[llvm-objcopy] - Reimplement strip-dwo-groups.test to stop using the precompiled...
[llvm-complete.git] / lib / CodeGen / InterleavedAccessPass.cpp
blob14bc560a561c2646c5d20901d032386a5ad9150c
1 //===- InterleavedAccessPass.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Interleaved Access pass, which identifies
10 // interleaved memory accesses and transforms them into target specific
11 // intrinsics.
13 // An interleaved load reads data from memory into several vectors, with
14 // DE-interleaving the data on a factor. An interleaved store writes several
15 // vectors to memory with RE-interleaving the data on a factor.
17 // As interleaved accesses are difficult to identified in CodeGen (mainly
18 // because the VECTOR_SHUFFLE DAG node is quite different from the shufflevector
19 // IR), we identify and transform them to intrinsics in this pass so the
20 // intrinsics can be easily matched into target specific instructions later in
21 // CodeGen.
23 // E.g. An interleaved load (Factor = 2):
24 // %wide.vec = load <8 x i32>, <8 x i32>* %ptr
25 // %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <0, 2, 4, 6>
26 // %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <1, 3, 5, 7>
28 // It could be transformed into a ld2 intrinsic in AArch64 backend or a vld2
29 // intrinsic in ARM backend.
31 // In X86, this can be further optimized into a set of target
32 // specific loads followed by an optimized sequence of shuffles.
34 // E.g. An interleaved store (Factor = 3):
35 // %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
36 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
37 // store <12 x i32> %i.vec, <12 x i32>* %ptr
39 // It could be transformed into a st3 intrinsic in AArch64 backend or a vst3
40 // intrinsic in ARM backend.
42 // Similarly, a set of interleaved stores can be transformed into an optimized
43 // sequence of shuffles followed by a set of target specific stores for X86.
45 //===----------------------------------------------------------------------===//
47 #include "llvm/ADT/ArrayRef.h"
48 #include "llvm/ADT/DenseMap.h"
49 #include "llvm/ADT/SmallVector.h"
50 #include "llvm/CodeGen/TargetLowering.h"
51 #include "llvm/CodeGen/TargetPassConfig.h"
52 #include "llvm/CodeGen/TargetSubtargetInfo.h"
53 #include "llvm/IR/Constants.h"
54 #include "llvm/IR/Dominators.h"
55 #include "llvm/IR/Function.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/InstIterator.h"
58 #include "llvm/IR/Instruction.h"
59 #include "llvm/IR/Instructions.h"
60 #include "llvm/IR/Type.h"
61 #include "llvm/Pass.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/MathExtras.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Target/TargetMachine.h"
68 #include <cassert>
69 #include <utility>
71 using namespace llvm;
73 #define DEBUG_TYPE "interleaved-access"
75 static cl::opt<bool> LowerInterleavedAccesses(
76 "lower-interleaved-accesses",
77 cl::desc("Enable lowering interleaved accesses to intrinsics"),
78 cl::init(true), cl::Hidden);
80 namespace {
82 class InterleavedAccess : public FunctionPass {
83 public:
84 static char ID;
86 InterleavedAccess() : FunctionPass(ID) {
87 initializeInterleavedAccessPass(*PassRegistry::getPassRegistry());
90 StringRef getPassName() const override { return "Interleaved Access Pass"; }
92 bool runOnFunction(Function &F) override;
94 void getAnalysisUsage(AnalysisUsage &AU) const override {
95 AU.addRequired<DominatorTreeWrapperPass>();
96 AU.addPreserved<DominatorTreeWrapperPass>();
99 private:
100 DominatorTree *DT = nullptr;
101 const TargetLowering *TLI = nullptr;
103 /// The maximum supported interleave factor.
104 unsigned MaxFactor;
106 /// Transform an interleaved load into target specific intrinsics.
107 bool lowerInterleavedLoad(LoadInst *LI,
108 SmallVector<Instruction *, 32> &DeadInsts);
110 /// Transform an interleaved store into target specific intrinsics.
111 bool lowerInterleavedStore(StoreInst *SI,
112 SmallVector<Instruction *, 32> &DeadInsts);
114 /// Returns true if the uses of an interleaved load by the
115 /// extractelement instructions in \p Extracts can be replaced by uses of the
116 /// shufflevector instructions in \p Shuffles instead. If so, the necessary
117 /// replacements are also performed.
118 bool tryReplaceExtracts(ArrayRef<ExtractElementInst *> Extracts,
119 ArrayRef<ShuffleVectorInst *> Shuffles);
122 } // end anonymous namespace.
124 char InterleavedAccess::ID = 0;
126 INITIALIZE_PASS_BEGIN(InterleavedAccess, DEBUG_TYPE,
127 "Lower interleaved memory accesses to target specific intrinsics", false,
128 false)
129 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
130 INITIALIZE_PASS_END(InterleavedAccess, DEBUG_TYPE,
131 "Lower interleaved memory accesses to target specific intrinsics", false,
132 false)
134 FunctionPass *llvm::createInterleavedAccessPass() {
135 return new InterleavedAccess();
138 /// Check if the mask is a DE-interleave mask of the given factor
139 /// \p Factor like:
140 /// <Index, Index+Factor, ..., Index+(NumElts-1)*Factor>
141 static bool isDeInterleaveMaskOfFactor(ArrayRef<int> Mask, unsigned Factor,
142 unsigned &Index) {
143 // Check all potential start indices from 0 to (Factor - 1).
144 for (Index = 0; Index < Factor; Index++) {
145 unsigned i = 0;
147 // Check that elements are in ascending order by Factor. Ignore undef
148 // elements.
149 for (; i < Mask.size(); i++)
150 if (Mask[i] >= 0 && static_cast<unsigned>(Mask[i]) != Index + i * Factor)
151 break;
153 if (i == Mask.size())
154 return true;
157 return false;
160 /// Check if the mask is a DE-interleave mask for an interleaved load.
162 /// E.g. DE-interleave masks (Factor = 2) could be:
163 /// <0, 2, 4, 6> (mask of index 0 to extract even elements)
164 /// <1, 3, 5, 7> (mask of index 1 to extract odd elements)
165 static bool isDeInterleaveMask(ArrayRef<int> Mask, unsigned &Factor,
166 unsigned &Index, unsigned MaxFactor,
167 unsigned NumLoadElements) {
168 if (Mask.size() < 2)
169 return false;
171 // Check potential Factors.
172 for (Factor = 2; Factor <= MaxFactor; Factor++) {
173 // Make sure we don't produce a load wider than the input load.
174 if (Mask.size() * Factor > NumLoadElements)
175 return false;
176 if (isDeInterleaveMaskOfFactor(Mask, Factor, Index))
177 return true;
180 return false;
183 /// Check if the mask can be used in an interleaved store.
185 /// It checks for a more general pattern than the RE-interleave mask.
186 /// I.e. <x, y, ... z, x+1, y+1, ...z+1, x+2, y+2, ...z+2, ...>
187 /// E.g. For a Factor of 2 (LaneLen=4): <4, 32, 5, 33, 6, 34, 7, 35>
188 /// E.g. For a Factor of 3 (LaneLen=4): <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
189 /// E.g. For a Factor of 4 (LaneLen=2): <8, 2, 12, 4, 9, 3, 13, 5>
191 /// The particular case of an RE-interleave mask is:
192 /// I.e. <0, LaneLen, ... , LaneLen*(Factor - 1), 1, LaneLen + 1, ...>
193 /// E.g. For a Factor of 2 (LaneLen=4): <0, 4, 1, 5, 2, 6, 3, 7>
194 static bool isReInterleaveMask(ArrayRef<int> Mask, unsigned &Factor,
195 unsigned MaxFactor, unsigned OpNumElts) {
196 unsigned NumElts = Mask.size();
197 if (NumElts < 4)
198 return false;
200 // Check potential Factors.
201 for (Factor = 2; Factor <= MaxFactor; Factor++) {
202 if (NumElts % Factor)
203 continue;
205 unsigned LaneLen = NumElts / Factor;
206 if (!isPowerOf2_32(LaneLen))
207 continue;
209 // Check whether each element matches the general interleaved rule.
210 // Ignore undef elements, as long as the defined elements match the rule.
211 // Outer loop processes all factors (x, y, z in the above example)
212 unsigned I = 0, J;
213 for (; I < Factor; I++) {
214 unsigned SavedLaneValue;
215 unsigned SavedNoUndefs = 0;
217 // Inner loop processes consecutive accesses (x, x+1... in the example)
218 for (J = 0; J < LaneLen - 1; J++) {
219 // Lane computes x's position in the Mask
220 unsigned Lane = J * Factor + I;
221 unsigned NextLane = Lane + Factor;
222 int LaneValue = Mask[Lane];
223 int NextLaneValue = Mask[NextLane];
225 // If both are defined, values must be sequential
226 if (LaneValue >= 0 && NextLaneValue >= 0 &&
227 LaneValue + 1 != NextLaneValue)
228 break;
230 // If the next value is undef, save the current one as reference
231 if (LaneValue >= 0 && NextLaneValue < 0) {
232 SavedLaneValue = LaneValue;
233 SavedNoUndefs = 1;
236 // Undefs are allowed, but defined elements must still be consecutive:
237 // i.e.: x,..., undef,..., x + 2,..., undef,..., undef,..., x + 5, ....
238 // Verify this by storing the last non-undef followed by an undef
239 // Check that following non-undef masks are incremented with the
240 // corresponding distance.
241 if (SavedNoUndefs > 0 && LaneValue < 0) {
242 SavedNoUndefs++;
243 if (NextLaneValue >= 0 &&
244 SavedLaneValue + SavedNoUndefs != (unsigned)NextLaneValue)
245 break;
249 if (J < LaneLen - 1)
250 break;
252 int StartMask = 0;
253 if (Mask[I] >= 0) {
254 // Check that the start of the I range (J=0) is greater than 0
255 StartMask = Mask[I];
256 } else if (Mask[(LaneLen - 1) * Factor + I] >= 0) {
257 // StartMask defined by the last value in lane
258 StartMask = Mask[(LaneLen - 1) * Factor + I] - J;
259 } else if (SavedNoUndefs > 0) {
260 // StartMask defined by some non-zero value in the j loop
261 StartMask = SavedLaneValue - (LaneLen - 1 - SavedNoUndefs);
263 // else StartMask remains set to 0, i.e. all elements are undefs
265 if (StartMask < 0)
266 break;
267 // We must stay within the vectors; This case can happen with undefs.
268 if (StartMask + LaneLen > OpNumElts*2)
269 break;
272 // Found an interleaved mask of current factor.
273 if (I == Factor)
274 return true;
277 return false;
280 bool InterleavedAccess::lowerInterleavedLoad(
281 LoadInst *LI, SmallVector<Instruction *, 32> &DeadInsts) {
282 if (!LI->isSimple())
283 return false;
285 SmallVector<ShuffleVectorInst *, 4> Shuffles;
286 SmallVector<ExtractElementInst *, 4> Extracts;
288 // Check if all users of this load are shufflevectors. If we encounter any
289 // users that are extractelement instructions, we save them to later check if
290 // they can be modifed to extract from one of the shufflevectors instead of
291 // the load.
292 for (auto UI = LI->user_begin(), E = LI->user_end(); UI != E; UI++) {
293 auto *Extract = dyn_cast<ExtractElementInst>(*UI);
294 if (Extract && isa<ConstantInt>(Extract->getIndexOperand())) {
295 Extracts.push_back(Extract);
296 continue;
298 ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(*UI);
299 if (!SVI || !isa<UndefValue>(SVI->getOperand(1)))
300 return false;
302 Shuffles.push_back(SVI);
305 if (Shuffles.empty())
306 return false;
308 unsigned Factor, Index;
310 unsigned NumLoadElements = LI->getType()->getVectorNumElements();
311 // Check if the first shufflevector is DE-interleave shuffle.
312 if (!isDeInterleaveMask(Shuffles[0]->getShuffleMask(), Factor, Index,
313 MaxFactor, NumLoadElements))
314 return false;
316 // Holds the corresponding index for each DE-interleave shuffle.
317 SmallVector<unsigned, 4> Indices;
318 Indices.push_back(Index);
320 Type *VecTy = Shuffles[0]->getType();
322 // Check if other shufflevectors are also DE-interleaved of the same type
323 // and factor as the first shufflevector.
324 for (unsigned i = 1; i < Shuffles.size(); i++) {
325 if (Shuffles[i]->getType() != VecTy)
326 return false;
328 if (!isDeInterleaveMaskOfFactor(Shuffles[i]->getShuffleMask(), Factor,
329 Index))
330 return false;
332 Indices.push_back(Index);
335 // Try and modify users of the load that are extractelement instructions to
336 // use the shufflevector instructions instead of the load.
337 if (!tryReplaceExtracts(Extracts, Shuffles))
338 return false;
340 LLVM_DEBUG(dbgs() << "IA: Found an interleaved load: " << *LI << "\n");
342 // Try to create target specific intrinsics to replace the load and shuffles.
343 if (!TLI->lowerInterleavedLoad(LI, Shuffles, Indices, Factor))
344 return false;
346 for (auto SVI : Shuffles)
347 DeadInsts.push_back(SVI);
349 DeadInsts.push_back(LI);
350 return true;
353 bool InterleavedAccess::tryReplaceExtracts(
354 ArrayRef<ExtractElementInst *> Extracts,
355 ArrayRef<ShuffleVectorInst *> Shuffles) {
356 // If there aren't any extractelement instructions to modify, there's nothing
357 // to do.
358 if (Extracts.empty())
359 return true;
361 // Maps extractelement instructions to vector-index pairs. The extractlement
362 // instructions will be modified to use the new vector and index operands.
363 DenseMap<ExtractElementInst *, std::pair<Value *, int>> ReplacementMap;
365 for (auto *Extract : Extracts) {
366 // The vector index that is extracted.
367 auto *IndexOperand = cast<ConstantInt>(Extract->getIndexOperand());
368 auto Index = IndexOperand->getSExtValue();
370 // Look for a suitable shufflevector instruction. The goal is to modify the
371 // extractelement instruction (which uses an interleaved load) to use one
372 // of the shufflevector instructions instead of the load.
373 for (auto *Shuffle : Shuffles) {
374 // If the shufflevector instruction doesn't dominate the extract, we
375 // can't create a use of it.
376 if (!DT->dominates(Shuffle, Extract))
377 continue;
379 // Inspect the indices of the shufflevector instruction. If the shuffle
380 // selects the same index that is extracted, we can modify the
381 // extractelement instruction.
382 SmallVector<int, 4> Indices;
383 Shuffle->getShuffleMask(Indices);
384 for (unsigned I = 0; I < Indices.size(); ++I)
385 if (Indices[I] == Index) {
386 assert(Extract->getOperand(0) == Shuffle->getOperand(0) &&
387 "Vector operations do not match");
388 ReplacementMap[Extract] = std::make_pair(Shuffle, I);
389 break;
392 // If we found a suitable shufflevector instruction, stop looking.
393 if (ReplacementMap.count(Extract))
394 break;
397 // If we did not find a suitable shufflevector instruction, the
398 // extractelement instruction cannot be modified, so we must give up.
399 if (!ReplacementMap.count(Extract))
400 return false;
403 // Finally, perform the replacements.
404 IRBuilder<> Builder(Extracts[0]->getContext());
405 for (auto &Replacement : ReplacementMap) {
406 auto *Extract = Replacement.first;
407 auto *Vector = Replacement.second.first;
408 auto Index = Replacement.second.second;
409 Builder.SetInsertPoint(Extract);
410 Extract->replaceAllUsesWith(Builder.CreateExtractElement(Vector, Index));
411 Extract->eraseFromParent();
414 return true;
417 bool InterleavedAccess::lowerInterleavedStore(
418 StoreInst *SI, SmallVector<Instruction *, 32> &DeadInsts) {
419 if (!SI->isSimple())
420 return false;
422 ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(SI->getValueOperand());
423 if (!SVI || !SVI->hasOneUse())
424 return false;
426 // Check if the shufflevector is RE-interleave shuffle.
427 unsigned Factor;
428 unsigned OpNumElts = SVI->getOperand(0)->getType()->getVectorNumElements();
429 if (!isReInterleaveMask(SVI->getShuffleMask(), Factor, MaxFactor, OpNumElts))
430 return false;
432 LLVM_DEBUG(dbgs() << "IA: Found an interleaved store: " << *SI << "\n");
434 // Try to create target specific intrinsics to replace the store and shuffle.
435 if (!TLI->lowerInterleavedStore(SI, SVI, Factor))
436 return false;
438 // Already have a new target specific interleaved store. Erase the old store.
439 DeadInsts.push_back(SI);
440 DeadInsts.push_back(SVI);
441 return true;
444 bool InterleavedAccess::runOnFunction(Function &F) {
445 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
446 if (!TPC || !LowerInterleavedAccesses)
447 return false;
449 LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName() << "\n");
451 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
452 auto &TM = TPC->getTM<TargetMachine>();
453 TLI = TM.getSubtargetImpl(F)->getTargetLowering();
454 MaxFactor = TLI->getMaxSupportedInterleaveFactor();
456 // Holds dead instructions that will be erased later.
457 SmallVector<Instruction *, 32> DeadInsts;
458 bool Changed = false;
460 for (auto &I : instructions(F)) {
461 if (LoadInst *LI = dyn_cast<LoadInst>(&I))
462 Changed |= lowerInterleavedLoad(LI, DeadInsts);
464 if (StoreInst *SI = dyn_cast<StoreInst>(&I))
465 Changed |= lowerInterleavedStore(SI, DeadInsts);
468 for (auto I : DeadInsts)
469 I->eraseFromParent();
471 return Changed;