1 //===- InterleavedAccessPass.cpp ------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the Interleaved Access pass, which identifies
10 // interleaved memory accesses and transforms them into target specific
13 // An interleaved load reads data from memory into several vectors, with
14 // DE-interleaving the data on a factor. An interleaved store writes several
15 // vectors to memory with RE-interleaving the data on a factor.
17 // As interleaved accesses are difficult to identified in CodeGen (mainly
18 // because the VECTOR_SHUFFLE DAG node is quite different from the shufflevector
19 // IR), we identify and transform them to intrinsics in this pass so the
20 // intrinsics can be easily matched into target specific instructions later in
23 // E.g. An interleaved load (Factor = 2):
24 // %wide.vec = load <8 x i32>, <8 x i32>* %ptr
25 // %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <0, 2, 4, 6>
26 // %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <1, 3, 5, 7>
28 // It could be transformed into a ld2 intrinsic in AArch64 backend or a vld2
29 // intrinsic in ARM backend.
31 // In X86, this can be further optimized into a set of target
32 // specific loads followed by an optimized sequence of shuffles.
34 // E.g. An interleaved store (Factor = 3):
35 // %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
36 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
37 // store <12 x i32> %i.vec, <12 x i32>* %ptr
39 // It could be transformed into a st3 intrinsic in AArch64 backend or a vst3
40 // intrinsic in ARM backend.
42 // Similarly, a set of interleaved stores can be transformed into an optimized
43 // sequence of shuffles followed by a set of target specific stores for X86.
45 //===----------------------------------------------------------------------===//
47 #include "llvm/ADT/ArrayRef.h"
48 #include "llvm/ADT/DenseMap.h"
49 #include "llvm/ADT/SmallVector.h"
50 #include "llvm/CodeGen/TargetLowering.h"
51 #include "llvm/CodeGen/TargetPassConfig.h"
52 #include "llvm/CodeGen/TargetSubtargetInfo.h"
53 #include "llvm/IR/Constants.h"
54 #include "llvm/IR/Dominators.h"
55 #include "llvm/IR/Function.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/InstIterator.h"
58 #include "llvm/IR/Instruction.h"
59 #include "llvm/IR/Instructions.h"
60 #include "llvm/IR/Type.h"
61 #include "llvm/Pass.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/MathExtras.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Target/TargetMachine.h"
73 #define DEBUG_TYPE "interleaved-access"
75 static cl::opt
<bool> LowerInterleavedAccesses(
76 "lower-interleaved-accesses",
77 cl::desc("Enable lowering interleaved accesses to intrinsics"),
78 cl::init(true), cl::Hidden
);
82 class InterleavedAccess
: public FunctionPass
{
86 InterleavedAccess() : FunctionPass(ID
) {
87 initializeInterleavedAccessPass(*PassRegistry::getPassRegistry());
90 StringRef
getPassName() const override
{ return "Interleaved Access Pass"; }
92 bool runOnFunction(Function
&F
) override
;
94 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
95 AU
.addRequired
<DominatorTreeWrapperPass
>();
96 AU
.addPreserved
<DominatorTreeWrapperPass
>();
100 DominatorTree
*DT
= nullptr;
101 const TargetLowering
*TLI
= nullptr;
103 /// The maximum supported interleave factor.
106 /// Transform an interleaved load into target specific intrinsics.
107 bool lowerInterleavedLoad(LoadInst
*LI
,
108 SmallVector
<Instruction
*, 32> &DeadInsts
);
110 /// Transform an interleaved store into target specific intrinsics.
111 bool lowerInterleavedStore(StoreInst
*SI
,
112 SmallVector
<Instruction
*, 32> &DeadInsts
);
114 /// Returns true if the uses of an interleaved load by the
115 /// extractelement instructions in \p Extracts can be replaced by uses of the
116 /// shufflevector instructions in \p Shuffles instead. If so, the necessary
117 /// replacements are also performed.
118 bool tryReplaceExtracts(ArrayRef
<ExtractElementInst
*> Extracts
,
119 ArrayRef
<ShuffleVectorInst
*> Shuffles
);
122 } // end anonymous namespace.
124 char InterleavedAccess::ID
= 0;
126 INITIALIZE_PASS_BEGIN(InterleavedAccess
, DEBUG_TYPE
,
127 "Lower interleaved memory accesses to target specific intrinsics", false,
129 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
130 INITIALIZE_PASS_END(InterleavedAccess
, DEBUG_TYPE
,
131 "Lower interleaved memory accesses to target specific intrinsics", false,
134 FunctionPass
*llvm::createInterleavedAccessPass() {
135 return new InterleavedAccess();
138 /// Check if the mask is a DE-interleave mask of the given factor
140 /// <Index, Index+Factor, ..., Index+(NumElts-1)*Factor>
141 static bool isDeInterleaveMaskOfFactor(ArrayRef
<int> Mask
, unsigned Factor
,
143 // Check all potential start indices from 0 to (Factor - 1).
144 for (Index
= 0; Index
< Factor
; Index
++) {
147 // Check that elements are in ascending order by Factor. Ignore undef
149 for (; i
< Mask
.size(); i
++)
150 if (Mask
[i
] >= 0 && static_cast<unsigned>(Mask
[i
]) != Index
+ i
* Factor
)
153 if (i
== Mask
.size())
160 /// Check if the mask is a DE-interleave mask for an interleaved load.
162 /// E.g. DE-interleave masks (Factor = 2) could be:
163 /// <0, 2, 4, 6> (mask of index 0 to extract even elements)
164 /// <1, 3, 5, 7> (mask of index 1 to extract odd elements)
165 static bool isDeInterleaveMask(ArrayRef
<int> Mask
, unsigned &Factor
,
166 unsigned &Index
, unsigned MaxFactor
,
167 unsigned NumLoadElements
) {
171 // Check potential Factors.
172 for (Factor
= 2; Factor
<= MaxFactor
; Factor
++) {
173 // Make sure we don't produce a load wider than the input load.
174 if (Mask
.size() * Factor
> NumLoadElements
)
176 if (isDeInterleaveMaskOfFactor(Mask
, Factor
, Index
))
183 /// Check if the mask can be used in an interleaved store.
185 /// It checks for a more general pattern than the RE-interleave mask.
186 /// I.e. <x, y, ... z, x+1, y+1, ...z+1, x+2, y+2, ...z+2, ...>
187 /// E.g. For a Factor of 2 (LaneLen=4): <4, 32, 5, 33, 6, 34, 7, 35>
188 /// E.g. For a Factor of 3 (LaneLen=4): <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
189 /// E.g. For a Factor of 4 (LaneLen=2): <8, 2, 12, 4, 9, 3, 13, 5>
191 /// The particular case of an RE-interleave mask is:
192 /// I.e. <0, LaneLen, ... , LaneLen*(Factor - 1), 1, LaneLen + 1, ...>
193 /// E.g. For a Factor of 2 (LaneLen=4): <0, 4, 1, 5, 2, 6, 3, 7>
194 static bool isReInterleaveMask(ArrayRef
<int> Mask
, unsigned &Factor
,
195 unsigned MaxFactor
, unsigned OpNumElts
) {
196 unsigned NumElts
= Mask
.size();
200 // Check potential Factors.
201 for (Factor
= 2; Factor
<= MaxFactor
; Factor
++) {
202 if (NumElts
% Factor
)
205 unsigned LaneLen
= NumElts
/ Factor
;
206 if (!isPowerOf2_32(LaneLen
))
209 // Check whether each element matches the general interleaved rule.
210 // Ignore undef elements, as long as the defined elements match the rule.
211 // Outer loop processes all factors (x, y, z in the above example)
213 for (; I
< Factor
; I
++) {
214 unsigned SavedLaneValue
;
215 unsigned SavedNoUndefs
= 0;
217 // Inner loop processes consecutive accesses (x, x+1... in the example)
218 for (J
= 0; J
< LaneLen
- 1; J
++) {
219 // Lane computes x's position in the Mask
220 unsigned Lane
= J
* Factor
+ I
;
221 unsigned NextLane
= Lane
+ Factor
;
222 int LaneValue
= Mask
[Lane
];
223 int NextLaneValue
= Mask
[NextLane
];
225 // If both are defined, values must be sequential
226 if (LaneValue
>= 0 && NextLaneValue
>= 0 &&
227 LaneValue
+ 1 != NextLaneValue
)
230 // If the next value is undef, save the current one as reference
231 if (LaneValue
>= 0 && NextLaneValue
< 0) {
232 SavedLaneValue
= LaneValue
;
236 // Undefs are allowed, but defined elements must still be consecutive:
237 // i.e.: x,..., undef,..., x + 2,..., undef,..., undef,..., x + 5, ....
238 // Verify this by storing the last non-undef followed by an undef
239 // Check that following non-undef masks are incremented with the
240 // corresponding distance.
241 if (SavedNoUndefs
> 0 && LaneValue
< 0) {
243 if (NextLaneValue
>= 0 &&
244 SavedLaneValue
+ SavedNoUndefs
!= (unsigned)NextLaneValue
)
254 // Check that the start of the I range (J=0) is greater than 0
256 } else if (Mask
[(LaneLen
- 1) * Factor
+ I
] >= 0) {
257 // StartMask defined by the last value in lane
258 StartMask
= Mask
[(LaneLen
- 1) * Factor
+ I
] - J
;
259 } else if (SavedNoUndefs
> 0) {
260 // StartMask defined by some non-zero value in the j loop
261 StartMask
= SavedLaneValue
- (LaneLen
- 1 - SavedNoUndefs
);
263 // else StartMask remains set to 0, i.e. all elements are undefs
267 // We must stay within the vectors; This case can happen with undefs.
268 if (StartMask
+ LaneLen
> OpNumElts
*2)
272 // Found an interleaved mask of current factor.
280 bool InterleavedAccess::lowerInterleavedLoad(
281 LoadInst
*LI
, SmallVector
<Instruction
*, 32> &DeadInsts
) {
285 SmallVector
<ShuffleVectorInst
*, 4> Shuffles
;
286 SmallVector
<ExtractElementInst
*, 4> Extracts
;
288 // Check if all users of this load are shufflevectors. If we encounter any
289 // users that are extractelement instructions, we save them to later check if
290 // they can be modifed to extract from one of the shufflevectors instead of
292 for (auto UI
= LI
->user_begin(), E
= LI
->user_end(); UI
!= E
; UI
++) {
293 auto *Extract
= dyn_cast
<ExtractElementInst
>(*UI
);
294 if (Extract
&& isa
<ConstantInt
>(Extract
->getIndexOperand())) {
295 Extracts
.push_back(Extract
);
298 ShuffleVectorInst
*SVI
= dyn_cast
<ShuffleVectorInst
>(*UI
);
299 if (!SVI
|| !isa
<UndefValue
>(SVI
->getOperand(1)))
302 Shuffles
.push_back(SVI
);
305 if (Shuffles
.empty())
308 unsigned Factor
, Index
;
310 unsigned NumLoadElements
= LI
->getType()->getVectorNumElements();
311 // Check if the first shufflevector is DE-interleave shuffle.
312 if (!isDeInterleaveMask(Shuffles
[0]->getShuffleMask(), Factor
, Index
,
313 MaxFactor
, NumLoadElements
))
316 // Holds the corresponding index for each DE-interleave shuffle.
317 SmallVector
<unsigned, 4> Indices
;
318 Indices
.push_back(Index
);
320 Type
*VecTy
= Shuffles
[0]->getType();
322 // Check if other shufflevectors are also DE-interleaved of the same type
323 // and factor as the first shufflevector.
324 for (unsigned i
= 1; i
< Shuffles
.size(); i
++) {
325 if (Shuffles
[i
]->getType() != VecTy
)
328 if (!isDeInterleaveMaskOfFactor(Shuffles
[i
]->getShuffleMask(), Factor
,
332 Indices
.push_back(Index
);
335 // Try and modify users of the load that are extractelement instructions to
336 // use the shufflevector instructions instead of the load.
337 if (!tryReplaceExtracts(Extracts
, Shuffles
))
340 LLVM_DEBUG(dbgs() << "IA: Found an interleaved load: " << *LI
<< "\n");
342 // Try to create target specific intrinsics to replace the load and shuffles.
343 if (!TLI
->lowerInterleavedLoad(LI
, Shuffles
, Indices
, Factor
))
346 for (auto SVI
: Shuffles
)
347 DeadInsts
.push_back(SVI
);
349 DeadInsts
.push_back(LI
);
353 bool InterleavedAccess::tryReplaceExtracts(
354 ArrayRef
<ExtractElementInst
*> Extracts
,
355 ArrayRef
<ShuffleVectorInst
*> Shuffles
) {
356 // If there aren't any extractelement instructions to modify, there's nothing
358 if (Extracts
.empty())
361 // Maps extractelement instructions to vector-index pairs. The extractlement
362 // instructions will be modified to use the new vector and index operands.
363 DenseMap
<ExtractElementInst
*, std::pair
<Value
*, int>> ReplacementMap
;
365 for (auto *Extract
: Extracts
) {
366 // The vector index that is extracted.
367 auto *IndexOperand
= cast
<ConstantInt
>(Extract
->getIndexOperand());
368 auto Index
= IndexOperand
->getSExtValue();
370 // Look for a suitable shufflevector instruction. The goal is to modify the
371 // extractelement instruction (which uses an interleaved load) to use one
372 // of the shufflevector instructions instead of the load.
373 for (auto *Shuffle
: Shuffles
) {
374 // If the shufflevector instruction doesn't dominate the extract, we
375 // can't create a use of it.
376 if (!DT
->dominates(Shuffle
, Extract
))
379 // Inspect the indices of the shufflevector instruction. If the shuffle
380 // selects the same index that is extracted, we can modify the
381 // extractelement instruction.
382 SmallVector
<int, 4> Indices
;
383 Shuffle
->getShuffleMask(Indices
);
384 for (unsigned I
= 0; I
< Indices
.size(); ++I
)
385 if (Indices
[I
] == Index
) {
386 assert(Extract
->getOperand(0) == Shuffle
->getOperand(0) &&
387 "Vector operations do not match");
388 ReplacementMap
[Extract
] = std::make_pair(Shuffle
, I
);
392 // If we found a suitable shufflevector instruction, stop looking.
393 if (ReplacementMap
.count(Extract
))
397 // If we did not find a suitable shufflevector instruction, the
398 // extractelement instruction cannot be modified, so we must give up.
399 if (!ReplacementMap
.count(Extract
))
403 // Finally, perform the replacements.
404 IRBuilder
<> Builder(Extracts
[0]->getContext());
405 for (auto &Replacement
: ReplacementMap
) {
406 auto *Extract
= Replacement
.first
;
407 auto *Vector
= Replacement
.second
.first
;
408 auto Index
= Replacement
.second
.second
;
409 Builder
.SetInsertPoint(Extract
);
410 Extract
->replaceAllUsesWith(Builder
.CreateExtractElement(Vector
, Index
));
411 Extract
->eraseFromParent();
417 bool InterleavedAccess::lowerInterleavedStore(
418 StoreInst
*SI
, SmallVector
<Instruction
*, 32> &DeadInsts
) {
422 ShuffleVectorInst
*SVI
= dyn_cast
<ShuffleVectorInst
>(SI
->getValueOperand());
423 if (!SVI
|| !SVI
->hasOneUse())
426 // Check if the shufflevector is RE-interleave shuffle.
428 unsigned OpNumElts
= SVI
->getOperand(0)->getType()->getVectorNumElements();
429 if (!isReInterleaveMask(SVI
->getShuffleMask(), Factor
, MaxFactor
, OpNumElts
))
432 LLVM_DEBUG(dbgs() << "IA: Found an interleaved store: " << *SI
<< "\n");
434 // Try to create target specific intrinsics to replace the store and shuffle.
435 if (!TLI
->lowerInterleavedStore(SI
, SVI
, Factor
))
438 // Already have a new target specific interleaved store. Erase the old store.
439 DeadInsts
.push_back(SI
);
440 DeadInsts
.push_back(SVI
);
444 bool InterleavedAccess::runOnFunction(Function
&F
) {
445 auto *TPC
= getAnalysisIfAvailable
<TargetPassConfig
>();
446 if (!TPC
|| !LowerInterleavedAccesses
)
449 LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F
.getName() << "\n");
451 DT
= &getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
452 auto &TM
= TPC
->getTM
<TargetMachine
>();
453 TLI
= TM
.getSubtargetImpl(F
)->getTargetLowering();
454 MaxFactor
= TLI
->getMaxSupportedInterleaveFactor();
456 // Holds dead instructions that will be erased later.
457 SmallVector
<Instruction
*, 32> DeadInsts
;
458 bool Changed
= false;
460 for (auto &I
: instructions(F
)) {
461 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(&I
))
462 Changed
|= lowerInterleavedLoad(LI
, DeadInsts
);
464 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(&I
))
465 Changed
|= lowerInterleavedStore(SI
, DeadInsts
);
468 for (auto I
: DeadInsts
)
469 I
->eraseFromParent();