[llvm-objcopy] - Reimplement strip-dwo-groups.test to stop using the precompiled...
[llvm-complete.git] / lib / CodeGen / CodeGenPrepare.cpp
blob52b4bbea012bc5ad033e2da376ac70fc34319293
1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass munges the code in the input function to better prepare it for
10 // SelectionDAG-based code generation. This works around limitations in it's
11 // basic-block-at-a-time approach. It should eventually be removed.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/MapVector.h"
19 #include "llvm/ADT/PointerIntPair.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/BlockFrequencyInfo.h"
25 #include "llvm/Analysis/BranchProbabilityInfo.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/InstructionSimplify.h"
28 #include "llvm/Analysis/LoopInfo.h"
29 #include "llvm/Analysis/MemoryBuiltins.h"
30 #include "llvm/Analysis/ProfileSummaryInfo.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Analysis/TargetTransformInfo.h"
33 #include "llvm/Transforms/Utils/Local.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/Analysis/VectorUtils.h"
36 #include "llvm/CodeGen/Analysis.h"
37 #include "llvm/CodeGen/ISDOpcodes.h"
38 #include "llvm/CodeGen/SelectionDAGNodes.h"
39 #include "llvm/CodeGen/TargetLowering.h"
40 #include "llvm/CodeGen/TargetPassConfig.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/CodeGen/ValueTypes.h"
43 #include "llvm/Config/llvm-config.h"
44 #include "llvm/IR/Argument.h"
45 #include "llvm/IR/Attributes.h"
46 #include "llvm/IR/BasicBlock.h"
47 #include "llvm/IR/CallSite.h"
48 #include "llvm/IR/Constant.h"
49 #include "llvm/IR/Constants.h"
50 #include "llvm/IR/DataLayout.h"
51 #include "llvm/IR/DerivedTypes.h"
52 #include "llvm/IR/Dominators.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GetElementPtrTypeIterator.h"
55 #include "llvm/IR/GlobalValue.h"
56 #include "llvm/IR/GlobalVariable.h"
57 #include "llvm/IR/IRBuilder.h"
58 #include "llvm/IR/InlineAsm.h"
59 #include "llvm/IR/InstrTypes.h"
60 #include "llvm/IR/Instruction.h"
61 #include "llvm/IR/Instructions.h"
62 #include "llvm/IR/IntrinsicInst.h"
63 #include "llvm/IR/Intrinsics.h"
64 #include "llvm/IR/LLVMContext.h"
65 #include "llvm/IR/MDBuilder.h"
66 #include "llvm/IR/Module.h"
67 #include "llvm/IR/Operator.h"
68 #include "llvm/IR/PatternMatch.h"
69 #include "llvm/IR/Statepoint.h"
70 #include "llvm/IR/Type.h"
71 #include "llvm/IR/Use.h"
72 #include "llvm/IR/User.h"
73 #include "llvm/IR/Value.h"
74 #include "llvm/IR/ValueHandle.h"
75 #include "llvm/IR/ValueMap.h"
76 #include "llvm/Pass.h"
77 #include "llvm/Support/BlockFrequency.h"
78 #include "llvm/Support/BranchProbability.h"
79 #include "llvm/Support/Casting.h"
80 #include "llvm/Support/CommandLine.h"
81 #include "llvm/Support/Compiler.h"
82 #include "llvm/Support/Debug.h"
83 #include "llvm/Support/ErrorHandling.h"
84 #include "llvm/Support/MachineValueType.h"
85 #include "llvm/Support/MathExtras.h"
86 #include "llvm/Support/raw_ostream.h"
87 #include "llvm/Target/TargetMachine.h"
88 #include "llvm/Target/TargetOptions.h"
89 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
90 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
91 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
92 #include <algorithm>
93 #include <cassert>
94 #include <cstdint>
95 #include <iterator>
96 #include <limits>
97 #include <memory>
98 #include <utility>
99 #include <vector>
101 using namespace llvm;
102 using namespace llvm::PatternMatch;
104 #define DEBUG_TYPE "codegenprepare"
106 STATISTIC(NumBlocksElim, "Number of blocks eliminated");
107 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated");
108 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts");
109 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
110 "sunken Cmps");
111 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
112 "of sunken Casts");
113 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
114 "computations were sunk");
115 STATISTIC(NumMemoryInstsPhiCreated,
116 "Number of phis created when address "
117 "computations were sunk to memory instructions");
118 STATISTIC(NumMemoryInstsSelectCreated,
119 "Number of select created when address "
120 "computations were sunk to memory instructions");
121 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads");
122 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized");
123 STATISTIC(NumAndsAdded,
124 "Number of and mask instructions added to form ext loads");
125 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized");
126 STATISTIC(NumRetsDup, "Number of return instructions duplicated");
127 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
128 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
129 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed");
131 static cl::opt<bool> DisableBranchOpts(
132 "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
133 cl::desc("Disable branch optimizations in CodeGenPrepare"));
135 static cl::opt<bool>
136 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false),
137 cl::desc("Disable GC optimizations in CodeGenPrepare"));
139 static cl::opt<bool> DisableSelectToBranch(
140 "disable-cgp-select2branch", cl::Hidden, cl::init(false),
141 cl::desc("Disable select to branch conversion."));
143 static cl::opt<bool> AddrSinkUsingGEPs(
144 "addr-sink-using-gep", cl::Hidden, cl::init(true),
145 cl::desc("Address sinking in CGP using GEPs."));
147 static cl::opt<bool> EnableAndCmpSinking(
148 "enable-andcmp-sinking", cl::Hidden, cl::init(true),
149 cl::desc("Enable sinkinig and/cmp into branches."));
151 static cl::opt<bool> DisableStoreExtract(
152 "disable-cgp-store-extract", cl::Hidden, cl::init(false),
153 cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));
155 static cl::opt<bool> StressStoreExtract(
156 "stress-cgp-store-extract", cl::Hidden, cl::init(false),
157 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));
159 static cl::opt<bool> DisableExtLdPromotion(
160 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
161 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in "
162 "CodeGenPrepare"));
164 static cl::opt<bool> StressExtLdPromotion(
165 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
166 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) "
167 "optimization in CodeGenPrepare"));
169 static cl::opt<bool> DisablePreheaderProtect(
170 "disable-preheader-prot", cl::Hidden, cl::init(false),
171 cl::desc("Disable protection against removing loop preheaders"));
173 static cl::opt<bool> ProfileGuidedSectionPrefix(
174 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore,
175 cl::desc("Use profile info to add section prefix for hot/cold functions"));
177 static cl::opt<unsigned> FreqRatioToSkipMerge(
178 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2),
179 cl::desc("Skip merging empty blocks if (frequency of empty block) / "
180 "(frequency of destination block) is greater than this ratio"));
182 static cl::opt<bool> ForceSplitStore(
183 "force-split-store", cl::Hidden, cl::init(false),
184 cl::desc("Force store splitting no matter what the target query says."));
186 static cl::opt<bool>
187 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden,
188 cl::desc("Enable merging of redundant sexts when one is dominating"
189 " the other."), cl::init(true));
191 static cl::opt<bool> DisableComplexAddrModes(
192 "disable-complex-addr-modes", cl::Hidden, cl::init(false),
193 cl::desc("Disables combining addressing modes with different parts "
194 "in optimizeMemoryInst."));
196 static cl::opt<bool>
197 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false),
198 cl::desc("Allow creation of Phis in Address sinking."));
200 static cl::opt<bool>
201 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true),
202 cl::desc("Allow creation of selects in Address sinking."));
204 static cl::opt<bool> AddrSinkCombineBaseReg(
205 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true),
206 cl::desc("Allow combining of BaseReg field in Address sinking."));
208 static cl::opt<bool> AddrSinkCombineBaseGV(
209 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true),
210 cl::desc("Allow combining of BaseGV field in Address sinking."));
212 static cl::opt<bool> AddrSinkCombineBaseOffs(
213 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true),
214 cl::desc("Allow combining of BaseOffs field in Address sinking."));
216 static cl::opt<bool> AddrSinkCombineScaledReg(
217 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true),
218 cl::desc("Allow combining of ScaledReg field in Address sinking."));
220 static cl::opt<bool>
221 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden,
222 cl::init(true),
223 cl::desc("Enable splitting large offset of GEP."));
225 namespace {
227 enum ExtType {
228 ZeroExtension, // Zero extension has been seen.
229 SignExtension, // Sign extension has been seen.
230 BothExtension // This extension type is used if we saw sext after
231 // ZeroExtension had been set, or if we saw zext after
232 // SignExtension had been set. It makes the type
233 // information of a promoted instruction invalid.
236 using SetOfInstrs = SmallPtrSet<Instruction *, 16>;
237 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>;
238 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>;
239 using SExts = SmallVector<Instruction *, 16>;
240 using ValueToSExts = DenseMap<Value *, SExts>;
242 class TypePromotionTransaction;
244 class CodeGenPrepare : public FunctionPass {
245 const TargetMachine *TM = nullptr;
246 const TargetSubtargetInfo *SubtargetInfo;
247 const TargetLowering *TLI = nullptr;
248 const TargetRegisterInfo *TRI;
249 const TargetTransformInfo *TTI = nullptr;
250 const TargetLibraryInfo *TLInfo;
251 const LoopInfo *LI;
252 std::unique_ptr<BlockFrequencyInfo> BFI;
253 std::unique_ptr<BranchProbabilityInfo> BPI;
255 /// As we scan instructions optimizing them, this is the next instruction
256 /// to optimize. Transforms that can invalidate this should update it.
257 BasicBlock::iterator CurInstIterator;
259 /// Keeps track of non-local addresses that have been sunk into a block.
260 /// This allows us to avoid inserting duplicate code for blocks with
261 /// multiple load/stores of the same address. The usage of WeakTrackingVH
262 /// enables SunkAddrs to be treated as a cache whose entries can be
263 /// invalidated if a sunken address computation has been erased.
264 ValueMap<Value*, WeakTrackingVH> SunkAddrs;
266 /// Keeps track of all instructions inserted for the current function.
267 SetOfInstrs InsertedInsts;
269 /// Keeps track of the type of the related instruction before their
270 /// promotion for the current function.
271 InstrToOrigTy PromotedInsts;
273 /// Keep track of instructions removed during promotion.
274 SetOfInstrs RemovedInsts;
276 /// Keep track of sext chains based on their initial value.
277 DenseMap<Value *, Instruction *> SeenChainsForSExt;
279 /// Keep track of GEPs accessing the same data structures such as structs or
280 /// arrays that are candidates to be split later because of their large
281 /// size.
282 MapVector<
283 AssertingVH<Value>,
284 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>>
285 LargeOffsetGEPMap;
287 /// Keep track of new GEP base after splitting the GEPs having large offset.
288 SmallSet<AssertingVH<Value>, 2> NewGEPBases;
290 /// Map serial numbers to Large offset GEPs.
291 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID;
293 /// Keep track of SExt promoted.
294 ValueToSExts ValToSExtendedUses;
296 /// True if optimizing for size.
297 bool OptSize;
299 /// DataLayout for the Function being processed.
300 const DataLayout *DL = nullptr;
302 /// Building the dominator tree can be expensive, so we only build it
303 /// lazily and update it when required.
304 std::unique_ptr<DominatorTree> DT;
306 public:
307 static char ID; // Pass identification, replacement for typeid
309 CodeGenPrepare() : FunctionPass(ID) {
310 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
313 bool runOnFunction(Function &F) override;
315 StringRef getPassName() const override { return "CodeGen Prepare"; }
317 void getAnalysisUsage(AnalysisUsage &AU) const override {
318 // FIXME: When we can selectively preserve passes, preserve the domtree.
319 AU.addRequired<ProfileSummaryInfoWrapperPass>();
320 AU.addRequired<TargetLibraryInfoWrapperPass>();
321 AU.addRequired<TargetTransformInfoWrapperPass>();
322 AU.addRequired<LoopInfoWrapperPass>();
325 private:
326 template <typename F>
327 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) {
328 // Substituting can cause recursive simplifications, which can invalidate
329 // our iterator. Use a WeakTrackingVH to hold onto it in case this
330 // happens.
331 Value *CurValue = &*CurInstIterator;
332 WeakTrackingVH IterHandle(CurValue);
334 f();
336 // If the iterator instruction was recursively deleted, start over at the
337 // start of the block.
338 if (IterHandle != CurValue) {
339 CurInstIterator = BB->begin();
340 SunkAddrs.clear();
344 // Get the DominatorTree, building if necessary.
345 DominatorTree &getDT(Function &F) {
346 if (!DT)
347 DT = llvm::make_unique<DominatorTree>(F);
348 return *DT;
351 bool eliminateFallThrough(Function &F);
352 bool eliminateMostlyEmptyBlocks(Function &F);
353 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB);
354 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
355 void eliminateMostlyEmptyBlock(BasicBlock *BB);
356 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB,
357 bool isPreheader);
358 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT);
359 bool optimizeInst(Instruction *I, bool &ModifiedDT);
360 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
361 Type *AccessTy, unsigned AddrSpace);
362 bool optimizeInlineAsmInst(CallInst *CS);
363 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT);
364 bool optimizeExt(Instruction *&I);
365 bool optimizeExtUses(Instruction *I);
366 bool optimizeLoadExt(LoadInst *Load);
367 bool optimizeShiftInst(BinaryOperator *BO);
368 bool optimizeSelectInst(SelectInst *SI);
369 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI);
370 bool optimizeSwitchInst(SwitchInst *SI);
371 bool optimizeExtractElementInst(Instruction *Inst);
372 bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT);
373 bool placeDbgValues(Function &F);
374 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts,
375 LoadInst *&LI, Instruction *&Inst, bool HasPromoted);
376 bool tryToPromoteExts(TypePromotionTransaction &TPT,
377 const SmallVectorImpl<Instruction *> &Exts,
378 SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
379 unsigned CreatedInstsCost = 0);
380 bool mergeSExts(Function &F);
381 bool splitLargeGEPOffsets();
382 bool performAddressTypePromotion(
383 Instruction *&Inst,
384 bool AllowPromotionWithoutCommonHeader,
385 bool HasPromoted, TypePromotionTransaction &TPT,
386 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts);
387 bool splitBranchCondition(Function &F, bool &ModifiedDT);
388 bool simplifyOffsetableRelocate(Instruction &I);
390 bool tryToSinkFreeOperands(Instruction *I);
391 bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, CmpInst *Cmp,
392 Intrinsic::ID IID);
393 bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT);
394 bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT);
395 bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT);
398 } // end anonymous namespace
400 char CodeGenPrepare::ID = 0;
402 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE,
403 "Optimize for code generation", false, false)
404 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
405 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE,
406 "Optimize for code generation", false, false)
408 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); }
410 bool CodeGenPrepare::runOnFunction(Function &F) {
411 if (skipFunction(F))
412 return false;
414 DL = &F.getParent()->getDataLayout();
416 bool EverMadeChange = false;
417 // Clear per function information.
418 InsertedInsts.clear();
419 PromotedInsts.clear();
421 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) {
422 TM = &TPC->getTM<TargetMachine>();
423 SubtargetInfo = TM->getSubtargetImpl(F);
424 TLI = SubtargetInfo->getTargetLowering();
425 TRI = SubtargetInfo->getRegisterInfo();
427 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
428 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
429 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
430 BPI.reset(new BranchProbabilityInfo(F, *LI));
431 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI));
432 OptSize = F.hasOptSize();
434 ProfileSummaryInfo *PSI =
435 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
436 if (ProfileGuidedSectionPrefix) {
437 if (PSI->isFunctionHotInCallGraph(&F, *BFI))
438 F.setSectionPrefix(".hot");
439 else if (PSI->isFunctionColdInCallGraph(&F, *BFI))
440 F.setSectionPrefix(".unlikely");
443 /// This optimization identifies DIV instructions that can be
444 /// profitably bypassed and carried out with a shorter, faster divide.
445 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI &&
446 TLI->isSlowDivBypassed()) {
447 const DenseMap<unsigned int, unsigned int> &BypassWidths =
448 TLI->getBypassSlowDivWidths();
449 BasicBlock* BB = &*F.begin();
450 while (BB != nullptr) {
451 // bypassSlowDivision may create new BBs, but we don't want to reapply the
452 // optimization to those blocks.
453 BasicBlock* Next = BB->getNextNode();
454 EverMadeChange |= bypassSlowDivision(BB, BypassWidths);
455 BB = Next;
459 // Eliminate blocks that contain only PHI nodes and an
460 // unconditional branch.
461 EverMadeChange |= eliminateMostlyEmptyBlocks(F);
463 bool ModifiedDT = false;
464 if (!DisableBranchOpts)
465 EverMadeChange |= splitBranchCondition(F, ModifiedDT);
467 // Split some critical edges where one of the sources is an indirect branch,
468 // to help generate sane code for PHIs involving such edges.
469 EverMadeChange |= SplitIndirectBrCriticalEdges(F);
471 bool MadeChange = true;
472 while (MadeChange) {
473 MadeChange = false;
474 DT.reset();
475 for (Function::iterator I = F.begin(); I != F.end(); ) {
476 BasicBlock *BB = &*I++;
477 bool ModifiedDTOnIteration = false;
478 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration);
480 // Restart BB iteration if the dominator tree of the Function was changed
481 if (ModifiedDTOnIteration)
482 break;
484 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty())
485 MadeChange |= mergeSExts(F);
486 if (!LargeOffsetGEPMap.empty())
487 MadeChange |= splitLargeGEPOffsets();
489 // Really free removed instructions during promotion.
490 for (Instruction *I : RemovedInsts)
491 I->deleteValue();
493 EverMadeChange |= MadeChange;
494 SeenChainsForSExt.clear();
495 ValToSExtendedUses.clear();
496 RemovedInsts.clear();
497 LargeOffsetGEPMap.clear();
498 LargeOffsetGEPID.clear();
501 SunkAddrs.clear();
503 if (!DisableBranchOpts) {
504 MadeChange = false;
505 // Use a set vector to get deterministic iteration order. The order the
506 // blocks are removed may affect whether or not PHI nodes in successors
507 // are removed.
508 SmallSetVector<BasicBlock*, 8> WorkList;
509 for (BasicBlock &BB : F) {
510 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB));
511 MadeChange |= ConstantFoldTerminator(&BB, true);
512 if (!MadeChange) continue;
514 for (SmallVectorImpl<BasicBlock*>::iterator
515 II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
516 if (pred_begin(*II) == pred_end(*II))
517 WorkList.insert(*II);
520 // Delete the dead blocks and any of their dead successors.
521 MadeChange |= !WorkList.empty();
522 while (!WorkList.empty()) {
523 BasicBlock *BB = WorkList.pop_back_val();
524 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
526 DeleteDeadBlock(BB);
528 for (SmallVectorImpl<BasicBlock*>::iterator
529 II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
530 if (pred_begin(*II) == pred_end(*II))
531 WorkList.insert(*II);
534 // Merge pairs of basic blocks with unconditional branches, connected by
535 // a single edge.
536 if (EverMadeChange || MadeChange)
537 MadeChange |= eliminateFallThrough(F);
539 EverMadeChange |= MadeChange;
542 if (!DisableGCOpts) {
543 SmallVector<Instruction *, 2> Statepoints;
544 for (BasicBlock &BB : F)
545 for (Instruction &I : BB)
546 if (isStatepoint(I))
547 Statepoints.push_back(&I);
548 for (auto &I : Statepoints)
549 EverMadeChange |= simplifyOffsetableRelocate(*I);
552 // Do this last to clean up use-before-def scenarios introduced by other
553 // preparatory transforms.
554 EverMadeChange |= placeDbgValues(F);
556 return EverMadeChange;
559 /// Merge basic blocks which are connected by a single edge, where one of the
560 /// basic blocks has a single successor pointing to the other basic block,
561 /// which has a single predecessor.
562 bool CodeGenPrepare::eliminateFallThrough(Function &F) {
563 bool Changed = false;
564 // Scan all of the blocks in the function, except for the entry block.
565 // Use a temporary array to avoid iterator being invalidated when
566 // deleting blocks.
567 SmallVector<WeakTrackingVH, 16> Blocks;
568 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end()))
569 Blocks.push_back(&Block);
571 for (auto &Block : Blocks) {
572 auto *BB = cast_or_null<BasicBlock>(Block);
573 if (!BB)
574 continue;
575 // If the destination block has a single pred, then this is a trivial
576 // edge, just collapse it.
577 BasicBlock *SinglePred = BB->getSinglePredecessor();
579 // Don't merge if BB's address is taken.
580 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue;
582 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
583 if (Term && !Term->isConditional()) {
584 Changed = true;
585 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n");
587 // Merge BB into SinglePred and delete it.
588 MergeBlockIntoPredecessor(BB);
591 return Changed;
594 /// Find a destination block from BB if BB is mergeable empty block.
595 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) {
596 // If this block doesn't end with an uncond branch, ignore it.
597 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
598 if (!BI || !BI->isUnconditional())
599 return nullptr;
601 // If the instruction before the branch (skipping debug info) isn't a phi
602 // node, then other stuff is happening here.
603 BasicBlock::iterator BBI = BI->getIterator();
604 if (BBI != BB->begin()) {
605 --BBI;
606 while (isa<DbgInfoIntrinsic>(BBI)) {
607 if (BBI == BB->begin())
608 break;
609 --BBI;
611 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
612 return nullptr;
615 // Do not break infinite loops.
616 BasicBlock *DestBB = BI->getSuccessor(0);
617 if (DestBB == BB)
618 return nullptr;
620 if (!canMergeBlocks(BB, DestBB))
621 DestBB = nullptr;
623 return DestBB;
626 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an
627 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split
628 /// edges in ways that are non-optimal for isel. Start by eliminating these
629 /// blocks so we can split them the way we want them.
630 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) {
631 SmallPtrSet<BasicBlock *, 16> Preheaders;
632 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end());
633 while (!LoopList.empty()) {
634 Loop *L = LoopList.pop_back_val();
635 LoopList.insert(LoopList.end(), L->begin(), L->end());
636 if (BasicBlock *Preheader = L->getLoopPreheader())
637 Preheaders.insert(Preheader);
640 bool MadeChange = false;
641 // Copy blocks into a temporary array to avoid iterator invalidation issues
642 // as we remove them.
643 // Note that this intentionally skips the entry block.
644 SmallVector<WeakTrackingVH, 16> Blocks;
645 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end()))
646 Blocks.push_back(&Block);
648 for (auto &Block : Blocks) {
649 BasicBlock *BB = cast_or_null<BasicBlock>(Block);
650 if (!BB)
651 continue;
652 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB);
653 if (!DestBB ||
654 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB)))
655 continue;
657 eliminateMostlyEmptyBlock(BB);
658 MadeChange = true;
660 return MadeChange;
663 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB,
664 BasicBlock *DestBB,
665 bool isPreheader) {
666 // Do not delete loop preheaders if doing so would create a critical edge.
667 // Loop preheaders can be good locations to spill registers. If the
668 // preheader is deleted and we create a critical edge, registers may be
669 // spilled in the loop body instead.
670 if (!DisablePreheaderProtect && isPreheader &&
671 !(BB->getSinglePredecessor() &&
672 BB->getSinglePredecessor()->getSingleSuccessor()))
673 return false;
675 // Skip merging if the block's successor is also a successor to any callbr
676 // that leads to this block.
677 // FIXME: Is this really needed? Is this a correctness issue?
678 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
679 if (auto *CBI = dyn_cast<CallBrInst>((*PI)->getTerminator()))
680 for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i)
681 if (DestBB == CBI->getSuccessor(i))
682 return false;
685 // Try to skip merging if the unique predecessor of BB is terminated by a
686 // switch or indirect branch instruction, and BB is used as an incoming block
687 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to
688 // add COPY instructions in the predecessor of BB instead of BB (if it is not
689 // merged). Note that the critical edge created by merging such blocks wont be
690 // split in MachineSink because the jump table is not analyzable. By keeping
691 // such empty block (BB), ISel will place COPY instructions in BB, not in the
692 // predecessor of BB.
693 BasicBlock *Pred = BB->getUniquePredecessor();
694 if (!Pred ||
695 !(isa<SwitchInst>(Pred->getTerminator()) ||
696 isa<IndirectBrInst>(Pred->getTerminator())))
697 return true;
699 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg())
700 return true;
702 // We use a simple cost heuristic which determine skipping merging is
703 // profitable if the cost of skipping merging is less than the cost of
704 // merging : Cost(skipping merging) < Cost(merging BB), where the
705 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and
706 // the Cost(merging BB) is Freq(Pred) * Cost(Copy).
707 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to :
708 // Freq(Pred) / Freq(BB) > 2.
709 // Note that if there are multiple empty blocks sharing the same incoming
710 // value for the PHIs in the DestBB, we consider them together. In such
711 // case, Cost(merging BB) will be the sum of their frequencies.
713 if (!isa<PHINode>(DestBB->begin()))
714 return true;
716 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs;
718 // Find all other incoming blocks from which incoming values of all PHIs in
719 // DestBB are the same as the ones from BB.
720 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E;
721 ++PI) {
722 BasicBlock *DestBBPred = *PI;
723 if (DestBBPred == BB)
724 continue;
726 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) {
727 return DestPN.getIncomingValueForBlock(BB) ==
728 DestPN.getIncomingValueForBlock(DestBBPred);
730 SameIncomingValueBBs.insert(DestBBPred);
733 // See if all BB's incoming values are same as the value from Pred. In this
734 // case, no reason to skip merging because COPYs are expected to be place in
735 // Pred already.
736 if (SameIncomingValueBBs.count(Pred))
737 return true;
739 BlockFrequency PredFreq = BFI->getBlockFreq(Pred);
740 BlockFrequency BBFreq = BFI->getBlockFreq(BB);
742 for (auto SameValueBB : SameIncomingValueBBs)
743 if (SameValueBB->getUniquePredecessor() == Pred &&
744 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB))
745 BBFreq += BFI->getBlockFreq(SameValueBB);
747 return PredFreq.getFrequency() <=
748 BBFreq.getFrequency() * FreqRatioToSkipMerge;
751 /// Return true if we can merge BB into DestBB if there is a single
752 /// unconditional branch between them, and BB contains no other non-phi
753 /// instructions.
754 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB,
755 const BasicBlock *DestBB) const {
756 // We only want to eliminate blocks whose phi nodes are used by phi nodes in
757 // the successor. If there are more complex condition (e.g. preheaders),
758 // don't mess around with them.
759 for (const PHINode &PN : BB->phis()) {
760 for (const User *U : PN.users()) {
761 const Instruction *UI = cast<Instruction>(U);
762 if (UI->getParent() != DestBB || !isa<PHINode>(UI))
763 return false;
764 // If User is inside DestBB block and it is a PHINode then check
765 // incoming value. If incoming value is not from BB then this is
766 // a complex condition (e.g. preheaders) we want to avoid here.
767 if (UI->getParent() == DestBB) {
768 if (const PHINode *UPN = dyn_cast<PHINode>(UI))
769 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
770 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
771 if (Insn && Insn->getParent() == BB &&
772 Insn->getParent() != UPN->getIncomingBlock(I))
773 return false;
779 // If BB and DestBB contain any common predecessors, then the phi nodes in BB
780 // and DestBB may have conflicting incoming values for the block. If so, we
781 // can't merge the block.
782 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
783 if (!DestBBPN) return true; // no conflict.
785 // Collect the preds of BB.
786 SmallPtrSet<const BasicBlock*, 16> BBPreds;
787 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
788 // It is faster to get preds from a PHI than with pred_iterator.
789 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
790 BBPreds.insert(BBPN->getIncomingBlock(i));
791 } else {
792 BBPreds.insert(pred_begin(BB), pred_end(BB));
795 // Walk the preds of DestBB.
796 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
797 BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
798 if (BBPreds.count(Pred)) { // Common predecessor?
799 for (const PHINode &PN : DestBB->phis()) {
800 const Value *V1 = PN.getIncomingValueForBlock(Pred);
801 const Value *V2 = PN.getIncomingValueForBlock(BB);
803 // If V2 is a phi node in BB, look up what the mapped value will be.
804 if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
805 if (V2PN->getParent() == BB)
806 V2 = V2PN->getIncomingValueForBlock(Pred);
808 // If there is a conflict, bail out.
809 if (V1 != V2) return false;
814 return true;
817 /// Eliminate a basic block that has only phi's and an unconditional branch in
818 /// it.
819 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) {
820 BranchInst *BI = cast<BranchInst>(BB->getTerminator());
821 BasicBlock *DestBB = BI->getSuccessor(0);
823 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n"
824 << *BB << *DestBB);
826 // If the destination block has a single pred, then this is a trivial edge,
827 // just collapse it.
828 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
829 if (SinglePred != DestBB) {
830 assert(SinglePred == BB &&
831 "Single predecessor not the same as predecessor");
832 // Merge DestBB into SinglePred/BB and delete it.
833 MergeBlockIntoPredecessor(DestBB);
834 // Note: BB(=SinglePred) will not be deleted on this path.
835 // DestBB(=its single successor) is the one that was deleted.
836 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n");
837 return;
841 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB
842 // to handle the new incoming edges it is about to have.
843 for (PHINode &PN : DestBB->phis()) {
844 // Remove the incoming value for BB, and remember it.
845 Value *InVal = PN.removeIncomingValue(BB, false);
847 // Two options: either the InVal is a phi node defined in BB or it is some
848 // value that dominates BB.
849 PHINode *InValPhi = dyn_cast<PHINode>(InVal);
850 if (InValPhi && InValPhi->getParent() == BB) {
851 // Add all of the input values of the input PHI as inputs of this phi.
852 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
853 PN.addIncoming(InValPhi->getIncomingValue(i),
854 InValPhi->getIncomingBlock(i));
855 } else {
856 // Otherwise, add one instance of the dominating value for each edge that
857 // we will be adding.
858 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
859 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
860 PN.addIncoming(InVal, BBPN->getIncomingBlock(i));
861 } else {
862 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
863 PN.addIncoming(InVal, *PI);
868 // The PHIs are now updated, change everything that refers to BB to use
869 // DestBB and remove BB.
870 BB->replaceAllUsesWith(DestBB);
871 BB->eraseFromParent();
872 ++NumBlocksElim;
874 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
877 // Computes a map of base pointer relocation instructions to corresponding
878 // derived pointer relocation instructions given a vector of all relocate calls
879 static void computeBaseDerivedRelocateMap(
880 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls,
881 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>>
882 &RelocateInstMap) {
883 // Collect information in two maps: one primarily for locating the base object
884 // while filling the second map; the second map is the final structure holding
885 // a mapping between Base and corresponding Derived relocate calls
886 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap;
887 for (auto *ThisRelocate : AllRelocateCalls) {
888 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(),
889 ThisRelocate->getDerivedPtrIndex());
890 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate));
892 for (auto &Item : RelocateIdxMap) {
893 std::pair<unsigned, unsigned> Key = Item.first;
894 if (Key.first == Key.second)
895 // Base relocation: nothing to insert
896 continue;
898 GCRelocateInst *I = Item.second;
899 auto BaseKey = std::make_pair(Key.first, Key.first);
901 // We're iterating over RelocateIdxMap so we cannot modify it.
902 auto MaybeBase = RelocateIdxMap.find(BaseKey);
903 if (MaybeBase == RelocateIdxMap.end())
904 // TODO: We might want to insert a new base object relocate and gep off
905 // that, if there are enough derived object relocates.
906 continue;
908 RelocateInstMap[MaybeBase->second].push_back(I);
912 // Accepts a GEP and extracts the operands into a vector provided they're all
913 // small integer constants
914 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP,
915 SmallVectorImpl<Value *> &OffsetV) {
916 for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
917 // Only accept small constant integer operands
918 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i));
919 if (!Op || Op->getZExtValue() > 20)
920 return false;
923 for (unsigned i = 1; i < GEP->getNumOperands(); i++)
924 OffsetV.push_back(GEP->getOperand(i));
925 return true;
928 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to
929 // replace, computes a replacement, and affects it.
930 static bool
931 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase,
932 const SmallVectorImpl<GCRelocateInst *> &Targets) {
933 bool MadeChange = false;
934 // We must ensure the relocation of derived pointer is defined after
935 // relocation of base pointer. If we find a relocation corresponding to base
936 // defined earlier than relocation of base then we move relocation of base
937 // right before found relocation. We consider only relocation in the same
938 // basic block as relocation of base. Relocations from other basic block will
939 // be skipped by optimization and we do not care about them.
940 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt();
941 &*R != RelocatedBase; ++R)
942 if (auto RI = dyn_cast<GCRelocateInst>(R))
943 if (RI->getStatepoint() == RelocatedBase->getStatepoint())
944 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) {
945 RelocatedBase->moveBefore(RI);
946 break;
949 for (GCRelocateInst *ToReplace : Targets) {
950 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() &&
951 "Not relocating a derived object of the original base object");
952 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) {
953 // A duplicate relocate call. TODO: coalesce duplicates.
954 continue;
957 if (RelocatedBase->getParent() != ToReplace->getParent()) {
958 // Base and derived relocates are in different basic blocks.
959 // In this case transform is only valid when base dominates derived
960 // relocate. However it would be too expensive to check dominance
961 // for each such relocate, so we skip the whole transformation.
962 continue;
965 Value *Base = ToReplace->getBasePtr();
966 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr());
967 if (!Derived || Derived->getPointerOperand() != Base)
968 continue;
970 SmallVector<Value *, 2> OffsetV;
971 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV))
972 continue;
974 // Create a Builder and replace the target callsite with a gep
975 assert(RelocatedBase->getNextNode() &&
976 "Should always have one since it's not a terminator");
978 // Insert after RelocatedBase
979 IRBuilder<> Builder(RelocatedBase->getNextNode());
980 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
982 // If gc_relocate does not match the actual type, cast it to the right type.
983 // In theory, there must be a bitcast after gc_relocate if the type does not
984 // match, and we should reuse it to get the derived pointer. But it could be
985 // cases like this:
986 // bb1:
987 // ...
988 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
989 // br label %merge
991 // bb2:
992 // ...
993 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
994 // br label %merge
996 // merge:
997 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ]
998 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)*
1000 // In this case, we can not find the bitcast any more. So we insert a new bitcast
1001 // no matter there is already one or not. In this way, we can handle all cases, and
1002 // the extra bitcast should be optimized away in later passes.
1003 Value *ActualRelocatedBase = RelocatedBase;
1004 if (RelocatedBase->getType() != Base->getType()) {
1005 ActualRelocatedBase =
1006 Builder.CreateBitCast(RelocatedBase, Base->getType());
1008 Value *Replacement = Builder.CreateGEP(
1009 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV));
1010 Replacement->takeName(ToReplace);
1011 // If the newly generated derived pointer's type does not match the original derived
1012 // pointer's type, cast the new derived pointer to match it. Same reasoning as above.
1013 Value *ActualReplacement = Replacement;
1014 if (Replacement->getType() != ToReplace->getType()) {
1015 ActualReplacement =
1016 Builder.CreateBitCast(Replacement, ToReplace->getType());
1018 ToReplace->replaceAllUsesWith(ActualReplacement);
1019 ToReplace->eraseFromParent();
1021 MadeChange = true;
1023 return MadeChange;
1026 // Turns this:
1028 // %base = ...
1029 // %ptr = gep %base + 15
1030 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1031 // %base' = relocate(%tok, i32 4, i32 4)
1032 // %ptr' = relocate(%tok, i32 4, i32 5)
1033 // %val = load %ptr'
1035 // into this:
1037 // %base = ...
1038 // %ptr = gep %base + 15
1039 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1040 // %base' = gc.relocate(%tok, i32 4, i32 4)
1041 // %ptr' = gep %base' + 15
1042 // %val = load %ptr'
1043 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) {
1044 bool MadeChange = false;
1045 SmallVector<GCRelocateInst *, 2> AllRelocateCalls;
1047 for (auto *U : I.users())
1048 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U))
1049 // Collect all the relocate calls associated with a statepoint
1050 AllRelocateCalls.push_back(Relocate);
1052 // We need atleast one base pointer relocation + one derived pointer
1053 // relocation to mangle
1054 if (AllRelocateCalls.size() < 2)
1055 return false;
1057 // RelocateInstMap is a mapping from the base relocate instruction to the
1058 // corresponding derived relocate instructions
1059 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap;
1060 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap);
1061 if (RelocateInstMap.empty())
1062 return false;
1064 for (auto &Item : RelocateInstMap)
1065 // Item.first is the RelocatedBase to offset against
1066 // Item.second is the vector of Targets to replace
1067 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second);
1068 return MadeChange;
1071 /// Sink the specified cast instruction into its user blocks.
1072 static bool SinkCast(CastInst *CI) {
1073 BasicBlock *DefBB = CI->getParent();
1075 /// InsertedCasts - Only insert a cast in each block once.
1076 DenseMap<BasicBlock*, CastInst*> InsertedCasts;
1078 bool MadeChange = false;
1079 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
1080 UI != E; ) {
1081 Use &TheUse = UI.getUse();
1082 Instruction *User = cast<Instruction>(*UI);
1084 // Figure out which BB this cast is used in. For PHI's this is the
1085 // appropriate predecessor block.
1086 BasicBlock *UserBB = User->getParent();
1087 if (PHINode *PN = dyn_cast<PHINode>(User)) {
1088 UserBB = PN->getIncomingBlock(TheUse);
1091 // Preincrement use iterator so we don't invalidate it.
1092 ++UI;
1094 // The first insertion point of a block containing an EH pad is after the
1095 // pad. If the pad is the user, we cannot sink the cast past the pad.
1096 if (User->isEHPad())
1097 continue;
1099 // If the block selected to receive the cast is an EH pad that does not
1100 // allow non-PHI instructions before the terminator, we can't sink the
1101 // cast.
1102 if (UserBB->getTerminator()->isEHPad())
1103 continue;
1105 // If this user is in the same block as the cast, don't change the cast.
1106 if (UserBB == DefBB) continue;
1108 // If we have already inserted a cast into this block, use it.
1109 CastInst *&InsertedCast = InsertedCasts[UserBB];
1111 if (!InsertedCast) {
1112 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1113 assert(InsertPt != UserBB->end());
1114 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0),
1115 CI->getType(), "", &*InsertPt);
1116 InsertedCast->setDebugLoc(CI->getDebugLoc());
1119 // Replace a use of the cast with a use of the new cast.
1120 TheUse = InsertedCast;
1121 MadeChange = true;
1122 ++NumCastUses;
1125 // If we removed all uses, nuke the cast.
1126 if (CI->use_empty()) {
1127 salvageDebugInfo(*CI);
1128 CI->eraseFromParent();
1129 MadeChange = true;
1132 return MadeChange;
1135 /// If the specified cast instruction is a noop copy (e.g. it's casting from
1136 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to
1137 /// reduce the number of virtual registers that must be created and coalesced.
1139 /// Return true if any changes are made.
1140 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI,
1141 const DataLayout &DL) {
1142 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition
1143 // than sinking only nop casts, but is helpful on some platforms.
1144 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) {
1145 if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(),
1146 ASC->getDestAddressSpace()))
1147 return false;
1150 // If this is a noop copy,
1151 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType());
1152 EVT DstVT = TLI.getValueType(DL, CI->getType());
1154 // This is an fp<->int conversion?
1155 if (SrcVT.isInteger() != DstVT.isInteger())
1156 return false;
1158 // If this is an extension, it will be a zero or sign extension, which
1159 // isn't a noop.
1160 if (SrcVT.bitsLT(DstVT)) return false;
1162 // If these values will be promoted, find out what they will be promoted
1163 // to. This helps us consider truncates on PPC as noop copies when they
1164 // are.
1165 if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
1166 TargetLowering::TypePromoteInteger)
1167 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
1168 if (TLI.getTypeAction(CI->getContext(), DstVT) ==
1169 TargetLowering::TypePromoteInteger)
1170 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
1172 // If, after promotion, these are the same types, this is a noop copy.
1173 if (SrcVT != DstVT)
1174 return false;
1176 return SinkCast(CI);
1179 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO,
1180 CmpInst *Cmp,
1181 Intrinsic::ID IID) {
1182 if (BO->getParent() != Cmp->getParent()) {
1183 // We used to use a dominator tree here to allow multi-block optimization.
1184 // But that was problematic because:
1185 // 1. It could cause a perf regression by hoisting the math op into the
1186 // critical path.
1187 // 2. It could cause a perf regression by creating a value that was live
1188 // across multiple blocks and increasing register pressure.
1189 // 3. Use of a dominator tree could cause large compile-time regression.
1190 // This is because we recompute the DT on every change in the main CGP
1191 // run-loop. The recomputing is probably unnecessary in many cases, so if
1192 // that was fixed, using a DT here would be ok.
1193 return false;
1196 // We allow matching the canonical IR (add X, C) back to (usubo X, -C).
1197 Value *Arg0 = BO->getOperand(0);
1198 Value *Arg1 = BO->getOperand(1);
1199 if (BO->getOpcode() == Instruction::Add &&
1200 IID == Intrinsic::usub_with_overflow) {
1201 assert(isa<Constant>(Arg1) && "Unexpected input for usubo");
1202 Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1));
1205 // Insert at the first instruction of the pair.
1206 Instruction *InsertPt = nullptr;
1207 for (Instruction &Iter : *Cmp->getParent()) {
1208 if (&Iter == BO || &Iter == Cmp) {
1209 InsertPt = &Iter;
1210 break;
1213 assert(InsertPt != nullptr && "Parent block did not contain cmp or binop");
1215 IRBuilder<> Builder(InsertPt);
1216 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1);
1217 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math");
1218 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov");
1219 BO->replaceAllUsesWith(Math);
1220 Cmp->replaceAllUsesWith(OV);
1221 BO->eraseFromParent();
1222 Cmp->eraseFromParent();
1223 return true;
1226 /// Match special-case patterns that check for unsigned add overflow.
1227 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp,
1228 BinaryOperator *&Add) {
1229 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val)
1230 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero)
1231 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);
1233 // We are not expecting non-canonical/degenerate code. Just bail out.
1234 if (isa<Constant>(A))
1235 return false;
1237 ICmpInst::Predicate Pred = Cmp->getPredicate();
1238 if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes()))
1239 B = ConstantInt::get(B->getType(), 1);
1240 else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt()))
1241 B = ConstantInt::get(B->getType(), -1);
1242 else
1243 return false;
1245 // Check the users of the variable operand of the compare looking for an add
1246 // with the adjusted constant.
1247 for (User *U : A->users()) {
1248 if (match(U, m_Add(m_Specific(A), m_Specific(B)))) {
1249 Add = cast<BinaryOperator>(U);
1250 return true;
1253 return false;
1256 /// Try to combine the compare into a call to the llvm.uadd.with.overflow
1257 /// intrinsic. Return true if any changes were made.
1258 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp,
1259 bool &ModifiedDT) {
1260 Value *A, *B;
1261 BinaryOperator *Add;
1262 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add))))
1263 if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add))
1264 return false;
1266 if (!TLI->shouldFormOverflowOp(ISD::UADDO,
1267 TLI->getValueType(*DL, Add->getType())))
1268 return false;
1270 // We don't want to move around uses of condition values this late, so we
1271 // check if it is legal to create the call to the intrinsic in the basic
1272 // block containing the icmp.
1273 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse())
1274 return false;
1276 if (!replaceMathCmpWithIntrinsic(Add, Cmp, Intrinsic::uadd_with_overflow))
1277 return false;
1279 // Reset callers - do not crash by iterating over a dead instruction.
1280 ModifiedDT = true;
1281 return true;
1284 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp,
1285 bool &ModifiedDT) {
1286 // We are not expecting non-canonical/degenerate code. Just bail out.
1287 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);
1288 if (isa<Constant>(A) && isa<Constant>(B))
1289 return false;
1291 // Convert (A u> B) to (A u< B) to simplify pattern matching.
1292 ICmpInst::Predicate Pred = Cmp->getPredicate();
1293 if (Pred == ICmpInst::ICMP_UGT) {
1294 std::swap(A, B);
1295 Pred = ICmpInst::ICMP_ULT;
1297 // Convert special-case: (A == 0) is the same as (A u< 1).
1298 if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) {
1299 B = ConstantInt::get(B->getType(), 1);
1300 Pred = ICmpInst::ICMP_ULT;
1302 // Convert special-case: (A != 0) is the same as (0 u< A).
1303 if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) {
1304 std::swap(A, B);
1305 Pred = ICmpInst::ICMP_ULT;
1307 if (Pred != ICmpInst::ICMP_ULT)
1308 return false;
1310 // Walk the users of a variable operand of a compare looking for a subtract or
1311 // add with that same operand. Also match the 2nd operand of the compare to
1312 // the add/sub, but that may be a negated constant operand of an add.
1313 Value *CmpVariableOperand = isa<Constant>(A) ? B : A;
1314 BinaryOperator *Sub = nullptr;
1315 for (User *U : CmpVariableOperand->users()) {
1316 // A - B, A u< B --> usubo(A, B)
1317 if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) {
1318 Sub = cast<BinaryOperator>(U);
1319 break;
1322 // A + (-C), A u< C (canonicalized form of (sub A, C))
1323 const APInt *CmpC, *AddC;
1324 if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) &&
1325 match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) {
1326 Sub = cast<BinaryOperator>(U);
1327 break;
1330 if (!Sub)
1331 return false;
1333 if (!TLI->shouldFormOverflowOp(ISD::USUBO,
1334 TLI->getValueType(*DL, Sub->getType())))
1335 return false;
1337 if (!replaceMathCmpWithIntrinsic(Sub, Cmp, Intrinsic::usub_with_overflow))
1338 return false;
1340 // Reset callers - do not crash by iterating over a dead instruction.
1341 ModifiedDT = true;
1342 return true;
1345 /// Sink the given CmpInst into user blocks to reduce the number of virtual
1346 /// registers that must be created and coalesced. This is a clear win except on
1347 /// targets with multiple condition code registers (PowerPC), where it might
1348 /// lose; some adjustment may be wanted there.
1350 /// Return true if any changes are made.
1351 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) {
1352 if (TLI.hasMultipleConditionRegisters())
1353 return false;
1355 // Avoid sinking soft-FP comparisons, since this can move them into a loop.
1356 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp))
1357 return false;
1359 // Only insert a cmp in each block once.
1360 DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
1362 bool MadeChange = false;
1363 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end();
1364 UI != E; ) {
1365 Use &TheUse = UI.getUse();
1366 Instruction *User = cast<Instruction>(*UI);
1368 // Preincrement use iterator so we don't invalidate it.
1369 ++UI;
1371 // Don't bother for PHI nodes.
1372 if (isa<PHINode>(User))
1373 continue;
1375 // Figure out which BB this cmp is used in.
1376 BasicBlock *UserBB = User->getParent();
1377 BasicBlock *DefBB = Cmp->getParent();
1379 // If this user is in the same block as the cmp, don't change the cmp.
1380 if (UserBB == DefBB) continue;
1382 // If we have already inserted a cmp into this block, use it.
1383 CmpInst *&InsertedCmp = InsertedCmps[UserBB];
1385 if (!InsertedCmp) {
1386 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1387 assert(InsertPt != UserBB->end());
1388 InsertedCmp =
1389 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(),
1390 Cmp->getOperand(0), Cmp->getOperand(1), "",
1391 &*InsertPt);
1392 // Propagate the debug info.
1393 InsertedCmp->setDebugLoc(Cmp->getDebugLoc());
1396 // Replace a use of the cmp with a use of the new cmp.
1397 TheUse = InsertedCmp;
1398 MadeChange = true;
1399 ++NumCmpUses;
1402 // If we removed all uses, nuke the cmp.
1403 if (Cmp->use_empty()) {
1404 Cmp->eraseFromParent();
1405 MadeChange = true;
1408 return MadeChange;
1411 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) {
1412 if (sinkCmpExpression(Cmp, *TLI))
1413 return true;
1415 if (combineToUAddWithOverflow(Cmp, ModifiedDT))
1416 return true;
1418 if (combineToUSubWithOverflow(Cmp, ModifiedDT))
1419 return true;
1421 return false;
1424 /// Duplicate and sink the given 'and' instruction into user blocks where it is
1425 /// used in a compare to allow isel to generate better code for targets where
1426 /// this operation can be combined.
1428 /// Return true if any changes are made.
1429 static bool sinkAndCmp0Expression(Instruction *AndI,
1430 const TargetLowering &TLI,
1431 SetOfInstrs &InsertedInsts) {
1432 // Double-check that we're not trying to optimize an instruction that was
1433 // already optimized by some other part of this pass.
1434 assert(!InsertedInsts.count(AndI) &&
1435 "Attempting to optimize already optimized and instruction");
1436 (void) InsertedInsts;
1438 // Nothing to do for single use in same basic block.
1439 if (AndI->hasOneUse() &&
1440 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent())
1441 return false;
1443 // Try to avoid cases where sinking/duplicating is likely to increase register
1444 // pressure.
1445 if (!isa<ConstantInt>(AndI->getOperand(0)) &&
1446 !isa<ConstantInt>(AndI->getOperand(1)) &&
1447 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse())
1448 return false;
1450 for (auto *U : AndI->users()) {
1451 Instruction *User = cast<Instruction>(U);
1453 // Only sink 'and' feeding icmp with 0.
1454 if (!isa<ICmpInst>(User))
1455 return false;
1457 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1));
1458 if (!CmpC || !CmpC->isZero())
1459 return false;
1462 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI))
1463 return false;
1465 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n");
1466 LLVM_DEBUG(AndI->getParent()->dump());
1468 // Push the 'and' into the same block as the icmp 0. There should only be
1469 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any
1470 // others, so we don't need to keep track of which BBs we insert into.
1471 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end();
1472 UI != E; ) {
1473 Use &TheUse = UI.getUse();
1474 Instruction *User = cast<Instruction>(*UI);
1476 // Preincrement use iterator so we don't invalidate it.
1477 ++UI;
1479 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n");
1481 // Keep the 'and' in the same place if the use is already in the same block.
1482 Instruction *InsertPt =
1483 User->getParent() == AndI->getParent() ? AndI : User;
1484 Instruction *InsertedAnd =
1485 BinaryOperator::Create(Instruction::And, AndI->getOperand(0),
1486 AndI->getOperand(1), "", InsertPt);
1487 // Propagate the debug info.
1488 InsertedAnd->setDebugLoc(AndI->getDebugLoc());
1490 // Replace a use of the 'and' with a use of the new 'and'.
1491 TheUse = InsertedAnd;
1492 ++NumAndUses;
1493 LLVM_DEBUG(User->getParent()->dump());
1496 // We removed all uses, nuke the and.
1497 AndI->eraseFromParent();
1498 return true;
1501 /// Check if the candidates could be combined with a shift instruction, which
1502 /// includes:
1503 /// 1. Truncate instruction
1504 /// 2. And instruction and the imm is a mask of the low bits:
1505 /// imm & (imm+1) == 0
1506 static bool isExtractBitsCandidateUse(Instruction *User) {
1507 if (!isa<TruncInst>(User)) {
1508 if (User->getOpcode() != Instruction::And ||
1509 !isa<ConstantInt>(User->getOperand(1)))
1510 return false;
1512 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue();
1514 if ((Cimm & (Cimm + 1)).getBoolValue())
1515 return false;
1517 return true;
1520 /// Sink both shift and truncate instruction to the use of truncate's BB.
1521 static bool
1522 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI,
1523 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts,
1524 const TargetLowering &TLI, const DataLayout &DL) {
1525 BasicBlock *UserBB = User->getParent();
1526 DenseMap<BasicBlock *, CastInst *> InsertedTruncs;
1527 TruncInst *TruncI = dyn_cast<TruncInst>(User);
1528 bool MadeChange = false;
1530 for (Value::user_iterator TruncUI = TruncI->user_begin(),
1531 TruncE = TruncI->user_end();
1532 TruncUI != TruncE;) {
1534 Use &TruncTheUse = TruncUI.getUse();
1535 Instruction *TruncUser = cast<Instruction>(*TruncUI);
1536 // Preincrement use iterator so we don't invalidate it.
1538 ++TruncUI;
1540 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode());
1541 if (!ISDOpcode)
1542 continue;
1544 // If the use is actually a legal node, there will not be an
1545 // implicit truncate.
1546 // FIXME: always querying the result type is just an
1547 // approximation; some nodes' legality is determined by the
1548 // operand or other means. There's no good way to find out though.
1549 if (TLI.isOperationLegalOrCustom(
1550 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true)))
1551 continue;
1553 // Don't bother for PHI nodes.
1554 if (isa<PHINode>(TruncUser))
1555 continue;
1557 BasicBlock *TruncUserBB = TruncUser->getParent();
1559 if (UserBB == TruncUserBB)
1560 continue;
1562 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB];
1563 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB];
1565 if (!InsertedShift && !InsertedTrunc) {
1566 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt();
1567 assert(InsertPt != TruncUserBB->end());
1568 // Sink the shift
1569 if (ShiftI->getOpcode() == Instruction::AShr)
1570 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1571 "", &*InsertPt);
1572 else
1573 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1574 "", &*InsertPt);
1575 InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
1577 // Sink the trunc
1578 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt();
1579 TruncInsertPt++;
1580 assert(TruncInsertPt != TruncUserBB->end());
1582 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift,
1583 TruncI->getType(), "", &*TruncInsertPt);
1584 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc());
1586 MadeChange = true;
1588 TruncTheUse = InsertedTrunc;
1591 return MadeChange;
1594 /// Sink the shift *right* instruction into user blocks if the uses could
1595 /// potentially be combined with this shift instruction and generate BitExtract
1596 /// instruction. It will only be applied if the architecture supports BitExtract
1597 /// instruction. Here is an example:
1598 /// BB1:
1599 /// %x.extract.shift = lshr i64 %arg1, 32
1600 /// BB2:
1601 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16
1602 /// ==>
1604 /// BB2:
1605 /// %x.extract.shift.1 = lshr i64 %arg1, 32
1606 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
1608 /// CodeGen will recognize the pattern in BB2 and generate BitExtract
1609 /// instruction.
1610 /// Return true if any changes are made.
1611 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI,
1612 const TargetLowering &TLI,
1613 const DataLayout &DL) {
1614 BasicBlock *DefBB = ShiftI->getParent();
1616 /// Only insert instructions in each block once.
1617 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts;
1619 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType()));
1621 bool MadeChange = false;
1622 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end();
1623 UI != E;) {
1624 Use &TheUse = UI.getUse();
1625 Instruction *User = cast<Instruction>(*UI);
1626 // Preincrement use iterator so we don't invalidate it.
1627 ++UI;
1629 // Don't bother for PHI nodes.
1630 if (isa<PHINode>(User))
1631 continue;
1633 if (!isExtractBitsCandidateUse(User))
1634 continue;
1636 BasicBlock *UserBB = User->getParent();
1638 if (UserBB == DefBB) {
1639 // If the shift and truncate instruction are in the same BB. The use of
1640 // the truncate(TruncUse) may still introduce another truncate if not
1641 // legal. In this case, we would like to sink both shift and truncate
1642 // instruction to the BB of TruncUse.
1643 // for example:
1644 // BB1:
1645 // i64 shift.result = lshr i64 opnd, imm
1646 // trunc.result = trunc shift.result to i16
1648 // BB2:
1649 // ----> We will have an implicit truncate here if the architecture does
1650 // not have i16 compare.
1651 // cmp i16 trunc.result, opnd2
1653 if (isa<TruncInst>(User) && shiftIsLegal
1654 // If the type of the truncate is legal, no truncate will be
1655 // introduced in other basic blocks.
1657 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType()))))
1658 MadeChange =
1659 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL);
1661 continue;
1663 // If we have already inserted a shift into this block, use it.
1664 BinaryOperator *&InsertedShift = InsertedShifts[UserBB];
1666 if (!InsertedShift) {
1667 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1668 assert(InsertPt != UserBB->end());
1670 if (ShiftI->getOpcode() == Instruction::AShr)
1671 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1672 "", &*InsertPt);
1673 else
1674 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1675 "", &*InsertPt);
1676 InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
1678 MadeChange = true;
1681 // Replace a use of the shift with a use of the new shift.
1682 TheUse = InsertedShift;
1685 // If we removed all uses, nuke the shift.
1686 if (ShiftI->use_empty()) {
1687 salvageDebugInfo(*ShiftI);
1688 ShiftI->eraseFromParent();
1691 return MadeChange;
1694 /// If counting leading or trailing zeros is an expensive operation and a zero
1695 /// input is defined, add a check for zero to avoid calling the intrinsic.
1697 /// We want to transform:
1698 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false)
1700 /// into:
1701 /// entry:
1702 /// %cmpz = icmp eq i64 %A, 0
1703 /// br i1 %cmpz, label %cond.end, label %cond.false
1704 /// cond.false:
1705 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true)
1706 /// br label %cond.end
1707 /// cond.end:
1708 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ]
1710 /// If the transform is performed, return true and set ModifiedDT to true.
1711 static bool despeculateCountZeros(IntrinsicInst *CountZeros,
1712 const TargetLowering *TLI,
1713 const DataLayout *DL,
1714 bool &ModifiedDT) {
1715 if (!TLI || !DL)
1716 return false;
1718 // If a zero input is undefined, it doesn't make sense to despeculate that.
1719 if (match(CountZeros->getOperand(1), m_One()))
1720 return false;
1722 // If it's cheap to speculate, there's nothing to do.
1723 auto IntrinsicID = CountZeros->getIntrinsicID();
1724 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) ||
1725 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz()))
1726 return false;
1728 // Only handle legal scalar cases. Anything else requires too much work.
1729 Type *Ty = CountZeros->getType();
1730 unsigned SizeInBits = Ty->getPrimitiveSizeInBits();
1731 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits())
1732 return false;
1734 // The intrinsic will be sunk behind a compare against zero and branch.
1735 BasicBlock *StartBlock = CountZeros->getParent();
1736 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false");
1738 // Create another block after the count zero intrinsic. A PHI will be added
1739 // in this block to select the result of the intrinsic or the bit-width
1740 // constant if the input to the intrinsic is zero.
1741 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros));
1742 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end");
1744 // Set up a builder to create a compare, conditional branch, and PHI.
1745 IRBuilder<> Builder(CountZeros->getContext());
1746 Builder.SetInsertPoint(StartBlock->getTerminator());
1747 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc());
1749 // Replace the unconditional branch that was created by the first split with
1750 // a compare against zero and a conditional branch.
1751 Value *Zero = Constant::getNullValue(Ty);
1752 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz");
1753 Builder.CreateCondBr(Cmp, EndBlock, CallBlock);
1754 StartBlock->getTerminator()->eraseFromParent();
1756 // Create a PHI in the end block to select either the output of the intrinsic
1757 // or the bit width of the operand.
1758 Builder.SetInsertPoint(&EndBlock->front());
1759 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz");
1760 CountZeros->replaceAllUsesWith(PN);
1761 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits));
1762 PN->addIncoming(BitWidth, StartBlock);
1763 PN->addIncoming(CountZeros, CallBlock);
1765 // We are explicitly handling the zero case, so we can set the intrinsic's
1766 // undefined zero argument to 'true'. This will also prevent reprocessing the
1767 // intrinsic; we only despeculate when a zero input is defined.
1768 CountZeros->setArgOperand(1, Builder.getTrue());
1769 ModifiedDT = true;
1770 return true;
1773 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) {
1774 BasicBlock *BB = CI->getParent();
1776 // Lower inline assembly if we can.
1777 // If we found an inline asm expession, and if the target knows how to
1778 // lower it to normal LLVM code, do so now.
1779 if (TLI && isa<InlineAsm>(CI->getCalledValue())) {
1780 if (TLI->ExpandInlineAsm(CI)) {
1781 // Avoid invalidating the iterator.
1782 CurInstIterator = BB->begin();
1783 // Avoid processing instructions out of order, which could cause
1784 // reuse before a value is defined.
1785 SunkAddrs.clear();
1786 return true;
1788 // Sink address computing for memory operands into the block.
1789 if (optimizeInlineAsmInst(CI))
1790 return true;
1793 // Align the pointer arguments to this call if the target thinks it's a good
1794 // idea
1795 unsigned MinSize, PrefAlign;
1796 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) {
1797 for (auto &Arg : CI->arg_operands()) {
1798 // We want to align both objects whose address is used directly and
1799 // objects whose address is used in casts and GEPs, though it only makes
1800 // sense for GEPs if the offset is a multiple of the desired alignment and
1801 // if size - offset meets the size threshold.
1802 if (!Arg->getType()->isPointerTy())
1803 continue;
1804 APInt Offset(DL->getIndexSizeInBits(
1805 cast<PointerType>(Arg->getType())->getAddressSpace()),
1807 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset);
1808 uint64_t Offset2 = Offset.getLimitedValue();
1809 if ((Offset2 & (PrefAlign-1)) != 0)
1810 continue;
1811 AllocaInst *AI;
1812 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign &&
1813 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2)
1814 AI->setAlignment(PrefAlign);
1815 // Global variables can only be aligned if they are defined in this
1816 // object (i.e. they are uniquely initialized in this object), and
1817 // over-aligning global variables that have an explicit section is
1818 // forbidden.
1819 GlobalVariable *GV;
1820 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() &&
1821 GV->getPointerAlignment(*DL) < PrefAlign &&
1822 DL->getTypeAllocSize(GV->getValueType()) >=
1823 MinSize + Offset2)
1824 GV->setAlignment(PrefAlign);
1826 // If this is a memcpy (or similar) then we may be able to improve the
1827 // alignment
1828 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) {
1829 unsigned DestAlign = getKnownAlignment(MI->getDest(), *DL);
1830 if (DestAlign > MI->getDestAlignment())
1831 MI->setDestAlignment(DestAlign);
1832 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
1833 unsigned SrcAlign = getKnownAlignment(MTI->getSource(), *DL);
1834 if (SrcAlign > MTI->getSourceAlignment())
1835 MTI->setSourceAlignment(SrcAlign);
1840 // If we have a cold call site, try to sink addressing computation into the
1841 // cold block. This interacts with our handling for loads and stores to
1842 // ensure that we can fold all uses of a potential addressing computation
1843 // into their uses. TODO: generalize this to work over profiling data
1844 if (!OptSize && CI->hasFnAttr(Attribute::Cold))
1845 for (auto &Arg : CI->arg_operands()) {
1846 if (!Arg->getType()->isPointerTy())
1847 continue;
1848 unsigned AS = Arg->getType()->getPointerAddressSpace();
1849 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS);
1852 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
1853 if (II) {
1854 switch (II->getIntrinsicID()) {
1855 default: break;
1856 case Intrinsic::experimental_widenable_condition: {
1857 // Give up on future widening oppurtunties so that we can fold away dead
1858 // paths and merge blocks before going into block-local instruction
1859 // selection.
1860 if (II->use_empty()) {
1861 II->eraseFromParent();
1862 return true;
1864 Constant *RetVal = ConstantInt::getTrue(II->getContext());
1865 resetIteratorIfInvalidatedWhileCalling(BB, [&]() {
1866 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
1868 return true;
1870 case Intrinsic::objectsize: {
1871 // Lower all uses of llvm.objectsize.*
1872 Value *RetVal =
1873 lowerObjectSizeCall(II, *DL, TLInfo, /*MustSucceed=*/true);
1875 resetIteratorIfInvalidatedWhileCalling(BB, [&]() {
1876 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
1878 return true;
1880 case Intrinsic::is_constant: {
1881 // If is_constant hasn't folded away yet, lower it to false now.
1882 Constant *RetVal = ConstantInt::get(II->getType(), 0);
1883 resetIteratorIfInvalidatedWhileCalling(BB, [&]() {
1884 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
1886 return true;
1888 case Intrinsic::aarch64_stlxr:
1889 case Intrinsic::aarch64_stxr: {
1890 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0));
1891 if (!ExtVal || !ExtVal->hasOneUse() ||
1892 ExtVal->getParent() == CI->getParent())
1893 return false;
1894 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it.
1895 ExtVal->moveBefore(CI);
1896 // Mark this instruction as "inserted by CGP", so that other
1897 // optimizations don't touch it.
1898 InsertedInsts.insert(ExtVal);
1899 return true;
1902 case Intrinsic::launder_invariant_group:
1903 case Intrinsic::strip_invariant_group: {
1904 Value *ArgVal = II->getArgOperand(0);
1905 auto it = LargeOffsetGEPMap.find(II);
1906 if (it != LargeOffsetGEPMap.end()) {
1907 // Merge entries in LargeOffsetGEPMap to reflect the RAUW.
1908 // Make sure not to have to deal with iterator invalidation
1909 // after possibly adding ArgVal to LargeOffsetGEPMap.
1910 auto GEPs = std::move(it->second);
1911 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end());
1912 LargeOffsetGEPMap.erase(II);
1915 II->replaceAllUsesWith(ArgVal);
1916 II->eraseFromParent();
1917 return true;
1919 case Intrinsic::cttz:
1920 case Intrinsic::ctlz:
1921 // If counting zeros is expensive, try to avoid it.
1922 return despeculateCountZeros(II, TLI, DL, ModifiedDT);
1925 if (TLI) {
1926 SmallVector<Value*, 2> PtrOps;
1927 Type *AccessTy;
1928 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy))
1929 while (!PtrOps.empty()) {
1930 Value *PtrVal = PtrOps.pop_back_val();
1931 unsigned AS = PtrVal->getType()->getPointerAddressSpace();
1932 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS))
1933 return true;
1938 // From here on out we're working with named functions.
1939 if (!CI->getCalledFunction()) return false;
1941 // Lower all default uses of _chk calls. This is very similar
1942 // to what InstCombineCalls does, but here we are only lowering calls
1943 // to fortified library functions (e.g. __memcpy_chk) that have the default
1944 // "don't know" as the objectsize. Anything else should be left alone.
1945 FortifiedLibCallSimplifier Simplifier(TLInfo, true);
1946 if (Value *V = Simplifier.optimizeCall(CI)) {
1947 CI->replaceAllUsesWith(V);
1948 CI->eraseFromParent();
1949 return true;
1952 return false;
1955 /// Look for opportunities to duplicate return instructions to the predecessor
1956 /// to enable tail call optimizations. The case it is currently looking for is:
1957 /// @code
1958 /// bb0:
1959 /// %tmp0 = tail call i32 @f0()
1960 /// br label %return
1961 /// bb1:
1962 /// %tmp1 = tail call i32 @f1()
1963 /// br label %return
1964 /// bb2:
1965 /// %tmp2 = tail call i32 @f2()
1966 /// br label %return
1967 /// return:
1968 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
1969 /// ret i32 %retval
1970 /// @endcode
1972 /// =>
1974 /// @code
1975 /// bb0:
1976 /// %tmp0 = tail call i32 @f0()
1977 /// ret i32 %tmp0
1978 /// bb1:
1979 /// %tmp1 = tail call i32 @f1()
1980 /// ret i32 %tmp1
1981 /// bb2:
1982 /// %tmp2 = tail call i32 @f2()
1983 /// ret i32 %tmp2
1984 /// @endcode
1985 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) {
1986 if (!TLI)
1987 return false;
1989 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator());
1990 if (!RetI)
1991 return false;
1993 PHINode *PN = nullptr;
1994 BitCastInst *BCI = nullptr;
1995 Value *V = RetI->getReturnValue();
1996 if (V) {
1997 BCI = dyn_cast<BitCastInst>(V);
1998 if (BCI)
1999 V = BCI->getOperand(0);
2001 PN = dyn_cast<PHINode>(V);
2002 if (!PN)
2003 return false;
2006 if (PN && PN->getParent() != BB)
2007 return false;
2009 // Make sure there are no instructions between the PHI and return, or that the
2010 // return is the first instruction in the block.
2011 if (PN) {
2012 BasicBlock::iterator BI = BB->begin();
2013 // Skip over debug and the bitcast.
2014 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI) || &*BI == BCI);
2015 if (&*BI != RetI)
2016 return false;
2017 } else {
2018 BasicBlock::iterator BI = BB->begin();
2019 while (isa<DbgInfoIntrinsic>(BI)) ++BI;
2020 if (&*BI != RetI)
2021 return false;
2024 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
2025 /// call.
2026 const Function *F = BB->getParent();
2027 SmallVector<CallInst*, 4> TailCalls;
2028 if (PN) {
2029 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
2030 // Look through bitcasts.
2031 Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts();
2032 CallInst *CI = dyn_cast<CallInst>(IncomingVal);
2033 // Make sure the phi value is indeed produced by the tail call.
2034 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) &&
2035 TLI->mayBeEmittedAsTailCall(CI) &&
2036 attributesPermitTailCall(F, CI, RetI, *TLI))
2037 TailCalls.push_back(CI);
2039 } else {
2040 SmallPtrSet<BasicBlock*, 4> VisitedBBs;
2041 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) {
2042 if (!VisitedBBs.insert(*PI).second)
2043 continue;
2045 BasicBlock::InstListType &InstList = (*PI)->getInstList();
2046 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin();
2047 BasicBlock::InstListType::reverse_iterator RE = InstList.rend();
2048 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI));
2049 if (RI == RE)
2050 continue;
2052 CallInst *CI = dyn_cast<CallInst>(&*RI);
2053 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) &&
2054 attributesPermitTailCall(F, CI, RetI, *TLI))
2055 TailCalls.push_back(CI);
2059 bool Changed = false;
2060 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) {
2061 CallInst *CI = TailCalls[i];
2062 CallSite CS(CI);
2064 // Make sure the call instruction is followed by an unconditional branch to
2065 // the return block.
2066 BasicBlock *CallBB = CI->getParent();
2067 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator());
2068 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
2069 continue;
2071 // Duplicate the return into CallBB.
2072 (void)FoldReturnIntoUncondBranch(RetI, BB, CallBB);
2073 ModifiedDT = Changed = true;
2074 ++NumRetsDup;
2077 // If we eliminated all predecessors of the block, delete the block now.
2078 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
2079 BB->eraseFromParent();
2081 return Changed;
2084 //===----------------------------------------------------------------------===//
2085 // Memory Optimization
2086 //===----------------------------------------------------------------------===//
2088 namespace {
2090 /// This is an extended version of TargetLowering::AddrMode
2091 /// which holds actual Value*'s for register values.
2092 struct ExtAddrMode : public TargetLowering::AddrMode {
2093 Value *BaseReg = nullptr;
2094 Value *ScaledReg = nullptr;
2095 Value *OriginalValue = nullptr;
2096 bool InBounds = true;
2098 enum FieldName {
2099 NoField = 0x00,
2100 BaseRegField = 0x01,
2101 BaseGVField = 0x02,
2102 BaseOffsField = 0x04,
2103 ScaledRegField = 0x08,
2104 ScaleField = 0x10,
2105 MultipleFields = 0xff
2109 ExtAddrMode() = default;
2111 void print(raw_ostream &OS) const;
2112 void dump() const;
2114 FieldName compare(const ExtAddrMode &other) {
2115 // First check that the types are the same on each field, as differing types
2116 // is something we can't cope with later on.
2117 if (BaseReg && other.BaseReg &&
2118 BaseReg->getType() != other.BaseReg->getType())
2119 return MultipleFields;
2120 if (BaseGV && other.BaseGV &&
2121 BaseGV->getType() != other.BaseGV->getType())
2122 return MultipleFields;
2123 if (ScaledReg && other.ScaledReg &&
2124 ScaledReg->getType() != other.ScaledReg->getType())
2125 return MultipleFields;
2127 // Conservatively reject 'inbounds' mismatches.
2128 if (InBounds != other.InBounds)
2129 return MultipleFields;
2131 // Check each field to see if it differs.
2132 unsigned Result = NoField;
2133 if (BaseReg != other.BaseReg)
2134 Result |= BaseRegField;
2135 if (BaseGV != other.BaseGV)
2136 Result |= BaseGVField;
2137 if (BaseOffs != other.BaseOffs)
2138 Result |= BaseOffsField;
2139 if (ScaledReg != other.ScaledReg)
2140 Result |= ScaledRegField;
2141 // Don't count 0 as being a different scale, because that actually means
2142 // unscaled (which will already be counted by having no ScaledReg).
2143 if (Scale && other.Scale && Scale != other.Scale)
2144 Result |= ScaleField;
2146 if (countPopulation(Result) > 1)
2147 return MultipleFields;
2148 else
2149 return static_cast<FieldName>(Result);
2152 // An AddrMode is trivial if it involves no calculation i.e. it is just a base
2153 // with no offset.
2154 bool isTrivial() {
2155 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is
2156 // trivial if at most one of these terms is nonzero, except that BaseGV and
2157 // BaseReg both being zero actually means a null pointer value, which we
2158 // consider to be 'non-zero' here.
2159 return !BaseOffs && !Scale && !(BaseGV && BaseReg);
2162 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) {
2163 switch (Field) {
2164 default:
2165 return nullptr;
2166 case BaseRegField:
2167 return BaseReg;
2168 case BaseGVField:
2169 return BaseGV;
2170 case ScaledRegField:
2171 return ScaledReg;
2172 case BaseOffsField:
2173 return ConstantInt::get(IntPtrTy, BaseOffs);
2177 void SetCombinedField(FieldName Field, Value *V,
2178 const SmallVectorImpl<ExtAddrMode> &AddrModes) {
2179 switch (Field) {
2180 default:
2181 llvm_unreachable("Unhandled fields are expected to be rejected earlier");
2182 break;
2183 case ExtAddrMode::BaseRegField:
2184 BaseReg = V;
2185 break;
2186 case ExtAddrMode::BaseGVField:
2187 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes
2188 // in the BaseReg field.
2189 assert(BaseReg == nullptr);
2190 BaseReg = V;
2191 BaseGV = nullptr;
2192 break;
2193 case ExtAddrMode::ScaledRegField:
2194 ScaledReg = V;
2195 // If we have a mix of scaled and unscaled addrmodes then we want scale
2196 // to be the scale and not zero.
2197 if (!Scale)
2198 for (const ExtAddrMode &AM : AddrModes)
2199 if (AM.Scale) {
2200 Scale = AM.Scale;
2201 break;
2203 break;
2204 case ExtAddrMode::BaseOffsField:
2205 // The offset is no longer a constant, so it goes in ScaledReg with a
2206 // scale of 1.
2207 assert(ScaledReg == nullptr);
2208 ScaledReg = V;
2209 Scale = 1;
2210 BaseOffs = 0;
2211 break;
2216 } // end anonymous namespace
2218 #ifndef NDEBUG
2219 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
2220 AM.print(OS);
2221 return OS;
2223 #endif
2225 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2226 void ExtAddrMode::print(raw_ostream &OS) const {
2227 bool NeedPlus = false;
2228 OS << "[";
2229 if (InBounds)
2230 OS << "inbounds ";
2231 if (BaseGV) {
2232 OS << (NeedPlus ? " + " : "")
2233 << "GV:";
2234 BaseGV->printAsOperand(OS, /*PrintType=*/false);
2235 NeedPlus = true;
2238 if (BaseOffs) {
2239 OS << (NeedPlus ? " + " : "")
2240 << BaseOffs;
2241 NeedPlus = true;
2244 if (BaseReg) {
2245 OS << (NeedPlus ? " + " : "")
2246 << "Base:";
2247 BaseReg->printAsOperand(OS, /*PrintType=*/false);
2248 NeedPlus = true;
2250 if (Scale) {
2251 OS << (NeedPlus ? " + " : "")
2252 << Scale << "*";
2253 ScaledReg->printAsOperand(OS, /*PrintType=*/false);
2256 OS << ']';
2259 LLVM_DUMP_METHOD void ExtAddrMode::dump() const {
2260 print(dbgs());
2261 dbgs() << '\n';
2263 #endif
2265 namespace {
2267 /// This class provides transaction based operation on the IR.
2268 /// Every change made through this class is recorded in the internal state and
2269 /// can be undone (rollback) until commit is called.
2270 class TypePromotionTransaction {
2271 /// This represents the common interface of the individual transaction.
2272 /// Each class implements the logic for doing one specific modification on
2273 /// the IR via the TypePromotionTransaction.
2274 class TypePromotionAction {
2275 protected:
2276 /// The Instruction modified.
2277 Instruction *Inst;
2279 public:
2280 /// Constructor of the action.
2281 /// The constructor performs the related action on the IR.
2282 TypePromotionAction(Instruction *Inst) : Inst(Inst) {}
2284 virtual ~TypePromotionAction() = default;
2286 /// Undo the modification done by this action.
2287 /// When this method is called, the IR must be in the same state as it was
2288 /// before this action was applied.
2289 /// \pre Undoing the action works if and only if the IR is in the exact same
2290 /// state as it was directly after this action was applied.
2291 virtual void undo() = 0;
2293 /// Advocate every change made by this action.
2294 /// When the results on the IR of the action are to be kept, it is important
2295 /// to call this function, otherwise hidden information may be kept forever.
2296 virtual void commit() {
2297 // Nothing to be done, this action is not doing anything.
2301 /// Utility to remember the position of an instruction.
2302 class InsertionHandler {
2303 /// Position of an instruction.
2304 /// Either an instruction:
2305 /// - Is the first in a basic block: BB is used.
2306 /// - Has a previous instruction: PrevInst is used.
2307 union {
2308 Instruction *PrevInst;
2309 BasicBlock *BB;
2310 } Point;
2312 /// Remember whether or not the instruction had a previous instruction.
2313 bool HasPrevInstruction;
2315 public:
2316 /// Record the position of \p Inst.
2317 InsertionHandler(Instruction *Inst) {
2318 BasicBlock::iterator It = Inst->getIterator();
2319 HasPrevInstruction = (It != (Inst->getParent()->begin()));
2320 if (HasPrevInstruction)
2321 Point.PrevInst = &*--It;
2322 else
2323 Point.BB = Inst->getParent();
2326 /// Insert \p Inst at the recorded position.
2327 void insert(Instruction *Inst) {
2328 if (HasPrevInstruction) {
2329 if (Inst->getParent())
2330 Inst->removeFromParent();
2331 Inst->insertAfter(Point.PrevInst);
2332 } else {
2333 Instruction *Position = &*Point.BB->getFirstInsertionPt();
2334 if (Inst->getParent())
2335 Inst->moveBefore(Position);
2336 else
2337 Inst->insertBefore(Position);
2342 /// Move an instruction before another.
2343 class InstructionMoveBefore : public TypePromotionAction {
2344 /// Original position of the instruction.
2345 InsertionHandler Position;
2347 public:
2348 /// Move \p Inst before \p Before.
2349 InstructionMoveBefore(Instruction *Inst, Instruction *Before)
2350 : TypePromotionAction(Inst), Position(Inst) {
2351 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before
2352 << "\n");
2353 Inst->moveBefore(Before);
2356 /// Move the instruction back to its original position.
2357 void undo() override {
2358 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
2359 Position.insert(Inst);
2363 /// Set the operand of an instruction with a new value.
2364 class OperandSetter : public TypePromotionAction {
2365 /// Original operand of the instruction.
2366 Value *Origin;
2368 /// Index of the modified instruction.
2369 unsigned Idx;
2371 public:
2372 /// Set \p Idx operand of \p Inst with \p NewVal.
2373 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
2374 : TypePromotionAction(Inst), Idx(Idx) {
2375 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
2376 << "for:" << *Inst << "\n"
2377 << "with:" << *NewVal << "\n");
2378 Origin = Inst->getOperand(Idx);
2379 Inst->setOperand(Idx, NewVal);
2382 /// Restore the original value of the instruction.
2383 void undo() override {
2384 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
2385 << "for: " << *Inst << "\n"
2386 << "with: " << *Origin << "\n");
2387 Inst->setOperand(Idx, Origin);
2391 /// Hide the operands of an instruction.
2392 /// Do as if this instruction was not using any of its operands.
2393 class OperandsHider : public TypePromotionAction {
2394 /// The list of original operands.
2395 SmallVector<Value *, 4> OriginalValues;
2397 public:
2398 /// Remove \p Inst from the uses of the operands of \p Inst.
2399 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
2400 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
2401 unsigned NumOpnds = Inst->getNumOperands();
2402 OriginalValues.reserve(NumOpnds);
2403 for (unsigned It = 0; It < NumOpnds; ++It) {
2404 // Save the current operand.
2405 Value *Val = Inst->getOperand(It);
2406 OriginalValues.push_back(Val);
2407 // Set a dummy one.
2408 // We could use OperandSetter here, but that would imply an overhead
2409 // that we are not willing to pay.
2410 Inst->setOperand(It, UndefValue::get(Val->getType()));
2414 /// Restore the original list of uses.
2415 void undo() override {
2416 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
2417 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
2418 Inst->setOperand(It, OriginalValues[It]);
2422 /// Build a truncate instruction.
2423 class TruncBuilder : public TypePromotionAction {
2424 Value *Val;
2426 public:
2427 /// Build a truncate instruction of \p Opnd producing a \p Ty
2428 /// result.
2429 /// trunc Opnd to Ty.
2430 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
2431 IRBuilder<> Builder(Opnd);
2432 Val = Builder.CreateTrunc(Opnd, Ty, "promoted");
2433 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n");
2436 /// Get the built value.
2437 Value *getBuiltValue() { return Val; }
2439 /// Remove the built instruction.
2440 void undo() override {
2441 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n");
2442 if (Instruction *IVal = dyn_cast<Instruction>(Val))
2443 IVal->eraseFromParent();
2447 /// Build a sign extension instruction.
2448 class SExtBuilder : public TypePromotionAction {
2449 Value *Val;
2451 public:
2452 /// Build a sign extension instruction of \p Opnd producing a \p Ty
2453 /// result.
2454 /// sext Opnd to Ty.
2455 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2456 : TypePromotionAction(InsertPt) {
2457 IRBuilder<> Builder(InsertPt);
2458 Val = Builder.CreateSExt(Opnd, Ty, "promoted");
2459 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n");
2462 /// Get the built value.
2463 Value *getBuiltValue() { return Val; }
2465 /// Remove the built instruction.
2466 void undo() override {
2467 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n");
2468 if (Instruction *IVal = dyn_cast<Instruction>(Val))
2469 IVal->eraseFromParent();
2473 /// Build a zero extension instruction.
2474 class ZExtBuilder : public TypePromotionAction {
2475 Value *Val;
2477 public:
2478 /// Build a zero extension instruction of \p Opnd producing a \p Ty
2479 /// result.
2480 /// zext Opnd to Ty.
2481 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2482 : TypePromotionAction(InsertPt) {
2483 IRBuilder<> Builder(InsertPt);
2484 Val = Builder.CreateZExt(Opnd, Ty, "promoted");
2485 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n");
2488 /// Get the built value.
2489 Value *getBuiltValue() { return Val; }
2491 /// Remove the built instruction.
2492 void undo() override {
2493 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n");
2494 if (Instruction *IVal = dyn_cast<Instruction>(Val))
2495 IVal->eraseFromParent();
2499 /// Mutate an instruction to another type.
2500 class TypeMutator : public TypePromotionAction {
2501 /// Record the original type.
2502 Type *OrigTy;
2504 public:
2505 /// Mutate the type of \p Inst into \p NewTy.
2506 TypeMutator(Instruction *Inst, Type *NewTy)
2507 : TypePromotionAction(Inst), OrigTy(Inst->getType()) {
2508 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
2509 << "\n");
2510 Inst->mutateType(NewTy);
2513 /// Mutate the instruction back to its original type.
2514 void undo() override {
2515 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
2516 << "\n");
2517 Inst->mutateType(OrigTy);
2521 /// Replace the uses of an instruction by another instruction.
2522 class UsesReplacer : public TypePromotionAction {
2523 /// Helper structure to keep track of the replaced uses.
2524 struct InstructionAndIdx {
2525 /// The instruction using the instruction.
2526 Instruction *Inst;
2528 /// The index where this instruction is used for Inst.
2529 unsigned Idx;
2531 InstructionAndIdx(Instruction *Inst, unsigned Idx)
2532 : Inst(Inst), Idx(Idx) {}
2535 /// Keep track of the original uses (pair Instruction, Index).
2536 SmallVector<InstructionAndIdx, 4> OriginalUses;
2537 /// Keep track of the debug users.
2538 SmallVector<DbgValueInst *, 1> DbgValues;
2540 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator;
2542 public:
2543 /// Replace all the use of \p Inst by \p New.
2544 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) {
2545 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
2546 << "\n");
2547 // Record the original uses.
2548 for (Use &U : Inst->uses()) {
2549 Instruction *UserI = cast<Instruction>(U.getUser());
2550 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo()));
2552 // Record the debug uses separately. They are not in the instruction's
2553 // use list, but they are replaced by RAUW.
2554 findDbgValues(DbgValues, Inst);
2556 // Now, we can replace the uses.
2557 Inst->replaceAllUsesWith(New);
2560 /// Reassign the original uses of Inst to Inst.
2561 void undo() override {
2562 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
2563 for (use_iterator UseIt = OriginalUses.begin(),
2564 EndIt = OriginalUses.end();
2565 UseIt != EndIt; ++UseIt) {
2566 UseIt->Inst->setOperand(UseIt->Idx, Inst);
2568 // RAUW has replaced all original uses with references to the new value,
2569 // including the debug uses. Since we are undoing the replacements,
2570 // the original debug uses must also be reinstated to maintain the
2571 // correctness and utility of debug value instructions.
2572 for (auto *DVI: DbgValues) {
2573 LLVMContext &Ctx = Inst->getType()->getContext();
2574 auto *MV = MetadataAsValue::get(Ctx, ValueAsMetadata::get(Inst));
2575 DVI->setOperand(0, MV);
2580 /// Remove an instruction from the IR.
2581 class InstructionRemover : public TypePromotionAction {
2582 /// Original position of the instruction.
2583 InsertionHandler Inserter;
2585 /// Helper structure to hide all the link to the instruction. In other
2586 /// words, this helps to do as if the instruction was removed.
2587 OperandsHider Hider;
2589 /// Keep track of the uses replaced, if any.
2590 UsesReplacer *Replacer = nullptr;
2592 /// Keep track of instructions removed.
2593 SetOfInstrs &RemovedInsts;
2595 public:
2596 /// Remove all reference of \p Inst and optionally replace all its
2597 /// uses with New.
2598 /// \p RemovedInsts Keep track of the instructions removed by this Action.
2599 /// \pre If !Inst->use_empty(), then New != nullptr
2600 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts,
2601 Value *New = nullptr)
2602 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
2603 RemovedInsts(RemovedInsts) {
2604 if (New)
2605 Replacer = new UsesReplacer(Inst, New);
2606 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
2607 RemovedInsts.insert(Inst);
2608 /// The instructions removed here will be freed after completing
2609 /// optimizeBlock() for all blocks as we need to keep track of the
2610 /// removed instructions during promotion.
2611 Inst->removeFromParent();
2614 ~InstructionRemover() override { delete Replacer; }
2616 /// Resurrect the instruction and reassign it to the proper uses if
2617 /// new value was provided when build this action.
2618 void undo() override {
2619 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
2620 Inserter.insert(Inst);
2621 if (Replacer)
2622 Replacer->undo();
2623 Hider.undo();
2624 RemovedInsts.erase(Inst);
2628 public:
2629 /// Restoration point.
2630 /// The restoration point is a pointer to an action instead of an iterator
2631 /// because the iterator may be invalidated but not the pointer.
2632 using ConstRestorationPt = const TypePromotionAction *;
2634 TypePromotionTransaction(SetOfInstrs &RemovedInsts)
2635 : RemovedInsts(RemovedInsts) {}
2637 /// Advocate every changes made in that transaction.
2638 void commit();
2640 /// Undo all the changes made after the given point.
2641 void rollback(ConstRestorationPt Point);
2643 /// Get the current restoration point.
2644 ConstRestorationPt getRestorationPoint() const;
2646 /// \name API for IR modification with state keeping to support rollback.
2647 /// @{
2648 /// Same as Instruction::setOperand.
2649 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);
2651 /// Same as Instruction::eraseFromParent.
2652 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr);
2654 /// Same as Value::replaceAllUsesWith.
2655 void replaceAllUsesWith(Instruction *Inst, Value *New);
2657 /// Same as Value::mutateType.
2658 void mutateType(Instruction *Inst, Type *NewTy);
2660 /// Same as IRBuilder::createTrunc.
2661 Value *createTrunc(Instruction *Opnd, Type *Ty);
2663 /// Same as IRBuilder::createSExt.
2664 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
2666 /// Same as IRBuilder::createZExt.
2667 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty);
2669 /// Same as Instruction::moveBefore.
2670 void moveBefore(Instruction *Inst, Instruction *Before);
2671 /// @}
2673 private:
2674 /// The ordered list of actions made so far.
2675 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions;
2677 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator;
2679 SetOfInstrs &RemovedInsts;
2682 } // end anonymous namespace
2684 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
2685 Value *NewVal) {
2686 Actions.push_back(llvm::make_unique<TypePromotionTransaction::OperandSetter>(
2687 Inst, Idx, NewVal));
2690 void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
2691 Value *NewVal) {
2692 Actions.push_back(
2693 llvm::make_unique<TypePromotionTransaction::InstructionRemover>(
2694 Inst, RemovedInsts, NewVal));
2697 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
2698 Value *New) {
2699 Actions.push_back(
2700 llvm::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New));
2703 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
2704 Actions.push_back(
2705 llvm::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy));
2708 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd,
2709 Type *Ty) {
2710 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty));
2711 Value *Val = Ptr->getBuiltValue();
2712 Actions.push_back(std::move(Ptr));
2713 return Val;
2716 Value *TypePromotionTransaction::createSExt(Instruction *Inst,
2717 Value *Opnd, Type *Ty) {
2718 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty));
2719 Value *Val = Ptr->getBuiltValue();
2720 Actions.push_back(std::move(Ptr));
2721 return Val;
2724 Value *TypePromotionTransaction::createZExt(Instruction *Inst,
2725 Value *Opnd, Type *Ty) {
2726 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty));
2727 Value *Val = Ptr->getBuiltValue();
2728 Actions.push_back(std::move(Ptr));
2729 return Val;
2732 void TypePromotionTransaction::moveBefore(Instruction *Inst,
2733 Instruction *Before) {
2734 Actions.push_back(
2735 llvm::make_unique<TypePromotionTransaction::InstructionMoveBefore>(
2736 Inst, Before));
2739 TypePromotionTransaction::ConstRestorationPt
2740 TypePromotionTransaction::getRestorationPoint() const {
2741 return !Actions.empty() ? Actions.back().get() : nullptr;
2744 void TypePromotionTransaction::commit() {
2745 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt;
2746 ++It)
2747 (*It)->commit();
2748 Actions.clear();
2751 void TypePromotionTransaction::rollback(
2752 TypePromotionTransaction::ConstRestorationPt Point) {
2753 while (!Actions.empty() && Point != Actions.back().get()) {
2754 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val();
2755 Curr->undo();
2759 namespace {
2761 /// A helper class for matching addressing modes.
2763 /// This encapsulates the logic for matching the target-legal addressing modes.
2764 class AddressingModeMatcher {
2765 SmallVectorImpl<Instruction*> &AddrModeInsts;
2766 const TargetLowering &TLI;
2767 const TargetRegisterInfo &TRI;
2768 const DataLayout &DL;
2770 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
2771 /// the memory instruction that we're computing this address for.
2772 Type *AccessTy;
2773 unsigned AddrSpace;
2774 Instruction *MemoryInst;
2776 /// This is the addressing mode that we're building up. This is
2777 /// part of the return value of this addressing mode matching stuff.
2778 ExtAddrMode &AddrMode;
2780 /// The instructions inserted by other CodeGenPrepare optimizations.
2781 const SetOfInstrs &InsertedInsts;
2783 /// A map from the instructions to their type before promotion.
2784 InstrToOrigTy &PromotedInsts;
2786 /// The ongoing transaction where every action should be registered.
2787 TypePromotionTransaction &TPT;
2789 // A GEP which has too large offset to be folded into the addressing mode.
2790 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP;
2792 /// This is set to true when we should not do profitability checks.
2793 /// When true, IsProfitableToFoldIntoAddressingMode always returns true.
2794 bool IgnoreProfitability;
2796 AddressingModeMatcher(
2797 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI,
2798 const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI,
2799 ExtAddrMode &AM, const SetOfInstrs &InsertedInsts,
2800 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT,
2801 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP)
2802 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI),
2803 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS),
2804 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts),
2805 PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP) {
2806 IgnoreProfitability = false;
2809 public:
2810 /// Find the maximal addressing mode that a load/store of V can fold,
2811 /// give an access type of AccessTy. This returns a list of involved
2812 /// instructions in AddrModeInsts.
2813 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare
2814 /// optimizations.
2815 /// \p PromotedInsts maps the instructions to their type before promotion.
2816 /// \p The ongoing transaction where every action should be registered.
2817 static ExtAddrMode
2818 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst,
2819 SmallVectorImpl<Instruction *> &AddrModeInsts,
2820 const TargetLowering &TLI, const TargetRegisterInfo &TRI,
2821 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts,
2822 TypePromotionTransaction &TPT,
2823 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) {
2824 ExtAddrMode Result;
2826 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS,
2827 MemoryInst, Result, InsertedInsts,
2828 PromotedInsts, TPT, LargeOffsetGEP)
2829 .matchAddr(V, 0);
2830 (void)Success; assert(Success && "Couldn't select *anything*?");
2831 return Result;
2834 private:
2835 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
2836 bool matchAddr(Value *Addr, unsigned Depth);
2837 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth,
2838 bool *MovedAway = nullptr);
2839 bool isProfitableToFoldIntoAddressingMode(Instruction *I,
2840 ExtAddrMode &AMBefore,
2841 ExtAddrMode &AMAfter);
2842 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
2843 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost,
2844 Value *PromotedOperand) const;
2847 class PhiNodeSet;
2849 /// An iterator for PhiNodeSet.
2850 class PhiNodeSetIterator {
2851 PhiNodeSet * const Set;
2852 size_t CurrentIndex = 0;
2854 public:
2855 /// The constructor. Start should point to either a valid element, or be equal
2856 /// to the size of the underlying SmallVector of the PhiNodeSet.
2857 PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start);
2858 PHINode * operator*() const;
2859 PhiNodeSetIterator& operator++();
2860 bool operator==(const PhiNodeSetIterator &RHS) const;
2861 bool operator!=(const PhiNodeSetIterator &RHS) const;
2864 /// Keeps a set of PHINodes.
2866 /// This is a minimal set implementation for a specific use case:
2867 /// It is very fast when there are very few elements, but also provides good
2868 /// performance when there are many. It is similar to SmallPtrSet, but also
2869 /// provides iteration by insertion order, which is deterministic and stable
2870 /// across runs. It is also similar to SmallSetVector, but provides removing
2871 /// elements in O(1) time. This is achieved by not actually removing the element
2872 /// from the underlying vector, so comes at the cost of using more memory, but
2873 /// that is fine, since PhiNodeSets are used as short lived objects.
2874 class PhiNodeSet {
2875 friend class PhiNodeSetIterator;
2877 using MapType = SmallDenseMap<PHINode *, size_t, 32>;
2878 using iterator = PhiNodeSetIterator;
2880 /// Keeps the elements in the order of their insertion in the underlying
2881 /// vector. To achieve constant time removal, it never deletes any element.
2882 SmallVector<PHINode *, 32> NodeList;
2884 /// Keeps the elements in the underlying set implementation. This (and not the
2885 /// NodeList defined above) is the source of truth on whether an element
2886 /// is actually in the collection.
2887 MapType NodeMap;
2889 /// Points to the first valid (not deleted) element when the set is not empty
2890 /// and the value is not zero. Equals to the size of the underlying vector
2891 /// when the set is empty. When the value is 0, as in the beginning, the
2892 /// first element may or may not be valid.
2893 size_t FirstValidElement = 0;
2895 public:
2896 /// Inserts a new element to the collection.
2897 /// \returns true if the element is actually added, i.e. was not in the
2898 /// collection before the operation.
2899 bool insert(PHINode *Ptr) {
2900 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) {
2901 NodeList.push_back(Ptr);
2902 return true;
2904 return false;
2907 /// Removes the element from the collection.
2908 /// \returns whether the element is actually removed, i.e. was in the
2909 /// collection before the operation.
2910 bool erase(PHINode *Ptr) {
2911 auto it = NodeMap.find(Ptr);
2912 if (it != NodeMap.end()) {
2913 NodeMap.erase(Ptr);
2914 SkipRemovedElements(FirstValidElement);
2915 return true;
2917 return false;
2920 /// Removes all elements and clears the collection.
2921 void clear() {
2922 NodeMap.clear();
2923 NodeList.clear();
2924 FirstValidElement = 0;
2927 /// \returns an iterator that will iterate the elements in the order of
2928 /// insertion.
2929 iterator begin() {
2930 if (FirstValidElement == 0)
2931 SkipRemovedElements(FirstValidElement);
2932 return PhiNodeSetIterator(this, FirstValidElement);
2935 /// \returns an iterator that points to the end of the collection.
2936 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); }
2938 /// Returns the number of elements in the collection.
2939 size_t size() const {
2940 return NodeMap.size();
2943 /// \returns 1 if the given element is in the collection, and 0 if otherwise.
2944 size_t count(PHINode *Ptr) const {
2945 return NodeMap.count(Ptr);
2948 private:
2949 /// Updates the CurrentIndex so that it will point to a valid element.
2951 /// If the element of NodeList at CurrentIndex is valid, it does not
2952 /// change it. If there are no more valid elements, it updates CurrentIndex
2953 /// to point to the end of the NodeList.
2954 void SkipRemovedElements(size_t &CurrentIndex) {
2955 while (CurrentIndex < NodeList.size()) {
2956 auto it = NodeMap.find(NodeList[CurrentIndex]);
2957 // If the element has been deleted and added again later, NodeMap will
2958 // point to a different index, so CurrentIndex will still be invalid.
2959 if (it != NodeMap.end() && it->second == CurrentIndex)
2960 break;
2961 ++CurrentIndex;
2966 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start)
2967 : Set(Set), CurrentIndex(Start) {}
2969 PHINode * PhiNodeSetIterator::operator*() const {
2970 assert(CurrentIndex < Set->NodeList.size() &&
2971 "PhiNodeSet access out of range");
2972 return Set->NodeList[CurrentIndex];
2975 PhiNodeSetIterator& PhiNodeSetIterator::operator++() {
2976 assert(CurrentIndex < Set->NodeList.size() &&
2977 "PhiNodeSet access out of range");
2978 ++CurrentIndex;
2979 Set->SkipRemovedElements(CurrentIndex);
2980 return *this;
2983 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const {
2984 return CurrentIndex == RHS.CurrentIndex;
2987 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const {
2988 return !((*this) == RHS);
2991 /// Keep track of simplification of Phi nodes.
2992 /// Accept the set of all phi nodes and erase phi node from this set
2993 /// if it is simplified.
2994 class SimplificationTracker {
2995 DenseMap<Value *, Value *> Storage;
2996 const SimplifyQuery &SQ;
2997 // Tracks newly created Phi nodes. The elements are iterated by insertion
2998 // order.
2999 PhiNodeSet AllPhiNodes;
3000 // Tracks newly created Select nodes.
3001 SmallPtrSet<SelectInst *, 32> AllSelectNodes;
3003 public:
3004 SimplificationTracker(const SimplifyQuery &sq)
3005 : SQ(sq) {}
3007 Value *Get(Value *V) {
3008 do {
3009 auto SV = Storage.find(V);
3010 if (SV == Storage.end())
3011 return V;
3012 V = SV->second;
3013 } while (true);
3016 Value *Simplify(Value *Val) {
3017 SmallVector<Value *, 32> WorkList;
3018 SmallPtrSet<Value *, 32> Visited;
3019 WorkList.push_back(Val);
3020 while (!WorkList.empty()) {
3021 auto P = WorkList.pop_back_val();
3022 if (!Visited.insert(P).second)
3023 continue;
3024 if (auto *PI = dyn_cast<Instruction>(P))
3025 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) {
3026 for (auto *U : PI->users())
3027 WorkList.push_back(cast<Value>(U));
3028 Put(PI, V);
3029 PI->replaceAllUsesWith(V);
3030 if (auto *PHI = dyn_cast<PHINode>(PI))
3031 AllPhiNodes.erase(PHI);
3032 if (auto *Select = dyn_cast<SelectInst>(PI))
3033 AllSelectNodes.erase(Select);
3034 PI->eraseFromParent();
3037 return Get(Val);
3040 void Put(Value *From, Value *To) {
3041 Storage.insert({ From, To });
3044 void ReplacePhi(PHINode *From, PHINode *To) {
3045 Value* OldReplacement = Get(From);
3046 while (OldReplacement != From) {
3047 From = To;
3048 To = dyn_cast<PHINode>(OldReplacement);
3049 OldReplacement = Get(From);
3051 assert(Get(To) == To && "Replacement PHI node is already replaced.");
3052 Put(From, To);
3053 From->replaceAllUsesWith(To);
3054 AllPhiNodes.erase(From);
3055 From->eraseFromParent();
3058 PhiNodeSet& newPhiNodes() { return AllPhiNodes; }
3060 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); }
3062 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); }
3064 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); }
3066 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); }
3068 void destroyNewNodes(Type *CommonType) {
3069 // For safe erasing, replace the uses with dummy value first.
3070 auto Dummy = UndefValue::get(CommonType);
3071 for (auto I : AllPhiNodes) {
3072 I->replaceAllUsesWith(Dummy);
3073 I->eraseFromParent();
3075 AllPhiNodes.clear();
3076 for (auto I : AllSelectNodes) {
3077 I->replaceAllUsesWith(Dummy);
3078 I->eraseFromParent();
3080 AllSelectNodes.clear();
3084 /// A helper class for combining addressing modes.
3085 class AddressingModeCombiner {
3086 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping;
3087 typedef std::pair<PHINode *, PHINode *> PHIPair;
3089 private:
3090 /// The addressing modes we've collected.
3091 SmallVector<ExtAddrMode, 16> AddrModes;
3093 /// The field in which the AddrModes differ, when we have more than one.
3094 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField;
3096 /// Are the AddrModes that we have all just equal to their original values?
3097 bool AllAddrModesTrivial = true;
3099 /// Common Type for all different fields in addressing modes.
3100 Type *CommonType;
3102 /// SimplifyQuery for simplifyInstruction utility.
3103 const SimplifyQuery &SQ;
3105 /// Original Address.
3106 Value *Original;
3108 public:
3109 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue)
3110 : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {}
3112 /// Get the combined AddrMode
3113 const ExtAddrMode &getAddrMode() const {
3114 return AddrModes[0];
3117 /// Add a new AddrMode if it's compatible with the AddrModes we already
3118 /// have.
3119 /// \return True iff we succeeded in doing so.
3120 bool addNewAddrMode(ExtAddrMode &NewAddrMode) {
3121 // Take note of if we have any non-trivial AddrModes, as we need to detect
3122 // when all AddrModes are trivial as then we would introduce a phi or select
3123 // which just duplicates what's already there.
3124 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial();
3126 // If this is the first addrmode then everything is fine.
3127 if (AddrModes.empty()) {
3128 AddrModes.emplace_back(NewAddrMode);
3129 return true;
3132 // Figure out how different this is from the other address modes, which we
3133 // can do just by comparing against the first one given that we only care
3134 // about the cumulative difference.
3135 ExtAddrMode::FieldName ThisDifferentField =
3136 AddrModes[0].compare(NewAddrMode);
3137 if (DifferentField == ExtAddrMode::NoField)
3138 DifferentField = ThisDifferentField;
3139 else if (DifferentField != ThisDifferentField)
3140 DifferentField = ExtAddrMode::MultipleFields;
3142 // If NewAddrMode differs in more than one dimension we cannot handle it.
3143 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields;
3145 // If Scale Field is different then we reject.
3146 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField;
3148 // We also must reject the case when base offset is different and
3149 // scale reg is not null, we cannot handle this case due to merge of
3150 // different offsets will be used as ScaleReg.
3151 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField ||
3152 !NewAddrMode.ScaledReg);
3154 // We also must reject the case when GV is different and BaseReg installed
3155 // due to we want to use base reg as a merge of GV values.
3156 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField ||
3157 !NewAddrMode.HasBaseReg);
3159 // Even if NewAddMode is the same we still need to collect it due to
3160 // original value is different. And later we will need all original values
3161 // as anchors during finding the common Phi node.
3162 if (CanHandle)
3163 AddrModes.emplace_back(NewAddrMode);
3164 else
3165 AddrModes.clear();
3167 return CanHandle;
3170 /// Combine the addressing modes we've collected into a single
3171 /// addressing mode.
3172 /// \return True iff we successfully combined them or we only had one so
3173 /// didn't need to combine them anyway.
3174 bool combineAddrModes() {
3175 // If we have no AddrModes then they can't be combined.
3176 if (AddrModes.size() == 0)
3177 return false;
3179 // A single AddrMode can trivially be combined.
3180 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField)
3181 return true;
3183 // If the AddrModes we collected are all just equal to the value they are
3184 // derived from then combining them wouldn't do anything useful.
3185 if (AllAddrModesTrivial)
3186 return false;
3188 if (!addrModeCombiningAllowed())
3189 return false;
3191 // Build a map between <original value, basic block where we saw it> to
3192 // value of base register.
3193 // Bail out if there is no common type.
3194 FoldAddrToValueMapping Map;
3195 if (!initializeMap(Map))
3196 return false;
3198 Value *CommonValue = findCommon(Map);
3199 if (CommonValue)
3200 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes);
3201 return CommonValue != nullptr;
3204 private:
3205 /// Initialize Map with anchor values. For address seen
3206 /// we set the value of different field saw in this address.
3207 /// At the same time we find a common type for different field we will
3208 /// use to create new Phi/Select nodes. Keep it in CommonType field.
3209 /// Return false if there is no common type found.
3210 bool initializeMap(FoldAddrToValueMapping &Map) {
3211 // Keep track of keys where the value is null. We will need to replace it
3212 // with constant null when we know the common type.
3213 SmallVector<Value *, 2> NullValue;
3214 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType());
3215 for (auto &AM : AddrModes) {
3216 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy);
3217 if (DV) {
3218 auto *Type = DV->getType();
3219 if (CommonType && CommonType != Type)
3220 return false;
3221 CommonType = Type;
3222 Map[AM.OriginalValue] = DV;
3223 } else {
3224 NullValue.push_back(AM.OriginalValue);
3227 assert(CommonType && "At least one non-null value must be!");
3228 for (auto *V : NullValue)
3229 Map[V] = Constant::getNullValue(CommonType);
3230 return true;
3233 /// We have mapping between value A and other value B where B was a field in
3234 /// addressing mode represented by A. Also we have an original value C
3235 /// representing an address we start with. Traversing from C through phi and
3236 /// selects we ended up with A's in a map. This utility function tries to find
3237 /// a value V which is a field in addressing mode C and traversing through phi
3238 /// nodes and selects we will end up in corresponded values B in a map.
3239 /// The utility will create a new Phi/Selects if needed.
3240 // The simple example looks as follows:
3241 // BB1:
3242 // p1 = b1 + 40
3243 // br cond BB2, BB3
3244 // BB2:
3245 // p2 = b2 + 40
3246 // br BB3
3247 // BB3:
3248 // p = phi [p1, BB1], [p2, BB2]
3249 // v = load p
3250 // Map is
3251 // p1 -> b1
3252 // p2 -> b2
3253 // Request is
3254 // p -> ?
3255 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3.
3256 Value *findCommon(FoldAddrToValueMapping &Map) {
3257 // Tracks the simplification of newly created phi nodes. The reason we use
3258 // this mapping is because we will add new created Phi nodes in AddrToBase.
3259 // Simplification of Phi nodes is recursive, so some Phi node may
3260 // be simplified after we added it to AddrToBase. In reality this
3261 // simplification is possible only if original phi/selects were not
3262 // simplified yet.
3263 // Using this mapping we can find the current value in AddrToBase.
3264 SimplificationTracker ST(SQ);
3266 // First step, DFS to create PHI nodes for all intermediate blocks.
3267 // Also fill traverse order for the second step.
3268 SmallVector<Value *, 32> TraverseOrder;
3269 InsertPlaceholders(Map, TraverseOrder, ST);
3271 // Second Step, fill new nodes by merged values and simplify if possible.
3272 FillPlaceholders(Map, TraverseOrder, ST);
3274 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) {
3275 ST.destroyNewNodes(CommonType);
3276 return nullptr;
3279 // Now we'd like to match New Phi nodes to existed ones.
3280 unsigned PhiNotMatchedCount = 0;
3281 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) {
3282 ST.destroyNewNodes(CommonType);
3283 return nullptr;
3286 auto *Result = ST.Get(Map.find(Original)->second);
3287 if (Result) {
3288 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount;
3289 NumMemoryInstsSelectCreated += ST.countNewSelectNodes();
3291 return Result;
3294 /// Try to match PHI node to Candidate.
3295 /// Matcher tracks the matched Phi nodes.
3296 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate,
3297 SmallSetVector<PHIPair, 8> &Matcher,
3298 PhiNodeSet &PhiNodesToMatch) {
3299 SmallVector<PHIPair, 8> WorkList;
3300 Matcher.insert({ PHI, Candidate });
3301 SmallSet<PHINode *, 8> MatchedPHIs;
3302 MatchedPHIs.insert(PHI);
3303 WorkList.push_back({ PHI, Candidate });
3304 SmallSet<PHIPair, 8> Visited;
3305 while (!WorkList.empty()) {
3306 auto Item = WorkList.pop_back_val();
3307 if (!Visited.insert(Item).second)
3308 continue;
3309 // We iterate over all incoming values to Phi to compare them.
3310 // If values are different and both of them Phi and the first one is a
3311 // Phi we added (subject to match) and both of them is in the same basic
3312 // block then we can match our pair if values match. So we state that
3313 // these values match and add it to work list to verify that.
3314 for (auto B : Item.first->blocks()) {
3315 Value *FirstValue = Item.first->getIncomingValueForBlock(B);
3316 Value *SecondValue = Item.second->getIncomingValueForBlock(B);
3317 if (FirstValue == SecondValue)
3318 continue;
3320 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue);
3321 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue);
3323 // One of them is not Phi or
3324 // The first one is not Phi node from the set we'd like to match or
3325 // Phi nodes from different basic blocks then
3326 // we will not be able to match.
3327 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) ||
3328 FirstPhi->getParent() != SecondPhi->getParent())
3329 return false;
3331 // If we already matched them then continue.
3332 if (Matcher.count({ FirstPhi, SecondPhi }))
3333 continue;
3334 // So the values are different and does not match. So we need them to
3335 // match. (But we register no more than one match per PHI node, so that
3336 // we won't later try to replace them twice.)
3337 if (!MatchedPHIs.insert(FirstPhi).second)
3338 Matcher.insert({ FirstPhi, SecondPhi });
3339 // But me must check it.
3340 WorkList.push_back({ FirstPhi, SecondPhi });
3343 return true;
3346 /// For the given set of PHI nodes (in the SimplificationTracker) try
3347 /// to find their equivalents.
3348 /// Returns false if this matching fails and creation of new Phi is disabled.
3349 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes,
3350 unsigned &PhiNotMatchedCount) {
3351 // Matched and PhiNodesToMatch iterate their elements in a deterministic
3352 // order, so the replacements (ReplacePhi) are also done in a deterministic
3353 // order.
3354 SmallSetVector<PHIPair, 8> Matched;
3355 SmallPtrSet<PHINode *, 8> WillNotMatch;
3356 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes();
3357 while (PhiNodesToMatch.size()) {
3358 PHINode *PHI = *PhiNodesToMatch.begin();
3360 // Add us, if no Phi nodes in the basic block we do not match.
3361 WillNotMatch.clear();
3362 WillNotMatch.insert(PHI);
3364 // Traverse all Phis until we found equivalent or fail to do that.
3365 bool IsMatched = false;
3366 for (auto &P : PHI->getParent()->phis()) {
3367 if (&P == PHI)
3368 continue;
3369 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch)))
3370 break;
3371 // If it does not match, collect all Phi nodes from matcher.
3372 // if we end up with no match, them all these Phi nodes will not match
3373 // later.
3374 for (auto M : Matched)
3375 WillNotMatch.insert(M.first);
3376 Matched.clear();
3378 if (IsMatched) {
3379 // Replace all matched values and erase them.
3380 for (auto MV : Matched)
3381 ST.ReplacePhi(MV.first, MV.second);
3382 Matched.clear();
3383 continue;
3385 // If we are not allowed to create new nodes then bail out.
3386 if (!AllowNewPhiNodes)
3387 return false;
3388 // Just remove all seen values in matcher. They will not match anything.
3389 PhiNotMatchedCount += WillNotMatch.size();
3390 for (auto *P : WillNotMatch)
3391 PhiNodesToMatch.erase(P);
3393 return true;
3395 /// Fill the placeholders with values from predecessors and simplify them.
3396 void FillPlaceholders(FoldAddrToValueMapping &Map,
3397 SmallVectorImpl<Value *> &TraverseOrder,
3398 SimplificationTracker &ST) {
3399 while (!TraverseOrder.empty()) {
3400 Value *Current = TraverseOrder.pop_back_val();
3401 assert(Map.find(Current) != Map.end() && "No node to fill!!!");
3402 Value *V = Map[Current];
3404 if (SelectInst *Select = dyn_cast<SelectInst>(V)) {
3405 // CurrentValue also must be Select.
3406 auto *CurrentSelect = cast<SelectInst>(Current);
3407 auto *TrueValue = CurrentSelect->getTrueValue();
3408 assert(Map.find(TrueValue) != Map.end() && "No True Value!");
3409 Select->setTrueValue(ST.Get(Map[TrueValue]));
3410 auto *FalseValue = CurrentSelect->getFalseValue();
3411 assert(Map.find(FalseValue) != Map.end() && "No False Value!");
3412 Select->setFalseValue(ST.Get(Map[FalseValue]));
3413 } else {
3414 // Must be a Phi node then.
3415 PHINode *PHI = cast<PHINode>(V);
3416 auto *CurrentPhi = dyn_cast<PHINode>(Current);
3417 // Fill the Phi node with values from predecessors.
3418 for (auto B : predecessors(PHI->getParent())) {
3419 Value *PV = CurrentPhi->getIncomingValueForBlock(B);
3420 assert(Map.find(PV) != Map.end() && "No predecessor Value!");
3421 PHI->addIncoming(ST.Get(Map[PV]), B);
3424 Map[Current] = ST.Simplify(V);
3428 /// Starting from original value recursively iterates over def-use chain up to
3429 /// known ending values represented in a map. For each traversed phi/select
3430 /// inserts a placeholder Phi or Select.
3431 /// Reports all new created Phi/Select nodes by adding them to set.
3432 /// Also reports and order in what values have been traversed.
3433 void InsertPlaceholders(FoldAddrToValueMapping &Map,
3434 SmallVectorImpl<Value *> &TraverseOrder,
3435 SimplificationTracker &ST) {
3436 SmallVector<Value *, 32> Worklist;
3437 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) &&
3438 "Address must be a Phi or Select node");
3439 auto *Dummy = UndefValue::get(CommonType);
3440 Worklist.push_back(Original);
3441 while (!Worklist.empty()) {
3442 Value *Current = Worklist.pop_back_val();
3443 // if it is already visited or it is an ending value then skip it.
3444 if (Map.find(Current) != Map.end())
3445 continue;
3446 TraverseOrder.push_back(Current);
3448 // CurrentValue must be a Phi node or select. All others must be covered
3449 // by anchors.
3450 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) {
3451 // Is it OK to get metadata from OrigSelect?!
3452 // Create a Select placeholder with dummy value.
3453 SelectInst *Select = SelectInst::Create(
3454 CurrentSelect->getCondition(), Dummy, Dummy,
3455 CurrentSelect->getName(), CurrentSelect, CurrentSelect);
3456 Map[Current] = Select;
3457 ST.insertNewSelect(Select);
3458 // We are interested in True and False values.
3459 Worklist.push_back(CurrentSelect->getTrueValue());
3460 Worklist.push_back(CurrentSelect->getFalseValue());
3461 } else {
3462 // It must be a Phi node then.
3463 PHINode *CurrentPhi = cast<PHINode>(Current);
3464 unsigned PredCount = CurrentPhi->getNumIncomingValues();
3465 PHINode *PHI =
3466 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi);
3467 Map[Current] = PHI;
3468 ST.insertNewPhi(PHI);
3469 for (Value *P : CurrentPhi->incoming_values())
3470 Worklist.push_back(P);
3475 bool addrModeCombiningAllowed() {
3476 if (DisableComplexAddrModes)
3477 return false;
3478 switch (DifferentField) {
3479 default:
3480 return false;
3481 case ExtAddrMode::BaseRegField:
3482 return AddrSinkCombineBaseReg;
3483 case ExtAddrMode::BaseGVField:
3484 return AddrSinkCombineBaseGV;
3485 case ExtAddrMode::BaseOffsField:
3486 return AddrSinkCombineBaseOffs;
3487 case ExtAddrMode::ScaledRegField:
3488 return AddrSinkCombineScaledReg;
3492 } // end anonymous namespace
3494 /// Try adding ScaleReg*Scale to the current addressing mode.
3495 /// Return true and update AddrMode if this addr mode is legal for the target,
3496 /// false if not.
3497 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale,
3498 unsigned Depth) {
3499 // If Scale is 1, then this is the same as adding ScaleReg to the addressing
3500 // mode. Just process that directly.
3501 if (Scale == 1)
3502 return matchAddr(ScaleReg, Depth);
3504 // If the scale is 0, it takes nothing to add this.
3505 if (Scale == 0)
3506 return true;
3508 // If we already have a scale of this value, we can add to it, otherwise, we
3509 // need an available scale field.
3510 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
3511 return false;
3513 ExtAddrMode TestAddrMode = AddrMode;
3515 // Add scale to turn X*4+X*3 -> X*7. This could also do things like
3516 // [A+B + A*7] -> [B+A*8].
3517 TestAddrMode.Scale += Scale;
3518 TestAddrMode.ScaledReg = ScaleReg;
3520 // If the new address isn't legal, bail out.
3521 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace))
3522 return false;
3524 // It was legal, so commit it.
3525 AddrMode = TestAddrMode;
3527 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now
3528 // to see if ScaleReg is actually X+C. If so, we can turn this into adding
3529 // X*Scale + C*Scale to addr mode.
3530 ConstantInt *CI = nullptr; Value *AddLHS = nullptr;
3531 if (isa<Instruction>(ScaleReg) && // not a constant expr.
3532 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
3533 TestAddrMode.InBounds = false;
3534 TestAddrMode.ScaledReg = AddLHS;
3535 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;
3537 // If this addressing mode is legal, commit it and remember that we folded
3538 // this instruction.
3539 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) {
3540 AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
3541 AddrMode = TestAddrMode;
3542 return true;
3546 // Otherwise, not (x+c)*scale, just return what we have.
3547 return true;
3550 /// This is a little filter, which returns true if an addressing computation
3551 /// involving I might be folded into a load/store accessing it.
3552 /// This doesn't need to be perfect, but needs to accept at least
3553 /// the set of instructions that MatchOperationAddr can.
3554 static bool MightBeFoldableInst(Instruction *I) {
3555 switch (I->getOpcode()) {
3556 case Instruction::BitCast:
3557 case Instruction::AddrSpaceCast:
3558 // Don't touch identity bitcasts.
3559 if (I->getType() == I->getOperand(0)->getType())
3560 return false;
3561 return I->getType()->isIntOrPtrTy();
3562 case Instruction::PtrToInt:
3563 // PtrToInt is always a noop, as we know that the int type is pointer sized.
3564 return true;
3565 case Instruction::IntToPtr:
3566 // We know the input is intptr_t, so this is foldable.
3567 return true;
3568 case Instruction::Add:
3569 return true;
3570 case Instruction::Mul:
3571 case Instruction::Shl:
3572 // Can only handle X*C and X << C.
3573 return isa<ConstantInt>(I->getOperand(1));
3574 case Instruction::GetElementPtr:
3575 return true;
3576 default:
3577 return false;
3581 /// Check whether or not \p Val is a legal instruction for \p TLI.
3582 /// \note \p Val is assumed to be the product of some type promotion.
3583 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed
3584 /// to be legal, as the non-promoted value would have had the same state.
3585 static bool isPromotedInstructionLegal(const TargetLowering &TLI,
3586 const DataLayout &DL, Value *Val) {
3587 Instruction *PromotedInst = dyn_cast<Instruction>(Val);
3588 if (!PromotedInst)
3589 return false;
3590 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode());
3591 // If the ISDOpcode is undefined, it was undefined before the promotion.
3592 if (!ISDOpcode)
3593 return true;
3594 // Otherwise, check if the promoted instruction is legal or not.
3595 return TLI.isOperationLegalOrCustom(
3596 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType()));
3599 namespace {
3601 /// Hepler class to perform type promotion.
3602 class TypePromotionHelper {
3603 /// Utility function to add a promoted instruction \p ExtOpnd to
3604 /// \p PromotedInsts and record the type of extension we have seen.
3605 static void addPromotedInst(InstrToOrigTy &PromotedInsts,
3606 Instruction *ExtOpnd,
3607 bool IsSExt) {
3608 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
3609 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd);
3610 if (It != PromotedInsts.end()) {
3611 // If the new extension is same as original, the information in
3612 // PromotedInsts[ExtOpnd] is still correct.
3613 if (It->second.getInt() == ExtTy)
3614 return;
3616 // Now the new extension is different from old extension, we make
3617 // the type information invalid by setting extension type to
3618 // BothExtension.
3619 ExtTy = BothExtension;
3621 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy);
3624 /// Utility function to query the original type of instruction \p Opnd
3625 /// with a matched extension type. If the extension doesn't match, we
3626 /// cannot use the information we had on the original type.
3627 /// BothExtension doesn't match any extension type.
3628 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts,
3629 Instruction *Opnd,
3630 bool IsSExt) {
3631 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
3632 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
3633 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy)
3634 return It->second.getPointer();
3635 return nullptr;
3638 /// Utility function to check whether or not a sign or zero extension
3639 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by
3640 /// either using the operands of \p Inst or promoting \p Inst.
3641 /// The type of the extension is defined by \p IsSExt.
3642 /// In other words, check if:
3643 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType.
3644 /// #1 Promotion applies:
3645 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...).
3646 /// #2 Operand reuses:
3647 /// ext opnd1 to ConsideredExtType.
3648 /// \p PromotedInsts maps the instructions to their type before promotion.
3649 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType,
3650 const InstrToOrigTy &PromotedInsts, bool IsSExt);
3652 /// Utility function to determine if \p OpIdx should be promoted when
3653 /// promoting \p Inst.
3654 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) {
3655 return !(isa<SelectInst>(Inst) && OpIdx == 0);
3658 /// Utility function to promote the operand of \p Ext when this
3659 /// operand is a promotable trunc or sext or zext.
3660 /// \p PromotedInsts maps the instructions to their type before promotion.
3661 /// \p CreatedInstsCost[out] contains the cost of all instructions
3662 /// created to promote the operand of Ext.
3663 /// Newly added extensions are inserted in \p Exts.
3664 /// Newly added truncates are inserted in \p Truncs.
3665 /// Should never be called directly.
3666 /// \return The promoted value which is used instead of Ext.
3667 static Value *promoteOperandForTruncAndAnyExt(
3668 Instruction *Ext, TypePromotionTransaction &TPT,
3669 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3670 SmallVectorImpl<Instruction *> *Exts,
3671 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI);
3673 /// Utility function to promote the operand of \p Ext when this
3674 /// operand is promotable and is not a supported trunc or sext.
3675 /// \p PromotedInsts maps the instructions to their type before promotion.
3676 /// \p CreatedInstsCost[out] contains the cost of all the instructions
3677 /// created to promote the operand of Ext.
3678 /// Newly added extensions are inserted in \p Exts.
3679 /// Newly added truncates are inserted in \p Truncs.
3680 /// Should never be called directly.
3681 /// \return The promoted value which is used instead of Ext.
3682 static Value *promoteOperandForOther(Instruction *Ext,
3683 TypePromotionTransaction &TPT,
3684 InstrToOrigTy &PromotedInsts,
3685 unsigned &CreatedInstsCost,
3686 SmallVectorImpl<Instruction *> *Exts,
3687 SmallVectorImpl<Instruction *> *Truncs,
3688 const TargetLowering &TLI, bool IsSExt);
3690 /// \see promoteOperandForOther.
3691 static Value *signExtendOperandForOther(
3692 Instruction *Ext, TypePromotionTransaction &TPT,
3693 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3694 SmallVectorImpl<Instruction *> *Exts,
3695 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3696 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
3697 Exts, Truncs, TLI, true);
3700 /// \see promoteOperandForOther.
3701 static Value *zeroExtendOperandForOther(
3702 Instruction *Ext, TypePromotionTransaction &TPT,
3703 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3704 SmallVectorImpl<Instruction *> *Exts,
3705 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3706 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
3707 Exts, Truncs, TLI, false);
3710 public:
3711 /// Type for the utility function that promotes the operand of Ext.
3712 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT,
3713 InstrToOrigTy &PromotedInsts,
3714 unsigned &CreatedInstsCost,
3715 SmallVectorImpl<Instruction *> *Exts,
3716 SmallVectorImpl<Instruction *> *Truncs,
3717 const TargetLowering &TLI);
3719 /// Given a sign/zero extend instruction \p Ext, return the appropriate
3720 /// action to promote the operand of \p Ext instead of using Ext.
3721 /// \return NULL if no promotable action is possible with the current
3722 /// sign extension.
3723 /// \p InsertedInsts keeps track of all the instructions inserted by the
3724 /// other CodeGenPrepare optimizations. This information is important
3725 /// because we do not want to promote these instructions as CodeGenPrepare
3726 /// will reinsert them later. Thus creating an infinite loop: create/remove.
3727 /// \p PromotedInsts maps the instructions to their type before promotion.
3728 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts,
3729 const TargetLowering &TLI,
3730 const InstrToOrigTy &PromotedInsts);
3733 } // end anonymous namespace
3735 bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
3736 Type *ConsideredExtType,
3737 const InstrToOrigTy &PromotedInsts,
3738 bool IsSExt) {
3739 // The promotion helper does not know how to deal with vector types yet.
3740 // To be able to fix that, we would need to fix the places where we
3741 // statically extend, e.g., constants and such.
3742 if (Inst->getType()->isVectorTy())
3743 return false;
3745 // We can always get through zext.
3746 if (isa<ZExtInst>(Inst))
3747 return true;
3749 // sext(sext) is ok too.
3750 if (IsSExt && isa<SExtInst>(Inst))
3751 return true;
3753 // We can get through binary operator, if it is legal. In other words, the
3754 // binary operator must have a nuw or nsw flag.
3755 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
3756 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) &&
3757 ((!IsSExt && BinOp->hasNoUnsignedWrap()) ||
3758 (IsSExt && BinOp->hasNoSignedWrap())))
3759 return true;
3761 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst))
3762 if ((Inst->getOpcode() == Instruction::And ||
3763 Inst->getOpcode() == Instruction::Or))
3764 return true;
3766 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst))
3767 if (Inst->getOpcode() == Instruction::Xor) {
3768 const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1));
3769 // Make sure it is not a NOT.
3770 if (Cst && !Cst->getValue().isAllOnesValue())
3771 return true;
3774 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst))
3775 // It may change a poisoned value into a regular value, like
3776 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12
3777 // poisoned value regular value
3778 // It should be OK since undef covers valid value.
3779 if (Inst->getOpcode() == Instruction::LShr && !IsSExt)
3780 return true;
3782 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst)
3783 // It may change a poisoned value into a regular value, like
3784 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12
3785 // poisoned value regular value
3786 // It should be OK since undef covers valid value.
3787 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) {
3788 const Instruction *ExtInst =
3789 dyn_cast<const Instruction>(*Inst->user_begin());
3790 if (ExtInst->hasOneUse()) {
3791 const Instruction *AndInst =
3792 dyn_cast<const Instruction>(*ExtInst->user_begin());
3793 if (AndInst && AndInst->getOpcode() == Instruction::And) {
3794 const ConstantInt *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1));
3795 if (Cst &&
3796 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth()))
3797 return true;
3802 // Check if we can do the following simplification.
3803 // ext(trunc(opnd)) --> ext(opnd)
3804 if (!isa<TruncInst>(Inst))
3805 return false;
3807 Value *OpndVal = Inst->getOperand(0);
3808 // Check if we can use this operand in the extension.
3809 // If the type is larger than the result type of the extension, we cannot.
3810 if (!OpndVal->getType()->isIntegerTy() ||
3811 OpndVal->getType()->getIntegerBitWidth() >
3812 ConsideredExtType->getIntegerBitWidth())
3813 return false;
3815 // If the operand of the truncate is not an instruction, we will not have
3816 // any information on the dropped bits.
3817 // (Actually we could for constant but it is not worth the extra logic).
3818 Instruction *Opnd = dyn_cast<Instruction>(OpndVal);
3819 if (!Opnd)
3820 return false;
3822 // Check if the source of the type is narrow enough.
3823 // I.e., check that trunc just drops extended bits of the same kind of
3824 // the extension.
3825 // #1 get the type of the operand and check the kind of the extended bits.
3826 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt);
3827 if (OpndType)
3829 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd)))
3830 OpndType = Opnd->getOperand(0)->getType();
3831 else
3832 return false;
3834 // #2 check that the truncate just drops extended bits.
3835 return Inst->getType()->getIntegerBitWidth() >=
3836 OpndType->getIntegerBitWidth();
3839 TypePromotionHelper::Action TypePromotionHelper::getAction(
3840 Instruction *Ext, const SetOfInstrs &InsertedInsts,
3841 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
3842 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
3843 "Unexpected instruction type");
3844 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0));
3845 Type *ExtTy = Ext->getType();
3846 bool IsSExt = isa<SExtInst>(Ext);
3847 // If the operand of the extension is not an instruction, we cannot
3848 // get through.
3849 // If it, check we can get through.
3850 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt))
3851 return nullptr;
3853 // Do not promote if the operand has been added by codegenprepare.
3854 // Otherwise, it means we are undoing an optimization that is likely to be
3855 // redone, thus causing potential infinite loop.
3856 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd))
3857 return nullptr;
3859 // SExt or Trunc instructions.
3860 // Return the related handler.
3861 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) ||
3862 isa<ZExtInst>(ExtOpnd))
3863 return promoteOperandForTruncAndAnyExt;
3865 // Regular instruction.
3866 // Abort early if we will have to insert non-free instructions.
3867 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType()))
3868 return nullptr;
3869 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther;
3872 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt(
3873 Instruction *SExt, TypePromotionTransaction &TPT,
3874 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3875 SmallVectorImpl<Instruction *> *Exts,
3876 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3877 // By construction, the operand of SExt is an instruction. Otherwise we cannot
3878 // get through it and this method should not be called.
3879 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
3880 Value *ExtVal = SExt;
3881 bool HasMergedNonFreeExt = false;
3882 if (isa<ZExtInst>(SExtOpnd)) {
3883 // Replace s|zext(zext(opnd))
3884 // => zext(opnd).
3885 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd);
3886 Value *ZExt =
3887 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType());
3888 TPT.replaceAllUsesWith(SExt, ZExt);
3889 TPT.eraseInstruction(SExt);
3890 ExtVal = ZExt;
3891 } else {
3892 // Replace z|sext(trunc(opnd)) or sext(sext(opnd))
3893 // => z|sext(opnd).
3894 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
3896 CreatedInstsCost = 0;
3898 // Remove dead code.
3899 if (SExtOpnd->use_empty())
3900 TPT.eraseInstruction(SExtOpnd);
3902 // Check if the extension is still needed.
3903 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal);
3904 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) {
3905 if (ExtInst) {
3906 if (Exts)
3907 Exts->push_back(ExtInst);
3908 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt;
3910 return ExtVal;
3913 // At this point we have: ext ty opnd to ty.
3914 // Reassign the uses of ExtInst to the opnd and remove ExtInst.
3915 Value *NextVal = ExtInst->getOperand(0);
3916 TPT.eraseInstruction(ExtInst, NextVal);
3917 return NextVal;
3920 Value *TypePromotionHelper::promoteOperandForOther(
3921 Instruction *Ext, TypePromotionTransaction &TPT,
3922 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3923 SmallVectorImpl<Instruction *> *Exts,
3924 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI,
3925 bool IsSExt) {
3926 // By construction, the operand of Ext is an instruction. Otherwise we cannot
3927 // get through it and this method should not be called.
3928 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0));
3929 CreatedInstsCost = 0;
3930 if (!ExtOpnd->hasOneUse()) {
3931 // ExtOpnd will be promoted.
3932 // All its uses, but Ext, will need to use a truncated value of the
3933 // promoted version.
3934 // Create the truncate now.
3935 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType());
3936 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) {
3937 // Insert it just after the definition.
3938 ITrunc->moveAfter(ExtOpnd);
3939 if (Truncs)
3940 Truncs->push_back(ITrunc);
3943 TPT.replaceAllUsesWith(ExtOpnd, Trunc);
3944 // Restore the operand of Ext (which has been replaced by the previous call
3945 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
3946 TPT.setOperand(Ext, 0, ExtOpnd);
3949 // Get through the Instruction:
3950 // 1. Update its type.
3951 // 2. Replace the uses of Ext by Inst.
3952 // 3. Extend each operand that needs to be extended.
3954 // Remember the original type of the instruction before promotion.
3955 // This is useful to know that the high bits are sign extended bits.
3956 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt);
3957 // Step #1.
3958 TPT.mutateType(ExtOpnd, Ext->getType());
3959 // Step #2.
3960 TPT.replaceAllUsesWith(Ext, ExtOpnd);
3961 // Step #3.
3962 Instruction *ExtForOpnd = Ext;
3964 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n");
3965 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
3966 ++OpIdx) {
3967 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n');
3968 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() ||
3969 !shouldExtOperand(ExtOpnd, OpIdx)) {
3970 LLVM_DEBUG(dbgs() << "No need to propagate\n");
3971 continue;
3973 // Check if we can statically extend the operand.
3974 Value *Opnd = ExtOpnd->getOperand(OpIdx);
3975 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
3976 LLVM_DEBUG(dbgs() << "Statically extend\n");
3977 unsigned BitWidth = Ext->getType()->getIntegerBitWidth();
3978 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth)
3979 : Cst->getValue().zext(BitWidth);
3980 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal));
3981 continue;
3983 // UndefValue are typed, so we have to statically sign extend them.
3984 if (isa<UndefValue>(Opnd)) {
3985 LLVM_DEBUG(dbgs() << "Statically extend\n");
3986 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType()));
3987 continue;
3990 // Otherwise we have to explicitly sign extend the operand.
3991 // Check if Ext was reused to extend an operand.
3992 if (!ExtForOpnd) {
3993 // If yes, create a new one.
3994 LLVM_DEBUG(dbgs() << "More operands to ext\n");
3995 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType())
3996 : TPT.createZExt(Ext, Opnd, Ext->getType());
3997 if (!isa<Instruction>(ValForExtOpnd)) {
3998 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd);
3999 continue;
4001 ExtForOpnd = cast<Instruction>(ValForExtOpnd);
4003 if (Exts)
4004 Exts->push_back(ExtForOpnd);
4005 TPT.setOperand(ExtForOpnd, 0, Opnd);
4007 // Move the sign extension before the insertion point.
4008 TPT.moveBefore(ExtForOpnd, ExtOpnd);
4009 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd);
4010 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd);
4011 // If more sext are required, new instructions will have to be created.
4012 ExtForOpnd = nullptr;
4014 if (ExtForOpnd == Ext) {
4015 LLVM_DEBUG(dbgs() << "Extension is useless now\n");
4016 TPT.eraseInstruction(Ext);
4018 return ExtOpnd;
4021 /// Check whether or not promoting an instruction to a wider type is profitable.
4022 /// \p NewCost gives the cost of extension instructions created by the
4023 /// promotion.
4024 /// \p OldCost gives the cost of extension instructions before the promotion
4025 /// plus the number of instructions that have been
4026 /// matched in the addressing mode the promotion.
4027 /// \p PromotedOperand is the value that has been promoted.
4028 /// \return True if the promotion is profitable, false otherwise.
4029 bool AddressingModeMatcher::isPromotionProfitable(
4030 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const {
4031 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost
4032 << '\n');
4033 // The cost of the new extensions is greater than the cost of the
4034 // old extension plus what we folded.
4035 // This is not profitable.
4036 if (NewCost > OldCost)
4037 return false;
4038 if (NewCost < OldCost)
4039 return true;
4040 // The promotion is neutral but it may help folding the sign extension in
4041 // loads for instance.
4042 // Check that we did not create an illegal instruction.
4043 return isPromotedInstructionLegal(TLI, DL, PromotedOperand);
4046 /// Given an instruction or constant expr, see if we can fold the operation
4047 /// into the addressing mode. If so, update the addressing mode and return
4048 /// true, otherwise return false without modifying AddrMode.
4049 /// If \p MovedAway is not NULL, it contains the information of whether or
4050 /// not AddrInst has to be folded into the addressing mode on success.
4051 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing
4052 /// because it has been moved away.
4053 /// Thus AddrInst must not be added in the matched instructions.
4054 /// This state can happen when AddrInst is a sext, since it may be moved away.
4055 /// Therefore, AddrInst may not be valid when MovedAway is true and it must
4056 /// not be referenced anymore.
4057 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode,
4058 unsigned Depth,
4059 bool *MovedAway) {
4060 // Avoid exponential behavior on extremely deep expression trees.
4061 if (Depth >= 5) return false;
4063 // By default, all matched instructions stay in place.
4064 if (MovedAway)
4065 *MovedAway = false;
4067 switch (Opcode) {
4068 case Instruction::PtrToInt:
4069 // PtrToInt is always a noop, as we know that the int type is pointer sized.
4070 return matchAddr(AddrInst->getOperand(0), Depth);
4071 case Instruction::IntToPtr: {
4072 auto AS = AddrInst->getType()->getPointerAddressSpace();
4073 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
4074 // This inttoptr is a no-op if the integer type is pointer sized.
4075 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy)
4076 return matchAddr(AddrInst->getOperand(0), Depth);
4077 return false;
4079 case Instruction::BitCast:
4080 // BitCast is always a noop, and we can handle it as long as it is
4081 // int->int or pointer->pointer (we don't want int<->fp or something).
4082 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() &&
4083 // Don't touch identity bitcasts. These were probably put here by LSR,
4084 // and we don't want to mess around with them. Assume it knows what it
4085 // is doing.
4086 AddrInst->getOperand(0)->getType() != AddrInst->getType())
4087 return matchAddr(AddrInst->getOperand(0), Depth);
4088 return false;
4089 case Instruction::AddrSpaceCast: {
4090 unsigned SrcAS
4091 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace();
4092 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace();
4093 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
4094 return matchAddr(AddrInst->getOperand(0), Depth);
4095 return false;
4097 case Instruction::Add: {
4098 // Check to see if we can merge in the RHS then the LHS. If so, we win.
4099 ExtAddrMode BackupAddrMode = AddrMode;
4100 unsigned OldSize = AddrModeInsts.size();
4101 // Start a transaction at this point.
4102 // The LHS may match but not the RHS.
4103 // Therefore, we need a higher level restoration point to undo partially
4104 // matched operation.
4105 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4106 TPT.getRestorationPoint();
4108 AddrMode.InBounds = false;
4109 if (matchAddr(AddrInst->getOperand(1), Depth+1) &&
4110 matchAddr(AddrInst->getOperand(0), Depth+1))
4111 return true;
4113 // Restore the old addr mode info.
4114 AddrMode = BackupAddrMode;
4115 AddrModeInsts.resize(OldSize);
4116 TPT.rollback(LastKnownGood);
4118 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS.
4119 if (matchAddr(AddrInst->getOperand(0), Depth+1) &&
4120 matchAddr(AddrInst->getOperand(1), Depth+1))
4121 return true;
4123 // Otherwise we definitely can't merge the ADD in.
4124 AddrMode = BackupAddrMode;
4125 AddrModeInsts.resize(OldSize);
4126 TPT.rollback(LastKnownGood);
4127 break;
4129 //case Instruction::Or:
4130 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
4131 //break;
4132 case Instruction::Mul:
4133 case Instruction::Shl: {
4134 // Can only handle X*C and X << C.
4135 AddrMode.InBounds = false;
4136 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
4137 if (!RHS || RHS->getBitWidth() > 64)
4138 return false;
4139 int64_t Scale = RHS->getSExtValue();
4140 if (Opcode == Instruction::Shl)
4141 Scale = 1LL << Scale;
4143 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth);
4145 case Instruction::GetElementPtr: {
4146 // Scan the GEP. We check it if it contains constant offsets and at most
4147 // one variable offset.
4148 int VariableOperand = -1;
4149 unsigned VariableScale = 0;
4151 int64_t ConstantOffset = 0;
4152 gep_type_iterator GTI = gep_type_begin(AddrInst);
4153 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
4154 if (StructType *STy = GTI.getStructTypeOrNull()) {
4155 const StructLayout *SL = DL.getStructLayout(STy);
4156 unsigned Idx =
4157 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
4158 ConstantOffset += SL->getElementOffset(Idx);
4159 } else {
4160 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType());
4161 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
4162 const APInt &CVal = CI->getValue();
4163 if (CVal.getMinSignedBits() <= 64) {
4164 ConstantOffset += CVal.getSExtValue() * TypeSize;
4165 continue;
4168 if (TypeSize) { // Scales of zero don't do anything.
4169 // We only allow one variable index at the moment.
4170 if (VariableOperand != -1)
4171 return false;
4173 // Remember the variable index.
4174 VariableOperand = i;
4175 VariableScale = TypeSize;
4180 // A common case is for the GEP to only do a constant offset. In this case,
4181 // just add it to the disp field and check validity.
4182 if (VariableOperand == -1) {
4183 AddrMode.BaseOffs += ConstantOffset;
4184 if (ConstantOffset == 0 ||
4185 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) {
4186 // Check to see if we can fold the base pointer in too.
4187 if (matchAddr(AddrInst->getOperand(0), Depth+1)) {
4188 if (!cast<GEPOperator>(AddrInst)->isInBounds())
4189 AddrMode.InBounds = false;
4190 return true;
4192 } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) &&
4193 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 &&
4194 ConstantOffset > 0) {
4195 // Record GEPs with non-zero offsets as candidates for splitting in the
4196 // event that the offset cannot fit into the r+i addressing mode.
4197 // Simple and common case that only one GEP is used in calculating the
4198 // address for the memory access.
4199 Value *Base = AddrInst->getOperand(0);
4200 auto *BaseI = dyn_cast<Instruction>(Base);
4201 auto *GEP = cast<GetElementPtrInst>(AddrInst);
4202 if (isa<Argument>(Base) || isa<GlobalValue>(Base) ||
4203 (BaseI && !isa<CastInst>(BaseI) &&
4204 !isa<GetElementPtrInst>(BaseI))) {
4205 // Make sure the parent block allows inserting non-PHI instructions
4206 // before the terminator.
4207 BasicBlock *Parent =
4208 BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock();
4209 if (!Parent->getTerminator()->isEHPad())
4210 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset);
4213 AddrMode.BaseOffs -= ConstantOffset;
4214 return false;
4217 // Save the valid addressing mode in case we can't match.
4218 ExtAddrMode BackupAddrMode = AddrMode;
4219 unsigned OldSize = AddrModeInsts.size();
4221 // See if the scale and offset amount is valid for this target.
4222 AddrMode.BaseOffs += ConstantOffset;
4223 if (!cast<GEPOperator>(AddrInst)->isInBounds())
4224 AddrMode.InBounds = false;
4226 // Match the base operand of the GEP.
4227 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) {
4228 // If it couldn't be matched, just stuff the value in a register.
4229 if (AddrMode.HasBaseReg) {
4230 AddrMode = BackupAddrMode;
4231 AddrModeInsts.resize(OldSize);
4232 return false;
4234 AddrMode.HasBaseReg = true;
4235 AddrMode.BaseReg = AddrInst->getOperand(0);
4238 // Match the remaining variable portion of the GEP.
4239 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
4240 Depth)) {
4241 // If it couldn't be matched, try stuffing the base into a register
4242 // instead of matching it, and retrying the match of the scale.
4243 AddrMode = BackupAddrMode;
4244 AddrModeInsts.resize(OldSize);
4245 if (AddrMode.HasBaseReg)
4246 return false;
4247 AddrMode.HasBaseReg = true;
4248 AddrMode.BaseReg = AddrInst->getOperand(0);
4249 AddrMode.BaseOffs += ConstantOffset;
4250 if (!matchScaledValue(AddrInst->getOperand(VariableOperand),
4251 VariableScale, Depth)) {
4252 // If even that didn't work, bail.
4253 AddrMode = BackupAddrMode;
4254 AddrModeInsts.resize(OldSize);
4255 return false;
4259 return true;
4261 case Instruction::SExt:
4262 case Instruction::ZExt: {
4263 Instruction *Ext = dyn_cast<Instruction>(AddrInst);
4264 if (!Ext)
4265 return false;
4267 // Try to move this ext out of the way of the addressing mode.
4268 // Ask for a method for doing so.
4269 TypePromotionHelper::Action TPH =
4270 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts);
4271 if (!TPH)
4272 return false;
4274 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4275 TPT.getRestorationPoint();
4276 unsigned CreatedInstsCost = 0;
4277 unsigned ExtCost = !TLI.isExtFree(Ext);
4278 Value *PromotedOperand =
4279 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI);
4280 // SExt has been moved away.
4281 // Thus either it will be rematched later in the recursive calls or it is
4282 // gone. Anyway, we must not fold it into the addressing mode at this point.
4283 // E.g.,
4284 // op = add opnd, 1
4285 // idx = ext op
4286 // addr = gep base, idx
4287 // is now:
4288 // promotedOpnd = ext opnd <- no match here
4289 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls)
4290 // addr = gep base, op <- match
4291 if (MovedAway)
4292 *MovedAway = true;
4294 assert(PromotedOperand &&
4295 "TypePromotionHelper should have filtered out those cases");
4297 ExtAddrMode BackupAddrMode = AddrMode;
4298 unsigned OldSize = AddrModeInsts.size();
4300 if (!matchAddr(PromotedOperand, Depth) ||
4301 // The total of the new cost is equal to the cost of the created
4302 // instructions.
4303 // The total of the old cost is equal to the cost of the extension plus
4304 // what we have saved in the addressing mode.
4305 !isPromotionProfitable(CreatedInstsCost,
4306 ExtCost + (AddrModeInsts.size() - OldSize),
4307 PromotedOperand)) {
4308 AddrMode = BackupAddrMode;
4309 AddrModeInsts.resize(OldSize);
4310 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
4311 TPT.rollback(LastKnownGood);
4312 return false;
4314 return true;
4317 return false;
4320 /// If we can, try to add the value of 'Addr' into the current addressing mode.
4321 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode
4322 /// unmodified. This assumes that Addr is either a pointer type or intptr_t
4323 /// for the target.
4325 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) {
4326 // Start a transaction at this point that we will rollback if the matching
4327 // fails.
4328 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4329 TPT.getRestorationPoint();
4330 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
4331 // Fold in immediates if legal for the target.
4332 AddrMode.BaseOffs += CI->getSExtValue();
4333 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4334 return true;
4335 AddrMode.BaseOffs -= CI->getSExtValue();
4336 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
4337 // If this is a global variable, try to fold it into the addressing mode.
4338 if (!AddrMode.BaseGV) {
4339 AddrMode.BaseGV = GV;
4340 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4341 return true;
4342 AddrMode.BaseGV = nullptr;
4344 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
4345 ExtAddrMode BackupAddrMode = AddrMode;
4346 unsigned OldSize = AddrModeInsts.size();
4348 // Check to see if it is possible to fold this operation.
4349 bool MovedAway = false;
4350 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
4351 // This instruction may have been moved away. If so, there is nothing
4352 // to check here.
4353 if (MovedAway)
4354 return true;
4355 // Okay, it's possible to fold this. Check to see if it is actually
4356 // *profitable* to do so. We use a simple cost model to avoid increasing
4357 // register pressure too much.
4358 if (I->hasOneUse() ||
4359 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
4360 AddrModeInsts.push_back(I);
4361 return true;
4364 // It isn't profitable to do this, roll back.
4365 //cerr << "NOT FOLDING: " << *I;
4366 AddrMode = BackupAddrMode;
4367 AddrModeInsts.resize(OldSize);
4368 TPT.rollback(LastKnownGood);
4370 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
4371 if (matchOperationAddr(CE, CE->getOpcode(), Depth))
4372 return true;
4373 TPT.rollback(LastKnownGood);
4374 } else if (isa<ConstantPointerNull>(Addr)) {
4375 // Null pointer gets folded without affecting the addressing mode.
4376 return true;
4379 // Worse case, the target should support [reg] addressing modes. :)
4380 if (!AddrMode.HasBaseReg) {
4381 AddrMode.HasBaseReg = true;
4382 AddrMode.BaseReg = Addr;
4383 // Still check for legality in case the target supports [imm] but not [i+r].
4384 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4385 return true;
4386 AddrMode.HasBaseReg = false;
4387 AddrMode.BaseReg = nullptr;
4390 // If the base register is already taken, see if we can do [r+r].
4391 if (AddrMode.Scale == 0) {
4392 AddrMode.Scale = 1;
4393 AddrMode.ScaledReg = Addr;
4394 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4395 return true;
4396 AddrMode.Scale = 0;
4397 AddrMode.ScaledReg = nullptr;
4399 // Couldn't match.
4400 TPT.rollback(LastKnownGood);
4401 return false;
4404 /// Check to see if all uses of OpVal by the specified inline asm call are due
4405 /// to memory operands. If so, return true, otherwise return false.
4406 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
4407 const TargetLowering &TLI,
4408 const TargetRegisterInfo &TRI) {
4409 const Function *F = CI->getFunction();
4410 TargetLowering::AsmOperandInfoVector TargetConstraints =
4411 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI,
4412 ImmutableCallSite(CI));
4414 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
4415 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
4417 // Compute the constraint code and ConstraintType to use.
4418 TLI.ComputeConstraintToUse(OpInfo, SDValue());
4420 // If this asm operand is our Value*, and if it isn't an indirect memory
4421 // operand, we can't fold it!
4422 if (OpInfo.CallOperandVal == OpVal &&
4423 (OpInfo.ConstraintType != TargetLowering::C_Memory ||
4424 !OpInfo.isIndirect))
4425 return false;
4428 return true;
4431 // Max number of memory uses to look at before aborting the search to conserve
4432 // compile time.
4433 static constexpr int MaxMemoryUsesToScan = 20;
4435 /// Recursively walk all the uses of I until we find a memory use.
4436 /// If we find an obviously non-foldable instruction, return true.
4437 /// Add the ultimately found memory instructions to MemoryUses.
4438 static bool FindAllMemoryUses(
4439 Instruction *I,
4440 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses,
4441 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI,
4442 const TargetRegisterInfo &TRI, int SeenInsts = 0) {
4443 // If we already considered this instruction, we're done.
4444 if (!ConsideredInsts.insert(I).second)
4445 return false;
4447 // If this is an obviously unfoldable instruction, bail out.
4448 if (!MightBeFoldableInst(I))
4449 return true;
4451 const bool OptSize = I->getFunction()->hasOptSize();
4453 // Loop over all the uses, recursively processing them.
4454 for (Use &U : I->uses()) {
4455 // Conservatively return true if we're seeing a large number or a deep chain
4456 // of users. This avoids excessive compilation times in pathological cases.
4457 if (SeenInsts++ >= MaxMemoryUsesToScan)
4458 return true;
4460 Instruction *UserI = cast<Instruction>(U.getUser());
4461 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) {
4462 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo()));
4463 continue;
4466 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
4467 unsigned opNo = U.getOperandNo();
4468 if (opNo != StoreInst::getPointerOperandIndex())
4469 return true; // Storing addr, not into addr.
4470 MemoryUses.push_back(std::make_pair(SI, opNo));
4471 continue;
4474 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) {
4475 unsigned opNo = U.getOperandNo();
4476 if (opNo != AtomicRMWInst::getPointerOperandIndex())
4477 return true; // Storing addr, not into addr.
4478 MemoryUses.push_back(std::make_pair(RMW, opNo));
4479 continue;
4482 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) {
4483 unsigned opNo = U.getOperandNo();
4484 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex())
4485 return true; // Storing addr, not into addr.
4486 MemoryUses.push_back(std::make_pair(CmpX, opNo));
4487 continue;
4490 if (CallInst *CI = dyn_cast<CallInst>(UserI)) {
4491 // If this is a cold call, we can sink the addressing calculation into
4492 // the cold path. See optimizeCallInst
4493 if (!OptSize && CI->hasFnAttr(Attribute::Cold))
4494 continue;
4496 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
4497 if (!IA) return true;
4499 // If this is a memory operand, we're cool, otherwise bail out.
4500 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI))
4501 return true;
4502 continue;
4505 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI,
4506 SeenInsts))
4507 return true;
4510 return false;
4513 /// Return true if Val is already known to be live at the use site that we're
4514 /// folding it into. If so, there is no cost to include it in the addressing
4515 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the
4516 /// instruction already.
4517 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
4518 Value *KnownLive2) {
4519 // If Val is either of the known-live values, we know it is live!
4520 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2)
4521 return true;
4523 // All values other than instructions and arguments (e.g. constants) are live.
4524 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
4526 // If Val is a constant sized alloca in the entry block, it is live, this is
4527 // true because it is just a reference to the stack/frame pointer, which is
4528 // live for the whole function.
4529 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
4530 if (AI->isStaticAlloca())
4531 return true;
4533 // Check to see if this value is already used in the memory instruction's
4534 // block. If so, it's already live into the block at the very least, so we
4535 // can reasonably fold it.
4536 return Val->isUsedInBasicBlock(MemoryInst->getParent());
4539 /// It is possible for the addressing mode of the machine to fold the specified
4540 /// instruction into a load or store that ultimately uses it.
4541 /// However, the specified instruction has multiple uses.
4542 /// Given this, it may actually increase register pressure to fold it
4543 /// into the load. For example, consider this code:
4545 /// X = ...
4546 /// Y = X+1
4547 /// use(Y) -> nonload/store
4548 /// Z = Y+1
4549 /// load Z
4551 /// In this case, Y has multiple uses, and can be folded into the load of Z
4552 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to
4553 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one
4554 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the
4555 /// number of computations either.
4557 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If
4558 /// X was live across 'load Z' for other reasons, we actually *would* want to
4559 /// fold the addressing mode in the Z case. This would make Y die earlier.
4560 bool AddressingModeMatcher::
4561 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
4562 ExtAddrMode &AMAfter) {
4563 if (IgnoreProfitability) return true;
4565 // AMBefore is the addressing mode before this instruction was folded into it,
4566 // and AMAfter is the addressing mode after the instruction was folded. Get
4567 // the set of registers referenced by AMAfter and subtract out those
4568 // referenced by AMBefore: this is the set of values which folding in this
4569 // address extends the lifetime of.
4571 // Note that there are only two potential values being referenced here,
4572 // BaseReg and ScaleReg (global addresses are always available, as are any
4573 // folded immediates).
4574 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
4576 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
4577 // lifetime wasn't extended by adding this instruction.
4578 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
4579 BaseReg = nullptr;
4580 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
4581 ScaledReg = nullptr;
4583 // If folding this instruction (and it's subexprs) didn't extend any live
4584 // ranges, we're ok with it.
4585 if (!BaseReg && !ScaledReg)
4586 return true;
4588 // If all uses of this instruction can have the address mode sunk into them,
4589 // we can remove the addressing mode and effectively trade one live register
4590 // for another (at worst.) In this context, folding an addressing mode into
4591 // the use is just a particularly nice way of sinking it.
4592 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
4593 SmallPtrSet<Instruction*, 16> ConsideredInsts;
4594 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI))
4595 return false; // Has a non-memory, non-foldable use!
4597 // Now that we know that all uses of this instruction are part of a chain of
4598 // computation involving only operations that could theoretically be folded
4599 // into a memory use, loop over each of these memory operation uses and see
4600 // if they could *actually* fold the instruction. The assumption is that
4601 // addressing modes are cheap and that duplicating the computation involved
4602 // many times is worthwhile, even on a fastpath. For sinking candidates
4603 // (i.e. cold call sites), this serves as a way to prevent excessive code
4604 // growth since most architectures have some reasonable small and fast way to
4605 // compute an effective address. (i.e LEA on x86)
4606 SmallVector<Instruction*, 32> MatchedAddrModeInsts;
4607 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
4608 Instruction *User = MemoryUses[i].first;
4609 unsigned OpNo = MemoryUses[i].second;
4611 // Get the access type of this use. If the use isn't a pointer, we don't
4612 // know what it accesses.
4613 Value *Address = User->getOperand(OpNo);
4614 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType());
4615 if (!AddrTy)
4616 return false;
4617 Type *AddressAccessTy = AddrTy->getElementType();
4618 unsigned AS = AddrTy->getAddressSpace();
4620 // Do a match against the root of this address, ignoring profitability. This
4621 // will tell us if the addressing mode for the memory operation will
4622 // *actually* cover the shared instruction.
4623 ExtAddrMode Result;
4624 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
4626 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4627 TPT.getRestorationPoint();
4628 AddressingModeMatcher Matcher(
4629 MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result,
4630 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP);
4631 Matcher.IgnoreProfitability = true;
4632 bool Success = Matcher.matchAddr(Address, 0);
4633 (void)Success; assert(Success && "Couldn't select *anything*?");
4635 // The match was to check the profitability, the changes made are not
4636 // part of the original matcher. Therefore, they should be dropped
4637 // otherwise the original matcher will not present the right state.
4638 TPT.rollback(LastKnownGood);
4640 // If the match didn't cover I, then it won't be shared by it.
4641 if (!is_contained(MatchedAddrModeInsts, I))
4642 return false;
4644 MatchedAddrModeInsts.clear();
4647 return true;
4650 /// Return true if the specified values are defined in a
4651 /// different basic block than BB.
4652 static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
4653 if (Instruction *I = dyn_cast<Instruction>(V))
4654 return I->getParent() != BB;
4655 return false;
4658 /// Sink addressing mode computation immediate before MemoryInst if doing so
4659 /// can be done without increasing register pressure. The need for the
4660 /// register pressure constraint means this can end up being an all or nothing
4661 /// decision for all uses of the same addressing computation.
4663 /// Load and Store Instructions often have addressing modes that can do
4664 /// significant amounts of computation. As such, instruction selection will try
4665 /// to get the load or store to do as much computation as possible for the
4666 /// program. The problem is that isel can only see within a single block. As
4667 /// such, we sink as much legal addressing mode work into the block as possible.
4669 /// This method is used to optimize both load/store and inline asms with memory
4670 /// operands. It's also used to sink addressing computations feeding into cold
4671 /// call sites into their (cold) basic block.
4673 /// The motivation for handling sinking into cold blocks is that doing so can
4674 /// both enable other address mode sinking (by satisfying the register pressure
4675 /// constraint above), and reduce register pressure globally (by removing the
4676 /// addressing mode computation from the fast path entirely.).
4677 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
4678 Type *AccessTy, unsigned AddrSpace) {
4679 Value *Repl = Addr;
4681 // Try to collapse single-value PHI nodes. This is necessary to undo
4682 // unprofitable PRE transformations.
4683 SmallVector<Value*, 8> worklist;
4684 SmallPtrSet<Value*, 16> Visited;
4685 worklist.push_back(Addr);
4687 // Use a worklist to iteratively look through PHI and select nodes, and
4688 // ensure that the addressing mode obtained from the non-PHI/select roots of
4689 // the graph are compatible.
4690 bool PhiOrSelectSeen = false;
4691 SmallVector<Instruction*, 16> AddrModeInsts;
4692 const SimplifyQuery SQ(*DL, TLInfo);
4693 AddressingModeCombiner AddrModes(SQ, Addr);
4694 TypePromotionTransaction TPT(RemovedInsts);
4695 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4696 TPT.getRestorationPoint();
4697 while (!worklist.empty()) {
4698 Value *V = worklist.back();
4699 worklist.pop_back();
4701 // We allow traversing cyclic Phi nodes.
4702 // In case of success after this loop we ensure that traversing through
4703 // Phi nodes ends up with all cases to compute address of the form
4704 // BaseGV + Base + Scale * Index + Offset
4705 // where Scale and Offset are constans and BaseGV, Base and Index
4706 // are exactly the same Values in all cases.
4707 // It means that BaseGV, Scale and Offset dominate our memory instruction
4708 // and have the same value as they had in address computation represented
4709 // as Phi. So we can safely sink address computation to memory instruction.
4710 if (!Visited.insert(V).second)
4711 continue;
4713 // For a PHI node, push all of its incoming values.
4714 if (PHINode *P = dyn_cast<PHINode>(V)) {
4715 for (Value *IncValue : P->incoming_values())
4716 worklist.push_back(IncValue);
4717 PhiOrSelectSeen = true;
4718 continue;
4720 // Similar for select.
4721 if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
4722 worklist.push_back(SI->getFalseValue());
4723 worklist.push_back(SI->getTrueValue());
4724 PhiOrSelectSeen = true;
4725 continue;
4728 // For non-PHIs, determine the addressing mode being computed. Note that
4729 // the result may differ depending on what other uses our candidate
4730 // addressing instructions might have.
4731 AddrModeInsts.clear();
4732 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
4734 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(
4735 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI,
4736 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP);
4738 GetElementPtrInst *GEP = LargeOffsetGEP.first;
4739 if (GEP && !NewGEPBases.count(GEP)) {
4740 // If splitting the underlying data structure can reduce the offset of a
4741 // GEP, collect the GEP. Skip the GEPs that are the new bases of
4742 // previously split data structures.
4743 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP);
4744 if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end())
4745 LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size();
4748 NewAddrMode.OriginalValue = V;
4749 if (!AddrModes.addNewAddrMode(NewAddrMode))
4750 break;
4753 // Try to combine the AddrModes we've collected. If we couldn't collect any,
4754 // or we have multiple but either couldn't combine them or combining them
4755 // wouldn't do anything useful, bail out now.
4756 if (!AddrModes.combineAddrModes()) {
4757 TPT.rollback(LastKnownGood);
4758 return false;
4760 TPT.commit();
4762 // Get the combined AddrMode (or the only AddrMode, if we only had one).
4763 ExtAddrMode AddrMode = AddrModes.getAddrMode();
4765 // If all the instructions matched are already in this BB, don't do anything.
4766 // If we saw a Phi node then it is not local definitely, and if we saw a select
4767 // then we want to push the address calculation past it even if it's already
4768 // in this BB.
4769 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) {
4770 return IsNonLocalValue(V, MemoryInst->getParent());
4771 })) {
4772 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode
4773 << "\n");
4774 return false;
4777 // Insert this computation right after this user. Since our caller is
4778 // scanning from the top of the BB to the bottom, reuse of the expr are
4779 // guaranteed to happen later.
4780 IRBuilder<> Builder(MemoryInst);
4782 // Now that we determined the addressing expression we want to use and know
4783 // that we have to sink it into this block. Check to see if we have already
4784 // done this for some other load/store instr in this block. If so, reuse
4785 // the computation. Before attempting reuse, check if the address is valid
4786 // as it may have been erased.
4788 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr];
4790 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
4791 if (SunkAddr) {
4792 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode
4793 << " for " << *MemoryInst << "\n");
4794 if (SunkAddr->getType() != Addr->getType())
4795 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
4796 } else if (AddrSinkUsingGEPs ||
4797 (!AddrSinkUsingGEPs.getNumOccurrences() && TM && TTI->useAA())) {
4798 // By default, we use the GEP-based method when AA is used later. This
4799 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
4800 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
4801 << " for " << *MemoryInst << "\n");
4802 Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
4803 Value *ResultPtr = nullptr, *ResultIndex = nullptr;
4805 // First, find the pointer.
4806 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) {
4807 ResultPtr = AddrMode.BaseReg;
4808 AddrMode.BaseReg = nullptr;
4811 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) {
4812 // We can't add more than one pointer together, nor can we scale a
4813 // pointer (both of which seem meaningless).
4814 if (ResultPtr || AddrMode.Scale != 1)
4815 return false;
4817 ResultPtr = AddrMode.ScaledReg;
4818 AddrMode.Scale = 0;
4821 // It is only safe to sign extend the BaseReg if we know that the math
4822 // required to create it did not overflow before we extend it. Since
4823 // the original IR value was tossed in favor of a constant back when
4824 // the AddrMode was created we need to bail out gracefully if widths
4825 // do not match instead of extending it.
4827 // (See below for code to add the scale.)
4828 if (AddrMode.Scale) {
4829 Type *ScaledRegTy = AddrMode.ScaledReg->getType();
4830 if (cast<IntegerType>(IntPtrTy)->getBitWidth() >
4831 cast<IntegerType>(ScaledRegTy)->getBitWidth())
4832 return false;
4835 if (AddrMode.BaseGV) {
4836 if (ResultPtr)
4837 return false;
4839 ResultPtr = AddrMode.BaseGV;
4842 // If the real base value actually came from an inttoptr, then the matcher
4843 // will look through it and provide only the integer value. In that case,
4844 // use it here.
4845 if (!DL->isNonIntegralPointerType(Addr->getType())) {
4846 if (!ResultPtr && AddrMode.BaseReg) {
4847 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(),
4848 "sunkaddr");
4849 AddrMode.BaseReg = nullptr;
4850 } else if (!ResultPtr && AddrMode.Scale == 1) {
4851 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(),
4852 "sunkaddr");
4853 AddrMode.Scale = 0;
4857 if (!ResultPtr &&
4858 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) {
4859 SunkAddr = Constant::getNullValue(Addr->getType());
4860 } else if (!ResultPtr) {
4861 return false;
4862 } else {
4863 Type *I8PtrTy =
4864 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace());
4865 Type *I8Ty = Builder.getInt8Ty();
4867 // Start with the base register. Do this first so that subsequent address
4868 // matching finds it last, which will prevent it from trying to match it
4869 // as the scaled value in case it happens to be a mul. That would be
4870 // problematic if we've sunk a different mul for the scale, because then
4871 // we'd end up sinking both muls.
4872 if (AddrMode.BaseReg) {
4873 Value *V = AddrMode.BaseReg;
4874 if (V->getType() != IntPtrTy)
4875 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
4877 ResultIndex = V;
4880 // Add the scale value.
4881 if (AddrMode.Scale) {
4882 Value *V = AddrMode.ScaledReg;
4883 if (V->getType() == IntPtrTy) {
4884 // done.
4885 } else {
4886 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() <
4887 cast<IntegerType>(V->getType())->getBitWidth() &&
4888 "We can't transform if ScaledReg is too narrow");
4889 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
4892 if (AddrMode.Scale != 1)
4893 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
4894 "sunkaddr");
4895 if (ResultIndex)
4896 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr");
4897 else
4898 ResultIndex = V;
4901 // Add in the Base Offset if present.
4902 if (AddrMode.BaseOffs) {
4903 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
4904 if (ResultIndex) {
4905 // We need to add this separately from the scale above to help with
4906 // SDAG consecutive load/store merging.
4907 if (ResultPtr->getType() != I8PtrTy)
4908 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
4909 ResultPtr =
4910 AddrMode.InBounds
4911 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex,
4912 "sunkaddr")
4913 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
4916 ResultIndex = V;
4919 if (!ResultIndex) {
4920 SunkAddr = ResultPtr;
4921 } else {
4922 if (ResultPtr->getType() != I8PtrTy)
4923 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
4924 SunkAddr =
4925 AddrMode.InBounds
4926 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex,
4927 "sunkaddr")
4928 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
4931 if (SunkAddr->getType() != Addr->getType())
4932 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
4934 } else {
4935 // We'd require a ptrtoint/inttoptr down the line, which we can't do for
4936 // non-integral pointers, so in that case bail out now.
4937 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr;
4938 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr;
4939 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy);
4940 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy);
4941 if (DL->isNonIntegralPointerType(Addr->getType()) ||
4942 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) ||
4943 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) ||
4944 (AddrMode.BaseGV &&
4945 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType())))
4946 return false;
4948 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
4949 << " for " << *MemoryInst << "\n");
4950 Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
4951 Value *Result = nullptr;
4953 // Start with the base register. Do this first so that subsequent address
4954 // matching finds it last, which will prevent it from trying to match it
4955 // as the scaled value in case it happens to be a mul. That would be
4956 // problematic if we've sunk a different mul for the scale, because then
4957 // we'd end up sinking both muls.
4958 if (AddrMode.BaseReg) {
4959 Value *V = AddrMode.BaseReg;
4960 if (V->getType()->isPointerTy())
4961 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
4962 if (V->getType() != IntPtrTy)
4963 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
4964 Result = V;
4967 // Add the scale value.
4968 if (AddrMode.Scale) {
4969 Value *V = AddrMode.ScaledReg;
4970 if (V->getType() == IntPtrTy) {
4971 // done.
4972 } else if (V->getType()->isPointerTy()) {
4973 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
4974 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
4975 cast<IntegerType>(V->getType())->getBitWidth()) {
4976 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
4977 } else {
4978 // It is only safe to sign extend the BaseReg if we know that the math
4979 // required to create it did not overflow before we extend it. Since
4980 // the original IR value was tossed in favor of a constant back when
4981 // the AddrMode was created we need to bail out gracefully if widths
4982 // do not match instead of extending it.
4983 Instruction *I = dyn_cast_or_null<Instruction>(Result);
4984 if (I && (Result != AddrMode.BaseReg))
4985 I->eraseFromParent();
4986 return false;
4988 if (AddrMode.Scale != 1)
4989 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
4990 "sunkaddr");
4991 if (Result)
4992 Result = Builder.CreateAdd(Result, V, "sunkaddr");
4993 else
4994 Result = V;
4997 // Add in the BaseGV if present.
4998 if (AddrMode.BaseGV) {
4999 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
5000 if (Result)
5001 Result = Builder.CreateAdd(Result, V, "sunkaddr");
5002 else
5003 Result = V;
5006 // Add in the Base Offset if present.
5007 if (AddrMode.BaseOffs) {
5008 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
5009 if (Result)
5010 Result = Builder.CreateAdd(Result, V, "sunkaddr");
5011 else
5012 Result = V;
5015 if (!Result)
5016 SunkAddr = Constant::getNullValue(Addr->getType());
5017 else
5018 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
5021 MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
5022 // Store the newly computed address into the cache. In the case we reused a
5023 // value, this should be idempotent.
5024 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr);
5026 // If we have no uses, recursively delete the value and all dead instructions
5027 // using it.
5028 if (Repl->use_empty()) {
5029 // This can cause recursive deletion, which can invalidate our iterator.
5030 // Use a WeakTrackingVH to hold onto it in case this happens.
5031 Value *CurValue = &*CurInstIterator;
5032 WeakTrackingVH IterHandle(CurValue);
5033 BasicBlock *BB = CurInstIterator->getParent();
5035 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo);
5037 if (IterHandle != CurValue) {
5038 // If the iterator instruction was recursively deleted, start over at the
5039 // start of the block.
5040 CurInstIterator = BB->begin();
5041 SunkAddrs.clear();
5044 ++NumMemoryInsts;
5045 return true;
5048 /// If there are any memory operands, use OptimizeMemoryInst to sink their
5049 /// address computing into the block when possible / profitable.
5050 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) {
5051 bool MadeChange = false;
5053 const TargetRegisterInfo *TRI =
5054 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo();
5055 TargetLowering::AsmOperandInfoVector TargetConstraints =
5056 TLI->ParseConstraints(*DL, TRI, CS);
5057 unsigned ArgNo = 0;
5058 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5059 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
5061 // Compute the constraint code and ConstraintType to use.
5062 TLI->ComputeConstraintToUse(OpInfo, SDValue());
5064 if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5065 OpInfo.isIndirect) {
5066 Value *OpVal = CS->getArgOperand(ArgNo++);
5067 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u);
5068 } else if (OpInfo.Type == InlineAsm::isInput)
5069 ArgNo++;
5072 return MadeChange;
5075 /// Check if all the uses of \p Val are equivalent (or free) zero or
5076 /// sign extensions.
5077 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) {
5078 assert(!Val->use_empty() && "Input must have at least one use");
5079 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin());
5080 bool IsSExt = isa<SExtInst>(FirstUser);
5081 Type *ExtTy = FirstUser->getType();
5082 for (const User *U : Val->users()) {
5083 const Instruction *UI = cast<Instruction>(U);
5084 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI)))
5085 return false;
5086 Type *CurTy = UI->getType();
5087 // Same input and output types: Same instruction after CSE.
5088 if (CurTy == ExtTy)
5089 continue;
5091 // If IsSExt is true, we are in this situation:
5092 // a = Val
5093 // b = sext ty1 a to ty2
5094 // c = sext ty1 a to ty3
5095 // Assuming ty2 is shorter than ty3, this could be turned into:
5096 // a = Val
5097 // b = sext ty1 a to ty2
5098 // c = sext ty2 b to ty3
5099 // However, the last sext is not free.
5100 if (IsSExt)
5101 return false;
5103 // This is a ZExt, maybe this is free to extend from one type to another.
5104 // In that case, we would not account for a different use.
5105 Type *NarrowTy;
5106 Type *LargeTy;
5107 if (ExtTy->getScalarType()->getIntegerBitWidth() >
5108 CurTy->getScalarType()->getIntegerBitWidth()) {
5109 NarrowTy = CurTy;
5110 LargeTy = ExtTy;
5111 } else {
5112 NarrowTy = ExtTy;
5113 LargeTy = CurTy;
5116 if (!TLI.isZExtFree(NarrowTy, LargeTy))
5117 return false;
5119 // All uses are the same or can be derived from one another for free.
5120 return true;
5123 /// Try to speculatively promote extensions in \p Exts and continue
5124 /// promoting through newly promoted operands recursively as far as doing so is
5125 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts.
5126 /// When some promotion happened, \p TPT contains the proper state to revert
5127 /// them.
5129 /// \return true if some promotion happened, false otherwise.
5130 bool CodeGenPrepare::tryToPromoteExts(
5131 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts,
5132 SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
5133 unsigned CreatedInstsCost) {
5134 bool Promoted = false;
5136 // Iterate over all the extensions to try to promote them.
5137 for (auto I : Exts) {
5138 // Early check if we directly have ext(load).
5139 if (isa<LoadInst>(I->getOperand(0))) {
5140 ProfitablyMovedExts.push_back(I);
5141 continue;
5144 // Check whether or not we want to do any promotion. The reason we have
5145 // this check inside the for loop is to catch the case where an extension
5146 // is directly fed by a load because in such case the extension can be moved
5147 // up without any promotion on its operands.
5148 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion)
5149 return false;
5151 // Get the action to perform the promotion.
5152 TypePromotionHelper::Action TPH =
5153 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts);
5154 // Check if we can promote.
5155 if (!TPH) {
5156 // Save the current extension as we cannot move up through its operand.
5157 ProfitablyMovedExts.push_back(I);
5158 continue;
5161 // Save the current state.
5162 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5163 TPT.getRestorationPoint();
5164 SmallVector<Instruction *, 4> NewExts;
5165 unsigned NewCreatedInstsCost = 0;
5166 unsigned ExtCost = !TLI->isExtFree(I);
5167 // Promote.
5168 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost,
5169 &NewExts, nullptr, *TLI);
5170 assert(PromotedVal &&
5171 "TypePromotionHelper should have filtered out those cases");
5173 // We would be able to merge only one extension in a load.
5174 // Therefore, if we have more than 1 new extension we heuristically
5175 // cut this search path, because it means we degrade the code quality.
5176 // With exactly 2, the transformation is neutral, because we will merge
5177 // one extension but leave one. However, we optimistically keep going,
5178 // because the new extension may be removed too.
5179 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost;
5180 // FIXME: It would be possible to propagate a negative value instead of
5181 // conservatively ceiling it to 0.
5182 TotalCreatedInstsCost =
5183 std::max((long long)0, (TotalCreatedInstsCost - ExtCost));
5184 if (!StressExtLdPromotion &&
5185 (TotalCreatedInstsCost > 1 ||
5186 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) {
5187 // This promotion is not profitable, rollback to the previous state, and
5188 // save the current extension in ProfitablyMovedExts as the latest
5189 // speculative promotion turned out to be unprofitable.
5190 TPT.rollback(LastKnownGood);
5191 ProfitablyMovedExts.push_back(I);
5192 continue;
5194 // Continue promoting NewExts as far as doing so is profitable.
5195 SmallVector<Instruction *, 2> NewlyMovedExts;
5196 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost);
5197 bool NewPromoted = false;
5198 for (auto ExtInst : NewlyMovedExts) {
5199 Instruction *MovedExt = cast<Instruction>(ExtInst);
5200 Value *ExtOperand = MovedExt->getOperand(0);
5201 // If we have reached to a load, we need this extra profitability check
5202 // as it could potentially be merged into an ext(load).
5203 if (isa<LoadInst>(ExtOperand) &&
5204 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost ||
5205 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI))))
5206 continue;
5208 ProfitablyMovedExts.push_back(MovedExt);
5209 NewPromoted = true;
5212 // If none of speculative promotions for NewExts is profitable, rollback
5213 // and save the current extension (I) as the last profitable extension.
5214 if (!NewPromoted) {
5215 TPT.rollback(LastKnownGood);
5216 ProfitablyMovedExts.push_back(I);
5217 continue;
5219 // The promotion is profitable.
5220 Promoted = true;
5222 return Promoted;
5225 /// Merging redundant sexts when one is dominating the other.
5226 bool CodeGenPrepare::mergeSExts(Function &F) {
5227 bool Changed = false;
5228 for (auto &Entry : ValToSExtendedUses) {
5229 SExts &Insts = Entry.second;
5230 SExts CurPts;
5231 for (Instruction *Inst : Insts) {
5232 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) ||
5233 Inst->getOperand(0) != Entry.first)
5234 continue;
5235 bool inserted = false;
5236 for (auto &Pt : CurPts) {
5237 if (getDT(F).dominates(Inst, Pt)) {
5238 Pt->replaceAllUsesWith(Inst);
5239 RemovedInsts.insert(Pt);
5240 Pt->removeFromParent();
5241 Pt = Inst;
5242 inserted = true;
5243 Changed = true;
5244 break;
5246 if (!getDT(F).dominates(Pt, Inst))
5247 // Give up if we need to merge in a common dominator as the
5248 // experiments show it is not profitable.
5249 continue;
5250 Inst->replaceAllUsesWith(Pt);
5251 RemovedInsts.insert(Inst);
5252 Inst->removeFromParent();
5253 inserted = true;
5254 Changed = true;
5255 break;
5257 if (!inserted)
5258 CurPts.push_back(Inst);
5261 return Changed;
5264 // Spliting large data structures so that the GEPs accessing them can have
5265 // smaller offsets so that they can be sunk to the same blocks as their users.
5266 // For example, a large struct starting from %base is splitted into two parts
5267 // where the second part starts from %new_base.
5269 // Before:
5270 // BB0:
5271 // %base =
5273 // BB1:
5274 // %gep0 = gep %base, off0
5275 // %gep1 = gep %base, off1
5276 // %gep2 = gep %base, off2
5278 // BB2:
5279 // %load1 = load %gep0
5280 // %load2 = load %gep1
5281 // %load3 = load %gep2
5283 // After:
5284 // BB0:
5285 // %base =
5286 // %new_base = gep %base, off0
5288 // BB1:
5289 // %new_gep0 = %new_base
5290 // %new_gep1 = gep %new_base, off1 - off0
5291 // %new_gep2 = gep %new_base, off2 - off0
5293 // BB2:
5294 // %load1 = load i32, i32* %new_gep0
5295 // %load2 = load i32, i32* %new_gep1
5296 // %load3 = load i32, i32* %new_gep2
5298 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because
5299 // their offsets are smaller enough to fit into the addressing mode.
5300 bool CodeGenPrepare::splitLargeGEPOffsets() {
5301 bool Changed = false;
5302 for (auto &Entry : LargeOffsetGEPMap) {
5303 Value *OldBase = Entry.first;
5304 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>>
5305 &LargeOffsetGEPs = Entry.second;
5306 auto compareGEPOffset =
5307 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS,
5308 const std::pair<GetElementPtrInst *, int64_t> &RHS) {
5309 if (LHS.first == RHS.first)
5310 return false;
5311 if (LHS.second != RHS.second)
5312 return LHS.second < RHS.second;
5313 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first];
5315 // Sorting all the GEPs of the same data structures based on the offsets.
5316 llvm::sort(LargeOffsetGEPs, compareGEPOffset);
5317 LargeOffsetGEPs.erase(
5318 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()),
5319 LargeOffsetGEPs.end());
5320 // Skip if all the GEPs have the same offsets.
5321 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second)
5322 continue;
5323 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first;
5324 int64_t BaseOffset = LargeOffsetGEPs.begin()->second;
5325 Value *NewBaseGEP = nullptr;
5327 auto LargeOffsetGEP = LargeOffsetGEPs.begin();
5328 while (LargeOffsetGEP != LargeOffsetGEPs.end()) {
5329 GetElementPtrInst *GEP = LargeOffsetGEP->first;
5330 int64_t Offset = LargeOffsetGEP->second;
5331 if (Offset != BaseOffset) {
5332 TargetLowering::AddrMode AddrMode;
5333 AddrMode.BaseOffs = Offset - BaseOffset;
5334 // The result type of the GEP might not be the type of the memory
5335 // access.
5336 if (!TLI->isLegalAddressingMode(*DL, AddrMode,
5337 GEP->getResultElementType(),
5338 GEP->getAddressSpace())) {
5339 // We need to create a new base if the offset to the current base is
5340 // too large to fit into the addressing mode. So, a very large struct
5341 // may be splitted into several parts.
5342 BaseGEP = GEP;
5343 BaseOffset = Offset;
5344 NewBaseGEP = nullptr;
5348 // Generate a new GEP to replace the current one.
5349 LLVMContext &Ctx = GEP->getContext();
5350 Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
5351 Type *I8PtrTy =
5352 Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace());
5353 Type *I8Ty = Type::getInt8Ty(Ctx);
5355 if (!NewBaseGEP) {
5356 // Create a new base if we don't have one yet. Find the insertion
5357 // pointer for the new base first.
5358 BasicBlock::iterator NewBaseInsertPt;
5359 BasicBlock *NewBaseInsertBB;
5360 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) {
5361 // If the base of the struct is an instruction, the new base will be
5362 // inserted close to it.
5363 NewBaseInsertBB = BaseI->getParent();
5364 if (isa<PHINode>(BaseI))
5365 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5366 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) {
5367 NewBaseInsertBB =
5368 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest());
5369 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5370 } else
5371 NewBaseInsertPt = std::next(BaseI->getIterator());
5372 } else {
5373 // If the current base is an argument or global value, the new base
5374 // will be inserted to the entry block.
5375 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock();
5376 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5378 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt);
5379 // Create a new base.
5380 Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset);
5381 NewBaseGEP = OldBase;
5382 if (NewBaseGEP->getType() != I8PtrTy)
5383 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy);
5384 NewBaseGEP =
5385 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep");
5386 NewGEPBases.insert(NewBaseGEP);
5389 IRBuilder<> Builder(GEP);
5390 Value *NewGEP = NewBaseGEP;
5391 if (Offset == BaseOffset) {
5392 if (GEP->getType() != I8PtrTy)
5393 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
5394 } else {
5395 // Calculate the new offset for the new GEP.
5396 Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset);
5397 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index);
5399 if (GEP->getType() != I8PtrTy)
5400 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
5402 GEP->replaceAllUsesWith(NewGEP);
5403 LargeOffsetGEPID.erase(GEP);
5404 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP);
5405 GEP->eraseFromParent();
5406 Changed = true;
5409 return Changed;
5412 /// Return true, if an ext(load) can be formed from an extension in
5413 /// \p MovedExts.
5414 bool CodeGenPrepare::canFormExtLd(
5415 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI,
5416 Instruction *&Inst, bool HasPromoted) {
5417 for (auto *MovedExtInst : MovedExts) {
5418 if (isa<LoadInst>(MovedExtInst->getOperand(0))) {
5419 LI = cast<LoadInst>(MovedExtInst->getOperand(0));
5420 Inst = MovedExtInst;
5421 break;
5424 if (!LI)
5425 return false;
5427 // If they're already in the same block, there's nothing to do.
5428 // Make the cheap checks first if we did not promote.
5429 // If we promoted, we need to check if it is indeed profitable.
5430 if (!HasPromoted && LI->getParent() == Inst->getParent())
5431 return false;
5433 return TLI->isExtLoad(LI, Inst, *DL);
5436 /// Move a zext or sext fed by a load into the same basic block as the load,
5437 /// unless conditions are unfavorable. This allows SelectionDAG to fold the
5438 /// extend into the load.
5440 /// E.g.,
5441 /// \code
5442 /// %ld = load i32* %addr
5443 /// %add = add nuw i32 %ld, 4
5444 /// %zext = zext i32 %add to i64
5445 // \endcode
5446 /// =>
5447 /// \code
5448 /// %ld = load i32* %addr
5449 /// %zext = zext i32 %ld to i64
5450 /// %add = add nuw i64 %zext, 4
5451 /// \encode
5452 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which
5453 /// allow us to match zext(load i32*) to i64.
5455 /// Also, try to promote the computations used to obtain a sign extended
5456 /// value used into memory accesses.
5457 /// E.g.,
5458 /// \code
5459 /// a = add nsw i32 b, 3
5460 /// d = sext i32 a to i64
5461 /// e = getelementptr ..., i64 d
5462 /// \endcode
5463 /// =>
5464 /// \code
5465 /// f = sext i32 b to i64
5466 /// a = add nsw i64 f, 3
5467 /// e = getelementptr ..., i64 a
5468 /// \endcode
5470 /// \p Inst[in/out] the extension may be modified during the process if some
5471 /// promotions apply.
5472 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) {
5473 // ExtLoad formation and address type promotion infrastructure requires TLI to
5474 // be effective.
5475 if (!TLI)
5476 return false;
5478 bool AllowPromotionWithoutCommonHeader = false;
5479 /// See if it is an interesting sext operations for the address type
5480 /// promotion before trying to promote it, e.g., the ones with the right
5481 /// type and used in memory accesses.
5482 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion(
5483 *Inst, AllowPromotionWithoutCommonHeader);
5484 TypePromotionTransaction TPT(RemovedInsts);
5485 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5486 TPT.getRestorationPoint();
5487 SmallVector<Instruction *, 1> Exts;
5488 SmallVector<Instruction *, 2> SpeculativelyMovedExts;
5489 Exts.push_back(Inst);
5491 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts);
5493 // Look for a load being extended.
5494 LoadInst *LI = nullptr;
5495 Instruction *ExtFedByLoad;
5497 // Try to promote a chain of computation if it allows to form an extended
5498 // load.
5499 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) {
5500 assert(LI && ExtFedByLoad && "Expect a valid load and extension");
5501 TPT.commit();
5502 // Move the extend into the same block as the load
5503 ExtFedByLoad->moveAfter(LI);
5504 // CGP does not check if the zext would be speculatively executed when moved
5505 // to the same basic block as the load. Preserving its original location
5506 // would pessimize the debugging experience, as well as negatively impact
5507 // the quality of sample pgo. We don't want to use "line 0" as that has a
5508 // size cost in the line-table section and logically the zext can be seen as
5509 // part of the load. Therefore we conservatively reuse the same debug
5510 // location for the load and the zext.
5511 ExtFedByLoad->setDebugLoc(LI->getDebugLoc());
5512 ++NumExtsMoved;
5513 Inst = ExtFedByLoad;
5514 return true;
5517 // Continue promoting SExts if known as considerable depending on targets.
5518 if (ATPConsiderable &&
5519 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader,
5520 HasPromoted, TPT, SpeculativelyMovedExts))
5521 return true;
5523 TPT.rollback(LastKnownGood);
5524 return false;
5527 // Perform address type promotion if doing so is profitable.
5528 // If AllowPromotionWithoutCommonHeader == false, we should find other sext
5529 // instructions that sign extended the same initial value. However, if
5530 // AllowPromotionWithoutCommonHeader == true, we expect promoting the
5531 // extension is just profitable.
5532 bool CodeGenPrepare::performAddressTypePromotion(
5533 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader,
5534 bool HasPromoted, TypePromotionTransaction &TPT,
5535 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) {
5536 bool Promoted = false;
5537 SmallPtrSet<Instruction *, 1> UnhandledExts;
5538 bool AllSeenFirst = true;
5539 for (auto I : SpeculativelyMovedExts) {
5540 Value *HeadOfChain = I->getOperand(0);
5541 DenseMap<Value *, Instruction *>::iterator AlreadySeen =
5542 SeenChainsForSExt.find(HeadOfChain);
5543 // If there is an unhandled SExt which has the same header, try to promote
5544 // it as well.
5545 if (AlreadySeen != SeenChainsForSExt.end()) {
5546 if (AlreadySeen->second != nullptr)
5547 UnhandledExts.insert(AlreadySeen->second);
5548 AllSeenFirst = false;
5552 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader &&
5553 SpeculativelyMovedExts.size() == 1)) {
5554 TPT.commit();
5555 if (HasPromoted)
5556 Promoted = true;
5557 for (auto I : SpeculativelyMovedExts) {
5558 Value *HeadOfChain = I->getOperand(0);
5559 SeenChainsForSExt[HeadOfChain] = nullptr;
5560 ValToSExtendedUses[HeadOfChain].push_back(I);
5562 // Update Inst as promotion happen.
5563 Inst = SpeculativelyMovedExts.pop_back_val();
5564 } else {
5565 // This is the first chain visited from the header, keep the current chain
5566 // as unhandled. Defer to promote this until we encounter another SExt
5567 // chain derived from the same header.
5568 for (auto I : SpeculativelyMovedExts) {
5569 Value *HeadOfChain = I->getOperand(0);
5570 SeenChainsForSExt[HeadOfChain] = Inst;
5572 return false;
5575 if (!AllSeenFirst && !UnhandledExts.empty())
5576 for (auto VisitedSExt : UnhandledExts) {
5577 if (RemovedInsts.count(VisitedSExt))
5578 continue;
5579 TypePromotionTransaction TPT(RemovedInsts);
5580 SmallVector<Instruction *, 1> Exts;
5581 SmallVector<Instruction *, 2> Chains;
5582 Exts.push_back(VisitedSExt);
5583 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains);
5584 TPT.commit();
5585 if (HasPromoted)
5586 Promoted = true;
5587 for (auto I : Chains) {
5588 Value *HeadOfChain = I->getOperand(0);
5589 // Mark this as handled.
5590 SeenChainsForSExt[HeadOfChain] = nullptr;
5591 ValToSExtendedUses[HeadOfChain].push_back(I);
5594 return Promoted;
5597 bool CodeGenPrepare::optimizeExtUses(Instruction *I) {
5598 BasicBlock *DefBB = I->getParent();
5600 // If the result of a {s|z}ext and its source are both live out, rewrite all
5601 // other uses of the source with result of extension.
5602 Value *Src = I->getOperand(0);
5603 if (Src->hasOneUse())
5604 return false;
5606 // Only do this xform if truncating is free.
5607 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
5608 return false;
5610 // Only safe to perform the optimization if the source is also defined in
5611 // this block.
5612 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
5613 return false;
5615 bool DefIsLiveOut = false;
5616 for (User *U : I->users()) {
5617 Instruction *UI = cast<Instruction>(U);
5619 // Figure out which BB this ext is used in.
5620 BasicBlock *UserBB = UI->getParent();
5621 if (UserBB == DefBB) continue;
5622 DefIsLiveOut = true;
5623 break;
5625 if (!DefIsLiveOut)
5626 return false;
5628 // Make sure none of the uses are PHI nodes.
5629 for (User *U : Src->users()) {
5630 Instruction *UI = cast<Instruction>(U);
5631 BasicBlock *UserBB = UI->getParent();
5632 if (UserBB == DefBB) continue;
5633 // Be conservative. We don't want this xform to end up introducing
5634 // reloads just before load / store instructions.
5635 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI))
5636 return false;
5639 // InsertedTruncs - Only insert one trunc in each block once.
5640 DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
5642 bool MadeChange = false;
5643 for (Use &U : Src->uses()) {
5644 Instruction *User = cast<Instruction>(U.getUser());
5646 // Figure out which BB this ext is used in.
5647 BasicBlock *UserBB = User->getParent();
5648 if (UserBB == DefBB) continue;
5650 // Both src and def are live in this block. Rewrite the use.
5651 Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
5653 if (!InsertedTrunc) {
5654 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
5655 assert(InsertPt != UserBB->end());
5656 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt);
5657 InsertedInsts.insert(InsertedTrunc);
5660 // Replace a use of the {s|z}ext source with a use of the result.
5661 U = InsertedTrunc;
5662 ++NumExtUses;
5663 MadeChange = true;
5666 return MadeChange;
5669 // Find loads whose uses only use some of the loaded value's bits. Add an "and"
5670 // just after the load if the target can fold this into one extload instruction,
5671 // with the hope of eliminating some of the other later "and" instructions using
5672 // the loaded value. "and"s that are made trivially redundant by the insertion
5673 // of the new "and" are removed by this function, while others (e.g. those whose
5674 // path from the load goes through a phi) are left for isel to potentially
5675 // remove.
5677 // For example:
5679 // b0:
5680 // x = load i32
5681 // ...
5682 // b1:
5683 // y = and x, 0xff
5684 // z = use y
5686 // becomes:
5688 // b0:
5689 // x = load i32
5690 // x' = and x, 0xff
5691 // ...
5692 // b1:
5693 // z = use x'
5695 // whereas:
5697 // b0:
5698 // x1 = load i32
5699 // ...
5700 // b1:
5701 // x2 = load i32
5702 // ...
5703 // b2:
5704 // x = phi x1, x2
5705 // y = and x, 0xff
5707 // becomes (after a call to optimizeLoadExt for each load):
5709 // b0:
5710 // x1 = load i32
5711 // x1' = and x1, 0xff
5712 // ...
5713 // b1:
5714 // x2 = load i32
5715 // x2' = and x2, 0xff
5716 // ...
5717 // b2:
5718 // x = phi x1', x2'
5719 // y = and x, 0xff
5720 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) {
5721 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy())
5722 return false;
5724 // Skip loads we've already transformed.
5725 if (Load->hasOneUse() &&
5726 InsertedInsts.count(cast<Instruction>(*Load->user_begin())))
5727 return false;
5729 // Look at all uses of Load, looking through phis, to determine how many bits
5730 // of the loaded value are needed.
5731 SmallVector<Instruction *, 8> WorkList;
5732 SmallPtrSet<Instruction *, 16> Visited;
5733 SmallVector<Instruction *, 8> AndsToMaybeRemove;
5734 for (auto *U : Load->users())
5735 WorkList.push_back(cast<Instruction>(U));
5737 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType());
5738 unsigned BitWidth = LoadResultVT.getSizeInBits();
5739 APInt DemandBits(BitWidth, 0);
5740 APInt WidestAndBits(BitWidth, 0);
5742 while (!WorkList.empty()) {
5743 Instruction *I = WorkList.back();
5744 WorkList.pop_back();
5746 // Break use-def graph loops.
5747 if (!Visited.insert(I).second)
5748 continue;
5750 // For a PHI node, push all of its users.
5751 if (auto *Phi = dyn_cast<PHINode>(I)) {
5752 for (auto *U : Phi->users())
5753 WorkList.push_back(cast<Instruction>(U));
5754 continue;
5757 switch (I->getOpcode()) {
5758 case Instruction::And: {
5759 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1));
5760 if (!AndC)
5761 return false;
5762 APInt AndBits = AndC->getValue();
5763 DemandBits |= AndBits;
5764 // Keep track of the widest and mask we see.
5765 if (AndBits.ugt(WidestAndBits))
5766 WidestAndBits = AndBits;
5767 if (AndBits == WidestAndBits && I->getOperand(0) == Load)
5768 AndsToMaybeRemove.push_back(I);
5769 break;
5772 case Instruction::Shl: {
5773 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1));
5774 if (!ShlC)
5775 return false;
5776 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1);
5777 DemandBits.setLowBits(BitWidth - ShiftAmt);
5778 break;
5781 case Instruction::Trunc: {
5782 EVT TruncVT = TLI->getValueType(*DL, I->getType());
5783 unsigned TruncBitWidth = TruncVT.getSizeInBits();
5784 DemandBits.setLowBits(TruncBitWidth);
5785 break;
5788 default:
5789 return false;
5793 uint32_t ActiveBits = DemandBits.getActiveBits();
5794 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the
5795 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example,
5796 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but
5797 // (and (load x) 1) is not matched as a single instruction, rather as a LDR
5798 // followed by an AND.
5799 // TODO: Look into removing this restriction by fixing backends to either
5800 // return false for isLoadExtLegal for i1 or have them select this pattern to
5801 // a single instruction.
5803 // Also avoid hoisting if we didn't see any ands with the exact DemandBits
5804 // mask, since these are the only ands that will be removed by isel.
5805 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) ||
5806 WidestAndBits != DemandBits)
5807 return false;
5809 LLVMContext &Ctx = Load->getType()->getContext();
5810 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits);
5811 EVT TruncVT = TLI->getValueType(*DL, TruncTy);
5813 // Reject cases that won't be matched as extloads.
5814 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() ||
5815 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT))
5816 return false;
5818 IRBuilder<> Builder(Load->getNextNode());
5819 auto *NewAnd = dyn_cast<Instruction>(
5820 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits)));
5821 // Mark this instruction as "inserted by CGP", so that other
5822 // optimizations don't touch it.
5823 InsertedInsts.insert(NewAnd);
5825 // Replace all uses of load with new and (except for the use of load in the
5826 // new and itself).
5827 Load->replaceAllUsesWith(NewAnd);
5828 NewAnd->setOperand(0, Load);
5830 // Remove any and instructions that are now redundant.
5831 for (auto *And : AndsToMaybeRemove)
5832 // Check that the and mask is the same as the one we decided to put on the
5833 // new and.
5834 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) {
5835 And->replaceAllUsesWith(NewAnd);
5836 if (&*CurInstIterator == And)
5837 CurInstIterator = std::next(And->getIterator());
5838 And->eraseFromParent();
5839 ++NumAndUses;
5842 ++NumAndsAdded;
5843 return true;
5846 /// Check if V (an operand of a select instruction) is an expensive instruction
5847 /// that is only used once.
5848 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) {
5849 auto *I = dyn_cast<Instruction>(V);
5850 // If it's safe to speculatively execute, then it should not have side
5851 // effects; therefore, it's safe to sink and possibly *not* execute.
5852 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) &&
5853 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive;
5856 /// Returns true if a SelectInst should be turned into an explicit branch.
5857 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI,
5858 const TargetLowering *TLI,
5859 SelectInst *SI) {
5860 // If even a predictable select is cheap, then a branch can't be cheaper.
5861 if (!TLI->isPredictableSelectExpensive())
5862 return false;
5864 // FIXME: This should use the same heuristics as IfConversion to determine
5865 // whether a select is better represented as a branch.
5867 // If metadata tells us that the select condition is obviously predictable,
5868 // then we want to replace the select with a branch.
5869 uint64_t TrueWeight, FalseWeight;
5870 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) {
5871 uint64_t Max = std::max(TrueWeight, FalseWeight);
5872 uint64_t Sum = TrueWeight + FalseWeight;
5873 if (Sum != 0) {
5874 auto Probability = BranchProbability::getBranchProbability(Max, Sum);
5875 if (Probability > TLI->getPredictableBranchThreshold())
5876 return true;
5880 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
5882 // If a branch is predictable, an out-of-order CPU can avoid blocking on its
5883 // comparison condition. If the compare has more than one use, there's
5884 // probably another cmov or setcc around, so it's not worth emitting a branch.
5885 if (!Cmp || !Cmp->hasOneUse())
5886 return false;
5888 // If either operand of the select is expensive and only needed on one side
5889 // of the select, we should form a branch.
5890 if (sinkSelectOperand(TTI, SI->getTrueValue()) ||
5891 sinkSelectOperand(TTI, SI->getFalseValue()))
5892 return true;
5894 return false;
5897 /// If \p isTrue is true, return the true value of \p SI, otherwise return
5898 /// false value of \p SI. If the true/false value of \p SI is defined by any
5899 /// select instructions in \p Selects, look through the defining select
5900 /// instruction until the true/false value is not defined in \p Selects.
5901 static Value *getTrueOrFalseValue(
5902 SelectInst *SI, bool isTrue,
5903 const SmallPtrSet<const Instruction *, 2> &Selects) {
5904 Value *V = nullptr;
5906 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI);
5907 DefSI = dyn_cast<SelectInst>(V)) {
5908 assert(DefSI->getCondition() == SI->getCondition() &&
5909 "The condition of DefSI does not match with SI");
5910 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue());
5913 assert(V && "Failed to get select true/false value");
5914 return V;
5917 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) {
5918 assert(Shift->isShift() && "Expected a shift");
5920 // If this is (1) a vector shift, (2) shifts by scalars are cheaper than
5921 // general vector shifts, and (3) the shift amount is a select-of-splatted
5922 // values, hoist the shifts before the select:
5923 // shift Op0, (select Cond, TVal, FVal) -->
5924 // select Cond, (shift Op0, TVal), (shift Op0, FVal)
5926 // This is inverting a generic IR transform when we know that the cost of a
5927 // general vector shift is more than the cost of 2 shift-by-scalars.
5928 // We can't do this effectively in SDAG because we may not be able to
5929 // determine if the select operands are splats from within a basic block.
5930 Type *Ty = Shift->getType();
5931 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty))
5932 return false;
5933 Value *Cond, *TVal, *FVal;
5934 if (!match(Shift->getOperand(1),
5935 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
5936 return false;
5937 if (!isSplatValue(TVal) || !isSplatValue(FVal))
5938 return false;
5940 IRBuilder<> Builder(Shift);
5941 BinaryOperator::BinaryOps Opcode = Shift->getOpcode();
5942 Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal);
5943 Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal);
5944 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal);
5945 Shift->replaceAllUsesWith(NewSel);
5946 Shift->eraseFromParent();
5947 return true;
5950 /// If we have a SelectInst that will likely profit from branch prediction,
5951 /// turn it into a branch.
5952 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) {
5953 // If branch conversion isn't desirable, exit early.
5954 if (DisableSelectToBranch || OptSize || !TLI)
5955 return false;
5957 // Find all consecutive select instructions that share the same condition.
5958 SmallVector<SelectInst *, 2> ASI;
5959 ASI.push_back(SI);
5960 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI);
5961 It != SI->getParent()->end(); ++It) {
5962 SelectInst *I = dyn_cast<SelectInst>(&*It);
5963 if (I && SI->getCondition() == I->getCondition()) {
5964 ASI.push_back(I);
5965 } else {
5966 break;
5970 SelectInst *LastSI = ASI.back();
5971 // Increment the current iterator to skip all the rest of select instructions
5972 // because they will be either "not lowered" or "all lowered" to branch.
5973 CurInstIterator = std::next(LastSI->getIterator());
5975 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
5977 // Can we convert the 'select' to CF ?
5978 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable))
5979 return false;
5981 TargetLowering::SelectSupportKind SelectKind;
5982 if (VectorCond)
5983 SelectKind = TargetLowering::VectorMaskSelect;
5984 else if (SI->getType()->isVectorTy())
5985 SelectKind = TargetLowering::ScalarCondVectorVal;
5986 else
5987 SelectKind = TargetLowering::ScalarValSelect;
5989 if (TLI->isSelectSupported(SelectKind) &&
5990 !isFormingBranchFromSelectProfitable(TTI, TLI, SI))
5991 return false;
5993 // The DominatorTree needs to be rebuilt by any consumers after this
5994 // transformation. We simply reset here rather than setting the ModifiedDT
5995 // flag to avoid restarting the function walk in runOnFunction for each
5996 // select optimized.
5997 DT.reset();
5999 // Transform a sequence like this:
6000 // start:
6001 // %cmp = cmp uge i32 %a, %b
6002 // %sel = select i1 %cmp, i32 %c, i32 %d
6004 // Into:
6005 // start:
6006 // %cmp = cmp uge i32 %a, %b
6007 // br i1 %cmp, label %select.true, label %select.false
6008 // select.true:
6009 // br label %select.end
6010 // select.false:
6011 // br label %select.end
6012 // select.end:
6013 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
6015 // In addition, we may sink instructions that produce %c or %d from
6016 // the entry block into the destination(s) of the new branch.
6017 // If the true or false blocks do not contain a sunken instruction, that
6018 // block and its branch may be optimized away. In that case, one side of the
6019 // first branch will point directly to select.end, and the corresponding PHI
6020 // predecessor block will be the start block.
6022 // First, we split the block containing the select into 2 blocks.
6023 BasicBlock *StartBlock = SI->getParent();
6024 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI));
6025 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
6027 // Delete the unconditional branch that was just created by the split.
6028 StartBlock->getTerminator()->eraseFromParent();
6030 // These are the new basic blocks for the conditional branch.
6031 // At least one will become an actual new basic block.
6032 BasicBlock *TrueBlock = nullptr;
6033 BasicBlock *FalseBlock = nullptr;
6034 BranchInst *TrueBranch = nullptr;
6035 BranchInst *FalseBranch = nullptr;
6037 // Sink expensive instructions into the conditional blocks to avoid executing
6038 // them speculatively.
6039 for (SelectInst *SI : ASI) {
6040 if (sinkSelectOperand(TTI, SI->getTrueValue())) {
6041 if (TrueBlock == nullptr) {
6042 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink",
6043 EndBlock->getParent(), EndBlock);
6044 TrueBranch = BranchInst::Create(EndBlock, TrueBlock);
6045 TrueBranch->setDebugLoc(SI->getDebugLoc());
6047 auto *TrueInst = cast<Instruction>(SI->getTrueValue());
6048 TrueInst->moveBefore(TrueBranch);
6050 if (sinkSelectOperand(TTI, SI->getFalseValue())) {
6051 if (FalseBlock == nullptr) {
6052 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink",
6053 EndBlock->getParent(), EndBlock);
6054 FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
6055 FalseBranch->setDebugLoc(SI->getDebugLoc());
6057 auto *FalseInst = cast<Instruction>(SI->getFalseValue());
6058 FalseInst->moveBefore(FalseBranch);
6062 // If there was nothing to sink, then arbitrarily choose the 'false' side
6063 // for a new input value to the PHI.
6064 if (TrueBlock == FalseBlock) {
6065 assert(TrueBlock == nullptr &&
6066 "Unexpected basic block transform while optimizing select");
6068 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false",
6069 EndBlock->getParent(), EndBlock);
6070 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
6071 FalseBranch->setDebugLoc(SI->getDebugLoc());
6074 // Insert the real conditional branch based on the original condition.
6075 // If we did not create a new block for one of the 'true' or 'false' paths
6076 // of the condition, it means that side of the branch goes to the end block
6077 // directly and the path originates from the start block from the point of
6078 // view of the new PHI.
6079 BasicBlock *TT, *FT;
6080 if (TrueBlock == nullptr) {
6081 TT = EndBlock;
6082 FT = FalseBlock;
6083 TrueBlock = StartBlock;
6084 } else if (FalseBlock == nullptr) {
6085 TT = TrueBlock;
6086 FT = EndBlock;
6087 FalseBlock = StartBlock;
6088 } else {
6089 TT = TrueBlock;
6090 FT = FalseBlock;
6092 IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI);
6094 SmallPtrSet<const Instruction *, 2> INS;
6095 INS.insert(ASI.begin(), ASI.end());
6096 // Use reverse iterator because later select may use the value of the
6097 // earlier select, and we need to propagate value through earlier select
6098 // to get the PHI operand.
6099 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) {
6100 SelectInst *SI = *It;
6101 // The select itself is replaced with a PHI Node.
6102 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front());
6103 PN->takeName(SI);
6104 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock);
6105 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock);
6106 PN->setDebugLoc(SI->getDebugLoc());
6108 SI->replaceAllUsesWith(PN);
6109 SI->eraseFromParent();
6110 INS.erase(SI);
6111 ++NumSelectsExpanded;
6114 // Instruct OptimizeBlock to skip to the next block.
6115 CurInstIterator = StartBlock->end();
6116 return true;
6119 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) {
6120 SmallVector<int, 16> Mask(SVI->getShuffleMask());
6121 int SplatElem = -1;
6122 for (unsigned i = 0; i < Mask.size(); ++i) {
6123 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem)
6124 return false;
6125 SplatElem = Mask[i];
6128 return true;
6131 /// Some targets have expensive vector shifts if the lanes aren't all the same
6132 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases
6133 /// it's often worth sinking a shufflevector splat down to its use so that
6134 /// codegen can spot all lanes are identical.
6135 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
6136 BasicBlock *DefBB = SVI->getParent();
6138 // Only do this xform if variable vector shifts are particularly expensive.
6139 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType()))
6140 return false;
6142 // We only expect better codegen by sinking a shuffle if we can recognise a
6143 // constant splat.
6144 if (!isBroadcastShuffle(SVI))
6145 return false;
6147 // InsertedShuffles - Only insert a shuffle in each block once.
6148 DenseMap<BasicBlock*, Instruction*> InsertedShuffles;
6150 bool MadeChange = false;
6151 for (User *U : SVI->users()) {
6152 Instruction *UI = cast<Instruction>(U);
6154 // Figure out which BB this ext is used in.
6155 BasicBlock *UserBB = UI->getParent();
6156 if (UserBB == DefBB) continue;
6158 // For now only apply this when the splat is used by a shift instruction.
6159 if (!UI->isShift()) continue;
6161 // Everything checks out, sink the shuffle if the user's block doesn't
6162 // already have a copy.
6163 Instruction *&InsertedShuffle = InsertedShuffles[UserBB];
6165 if (!InsertedShuffle) {
6166 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
6167 assert(InsertPt != UserBB->end());
6168 InsertedShuffle =
6169 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1),
6170 SVI->getOperand(2), "", &*InsertPt);
6171 InsertedShuffle->setDebugLoc(SVI->getDebugLoc());
6174 UI->replaceUsesOfWith(SVI, InsertedShuffle);
6175 MadeChange = true;
6178 // If we removed all uses, nuke the shuffle.
6179 if (SVI->use_empty()) {
6180 SVI->eraseFromParent();
6181 MadeChange = true;
6184 return MadeChange;
6187 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) {
6188 // If the operands of I can be folded into a target instruction together with
6189 // I, duplicate and sink them.
6190 SmallVector<Use *, 4> OpsToSink;
6191 if (!TLI || !TLI->shouldSinkOperands(I, OpsToSink))
6192 return false;
6194 // OpsToSink can contain multiple uses in a use chain (e.g.
6195 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating
6196 // uses must come first, which means they are sunk first, temporarily creating
6197 // invalid IR. This will be fixed once their dominated users are sunk and
6198 // updated.
6199 BasicBlock *TargetBB = I->getParent();
6200 bool Changed = false;
6201 SmallVector<Use *, 4> ToReplace;
6202 for (Use *U : OpsToSink) {
6203 auto *UI = cast<Instruction>(U->get());
6204 if (UI->getParent() == TargetBB || isa<PHINode>(UI))
6205 continue;
6206 ToReplace.push_back(U);
6209 SmallPtrSet<Instruction *, 4> MaybeDead;
6210 for (Use *U : ToReplace) {
6211 auto *UI = cast<Instruction>(U->get());
6212 Instruction *NI = UI->clone();
6213 MaybeDead.insert(UI);
6214 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n");
6215 NI->insertBefore(I);
6216 InsertedInsts.insert(NI);
6217 U->set(NI);
6218 Changed = true;
6221 // Remove instructions that are dead after sinking.
6222 for (auto *I : MaybeDead)
6223 if (!I->hasNUsesOrMore(1))
6224 I->eraseFromParent();
6226 return Changed;
6229 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) {
6230 if (!TLI || !DL)
6231 return false;
6233 Value *Cond = SI->getCondition();
6234 Type *OldType = Cond->getType();
6235 LLVMContext &Context = Cond->getContext();
6236 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType));
6237 unsigned RegWidth = RegType.getSizeInBits();
6239 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth())
6240 return false;
6242 // If the register width is greater than the type width, expand the condition
6243 // of the switch instruction and each case constant to the width of the
6244 // register. By widening the type of the switch condition, subsequent
6245 // comparisons (for case comparisons) will not need to be extended to the
6246 // preferred register width, so we will potentially eliminate N-1 extends,
6247 // where N is the number of cases in the switch.
6248 auto *NewType = Type::getIntNTy(Context, RegWidth);
6250 // Zero-extend the switch condition and case constants unless the switch
6251 // condition is a function argument that is already being sign-extended.
6252 // In that case, we can avoid an unnecessary mask/extension by sign-extending
6253 // everything instead.
6254 Instruction::CastOps ExtType = Instruction::ZExt;
6255 if (auto *Arg = dyn_cast<Argument>(Cond))
6256 if (Arg->hasSExtAttr())
6257 ExtType = Instruction::SExt;
6259 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType);
6260 ExtInst->insertBefore(SI);
6261 ExtInst->setDebugLoc(SI->getDebugLoc());
6262 SI->setCondition(ExtInst);
6263 for (auto Case : SI->cases()) {
6264 APInt NarrowConst = Case.getCaseValue()->getValue();
6265 APInt WideConst = (ExtType == Instruction::ZExt) ?
6266 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth);
6267 Case.setValue(ConstantInt::get(Context, WideConst));
6270 return true;
6274 namespace {
6276 /// Helper class to promote a scalar operation to a vector one.
6277 /// This class is used to move downward extractelement transition.
6278 /// E.g.,
6279 /// a = vector_op <2 x i32>
6280 /// b = extractelement <2 x i32> a, i32 0
6281 /// c = scalar_op b
6282 /// store c
6284 /// =>
6285 /// a = vector_op <2 x i32>
6286 /// c = vector_op a (equivalent to scalar_op on the related lane)
6287 /// * d = extractelement <2 x i32> c, i32 0
6288 /// * store d
6289 /// Assuming both extractelement and store can be combine, we get rid of the
6290 /// transition.
6291 class VectorPromoteHelper {
6292 /// DataLayout associated with the current module.
6293 const DataLayout &DL;
6295 /// Used to perform some checks on the legality of vector operations.
6296 const TargetLowering &TLI;
6298 /// Used to estimated the cost of the promoted chain.
6299 const TargetTransformInfo &TTI;
6301 /// The transition being moved downwards.
6302 Instruction *Transition;
6304 /// The sequence of instructions to be promoted.
6305 SmallVector<Instruction *, 4> InstsToBePromoted;
6307 /// Cost of combining a store and an extract.
6308 unsigned StoreExtractCombineCost;
6310 /// Instruction that will be combined with the transition.
6311 Instruction *CombineInst = nullptr;
6313 /// The instruction that represents the current end of the transition.
6314 /// Since we are faking the promotion until we reach the end of the chain
6315 /// of computation, we need a way to get the current end of the transition.
6316 Instruction *getEndOfTransition() const {
6317 if (InstsToBePromoted.empty())
6318 return Transition;
6319 return InstsToBePromoted.back();
6322 /// Return the index of the original value in the transition.
6323 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value,
6324 /// c, is at index 0.
6325 unsigned getTransitionOriginalValueIdx() const {
6326 assert(isa<ExtractElementInst>(Transition) &&
6327 "Other kind of transitions are not supported yet");
6328 return 0;
6331 /// Return the index of the index in the transition.
6332 /// E.g., for "extractelement <2 x i32> c, i32 0" the index
6333 /// is at index 1.
6334 unsigned getTransitionIdx() const {
6335 assert(isa<ExtractElementInst>(Transition) &&
6336 "Other kind of transitions are not supported yet");
6337 return 1;
6340 /// Get the type of the transition.
6341 /// This is the type of the original value.
6342 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the
6343 /// transition is <2 x i32>.
6344 Type *getTransitionType() const {
6345 return Transition->getOperand(getTransitionOriginalValueIdx())->getType();
6348 /// Promote \p ToBePromoted by moving \p Def downward through.
6349 /// I.e., we have the following sequence:
6350 /// Def = Transition <ty1> a to <ty2>
6351 /// b = ToBePromoted <ty2> Def, ...
6352 /// =>
6353 /// b = ToBePromoted <ty1> a, ...
6354 /// Def = Transition <ty1> ToBePromoted to <ty2>
6355 void promoteImpl(Instruction *ToBePromoted);
6357 /// Check whether or not it is profitable to promote all the
6358 /// instructions enqueued to be promoted.
6359 bool isProfitableToPromote() {
6360 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx());
6361 unsigned Index = isa<ConstantInt>(ValIdx)
6362 ? cast<ConstantInt>(ValIdx)->getZExtValue()
6363 : -1;
6364 Type *PromotedType = getTransitionType();
6366 StoreInst *ST = cast<StoreInst>(CombineInst);
6367 unsigned AS = ST->getPointerAddressSpace();
6368 unsigned Align = ST->getAlignment();
6369 // Check if this store is supported.
6370 if (!TLI.allowsMisalignedMemoryAccesses(
6371 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS,
6372 Align)) {
6373 // If this is not supported, there is no way we can combine
6374 // the extract with the store.
6375 return false;
6378 // The scalar chain of computation has to pay for the transition
6379 // scalar to vector.
6380 // The vector chain has to account for the combining cost.
6381 uint64_t ScalarCost =
6382 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index);
6383 uint64_t VectorCost = StoreExtractCombineCost;
6384 for (const auto &Inst : InstsToBePromoted) {
6385 // Compute the cost.
6386 // By construction, all instructions being promoted are arithmetic ones.
6387 // Moreover, one argument is a constant that can be viewed as a splat
6388 // constant.
6389 Value *Arg0 = Inst->getOperand(0);
6390 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) ||
6391 isa<ConstantFP>(Arg0);
6392 TargetTransformInfo::OperandValueKind Arg0OVK =
6393 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
6394 : TargetTransformInfo::OK_AnyValue;
6395 TargetTransformInfo::OperandValueKind Arg1OVK =
6396 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
6397 : TargetTransformInfo::OK_AnyValue;
6398 ScalarCost += TTI.getArithmeticInstrCost(
6399 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK);
6400 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType,
6401 Arg0OVK, Arg1OVK);
6403 LLVM_DEBUG(
6404 dbgs() << "Estimated cost of computation to be promoted:\nScalar: "
6405 << ScalarCost << "\nVector: " << VectorCost << '\n');
6406 return ScalarCost > VectorCost;
6409 /// Generate a constant vector with \p Val with the same
6410 /// number of elements as the transition.
6411 /// \p UseSplat defines whether or not \p Val should be replicated
6412 /// across the whole vector.
6413 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>,
6414 /// otherwise we generate a vector with as many undef as possible:
6415 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only
6416 /// used at the index of the extract.
6417 Value *getConstantVector(Constant *Val, bool UseSplat) const {
6418 unsigned ExtractIdx = std::numeric_limits<unsigned>::max();
6419 if (!UseSplat) {
6420 // If we cannot determine where the constant must be, we have to
6421 // use a splat constant.
6422 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx());
6423 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx))
6424 ExtractIdx = CstVal->getSExtValue();
6425 else
6426 UseSplat = true;
6429 unsigned End = getTransitionType()->getVectorNumElements();
6430 if (UseSplat)
6431 return ConstantVector::getSplat(End, Val);
6433 SmallVector<Constant *, 4> ConstVec;
6434 UndefValue *UndefVal = UndefValue::get(Val->getType());
6435 for (unsigned Idx = 0; Idx != End; ++Idx) {
6436 if (Idx == ExtractIdx)
6437 ConstVec.push_back(Val);
6438 else
6439 ConstVec.push_back(UndefVal);
6441 return ConstantVector::get(ConstVec);
6444 /// Check if promoting to a vector type an operand at \p OperandIdx
6445 /// in \p Use can trigger undefined behavior.
6446 static bool canCauseUndefinedBehavior(const Instruction *Use,
6447 unsigned OperandIdx) {
6448 // This is not safe to introduce undef when the operand is on
6449 // the right hand side of a division-like instruction.
6450 if (OperandIdx != 1)
6451 return false;
6452 switch (Use->getOpcode()) {
6453 default:
6454 return false;
6455 case Instruction::SDiv:
6456 case Instruction::UDiv:
6457 case Instruction::SRem:
6458 case Instruction::URem:
6459 return true;
6460 case Instruction::FDiv:
6461 case Instruction::FRem:
6462 return !Use->hasNoNaNs();
6464 llvm_unreachable(nullptr);
6467 public:
6468 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI,
6469 const TargetTransformInfo &TTI, Instruction *Transition,
6470 unsigned CombineCost)
6471 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition),
6472 StoreExtractCombineCost(CombineCost) {
6473 assert(Transition && "Do not know how to promote null");
6476 /// Check if we can promote \p ToBePromoted to \p Type.
6477 bool canPromote(const Instruction *ToBePromoted) const {
6478 // We could support CastInst too.
6479 return isa<BinaryOperator>(ToBePromoted);
6482 /// Check if it is profitable to promote \p ToBePromoted
6483 /// by moving downward the transition through.
6484 bool shouldPromote(const Instruction *ToBePromoted) const {
6485 // Promote only if all the operands can be statically expanded.
6486 // Indeed, we do not want to introduce any new kind of transitions.
6487 for (const Use &U : ToBePromoted->operands()) {
6488 const Value *Val = U.get();
6489 if (Val == getEndOfTransition()) {
6490 // If the use is a division and the transition is on the rhs,
6491 // we cannot promote the operation, otherwise we may create a
6492 // division by zero.
6493 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()))
6494 return false;
6495 continue;
6497 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) &&
6498 !isa<ConstantFP>(Val))
6499 return false;
6501 // Check that the resulting operation is legal.
6502 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode());
6503 if (!ISDOpcode)
6504 return false;
6505 return StressStoreExtract ||
6506 TLI.isOperationLegalOrCustom(
6507 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true));
6510 /// Check whether or not \p Use can be combined
6511 /// with the transition.
6512 /// I.e., is it possible to do Use(Transition) => AnotherUse?
6513 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); }
6515 /// Record \p ToBePromoted as part of the chain to be promoted.
6516 void enqueueForPromotion(Instruction *ToBePromoted) {
6517 InstsToBePromoted.push_back(ToBePromoted);
6520 /// Set the instruction that will be combined with the transition.
6521 void recordCombineInstruction(Instruction *ToBeCombined) {
6522 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine");
6523 CombineInst = ToBeCombined;
6526 /// Promote all the instructions enqueued for promotion if it is
6527 /// is profitable.
6528 /// \return True if the promotion happened, false otherwise.
6529 bool promote() {
6530 // Check if there is something to promote.
6531 // Right now, if we do not have anything to combine with,
6532 // we assume the promotion is not profitable.
6533 if (InstsToBePromoted.empty() || !CombineInst)
6534 return false;
6536 // Check cost.
6537 if (!StressStoreExtract && !isProfitableToPromote())
6538 return false;
6540 // Promote.
6541 for (auto &ToBePromoted : InstsToBePromoted)
6542 promoteImpl(ToBePromoted);
6543 InstsToBePromoted.clear();
6544 return true;
6548 } // end anonymous namespace
6550 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) {
6551 // At this point, we know that all the operands of ToBePromoted but Def
6552 // can be statically promoted.
6553 // For Def, we need to use its parameter in ToBePromoted:
6554 // b = ToBePromoted ty1 a
6555 // Def = Transition ty1 b to ty2
6556 // Move the transition down.
6557 // 1. Replace all uses of the promoted operation by the transition.
6558 // = ... b => = ... Def.
6559 assert(ToBePromoted->getType() == Transition->getType() &&
6560 "The type of the result of the transition does not match "
6561 "the final type");
6562 ToBePromoted->replaceAllUsesWith(Transition);
6563 // 2. Update the type of the uses.
6564 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def.
6565 Type *TransitionTy = getTransitionType();
6566 ToBePromoted->mutateType(TransitionTy);
6567 // 3. Update all the operands of the promoted operation with promoted
6568 // operands.
6569 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a.
6570 for (Use &U : ToBePromoted->operands()) {
6571 Value *Val = U.get();
6572 Value *NewVal = nullptr;
6573 if (Val == Transition)
6574 NewVal = Transition->getOperand(getTransitionOriginalValueIdx());
6575 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) ||
6576 isa<ConstantFP>(Val)) {
6577 // Use a splat constant if it is not safe to use undef.
6578 NewVal = getConstantVector(
6579 cast<Constant>(Val),
6580 isa<UndefValue>(Val) ||
6581 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()));
6582 } else
6583 llvm_unreachable("Did you modified shouldPromote and forgot to update "
6584 "this?");
6585 ToBePromoted->setOperand(U.getOperandNo(), NewVal);
6587 Transition->moveAfter(ToBePromoted);
6588 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted);
6591 /// Some targets can do store(extractelement) with one instruction.
6592 /// Try to push the extractelement towards the stores when the target
6593 /// has this feature and this is profitable.
6594 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) {
6595 unsigned CombineCost = std::numeric_limits<unsigned>::max();
6596 if (DisableStoreExtract || !TLI ||
6597 (!StressStoreExtract &&
6598 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(),
6599 Inst->getOperand(1), CombineCost)))
6600 return false;
6602 // At this point we know that Inst is a vector to scalar transition.
6603 // Try to move it down the def-use chain, until:
6604 // - We can combine the transition with its single use
6605 // => we got rid of the transition.
6606 // - We escape the current basic block
6607 // => we would need to check that we are moving it at a cheaper place and
6608 // we do not do that for now.
6609 BasicBlock *Parent = Inst->getParent();
6610 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n');
6611 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost);
6612 // If the transition has more than one use, assume this is not going to be
6613 // beneficial.
6614 while (Inst->hasOneUse()) {
6615 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin());
6616 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n');
6618 if (ToBePromoted->getParent() != Parent) {
6619 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block ("
6620 << ToBePromoted->getParent()->getName()
6621 << ") than the transition (" << Parent->getName()
6622 << ").\n");
6623 return false;
6626 if (VPH.canCombine(ToBePromoted)) {
6627 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n'
6628 << "will be combined with: " << *ToBePromoted << '\n');
6629 VPH.recordCombineInstruction(ToBePromoted);
6630 bool Changed = VPH.promote();
6631 NumStoreExtractExposed += Changed;
6632 return Changed;
6635 LLVM_DEBUG(dbgs() << "Try promoting.\n");
6636 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted))
6637 return false;
6639 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n");
6641 VPH.enqueueForPromotion(ToBePromoted);
6642 Inst = ToBePromoted;
6644 return false;
6647 /// For the instruction sequence of store below, F and I values
6648 /// are bundled together as an i64 value before being stored into memory.
6649 /// Sometimes it is more efficient to generate separate stores for F and I,
6650 /// which can remove the bitwise instructions or sink them to colder places.
6652 /// (store (or (zext (bitcast F to i32) to i64),
6653 /// (shl (zext I to i64), 32)), addr) -->
6654 /// (store F, addr) and (store I, addr+4)
6656 /// Similarly, splitting for other merged store can also be beneficial, like:
6657 /// For pair of {i32, i32}, i64 store --> two i32 stores.
6658 /// For pair of {i32, i16}, i64 store --> two i32 stores.
6659 /// For pair of {i16, i16}, i32 store --> two i16 stores.
6660 /// For pair of {i16, i8}, i32 store --> two i16 stores.
6661 /// For pair of {i8, i8}, i16 store --> two i8 stores.
6663 /// We allow each target to determine specifically which kind of splitting is
6664 /// supported.
6666 /// The store patterns are commonly seen from the simple code snippet below
6667 /// if only std::make_pair(...) is sroa transformed before inlined into hoo.
6668 /// void goo(const std::pair<int, float> &);
6669 /// hoo() {
6670 /// ...
6671 /// goo(std::make_pair(tmp, ftmp));
6672 /// ...
6673 /// }
6675 /// Although we already have similar splitting in DAG Combine, we duplicate
6676 /// it in CodeGenPrepare to catch the case in which pattern is across
6677 /// multiple BBs. The logic in DAG Combine is kept to catch case generated
6678 /// during code expansion.
6679 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL,
6680 const TargetLowering &TLI) {
6681 // Handle simple but common cases only.
6682 Type *StoreType = SI.getValueOperand()->getType();
6683 if (!DL.typeSizeEqualsStoreSize(StoreType) ||
6684 DL.getTypeSizeInBits(StoreType) == 0)
6685 return false;
6687 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2;
6688 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize);
6689 if (!DL.typeSizeEqualsStoreSize(SplitStoreType))
6690 return false;
6692 // Don't split the store if it is volatile.
6693 if (SI.isVolatile())
6694 return false;
6696 // Match the following patterns:
6697 // (store (or (zext LValue to i64),
6698 // (shl (zext HValue to i64), 32)), HalfValBitSize)
6699 // or
6700 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize)
6701 // (zext LValue to i64),
6702 // Expect both operands of OR and the first operand of SHL have only
6703 // one use.
6704 Value *LValue, *HValue;
6705 if (!match(SI.getValueOperand(),
6706 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))),
6707 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))),
6708 m_SpecificInt(HalfValBitSize))))))
6709 return false;
6711 // Check LValue and HValue are int with size less or equal than 32.
6712 if (!LValue->getType()->isIntegerTy() ||
6713 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize ||
6714 !HValue->getType()->isIntegerTy() ||
6715 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize)
6716 return false;
6718 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast
6719 // as the input of target query.
6720 auto *LBC = dyn_cast<BitCastInst>(LValue);
6721 auto *HBC = dyn_cast<BitCastInst>(HValue);
6722 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType())
6723 : EVT::getEVT(LValue->getType());
6724 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType())
6725 : EVT::getEVT(HValue->getType());
6726 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy))
6727 return false;
6729 // Start to split store.
6730 IRBuilder<> Builder(SI.getContext());
6731 Builder.SetInsertPoint(&SI);
6733 // If LValue/HValue is a bitcast in another BB, create a new one in current
6734 // BB so it may be merged with the splitted stores by dag combiner.
6735 if (LBC && LBC->getParent() != SI.getParent())
6736 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType());
6737 if (HBC && HBC->getParent() != SI.getParent())
6738 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType());
6740 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian();
6741 auto CreateSplitStore = [&](Value *V, bool Upper) {
6742 V = Builder.CreateZExtOrBitCast(V, SplitStoreType);
6743 Value *Addr = Builder.CreateBitCast(
6744 SI.getOperand(1),
6745 SplitStoreType->getPointerTo(SI.getPointerAddressSpace()));
6746 if ((IsLE && Upper) || (!IsLE && !Upper))
6747 Addr = Builder.CreateGEP(
6748 SplitStoreType, Addr,
6749 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1));
6750 Builder.CreateAlignedStore(
6751 V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment());
6754 CreateSplitStore(LValue, false);
6755 CreateSplitStore(HValue, true);
6757 // Delete the old store.
6758 SI.eraseFromParent();
6759 return true;
6762 // Return true if the GEP has two operands, the first operand is of a sequential
6763 // type, and the second operand is a constant.
6764 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) {
6765 gep_type_iterator I = gep_type_begin(*GEP);
6766 return GEP->getNumOperands() == 2 &&
6767 I.isSequential() &&
6768 isa<ConstantInt>(GEP->getOperand(1));
6771 // Try unmerging GEPs to reduce liveness interference (register pressure) across
6772 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks,
6773 // reducing liveness interference across those edges benefits global register
6774 // allocation. Currently handles only certain cases.
6776 // For example, unmerge %GEPI and %UGEPI as below.
6778 // ---------- BEFORE ----------
6779 // SrcBlock:
6780 // ...
6781 // %GEPIOp = ...
6782 // ...
6783 // %GEPI = gep %GEPIOp, Idx
6784 // ...
6785 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ]
6786 // (* %GEPI is alive on the indirectbr edges due to other uses ahead)
6787 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by
6788 // %UGEPI)
6790 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged)
6791 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged)
6792 // ...
6794 // DstBi:
6795 // ...
6796 // %UGEPI = gep %GEPIOp, UIdx
6797 // ...
6798 // ---------------------------
6800 // ---------- AFTER ----------
6801 // SrcBlock:
6802 // ... (same as above)
6803 // (* %GEPI is still alive on the indirectbr edges)
6804 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the
6805 // unmerging)
6806 // ...
6808 // DstBi:
6809 // ...
6810 // %UGEPI = gep %GEPI, (UIdx-Idx)
6811 // ...
6812 // ---------------------------
6814 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is
6815 // no longer alive on them.
6817 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging
6818 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as
6819 // not to disable further simplications and optimizations as a result of GEP
6820 // merging.
6822 // Note this unmerging may increase the length of the data flow critical path
6823 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff
6824 // between the register pressure and the length of data-flow critical
6825 // path. Restricting this to the uncommon IndirectBr case would minimize the
6826 // impact of potentially longer critical path, if any, and the impact on compile
6827 // time.
6828 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI,
6829 const TargetTransformInfo *TTI) {
6830 BasicBlock *SrcBlock = GEPI->getParent();
6831 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common
6832 // (non-IndirectBr) cases exit early here.
6833 if (!isa<IndirectBrInst>(SrcBlock->getTerminator()))
6834 return false;
6835 // Check that GEPI is a simple gep with a single constant index.
6836 if (!GEPSequentialConstIndexed(GEPI))
6837 return false;
6838 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1));
6839 // Check that GEPI is a cheap one.
6840 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType())
6841 > TargetTransformInfo::TCC_Basic)
6842 return false;
6843 Value *GEPIOp = GEPI->getOperand(0);
6844 // Check that GEPIOp is an instruction that's also defined in SrcBlock.
6845 if (!isa<Instruction>(GEPIOp))
6846 return false;
6847 auto *GEPIOpI = cast<Instruction>(GEPIOp);
6848 if (GEPIOpI->getParent() != SrcBlock)
6849 return false;
6850 // Check that GEP is used outside the block, meaning it's alive on the
6851 // IndirectBr edge(s).
6852 if (find_if(GEPI->users(), [&](User *Usr) {
6853 if (auto *I = dyn_cast<Instruction>(Usr)) {
6854 if (I->getParent() != SrcBlock) {
6855 return true;
6858 return false;
6859 }) == GEPI->users().end())
6860 return false;
6861 // The second elements of the GEP chains to be unmerged.
6862 std::vector<GetElementPtrInst *> UGEPIs;
6863 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive
6864 // on IndirectBr edges.
6865 for (User *Usr : GEPIOp->users()) {
6866 if (Usr == GEPI) continue;
6867 // Check if Usr is an Instruction. If not, give up.
6868 if (!isa<Instruction>(Usr))
6869 return false;
6870 auto *UI = cast<Instruction>(Usr);
6871 // Check if Usr in the same block as GEPIOp, which is fine, skip.
6872 if (UI->getParent() == SrcBlock)
6873 continue;
6874 // Check if Usr is a GEP. If not, give up.
6875 if (!isa<GetElementPtrInst>(Usr))
6876 return false;
6877 auto *UGEPI = cast<GetElementPtrInst>(Usr);
6878 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is
6879 // the pointer operand to it. If so, record it in the vector. If not, give
6880 // up.
6881 if (!GEPSequentialConstIndexed(UGEPI))
6882 return false;
6883 if (UGEPI->getOperand(0) != GEPIOp)
6884 return false;
6885 if (GEPIIdx->getType() !=
6886 cast<ConstantInt>(UGEPI->getOperand(1))->getType())
6887 return false;
6888 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
6889 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType())
6890 > TargetTransformInfo::TCC_Basic)
6891 return false;
6892 UGEPIs.push_back(UGEPI);
6894 if (UGEPIs.size() == 0)
6895 return false;
6896 // Check the materializing cost of (Uidx-Idx).
6897 for (GetElementPtrInst *UGEPI : UGEPIs) {
6898 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
6899 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue();
6900 unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType());
6901 if (ImmCost > TargetTransformInfo::TCC_Basic)
6902 return false;
6904 // Now unmerge between GEPI and UGEPIs.
6905 for (GetElementPtrInst *UGEPI : UGEPIs) {
6906 UGEPI->setOperand(0, GEPI);
6907 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
6908 Constant *NewUGEPIIdx =
6909 ConstantInt::get(GEPIIdx->getType(),
6910 UGEPIIdx->getValue() - GEPIIdx->getValue());
6911 UGEPI->setOperand(1, NewUGEPIIdx);
6912 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not
6913 // inbounds to avoid UB.
6914 if (!GEPI->isInBounds()) {
6915 UGEPI->setIsInBounds(false);
6918 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not
6919 // alive on IndirectBr edges).
6920 assert(find_if(GEPIOp->users(), [&](User *Usr) {
6921 return cast<Instruction>(Usr)->getParent() != SrcBlock;
6922 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock");
6923 return true;
6926 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) {
6927 // Bail out if we inserted the instruction to prevent optimizations from
6928 // stepping on each other's toes.
6929 if (InsertedInsts.count(I))
6930 return false;
6932 // TODO: Move into the switch on opcode below here.
6933 if (PHINode *P = dyn_cast<PHINode>(I)) {
6934 // It is possible for very late stage optimizations (such as SimplifyCFG)
6935 // to introduce PHI nodes too late to be cleaned up. If we detect such a
6936 // trivial PHI, go ahead and zap it here.
6937 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) {
6938 LargeOffsetGEPMap.erase(P);
6939 P->replaceAllUsesWith(V);
6940 P->eraseFromParent();
6941 ++NumPHIsElim;
6942 return true;
6944 return false;
6947 if (CastInst *CI = dyn_cast<CastInst>(I)) {
6948 // If the source of the cast is a constant, then this should have
6949 // already been constant folded. The only reason NOT to constant fold
6950 // it is if something (e.g. LSR) was careful to place the constant
6951 // evaluation in a block other than then one that uses it (e.g. to hoist
6952 // the address of globals out of a loop). If this is the case, we don't
6953 // want to forward-subst the cast.
6954 if (isa<Constant>(CI->getOperand(0)))
6955 return false;
6957 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL))
6958 return true;
6960 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
6961 /// Sink a zext or sext into its user blocks if the target type doesn't
6962 /// fit in one register
6963 if (TLI &&
6964 TLI->getTypeAction(CI->getContext(),
6965 TLI->getValueType(*DL, CI->getType())) ==
6966 TargetLowering::TypeExpandInteger) {
6967 return SinkCast(CI);
6968 } else {
6969 bool MadeChange = optimizeExt(I);
6970 return MadeChange | optimizeExtUses(I);
6973 return false;
6976 if (auto *Cmp = dyn_cast<CmpInst>(I))
6977 if (TLI && optimizeCmp(Cmp, ModifiedDT))
6978 return true;
6980 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
6981 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
6982 if (TLI) {
6983 bool Modified = optimizeLoadExt(LI);
6984 unsigned AS = LI->getPointerAddressSpace();
6985 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS);
6986 return Modified;
6988 return false;
6991 if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
6992 if (TLI && splitMergedValStore(*SI, *DL, *TLI))
6993 return true;
6994 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
6995 if (TLI) {
6996 unsigned AS = SI->getPointerAddressSpace();
6997 return optimizeMemoryInst(I, SI->getOperand(1),
6998 SI->getOperand(0)->getType(), AS);
7000 return false;
7003 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
7004 unsigned AS = RMW->getPointerAddressSpace();
7005 return optimizeMemoryInst(I, RMW->getPointerOperand(),
7006 RMW->getType(), AS);
7009 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) {
7010 unsigned AS = CmpX->getPointerAddressSpace();
7011 return optimizeMemoryInst(I, CmpX->getPointerOperand(),
7012 CmpX->getCompareOperand()->getType(), AS);
7015 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I);
7017 if (BinOp && (BinOp->getOpcode() == Instruction::And) &&
7018 EnableAndCmpSinking && TLI)
7019 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts);
7021 // TODO: Move this into the switch on opcode - it handles shifts already.
7022 if (BinOp && (BinOp->getOpcode() == Instruction::AShr ||
7023 BinOp->getOpcode() == Instruction::LShr)) {
7024 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1));
7025 if (TLI && CI && TLI->hasExtractBitsInsn())
7026 if (OptimizeExtractBits(BinOp, CI, *TLI, *DL))
7027 return true;
7030 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
7031 if (GEPI->hasAllZeroIndices()) {
7032 /// The GEP operand must be a pointer, so must its result -> BitCast
7033 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
7034 GEPI->getName(), GEPI);
7035 NC->setDebugLoc(GEPI->getDebugLoc());
7036 GEPI->replaceAllUsesWith(NC);
7037 GEPI->eraseFromParent();
7038 ++NumGEPsElim;
7039 optimizeInst(NC, ModifiedDT);
7040 return true;
7042 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) {
7043 return true;
7045 return false;
7048 if (tryToSinkFreeOperands(I))
7049 return true;
7051 switch (I->getOpcode()) {
7052 case Instruction::Shl:
7053 case Instruction::LShr:
7054 case Instruction::AShr:
7055 return optimizeShiftInst(cast<BinaryOperator>(I));
7056 case Instruction::Call:
7057 return optimizeCallInst(cast<CallInst>(I), ModifiedDT);
7058 case Instruction::Select:
7059 return optimizeSelectInst(cast<SelectInst>(I));
7060 case Instruction::ShuffleVector:
7061 return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I));
7062 case Instruction::Switch:
7063 return optimizeSwitchInst(cast<SwitchInst>(I));
7064 case Instruction::ExtractElement:
7065 return optimizeExtractElementInst(cast<ExtractElementInst>(I));
7068 return false;
7071 /// Given an OR instruction, check to see if this is a bitreverse
7072 /// idiom. If so, insert the new intrinsic and return true.
7073 static bool makeBitReverse(Instruction &I, const DataLayout &DL,
7074 const TargetLowering &TLI) {
7075 if (!I.getType()->isIntegerTy() ||
7076 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE,
7077 TLI.getValueType(DL, I.getType(), true)))
7078 return false;
7080 SmallVector<Instruction*, 4> Insts;
7081 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts))
7082 return false;
7083 Instruction *LastInst = Insts.back();
7084 I.replaceAllUsesWith(LastInst);
7085 RecursivelyDeleteTriviallyDeadInstructions(&I);
7086 return true;
7089 // In this pass we look for GEP and cast instructions that are used
7090 // across basic blocks and rewrite them to improve basic-block-at-a-time
7091 // selection.
7092 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) {
7093 SunkAddrs.clear();
7094 bool MadeChange = false;
7096 CurInstIterator = BB.begin();
7097 while (CurInstIterator != BB.end()) {
7098 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT);
7099 if (ModifiedDT)
7100 return true;
7103 bool MadeBitReverse = true;
7104 while (TLI && MadeBitReverse) {
7105 MadeBitReverse = false;
7106 for (auto &I : reverse(BB)) {
7107 if (makeBitReverse(I, *DL, *TLI)) {
7108 MadeBitReverse = MadeChange = true;
7109 ModifiedDT = true;
7110 break;
7114 MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT);
7116 return MadeChange;
7119 // llvm.dbg.value is far away from the value then iSel may not be able
7120 // handle it properly. iSel will drop llvm.dbg.value if it can not
7121 // find a node corresponding to the value.
7122 bool CodeGenPrepare::placeDbgValues(Function &F) {
7123 bool MadeChange = false;
7124 for (BasicBlock &BB : F) {
7125 Instruction *PrevNonDbgInst = nullptr;
7126 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
7127 Instruction *Insn = &*BI++;
7128 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn);
7129 // Leave dbg.values that refer to an alloca alone. These
7130 // intrinsics describe the address of a variable (= the alloca)
7131 // being taken. They should not be moved next to the alloca
7132 // (and to the beginning of the scope), but rather stay close to
7133 // where said address is used.
7134 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) {
7135 PrevNonDbgInst = Insn;
7136 continue;
7139 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue());
7140 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) {
7141 // If VI is a phi in a block with an EHPad terminator, we can't insert
7142 // after it.
7143 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad())
7144 continue;
7145 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n"
7146 << *DVI << ' ' << *VI);
7147 DVI->removeFromParent();
7148 if (isa<PHINode>(VI))
7149 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt());
7150 else
7151 DVI->insertAfter(VI);
7152 MadeChange = true;
7153 ++NumDbgValueMoved;
7157 return MadeChange;
7160 /// Scale down both weights to fit into uint32_t.
7161 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
7162 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
7163 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1;
7164 NewTrue = NewTrue / Scale;
7165 NewFalse = NewFalse / Scale;
7168 /// Some targets prefer to split a conditional branch like:
7169 /// \code
7170 /// %0 = icmp ne i32 %a, 0
7171 /// %1 = icmp ne i32 %b, 0
7172 /// %or.cond = or i1 %0, %1
7173 /// br i1 %or.cond, label %TrueBB, label %FalseBB
7174 /// \endcode
7175 /// into multiple branch instructions like:
7176 /// \code
7177 /// bb1:
7178 /// %0 = icmp ne i32 %a, 0
7179 /// br i1 %0, label %TrueBB, label %bb2
7180 /// bb2:
7181 /// %1 = icmp ne i32 %b, 0
7182 /// br i1 %1, label %TrueBB, label %FalseBB
7183 /// \endcode
7184 /// This usually allows instruction selection to do even further optimizations
7185 /// and combine the compare with the branch instruction. Currently this is
7186 /// applied for targets which have "cheap" jump instructions.
7188 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG.
7190 bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) {
7191 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive())
7192 return false;
7194 bool MadeChange = false;
7195 for (auto &BB : F) {
7196 // Does this BB end with the following?
7197 // %cond1 = icmp|fcmp|binary instruction ...
7198 // %cond2 = icmp|fcmp|binary instruction ...
7199 // %cond.or = or|and i1 %cond1, cond2
7200 // br i1 %cond.or label %dest1, label %dest2"
7201 BinaryOperator *LogicOp;
7202 BasicBlock *TBB, *FBB;
7203 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB)))
7204 continue;
7206 auto *Br1 = cast<BranchInst>(BB.getTerminator());
7207 if (Br1->getMetadata(LLVMContext::MD_unpredictable))
7208 continue;
7210 unsigned Opc;
7211 Value *Cond1, *Cond2;
7212 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)),
7213 m_OneUse(m_Value(Cond2)))))
7214 Opc = Instruction::And;
7215 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)),
7216 m_OneUse(m_Value(Cond2)))))
7217 Opc = Instruction::Or;
7218 else
7219 continue;
7221 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) ||
7222 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) )
7223 continue;
7225 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump());
7227 // Create a new BB.
7228 auto TmpBB =
7229 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split",
7230 BB.getParent(), BB.getNextNode());
7232 // Update original basic block by using the first condition directly by the
7233 // branch instruction and removing the no longer needed and/or instruction.
7234 Br1->setCondition(Cond1);
7235 LogicOp->eraseFromParent();
7237 // Depending on the condition we have to either replace the true or the
7238 // false successor of the original branch instruction.
7239 if (Opc == Instruction::And)
7240 Br1->setSuccessor(0, TmpBB);
7241 else
7242 Br1->setSuccessor(1, TmpBB);
7244 // Fill in the new basic block.
7245 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB);
7246 if (auto *I = dyn_cast<Instruction>(Cond2)) {
7247 I->removeFromParent();
7248 I->insertBefore(Br2);
7251 // Update PHI nodes in both successors. The original BB needs to be
7252 // replaced in one successor's PHI nodes, because the branch comes now from
7253 // the newly generated BB (NewBB). In the other successor we need to add one
7254 // incoming edge to the PHI nodes, because both branch instructions target
7255 // now the same successor. Depending on the original branch condition
7256 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that
7257 // we perform the correct update for the PHI nodes.
7258 // This doesn't change the successor order of the just created branch
7259 // instruction (or any other instruction).
7260 if (Opc == Instruction::Or)
7261 std::swap(TBB, FBB);
7263 // Replace the old BB with the new BB.
7264 TBB->replacePhiUsesWith(&BB, TmpBB);
7266 // Add another incoming edge form the new BB.
7267 for (PHINode &PN : FBB->phis()) {
7268 auto *Val = PN.getIncomingValueForBlock(&BB);
7269 PN.addIncoming(Val, TmpBB);
7272 // Update the branch weights (from SelectionDAGBuilder::
7273 // FindMergedConditions).
7274 if (Opc == Instruction::Or) {
7275 // Codegen X | Y as:
7276 // BB1:
7277 // jmp_if_X TBB
7278 // jmp TmpBB
7279 // TmpBB:
7280 // jmp_if_Y TBB
7281 // jmp FBB
7284 // We have flexibility in setting Prob for BB1 and Prob for NewBB.
7285 // The requirement is that
7286 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
7287 // = TrueProb for original BB.
7288 // Assuming the original weights are A and B, one choice is to set BB1's
7289 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
7290 // assumes that
7291 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
7292 // Another choice is to assume TrueProb for BB1 equals to TrueProb for
7293 // TmpBB, but the math is more complicated.
7294 uint64_t TrueWeight, FalseWeight;
7295 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
7296 uint64_t NewTrueWeight = TrueWeight;
7297 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight;
7298 scaleWeights(NewTrueWeight, NewFalseWeight);
7299 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
7300 .createBranchWeights(TrueWeight, FalseWeight));
7302 NewTrueWeight = TrueWeight;
7303 NewFalseWeight = 2 * FalseWeight;
7304 scaleWeights(NewTrueWeight, NewFalseWeight);
7305 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
7306 .createBranchWeights(TrueWeight, FalseWeight));
7308 } else {
7309 // Codegen X & Y as:
7310 // BB1:
7311 // jmp_if_X TmpBB
7312 // jmp FBB
7313 // TmpBB:
7314 // jmp_if_Y TBB
7315 // jmp FBB
7317 // This requires creation of TmpBB after CurBB.
7319 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
7320 // The requirement is that
7321 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
7322 // = FalseProb for original BB.
7323 // Assuming the original weights are A and B, one choice is to set BB1's
7324 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
7325 // assumes that
7326 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
7327 uint64_t TrueWeight, FalseWeight;
7328 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
7329 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight;
7330 uint64_t NewFalseWeight = FalseWeight;
7331 scaleWeights(NewTrueWeight, NewFalseWeight);
7332 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
7333 .createBranchWeights(TrueWeight, FalseWeight));
7335 NewTrueWeight = 2 * TrueWeight;
7336 NewFalseWeight = FalseWeight;
7337 scaleWeights(NewTrueWeight, NewFalseWeight);
7338 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
7339 .createBranchWeights(TrueWeight, FalseWeight));
7343 ModifiedDT = true;
7344 MadeChange = true;
7346 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump();
7347 TmpBB->dump());
7349 return MadeChange;