1 //===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the MemorySSA class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Analysis/MemorySSA.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/DenseMapInfo.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/DepthFirstIterator.h"
18 #include "llvm/ADT/Hashing.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/iterator.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/IteratedDominanceFrontier.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Config/llvm-config.h"
30 #include "llvm/IR/AssemblyAnnotationWriter.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/Intrinsics.h"
38 #include "llvm/IR/LLVMContext.h"
39 #include "llvm/IR/PassManager.h"
40 #include "llvm/IR/Use.h"
41 #include "llvm/Pass.h"
42 #include "llvm/Support/AtomicOrdering.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Compiler.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include "llvm/Support/FormattedStream.h"
49 #include "llvm/Support/raw_ostream.h"
58 #define DEBUG_TYPE "memoryssa"
60 INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass
, "memoryssa", "Memory SSA", false,
62 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
63 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass
)
64 INITIALIZE_PASS_END(MemorySSAWrapperPass
, "memoryssa", "Memory SSA", false,
67 INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass
, "print-memoryssa",
68 "Memory SSA Printer", false, false)
69 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass
)
70 INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass
, "print-memoryssa",
71 "Memory SSA Printer", false, false)
73 static cl::opt
<unsigned> MaxCheckLimit(
74 "memssa-check-limit", cl::Hidden
, cl::init(100),
75 cl::desc("The maximum number of stores/phis MemorySSA"
76 "will consider trying to walk past (default = 100)"));
78 // Always verify MemorySSA if expensive checking is enabled.
79 #ifdef EXPENSIVE_CHECKS
80 bool llvm::VerifyMemorySSA
= true;
82 bool llvm::VerifyMemorySSA
= false;
84 /// Enables memory ssa as a dependency for loop passes in legacy pass manager.
85 cl::opt
<bool> llvm::EnableMSSALoopDependency(
86 "enable-mssa-loop-dependency", cl::Hidden
, cl::init(false),
87 cl::desc("Enable MemorySSA dependency for loop pass manager"));
89 static cl::opt
<bool, true>
90 VerifyMemorySSAX("verify-memoryssa", cl::location(VerifyMemorySSA
),
91 cl::Hidden
, cl::desc("Enable verification of MemorySSA."));
95 /// An assembly annotator class to print Memory SSA information in
97 class MemorySSAAnnotatedWriter
: public AssemblyAnnotationWriter
{
98 friend class MemorySSA
;
100 const MemorySSA
*MSSA
;
103 MemorySSAAnnotatedWriter(const MemorySSA
*M
) : MSSA(M
) {}
105 void emitBasicBlockStartAnnot(const BasicBlock
*BB
,
106 formatted_raw_ostream
&OS
) override
{
107 if (MemoryAccess
*MA
= MSSA
->getMemoryAccess(BB
))
108 OS
<< "; " << *MA
<< "\n";
111 void emitInstructionAnnot(const Instruction
*I
,
112 formatted_raw_ostream
&OS
) override
{
113 if (MemoryAccess
*MA
= MSSA
->getMemoryAccess(I
))
114 OS
<< "; " << *MA
<< "\n";
118 } // end namespace llvm
122 /// Our current alias analysis API differentiates heavily between calls and
123 /// non-calls, and functions called on one usually assert on the other.
124 /// This class encapsulates the distinction to simplify other code that wants
125 /// "Memory affecting instructions and related data" to use as a key.
126 /// For example, this class is used as a densemap key in the use optimizer.
127 class MemoryLocOrCall
{
131 MemoryLocOrCall(MemoryUseOrDef
*MUD
)
132 : MemoryLocOrCall(MUD
->getMemoryInst()) {}
133 MemoryLocOrCall(const MemoryUseOrDef
*MUD
)
134 : MemoryLocOrCall(MUD
->getMemoryInst()) {}
136 MemoryLocOrCall(Instruction
*Inst
) {
137 if (auto *C
= dyn_cast
<CallBase
>(Inst
)) {
142 // There is no such thing as a memorylocation for a fence inst, and it is
143 // unique in that regard.
144 if (!isa
<FenceInst
>(Inst
))
145 Loc
= MemoryLocation::get(Inst
);
149 explicit MemoryLocOrCall(const MemoryLocation
&Loc
) : Loc(Loc
) {}
151 const CallBase
*getCall() const {
156 MemoryLocation
getLoc() const {
161 bool operator==(const MemoryLocOrCall
&Other
) const {
162 if (IsCall
!= Other
.IsCall
)
166 return Loc
== Other
.Loc
;
168 if (Call
->getCalledValue() != Other
.Call
->getCalledValue())
171 return Call
->arg_size() == Other
.Call
->arg_size() &&
172 std::equal(Call
->arg_begin(), Call
->arg_end(),
173 Other
.Call
->arg_begin());
178 const CallBase
*Call
;
183 } // end anonymous namespace
187 template <> struct DenseMapInfo
<MemoryLocOrCall
> {
188 static inline MemoryLocOrCall
getEmptyKey() {
189 return MemoryLocOrCall(DenseMapInfo
<MemoryLocation
>::getEmptyKey());
192 static inline MemoryLocOrCall
getTombstoneKey() {
193 return MemoryLocOrCall(DenseMapInfo
<MemoryLocation
>::getTombstoneKey());
196 static unsigned getHashValue(const MemoryLocOrCall
&MLOC
) {
200 DenseMapInfo
<MemoryLocation
>::getHashValue(MLOC
.getLoc()));
203 hash_combine(MLOC
.IsCall
, DenseMapInfo
<const Value
*>::getHashValue(
204 MLOC
.getCall()->getCalledValue()));
206 for (const Value
*Arg
: MLOC
.getCall()->args())
207 hash
= hash_combine(hash
, DenseMapInfo
<const Value
*>::getHashValue(Arg
));
211 static bool isEqual(const MemoryLocOrCall
&LHS
, const MemoryLocOrCall
&RHS
) {
216 } // end namespace llvm
218 /// This does one-way checks to see if Use could theoretically be hoisted above
219 /// MayClobber. This will not check the other way around.
221 /// This assumes that, for the purposes of MemorySSA, Use comes directly after
222 /// MayClobber, with no potentially clobbering operations in between them.
223 /// (Where potentially clobbering ops are memory barriers, aliased stores, etc.)
224 static bool areLoadsReorderable(const LoadInst
*Use
,
225 const LoadInst
*MayClobber
) {
226 bool VolatileUse
= Use
->isVolatile();
227 bool VolatileClobber
= MayClobber
->isVolatile();
228 // Volatile operations may never be reordered with other volatile operations.
229 if (VolatileUse
&& VolatileClobber
)
231 // Otherwise, volatile doesn't matter here. From the language reference:
232 // 'optimizers may change the order of volatile operations relative to
233 // non-volatile operations.'"
235 // If a load is seq_cst, it cannot be moved above other loads. If its ordering
236 // is weaker, it can be moved above other loads. We just need to be sure that
237 // MayClobber isn't an acquire load, because loads can't be moved above
240 // Note that this explicitly *does* allow the free reordering of monotonic (or
241 // weaker) loads of the same address.
242 bool SeqCstUse
= Use
->getOrdering() == AtomicOrdering::SequentiallyConsistent
;
243 bool MayClobberIsAcquire
= isAtLeastOrStrongerThan(MayClobber
->getOrdering(),
244 AtomicOrdering::Acquire
);
245 return !(SeqCstUse
|| MayClobberIsAcquire
);
250 struct ClobberAlias
{
252 Optional
<AliasResult
> AR
;
255 } // end anonymous namespace
257 // Return a pair of {IsClobber (bool), AR (AliasResult)}. It relies on AR being
258 // ignored if IsClobber = false.
259 template <typename AliasAnalysisType
>
261 instructionClobbersQuery(const MemoryDef
*MD
, const MemoryLocation
&UseLoc
,
262 const Instruction
*UseInst
, AliasAnalysisType
&AA
) {
263 Instruction
*DefInst
= MD
->getMemoryInst();
264 assert(DefInst
&& "Defining instruction not actually an instruction");
265 const auto *UseCall
= dyn_cast
<CallBase
>(UseInst
);
266 Optional
<AliasResult
> AR
;
268 if (const IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(DefInst
)) {
269 // These intrinsics will show up as affecting memory, but they are just
272 // FIXME: We probably don't actually want MemorySSA to model these at all
273 // (including creating MemoryAccesses for them): we just end up inventing
274 // clobbers where they don't really exist at all. Please see D43269 for
276 switch (II
->getIntrinsicID()) {
277 case Intrinsic::lifetime_start
:
279 return {false, NoAlias
};
280 AR
= AA
.alias(MemoryLocation(II
->getArgOperand(1)), UseLoc
);
281 return {AR
!= NoAlias
, AR
};
282 case Intrinsic::lifetime_end
:
283 case Intrinsic::invariant_start
:
284 case Intrinsic::invariant_end
:
285 case Intrinsic::assume
:
286 return {false, NoAlias
};
293 ModRefInfo I
= AA
.getModRefInfo(DefInst
, UseCall
);
294 AR
= isMustSet(I
) ? MustAlias
: MayAlias
;
295 return {isModOrRefSet(I
), AR
};
298 if (auto *DefLoad
= dyn_cast
<LoadInst
>(DefInst
))
299 if (auto *UseLoad
= dyn_cast
<LoadInst
>(UseInst
))
300 return {!areLoadsReorderable(UseLoad
, DefLoad
), MayAlias
};
302 ModRefInfo I
= AA
.getModRefInfo(DefInst
, UseLoc
);
303 AR
= isMustSet(I
) ? MustAlias
: MayAlias
;
304 return {isModSet(I
), AR
};
307 template <typename AliasAnalysisType
>
308 static ClobberAlias
instructionClobbersQuery(MemoryDef
*MD
,
309 const MemoryUseOrDef
*MU
,
310 const MemoryLocOrCall
&UseMLOC
,
311 AliasAnalysisType
&AA
) {
312 // FIXME: This is a temporary hack to allow a single instructionClobbersQuery
313 // to exist while MemoryLocOrCall is pushed through places.
315 return instructionClobbersQuery(MD
, MemoryLocation(), MU
->getMemoryInst(),
317 return instructionClobbersQuery(MD
, UseMLOC
.getLoc(), MU
->getMemoryInst(),
321 // Return true when MD may alias MU, return false otherwise.
322 bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef
*MD
, const MemoryUseOrDef
*MU
,
324 return instructionClobbersQuery(MD
, MU
, MemoryLocOrCall(MU
), AA
).IsClobber
;
329 struct UpwardsMemoryQuery
{
330 // True if our original query started off as a call
332 // The pointer location we started the query with. This will be empty if
334 MemoryLocation StartingLoc
;
335 // This is the instruction we were querying about.
336 const Instruction
*Inst
= nullptr;
337 // The MemoryAccess we actually got called with, used to test local domination
338 const MemoryAccess
*OriginalAccess
= nullptr;
339 Optional
<AliasResult
> AR
= MayAlias
;
340 bool SkipSelfAccess
= false;
342 UpwardsMemoryQuery() = default;
344 UpwardsMemoryQuery(const Instruction
*Inst
, const MemoryAccess
*Access
)
345 : IsCall(isa
<CallBase
>(Inst
)), Inst(Inst
), OriginalAccess(Access
) {
347 StartingLoc
= MemoryLocation::get(Inst
);
351 } // end anonymous namespace
353 static bool lifetimeEndsAt(MemoryDef
*MD
, const MemoryLocation
&Loc
,
354 BatchAAResults
&AA
) {
355 Instruction
*Inst
= MD
->getMemoryInst();
356 if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(Inst
)) {
357 switch (II
->getIntrinsicID()) {
358 case Intrinsic::lifetime_end
:
359 return AA
.alias(MemoryLocation(II
->getArgOperand(1)), Loc
) == MustAlias
;
367 template <typename AliasAnalysisType
>
368 static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysisType
&AA
,
369 const Instruction
*I
) {
370 // If the memory can't be changed, then loads of the memory can't be
372 return isa
<LoadInst
>(I
) && (I
->getMetadata(LLVMContext::MD_invariant_load
) ||
373 AA
.pointsToConstantMemory(MemoryLocation(
374 cast
<LoadInst
>(I
)->getPointerOperand())));
377 /// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing
378 /// inbetween `Start` and `ClobberAt` can clobbers `Start`.
380 /// This is meant to be as simple and self-contained as possible. Because it
381 /// uses no cache, etc., it can be relatively expensive.
383 /// \param Start The MemoryAccess that we want to walk from.
384 /// \param ClobberAt A clobber for Start.
385 /// \param StartLoc The MemoryLocation for Start.
386 /// \param MSSA The MemorySSA instance that Start and ClobberAt belong to.
387 /// \param Query The UpwardsMemoryQuery we used for our search.
388 /// \param AA The AliasAnalysis we used for our search.
389 /// \param AllowImpreciseClobber Always false, unless we do relaxed verify.
391 template <typename AliasAnalysisType
>
392 LLVM_ATTRIBUTE_UNUSED
static void
393 checkClobberSanity(const MemoryAccess
*Start
, MemoryAccess
*ClobberAt
,
394 const MemoryLocation
&StartLoc
, const MemorySSA
&MSSA
,
395 const UpwardsMemoryQuery
&Query
, AliasAnalysisType
&AA
,
396 bool AllowImpreciseClobber
= false) {
397 assert(MSSA
.dominates(ClobberAt
, Start
) && "Clobber doesn't dominate start?");
399 if (MSSA
.isLiveOnEntryDef(Start
)) {
400 assert(MSSA
.isLiveOnEntryDef(ClobberAt
) &&
401 "liveOnEntry must clobber itself");
405 bool FoundClobber
= false;
406 DenseSet
<ConstMemoryAccessPair
> VisitedPhis
;
407 SmallVector
<ConstMemoryAccessPair
, 8> Worklist
;
408 Worklist
.emplace_back(Start
, StartLoc
);
409 // Walk all paths from Start to ClobberAt, while looking for clobbers. If one
410 // is found, complain.
411 while (!Worklist
.empty()) {
412 auto MAP
= Worklist
.pop_back_val();
413 // All we care about is that nothing from Start to ClobberAt clobbers Start.
414 // We learn nothing from revisiting nodes.
415 if (!VisitedPhis
.insert(MAP
).second
)
418 for (const auto *MA
: def_chain(MAP
.first
)) {
419 if (MA
== ClobberAt
) {
420 if (const auto *MD
= dyn_cast
<MemoryDef
>(MA
)) {
421 // instructionClobbersQuery isn't essentially free, so don't use `|=`,
422 // since it won't let us short-circuit.
424 // Also, note that this can't be hoisted out of the `Worklist` loop,
425 // since MD may only act as a clobber for 1 of N MemoryLocations.
426 FoundClobber
= FoundClobber
|| MSSA
.isLiveOnEntryDef(MD
);
429 instructionClobbersQuery(MD
, MAP
.second
, Query
.Inst
, AA
);
439 // We should never hit liveOnEntry, unless it's the clobber.
440 assert(!MSSA
.isLiveOnEntryDef(MA
) && "Hit liveOnEntry before clobber?");
442 if (const auto *MD
= dyn_cast
<MemoryDef
>(MA
)) {
443 // If Start is a Def, skip self.
447 assert(!instructionClobbersQuery(MD
, MAP
.second
, Query
.Inst
, AA
)
449 "Found clobber before reaching ClobberAt!");
453 if (const auto *MU
= dyn_cast
<MemoryUse
>(MA
)) {
455 assert (MU
== Start
&&
456 "Can only find use in def chain if Start is a use");
460 assert(isa
<MemoryPhi
>(MA
));
462 upward_defs_begin({const_cast<MemoryAccess
*>(MA
), MAP
.second
}),
467 // If the verify is done following an optimization, it's possible that
468 // ClobberAt was a conservative clobbering, that we can now infer is not a
469 // true clobbering access. Don't fail the verify if that's the case.
470 // We do have accesses that claim they're optimized, but could be optimized
471 // further. Updating all these can be expensive, so allow it for now (FIXME).
472 if (AllowImpreciseClobber
)
475 // If ClobberAt is a MemoryPhi, we can assume something above it acted as a
476 // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point.
477 assert((isa
<MemoryPhi
>(ClobberAt
) || FoundClobber
) &&
478 "ClobberAt never acted as a clobber");
483 /// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up
485 template <class AliasAnalysisType
> class ClobberWalker
{
486 /// Save a few bytes by using unsigned instead of size_t.
487 using ListIndex
= unsigned;
489 /// Represents a span of contiguous MemoryDefs, potentially ending in a
493 // Note that, because we always walk in reverse, Last will always dominate
494 // First. Also note that First and Last are inclusive.
497 Optional
<ListIndex
> Previous
;
499 DefPath(const MemoryLocation
&Loc
, MemoryAccess
*First
, MemoryAccess
*Last
,
500 Optional
<ListIndex
> Previous
)
501 : Loc(Loc
), First(First
), Last(Last
), Previous(Previous
) {}
503 DefPath(const MemoryLocation
&Loc
, MemoryAccess
*Init
,
504 Optional
<ListIndex
> Previous
)
505 : DefPath(Loc
, Init
, Init
, Previous
) {}
508 const MemorySSA
&MSSA
;
509 AliasAnalysisType
&AA
;
511 UpwardsMemoryQuery
*Query
;
512 unsigned *UpwardWalkLimit
;
514 // Phi optimization bookkeeping
515 SmallVector
<DefPath
, 32> Paths
;
516 DenseSet
<ConstMemoryAccessPair
> VisitedPhis
;
518 /// Find the nearest def or phi that `From` can legally be optimized to.
519 const MemoryAccess
*getWalkTarget(const MemoryPhi
*From
) const {
520 assert(From
->getNumOperands() && "Phi with no operands?");
522 BasicBlock
*BB
= From
->getBlock();
523 MemoryAccess
*Result
= MSSA
.getLiveOnEntryDef();
524 DomTreeNode
*Node
= DT
.getNode(BB
);
525 while ((Node
= Node
->getIDom())) {
526 auto *Defs
= MSSA
.getBlockDefs(Node
->getBlock());
528 return &*Defs
->rbegin();
533 /// Result of calling walkToPhiOrClobber.
534 struct UpwardsWalkResult
{
535 /// The "Result" of the walk. Either a clobber, the last thing we walked, or
536 /// both. Include alias info when clobber found.
537 MemoryAccess
*Result
;
539 Optional
<AliasResult
> AR
;
542 /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last.
543 /// This will update Desc.Last as it walks. It will (optionally) also stop at
546 /// This does not test for whether StopAt is a clobber
548 walkToPhiOrClobber(DefPath
&Desc
, const MemoryAccess
*StopAt
= nullptr,
549 const MemoryAccess
*SkipStopAt
= nullptr) const {
550 assert(!isa
<MemoryUse
>(Desc
.Last
) && "Uses don't exist in my world");
551 assert(UpwardWalkLimit
&& "Need a valid walk limit");
552 bool LimitAlreadyReached
= false;
553 // (*UpwardWalkLimit) may be 0 here, due to the loop in tryOptimizePhi. Set
554 // it to 1. This will not do any alias() calls. It either returns in the
555 // first iteration in the loop below, or is set back to 0 if all def chains
556 // are free of MemoryDefs.
557 if (!*UpwardWalkLimit
) {
558 *UpwardWalkLimit
= 1;
559 LimitAlreadyReached
= true;
562 for (MemoryAccess
*Current
: def_chain(Desc
.Last
)) {
564 if (Current
== StopAt
|| Current
== SkipStopAt
)
565 return {Current
, false, MayAlias
};
567 if (auto *MD
= dyn_cast
<MemoryDef
>(Current
)) {
568 if (MSSA
.isLiveOnEntryDef(MD
))
569 return {MD
, true, MustAlias
};
571 if (!--*UpwardWalkLimit
)
572 return {Current
, true, MayAlias
};
575 instructionClobbersQuery(MD
, Desc
.Loc
, Query
->Inst
, AA
);
577 return {MD
, true, CA
.AR
};
581 if (LimitAlreadyReached
)
582 *UpwardWalkLimit
= 0;
584 assert(isa
<MemoryPhi
>(Desc
.Last
) &&
585 "Ended at a non-clobber that's not a phi?");
586 return {Desc
.Last
, false, MayAlias
};
589 void addSearches(MemoryPhi
*Phi
, SmallVectorImpl
<ListIndex
> &PausedSearches
,
590 ListIndex PriorNode
) {
591 auto UpwardDefs
= make_range(upward_defs_begin({Phi
, Paths
[PriorNode
].Loc
}),
593 for (const MemoryAccessPair
&P
: UpwardDefs
) {
594 PausedSearches
.push_back(Paths
.size());
595 Paths
.emplace_back(P
.second
, P
.first
, PriorNode
);
599 /// Represents a search that terminated after finding a clobber. This clobber
600 /// may or may not be present in the path of defs from LastNode..SearchStart,
601 /// since it may have been retrieved from cache.
602 struct TerminatedPath
{
603 MemoryAccess
*Clobber
;
607 /// Get an access that keeps us from optimizing to the given phi.
609 /// PausedSearches is an array of indices into the Paths array. Its incoming
610 /// value is the indices of searches that stopped at the last phi optimization
611 /// target. It's left in an unspecified state.
613 /// If this returns None, NewPaused is a vector of searches that terminated
614 /// at StopWhere. Otherwise, NewPaused is left in an unspecified state.
615 Optional
<TerminatedPath
>
616 getBlockingAccess(const MemoryAccess
*StopWhere
,
617 SmallVectorImpl
<ListIndex
> &PausedSearches
,
618 SmallVectorImpl
<ListIndex
> &NewPaused
,
619 SmallVectorImpl
<TerminatedPath
> &Terminated
) {
620 assert(!PausedSearches
.empty() && "No searches to continue?");
622 // BFS vs DFS really doesn't make a difference here, so just do a DFS with
623 // PausedSearches as our stack.
624 while (!PausedSearches
.empty()) {
625 ListIndex PathIndex
= PausedSearches
.pop_back_val();
626 DefPath
&Node
= Paths
[PathIndex
];
628 // If we've already visited this path with this MemoryLocation, we don't
629 // need to do so again.
631 // NOTE: That we just drop these paths on the ground makes caching
632 // behavior sporadic. e.g. given a diamond:
637 // ...If we walk D, B, A, C, we'll only cache the result of phi
638 // optimization for A, B, and D; C will be skipped because it dies here.
639 // This arguably isn't the worst thing ever, since:
640 // - We generally query things in a top-down order, so if we got below D
641 // without needing cache entries for {C, MemLoc}, then chances are
642 // that those cache entries would end up ultimately unused.
643 // - We still cache things for A, so C only needs to walk up a bit.
644 // If this behavior becomes problematic, we can fix without a ton of extra
646 if (!VisitedPhis
.insert({Node
.Last
, Node
.Loc
}).second
)
649 const MemoryAccess
*SkipStopWhere
= nullptr;
650 if (Query
->SkipSelfAccess
&& Node
.Loc
== Query
->StartingLoc
) {
651 assert(isa
<MemoryDef
>(Query
->OriginalAccess
));
652 SkipStopWhere
= Query
->OriginalAccess
;
655 UpwardsWalkResult Res
= walkToPhiOrClobber(Node
,
656 /*StopAt=*/StopWhere
,
657 /*SkipStopAt=*/SkipStopWhere
);
658 if (Res
.IsKnownClobber
) {
659 assert(Res
.Result
!= StopWhere
&& Res
.Result
!= SkipStopWhere
);
661 // If this wasn't a cache hit, we hit a clobber when walking. That's a
663 TerminatedPath Term
{Res
.Result
, PathIndex
};
664 if (!MSSA
.dominates(Res
.Result
, StopWhere
))
667 // Otherwise, it's a valid thing to potentially optimize to.
668 Terminated
.push_back(Term
);
672 if (Res
.Result
== StopWhere
|| Res
.Result
== SkipStopWhere
) {
673 // We've hit our target. Save this path off for if we want to continue
674 // walking. If we are in the mode of skipping the OriginalAccess, and
675 // we've reached back to the OriginalAccess, do not save path, we've
676 // just looped back to self.
677 if (Res
.Result
!= SkipStopWhere
)
678 NewPaused
.push_back(PathIndex
);
682 assert(!MSSA
.isLiveOnEntryDef(Res
.Result
) && "liveOnEntry is a clobber");
683 addSearches(cast
<MemoryPhi
>(Res
.Result
), PausedSearches
, PathIndex
);
689 template <typename T
, typename Walker
>
690 struct generic_def_path_iterator
691 : public iterator_facade_base
<generic_def_path_iterator
<T
, Walker
>,
692 std::forward_iterator_tag
, T
*> {
693 generic_def_path_iterator() {}
694 generic_def_path_iterator(Walker
*W
, ListIndex N
) : W(W
), N(N
) {}
696 T
&operator*() const { return curNode(); }
698 generic_def_path_iterator
&operator++() {
699 N
= curNode().Previous
;
703 bool operator==(const generic_def_path_iterator
&O
) const {
704 if (N
.hasValue() != O
.N
.hasValue())
706 return !N
.hasValue() || *N
== *O
.N
;
710 T
&curNode() const { return W
->Paths
[*N
]; }
713 Optional
<ListIndex
> N
= None
;
716 using def_path_iterator
= generic_def_path_iterator
<DefPath
, ClobberWalker
>;
717 using const_def_path_iterator
=
718 generic_def_path_iterator
<const DefPath
, const ClobberWalker
>;
720 iterator_range
<def_path_iterator
> def_path(ListIndex From
) {
721 return make_range(def_path_iterator(this, From
), def_path_iterator());
724 iterator_range
<const_def_path_iterator
> const_def_path(ListIndex From
) const {
725 return make_range(const_def_path_iterator(this, From
),
726 const_def_path_iterator());
730 /// The path that contains our result.
731 TerminatedPath PrimaryClobber
;
732 /// The paths that we can legally cache back from, but that aren't
733 /// necessarily the result of the Phi optimization.
734 SmallVector
<TerminatedPath
, 4> OtherClobbers
;
737 ListIndex
defPathIndex(const DefPath
&N
) const {
738 // The assert looks nicer if we don't need to do &N
739 const DefPath
*NP
= &N
;
740 assert(!Paths
.empty() && NP
>= &Paths
.front() && NP
<= &Paths
.back() &&
741 "Out of bounds DefPath!");
742 return NP
- &Paths
.front();
745 /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths
746 /// that act as legal clobbers. Note that this won't return *all* clobbers.
748 /// Phi optimization algorithm tl;dr:
749 /// - Find the earliest def/phi, A, we can optimize to
750 /// - Find if all paths from the starting memory access ultimately reach A
751 /// - If not, optimization isn't possible.
752 /// - Otherwise, walk from A to another clobber or phi, A'.
753 /// - If A' is a def, we're done.
754 /// - If A' is a phi, try to optimize it.
756 /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path
757 /// terminates when a MemoryAccess that clobbers said MemoryLocation is found.
758 OptznResult
tryOptimizePhi(MemoryPhi
*Phi
, MemoryAccess
*Start
,
759 const MemoryLocation
&Loc
) {
760 assert(Paths
.empty() && VisitedPhis
.empty() &&
761 "Reset the optimization state.");
763 Paths
.emplace_back(Loc
, Start
, Phi
, None
);
764 // Stores how many "valid" optimization nodes we had prior to calling
765 // addSearches/getBlockingAccess. Necessary for caching if we had a blocker.
766 auto PriorPathsSize
= Paths
.size();
768 SmallVector
<ListIndex
, 16> PausedSearches
;
769 SmallVector
<ListIndex
, 8> NewPaused
;
770 SmallVector
<TerminatedPath
, 4> TerminatedPaths
;
772 addSearches(Phi
, PausedSearches
, 0);
774 // Moves the TerminatedPath with the "most dominated" Clobber to the end of
776 auto MoveDominatedPathToEnd
= [&](SmallVectorImpl
<TerminatedPath
> &Paths
) {
777 assert(!Paths
.empty() && "Need a path to move");
778 auto Dom
= Paths
.begin();
779 for (auto I
= std::next(Dom
), E
= Paths
.end(); I
!= E
; ++I
)
780 if (!MSSA
.dominates(I
->Clobber
, Dom
->Clobber
))
782 auto Last
= Paths
.end() - 1;
784 std::iter_swap(Last
, Dom
);
787 MemoryPhi
*Current
= Phi
;
789 assert(!MSSA
.isLiveOnEntryDef(Current
) &&
790 "liveOnEntry wasn't treated as a clobber?");
792 const auto *Target
= getWalkTarget(Current
);
793 // If a TerminatedPath doesn't dominate Target, then it wasn't a legal
794 // optimization for the prior phi.
795 assert(all_of(TerminatedPaths
, [&](const TerminatedPath
&P
) {
796 return MSSA
.dominates(P
.Clobber
, Target
);
799 // FIXME: This is broken, because the Blocker may be reported to be
800 // liveOnEntry, and we'll happily wait for that to disappear (read: never)
801 // For the moment, this is fine, since we do nothing with blocker info.
802 if (Optional
<TerminatedPath
> Blocker
= getBlockingAccess(
803 Target
, PausedSearches
, NewPaused
, TerminatedPaths
)) {
805 // Find the node we started at. We can't search based on N->Last, since
806 // we may have gone around a loop with a different MemoryLocation.
807 auto Iter
= find_if(def_path(Blocker
->LastNode
), [&](const DefPath
&N
) {
808 return defPathIndex(N
) < PriorPathsSize
;
810 assert(Iter
!= def_path_iterator());
812 DefPath
&CurNode
= *Iter
;
813 assert(CurNode
.Last
== Current
);
816 // A. We can't reliably cache all of NewPaused back. Consider a case
817 // where we have two paths in NewPaused; one of which can't optimize
818 // above this phi, whereas the other can. If we cache the second path
819 // back, we'll end up with suboptimal cache entries. We can handle
820 // cases like this a bit better when we either try to find all
821 // clobbers that block phi optimization, or when our cache starts
822 // supporting unfinished searches.
823 // B. We can't reliably cache TerminatedPaths back here without doing
824 // extra checks; consider a case like:
830 // Where T is our target, C is a node with a clobber on it, D is a
831 // diamond (with a clobber *only* on the left or right node, N), and
832 // S is our start. Say we walk to D, through the node opposite N
833 // (read: ignoring the clobber), and see a cache entry in the top
834 // node of D. That cache entry gets put into TerminatedPaths. We then
835 // walk up to C (N is later in our worklist), find the clobber, and
836 // quit. If we append TerminatedPaths to OtherClobbers, we'll cache
837 // the bottom part of D to the cached clobber, ignoring the clobber
838 // in N. Again, this problem goes away if we start tracking all
839 // blockers for a given phi optimization.
840 TerminatedPath Result
{CurNode
.Last
, defPathIndex(CurNode
)};
844 // If there's nothing left to search, then all paths led to valid clobbers
845 // that we got from our cache; pick the nearest to the start, and allow
846 // the rest to be cached back.
847 if (NewPaused
.empty()) {
848 MoveDominatedPathToEnd(TerminatedPaths
);
849 TerminatedPath Result
= TerminatedPaths
.pop_back_val();
850 return {Result
, std::move(TerminatedPaths
)};
853 MemoryAccess
*DefChainEnd
= nullptr;
854 SmallVector
<TerminatedPath
, 4> Clobbers
;
855 for (ListIndex Paused
: NewPaused
) {
856 UpwardsWalkResult WR
= walkToPhiOrClobber(Paths
[Paused
]);
857 if (WR
.IsKnownClobber
)
858 Clobbers
.push_back({WR
.Result
, Paused
});
860 // Micro-opt: If we hit the end of the chain, save it.
861 DefChainEnd
= WR
.Result
;
864 if (!TerminatedPaths
.empty()) {
865 // If we couldn't find the dominating phi/liveOnEntry in the above loop,
868 for (auto *MA
: def_chain(const_cast<MemoryAccess
*>(Target
)))
871 // If any of the terminated paths don't dominate the phi we'll try to
872 // optimize, we need to figure out what they are and quit.
873 const BasicBlock
*ChainBB
= DefChainEnd
->getBlock();
874 for (const TerminatedPath
&TP
: TerminatedPaths
) {
875 // Because we know that DefChainEnd is as "high" as we can go, we
876 // don't need local dominance checks; BB dominance is sufficient.
877 if (DT
.dominates(ChainBB
, TP
.Clobber
->getBlock()))
878 Clobbers
.push_back(TP
);
882 // If we have clobbers in the def chain, find the one closest to Current
884 if (!Clobbers
.empty()) {
885 MoveDominatedPathToEnd(Clobbers
);
886 TerminatedPath Result
= Clobbers
.pop_back_val();
887 return {Result
, std::move(Clobbers
)};
890 assert(all_of(NewPaused
,
891 [&](ListIndex I
) { return Paths
[I
].Last
== DefChainEnd
; }));
893 // Because liveOnEntry is a clobber, this must be a phi.
894 auto *DefChainPhi
= cast
<MemoryPhi
>(DefChainEnd
);
896 PriorPathsSize
= Paths
.size();
897 PausedSearches
.clear();
898 for (ListIndex I
: NewPaused
)
899 addSearches(DefChainPhi
, PausedSearches
, I
);
902 Current
= DefChainPhi
;
906 void verifyOptResult(const OptznResult
&R
) const {
907 assert(all_of(R
.OtherClobbers
, [&](const TerminatedPath
&P
) {
908 return MSSA
.dominates(P
.Clobber
, R
.PrimaryClobber
.Clobber
);
912 void resetPhiOptznState() {
918 ClobberWalker(const MemorySSA
&MSSA
, AliasAnalysisType
&AA
, DominatorTree
&DT
)
919 : MSSA(MSSA
), AA(AA
), DT(DT
) {}
921 AliasAnalysisType
*getAA() { return &AA
; }
922 /// Finds the nearest clobber for the given query, optimizing phis if
924 MemoryAccess
*findClobber(MemoryAccess
*Start
, UpwardsMemoryQuery
&Q
,
925 unsigned &UpWalkLimit
) {
927 UpwardWalkLimit
= &UpWalkLimit
;
928 // Starting limit must be > 0.
932 MemoryAccess
*Current
= Start
;
933 // This walker pretends uses don't exist. If we're handed one, silently grab
934 // its def. (This has the nice side-effect of ensuring we never cache uses)
935 if (auto *MU
= dyn_cast
<MemoryUse
>(Start
))
936 Current
= MU
->getDefiningAccess();
938 DefPath
FirstDesc(Q
.StartingLoc
, Current
, Current
, None
);
939 // Fast path for the overly-common case (no crazy phi optimization
941 UpwardsWalkResult WalkResult
= walkToPhiOrClobber(FirstDesc
);
942 MemoryAccess
*Result
;
943 if (WalkResult
.IsKnownClobber
) {
944 Result
= WalkResult
.Result
;
945 Q
.AR
= WalkResult
.AR
;
947 OptznResult OptRes
= tryOptimizePhi(cast
<MemoryPhi
>(FirstDesc
.Last
),
948 Current
, Q
.StartingLoc
);
949 verifyOptResult(OptRes
);
950 resetPhiOptznState();
951 Result
= OptRes
.PrimaryClobber
.Clobber
;
954 #ifdef EXPENSIVE_CHECKS
955 if (!Q
.SkipSelfAccess
&& *UpwardWalkLimit
> 0)
956 checkClobberSanity(Current
, Result
, Q
.StartingLoc
, MSSA
, Q
, AA
);
962 struct RenamePassData
{
964 DomTreeNode::const_iterator ChildIt
;
965 MemoryAccess
*IncomingVal
;
967 RenamePassData(DomTreeNode
*D
, DomTreeNode::const_iterator It
,
969 : DTN(D
), ChildIt(It
), IncomingVal(M
) {}
971 void swap(RenamePassData
&RHS
) {
972 std::swap(DTN
, RHS
.DTN
);
973 std::swap(ChildIt
, RHS
.ChildIt
);
974 std::swap(IncomingVal
, RHS
.IncomingVal
);
978 } // end anonymous namespace
982 template <class AliasAnalysisType
> class MemorySSA::ClobberWalkerBase
{
983 ClobberWalker
<AliasAnalysisType
> Walker
;
987 ClobberWalkerBase(MemorySSA
*M
, AliasAnalysisType
*A
, DominatorTree
*D
)
988 : Walker(*M
, *A
, *D
), MSSA(M
) {}
990 MemoryAccess
*getClobberingMemoryAccessBase(MemoryAccess
*,
991 const MemoryLocation
&,
993 // Third argument (bool), defines whether the clobber search should skip the
994 // original queried access. If true, there will be a follow-up query searching
995 // for a clobber access past "self". Note that the Optimized access is not
996 // updated if a new clobber is found by this SkipSelf search. If this
997 // additional query becomes heavily used we may decide to cache the result.
998 // Walker instantiations will decide how to set the SkipSelf bool.
999 MemoryAccess
*getClobberingMemoryAccessBase(MemoryAccess
*, unsigned &, bool);
1002 /// A MemorySSAWalker that does AA walks to disambiguate accesses. It no
1003 /// longer does caching on its own, but the name has been retained for the
1005 template <class AliasAnalysisType
>
1006 class MemorySSA::CachingWalker final
: public MemorySSAWalker
{
1007 ClobberWalkerBase
<AliasAnalysisType
> *Walker
;
1010 CachingWalker(MemorySSA
*M
, ClobberWalkerBase
<AliasAnalysisType
> *W
)
1011 : MemorySSAWalker(M
), Walker(W
) {}
1012 ~CachingWalker() override
= default;
1014 using MemorySSAWalker::getClobberingMemoryAccess
;
1016 MemoryAccess
*getClobberingMemoryAccess(MemoryAccess
*MA
, unsigned &UWL
) {
1017 return Walker
->getClobberingMemoryAccessBase(MA
, UWL
, false);
1019 MemoryAccess
*getClobberingMemoryAccess(MemoryAccess
*MA
,
1020 const MemoryLocation
&Loc
,
1022 return Walker
->getClobberingMemoryAccessBase(MA
, Loc
, UWL
);
1025 MemoryAccess
*getClobberingMemoryAccess(MemoryAccess
*MA
) override
{
1026 unsigned UpwardWalkLimit
= MaxCheckLimit
;
1027 return getClobberingMemoryAccess(MA
, UpwardWalkLimit
);
1029 MemoryAccess
*getClobberingMemoryAccess(MemoryAccess
*MA
,
1030 const MemoryLocation
&Loc
) override
{
1031 unsigned UpwardWalkLimit
= MaxCheckLimit
;
1032 return getClobberingMemoryAccess(MA
, Loc
, UpwardWalkLimit
);
1035 void invalidateInfo(MemoryAccess
*MA
) override
{
1036 if (auto *MUD
= dyn_cast
<MemoryUseOrDef
>(MA
))
1037 MUD
->resetOptimized();
1041 template <class AliasAnalysisType
>
1042 class MemorySSA::SkipSelfWalker final
: public MemorySSAWalker
{
1043 ClobberWalkerBase
<AliasAnalysisType
> *Walker
;
1046 SkipSelfWalker(MemorySSA
*M
, ClobberWalkerBase
<AliasAnalysisType
> *W
)
1047 : MemorySSAWalker(M
), Walker(W
) {}
1048 ~SkipSelfWalker() override
= default;
1050 using MemorySSAWalker::getClobberingMemoryAccess
;
1052 MemoryAccess
*getClobberingMemoryAccess(MemoryAccess
*MA
, unsigned &UWL
) {
1053 return Walker
->getClobberingMemoryAccessBase(MA
, UWL
, true);
1055 MemoryAccess
*getClobberingMemoryAccess(MemoryAccess
*MA
,
1056 const MemoryLocation
&Loc
,
1058 return Walker
->getClobberingMemoryAccessBase(MA
, Loc
, UWL
);
1061 MemoryAccess
*getClobberingMemoryAccess(MemoryAccess
*MA
) override
{
1062 unsigned UpwardWalkLimit
= MaxCheckLimit
;
1063 return getClobberingMemoryAccess(MA
, UpwardWalkLimit
);
1065 MemoryAccess
*getClobberingMemoryAccess(MemoryAccess
*MA
,
1066 const MemoryLocation
&Loc
) override
{
1067 unsigned UpwardWalkLimit
= MaxCheckLimit
;
1068 return getClobberingMemoryAccess(MA
, Loc
, UpwardWalkLimit
);
1071 void invalidateInfo(MemoryAccess
*MA
) override
{
1072 if (auto *MUD
= dyn_cast
<MemoryUseOrDef
>(MA
))
1073 MUD
->resetOptimized();
1077 } // end namespace llvm
1079 void MemorySSA::renameSuccessorPhis(BasicBlock
*BB
, MemoryAccess
*IncomingVal
,
1080 bool RenameAllUses
) {
1081 // Pass through values to our successors
1082 for (const BasicBlock
*S
: successors(BB
)) {
1083 auto It
= PerBlockAccesses
.find(S
);
1084 // Rename the phi nodes in our successor block
1085 if (It
== PerBlockAccesses
.end() || !isa
<MemoryPhi
>(It
->second
->front()))
1087 AccessList
*Accesses
= It
->second
.get();
1088 auto *Phi
= cast
<MemoryPhi
>(&Accesses
->front());
1089 if (RenameAllUses
) {
1090 int PhiIndex
= Phi
->getBasicBlockIndex(BB
);
1091 assert(PhiIndex
!= -1 && "Incomplete phi during partial rename");
1092 Phi
->setIncomingValue(PhiIndex
, IncomingVal
);
1094 Phi
->addIncoming(IncomingVal
, BB
);
1098 /// Rename a single basic block into MemorySSA form.
1099 /// Uses the standard SSA renaming algorithm.
1100 /// \returns The new incoming value.
1101 MemoryAccess
*MemorySSA::renameBlock(BasicBlock
*BB
, MemoryAccess
*IncomingVal
,
1102 bool RenameAllUses
) {
1103 auto It
= PerBlockAccesses
.find(BB
);
1104 // Skip most processing if the list is empty.
1105 if (It
!= PerBlockAccesses
.end()) {
1106 AccessList
*Accesses
= It
->second
.get();
1107 for (MemoryAccess
&L
: *Accesses
) {
1108 if (MemoryUseOrDef
*MUD
= dyn_cast
<MemoryUseOrDef
>(&L
)) {
1109 if (MUD
->getDefiningAccess() == nullptr || RenameAllUses
)
1110 MUD
->setDefiningAccess(IncomingVal
);
1111 if (isa
<MemoryDef
>(&L
))
1121 /// This is the standard SSA renaming algorithm.
1123 /// We walk the dominator tree in preorder, renaming accesses, and then filling
1124 /// in phi nodes in our successors.
1125 void MemorySSA::renamePass(DomTreeNode
*Root
, MemoryAccess
*IncomingVal
,
1126 SmallPtrSetImpl
<BasicBlock
*> &Visited
,
1127 bool SkipVisited
, bool RenameAllUses
) {
1128 assert(Root
&& "Trying to rename accesses in an unreachable block");
1130 SmallVector
<RenamePassData
, 32> WorkStack
;
1131 // Skip everything if we already renamed this block and we are skipping.
1132 // Note: You can't sink this into the if, because we need it to occur
1133 // regardless of whether we skip blocks or not.
1134 bool AlreadyVisited
= !Visited
.insert(Root
->getBlock()).second
;
1135 if (SkipVisited
&& AlreadyVisited
)
1138 IncomingVal
= renameBlock(Root
->getBlock(), IncomingVal
, RenameAllUses
);
1139 renameSuccessorPhis(Root
->getBlock(), IncomingVal
, RenameAllUses
);
1140 WorkStack
.push_back({Root
, Root
->begin(), IncomingVal
});
1142 while (!WorkStack
.empty()) {
1143 DomTreeNode
*Node
= WorkStack
.back().DTN
;
1144 DomTreeNode::const_iterator ChildIt
= WorkStack
.back().ChildIt
;
1145 IncomingVal
= WorkStack
.back().IncomingVal
;
1147 if (ChildIt
== Node
->end()) {
1148 WorkStack
.pop_back();
1150 DomTreeNode
*Child
= *ChildIt
;
1151 ++WorkStack
.back().ChildIt
;
1152 BasicBlock
*BB
= Child
->getBlock();
1153 // Note: You can't sink this into the if, because we need it to occur
1154 // regardless of whether we skip blocks or not.
1155 AlreadyVisited
= !Visited
.insert(BB
).second
;
1156 if (SkipVisited
&& AlreadyVisited
) {
1157 // We already visited this during our renaming, which can happen when
1158 // being asked to rename multiple blocks. Figure out the incoming val,
1159 // which is the last def.
1160 // Incoming value can only change if there is a block def, and in that
1161 // case, it's the last block def in the list.
1162 if (auto *BlockDefs
= getWritableBlockDefs(BB
))
1163 IncomingVal
= &*BlockDefs
->rbegin();
1165 IncomingVal
= renameBlock(BB
, IncomingVal
, RenameAllUses
);
1166 renameSuccessorPhis(BB
, IncomingVal
, RenameAllUses
);
1167 WorkStack
.push_back({Child
, Child
->begin(), IncomingVal
});
1172 /// This handles unreachable block accesses by deleting phi nodes in
1173 /// unreachable blocks, and marking all other unreachable MemoryAccess's as
1174 /// being uses of the live on entry definition.
1175 void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock
*BB
) {
1176 assert(!DT
->isReachableFromEntry(BB
) &&
1177 "Reachable block found while handling unreachable blocks");
1179 // Make sure phi nodes in our reachable successors end up with a
1180 // LiveOnEntryDef for our incoming edge, even though our block is forward
1181 // unreachable. We could just disconnect these blocks from the CFG fully,
1182 // but we do not right now.
1183 for (const BasicBlock
*S
: successors(BB
)) {
1184 if (!DT
->isReachableFromEntry(S
))
1186 auto It
= PerBlockAccesses
.find(S
);
1187 // Rename the phi nodes in our successor block
1188 if (It
== PerBlockAccesses
.end() || !isa
<MemoryPhi
>(It
->second
->front()))
1190 AccessList
*Accesses
= It
->second
.get();
1191 auto *Phi
= cast
<MemoryPhi
>(&Accesses
->front());
1192 Phi
->addIncoming(LiveOnEntryDef
.get(), BB
);
1195 auto It
= PerBlockAccesses
.find(BB
);
1196 if (It
== PerBlockAccesses
.end())
1199 auto &Accesses
= It
->second
;
1200 for (auto AI
= Accesses
->begin(), AE
= Accesses
->end(); AI
!= AE
;) {
1201 auto Next
= std::next(AI
);
1202 // If we have a phi, just remove it. We are going to replace all
1203 // users with live on entry.
1204 if (auto *UseOrDef
= dyn_cast
<MemoryUseOrDef
>(AI
))
1205 UseOrDef
->setDefiningAccess(LiveOnEntryDef
.get());
1207 Accesses
->erase(AI
);
1212 MemorySSA::MemorySSA(Function
&Func
, AliasAnalysis
*AA
, DominatorTree
*DT
)
1213 : AA(nullptr), DT(DT
), F(Func
), LiveOnEntryDef(nullptr), Walker(nullptr),
1214 SkipWalker(nullptr), NextID(0) {
1215 // Build MemorySSA using a batch alias analysis. This reuses the internal
1216 // state that AA collects during an alias()/getModRefInfo() call. This is
1217 // safe because there are no CFG changes while building MemorySSA and can
1218 // significantly reduce the time spent by the compiler in AA, because we will
1219 // make queries about all the instructions in the Function.
1220 BatchAAResults
BatchAA(*AA
);
1221 buildMemorySSA(BatchAA
);
1222 // Intentionally leave AA to nullptr while building so we don't accidently
1223 // use non-batch AliasAnalysis.
1225 // Also create the walker here.
1229 MemorySSA::~MemorySSA() {
1230 // Drop all our references
1231 for (const auto &Pair
: PerBlockAccesses
)
1232 for (MemoryAccess
&MA
: *Pair
.second
)
1233 MA
.dropAllReferences();
1236 MemorySSA::AccessList
*MemorySSA::getOrCreateAccessList(const BasicBlock
*BB
) {
1237 auto Res
= PerBlockAccesses
.insert(std::make_pair(BB
, nullptr));
1240 Res
.first
->second
= llvm::make_unique
<AccessList
>();
1241 return Res
.first
->second
.get();
1244 MemorySSA::DefsList
*MemorySSA::getOrCreateDefsList(const BasicBlock
*BB
) {
1245 auto Res
= PerBlockDefs
.insert(std::make_pair(BB
, nullptr));
1248 Res
.first
->second
= llvm::make_unique
<DefsList
>();
1249 return Res
.first
->second
.get();
1254 /// This class is a batch walker of all MemoryUse's in the program, and points
1255 /// their defining access at the thing that actually clobbers them. Because it
1256 /// is a batch walker that touches everything, it does not operate like the
1257 /// other walkers. This walker is basically performing a top-down SSA renaming
1258 /// pass, where the version stack is used as the cache. This enables it to be
1259 /// significantly more time and memory efficient than using the regular walker,
1260 /// which is walking bottom-up.
1261 class MemorySSA::OptimizeUses
{
1263 OptimizeUses(MemorySSA
*MSSA
, CachingWalker
<BatchAAResults
> *Walker
,
1264 BatchAAResults
*BAA
, DominatorTree
*DT
)
1265 : MSSA(MSSA
), Walker(Walker
), AA(BAA
), DT(DT
) {}
1267 void optimizeUses();
1270 /// This represents where a given memorylocation is in the stack.
1271 struct MemlocStackInfo
{
1272 // This essentially is keeping track of versions of the stack. Whenever
1273 // the stack changes due to pushes or pops, these versions increase.
1274 unsigned long StackEpoch
;
1275 unsigned long PopEpoch
;
1276 // This is the lower bound of places on the stack to check. It is equal to
1277 // the place the last stack walk ended.
1278 // Note: Correctness depends on this being initialized to 0, which densemap
1280 unsigned long LowerBound
;
1281 const BasicBlock
*LowerBoundBlock
;
1282 // This is where the last walk for this memory location ended.
1283 unsigned long LastKill
;
1285 Optional
<AliasResult
> AR
;
1288 void optimizeUsesInBlock(const BasicBlock
*, unsigned long &, unsigned long &,
1289 SmallVectorImpl
<MemoryAccess
*> &,
1290 DenseMap
<MemoryLocOrCall
, MemlocStackInfo
> &);
1293 CachingWalker
<BatchAAResults
> *Walker
;
1298 } // end namespace llvm
1300 /// Optimize the uses in a given block This is basically the SSA renaming
1301 /// algorithm, with one caveat: We are able to use a single stack for all
1302 /// MemoryUses. This is because the set of *possible* reaching MemoryDefs is
1303 /// the same for every MemoryUse. The *actual* clobbering MemoryDef is just
1304 /// going to be some position in that stack of possible ones.
1306 /// We track the stack positions that each MemoryLocation needs
1307 /// to check, and last ended at. This is because we only want to check the
1308 /// things that changed since last time. The same MemoryLocation should
1309 /// get clobbered by the same store (getModRefInfo does not use invariantness or
1310 /// things like this, and if they start, we can modify MemoryLocOrCall to
1311 /// include relevant data)
1312 void MemorySSA::OptimizeUses::optimizeUsesInBlock(
1313 const BasicBlock
*BB
, unsigned long &StackEpoch
, unsigned long &PopEpoch
,
1314 SmallVectorImpl
<MemoryAccess
*> &VersionStack
,
1315 DenseMap
<MemoryLocOrCall
, MemlocStackInfo
> &LocStackInfo
) {
1317 /// If no accesses, nothing to do.
1318 MemorySSA::AccessList
*Accesses
= MSSA
->getWritableBlockAccesses(BB
);
1319 if (Accesses
== nullptr)
1322 // Pop everything that doesn't dominate the current block off the stack,
1323 // increment the PopEpoch to account for this.
1326 !VersionStack
.empty() &&
1327 "Version stack should have liveOnEntry sentinel dominating everything");
1328 BasicBlock
*BackBlock
= VersionStack
.back()->getBlock();
1329 if (DT
->dominates(BackBlock
, BB
))
1331 while (VersionStack
.back()->getBlock() == BackBlock
)
1332 VersionStack
.pop_back();
1336 for (MemoryAccess
&MA
: *Accesses
) {
1337 auto *MU
= dyn_cast
<MemoryUse
>(&MA
);
1339 VersionStack
.push_back(&MA
);
1344 if (isUseTriviallyOptimizableToLiveOnEntry(*AA
, MU
->getMemoryInst())) {
1345 MU
->setDefiningAccess(MSSA
->getLiveOnEntryDef(), true, None
);
1349 MemoryLocOrCall
UseMLOC(MU
);
1350 auto &LocInfo
= LocStackInfo
[UseMLOC
];
1351 // If the pop epoch changed, it means we've removed stuff from top of
1352 // stack due to changing blocks. We may have to reset the lower bound or
1354 if (LocInfo
.PopEpoch
!= PopEpoch
) {
1355 LocInfo
.PopEpoch
= PopEpoch
;
1356 LocInfo
.StackEpoch
= StackEpoch
;
1357 // If the lower bound was in something that no longer dominates us, we
1358 // have to reset it.
1359 // We can't simply track stack size, because the stack may have had
1360 // pushes/pops in the meantime.
1361 // XXX: This is non-optimal, but only is slower cases with heavily
1362 // branching dominator trees. To get the optimal number of queries would
1363 // be to make lowerbound and lastkill a per-loc stack, and pop it until
1364 // the top of that stack dominates us. This does not seem worth it ATM.
1365 // A much cheaper optimization would be to always explore the deepest
1366 // branch of the dominator tree first. This will guarantee this resets on
1367 // the smallest set of blocks.
1368 if (LocInfo
.LowerBoundBlock
&& LocInfo
.LowerBoundBlock
!= BB
&&
1369 !DT
->dominates(LocInfo
.LowerBoundBlock
, BB
)) {
1370 // Reset the lower bound of things to check.
1371 // TODO: Some day we should be able to reset to last kill, rather than
1373 LocInfo
.LowerBound
= 0;
1374 LocInfo
.LowerBoundBlock
= VersionStack
[0]->getBlock();
1375 LocInfo
.LastKillValid
= false;
1377 } else if (LocInfo
.StackEpoch
!= StackEpoch
) {
1378 // If all that has changed is the StackEpoch, we only have to check the
1379 // new things on the stack, because we've checked everything before. In
1380 // this case, the lower bound of things to check remains the same.
1381 LocInfo
.PopEpoch
= PopEpoch
;
1382 LocInfo
.StackEpoch
= StackEpoch
;
1384 if (!LocInfo
.LastKillValid
) {
1385 LocInfo
.LastKill
= VersionStack
.size() - 1;
1386 LocInfo
.LastKillValid
= true;
1387 LocInfo
.AR
= MayAlias
;
1390 // At this point, we should have corrected last kill and LowerBound to be
1392 assert(LocInfo
.LowerBound
< VersionStack
.size() &&
1393 "Lower bound out of range");
1394 assert(LocInfo
.LastKill
< VersionStack
.size() &&
1395 "Last kill info out of range");
1396 // In any case, the new upper bound is the top of the stack.
1397 unsigned long UpperBound
= VersionStack
.size() - 1;
1399 if (UpperBound
- LocInfo
.LowerBound
> MaxCheckLimit
) {
1400 LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU
<< " ("
1401 << *(MU
->getMemoryInst()) << ")"
1402 << " because there are "
1403 << UpperBound
- LocInfo
.LowerBound
1404 << " stores to disambiguate\n");
1405 // Because we did not walk, LastKill is no longer valid, as this may
1406 // have been a kill.
1407 LocInfo
.LastKillValid
= false;
1410 bool FoundClobberResult
= false;
1411 unsigned UpwardWalkLimit
= MaxCheckLimit
;
1412 while (UpperBound
> LocInfo
.LowerBound
) {
1413 if (isa
<MemoryPhi
>(VersionStack
[UpperBound
])) {
1414 // For phis, use the walker, see where we ended up, go there
1415 MemoryAccess
*Result
=
1416 Walker
->getClobberingMemoryAccess(MU
, UpwardWalkLimit
);
1417 // We are guaranteed to find it or something is wrong
1418 while (VersionStack
[UpperBound
] != Result
) {
1419 assert(UpperBound
!= 0);
1422 FoundClobberResult
= true;
1426 MemoryDef
*MD
= cast
<MemoryDef
>(VersionStack
[UpperBound
]);
1427 // If the lifetime of the pointer ends at this instruction, it's live on
1429 if (!UseMLOC
.IsCall
&& lifetimeEndsAt(MD
, UseMLOC
.getLoc(), *AA
)) {
1430 // Reset UpperBound to liveOnEntryDef's place in the stack
1432 FoundClobberResult
= true;
1433 LocInfo
.AR
= MustAlias
;
1436 ClobberAlias CA
= instructionClobbersQuery(MD
, MU
, UseMLOC
, *AA
);
1438 FoundClobberResult
= true;
1445 // Note: Phis always have AliasResult AR set to MayAlias ATM.
1447 // At the end of this loop, UpperBound is either a clobber, or lower bound
1448 // PHI walking may cause it to be < LowerBound, and in fact, < LastKill.
1449 if (FoundClobberResult
|| UpperBound
< LocInfo
.LastKill
) {
1450 // We were last killed now by where we got to
1451 if (MSSA
->isLiveOnEntryDef(VersionStack
[UpperBound
]))
1453 MU
->setDefiningAccess(VersionStack
[UpperBound
], true, LocInfo
.AR
);
1454 LocInfo
.LastKill
= UpperBound
;
1456 // Otherwise, we checked all the new ones, and now we know we can get to
1458 MU
->setDefiningAccess(VersionStack
[LocInfo
.LastKill
], true, LocInfo
.AR
);
1460 LocInfo
.LowerBound
= VersionStack
.size() - 1;
1461 LocInfo
.LowerBoundBlock
= BB
;
1465 /// Optimize uses to point to their actual clobbering definitions.
1466 void MemorySSA::OptimizeUses::optimizeUses() {
1467 SmallVector
<MemoryAccess
*, 16> VersionStack
;
1468 DenseMap
<MemoryLocOrCall
, MemlocStackInfo
> LocStackInfo
;
1469 VersionStack
.push_back(MSSA
->getLiveOnEntryDef());
1471 unsigned long StackEpoch
= 1;
1472 unsigned long PopEpoch
= 1;
1473 // We perform a non-recursive top-down dominator tree walk.
1474 for (const auto *DomNode
: depth_first(DT
->getRootNode()))
1475 optimizeUsesInBlock(DomNode
->getBlock(), StackEpoch
, PopEpoch
, VersionStack
,
1479 void MemorySSA::placePHINodes(
1480 const SmallPtrSetImpl
<BasicBlock
*> &DefiningBlocks
) {
1481 // Determine where our MemoryPhi's should go
1482 ForwardIDFCalculator
IDFs(*DT
);
1483 IDFs
.setDefiningBlocks(DefiningBlocks
);
1484 SmallVector
<BasicBlock
*, 32> IDFBlocks
;
1485 IDFs
.calculate(IDFBlocks
);
1487 // Now place MemoryPhi nodes.
1488 for (auto &BB
: IDFBlocks
)
1489 createMemoryPhi(BB
);
1492 void MemorySSA::buildMemorySSA(BatchAAResults
&BAA
) {
1493 // We create an access to represent "live on entry", for things like
1494 // arguments or users of globals, where the memory they use is defined before
1495 // the beginning of the function. We do not actually insert it into the IR.
1496 // We do not define a live on exit for the immediate uses, and thus our
1497 // semantics do *not* imply that something with no immediate uses can simply
1499 BasicBlock
&StartingPoint
= F
.getEntryBlock();
1500 LiveOnEntryDef
.reset(new MemoryDef(F
.getContext(), nullptr, nullptr,
1501 &StartingPoint
, NextID
++));
1503 // We maintain lists of memory accesses per-block, trading memory for time. We
1504 // could just look up the memory access for every possible instruction in the
1506 SmallPtrSet
<BasicBlock
*, 32> DefiningBlocks
;
1507 // Go through each block, figure out where defs occur, and chain together all
1509 for (BasicBlock
&B
: F
) {
1510 bool InsertIntoDef
= false;
1511 AccessList
*Accesses
= nullptr;
1512 DefsList
*Defs
= nullptr;
1513 for (Instruction
&I
: B
) {
1514 MemoryUseOrDef
*MUD
= createNewAccess(&I
, &BAA
);
1519 Accesses
= getOrCreateAccessList(&B
);
1520 Accesses
->push_back(MUD
);
1521 if (isa
<MemoryDef
>(MUD
)) {
1522 InsertIntoDef
= true;
1524 Defs
= getOrCreateDefsList(&B
);
1525 Defs
->push_back(*MUD
);
1529 DefiningBlocks
.insert(&B
);
1531 placePHINodes(DefiningBlocks
);
1533 // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get
1534 // filled in with all blocks.
1535 SmallPtrSet
<BasicBlock
*, 16> Visited
;
1536 renamePass(DT
->getRootNode(), LiveOnEntryDef
.get(), Visited
);
1538 ClobberWalkerBase
<BatchAAResults
> WalkerBase(this, &BAA
, DT
);
1539 CachingWalker
<BatchAAResults
> WalkerLocal(this, &WalkerBase
);
1540 OptimizeUses(this, &WalkerLocal
, &BAA
, DT
).optimizeUses();
1542 // Mark the uses in unreachable blocks as live on entry, so that they go
1545 if (!Visited
.count(&BB
))
1546 markUnreachableAsLiveOnEntry(&BB
);
1549 MemorySSAWalker
*MemorySSA::getWalker() { return getWalkerImpl(); }
1551 MemorySSA::CachingWalker
<AliasAnalysis
> *MemorySSA::getWalkerImpl() {
1553 return Walker
.get();
1557 llvm::make_unique
<ClobberWalkerBase
<AliasAnalysis
>>(this, AA
, DT
);
1560 llvm::make_unique
<CachingWalker
<AliasAnalysis
>>(this, WalkerBase
.get());
1561 return Walker
.get();
1564 MemorySSAWalker
*MemorySSA::getSkipSelfWalker() {
1566 return SkipWalker
.get();
1570 llvm::make_unique
<ClobberWalkerBase
<AliasAnalysis
>>(this, AA
, DT
);
1573 llvm::make_unique
<SkipSelfWalker
<AliasAnalysis
>>(this, WalkerBase
.get());
1574 return SkipWalker
.get();
1578 // This is a helper function used by the creation routines. It places NewAccess
1579 // into the access and defs lists for a given basic block, at the given
1581 void MemorySSA::insertIntoListsForBlock(MemoryAccess
*NewAccess
,
1582 const BasicBlock
*BB
,
1583 InsertionPlace Point
) {
1584 auto *Accesses
= getOrCreateAccessList(BB
);
1585 if (Point
== Beginning
) {
1586 // If it's a phi node, it goes first, otherwise, it goes after any phi
1588 if (isa
<MemoryPhi
>(NewAccess
)) {
1589 Accesses
->push_front(NewAccess
);
1590 auto *Defs
= getOrCreateDefsList(BB
);
1591 Defs
->push_front(*NewAccess
);
1593 auto AI
= find_if_not(
1594 *Accesses
, [](const MemoryAccess
&MA
) { return isa
<MemoryPhi
>(MA
); });
1595 Accesses
->insert(AI
, NewAccess
);
1596 if (!isa
<MemoryUse
>(NewAccess
)) {
1597 auto *Defs
= getOrCreateDefsList(BB
);
1598 auto DI
= find_if_not(
1599 *Defs
, [](const MemoryAccess
&MA
) { return isa
<MemoryPhi
>(MA
); });
1600 Defs
->insert(DI
, *NewAccess
);
1604 Accesses
->push_back(NewAccess
);
1605 if (!isa
<MemoryUse
>(NewAccess
)) {
1606 auto *Defs
= getOrCreateDefsList(BB
);
1607 Defs
->push_back(*NewAccess
);
1610 BlockNumberingValid
.erase(BB
);
1613 void MemorySSA::insertIntoListsBefore(MemoryAccess
*What
, const BasicBlock
*BB
,
1614 AccessList::iterator InsertPt
) {
1615 auto *Accesses
= getWritableBlockAccesses(BB
);
1616 bool WasEnd
= InsertPt
== Accesses
->end();
1617 Accesses
->insert(AccessList::iterator(InsertPt
), What
);
1618 if (!isa
<MemoryUse
>(What
)) {
1619 auto *Defs
= getOrCreateDefsList(BB
);
1620 // If we got asked to insert at the end, we have an easy job, just shove it
1621 // at the end. If we got asked to insert before an existing def, we also get
1622 // an iterator. If we got asked to insert before a use, we have to hunt for
1625 Defs
->push_back(*What
);
1626 } else if (isa
<MemoryDef
>(InsertPt
)) {
1627 Defs
->insert(InsertPt
->getDefsIterator(), *What
);
1629 while (InsertPt
!= Accesses
->end() && !isa
<MemoryDef
>(InsertPt
))
1631 // Either we found a def, or we are inserting at the end
1632 if (InsertPt
== Accesses
->end())
1633 Defs
->push_back(*What
);
1635 Defs
->insert(InsertPt
->getDefsIterator(), *What
);
1638 BlockNumberingValid
.erase(BB
);
1641 void MemorySSA::prepareForMoveTo(MemoryAccess
*What
, BasicBlock
*BB
) {
1642 // Keep it in the lookup tables, remove from the lists
1643 removeFromLists(What
, false);
1645 // Note that moving should implicitly invalidate the optimized state of a
1646 // MemoryUse (and Phis can't be optimized). However, it doesn't do so for a
1648 if (auto *MD
= dyn_cast
<MemoryDef
>(What
))
1649 MD
->resetOptimized();
1653 // Move What before Where in the IR. The end result is that What will belong to
1654 // the right lists and have the right Block set, but will not otherwise be
1655 // correct. It will not have the right defining access, and if it is a def,
1656 // things below it will not properly be updated.
1657 void MemorySSA::moveTo(MemoryUseOrDef
*What
, BasicBlock
*BB
,
1658 AccessList::iterator Where
) {
1659 prepareForMoveTo(What
, BB
);
1660 insertIntoListsBefore(What
, BB
, Where
);
1663 void MemorySSA::moveTo(MemoryAccess
*What
, BasicBlock
*BB
,
1664 InsertionPlace Point
) {
1665 if (isa
<MemoryPhi
>(What
)) {
1666 assert(Point
== Beginning
&&
1667 "Can only move a Phi at the beginning of the block");
1668 // Update lookup table entry
1669 ValueToMemoryAccess
.erase(What
->getBlock());
1670 bool Inserted
= ValueToMemoryAccess
.insert({BB
, What
}).second
;
1672 assert(Inserted
&& "Cannot move a Phi to a block that already has one");
1675 prepareForMoveTo(What
, BB
);
1676 insertIntoListsForBlock(What
, BB
, Point
);
1679 MemoryPhi
*MemorySSA::createMemoryPhi(BasicBlock
*BB
) {
1680 assert(!getMemoryAccess(BB
) && "MemoryPhi already exists for this BB");
1681 MemoryPhi
*Phi
= new MemoryPhi(BB
->getContext(), BB
, NextID
++);
1682 // Phi's always are placed at the front of the block.
1683 insertIntoListsForBlock(Phi
, BB
, Beginning
);
1684 ValueToMemoryAccess
[BB
] = Phi
;
1688 MemoryUseOrDef
*MemorySSA::createDefinedAccess(Instruction
*I
,
1689 MemoryAccess
*Definition
,
1690 const MemoryUseOrDef
*Template
) {
1691 assert(!isa
<PHINode
>(I
) && "Cannot create a defined access for a PHI");
1692 MemoryUseOrDef
*NewAccess
= createNewAccess(I
, AA
, Template
);
1694 NewAccess
!= nullptr &&
1695 "Tried to create a memory access for a non-memory touching instruction");
1696 NewAccess
->setDefiningAccess(Definition
);
1700 // Return true if the instruction has ordering constraints.
1701 // Note specifically that this only considers stores and loads
1702 // because others are still considered ModRef by getModRefInfo.
1703 static inline bool isOrdered(const Instruction
*I
) {
1704 if (auto *SI
= dyn_cast
<StoreInst
>(I
)) {
1705 if (!SI
->isUnordered())
1707 } else if (auto *LI
= dyn_cast
<LoadInst
>(I
)) {
1708 if (!LI
->isUnordered())
1714 /// Helper function to create new memory accesses
1715 template <typename AliasAnalysisType
>
1716 MemoryUseOrDef
*MemorySSA::createNewAccess(Instruction
*I
,
1717 AliasAnalysisType
*AAP
,
1718 const MemoryUseOrDef
*Template
) {
1719 // The assume intrinsic has a control dependency which we model by claiming
1720 // that it writes arbitrarily. Ignore that fake memory dependency here.
1721 // FIXME: Replace this special casing with a more accurate modelling of
1722 // assume's control dependency.
1723 if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(I
))
1724 if (II
->getIntrinsicID() == Intrinsic::assume
)
1729 Def
= dyn_cast_or_null
<MemoryDef
>(Template
) != nullptr;
1730 Use
= dyn_cast_or_null
<MemoryUse
>(Template
) != nullptr;
1731 #if !defined(NDEBUG)
1732 ModRefInfo ModRef
= AAP
->getModRefInfo(I
, None
);
1733 bool DefCheck
, UseCheck
;
1734 DefCheck
= isModSet(ModRef
) || isOrdered(I
);
1735 UseCheck
= isRefSet(ModRef
);
1736 assert(Def
== DefCheck
&& (Def
|| Use
== UseCheck
) && "Invalid template");
1739 // Find out what affect this instruction has on memory.
1740 ModRefInfo ModRef
= AAP
->getModRefInfo(I
, None
);
1741 // The isOrdered check is used to ensure that volatiles end up as defs
1742 // (atomics end up as ModRef right now anyway). Until we separate the
1743 // ordering chain from the memory chain, this enables people to see at least
1744 // some relative ordering to volatiles. Note that getClobberingMemoryAccess
1745 // will still give an answer that bypasses other volatile loads. TODO:
1746 // Separate memory aliasing and ordering into two different chains so that
1747 // we can precisely represent both "what memory will this read/write/is
1748 // clobbered by" and "what instructions can I move this past".
1749 Def
= isModSet(ModRef
) || isOrdered(I
);
1750 Use
= isRefSet(ModRef
);
1753 // It's possible for an instruction to not modify memory at all. During
1754 // construction, we ignore them.
1758 MemoryUseOrDef
*MUD
;
1760 MUD
= new MemoryDef(I
->getContext(), nullptr, I
, I
->getParent(), NextID
++);
1762 MUD
= new MemoryUse(I
->getContext(), nullptr, I
, I
->getParent());
1763 ValueToMemoryAccess
[I
] = MUD
;
1767 /// Returns true if \p Replacer dominates \p Replacee .
1768 bool MemorySSA::dominatesUse(const MemoryAccess
*Replacer
,
1769 const MemoryAccess
*Replacee
) const {
1770 if (isa
<MemoryUseOrDef
>(Replacee
))
1771 return DT
->dominates(Replacer
->getBlock(), Replacee
->getBlock());
1772 const auto *MP
= cast
<MemoryPhi
>(Replacee
);
1773 // For a phi node, the use occurs in the predecessor block of the phi node.
1774 // Since we may occur multiple times in the phi node, we have to check each
1775 // operand to ensure Replacer dominates each operand where Replacee occurs.
1776 for (const Use
&Arg
: MP
->operands()) {
1777 if (Arg
.get() != Replacee
&&
1778 !DT
->dominates(Replacer
->getBlock(), MP
->getIncomingBlock(Arg
)))
1784 /// Properly remove \p MA from all of MemorySSA's lookup tables.
1785 void MemorySSA::removeFromLookups(MemoryAccess
*MA
) {
1786 assert(MA
->use_empty() &&
1787 "Trying to remove memory access that still has uses");
1788 BlockNumbering
.erase(MA
);
1789 if (auto *MUD
= dyn_cast
<MemoryUseOrDef
>(MA
))
1790 MUD
->setDefiningAccess(nullptr);
1791 // Invalidate our walker's cache if necessary
1792 if (!isa
<MemoryUse
>(MA
))
1793 getWalker()->invalidateInfo(MA
);
1796 if (const auto *MUD
= dyn_cast
<MemoryUseOrDef
>(MA
))
1797 MemoryInst
= MUD
->getMemoryInst();
1799 MemoryInst
= MA
->getBlock();
1801 auto VMA
= ValueToMemoryAccess
.find(MemoryInst
);
1802 if (VMA
->second
== MA
)
1803 ValueToMemoryAccess
.erase(VMA
);
1806 /// Properly remove \p MA from all of MemorySSA's lists.
1808 /// Because of the way the intrusive list and use lists work, it is important to
1809 /// do removal in the right order.
1810 /// ShouldDelete defaults to true, and will cause the memory access to also be
1811 /// deleted, not just removed.
1812 void MemorySSA::removeFromLists(MemoryAccess
*MA
, bool ShouldDelete
) {
1813 BasicBlock
*BB
= MA
->getBlock();
1814 // The access list owns the reference, so we erase it from the non-owning list
1816 if (!isa
<MemoryUse
>(MA
)) {
1817 auto DefsIt
= PerBlockDefs
.find(BB
);
1818 std::unique_ptr
<DefsList
> &Defs
= DefsIt
->second
;
1821 PerBlockDefs
.erase(DefsIt
);
1824 // The erase call here will delete it. If we don't want it deleted, we call
1826 auto AccessIt
= PerBlockAccesses
.find(BB
);
1827 std::unique_ptr
<AccessList
> &Accesses
= AccessIt
->second
;
1829 Accesses
->erase(MA
);
1831 Accesses
->remove(MA
);
1833 if (Accesses
->empty()) {
1834 PerBlockAccesses
.erase(AccessIt
);
1835 BlockNumberingValid
.erase(BB
);
1839 void MemorySSA::print(raw_ostream
&OS
) const {
1840 MemorySSAAnnotatedWriter
Writer(this);
1841 F
.print(OS
, &Writer
);
1844 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1845 LLVM_DUMP_METHOD
void MemorySSA::dump() const { print(dbgs()); }
1848 void MemorySSA::verifyMemorySSA() const {
1850 verifyDomination(F
);
1852 verifyDominationNumbers(F
);
1853 // Previously, the verification used to also verify that the clobberingAccess
1854 // cached by MemorySSA is the same as the clobberingAccess found at a later
1855 // query to AA. This does not hold true in general due to the current fragility
1856 // of BasicAA which has arbitrary caps on the things it analyzes before giving
1857 // up. As a result, transformations that are correct, will lead to BasicAA
1858 // returning different Alias answers before and after that transformation.
1859 // Invalidating MemorySSA is not an option, as the results in BasicAA can be so
1860 // random, in the worst case we'd need to rebuild MemorySSA from scratch after
1861 // every transformation, which defeats the purpose of using it. For such an
1862 // example, see test4 added in D51960.
1865 /// Verify that all of the blocks we believe to have valid domination numbers
1866 /// actually have valid domination numbers.
1867 void MemorySSA::verifyDominationNumbers(const Function
&F
) const {
1869 if (BlockNumberingValid
.empty())
1872 SmallPtrSet
<const BasicBlock
*, 16> ValidBlocks
= BlockNumberingValid
;
1873 for (const BasicBlock
&BB
: F
) {
1874 if (!ValidBlocks
.count(&BB
))
1877 ValidBlocks
.erase(&BB
);
1879 const AccessList
*Accesses
= getBlockAccesses(&BB
);
1880 // It's correct to say an empty block has valid numbering.
1884 // Block numbering starts at 1.
1885 unsigned long LastNumber
= 0;
1886 for (const MemoryAccess
&MA
: *Accesses
) {
1887 auto ThisNumberIter
= BlockNumbering
.find(&MA
);
1888 assert(ThisNumberIter
!= BlockNumbering
.end() &&
1889 "MemoryAccess has no domination number in a valid block!");
1891 unsigned long ThisNumber
= ThisNumberIter
->second
;
1892 assert(ThisNumber
> LastNumber
&&
1893 "Domination numbers should be strictly increasing!");
1894 LastNumber
= ThisNumber
;
1898 assert(ValidBlocks
.empty() &&
1899 "All valid BasicBlocks should exist in F -- dangling pointers?");
1903 /// Verify that the order and existence of MemoryAccesses matches the
1904 /// order and existence of memory affecting instructions.
1905 void MemorySSA::verifyOrdering(Function
&F
) const {
1907 // Walk all the blocks, comparing what the lookups think and what the access
1908 // lists think, as well as the order in the blocks vs the order in the access
1910 SmallVector
<MemoryAccess
*, 32> ActualAccesses
;
1911 SmallVector
<MemoryAccess
*, 32> ActualDefs
;
1912 for (BasicBlock
&B
: F
) {
1913 const AccessList
*AL
= getBlockAccesses(&B
);
1914 const auto *DL
= getBlockDefs(&B
);
1915 MemoryAccess
*Phi
= getMemoryAccess(&B
);
1917 ActualAccesses
.push_back(Phi
);
1918 ActualDefs
.push_back(Phi
);
1921 for (Instruction
&I
: B
) {
1922 MemoryAccess
*MA
= getMemoryAccess(&I
);
1923 assert((!MA
|| (AL
&& (isa
<MemoryUse
>(MA
) || DL
))) &&
1924 "We have memory affecting instructions "
1925 "in this block but they are not in the "
1926 "access list or defs list");
1928 ActualAccesses
.push_back(MA
);
1929 if (isa
<MemoryDef
>(MA
))
1930 ActualDefs
.push_back(MA
);
1933 // Either we hit the assert, really have no accesses, or we have both
1934 // accesses and an access list.
1938 assert(AL
->size() == ActualAccesses
.size() &&
1939 "We don't have the same number of accesses in the block as on the "
1941 assert((DL
|| ActualDefs
.size() == 0) &&
1942 "Either we should have a defs list, or we should have no defs");
1943 assert((!DL
|| DL
->size() == ActualDefs
.size()) &&
1944 "We don't have the same number of defs in the block as on the "
1946 auto ALI
= AL
->begin();
1947 auto AAI
= ActualAccesses
.begin();
1948 while (ALI
!= AL
->end() && AAI
!= ActualAccesses
.end()) {
1949 assert(&*ALI
== *AAI
&& "Not the same accesses in the same order");
1953 ActualAccesses
.clear();
1955 auto DLI
= DL
->begin();
1956 auto ADI
= ActualDefs
.begin();
1957 while (DLI
!= DL
->end() && ADI
!= ActualDefs
.end()) {
1958 assert(&*DLI
== *ADI
&& "Not the same defs in the same order");
1968 /// Verify the domination properties of MemorySSA by checking that each
1969 /// definition dominates all of its uses.
1970 void MemorySSA::verifyDomination(Function
&F
) const {
1972 for (BasicBlock
&B
: F
) {
1973 // Phi nodes are attached to basic blocks
1974 if (MemoryPhi
*MP
= getMemoryAccess(&B
))
1975 for (const Use
&U
: MP
->uses())
1976 assert(dominates(MP
, U
) && "Memory PHI does not dominate it's uses");
1978 for (Instruction
&I
: B
) {
1979 MemoryAccess
*MD
= dyn_cast_or_null
<MemoryDef
>(getMemoryAccess(&I
));
1983 for (const Use
&U
: MD
->uses())
1984 assert(dominates(MD
, U
) && "Memory Def does not dominate it's uses");
1990 /// Verify the def-use lists in MemorySSA, by verifying that \p Use
1991 /// appears in the use list of \p Def.
1992 void MemorySSA::verifyUseInDefs(MemoryAccess
*Def
, MemoryAccess
*Use
) const {
1994 // The live on entry use may cause us to get a NULL def here
1996 assert(isLiveOnEntryDef(Use
) &&
1997 "Null def but use not point to live on entry def");
1999 assert(is_contained(Def
->users(), Use
) &&
2000 "Did not find use in def's use list");
2004 /// Verify the immediate use information, by walking all the memory
2005 /// accesses and verifying that, for each use, it appears in the
2006 /// appropriate def's use list
2007 void MemorySSA::verifyDefUses(Function
&F
) const {
2009 for (BasicBlock
&B
: F
) {
2010 // Phi nodes are attached to basic blocks
2011 if (MemoryPhi
*Phi
= getMemoryAccess(&B
)) {
2012 assert(Phi
->getNumOperands() == static_cast<unsigned>(std::distance(
2013 pred_begin(&B
), pred_end(&B
))) &&
2014 "Incomplete MemoryPhi Node");
2015 for (unsigned I
= 0, E
= Phi
->getNumIncomingValues(); I
!= E
; ++I
) {
2016 verifyUseInDefs(Phi
->getIncomingValue(I
), Phi
);
2017 assert(find(predecessors(&B
), Phi
->getIncomingBlock(I
)) !=
2019 "Incoming phi block not a block predecessor");
2023 for (Instruction
&I
: B
) {
2024 if (MemoryUseOrDef
*MA
= getMemoryAccess(&I
)) {
2025 verifyUseInDefs(MA
->getDefiningAccess(), MA
);
2032 /// Perform a local numbering on blocks so that instruction ordering can be
2033 /// determined in constant time.
2034 /// TODO: We currently just number in order. If we numbered by N, we could
2035 /// allow at least N-1 sequences of insertBefore or insertAfter (and at least
2036 /// log2(N) sequences of mixed before and after) without needing to invalidate
2038 void MemorySSA::renumberBlock(const BasicBlock
*B
) const {
2039 // The pre-increment ensures the numbers really start at 1.
2040 unsigned long CurrentNumber
= 0;
2041 const AccessList
*AL
= getBlockAccesses(B
);
2042 assert(AL
!= nullptr && "Asking to renumber an empty block");
2043 for (const auto &I
: *AL
)
2044 BlockNumbering
[&I
] = ++CurrentNumber
;
2045 BlockNumberingValid
.insert(B
);
2048 /// Determine, for two memory accesses in the same block,
2049 /// whether \p Dominator dominates \p Dominatee.
2050 /// \returns True if \p Dominator dominates \p Dominatee.
2051 bool MemorySSA::locallyDominates(const MemoryAccess
*Dominator
,
2052 const MemoryAccess
*Dominatee
) const {
2053 const BasicBlock
*DominatorBlock
= Dominator
->getBlock();
2055 assert((DominatorBlock
== Dominatee
->getBlock()) &&
2056 "Asking for local domination when accesses are in different blocks!");
2057 // A node dominates itself.
2058 if (Dominatee
== Dominator
)
2061 // When Dominatee is defined on function entry, it is not dominated by another
2063 if (isLiveOnEntryDef(Dominatee
))
2066 // When Dominator is defined on function entry, it dominates the other memory
2068 if (isLiveOnEntryDef(Dominator
))
2071 if (!BlockNumberingValid
.count(DominatorBlock
))
2072 renumberBlock(DominatorBlock
);
2074 unsigned long DominatorNum
= BlockNumbering
.lookup(Dominator
);
2075 // All numbers start with 1
2076 assert(DominatorNum
!= 0 && "Block was not numbered properly");
2077 unsigned long DominateeNum
= BlockNumbering
.lookup(Dominatee
);
2078 assert(DominateeNum
!= 0 && "Block was not numbered properly");
2079 return DominatorNum
< DominateeNum
;
2082 bool MemorySSA::dominates(const MemoryAccess
*Dominator
,
2083 const MemoryAccess
*Dominatee
) const {
2084 if (Dominator
== Dominatee
)
2087 if (isLiveOnEntryDef(Dominatee
))
2090 if (Dominator
->getBlock() != Dominatee
->getBlock())
2091 return DT
->dominates(Dominator
->getBlock(), Dominatee
->getBlock());
2092 return locallyDominates(Dominator
, Dominatee
);
2095 bool MemorySSA::dominates(const MemoryAccess
*Dominator
,
2096 const Use
&Dominatee
) const {
2097 if (MemoryPhi
*MP
= dyn_cast
<MemoryPhi
>(Dominatee
.getUser())) {
2098 BasicBlock
*UseBB
= MP
->getIncomingBlock(Dominatee
);
2099 // The def must dominate the incoming block of the phi.
2100 if (UseBB
!= Dominator
->getBlock())
2101 return DT
->dominates(Dominator
->getBlock(), UseBB
);
2102 // If the UseBB and the DefBB are the same, compare locally.
2103 return locallyDominates(Dominator
, cast
<MemoryAccess
>(Dominatee
));
2105 // If it's not a PHI node use, the normal dominates can already handle it.
2106 return dominates(Dominator
, cast
<MemoryAccess
>(Dominatee
.getUser()));
2109 const static char LiveOnEntryStr
[] = "liveOnEntry";
2111 void MemoryAccess::print(raw_ostream
&OS
) const {
2112 switch (getValueID()) {
2113 case MemoryPhiVal
: return static_cast<const MemoryPhi
*>(this)->print(OS
);
2114 case MemoryDefVal
: return static_cast<const MemoryDef
*>(this)->print(OS
);
2115 case MemoryUseVal
: return static_cast<const MemoryUse
*>(this)->print(OS
);
2117 llvm_unreachable("invalid value id");
2120 void MemoryDef::print(raw_ostream
&OS
) const {
2121 MemoryAccess
*UO
= getDefiningAccess();
2123 auto printID
= [&OS
](MemoryAccess
*A
) {
2124 if (A
&& A
->getID())
2127 OS
<< LiveOnEntryStr
;
2130 OS
<< getID() << " = MemoryDef(";
2134 if (isOptimized()) {
2136 printID(getOptimized());
2138 if (Optional
<AliasResult
> AR
= getOptimizedAccessType())
2143 void MemoryPhi::print(raw_ostream
&OS
) const {
2145 OS
<< getID() << " = MemoryPhi(";
2146 for (const auto &Op
: operands()) {
2147 BasicBlock
*BB
= getIncomingBlock(Op
);
2148 MemoryAccess
*MA
= cast
<MemoryAccess
>(Op
);
2156 OS
<< BB
->getName();
2158 BB
->printAsOperand(OS
, false);
2160 if (unsigned ID
= MA
->getID())
2163 OS
<< LiveOnEntryStr
;
2169 void MemoryUse::print(raw_ostream
&OS
) const {
2170 MemoryAccess
*UO
= getDefiningAccess();
2172 if (UO
&& UO
->getID())
2175 OS
<< LiveOnEntryStr
;
2178 if (Optional
<AliasResult
> AR
= getOptimizedAccessType())
2182 void MemoryAccess::dump() const {
2183 // Cannot completely remove virtual function even in release mode.
2184 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2190 char MemorySSAPrinterLegacyPass::ID
= 0;
2192 MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID
) {
2193 initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry());
2196 void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage
&AU
) const {
2197 AU
.setPreservesAll();
2198 AU
.addRequired
<MemorySSAWrapperPass
>();
2201 bool MemorySSAPrinterLegacyPass::runOnFunction(Function
&F
) {
2202 auto &MSSA
= getAnalysis
<MemorySSAWrapperPass
>().getMSSA();
2204 if (VerifyMemorySSA
)
2205 MSSA
.verifyMemorySSA();
2209 AnalysisKey
MemorySSAAnalysis::Key
;
2211 MemorySSAAnalysis::Result
MemorySSAAnalysis::run(Function
&F
,
2212 FunctionAnalysisManager
&AM
) {
2213 auto &DT
= AM
.getResult
<DominatorTreeAnalysis
>(F
);
2214 auto &AA
= AM
.getResult
<AAManager
>(F
);
2215 return MemorySSAAnalysis::Result(llvm::make_unique
<MemorySSA
>(F
, &AA
, &DT
));
2218 bool MemorySSAAnalysis::Result::invalidate(
2219 Function
&F
, const PreservedAnalyses
&PA
,
2220 FunctionAnalysisManager::Invalidator
&Inv
) {
2221 auto PAC
= PA
.getChecker
<MemorySSAAnalysis
>();
2222 return !(PAC
.preserved() || PAC
.preservedSet
<AllAnalysesOn
<Function
>>()) ||
2223 Inv
.invalidate
<AAManager
>(F
, PA
) ||
2224 Inv
.invalidate
<DominatorTreeAnalysis
>(F
, PA
);
2227 PreservedAnalyses
MemorySSAPrinterPass::run(Function
&F
,
2228 FunctionAnalysisManager
&AM
) {
2229 OS
<< "MemorySSA for function: " << F
.getName() << "\n";
2230 AM
.getResult
<MemorySSAAnalysis
>(F
).getMSSA().print(OS
);
2232 return PreservedAnalyses::all();
2235 PreservedAnalyses
MemorySSAVerifierPass::run(Function
&F
,
2236 FunctionAnalysisManager
&AM
) {
2237 AM
.getResult
<MemorySSAAnalysis
>(F
).getMSSA().verifyMemorySSA();
2239 return PreservedAnalyses::all();
2242 char MemorySSAWrapperPass::ID
= 0;
2244 MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID
) {
2245 initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry());
2248 void MemorySSAWrapperPass::releaseMemory() { MSSA
.reset(); }
2250 void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage
&AU
) const {
2251 AU
.setPreservesAll();
2252 AU
.addRequiredTransitive
<DominatorTreeWrapperPass
>();
2253 AU
.addRequiredTransitive
<AAResultsWrapperPass
>();
2256 bool MemorySSAWrapperPass::runOnFunction(Function
&F
) {
2257 auto &DT
= getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
2258 auto &AA
= getAnalysis
<AAResultsWrapperPass
>().getAAResults();
2259 MSSA
.reset(new MemorySSA(F
, &AA
, &DT
));
2263 void MemorySSAWrapperPass::verifyAnalysis() const { MSSA
->verifyMemorySSA(); }
2265 void MemorySSAWrapperPass::print(raw_ostream
&OS
, const Module
*M
) const {
2269 MemorySSAWalker::MemorySSAWalker(MemorySSA
*M
) : MSSA(M
) {}
2271 /// Walk the use-def chains starting at \p StartingAccess and find
2272 /// the MemoryAccess that actually clobbers Loc.
2274 /// \returns our clobbering memory access
2275 template <typename AliasAnalysisType
>
2277 MemorySSA::ClobberWalkerBase
<AliasAnalysisType
>::getClobberingMemoryAccessBase(
2278 MemoryAccess
*StartingAccess
, const MemoryLocation
&Loc
,
2279 unsigned &UpwardWalkLimit
) {
2280 if (isa
<MemoryPhi
>(StartingAccess
))
2281 return StartingAccess
;
2283 auto *StartingUseOrDef
= cast
<MemoryUseOrDef
>(StartingAccess
);
2284 if (MSSA
->isLiveOnEntryDef(StartingUseOrDef
))
2285 return StartingUseOrDef
;
2287 Instruction
*I
= StartingUseOrDef
->getMemoryInst();
2289 // Conservatively, fences are always clobbers, so don't perform the walk if we
2291 if (!isa
<CallBase
>(I
) && I
->isFenceLike())
2292 return StartingUseOrDef
;
2294 UpwardsMemoryQuery Q
;
2295 Q
.OriginalAccess
= StartingUseOrDef
;
2296 Q
.StartingLoc
= Loc
;
2300 // Unlike the other function, do not walk to the def of a def, because we are
2301 // handed something we already believe is the clobbering access.
2302 // We never set SkipSelf to true in Q in this method.
2303 MemoryAccess
*DefiningAccess
= isa
<MemoryUse
>(StartingUseOrDef
)
2304 ? StartingUseOrDef
->getDefiningAccess()
2307 MemoryAccess
*Clobber
=
2308 Walker
.findClobber(DefiningAccess
, Q
, UpwardWalkLimit
);
2309 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I
<< " is ");
2310 LLVM_DEBUG(dbgs() << *StartingUseOrDef
<< "\n");
2311 LLVM_DEBUG(dbgs() << "Final Memory SSA clobber for " << *I
<< " is ");
2312 LLVM_DEBUG(dbgs() << *Clobber
<< "\n");
2316 template <typename AliasAnalysisType
>
2318 MemorySSA::ClobberWalkerBase
<AliasAnalysisType
>::getClobberingMemoryAccessBase(
2319 MemoryAccess
*MA
, unsigned &UpwardWalkLimit
, bool SkipSelf
) {
2320 auto *StartingAccess
= dyn_cast
<MemoryUseOrDef
>(MA
);
2321 // If this is a MemoryPhi, we can't do anything.
2322 if (!StartingAccess
)
2325 bool IsOptimized
= false;
2327 // If this is an already optimized use or def, return the optimized result.
2328 // Note: Currently, we store the optimized def result in a separate field,
2329 // since we can't use the defining access.
2330 if (StartingAccess
->isOptimized()) {
2331 if (!SkipSelf
|| !isa
<MemoryDef
>(StartingAccess
))
2332 return StartingAccess
->getOptimized();
2336 const Instruction
*I
= StartingAccess
->getMemoryInst();
2337 // We can't sanely do anything with a fence, since they conservatively clobber
2338 // all memory, and have no locations to get pointers from to try to
2340 if (!isa
<CallBase
>(I
) && I
->isFenceLike())
2341 return StartingAccess
;
2343 UpwardsMemoryQuery
Q(I
, StartingAccess
);
2345 if (isUseTriviallyOptimizableToLiveOnEntry(*Walker
.getAA(), I
)) {
2346 MemoryAccess
*LiveOnEntry
= MSSA
->getLiveOnEntryDef();
2347 StartingAccess
->setOptimized(LiveOnEntry
);
2348 StartingAccess
->setOptimizedAccessType(None
);
2352 MemoryAccess
*OptimizedAccess
;
2354 // Start with the thing we already think clobbers this location
2355 MemoryAccess
*DefiningAccess
= StartingAccess
->getDefiningAccess();
2357 // At this point, DefiningAccess may be the live on entry def.
2358 // If it is, we will not get a better result.
2359 if (MSSA
->isLiveOnEntryDef(DefiningAccess
)) {
2360 StartingAccess
->setOptimized(DefiningAccess
);
2361 StartingAccess
->setOptimizedAccessType(None
);
2362 return DefiningAccess
;
2365 OptimizedAccess
= Walker
.findClobber(DefiningAccess
, Q
, UpwardWalkLimit
);
2366 StartingAccess
->setOptimized(OptimizedAccess
);
2367 if (MSSA
->isLiveOnEntryDef(OptimizedAccess
))
2368 StartingAccess
->setOptimizedAccessType(None
);
2369 else if (Q
.AR
== MustAlias
)
2370 StartingAccess
->setOptimizedAccessType(MustAlias
);
2372 OptimizedAccess
= StartingAccess
->getOptimized();
2374 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I
<< " is ");
2375 LLVM_DEBUG(dbgs() << *StartingAccess
<< "\n");
2376 LLVM_DEBUG(dbgs() << "Optimized Memory SSA clobber for " << *I
<< " is ");
2377 LLVM_DEBUG(dbgs() << *OptimizedAccess
<< "\n");
2379 MemoryAccess
*Result
;
2380 if (SkipSelf
&& isa
<MemoryPhi
>(OptimizedAccess
) &&
2381 isa
<MemoryDef
>(StartingAccess
) && UpwardWalkLimit
) {
2382 assert(isa
<MemoryDef
>(Q
.OriginalAccess
));
2383 Q
.SkipSelfAccess
= true;
2384 Result
= Walker
.findClobber(OptimizedAccess
, Q
, UpwardWalkLimit
);
2386 Result
= OptimizedAccess
;
2388 LLVM_DEBUG(dbgs() << "Result Memory SSA clobber [SkipSelf = " << SkipSelf
);
2389 LLVM_DEBUG(dbgs() << "] for " << *I
<< " is " << *Result
<< "\n");
2395 DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess
*MA
) {
2396 if (auto *Use
= dyn_cast
<MemoryUseOrDef
>(MA
))
2397 return Use
->getDefiningAccess();
2401 MemoryAccess
*DoNothingMemorySSAWalker::getClobberingMemoryAccess(
2402 MemoryAccess
*StartingAccess
, const MemoryLocation
&) {
2403 if (auto *Use
= dyn_cast
<MemoryUseOrDef
>(StartingAccess
))
2404 return Use
->getDefiningAccess();
2405 return StartingAccess
;
2408 void MemoryPhi::deleteMe(DerivedUser
*Self
) {
2409 delete static_cast<MemoryPhi
*>(Self
);
2412 void MemoryDef::deleteMe(DerivedUser
*Self
) {
2413 delete static_cast<MemoryDef
*>(Self
);
2416 void MemoryUse::deleteMe(DerivedUser
*Self
) {
2417 delete static_cast<MemoryUse
*>(Self
);