearestTiesToEven
);
1749 return ConstantFP::get(Ty
->getContext(), V
);
1752 /// We only fold functions with finite arguments. Folding NaN and inf is
1753 /// likely to be aborted with an exception anyway, and some host libms
1754 /// have known errors raising exceptions.
1755 if (Op
->getValueAPF().isNaN() || Op
->getValueAPF().isInfinity())
1758 /// Currently APFloat versions of these functions do not exist, so we use
1759 /// the host native double versions. Float versions are not called
1760 /// directly but for all these it is true (float)(f((double)arg)) ==
1761 /// f(arg). Long double not supported yet.
1762 double V
= getValueAsDouble(Op
);
1764 switch (IntrinsicID
) {
1766 case Intrinsic::fabs
:
1767 return ConstantFoldFP(fabs
, V
, Ty
);
1768 case Intrinsic::log2
:
1769 return ConstantFoldFP(Log2
, V
, Ty
);
1770 case Intrinsic::log
:
1771 return ConstantFoldFP(log
, V
, Ty
);
1772 case Intrinsic::log10
:
1773 return ConstantFoldFP(log10
, V
, Ty
);
1774 case Intrinsic::exp
:
1775 return ConstantFoldFP(exp
, V
, Ty
);
1776 case Intrinsic::exp2
:
1777 return ConstantFoldFP(exp2
, V
, Ty
);
1778 case Intrinsic::sin
:
1779 return ConstantFoldFP(sin
, V
, Ty
);
1780 case Intrinsic::cos
:
1781 return ConstantFoldFP(cos
, V
, Ty
);
1782 case Intrinsic::sqrt
:
1783 return ConstantFoldFP(sqrt
, V
, Ty
);
1789 char NameKeyChar
= Name
[0];
1790 if (Name
[0] == '_' && Name
.size() > 2 && Name
[1] == '_')
1791 NameKeyChar
= Name
[2];
1793 switch (NameKeyChar
) {
1795 if ((Name
== "acos" && TLI
->has(LibFunc_acos
)) ||
1796 (Name
== "acosf" && TLI
->has(LibFunc_acosf
)) ||
1797 (Name
== "__acos_finite" && TLI
->has(LibFunc_acos_finite
)) ||
1798 (Name
== "__acosf_finite" && TLI
->has(LibFunc_acosf_finite
)))
1799 return ConstantFoldFP(acos
, V
, Ty
);
1800 else if ((Name
== "asin" && TLI
->has(LibFunc_asin
)) ||
1801 (Name
== "asinf" && TLI
->has(LibFunc_asinf
)) ||
1802 (Name
== "__asin_finite" && TLI
->has(LibFunc_asin_finite
)) ||
1803 (Name
== "__asinf_finite" && TLI
->has(LibFunc_asinf_finite
)))
1804 return ConstantFoldFP(asin
, V
, Ty
);
1805 else if ((Name
== "atan" && TLI
->has(LibFunc_atan
)) ||
1806 (Name
== "atanf" && TLI
->has(LibFunc_atanf
)))
1807 return ConstantFoldFP(atan
, V
, Ty
);
1810 if ((Name
== "ceil" && TLI
->has(LibFunc_ceil
)) ||
1811 (Name
== "ceilf" && TLI
->has(LibFunc_ceilf
)))
1812 return ConstantFoldFP(ceil
, V
, Ty
);
1813 else if ((Name
== "cos" && TLI
->has(LibFunc_cos
)) ||
1814 (Name
== "cosf" && TLI
->has(LibFunc_cosf
)))
1815 return ConstantFoldFP(cos
, V
, Ty
);
1816 else if ((Name
== "cosh" && TLI
->has(LibFunc_cosh
)) ||
1817 (Name
== "coshf" && TLI
->has(LibFunc_coshf
)) ||
1818 (Name
== "__cosh_finite" && TLI
->has(LibFunc_cosh_finite
)) ||
1819 (Name
== "__coshf_finite" && TLI
->has(LibFunc_coshf_finite
)))
1820 return ConstantFoldFP(cosh
, V
, Ty
);
1823 if ((Name
== "exp" && TLI
->has(LibFunc_exp
)) ||
1824 (Name
== "expf" && TLI
->has(LibFunc_expf
)) ||
1825 (Name
== "__exp_finite" && TLI
->has(LibFunc_exp_finite
)) ||
1826 (Name
== "__expf_finite" && TLI
->has(LibFunc_expf_finite
)))
1827 return ConstantFoldFP(exp
, V
, Ty
);
1828 if ((Name
== "exp2" && TLI
->has(LibFunc_exp2
)) ||
1829 (Name
== "exp2f" && TLI
->has(LibFunc_exp2f
)) ||
1830 (Name
== "__exp2_finite" && TLI
->has(LibFunc_exp2_finite
)) ||
1831 (Name
== "__exp2f_finite" && TLI
->has(LibFunc_exp2f_finite
)))
1832 // Constant fold exp2(x) as pow(2,x) in case the host doesn't have a
1834 return ConstantFoldBinaryFP(pow
, 2.0, V
, Ty
);
1837 if ((Name
== "fabs" && TLI
->has(LibFunc_fabs
)) ||
1838 (Name
== "fabsf" && TLI
->has(LibFunc_fabsf
)))
1839 return ConstantFoldFP(fabs
, V
, Ty
);
1840 else if ((Name
== "floor" && TLI
->has(LibFunc_floor
)) ||
1841 (Name
== "floorf" && TLI
->has(LibFunc_floorf
)))
1842 return ConstantFoldFP(floor
, V
, Ty
);
1845 if ((Name
== "log" && V
> 0 && TLI
->has(LibFunc_log
)) ||
1846 (Name
== "logf" && V
> 0 && TLI
->has(LibFunc_logf
)) ||
1847 (Name
== "__log_finite" && V
> 0 &&
1848 TLI
->has(LibFunc_log_finite
)) ||
1849 (Name
== "__logf_finite" && V
> 0 &&
1850 TLI
->has(LibFunc_logf_finite
)))
1851 return ConstantFoldFP(log
, V
, Ty
);
1852 else if ((Name
== "log10" && V
> 0 && TLI
->has(LibFunc_log10
)) ||
1853 (Name
== "log10f" && V
> 0 && TLI
->has(LibFunc_log10f
)) ||
1854 (Name
== "__log10_finite" && V
> 0 &&
1855 TLI
->has(LibFunc_log10_finite
)) ||
1856 (Name
== "__log10f_finite" && V
> 0 &&
1857 TLI
->has(LibFunc_log10f_finite
)))
1858 return ConstantFoldFP(log10
, V
, Ty
);
1861 if ((Name
== "round" && TLI
->has(LibFunc_round
)) ||
1862 (Name
== "roundf" && TLI
->has(LibFunc_roundf
)))
1863 return ConstantFoldFP(round
, V
, Ty
);
1866 if ((Name
== "sin" && TLI
->has(LibFunc_sin
)) ||
1867 (Name
== "sinf" && TLI
->has(LibFunc_sinf
)))
1868 return ConstantFoldFP(sin
, V
, Ty
);
1869 else if ((Name
== "sinh" && TLI
->has(LibFunc_sinh
)) ||
1870 (Name
== "sinhf" && TLI
->has(LibFunc_sinhf
)) ||
1871 (Name
== "__sinh_finite" && TLI
->has(LibFunc_sinh_finite
)) ||
1872 (Name
== "__sinhf_finite" && TLI
->has(LibFunc_sinhf_finite
)))
1873 return ConstantFoldFP(sinh
, V
, Ty
);
1874 else if ((Name
== "sqrt" && V
>= 0 && TLI
->has(LibFunc_sqrt
)) ||
1875 (Name
== "sqrtf" && V
>= 0 && TLI
->has(LibFunc_sqrtf
)))
1876 return ConstantFoldFP(sqrt
, V
, Ty
);
1879 if ((Name
== "tan" && TLI
->has(LibFunc_tan
)) ||
1880 (Name
== "tanf" && TLI
->has(LibFunc_tanf
)))
1881 return ConstantFoldFP(tan
, V
, Ty
);
1882 else if ((Name
== "tanh" && TLI
->has(LibFunc_tanh
)) ||
1883 (Name
== "tanhf" && TLI
->has(LibFunc_tanhf
)))
1884 return ConstantFoldFP(tanh
, V
, Ty
);
1892 if (auto *Op
= dyn_cast
<ConstantInt
>(Operands
[0])) {
1893 switch (IntrinsicID
) {
1894 case Intrinsic::bswap
:
1895 return ConstantInt::get(Ty
->getContext(), Op
->getValue().byteSwap());
1896 case Intrinsic::ctpop
:
1897 return ConstantInt::get(Ty
, Op
->getValue().countPopulation());
1898 case Intrinsic::bitreverse
:
1899 return ConstantInt::get(Ty
->getContext(), Op
->getValue().reverseBits());
1900 case Intrinsic::convert_from_fp16
: {
1901 APFloat
Val(APFloat::IEEEhalf(), Op
->getValue());
1904 APFloat::opStatus status
= Val
.convert(
1905 Ty
->getFltSemantics(), APFloat::rmNearestTiesToEven
, &lost
);
1907 // Conversion is always precise.
1909 assert(status
== APFloat::opOK
&& !lost
&&
1910 "Precision lost during fp16 constfolding");
1912 return ConstantFP::get(Ty
->getContext(), Val
);
1919 // Support ConstantVector in case we have an Undef in the top.
1920 if (isa
<ConstantVector
>(Operands
[0]) ||
1921 isa
<ConstantDataVector
>(Operands
[0])) {
1922 auto *Op
= cast
<Constant
>(Operands
[0]);
1923 switch (IntrinsicID
) {
1925 case Intrinsic::x86_sse_cvtss2si
:
1926 case Intrinsic::x86_sse_cvtss2si64
:
1927 case Intrinsic::x86_sse2_cvtsd2si
:
1928 case Intrinsic::x86_sse2_cvtsd2si64
:
1929 if (ConstantFP
*FPOp
=
1930 dyn_cast_or_null
<ConstantFP
>(Op
->getAggregateElement(0U)))
1931 return ConstantFoldSSEConvertToInt(FPOp
->getValueAPF(),
1932 /*roundTowardZero=*/false, Ty
,
1935 case Intrinsic::x86_sse_cvttss2si
:
1936 case Intrinsic::x86_sse_cvttss2si64
:
1937 case Intrinsic::x86_sse2_cvttsd2si
:
1938 case Intrinsic::x86_sse2_cvttsd2si64
:
1939 if (ConstantFP
*FPOp
=
1940 dyn_cast_or_null
<ConstantFP
>(Op
->getAggregateElement(0U)))
1941 return ConstantFoldSSEConvertToInt(FPOp
->getValueAPF(),
1942 /*roundTowardZero=*/true, Ty
,
1951 static Constant
*ConstantFoldScalarCall2(StringRef Name
,
1952 Intrinsic::ID IntrinsicID
,
1954 ArrayRef
<Constant
*> Operands
,
1955 const TargetLibraryInfo
*TLI
,
1956 const CallBase
*Call
) {
1957 assert(Operands
.size() == 2 && "Wrong number of operands.");
1959 if (auto *Op1
= dyn_cast
<ConstantFP
>(Operands
[0])) {
1960 if (!Ty
->isHalfTy() && !Ty
->isFloatTy() && !Ty
->isDoubleTy())
1962 double Op1V
= getValueAsDouble(Op1
);
1964 if (auto *Op2
= dyn_cast
<ConstantFP
>(Operands
[1])) {
1965 if (Op2
->getType() != Op1
->getType())
1968 double Op2V
= getValueAsDouble(Op2
);
1969 if (IntrinsicID
== Intrinsic::pow
) {
1970 return ConstantFoldBinaryFP(pow
, Op1V
, Op2V
, Ty
);
1972 if (IntrinsicID
== Intrinsic::copysign
) {
1973 APFloat V1
= Op1
->getValueAPF();
1974 const APFloat
&V2
= Op2
->getValueAPF();
1976 return ConstantFP::get(Ty
->getContext(), V1
);
1979 if (IntrinsicID
== Intrinsic::minnum
) {
1980 const APFloat
&C1
= Op1
->getValueAPF();
1981 const APFloat
&C2
= Op2
->getValueAPF();
1982 return ConstantFP::get(Ty
->getContext(), minnum(C1
, C2
));
1985 if (IntrinsicID
== Intrinsic::maxnum
) {
1986 const APFloat
&C1
= Op1
->getValueAPF();
1987 const APFloat
&C2
= Op2
->getValueAPF();
1988 return ConstantFP::get(Ty
->getContext(), maxnum(C1
, C2
));
1991 if (IntrinsicID
== Intrinsic::minimum
) {
1992 const APFloat
&C1
= Op1
->getValueAPF();
1993 const APFloat
&C2
= Op2
->getValueAPF();
1994 return ConstantFP::get(Ty
->getContext(), minimum(C1
, C2
));
1997 if (IntrinsicID
== Intrinsic::maximum
) {
1998 const APFloat
&C1
= Op1
->getValueAPF();
1999 const APFloat
&C2
= Op2
->getValueAPF();
2000 return ConstantFP::get(Ty
->getContext(), maximum(C1
, C2
));
2005 if ((Name
== "pow" && TLI
->has(LibFunc_pow
)) ||
2006 (Name
== "powf" && TLI
->has(LibFunc_powf
)) ||
2007 (Name
== "__pow_finite" && TLI
->has(LibFunc_pow_finite
)) ||
2008 (Name
== "__powf_finite" && TLI
->has(LibFunc_powf_finite
)))
2009 return ConstantFoldBinaryFP(pow
, Op1V
, Op2V
, Ty
);
2010 if ((Name
== "fmod" && TLI
->has(LibFunc_fmod
)) ||
2011 (Name
== "fmodf" && TLI
->has(LibFunc_fmodf
)))
2012 return ConstantFoldBinaryFP(fmod
, Op1V
, Op2V
, Ty
);
2013 if ((Name
== "atan2" && TLI
->has(LibFunc_atan2
)) ||
2014 (Name
== "atan2f" && TLI
->has(LibFunc_atan2f
)) ||
2015 (Name
== "__atan2_finite" && TLI
->has(LibFunc_atan2_finite
)) ||
2016 (Name
== "__atan2f_finite" && TLI
->has(LibFunc_atan2f_finite
)))
2017 return ConstantFoldBinaryFP(atan2
, Op1V
, Op2V
, Ty
);
2018 } else if (auto *Op2C
= dyn_cast
<ConstantInt
>(Operands
[1])) {
2019 if (IntrinsicID
== Intrinsic::powi
&& Ty
->isHalfTy())
2020 return ConstantFP::get(Ty
->getContext(),
2021 APFloat((float)std::pow((float)Op1V
,
2022 (int)Op2C
->getZExtValue())));
2023 if (IntrinsicID
== Intrinsic::powi
&& Ty
->isFloatTy())
2024 return ConstantFP::get(Ty
->getContext(),
2025 APFloat((float)std::pow((float)Op1V
,
2026 (int)Op2C
->getZExtValue())));
2027 if (IntrinsicID
== Intrinsic::powi
&& Ty
->isDoubleTy())
2028 return ConstantFP::get(Ty
->getContext(),
2029 APFloat((double)std::pow((double)Op1V
,
2030 (int)Op2C
->getZExtValue())));
2035 if (Operands
[0]->getType()->isIntegerTy() &&
2036 Operands
[1]->getType()->isIntegerTy()) {
2037 const APInt
*C0
, *C1
;
2038 if (!getConstIntOrUndef(Operands
[0], C0
) ||
2039 !getConstIntOrUndef(Operands
[1], C1
))
2042 switch (IntrinsicID
) {
2044 case Intrinsic::smul_with_overflow
:
2045 case Intrinsic::umul_with_overflow
:
2046 // Even if both operands are undef, we cannot fold muls to undef
2047 // in the general case. For example, on i2 there are no inputs
2048 // that would produce { i2 -1, i1 true } as the result.
2050 return Constant::getNullValue(Ty
);
2052 case Intrinsic::sadd_with_overflow
:
2053 case Intrinsic::uadd_with_overflow
:
2054 case Intrinsic::ssub_with_overflow
:
2055 case Intrinsic::usub_with_overflow
: {
2057 return UndefValue::get(Ty
);
2061 switch (IntrinsicID
) {
2062 default: llvm_unreachable("Invalid case");
2063 case Intrinsic::sadd_with_overflow
:
2064 Res
= C0
->sadd_ov(*C1
, Overflow
);
2066 case Intrinsic::uadd_with_overflow
:
2067 Res
= C0
->uadd_ov(*C1
, Overflow
);
2069 case Intrinsic::ssub_with_overflow
:
2070 Res
= C0
->ssub_ov(*C1
, Overflow
);
2072 case Intrinsic::usub_with_overflow
:
2073 Res
= C0
->usub_ov(*C1
, Overflow
);
2075 case Intrinsic::smul_with_overflow
:
2076 Res
= C0
->smul_ov(*C1
, Overflow
);
2078 case Intrinsic::umul_with_overflow
:
2079 Res
= C0
->umul_ov(*C1
, Overflow
);
2083 ConstantInt::get(Ty
->getContext(), Res
),
2084 ConstantInt::get(Type::getInt1Ty(Ty
->getContext()), Overflow
)
2086 return ConstantStruct::get(cast
<StructType
>(Ty
), Ops
);
2088 case Intrinsic::uadd_sat
:
2089 case Intrinsic::sadd_sat
:
2091 return UndefValue::get(Ty
);
2093 return Constant::getAllOnesValue(Ty
);
2094 if (IntrinsicID
== Intrinsic::uadd_sat
)
2095 return ConstantInt::get(Ty
, C0
->uadd_sat(*C1
));
2097 return ConstantInt::get(Ty
, C0
->sadd_sat(*C1
));
2098 case Intrinsic::usub_sat
:
2099 case Intrinsic::ssub_sat
:
2101 return UndefValue::get(Ty
);
2103 return Constant::getNullValue(Ty
);
2104 if (IntrinsicID
== Intrinsic::usub_sat
)
2105 return ConstantInt::get(Ty
, C0
->usub_sat(*C1
));
2107 return ConstantInt::get(Ty
, C0
->ssub_sat(*C1
));
2108 case Intrinsic::cttz
:
2109 case Intrinsic::ctlz
:
2110 assert(C1
&& "Must be constant int");
2112 // cttz(0, 1) and ctlz(0, 1) are undef.
2113 if (C1
->isOneValue() && (!C0
|| C0
->isNullValue()))
2114 return UndefValue::get(Ty
);
2116 return Constant::getNullValue(Ty
);
2117 if (IntrinsicID
== Intrinsic::cttz
)
2118 return ConstantInt::get(Ty
, C0
->countTrailingZeros());
2120 return ConstantInt::get(Ty
, C0
->countLeadingZeros());
2126 // Support ConstantVector in case we have an Undef in the top.
2127 if ((isa
<ConstantVector
>(Operands
[0]) ||
2128 isa
<ConstantDataVector
>(Operands
[0])) &&
2129 // Check for default rounding mode.
2130 // FIXME: Support other rounding modes?
2131 isa
<ConstantInt
>(Operands
[1]) &&
2132 cast
<ConstantInt
>(Operands
[1])->getValue() == 4) {
2133 auto *Op
= cast
<Constant
>(Operands
[0]);
2134 switch (IntrinsicID
) {
2136 case Intrinsic::x86_avx512_vcvtss2si32
:
2137 case Intrinsic::x86_avx512_vcvtss2si64
:
2138 case Intrinsic::x86_avx512_vcvtsd2si32
:
2139 case Intrinsic::x86_avx512_vcvtsd2si64
:
2140 if (ConstantFP
*FPOp
=
2141 dyn_cast_or_null
<ConstantFP
>(Op
->getAggregateElement(0U)))
2142 return ConstantFoldSSEConvertToInt(FPOp
->getValueAPF(),
2143 /*roundTowardZero=*/false, Ty
,
2146 case Intrinsic::x86_avx512_vcvtss2usi32
:
2147 case Intrinsic::x86_avx512_vcvtss2usi64
:
2148 case Intrinsic::x86_avx512_vcvtsd2usi32
:
2149 case Intrinsic::x86_avx512_vcvtsd2usi64
:
2150 if (ConstantFP
*FPOp
=
2151 dyn_cast_or_null
<ConstantFP
>(Op
->getAggregateElement(0U)))
2152 return ConstantFoldSSEConvertToInt(FPOp
->getValueAPF(),
2153 /*roundTowardZero=*/false, Ty
,
2156 case Intrinsic::x86_avx512_cvttss2si
:
2157 case Intrinsic::x86_avx512_cvttss2si64
:
2158 case Intrinsic::x86_avx512_cvttsd2si
:
2159 case Intrinsic::x86_avx512_cvttsd2si64
:
2160 if (ConstantFP
*FPOp
=
2161 dyn_cast_or_null
<ConstantFP
>(Op
->getAggregateElement(0U)))
2162 return ConstantFoldSSEConvertToInt(FPOp
->getValueAPF(),
2163 /*roundTowardZero=*/true, Ty
,
2166 case Intrinsic::x86_avx512_cvttss2usi
:
2167 case Intrinsic::x86_avx512_cvttss2usi64
:
2168 case Intrinsic::x86_avx512_cvttsd2usi
:
2169 case Intrinsic::x86_avx512_cvttsd2usi64
:
2170 if (ConstantFP
*FPOp
=
2171 dyn_cast_or_null
<ConstantFP
>(Op
->getAggregateElement(0U)))
2172 return ConstantFoldSSEConvertToInt(FPOp
->getValueAPF(),
2173 /*roundTowardZero=*/true, Ty
,
2181 static Constant
*ConstantFoldScalarCall3(StringRef Name
,
2182 Intrinsic::ID IntrinsicID
,
2184 ArrayRef
<Constant
*> Operands
,
2185 const TargetLibraryInfo
*TLI
,
2186 const CallBase
*Call
) {
2187 assert(Operands
.size() == 3 && "Wrong number of operands.");
2189 if (const auto *Op1
= dyn_cast
<ConstantFP
>(Operands
[0])) {
2190 if (const auto *Op2
= dyn_cast
<ConstantFP
>(Operands
[1])) {
2191 if (const auto *Op3
= dyn_cast
<ConstantFP
>(Operands
[2])) {
2192 switch (IntrinsicID
) {
2194 case Intrinsic::fma
:
2195 case Intrinsic::fmuladd
: {
2196 APFloat V
= Op1
->getValueAPF();
2197 APFloat::opStatus s
= V
.fusedMultiplyAdd(Op2
->getValueAPF(),
2199 APFloat::rmNearestTiesToEven
);
2200 if (s
!= APFloat::opInvalidOp
)
2201 return ConstantFP::get(Ty
->getContext(), V
);
2210 if (const auto *Op1
= dyn_cast
<ConstantInt
>(Operands
[0])) {
2211 if (const auto *Op2
= dyn_cast
<ConstantInt
>(Operands
[1])) {
2212 if (const auto *Op3
= dyn_cast
<ConstantInt
>(Operands
[2])) {
2213 switch (IntrinsicID
) {
2215 case Intrinsic::smul_fix
:
2216 case Intrinsic::smul_fix_sat
: {
2217 // This code performs rounding towards negative infinity in case the
2218 // result cannot be represented exactly for the given scale. Targets
2219 // that do care about rounding should use a target hook for specifying
2220 // how rounding should be done, and provide their own folding to be
2221 // consistent with rounding. This is the same approach as used by
2222 // DAGTypeLegalizer::ExpandIntRes_MULFIX.
2223 APInt Lhs
= Op1
->getValue();
2224 APInt Rhs
= Op2
->getValue();
2225 unsigned Scale
= Op3
->getValue().getZExtValue();
2226 unsigned Width
= Lhs
.getBitWidth();
2227 assert(Scale
< Width
&& "Illegal scale.");
2228 unsigned ExtendedWidth
= Width
* 2;
2229 APInt Product
= (Lhs
.sextOrSelf(ExtendedWidth
) *
2230 Rhs
.sextOrSelf(ExtendedWidth
)).ashr(Scale
);
2231 if (IntrinsicID
== Intrinsic::smul_fix_sat
) {
2233 APInt::getSignedMaxValue(Width
).sextOrSelf(ExtendedWidth
);
2235 APInt::getSignedMinValue(Width
).sextOrSelf(ExtendedWidth
);
2236 Product
= APIntOps::smin(Product
, MaxValue
);
2237 Product
= APIntOps::smax(Product
, MinValue
);
2239 return ConstantInt::get(Ty
->getContext(),
2240 Product
.sextOrTrunc(Width
));
2247 if (IntrinsicID
== Intrinsic::fshl
|| IntrinsicID
== Intrinsic::fshr
) {
2248 const APInt
*C0
, *C1
, *C2
;
2249 if (!getConstIntOrUndef(Operands
[0], C0
) ||
2250 !getConstIntOrUndef(Operands
[1], C1
) ||
2251 !getConstIntOrUndef(Operands
[2], C2
))
2254 bool IsRight
= IntrinsicID
== Intrinsic::fshr
;
2256 return Operands
[IsRight
? 1 : 0];
2258 return UndefValue::get(Ty
);
2260 // The shift amount is interpreted as modulo the bitwidth. If the shift
2261 // amount is effectively 0, avoid UB due to oversized inverse shift below.
2262 unsigned BitWidth
= C2
->getBitWidth();
2263 unsigned ShAmt
= C2
->urem(BitWidth
);
2265 return Operands
[IsRight
? 1 : 0];
2267 // (C0 << ShlAmt) | (C1 >> LshrAmt)
2268 unsigned LshrAmt
= IsRight
? ShAmt
: BitWidth
- ShAmt
;
2269 unsigned ShlAmt
= !IsRight
? ShAmt
: BitWidth
- ShAmt
;
2271 return ConstantInt::get(Ty
, C1
->lshr(LshrAmt
));
2273 return ConstantInt::get(Ty
, C0
->shl(ShlAmt
));
2274 return ConstantInt::get(Ty
, C0
->shl(ShlAmt
) | C1
->lshr(LshrAmt
));
2280 static Constant
*ConstantFoldScalarCall(StringRef Name
,
2281 Intrinsic::ID IntrinsicID
,
2283 ArrayRef
<Constant
*> Operands
,
2284 const TargetLibraryInfo
*TLI
,
2285 const CallBase
*Call
) {
2286 if (Operands
.size() == 1)
2287 return ConstantFoldScalarCall1(Name
, IntrinsicID
, Ty
, Operands
, TLI
, Call
);
2289 if (Operands
.size() == 2)
2290 return ConstantFoldScalarCall2(Name
, IntrinsicID
, Ty
, Operands
, TLI
, Call
);
2292 if (Operands
.size() == 3)
2293 return ConstantFoldScalarCall3(Name
, IntrinsicID
, Ty
, Operands
, TLI
, Call
);
2298 static Constant
*ConstantFoldVectorCall(StringRef Name
,
2299 Intrinsic::ID IntrinsicID
,
2301 ArrayRef
<Constant
*> Operands
,
2302 const DataLayout
&DL
,
2303 const TargetLibraryInfo
*TLI
,
2304 const CallBase
*Call
) {
2305 SmallVector
<Constant
*, 4> Result(VTy
->getNumElements());
2306 SmallVector
<Constant
*, 4> Lane(Operands
.size());
2307 Type
*Ty
= VTy
->getElementType();
2309 if (IntrinsicID
== Intrinsic::masked_load
) {
2310 auto *SrcPtr
= Operands
[0];
2311 auto *Mask
= Operands
[2];
2312 auto *Passthru
= Operands
[3];
2314 Constant
*VecData
= ConstantFoldLoadFromConstPtr(SrcPtr
, VTy
, DL
);
2316 SmallVector
<Constant
*, 32> NewElements
;
2317 for (unsigned I
= 0, E
= VTy
->getNumElements(); I
!= E
; ++I
) {
2318 auto *MaskElt
= Mask
->getAggregateElement(I
);
2321 auto *PassthruElt
= Passthru
->getAggregateElement(I
);
2322 auto *VecElt
= VecData
? VecData
->getAggregateElement(I
) : nullptr;
2323 if (isa
<UndefValue
>(MaskElt
)) {
2325 NewElements
.push_back(PassthruElt
);
2327 NewElements
.push_back(VecElt
);
2331 if (MaskElt
->isNullValue()) {
2334 NewElements
.push_back(PassthruElt
);
2335 } else if (MaskElt
->isOneValue()) {
2338 NewElements
.push_back(VecElt
);
2343 if (NewElements
.size() != VTy
->getNumElements())
2345 return ConstantVector::get(NewElements
);
2348 for (unsigned I
= 0, E
= VTy
->getNumElements(); I
!= E
; ++I
) {
2349 // Gather a column of constants.
2350 for (unsigned J
= 0, JE
= Operands
.size(); J
!= JE
; ++J
) {
2351 // Some intrinsics use a scalar type for certain arguments.
2352 if (hasVectorInstrinsicScalarOpd(IntrinsicID
, J
)) {
2353 Lane
[J
] = Operands
[J
];
2357 Constant
*Agg
= Operands
[J
]->getAggregateElement(I
);
2364 // Use the regular scalar folding to simplify this column.
2366 ConstantFoldScalarCall(Name
, IntrinsicID
, Ty
, Lane
, TLI
, Call
);
2372 return ConstantVector::get(Result
);
2375 } // end anonymous namespace
2377 Constant
*llvm::ConstantFoldCall(const CallBase
*Call
, Function
*F
,
2378 ArrayRef
<Constant
*> Operands
,
2379 const TargetLibraryInfo
*TLI
) {
2380 if (Call
->isNoBuiltin() || Call
->isStrictFP())
2384 StringRef Name
= F
->getName();
2386 Type
*Ty
= F
->getReturnType();
2388 if (auto *VTy
= dyn_cast
<VectorType
>(Ty
))
2389 return ConstantFoldVectorCall(Name
, F
->getIntrinsicID(), VTy
, Operands
,
2390 F
->getParent()->getDataLayout(), TLI
, Call
);
2392 return ConstantFoldScalarCall(Name
, F
->getIntrinsicID(), Ty
, Operands
, TLI
,
2396 bool llvm::isMathLibCallNoop(const CallBase
*Call
,
2397 const TargetLibraryInfo
*TLI
) {
2398 // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap
2399 // (and to some extent ConstantFoldScalarCall).
2400 if (Call
->isNoBuiltin() || Call
->isStrictFP())
2402 Function
*F
= Call
->getCalledFunction();
2407 if (!TLI
|| !TLI
->getLibFunc(*F
, Func
))
2410 if (Call
->getNumArgOperands() == 1) {
2411 if (ConstantFP
*OpC
= dyn_cast
<ConstantFP
>(Call
->getArgOperand(0))) {
2412 const APFloat
&Op
= OpC
->getValueAPF();
2420 case LibFunc_log10l
:
2422 case LibFunc_log10f
:
2423 return Op
.isNaN() || (!Op
.isZero() && !Op
.isNegative());
2428 // FIXME: These boundaries are slightly conservative.
2429 if (OpC
->getType()->isDoubleTy())
2430 return Op
.compare(APFloat(-745.0)) != APFloat::cmpLessThan
&&
2431 Op
.compare(APFloat(709.0)) != APFloat::cmpGreaterThan
;
2432 if (OpC
->getType()->isFloatTy())
2433 return Op
.compare(APFloat(-103.0f
)) != APFloat::cmpLessThan
&&
2434 Op
.compare(APFloat(88.0f
)) != APFloat::cmpGreaterThan
;
2440 // FIXME: These boundaries are slightly conservative.
2441 if (OpC
->getType()->isDoubleTy())
2442 return Op
.compare(APFloat(-1074.0)) != APFloat::cmpLessThan
&&
2443 Op
.compare(APFloat(1023.0)) != APFloat::cmpGreaterThan
;
2444 if (OpC
->getType()->isFloatTy())
2445 return Op
.compare(APFloat(-149.0f
)) != APFloat::cmpLessThan
&&
2446 Op
.compare(APFloat(127.0f
)) != APFloat::cmpGreaterThan
;
2455 return !Op
.isInfinity();
2459 case LibFunc_tanf
: {
2460 // FIXME: Stop using the host math library.
2461 // FIXME: The computation isn't done in the right precision.
2462 Type
*Ty
= OpC
->getType();
2463 if (Ty
->isDoubleTy() || Ty
->isFloatTy() || Ty
->isHalfTy()) {
2464 double OpV
= getValueAsDouble(OpC
);
2465 return ConstantFoldFP(tan
, OpV
, Ty
) != nullptr;
2476 return Op
.compare(APFloat(Op
.getSemantics(), "-1")) !=
2477 APFloat::cmpLessThan
&&
2478 Op
.compare(APFloat(Op
.getSemantics(), "1")) !=
2479 APFloat::cmpGreaterThan
;
2487 // FIXME: These boundaries are slightly conservative.
2488 if (OpC
->getType()->isDoubleTy())
2489 return Op
.compare(APFloat(-710.0)) != APFloat::cmpLessThan
&&
2490 Op
.compare(APFloat(710.0)) != APFloat::cmpGreaterThan
;
2491 if (OpC
->getType()->isFloatTy())
2492 return Op
.compare(APFloat(-89.0f
)) != APFloat::cmpLessThan
&&
2493 Op
.compare(APFloat(89.0f
)) != APFloat::cmpGreaterThan
;
2499 return Op
.isNaN() || Op
.isZero() || !Op
.isNegative();
2501 // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p,
2509 if (Call
->getNumArgOperands() == 2) {
2510 ConstantFP
*Op0C
= dyn_cast
<ConstantFP
>(Call
->getArgOperand(0));
2511 ConstantFP
*Op1C
= dyn_cast
<ConstantFP
>(Call
->getArgOperand(1));
2513 const APFloat
&Op0
= Op0C
->getValueAPF();
2514 const APFloat
&Op1
= Op1C
->getValueAPF();
2519 case LibFunc_powf
: {
2520 // FIXME: Stop using the host math library.
2521 // FIXME: The computation isn't done in the right precision.
2522 Type
*Ty
= Op0C
->getType();
2523 if (Ty
->isDoubleTy() || Ty
->isFloatTy() || Ty
->isHalfTy()) {
2524 if (Ty
== Op1C
->getType()) {
2525 double Op0V
= getValueAsDouble(Op0C
);
2526 double Op1V
= getValueAsDouble(Op1C
);
2527 return ConstantFoldBinaryFP(pow
, Op0V
, Op1V
, Ty
) != nullptr;
2536 return Op0
.isNaN() || Op1
.isNaN() ||
2537 (!Op0
.isInfinity() && !Op1
.isZero());