1 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface ------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the generic RegisterCoalescer interface which
10 // is used as the common interface used by all clients and
11 // implementations of register coalescing.
13 //===----------------------------------------------------------------------===//
15 #include "RegisterCoalescer.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/LiveInterval.h"
25 #include "llvm/CodeGen/LiveIntervals.h"
26 #include "llvm/CodeGen/LiveRangeEdit.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineLoopInfo.h"
33 #include "llvm/CodeGen/MachineOperand.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/Passes.h"
36 #include "llvm/CodeGen/RegisterClassInfo.h"
37 #include "llvm/CodeGen/SlotIndexes.h"
38 #include "llvm/CodeGen/TargetInstrInfo.h"
39 #include "llvm/CodeGen/TargetOpcodes.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/MC/LaneBitmask.h"
44 #include "llvm/MC/MCInstrDesc.h"
45 #include "llvm/MC/MCRegisterInfo.h"
46 #include "llvm/Pass.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Compiler.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/raw_ostream.h"
62 #define DEBUG_TYPE "regalloc"
64 STATISTIC(numJoins
, "Number of interval joins performed");
65 STATISTIC(numCrossRCs
, "Number of cross class joins performed");
66 STATISTIC(numCommutes
, "Number of instruction commuting performed");
67 STATISTIC(numExtends
, "Number of copies extended");
68 STATISTIC(NumReMats
, "Number of instructions re-materialized");
69 STATISTIC(NumInflated
, "Number of register classes inflated");
70 STATISTIC(NumLaneConflicts
, "Number of dead lane conflicts tested");
71 STATISTIC(NumLaneResolves
, "Number of dead lane conflicts resolved");
72 STATISTIC(NumShrinkToUses
, "Number of shrinkToUses called");
74 static cl::opt
<bool> EnableJoining("join-liveintervals",
75 cl::desc("Coalesce copies (default=true)"),
76 cl::init(true), cl::Hidden
);
78 static cl::opt
<bool> UseTerminalRule("terminal-rule",
79 cl::desc("Apply the terminal rule"),
80 cl::init(false), cl::Hidden
);
82 /// Temporary flag to test critical edge unsplitting.
84 EnableJoinSplits("join-splitedges",
85 cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden
);
87 /// Temporary flag to test global copy optimization.
88 static cl::opt
<cl::boolOrDefault
>
89 EnableGlobalCopies("join-globalcopies",
90 cl::desc("Coalesce copies that span blocks (default=subtarget)"),
91 cl::init(cl::BOU_UNSET
), cl::Hidden
);
94 VerifyCoalescing("verify-coalescing",
95 cl::desc("Verify machine instrs before and after register coalescing"),
98 static cl::opt
<unsigned> LateRematUpdateThreshold(
99 "late-remat-update-threshold", cl::Hidden
,
100 cl::desc("During rematerialization for a copy, if the def instruction has "
101 "many other copy uses to be rematerialized, delay the multiple "
102 "separate live interval update work and do them all at once after "
103 "all those rematerialization are done. It will save a lot of "
107 static cl::opt
<unsigned> LargeIntervalSizeThreshold(
108 "large-interval-size-threshold", cl::Hidden
,
109 cl::desc("If the valnos size of an interval is larger than the threshold, "
110 "it is regarded as a large interval. "),
113 static cl::opt
<unsigned> LargeIntervalFreqThreshold(
114 "large-interval-freq-threshold", cl::Hidden
,
115 cl::desc("For a large interval, if it is coalesed with other live "
116 "intervals many times more than the threshold, stop its "
117 "coalescing to control the compile time. "),
122 class RegisterCoalescer
: public MachineFunctionPass
,
123 private LiveRangeEdit::Delegate
{
125 MachineRegisterInfo
* MRI
;
126 const TargetRegisterInfo
* TRI
;
127 const TargetInstrInfo
* TII
;
129 const MachineLoopInfo
* Loops
;
131 RegisterClassInfo RegClassInfo
;
133 /// A LaneMask to remember on which subregister live ranges we need to call
134 /// shrinkToUses() later.
135 LaneBitmask ShrinkMask
;
137 /// True if the main range of the currently coalesced intervals should be
138 /// checked for smaller live intervals.
139 bool ShrinkMainRange
;
141 /// True if the coalescer should aggressively coalesce global copies
142 /// in favor of keeping local copies.
143 bool JoinGlobalCopies
;
145 /// True if the coalescer should aggressively coalesce fall-thru
146 /// blocks exclusively containing copies.
149 /// Copy instructions yet to be coalesced.
150 SmallVector
<MachineInstr
*, 8> WorkList
;
151 SmallVector
<MachineInstr
*, 8> LocalWorkList
;
153 /// Set of instruction pointers that have been erased, and
154 /// that may be present in WorkList.
155 SmallPtrSet
<MachineInstr
*, 8> ErasedInstrs
;
157 /// Dead instructions that are about to be deleted.
158 SmallVector
<MachineInstr
*, 8> DeadDefs
;
160 /// Virtual registers to be considered for register class inflation.
161 SmallVector
<unsigned, 8> InflateRegs
;
163 /// The collection of live intervals which should have been updated
164 /// immediately after rematerialiation but delayed until
165 /// lateLiveIntervalUpdate is called.
166 DenseSet
<unsigned> ToBeUpdated
;
168 /// Record how many times the large live interval with many valnos
169 /// has been tried to join with other live interval.
170 DenseMap
<unsigned, unsigned long> LargeLIVisitCounter
;
172 /// Recursively eliminate dead defs in DeadDefs.
173 void eliminateDeadDefs();
175 /// LiveRangeEdit callback for eliminateDeadDefs().
176 void LRE_WillEraseInstruction(MachineInstr
*MI
) override
;
178 /// Coalesce the LocalWorkList.
179 void coalesceLocals();
181 /// Join compatible live intervals
182 void joinAllIntervals();
184 /// Coalesce copies in the specified MBB, putting
185 /// copies that cannot yet be coalesced into WorkList.
186 void copyCoalesceInMBB(MachineBasicBlock
*MBB
);
188 /// Tries to coalesce all copies in CurrList. Returns true if any progress
190 bool copyCoalesceWorkList(MutableArrayRef
<MachineInstr
*> CurrList
);
192 /// If one def has many copy like uses, and those copy uses are all
193 /// rematerialized, the live interval update needed for those
194 /// rematerializations will be delayed and done all at once instead
195 /// of being done multiple times. This is to save compile cost because
196 /// live interval update is costly.
197 void lateLiveIntervalUpdate();
199 /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the
200 /// src/dst of the copy instruction CopyMI. This returns true if the copy
201 /// was successfully coalesced away. If it is not currently possible to
202 /// coalesce this interval, but it may be possible if other things get
203 /// coalesced, then it returns true by reference in 'Again'.
204 bool joinCopy(MachineInstr
*CopyMI
, bool &Again
);
206 /// Attempt to join these two intervals. On failure, this
207 /// returns false. The output "SrcInt" will not have been modified, so we
208 /// can use this information below to update aliases.
209 bool joinIntervals(CoalescerPair
&CP
);
211 /// Attempt joining two virtual registers. Return true on success.
212 bool joinVirtRegs(CoalescerPair
&CP
);
214 /// If a live interval has many valnos and is coalesced with other
215 /// live intervals many times, we regard such live interval as having
216 /// high compile time cost.
217 bool isHighCostLiveInterval(LiveInterval
&LI
);
219 /// Attempt joining with a reserved physreg.
220 bool joinReservedPhysReg(CoalescerPair
&CP
);
222 /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI.
223 /// Subranges in @p LI which only partially interfere with the desired
224 /// LaneMask are split as necessary. @p LaneMask are the lanes that
225 /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange
226 /// lanemasks already adjusted to the coalesced register.
227 void mergeSubRangeInto(LiveInterval
&LI
, const LiveRange
&ToMerge
,
228 LaneBitmask LaneMask
, CoalescerPair
&CP
);
230 /// Join the liveranges of two subregisters. Joins @p RRange into
231 /// @p LRange, @p RRange may be invalid afterwards.
232 void joinSubRegRanges(LiveRange
&LRange
, LiveRange
&RRange
,
233 LaneBitmask LaneMask
, const CoalescerPair
&CP
);
235 /// We found a non-trivially-coalescable copy. If the source value number is
236 /// defined by a copy from the destination reg see if we can merge these two
237 /// destination reg valno# into a single value number, eliminating a copy.
238 /// This returns true if an interval was modified.
239 bool adjustCopiesBackFrom(const CoalescerPair
&CP
, MachineInstr
*CopyMI
);
241 /// Return true if there are definitions of IntB
242 /// other than BValNo val# that can reach uses of AValno val# of IntA.
243 bool hasOtherReachingDefs(LiveInterval
&IntA
, LiveInterval
&IntB
,
244 VNInfo
*AValNo
, VNInfo
*BValNo
);
246 /// We found a non-trivially-coalescable copy.
247 /// If the source value number is defined by a commutable instruction and
248 /// its other operand is coalesced to the copy dest register, see if we
249 /// can transform the copy into a noop by commuting the definition.
250 /// This returns a pair of two flags:
251 /// - the first element is true if an interval was modified,
252 /// - the second element is true if the destination interval needs
253 /// to be shrunk after deleting the copy.
254 std::pair
<bool,bool> removeCopyByCommutingDef(const CoalescerPair
&CP
,
255 MachineInstr
*CopyMI
);
257 /// We found a copy which can be moved to its less frequent predecessor.
258 bool removePartialRedundancy(const CoalescerPair
&CP
, MachineInstr
&CopyMI
);
260 /// If the source of a copy is defined by a
261 /// trivial computation, replace the copy by rematerialize the definition.
262 bool reMaterializeTrivialDef(const CoalescerPair
&CP
, MachineInstr
*CopyMI
,
265 /// Return true if a copy involving a physreg should be joined.
266 bool canJoinPhys(const CoalescerPair
&CP
);
268 /// Replace all defs and uses of SrcReg to DstReg and update the subregister
269 /// number if it is not zero. If DstReg is a physical register and the
270 /// existing subregister number of the def / use being updated is not zero,
271 /// make sure to set it to the correct physical subregister.
272 void updateRegDefsUses(unsigned SrcReg
, unsigned DstReg
, unsigned SubIdx
);
274 /// If the given machine operand reads only undefined lanes add an undef
276 /// This can happen when undef uses were previously concealed by a copy
277 /// which we coalesced. Example:
278 /// %0:sub0<def,read-undef> = ...
279 /// %1 = COPY %0 <-- Coalescing COPY reveals undef
280 /// = use %1:sub1 <-- hidden undef use
281 void addUndefFlag(const LiveInterval
&Int
, SlotIndex UseIdx
,
282 MachineOperand
&MO
, unsigned SubRegIdx
);
284 /// Handle copies of undef values. If the undef value is an incoming
285 /// PHI value, it will convert @p CopyMI to an IMPLICIT_DEF.
286 /// Returns nullptr if @p CopyMI was not in any way eliminable. Otherwise,
287 /// it returns @p CopyMI (which could be an IMPLICIT_DEF at this point).
288 MachineInstr
*eliminateUndefCopy(MachineInstr
*CopyMI
);
290 /// Check whether or not we should apply the terminal rule on the
291 /// destination (Dst) of \p Copy.
292 /// When the terminal rule applies, Copy is not profitable to
294 /// Dst is terminal if it has exactly one affinity (Dst, Src) and
295 /// at least one interference (Dst, Dst2). If Dst is terminal, the
296 /// terminal rule consists in checking that at least one of
297 /// interfering node, say Dst2, has an affinity of equal or greater
299 /// In that case, Dst2 and Dst will not be able to be both coalesced
300 /// with Src. Since Dst2 exposes more coalescing opportunities than
301 /// Dst, we can drop \p Copy.
302 bool applyTerminalRule(const MachineInstr
&Copy
) const;
304 /// Wrapper method for \see LiveIntervals::shrinkToUses.
305 /// This method does the proper fixing of the live-ranges when the afore
306 /// mentioned method returns true.
307 void shrinkToUses(LiveInterval
*LI
,
308 SmallVectorImpl
<MachineInstr
* > *Dead
= nullptr) {
310 if (LIS
->shrinkToUses(LI
, Dead
)) {
311 /// Check whether or not \p LI is composed by multiple connected
312 /// components and if that is the case, fix that.
313 SmallVector
<LiveInterval
*, 8> SplitLIs
;
314 LIS
->splitSeparateComponents(*LI
, SplitLIs
);
318 /// Wrapper Method to do all the necessary work when an Instruction is
320 /// Optimizations should use this to make sure that deleted instructions
321 /// are always accounted for.
322 void deleteInstr(MachineInstr
* MI
) {
323 ErasedInstrs
.insert(MI
);
324 LIS
->RemoveMachineInstrFromMaps(*MI
);
325 MI
->eraseFromParent();
329 static char ID
; ///< Class identification, replacement for typeinfo
331 RegisterCoalescer() : MachineFunctionPass(ID
) {
332 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
335 void getAnalysisUsage(AnalysisUsage
&AU
) const override
;
337 void releaseMemory() override
;
339 /// This is the pass entry point.
340 bool runOnMachineFunction(MachineFunction
&) override
;
342 /// Implement the dump method.
343 void print(raw_ostream
&O
, const Module
* = nullptr) const override
;
346 } // end anonymous namespace
348 char RegisterCoalescer::ID
= 0;
350 char &llvm::RegisterCoalescerID
= RegisterCoalescer::ID
;
352 INITIALIZE_PASS_BEGIN(RegisterCoalescer
, "simple-register-coalescing",
353 "Simple Register Coalescing", false, false)
354 INITIALIZE_PASS_DEPENDENCY(LiveIntervals
)
355 INITIALIZE_PASS_DEPENDENCY(SlotIndexes
)
356 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo
)
357 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass
)
358 INITIALIZE_PASS_END(RegisterCoalescer
, "simple-register-coalescing",
359 "Simple Register Coalescing", false, false)
361 LLVM_NODISCARD
static bool isMoveInstr(const TargetRegisterInfo
&tri
,
362 const MachineInstr
*MI
, unsigned &Src
,
363 unsigned &Dst
, unsigned &SrcSub
,
366 Dst
= MI
->getOperand(0).getReg();
367 DstSub
= MI
->getOperand(0).getSubReg();
368 Src
= MI
->getOperand(1).getReg();
369 SrcSub
= MI
->getOperand(1).getSubReg();
370 } else if (MI
->isSubregToReg()) {
371 Dst
= MI
->getOperand(0).getReg();
372 DstSub
= tri
.composeSubRegIndices(MI
->getOperand(0).getSubReg(),
373 MI
->getOperand(3).getImm());
374 Src
= MI
->getOperand(2).getReg();
375 SrcSub
= MI
->getOperand(2).getSubReg();
381 /// Return true if this block should be vacated by the coalescer to eliminate
382 /// branches. The important cases to handle in the coalescer are critical edges
383 /// split during phi elimination which contain only copies. Simple blocks that
384 /// contain non-branches should also be vacated, but this can be handled by an
385 /// earlier pass similar to early if-conversion.
386 static bool isSplitEdge(const MachineBasicBlock
*MBB
) {
387 if (MBB
->pred_size() != 1 || MBB
->succ_size() != 1)
390 for (const auto &MI
: *MBB
) {
391 if (!MI
.isCopyLike() && !MI
.isUnconditionalBranch())
397 bool CoalescerPair::setRegisters(const MachineInstr
*MI
) {
401 Flipped
= CrossClass
= false;
403 unsigned Src
, Dst
, SrcSub
, DstSub
;
404 if (!isMoveInstr(TRI
, MI
, Src
, Dst
, SrcSub
, DstSub
))
406 Partial
= SrcSub
|| DstSub
;
408 // If one register is a physreg, it must be Dst.
409 if (TargetRegisterInfo::isPhysicalRegister(Src
)) {
410 if (TargetRegisterInfo::isPhysicalRegister(Dst
))
413 std::swap(SrcSub
, DstSub
);
417 const MachineRegisterInfo
&MRI
= MI
->getMF()->getRegInfo();
419 if (TargetRegisterInfo::isPhysicalRegister(Dst
)) {
420 // Eliminate DstSub on a physreg.
422 Dst
= TRI
.getSubReg(Dst
, DstSub
);
423 if (!Dst
) return false;
427 // Eliminate SrcSub by picking a corresponding Dst superregister.
429 Dst
= TRI
.getMatchingSuperReg(Dst
, SrcSub
, MRI
.getRegClass(Src
));
430 if (!Dst
) return false;
431 } else if (!MRI
.getRegClass(Src
)->contains(Dst
)) {
435 // Both registers are virtual.
436 const TargetRegisterClass
*SrcRC
= MRI
.getRegClass(Src
);
437 const TargetRegisterClass
*DstRC
= MRI
.getRegClass(Dst
);
439 // Both registers have subreg indices.
440 if (SrcSub
&& DstSub
) {
441 // Copies between different sub-registers are never coalescable.
442 if (Src
== Dst
&& SrcSub
!= DstSub
)
445 NewRC
= TRI
.getCommonSuperRegClass(SrcRC
, SrcSub
, DstRC
, DstSub
,
450 // SrcReg will be merged with a sub-register of DstReg.
452 NewRC
= TRI
.getMatchingSuperRegClass(DstRC
, SrcRC
, DstSub
);
454 // DstReg will be merged with a sub-register of SrcReg.
456 NewRC
= TRI
.getMatchingSuperRegClass(SrcRC
, DstRC
, SrcSub
);
458 // This is a straight copy without sub-registers.
459 NewRC
= TRI
.getCommonSubClass(DstRC
, SrcRC
);
462 // The combined constraint may be impossible to satisfy.
466 // Prefer SrcReg to be a sub-register of DstReg.
467 // FIXME: Coalescer should support subregs symmetrically.
468 if (DstIdx
&& !SrcIdx
) {
470 std::swap(SrcIdx
, DstIdx
);
474 CrossClass
= NewRC
!= DstRC
|| NewRC
!= SrcRC
;
476 // Check our invariants
477 assert(TargetRegisterInfo::isVirtualRegister(Src
) && "Src must be virtual");
478 assert(!(TargetRegisterInfo::isPhysicalRegister(Dst
) && DstSub
) &&
479 "Cannot have a physical SubIdx");
485 bool CoalescerPair::flip() {
486 if (TargetRegisterInfo::isPhysicalRegister(DstReg
))
488 std::swap(SrcReg
, DstReg
);
489 std::swap(SrcIdx
, DstIdx
);
494 bool CoalescerPair::isCoalescable(const MachineInstr
*MI
) const {
497 unsigned Src
, Dst
, SrcSub
, DstSub
;
498 if (!isMoveInstr(TRI
, MI
, Src
, Dst
, SrcSub
, DstSub
))
501 // Find the virtual register that is SrcReg.
504 std::swap(SrcSub
, DstSub
);
505 } else if (Src
!= SrcReg
) {
509 // Now check that Dst matches DstReg.
510 if (TargetRegisterInfo::isPhysicalRegister(DstReg
)) {
511 if (!TargetRegisterInfo::isPhysicalRegister(Dst
))
513 assert(!DstIdx
&& !SrcIdx
&& "Inconsistent CoalescerPair state.");
514 // DstSub could be set for a physreg from INSERT_SUBREG.
516 Dst
= TRI
.getSubReg(Dst
, DstSub
);
519 return DstReg
== Dst
;
520 // This is a partial register copy. Check that the parts match.
521 return TRI
.getSubReg(DstReg
, SrcSub
) == Dst
;
523 // DstReg is virtual.
526 // Registers match, do the subregisters line up?
527 return TRI
.composeSubRegIndices(SrcIdx
, SrcSub
) ==
528 TRI
.composeSubRegIndices(DstIdx
, DstSub
);
532 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage
&AU
) const {
533 AU
.setPreservesCFG();
534 AU
.addRequired
<AAResultsWrapperPass
>();
535 AU
.addRequired
<LiveIntervals
>();
536 AU
.addPreserved
<LiveIntervals
>();
537 AU
.addPreserved
<SlotIndexes
>();
538 AU
.addRequired
<MachineLoopInfo
>();
539 AU
.addPreserved
<MachineLoopInfo
>();
540 AU
.addPreservedID(MachineDominatorsID
);
541 MachineFunctionPass::getAnalysisUsage(AU
);
544 void RegisterCoalescer::eliminateDeadDefs() {
545 SmallVector
<unsigned, 8> NewRegs
;
546 LiveRangeEdit(nullptr, NewRegs
, *MF
, *LIS
,
547 nullptr, this).eliminateDeadDefs(DeadDefs
);
550 void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr
*MI
) {
551 // MI may be in WorkList. Make sure we don't visit it.
552 ErasedInstrs
.insert(MI
);
555 bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair
&CP
,
556 MachineInstr
*CopyMI
) {
557 assert(!CP
.isPartial() && "This doesn't work for partial copies.");
558 assert(!CP
.isPhys() && "This doesn't work for physreg copies.");
561 LIS
->getInterval(CP
.isFlipped() ? CP
.getDstReg() : CP
.getSrcReg());
563 LIS
->getInterval(CP
.isFlipped() ? CP
.getSrcReg() : CP
.getDstReg());
564 SlotIndex CopyIdx
= LIS
->getInstructionIndex(*CopyMI
).getRegSlot();
566 // We have a non-trivially-coalescable copy with IntA being the source and
567 // IntB being the dest, thus this defines a value number in IntB. If the
568 // source value number (in IntA) is defined by a copy from B, see if we can
569 // merge these two pieces of B into a single value number, eliminating a copy.
574 // B1 = A3 <- this copy
576 // In this case, B0 can be extended to where the B1 copy lives, allowing the
577 // B1 value number to be replaced with B0 (which simplifies the B
580 // BValNo is a value number in B that is defined by a copy from A. 'B1' in
581 // the example above.
582 LiveInterval::iterator BS
= IntB
.FindSegmentContaining(CopyIdx
);
583 if (BS
== IntB
.end()) return false;
584 VNInfo
*BValNo
= BS
->valno
;
586 // Get the location that B is defined at. Two options: either this value has
587 // an unknown definition point or it is defined at CopyIdx. If unknown, we
589 if (BValNo
->def
!= CopyIdx
) return false;
591 // AValNo is the value number in A that defines the copy, A3 in the example.
592 SlotIndex CopyUseIdx
= CopyIdx
.getRegSlot(true);
593 LiveInterval::iterator AS
= IntA
.FindSegmentContaining(CopyUseIdx
);
594 // The live segment might not exist after fun with physreg coalescing.
595 if (AS
== IntA
.end()) return false;
596 VNInfo
*AValNo
= AS
->valno
;
598 // If AValNo is defined as a copy from IntB, we can potentially process this.
599 // Get the instruction that defines this value number.
600 MachineInstr
*ACopyMI
= LIS
->getInstructionFromIndex(AValNo
->def
);
601 // Don't allow any partial copies, even if isCoalescable() allows them.
602 if (!CP
.isCoalescable(ACopyMI
) || !ACopyMI
->isFullCopy())
605 // Get the Segment in IntB that this value number starts with.
606 LiveInterval::iterator ValS
=
607 IntB
.FindSegmentContaining(AValNo
->def
.getPrevSlot());
608 if (ValS
== IntB
.end())
611 // Make sure that the end of the live segment is inside the same block as
613 MachineInstr
*ValSEndInst
=
614 LIS
->getInstructionFromIndex(ValS
->end
.getPrevSlot());
615 if (!ValSEndInst
|| ValSEndInst
->getParent() != CopyMI
->getParent())
618 // Okay, we now know that ValS ends in the same block that the CopyMI
619 // live-range starts. If there are no intervening live segments between them
620 // in IntB, we can merge them.
621 if (ValS
+1 != BS
) return false;
623 LLVM_DEBUG(dbgs() << "Extending: " << printReg(IntB
.reg
, TRI
));
625 SlotIndex FillerStart
= ValS
->end
, FillerEnd
= BS
->start
;
626 // We are about to delete CopyMI, so need to remove it as the 'instruction
627 // that defines this value #'. Update the valnum with the new defining
629 BValNo
->def
= FillerStart
;
631 // Okay, we can merge them. We need to insert a new liverange:
632 // [ValS.end, BS.begin) of either value number, then we merge the
633 // two value numbers.
634 IntB
.addSegment(LiveInterval::Segment(FillerStart
, FillerEnd
, BValNo
));
636 // Okay, merge "B1" into the same value number as "B0".
637 if (BValNo
!= ValS
->valno
)
638 IntB
.MergeValueNumberInto(BValNo
, ValS
->valno
);
640 // Do the same for the subregister segments.
641 for (LiveInterval::SubRange
&S
: IntB
.subranges()) {
642 // Check for SubRange Segments of the form [1234r,1234d:0) which can be
643 // removed to prevent creating bogus SubRange Segments.
644 LiveInterval::iterator SS
= S
.FindSegmentContaining(CopyIdx
);
645 if (SS
!= S
.end() && SlotIndex::isSameInstr(SS
->start
, SS
->end
)) {
646 S
.removeSegment(*SS
, true);
649 VNInfo
*SubBValNo
= S
.getVNInfoAt(CopyIdx
);
650 S
.addSegment(LiveInterval::Segment(FillerStart
, FillerEnd
, SubBValNo
));
651 VNInfo
*SubValSNo
= S
.getVNInfoAt(AValNo
->def
.getPrevSlot());
652 if (SubBValNo
!= SubValSNo
)
653 S
.MergeValueNumberInto(SubBValNo
, SubValSNo
);
656 LLVM_DEBUG(dbgs() << " result = " << IntB
<< '\n');
658 // If the source instruction was killing the source register before the
659 // merge, unset the isKill marker given the live range has been extended.
660 int UIdx
= ValSEndInst
->findRegisterUseOperandIdx(IntB
.reg
, true);
662 ValSEndInst
->getOperand(UIdx
).setIsKill(false);
666 CopyMI
->substituteRegister(IntA
.reg
, IntB
.reg
, 0, *TRI
);
667 // If the copy instruction was killing the destination register or any
668 // subrange before the merge trim the live range.
669 bool RecomputeLiveRange
= AS
->end
== CopyIdx
;
670 if (!RecomputeLiveRange
) {
671 for (LiveInterval::SubRange
&S
: IntA
.subranges()) {
672 LiveInterval::iterator SS
= S
.FindSegmentContaining(CopyUseIdx
);
673 if (SS
!= S
.end() && SS
->end
== CopyIdx
) {
674 RecomputeLiveRange
= true;
679 if (RecomputeLiveRange
)
686 bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval
&IntA
,
690 // If AValNo has PHI kills, conservatively assume that IntB defs can reach
692 if (LIS
->hasPHIKill(IntA
, AValNo
))
695 for (LiveRange::Segment
&ASeg
: IntA
.segments
) {
696 if (ASeg
.valno
!= AValNo
) continue;
697 LiveInterval::iterator BI
= llvm::upper_bound(IntB
, ASeg
.start
);
698 if (BI
!= IntB
.begin())
700 for (; BI
!= IntB
.end() && ASeg
.end
>= BI
->start
; ++BI
) {
701 if (BI
->valno
== BValNo
)
703 if (BI
->start
<= ASeg
.start
&& BI
->end
> ASeg
.start
)
705 if (BI
->start
> ASeg
.start
&& BI
->start
< ASeg
.end
)
712 /// Copy segments with value number @p SrcValNo from liverange @p Src to live
713 /// range @Dst and use value number @p DstValNo there.
714 static std::pair
<bool,bool>
715 addSegmentsWithValNo(LiveRange
&Dst
, VNInfo
*DstValNo
, const LiveRange
&Src
,
716 const VNInfo
*SrcValNo
) {
717 bool Changed
= false;
718 bool MergedWithDead
= false;
719 for (const LiveRange::Segment
&S
: Src
.segments
) {
720 if (S
.valno
!= SrcValNo
)
722 // This is adding a segment from Src that ends in a copy that is about
723 // to be removed. This segment is going to be merged with a pre-existing
724 // segment in Dst. This works, except in cases when the corresponding
725 // segment in Dst is dead. For example: adding [192r,208r:1) from Src
726 // to [208r,208d:1) in Dst would create [192r,208d:1) in Dst.
727 // Recognized such cases, so that the segments can be shrunk.
728 LiveRange::Segment Added
= LiveRange::Segment(S
.start
, S
.end
, DstValNo
);
729 LiveRange::Segment
&Merged
= *Dst
.addSegment(Added
);
730 if (Merged
.end
.isDead())
731 MergedWithDead
= true;
734 return std::make_pair(Changed
, MergedWithDead
);
738 RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair
&CP
,
739 MachineInstr
*CopyMI
) {
740 assert(!CP
.isPhys());
743 LIS
->getInterval(CP
.isFlipped() ? CP
.getDstReg() : CP
.getSrcReg());
745 LIS
->getInterval(CP
.isFlipped() ? CP
.getSrcReg() : CP
.getDstReg());
747 // We found a non-trivially-coalescable copy with IntA being the source and
748 // IntB being the dest, thus this defines a value number in IntB. If the
749 // source value number (in IntA) is defined by a commutable instruction and
750 // its other operand is coalesced to the copy dest register, see if we can
751 // transform the copy into a noop by commuting the definition. For example,
753 // A3 = op A2 killed B0
755 // B1 = A3 <- this copy
757 // = op A3 <- more uses
761 // B2 = op B0 killed A2
763 // B1 = B2 <- now an identity copy
765 // = op B2 <- more uses
767 // BValNo is a value number in B that is defined by a copy from A. 'B1' in
768 // the example above.
769 SlotIndex CopyIdx
= LIS
->getInstructionIndex(*CopyMI
).getRegSlot();
770 VNInfo
*BValNo
= IntB
.getVNInfoAt(CopyIdx
);
771 assert(BValNo
!= nullptr && BValNo
->def
== CopyIdx
);
773 // AValNo is the value number in A that defines the copy, A3 in the example.
774 VNInfo
*AValNo
= IntA
.getVNInfoAt(CopyIdx
.getRegSlot(true));
775 assert(AValNo
&& !AValNo
->isUnused() && "COPY source not live");
776 if (AValNo
->isPHIDef())
777 return { false, false };
778 MachineInstr
*DefMI
= LIS
->getInstructionFromIndex(AValNo
->def
);
780 return { false, false };
781 if (!DefMI
->isCommutable())
782 return { false, false };
783 // If DefMI is a two-address instruction then commuting it will change the
784 // destination register.
785 int DefIdx
= DefMI
->findRegisterDefOperandIdx(IntA
.reg
);
786 assert(DefIdx
!= -1);
788 if (!DefMI
->isRegTiedToUseOperand(DefIdx
, &UseOpIdx
))
789 return { false, false };
791 // FIXME: The code below tries to commute 'UseOpIdx' operand with some other
792 // commutable operand which is expressed by 'CommuteAnyOperandIndex'value
793 // passed to the method. That _other_ operand is chosen by
794 // the findCommutedOpIndices() method.
796 // That is obviously an area for improvement in case of instructions having
797 // more than 2 operands. For example, if some instruction has 3 commutable
798 // operands then all possible variants (i.e. op#1<->op#2, op#1<->op#3,
799 // op#2<->op#3) of commute transformation should be considered/tried here.
800 unsigned NewDstIdx
= TargetInstrInfo::CommuteAnyOperandIndex
;
801 if (!TII
->findCommutedOpIndices(*DefMI
, UseOpIdx
, NewDstIdx
))
802 return { false, false };
804 MachineOperand
&NewDstMO
= DefMI
->getOperand(NewDstIdx
);
805 unsigned NewReg
= NewDstMO
.getReg();
806 if (NewReg
!= IntB
.reg
|| !IntB
.Query(AValNo
->def
).isKill())
807 return { false, false };
809 // Make sure there are no other definitions of IntB that would reach the
810 // uses which the new definition can reach.
811 if (hasOtherReachingDefs(IntA
, IntB
, AValNo
, BValNo
))
812 return { false, false };
814 // If some of the uses of IntA.reg is already coalesced away, return false.
815 // It's not possible to determine whether it's safe to perform the coalescing.
816 for (MachineOperand
&MO
: MRI
->use_nodbg_operands(IntA
.reg
)) {
817 MachineInstr
*UseMI
= MO
.getParent();
818 unsigned OpNo
= &MO
- &UseMI
->getOperand(0);
819 SlotIndex UseIdx
= LIS
->getInstructionIndex(*UseMI
);
820 LiveInterval::iterator US
= IntA
.FindSegmentContaining(UseIdx
);
821 if (US
== IntA
.end() || US
->valno
!= AValNo
)
823 // If this use is tied to a def, we can't rewrite the register.
824 if (UseMI
->isRegTiedToDefOperand(OpNo
))
825 return { false, false };
828 LLVM_DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo
->def
<< '\t'
831 // At this point we have decided that it is legal to do this
832 // transformation. Start by commuting the instruction.
833 MachineBasicBlock
*MBB
= DefMI
->getParent();
834 MachineInstr
*NewMI
=
835 TII
->commuteInstruction(*DefMI
, false, UseOpIdx
, NewDstIdx
);
837 return { false, false };
838 if (TargetRegisterInfo::isVirtualRegister(IntA
.reg
) &&
839 TargetRegisterInfo::isVirtualRegister(IntB
.reg
) &&
840 !MRI
->constrainRegClass(IntB
.reg
, MRI
->getRegClass(IntA
.reg
)))
841 return { false, false };
842 if (NewMI
!= DefMI
) {
843 LIS
->ReplaceMachineInstrInMaps(*DefMI
, *NewMI
);
844 MachineBasicBlock::iterator Pos
= DefMI
;
845 MBB
->insert(Pos
, NewMI
);
849 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
858 // Update uses of IntA of the specific Val# with IntB.
859 for (MachineRegisterInfo::use_iterator UI
= MRI
->use_begin(IntA
.reg
),
861 UI
!= UE
; /* ++UI is below because of possible MI removal */) {
862 MachineOperand
&UseMO
= *UI
;
866 MachineInstr
*UseMI
= UseMO
.getParent();
867 if (UseMI
->isDebugValue()) {
868 // FIXME These don't have an instruction index. Not clear we have enough
869 // info to decide whether to do this replacement or not. For now do it.
870 UseMO
.setReg(NewReg
);
873 SlotIndex UseIdx
= LIS
->getInstructionIndex(*UseMI
).getRegSlot(true);
874 LiveInterval::iterator US
= IntA
.FindSegmentContaining(UseIdx
);
875 assert(US
!= IntA
.end() && "Use must be live");
876 if (US
->valno
!= AValNo
)
878 // Kill flags are no longer accurate. They are recomputed after RA.
879 UseMO
.setIsKill(false);
880 if (TargetRegisterInfo::isPhysicalRegister(NewReg
))
881 UseMO
.substPhysReg(NewReg
, *TRI
);
883 UseMO
.setReg(NewReg
);
886 if (!UseMI
->isCopy())
888 if (UseMI
->getOperand(0).getReg() != IntB
.reg
||
889 UseMI
->getOperand(0).getSubReg())
892 // This copy will become a noop. If it's defining a new val#, merge it into
894 SlotIndex DefIdx
= UseIdx
.getRegSlot();
895 VNInfo
*DVNI
= IntB
.getVNInfoAt(DefIdx
);
898 LLVM_DEBUG(dbgs() << "\t\tnoop: " << DefIdx
<< '\t' << *UseMI
);
899 assert(DVNI
->def
== DefIdx
);
900 BValNo
= IntB
.MergeValueNumberInto(DVNI
, BValNo
);
901 for (LiveInterval::SubRange
&S
: IntB
.subranges()) {
902 VNInfo
*SubDVNI
= S
.getVNInfoAt(DefIdx
);
905 VNInfo
*SubBValNo
= S
.getVNInfoAt(CopyIdx
);
906 assert(SubBValNo
->def
== CopyIdx
);
907 S
.MergeValueNumberInto(SubDVNI
, SubBValNo
);
913 // Extend BValNo by merging in IntA live segments of AValNo. Val# definition
915 bool ShrinkB
= false;
916 BumpPtrAllocator
&Allocator
= LIS
->getVNInfoAllocator();
917 if (IntA
.hasSubRanges() || IntB
.hasSubRanges()) {
918 if (!IntA
.hasSubRanges()) {
919 LaneBitmask Mask
= MRI
->getMaxLaneMaskForVReg(IntA
.reg
);
920 IntA
.createSubRangeFrom(Allocator
, Mask
, IntA
);
921 } else if (!IntB
.hasSubRanges()) {
922 LaneBitmask Mask
= MRI
->getMaxLaneMaskForVReg(IntB
.reg
);
923 IntB
.createSubRangeFrom(Allocator
, Mask
, IntB
);
925 SlotIndex AIdx
= CopyIdx
.getRegSlot(true);
927 const SlotIndexes
&Indexes
= *LIS
->getSlotIndexes();
928 for (LiveInterval::SubRange
&SA
: IntA
.subranges()) {
929 VNInfo
*ASubValNo
= SA
.getVNInfoAt(AIdx
);
930 // Even if we are dealing with a full copy, some lanes can
931 // still be undefined.
933 // undef A.subLow = ...
934 // B = COPY A <== A.subHigh is undefined here and does
935 // not have a value number.
938 MaskA
|= SA
.LaneMask
;
940 IntB
.refineSubRanges(
941 Allocator
, SA
.LaneMask
,
942 [&Allocator
, &SA
, CopyIdx
, ASubValNo
,
943 &ShrinkB
](LiveInterval::SubRange
&SR
) {
944 VNInfo
*BSubValNo
= SR
.empty() ? SR
.getNextValue(CopyIdx
, Allocator
)
945 : SR
.getVNInfoAt(CopyIdx
);
946 assert(BSubValNo
!= nullptr);
947 auto P
= addSegmentsWithValNo(SR
, BSubValNo
, SA
, ASubValNo
);
950 BSubValNo
->def
= ASubValNo
->def
;
954 // Go over all subranges of IntB that have not been covered by IntA,
955 // and delete the segments starting at CopyIdx. This can happen if
956 // IntA has undef lanes that are defined in IntB.
957 for (LiveInterval::SubRange
&SB
: IntB
.subranges()) {
958 if ((SB
.LaneMask
& MaskA
).any())
960 if (LiveRange::Segment
*S
= SB
.getSegmentContaining(CopyIdx
))
961 if (S
->start
.getBaseIndex() == CopyIdx
.getBaseIndex())
962 SB
.removeSegment(*S
, true);
966 BValNo
->def
= AValNo
->def
;
967 auto P
= addSegmentsWithValNo(IntB
, BValNo
, IntA
, AValNo
);
969 LLVM_DEBUG(dbgs() << "\t\textended: " << IntB
<< '\n');
971 LIS
->removeVRegDefAt(IntA
, AValNo
->def
);
973 LLVM_DEBUG(dbgs() << "\t\ttrimmed: " << IntA
<< '\n');
975 return { true, ShrinkB
};
978 /// For copy B = A in BB2, if A is defined by A = B in BB0 which is a
979 /// predecessor of BB2, and if B is not redefined on the way from A = B
980 /// in BB0 to B = A in BB2, B = A in BB2 is partially redundant if the
981 /// execution goes through the path from BB0 to BB2. We may move B = A
982 /// to the predecessor without such reversed copy.
983 /// So we will transform the program from:
1001 /// A special case is when BB0 and BB2 are the same BB which is the only
1011 /// We may hoist B = A from BB0/BB2 to BB1.
1013 /// The major preconditions for correctness to remove such partial
1014 /// redundancy include:
1015 /// 1. A in B = A in BB2 is defined by a PHI in BB2, and one operand of
1016 /// the PHI is defined by the reversed copy A = B in BB0.
1017 /// 2. No B is referenced from the start of BB2 to B = A.
1018 /// 3. No B is defined from A = B to the end of BB0.
1019 /// 4. BB1 has only one successor.
1021 /// 2 and 4 implicitly ensure B is not live at the end of BB1.
1022 /// 4 guarantees BB2 is hotter than BB1, so we can only move a copy to a
1023 /// colder place, which not only prevent endless loop, but also make sure
1024 /// the movement of copy is beneficial.
1025 bool RegisterCoalescer::removePartialRedundancy(const CoalescerPair
&CP
,
1026 MachineInstr
&CopyMI
) {
1027 assert(!CP
.isPhys());
1028 if (!CopyMI
.isFullCopy())
1031 MachineBasicBlock
&MBB
= *CopyMI
.getParent();
1035 if (MBB
.pred_size() != 2)
1038 LiveInterval
&IntA
=
1039 LIS
->getInterval(CP
.isFlipped() ? CP
.getDstReg() : CP
.getSrcReg());
1040 LiveInterval
&IntB
=
1041 LIS
->getInterval(CP
.isFlipped() ? CP
.getSrcReg() : CP
.getDstReg());
1043 // A is defined by PHI at the entry of MBB.
1044 SlotIndex CopyIdx
= LIS
->getInstructionIndex(CopyMI
).getRegSlot(true);
1045 VNInfo
*AValNo
= IntA
.getVNInfoAt(CopyIdx
);
1046 assert(AValNo
&& !AValNo
->isUnused() && "COPY source not live");
1047 if (!AValNo
->isPHIDef())
1050 // No B is referenced before CopyMI in MBB.
1051 if (IntB
.overlaps(LIS
->getMBBStartIdx(&MBB
), CopyIdx
))
1054 // MBB has two predecessors: one contains A = B so no copy will be inserted
1055 // for it. The other one will have a copy moved from MBB.
1056 bool FoundReverseCopy
= false;
1057 MachineBasicBlock
*CopyLeftBB
= nullptr;
1058 for (MachineBasicBlock
*Pred
: MBB
.predecessors()) {
1059 VNInfo
*PVal
= IntA
.getVNInfoBefore(LIS
->getMBBEndIdx(Pred
));
1060 MachineInstr
*DefMI
= LIS
->getInstructionFromIndex(PVal
->def
);
1061 if (!DefMI
|| !DefMI
->isFullCopy()) {
1065 // Check DefMI is a reverse copy and it is in BB Pred.
1066 if (DefMI
->getOperand(0).getReg() != IntA
.reg
||
1067 DefMI
->getOperand(1).getReg() != IntB
.reg
||
1068 DefMI
->getParent() != Pred
) {
1072 // If there is any other def of B after DefMI and before the end of Pred,
1073 // we need to keep the copy of B = A at the end of Pred if we remove
1075 bool ValB_Changed
= false;
1076 for (auto VNI
: IntB
.valnos
) {
1077 if (VNI
->isUnused())
1079 if (PVal
->def
< VNI
->def
&& VNI
->def
< LIS
->getMBBEndIdx(Pred
)) {
1080 ValB_Changed
= true;
1088 FoundReverseCopy
= true;
1091 // If no reverse copy is found in predecessors, nothing to do.
1092 if (!FoundReverseCopy
)
1095 // If CopyLeftBB is nullptr, it means every predecessor of MBB contains
1096 // reverse copy, CopyMI can be removed trivially if only IntA/IntB is updated.
1097 // If CopyLeftBB is not nullptr, move CopyMI from MBB to CopyLeftBB and
1098 // update IntA/IntB.
1100 // If CopyLeftBB is not nullptr, ensure CopyLeftBB has a single succ so
1101 // MBB is hotter than CopyLeftBB.
1102 if (CopyLeftBB
&& CopyLeftBB
->succ_size() > 1)
1105 // Now (almost sure it's) ok to move copy.
1107 // Position in CopyLeftBB where we should insert new copy.
1108 auto InsPos
= CopyLeftBB
->getFirstTerminator();
1110 // Make sure that B isn't referenced in the terminators (if any) at the end
1111 // of the predecessor since we're about to insert a new definition of B
1113 if (InsPos
!= CopyLeftBB
->end()) {
1114 SlotIndex InsPosIdx
= LIS
->getInstructionIndex(*InsPos
).getRegSlot(true);
1115 if (IntB
.overlaps(InsPosIdx
, LIS
->getMBBEndIdx(CopyLeftBB
)))
1119 LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Move the copy to "
1120 << printMBBReference(*CopyLeftBB
) << '\t' << CopyMI
);
1122 // Insert new copy to CopyLeftBB.
1123 MachineInstr
*NewCopyMI
= BuildMI(*CopyLeftBB
, InsPos
, CopyMI
.getDebugLoc(),
1124 TII
->get(TargetOpcode::COPY
), IntB
.reg
)
1126 SlotIndex NewCopyIdx
=
1127 LIS
->InsertMachineInstrInMaps(*NewCopyMI
).getRegSlot();
1128 IntB
.createDeadDef(NewCopyIdx
, LIS
->getVNInfoAllocator());
1129 for (LiveInterval::SubRange
&SR
: IntB
.subranges())
1130 SR
.createDeadDef(NewCopyIdx
, LIS
->getVNInfoAllocator());
1132 // If the newly created Instruction has an address of an instruction that was
1133 // deleted before (object recycled by the allocator) it needs to be removed from
1134 // the deleted list.
1135 ErasedInstrs
.erase(NewCopyMI
);
1137 LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Remove the copy from "
1138 << printMBBReference(MBB
) << '\t' << CopyMI
);
1142 // Note: This is fine to remove the copy before updating the live-ranges.
1143 // While updating the live-ranges, we only look at slot indices and
1144 // never go back to the instruction.
1145 // Mark instructions as deleted.
1146 deleteInstr(&CopyMI
);
1148 // Update the liveness.
1149 SmallVector
<SlotIndex
, 8> EndPoints
;
1150 VNInfo
*BValNo
= IntB
.Query(CopyIdx
).valueOutOrDead();
1151 LIS
->pruneValue(*static_cast<LiveRange
*>(&IntB
), CopyIdx
.getRegSlot(),
1153 BValNo
->markUnused();
1154 // Extend IntB to the EndPoints of its original live interval.
1155 LIS
->extendToIndices(IntB
, EndPoints
);
1157 // Now, do the same for its subranges.
1158 for (LiveInterval::SubRange
&SR
: IntB
.subranges()) {
1160 VNInfo
*BValNo
= SR
.Query(CopyIdx
).valueOutOrDead();
1161 assert(BValNo
&& "All sublanes should be live");
1162 LIS
->pruneValue(SR
, CopyIdx
.getRegSlot(), &EndPoints
);
1163 BValNo
->markUnused();
1164 // We can have a situation where the result of the original copy is live,
1165 // but is immediately dead in this subrange, e.g. [336r,336d:0). That makes
1166 // the copy appear as an endpoint from pruneValue(), but we don't want it
1167 // to because the copy has been removed. We can go ahead and remove that
1168 // endpoint; there is no other situation here that there could be a use at
1169 // the same place as we know that the copy is a full copy.
1170 for (unsigned I
= 0; I
!= EndPoints
.size(); ) {
1171 if (SlotIndex::isSameInstr(EndPoints
[I
], CopyIdx
)) {
1172 EndPoints
[I
] = EndPoints
.back();
1173 EndPoints
.pop_back();
1178 LIS
->extendToIndices(SR
, EndPoints
);
1180 // If any dead defs were extended, truncate them.
1181 shrinkToUses(&IntB
);
1183 // Finally, update the live-range of IntA.
1184 shrinkToUses(&IntA
);
1188 /// Returns true if @p MI defines the full vreg @p Reg, as opposed to just
1189 /// defining a subregister.
1190 static bool definesFullReg(const MachineInstr
&MI
, unsigned Reg
) {
1191 assert(!TargetRegisterInfo::isPhysicalRegister(Reg
) &&
1192 "This code cannot handle physreg aliasing");
1193 for (const MachineOperand
&Op
: MI
.operands()) {
1194 if (!Op
.isReg() || !Op
.isDef() || Op
.getReg() != Reg
)
1196 // Return true if we define the full register or don't care about the value
1197 // inside other subregisters.
1198 if (Op
.getSubReg() == 0 || Op
.isUndef())
1204 bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair
&CP
,
1205 MachineInstr
*CopyMI
,
1208 unsigned SrcReg
= CP
.isFlipped() ? CP
.getDstReg() : CP
.getSrcReg();
1209 unsigned SrcIdx
= CP
.isFlipped() ? CP
.getDstIdx() : CP
.getSrcIdx();
1210 unsigned DstReg
= CP
.isFlipped() ? CP
.getSrcReg() : CP
.getDstReg();
1211 unsigned DstIdx
= CP
.isFlipped() ? CP
.getSrcIdx() : CP
.getDstIdx();
1212 if (TargetRegisterInfo::isPhysicalRegister(SrcReg
))
1215 LiveInterval
&SrcInt
= LIS
->getInterval(SrcReg
);
1216 SlotIndex CopyIdx
= LIS
->getInstructionIndex(*CopyMI
);
1217 VNInfo
*ValNo
= SrcInt
.Query(CopyIdx
).valueIn();
1220 if (ValNo
->isPHIDef() || ValNo
->isUnused())
1222 MachineInstr
*DefMI
= LIS
->getInstructionFromIndex(ValNo
->def
);
1225 if (DefMI
->isCopyLike()) {
1229 if (!TII
->isAsCheapAsAMove(*DefMI
))
1231 if (!TII
->isTriviallyReMaterializable(*DefMI
, AA
))
1233 if (!definesFullReg(*DefMI
, SrcReg
))
1235 bool SawStore
= false;
1236 if (!DefMI
->isSafeToMove(AA
, SawStore
))
1238 const MCInstrDesc
&MCID
= DefMI
->getDesc();
1239 if (MCID
.getNumDefs() != 1)
1241 // Only support subregister destinations when the def is read-undef.
1242 MachineOperand
&DstOperand
= CopyMI
->getOperand(0);
1243 unsigned CopyDstReg
= DstOperand
.getReg();
1244 if (DstOperand
.getSubReg() && !DstOperand
.isUndef())
1247 // If both SrcIdx and DstIdx are set, correct rematerialization would widen
1248 // the register substantially (beyond both source and dest size). This is bad
1249 // for performance since it can cascade through a function, introducing many
1250 // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers
1251 // around after a few subreg copies).
1252 if (SrcIdx
&& DstIdx
)
1255 const TargetRegisterClass
*DefRC
= TII
->getRegClass(MCID
, 0, TRI
, *MF
);
1256 if (!DefMI
->isImplicitDef()) {
1257 if (TargetRegisterInfo::isPhysicalRegister(DstReg
)) {
1258 unsigned NewDstReg
= DstReg
;
1260 unsigned NewDstIdx
= TRI
->composeSubRegIndices(CP
.getSrcIdx(),
1261 DefMI
->getOperand(0).getSubReg());
1263 NewDstReg
= TRI
->getSubReg(DstReg
, NewDstIdx
);
1265 // Finally, make sure that the physical subregister that will be
1266 // constructed later is permitted for the instruction.
1267 if (!DefRC
->contains(NewDstReg
))
1270 // Theoretically, some stack frame reference could exist. Just make sure
1271 // it hasn't actually happened.
1272 assert(TargetRegisterInfo::isVirtualRegister(DstReg
) &&
1273 "Only expect to deal with virtual or physical registers");
1277 DebugLoc DL
= CopyMI
->getDebugLoc();
1278 MachineBasicBlock
*MBB
= CopyMI
->getParent();
1279 MachineBasicBlock::iterator MII
=
1280 std::next(MachineBasicBlock::iterator(CopyMI
));
1281 TII
->reMaterialize(*MBB
, MII
, DstReg
, SrcIdx
, *DefMI
, *TRI
);
1282 MachineInstr
&NewMI
= *std::prev(MII
);
1283 NewMI
.setDebugLoc(DL
);
1285 // In a situation like the following:
1286 // %0:subreg = instr ; DefMI, subreg = DstIdx
1287 // %1 = copy %0:subreg ; CopyMI, SrcIdx = 0
1288 // instead of widening %1 to the register class of %0 simply do:
1290 const TargetRegisterClass
*NewRC
= CP
.getNewRC();
1292 MachineOperand
&DefMO
= NewMI
.getOperand(0);
1293 if (DefMO
.getSubReg() == DstIdx
) {
1294 assert(SrcIdx
== 0 && CP
.isFlipped()
1295 && "Shouldn't have SrcIdx+DstIdx at this point");
1296 const TargetRegisterClass
*DstRC
= MRI
->getRegClass(DstReg
);
1297 const TargetRegisterClass
*CommonRC
=
1298 TRI
->getCommonSubClass(DefRC
, DstRC
);
1299 if (CommonRC
!= nullptr) {
1303 DefMO
.setIsUndef(false); // Only subregs can have def+undef.
1308 // CopyMI may have implicit operands, save them so that we can transfer them
1309 // over to the newly materialized instruction after CopyMI is removed.
1310 SmallVector
<MachineOperand
, 4> ImplicitOps
;
1311 ImplicitOps
.reserve(CopyMI
->getNumOperands() -
1312 CopyMI
->getDesc().getNumOperands());
1313 for (unsigned I
= CopyMI
->getDesc().getNumOperands(),
1314 E
= CopyMI
->getNumOperands();
1316 MachineOperand
&MO
= CopyMI
->getOperand(I
);
1318 assert(MO
.isImplicit() && "No explicit operands after implicit operands.");
1319 // Discard VReg implicit defs.
1320 if (TargetRegisterInfo::isPhysicalRegister(MO
.getReg()))
1321 ImplicitOps
.push_back(MO
);
1325 LIS
->ReplaceMachineInstrInMaps(*CopyMI
, NewMI
);
1326 CopyMI
->eraseFromParent();
1327 ErasedInstrs
.insert(CopyMI
);
1329 // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86).
1330 // We need to remember these so we can add intervals once we insert
1331 // NewMI into SlotIndexes.
1332 SmallVector
<unsigned, 4> NewMIImplDefs
;
1333 for (unsigned i
= NewMI
.getDesc().getNumOperands(),
1334 e
= NewMI
.getNumOperands();
1336 MachineOperand
&MO
= NewMI
.getOperand(i
);
1337 if (MO
.isReg() && MO
.isDef()) {
1338 assert(MO
.isImplicit() && MO
.isDead() &&
1339 TargetRegisterInfo::isPhysicalRegister(MO
.getReg()));
1340 NewMIImplDefs
.push_back(MO
.getReg());
1344 if (TargetRegisterInfo::isVirtualRegister(DstReg
)) {
1345 unsigned NewIdx
= NewMI
.getOperand(0).getSubReg();
1347 if (DefRC
!= nullptr) {
1349 NewRC
= TRI
->getMatchingSuperRegClass(NewRC
, DefRC
, NewIdx
);
1351 NewRC
= TRI
->getCommonSubClass(NewRC
, DefRC
);
1352 assert(NewRC
&& "subreg chosen for remat incompatible with instruction");
1354 // Remap subranges to new lanemask and change register class.
1355 LiveInterval
&DstInt
= LIS
->getInterval(DstReg
);
1356 for (LiveInterval::SubRange
&SR
: DstInt
.subranges()) {
1357 SR
.LaneMask
= TRI
->composeSubRegIndexLaneMask(DstIdx
, SR
.LaneMask
);
1359 MRI
->setRegClass(DstReg
, NewRC
);
1361 // Update machine operands and add flags.
1362 updateRegDefsUses(DstReg
, DstReg
, DstIdx
);
1363 NewMI
.getOperand(0).setSubReg(NewIdx
);
1364 // updateRegDefUses can add an "undef" flag to the definition, since
1365 // it will replace DstReg with DstReg.DstIdx. If NewIdx is 0, make
1366 // sure that "undef" is not set.
1368 NewMI
.getOperand(0).setIsUndef(false);
1369 // Add dead subregister definitions if we are defining the whole register
1370 // but only part of it is live.
1371 // This could happen if the rematerialization instruction is rematerializing
1372 // more than actually is used in the register.
1373 // An example would be:
1374 // %1 = LOAD CONSTANTS 5, 8 ; Loading both 5 and 8 in different subregs
1375 // ; Copying only part of the register here, but the rest is undef.
1376 // %2:sub_16bit<def, read-undef> = COPY %1:sub_16bit
1378 // ; Materialize all the constants but only using one
1379 // %2 = LOAD_CONSTANTS 5, 8
1381 // at this point for the part that wasn't defined before we could have
1382 // subranges missing the definition.
1383 if (NewIdx
== 0 && DstInt
.hasSubRanges()) {
1384 SlotIndex CurrIdx
= LIS
->getInstructionIndex(NewMI
);
1385 SlotIndex DefIndex
=
1386 CurrIdx
.getRegSlot(NewMI
.getOperand(0).isEarlyClobber());
1387 LaneBitmask MaxMask
= MRI
->getMaxLaneMaskForVReg(DstReg
);
1388 VNInfo::Allocator
& Alloc
= LIS
->getVNInfoAllocator();
1389 for (LiveInterval::SubRange
&SR
: DstInt
.subranges()) {
1390 if (!SR
.liveAt(DefIndex
))
1391 SR
.createDeadDef(DefIndex
, Alloc
);
1392 MaxMask
&= ~SR
.LaneMask
;
1394 if (MaxMask
.any()) {
1395 LiveInterval::SubRange
*SR
= DstInt
.createSubRange(Alloc
, MaxMask
);
1396 SR
->createDeadDef(DefIndex
, Alloc
);
1400 // Make sure that the subrange for resultant undef is removed
1402 // %1:sub1<def,read-undef> = LOAD CONSTANT 1
1405 // %2:sub1<def, read-undef> = LOAD CONSTANT 1
1406 // ; Correct but need to remove the subrange for %2:sub0
1407 // ; as it is now undef
1408 if (NewIdx
!= 0 && DstInt
.hasSubRanges()) {
1409 // The affected subregister segments can be removed.
1410 SlotIndex CurrIdx
= LIS
->getInstructionIndex(NewMI
);
1411 LaneBitmask DstMask
= TRI
->getSubRegIndexLaneMask(NewIdx
);
1412 bool UpdatedSubRanges
= false;
1413 for (LiveInterval::SubRange
&SR
: DstInt
.subranges()) {
1414 if ((SR
.LaneMask
& DstMask
).none()) {
1416 << "Removing undefined SubRange "
1417 << PrintLaneMask(SR
.LaneMask
) << " : " << SR
<< "\n");
1418 // VNI is in ValNo - remove any segments in this SubRange that have this ValNo
1419 if (VNInfo
*RmValNo
= SR
.getVNInfoAt(CurrIdx
.getRegSlot())) {
1420 SR
.removeValNo(RmValNo
);
1421 UpdatedSubRanges
= true;
1425 if (UpdatedSubRanges
)
1426 DstInt
.removeEmptySubRanges();
1428 } else if (NewMI
.getOperand(0).getReg() != CopyDstReg
) {
1429 // The New instruction may be defining a sub-register of what's actually
1430 // been asked for. If so it must implicitly define the whole thing.
1431 assert(TargetRegisterInfo::isPhysicalRegister(DstReg
) &&
1432 "Only expect virtual or physical registers in remat");
1433 NewMI
.getOperand(0).setIsDead(true);
1434 NewMI
.addOperand(MachineOperand::CreateReg(
1435 CopyDstReg
, true /*IsDef*/, true /*IsImp*/, false /*IsKill*/));
1436 // Record small dead def live-ranges for all the subregisters
1437 // of the destination register.
1438 // Otherwise, variables that live through may miss some
1439 // interferences, thus creating invalid allocation.
1441 // %1 = somedef ; %1 GR8
1442 // %2 = remat ; %2 GR32
1443 // CL = COPY %2.sub_8bit
1444 // = somedef %1 ; %1 GR8
1446 // %1 = somedef ; %1 GR8
1447 // dead ECX = remat ; implicit-def CL
1448 // = somedef %1 ; %1 GR8
1449 // %1 will see the interferences with CL but not with CH since
1450 // no live-ranges would have been created for ECX.
1452 SlotIndex NewMIIdx
= LIS
->getInstructionIndex(NewMI
);
1453 for (MCRegUnitIterator
Units(NewMI
.getOperand(0).getReg(), TRI
);
1454 Units
.isValid(); ++Units
)
1455 if (LiveRange
*LR
= LIS
->getCachedRegUnit(*Units
))
1456 LR
->createDeadDef(NewMIIdx
.getRegSlot(), LIS
->getVNInfoAllocator());
1459 if (NewMI
.getOperand(0).getSubReg())
1460 NewMI
.getOperand(0).setIsUndef();
1462 // Transfer over implicit operands to the rematerialized instruction.
1463 for (MachineOperand
&MO
: ImplicitOps
)
1464 NewMI
.addOperand(MO
);
1466 SlotIndex NewMIIdx
= LIS
->getInstructionIndex(NewMI
);
1467 for (unsigned i
= 0, e
= NewMIImplDefs
.size(); i
!= e
; ++i
) {
1468 unsigned Reg
= NewMIImplDefs
[i
];
1469 for (MCRegUnitIterator
Units(Reg
, TRI
); Units
.isValid(); ++Units
)
1470 if (LiveRange
*LR
= LIS
->getCachedRegUnit(*Units
))
1471 LR
->createDeadDef(NewMIIdx
.getRegSlot(), LIS
->getVNInfoAllocator());
1474 LLVM_DEBUG(dbgs() << "Remat: " << NewMI
);
1477 // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs
1478 // to describe DstReg instead.
1479 if (MRI
->use_nodbg_empty(SrcReg
)) {
1480 for (MachineOperand
&UseMO
: MRI
->use_operands(SrcReg
)) {
1481 MachineInstr
*UseMI
= UseMO
.getParent();
1482 if (UseMI
->isDebugValue()) {
1483 if (TargetRegisterInfo::isPhysicalRegister(DstReg
))
1484 UseMO
.substPhysReg(DstReg
, *TRI
);
1486 UseMO
.setReg(DstReg
);
1487 // Move the debug value directly after the def of the rematerialized
1489 MBB
->splice(std::next(NewMI
.getIterator()), UseMI
->getParent(), UseMI
);
1490 LLVM_DEBUG(dbgs() << "\t\tupdated: " << *UseMI
);
1495 if (ToBeUpdated
.count(SrcReg
))
1498 unsigned NumCopyUses
= 0;
1499 for (MachineOperand
&UseMO
: MRI
->use_nodbg_operands(SrcReg
)) {
1500 if (UseMO
.getParent()->isCopyLike())
1503 if (NumCopyUses
< LateRematUpdateThreshold
) {
1504 // The source interval can become smaller because we removed a use.
1505 shrinkToUses(&SrcInt
, &DeadDefs
);
1506 if (!DeadDefs
.empty())
1507 eliminateDeadDefs();
1509 ToBeUpdated
.insert(SrcReg
);
1514 MachineInstr
*RegisterCoalescer::eliminateUndefCopy(MachineInstr
*CopyMI
) {
1515 // ProcessImplicitDefs may leave some copies of <undef> values, it only
1516 // removes local variables. When we have a copy like:
1518 // %1 = COPY undef %2
1520 // We delete the copy and remove the corresponding value number from %1.
1521 // Any uses of that value number are marked as <undef>.
1523 // Note that we do not query CoalescerPair here but redo isMoveInstr as the
1524 // CoalescerPair may have a new register class with adjusted subreg indices
1526 unsigned SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
;
1527 if(!isMoveInstr(*TRI
, CopyMI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
))
1530 SlotIndex Idx
= LIS
->getInstructionIndex(*CopyMI
);
1531 const LiveInterval
&SrcLI
= LIS
->getInterval(SrcReg
);
1532 // CopyMI is undef iff SrcReg is not live before the instruction.
1533 if (SrcSubIdx
!= 0 && SrcLI
.hasSubRanges()) {
1534 LaneBitmask SrcMask
= TRI
->getSubRegIndexLaneMask(SrcSubIdx
);
1535 for (const LiveInterval::SubRange
&SR
: SrcLI
.subranges()) {
1536 if ((SR
.LaneMask
& SrcMask
).none())
1541 } else if (SrcLI
.liveAt(Idx
))
1544 // If the undef copy defines a live-out value (i.e. an input to a PHI def),
1545 // then replace it with an IMPLICIT_DEF.
1546 LiveInterval
&DstLI
= LIS
->getInterval(DstReg
);
1547 SlotIndex RegIndex
= Idx
.getRegSlot();
1548 LiveRange::Segment
*Seg
= DstLI
.getSegmentContaining(RegIndex
);
1549 assert(Seg
!= nullptr && "No segment for defining instruction");
1550 if (VNInfo
*V
= DstLI
.getVNInfoAt(Seg
->end
)) {
1551 if (V
->isPHIDef()) {
1552 CopyMI
->setDesc(TII
->get(TargetOpcode::IMPLICIT_DEF
));
1553 for (unsigned i
= CopyMI
->getNumOperands(); i
!= 0; --i
) {
1554 MachineOperand
&MO
= CopyMI
->getOperand(i
-1);
1555 if (MO
.isReg() && MO
.isUse())
1556 CopyMI
->RemoveOperand(i
-1);
1558 LLVM_DEBUG(dbgs() << "\tReplaced copy of <undef> value with an "
1564 // Remove any DstReg segments starting at the instruction.
1565 LLVM_DEBUG(dbgs() << "\tEliminating copy of <undef> value\n");
1567 // Remove value or merge with previous one in case of a subregister def.
1568 if (VNInfo
*PrevVNI
= DstLI
.getVNInfoAt(Idx
)) {
1569 VNInfo
*VNI
= DstLI
.getVNInfoAt(RegIndex
);
1570 DstLI
.MergeValueNumberInto(VNI
, PrevVNI
);
1572 // The affected subregister segments can be removed.
1573 LaneBitmask DstMask
= TRI
->getSubRegIndexLaneMask(DstSubIdx
);
1574 for (LiveInterval::SubRange
&SR
: DstLI
.subranges()) {
1575 if ((SR
.LaneMask
& DstMask
).none())
1578 VNInfo
*SVNI
= SR
.getVNInfoAt(RegIndex
);
1579 assert(SVNI
!= nullptr && SlotIndex::isSameInstr(SVNI
->def
, RegIndex
));
1580 SR
.removeValNo(SVNI
);
1582 DstLI
.removeEmptySubRanges();
1584 LIS
->removeVRegDefAt(DstLI
, RegIndex
);
1586 // Mark uses as undef.
1587 for (MachineOperand
&MO
: MRI
->reg_nodbg_operands(DstReg
)) {
1588 if (MO
.isDef() /*|| MO.isUndef()*/)
1590 const MachineInstr
&MI
= *MO
.getParent();
1591 SlotIndex UseIdx
= LIS
->getInstructionIndex(MI
);
1592 LaneBitmask UseMask
= TRI
->getSubRegIndexLaneMask(MO
.getSubReg());
1594 if (!UseMask
.all() && DstLI
.hasSubRanges()) {
1596 for (const LiveInterval::SubRange
&SR
: DstLI
.subranges()) {
1597 if ((SR
.LaneMask
& UseMask
).none())
1599 if (SR
.liveAt(UseIdx
)) {
1605 isLive
= DstLI
.liveAt(UseIdx
);
1608 MO
.setIsUndef(true);
1609 LLVM_DEBUG(dbgs() << "\tnew undef: " << UseIdx
<< '\t' << MI
);
1612 // A def of a subregister may be a use of the other subregisters, so
1613 // deleting a def of a subregister may also remove uses. Since CopyMI
1614 // is still part of the function (but about to be erased), mark all
1615 // defs of DstReg in it as <undef>, so that shrinkToUses would
1617 for (MachineOperand
&MO
: CopyMI
->operands())
1618 if (MO
.isReg() && MO
.isDef() && MO
.getReg() == DstReg
)
1619 MO
.setIsUndef(true);
1620 LIS
->shrinkToUses(&DstLI
);
1625 void RegisterCoalescer::addUndefFlag(const LiveInterval
&Int
, SlotIndex UseIdx
,
1626 MachineOperand
&MO
, unsigned SubRegIdx
) {
1627 LaneBitmask Mask
= TRI
->getSubRegIndexLaneMask(SubRegIdx
);
1630 bool IsUndef
= true;
1631 for (const LiveInterval::SubRange
&S
: Int
.subranges()) {
1632 if ((S
.LaneMask
& Mask
).none())
1634 if (S
.liveAt(UseIdx
)) {
1640 MO
.setIsUndef(true);
1641 // We found out some subregister use is actually reading an undefined
1642 // value. In some cases the whole vreg has become undefined at this
1643 // point so we have to potentially shrink the main range if the
1644 // use was ending a live segment there.
1645 LiveQueryResult Q
= Int
.Query(UseIdx
);
1646 if (Q
.valueOut() == nullptr)
1647 ShrinkMainRange
= true;
1651 void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg
,
1654 bool DstIsPhys
= TargetRegisterInfo::isPhysicalRegister(DstReg
);
1655 LiveInterval
*DstInt
= DstIsPhys
? nullptr : &LIS
->getInterval(DstReg
);
1657 if (DstInt
&& DstInt
->hasSubRanges() && DstReg
!= SrcReg
) {
1658 for (MachineOperand
&MO
: MRI
->reg_operands(DstReg
)) {
1659 unsigned SubReg
= MO
.getSubReg();
1660 if (SubReg
== 0 || MO
.isUndef())
1662 MachineInstr
&MI
= *MO
.getParent();
1663 if (MI
.isDebugValue())
1665 SlotIndex UseIdx
= LIS
->getInstructionIndex(MI
).getRegSlot(true);
1666 addUndefFlag(*DstInt
, UseIdx
, MO
, SubReg
);
1670 SmallPtrSet
<MachineInstr
*, 8> Visited
;
1671 for (MachineRegisterInfo::reg_instr_iterator
1672 I
= MRI
->reg_instr_begin(SrcReg
), E
= MRI
->reg_instr_end();
1674 MachineInstr
*UseMI
= &*(I
++);
1676 // Each instruction can only be rewritten once because sub-register
1677 // composition is not always idempotent. When SrcReg != DstReg, rewriting
1678 // the UseMI operands removes them from the SrcReg use-def chain, but when
1679 // SrcReg is DstReg we could encounter UseMI twice if it has multiple
1680 // operands mentioning the virtual register.
1681 if (SrcReg
== DstReg
&& !Visited
.insert(UseMI
).second
)
1684 SmallVector
<unsigned,8> Ops
;
1686 std::tie(Reads
, Writes
) = UseMI
->readsWritesVirtualRegister(SrcReg
, &Ops
);
1688 // If SrcReg wasn't read, it may still be the case that DstReg is live-in
1689 // because SrcReg is a sub-register.
1690 if (DstInt
&& !Reads
&& SubIdx
&& !UseMI
->isDebugValue())
1691 Reads
= DstInt
->liveAt(LIS
->getInstructionIndex(*UseMI
));
1693 // Replace SrcReg with DstReg in all UseMI operands.
1694 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
) {
1695 MachineOperand
&MO
= UseMI
->getOperand(Ops
[i
]);
1697 // Adjust <undef> flags in case of sub-register joins. We don't want to
1698 // turn a full def into a read-modify-write sub-register def and vice
1700 if (SubIdx
&& MO
.isDef())
1701 MO
.setIsUndef(!Reads
);
1703 // A subreg use of a partially undef (super) register may be a complete
1704 // undef use now and then has to be marked that way.
1705 if (SubIdx
!= 0 && MO
.isUse() && MRI
->shouldTrackSubRegLiveness(DstReg
)) {
1706 if (!DstInt
->hasSubRanges()) {
1707 BumpPtrAllocator
&Allocator
= LIS
->getVNInfoAllocator();
1708 LaneBitmask Mask
= MRI
->getMaxLaneMaskForVReg(DstInt
->reg
);
1709 DstInt
->createSubRangeFrom(Allocator
, Mask
, *DstInt
);
1711 SlotIndex MIIdx
= UseMI
->isDebugValue()
1712 ? LIS
->getSlotIndexes()->getIndexBefore(*UseMI
)
1713 : LIS
->getInstructionIndex(*UseMI
);
1714 SlotIndex UseIdx
= MIIdx
.getRegSlot(true);
1715 addUndefFlag(*DstInt
, UseIdx
, MO
, SubIdx
);
1719 MO
.substPhysReg(DstReg
, *TRI
);
1721 MO
.substVirtReg(DstReg
, SubIdx
, *TRI
);
1725 dbgs() << "\t\tupdated: ";
1726 if (!UseMI
->isDebugValue())
1727 dbgs() << LIS
->getInstructionIndex(*UseMI
) << "\t";
1733 bool RegisterCoalescer::canJoinPhys(const CoalescerPair
&CP
) {
1734 // Always join simple intervals that are defined by a single copy from a
1735 // reserved register. This doesn't increase register pressure, so it is
1736 // always beneficial.
1737 if (!MRI
->isReserved(CP
.getDstReg())) {
1738 LLVM_DEBUG(dbgs() << "\tCan only merge into reserved registers.\n");
1742 LiveInterval
&JoinVInt
= LIS
->getInterval(CP
.getSrcReg());
1743 if (JoinVInt
.containsOneValue())
1747 dbgs() << "\tCannot join complex intervals into reserved register.\n");
1751 bool RegisterCoalescer::joinCopy(MachineInstr
*CopyMI
, bool &Again
) {
1753 LLVM_DEBUG(dbgs() << LIS
->getInstructionIndex(*CopyMI
) << '\t' << *CopyMI
);
1755 CoalescerPair
CP(*TRI
);
1756 if (!CP
.setRegisters(CopyMI
)) {
1757 LLVM_DEBUG(dbgs() << "\tNot coalescable.\n");
1761 if (CP
.getNewRC()) {
1762 auto SrcRC
= MRI
->getRegClass(CP
.getSrcReg());
1763 auto DstRC
= MRI
->getRegClass(CP
.getDstReg());
1764 unsigned SrcIdx
= CP
.getSrcIdx();
1765 unsigned DstIdx
= CP
.getDstIdx();
1766 if (CP
.isFlipped()) {
1767 std::swap(SrcIdx
, DstIdx
);
1768 std::swap(SrcRC
, DstRC
);
1770 if (!TRI
->shouldCoalesce(CopyMI
, SrcRC
, SrcIdx
, DstRC
, DstIdx
,
1771 CP
.getNewRC(), *LIS
)) {
1772 LLVM_DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n");
1777 // Dead code elimination. This really should be handled by MachineDCE, but
1778 // sometimes dead copies slip through, and we can't generate invalid live
1780 if (!CP
.isPhys() && CopyMI
->allDefsAreDead()) {
1781 LLVM_DEBUG(dbgs() << "\tCopy is dead.\n");
1782 DeadDefs
.push_back(CopyMI
);
1783 eliminateDeadDefs();
1787 // Eliminate undefs.
1789 // If this is an IMPLICIT_DEF, leave it alone, but don't try to coalesce.
1790 if (MachineInstr
*UndefMI
= eliminateUndefCopy(CopyMI
)) {
1791 if (UndefMI
->isImplicitDef())
1793 deleteInstr(CopyMI
);
1794 return false; // Not coalescable.
1798 // Coalesced copies are normally removed immediately, but transformations
1799 // like removeCopyByCommutingDef() can inadvertently create identity copies.
1800 // When that happens, just join the values and remove the copy.
1801 if (CP
.getSrcReg() == CP
.getDstReg()) {
1802 LiveInterval
&LI
= LIS
->getInterval(CP
.getSrcReg());
1803 LLVM_DEBUG(dbgs() << "\tCopy already coalesced: " << LI
<< '\n');
1804 const SlotIndex CopyIdx
= LIS
->getInstructionIndex(*CopyMI
);
1805 LiveQueryResult LRQ
= LI
.Query(CopyIdx
);
1806 if (VNInfo
*DefVNI
= LRQ
.valueDefined()) {
1807 VNInfo
*ReadVNI
= LRQ
.valueIn();
1808 assert(ReadVNI
&& "No value before copy and no <undef> flag.");
1809 assert(ReadVNI
!= DefVNI
&& "Cannot read and define the same value.");
1810 LI
.MergeValueNumberInto(DefVNI
, ReadVNI
);
1812 // Process subregister liveranges.
1813 for (LiveInterval::SubRange
&S
: LI
.subranges()) {
1814 LiveQueryResult SLRQ
= S
.Query(CopyIdx
);
1815 if (VNInfo
*SDefVNI
= SLRQ
.valueDefined()) {
1816 VNInfo
*SReadVNI
= SLRQ
.valueIn();
1817 S
.MergeValueNumberInto(SDefVNI
, SReadVNI
);
1820 LLVM_DEBUG(dbgs() << "\tMerged values: " << LI
<< '\n');
1822 deleteInstr(CopyMI
);
1826 // Enforce policies.
1828 LLVM_DEBUG(dbgs() << "\tConsidering merging "
1829 << printReg(CP
.getSrcReg(), TRI
) << " with "
1830 << printReg(CP
.getDstReg(), TRI
, CP
.getSrcIdx()) << '\n');
1831 if (!canJoinPhys(CP
)) {
1832 // Before giving up coalescing, if definition of source is defined by
1833 // trivial computation, try rematerializing it.
1835 if (reMaterializeTrivialDef(CP
, CopyMI
, IsDefCopy
))
1838 Again
= true; // May be possible to coalesce later.
1842 // When possible, let DstReg be the larger interval.
1843 if (!CP
.isPartial() && LIS
->getInterval(CP
.getSrcReg()).size() >
1844 LIS
->getInterval(CP
.getDstReg()).size())
1848 dbgs() << "\tConsidering merging to "
1849 << TRI
->getRegClassName(CP
.getNewRC()) << " with ";
1850 if (CP
.getDstIdx() && CP
.getSrcIdx())
1851 dbgs() << printReg(CP
.getDstReg()) << " in "
1852 << TRI
->getSubRegIndexName(CP
.getDstIdx()) << " and "
1853 << printReg(CP
.getSrcReg()) << " in "
1854 << TRI
->getSubRegIndexName(CP
.getSrcIdx()) << '\n';
1856 dbgs() << printReg(CP
.getSrcReg(), TRI
) << " in "
1857 << printReg(CP
.getDstReg(), TRI
, CP
.getSrcIdx()) << '\n';
1861 ShrinkMask
= LaneBitmask::getNone();
1862 ShrinkMainRange
= false;
1864 // Okay, attempt to join these two intervals. On failure, this returns false.
1865 // Otherwise, if one of the intervals being joined is a physreg, this method
1866 // always canonicalizes DstInt to be it. The output "SrcInt" will not have
1867 // been modified, so we can use this information below to update aliases.
1868 if (!joinIntervals(CP
)) {
1869 // Coalescing failed.
1871 // If definition of source is defined by trivial computation, try
1872 // rematerializing it.
1874 if (reMaterializeTrivialDef(CP
, CopyMI
, IsDefCopy
))
1877 // If we can eliminate the copy without merging the live segments, do so
1879 if (!CP
.isPartial() && !CP
.isPhys()) {
1880 bool Changed
= adjustCopiesBackFrom(CP
, CopyMI
);
1881 bool Shrink
= false;
1883 std::tie(Changed
, Shrink
) = removeCopyByCommutingDef(CP
, CopyMI
);
1885 deleteInstr(CopyMI
);
1887 unsigned DstReg
= CP
.isFlipped() ? CP
.getSrcReg() : CP
.getDstReg();
1888 LiveInterval
&DstLI
= LIS
->getInterval(DstReg
);
1889 shrinkToUses(&DstLI
);
1890 LLVM_DEBUG(dbgs() << "\t\tshrunk: " << DstLI
<< '\n');
1892 LLVM_DEBUG(dbgs() << "\tTrivial!\n");
1897 // Try and see if we can partially eliminate the copy by moving the copy to
1899 if (!CP
.isPartial() && !CP
.isPhys())
1900 if (removePartialRedundancy(CP
, *CopyMI
))
1903 // Otherwise, we are unable to join the intervals.
1904 LLVM_DEBUG(dbgs() << "\tInterference!\n");
1905 Again
= true; // May be possible to coalesce later.
1909 // Coalescing to a virtual register that is of a sub-register class of the
1910 // other. Make sure the resulting register is set to the right register class.
1911 if (CP
.isCrossClass()) {
1913 MRI
->setRegClass(CP
.getDstReg(), CP
.getNewRC());
1916 // Removing sub-register copies can ease the register class constraints.
1917 // Make sure we attempt to inflate the register class of DstReg.
1918 if (!CP
.isPhys() && RegClassInfo
.isProperSubClass(CP
.getNewRC()))
1919 InflateRegs
.push_back(CP
.getDstReg());
1921 // CopyMI has been erased by joinIntervals at this point. Remove it from
1922 // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back
1923 // to the work list. This keeps ErasedInstrs from growing needlessly.
1924 ErasedInstrs
.erase(CopyMI
);
1926 // Rewrite all SrcReg operands to DstReg.
1927 // Also update DstReg operands to include DstIdx if it is set.
1929 updateRegDefsUses(CP
.getDstReg(), CP
.getDstReg(), CP
.getDstIdx());
1930 updateRegDefsUses(CP
.getSrcReg(), CP
.getDstReg(), CP
.getSrcIdx());
1932 // Shrink subregister ranges if necessary.
1933 if (ShrinkMask
.any()) {
1934 LiveInterval
&LI
= LIS
->getInterval(CP
.getDstReg());
1935 for (LiveInterval::SubRange
&S
: LI
.subranges()) {
1936 if ((S
.LaneMask
& ShrinkMask
).none())
1938 LLVM_DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S
.LaneMask
)
1940 LIS
->shrinkToUses(S
, LI
.reg
);
1942 LI
.removeEmptySubRanges();
1945 // CP.getSrcReg()'s live interval has been merged into CP.getDstReg's live
1946 // interval. Since CP.getSrcReg() is in ToBeUpdated set and its live interval
1947 // is not up-to-date, need to update the merged live interval here.
1948 if (ToBeUpdated
.count(CP
.getSrcReg()))
1949 ShrinkMainRange
= true;
1951 if (ShrinkMainRange
) {
1952 LiveInterval
&LI
= LIS
->getInterval(CP
.getDstReg());
1956 // SrcReg is guaranteed to be the register whose live interval that is
1958 LIS
->removeInterval(CP
.getSrcReg());
1960 // Update regalloc hint.
1961 TRI
->updateRegAllocHint(CP
.getSrcReg(), CP
.getDstReg(), *MF
);
1964 dbgs() << "\tSuccess: " << printReg(CP
.getSrcReg(), TRI
, CP
.getSrcIdx())
1965 << " -> " << printReg(CP
.getDstReg(), TRI
, CP
.getDstIdx()) << '\n';
1966 dbgs() << "\tResult = ";
1968 dbgs() << printReg(CP
.getDstReg(), TRI
);
1970 dbgs() << LIS
->getInterval(CP
.getDstReg());
1978 bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair
&CP
) {
1979 unsigned DstReg
= CP
.getDstReg();
1980 unsigned SrcReg
= CP
.getSrcReg();
1981 assert(CP
.isPhys() && "Must be a physreg copy");
1982 assert(MRI
->isReserved(DstReg
) && "Not a reserved register");
1983 LiveInterval
&RHS
= LIS
->getInterval(SrcReg
);
1984 LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS
<< '\n');
1986 assert(RHS
.containsOneValue() && "Invalid join with reserved register");
1988 // Optimization for reserved registers like ESP. We can only merge with a
1989 // reserved physreg if RHS has a single value that is a copy of DstReg.
1990 // The live range of the reserved register will look like a set of dead defs
1991 // - we don't properly track the live range of reserved registers.
1993 // Deny any overlapping intervals. This depends on all the reserved
1994 // register live ranges to look like dead defs.
1995 if (!MRI
->isConstantPhysReg(DstReg
)) {
1996 for (MCRegUnitIterator
UI(DstReg
, TRI
); UI
.isValid(); ++UI
) {
1997 // Abort if not all the regunits are reserved.
1998 for (MCRegUnitRootIterator
RI(*UI
, TRI
); RI
.isValid(); ++RI
) {
1999 if (!MRI
->isReserved(*RI
))
2002 if (RHS
.overlaps(LIS
->getRegUnit(*UI
))) {
2003 LLVM_DEBUG(dbgs() << "\t\tInterference: " << printRegUnit(*UI
, TRI
)
2009 // We must also check for overlaps with regmask clobbers.
2010 BitVector RegMaskUsable
;
2011 if (LIS
->checkRegMaskInterference(RHS
, RegMaskUsable
) &&
2012 !RegMaskUsable
.test(DstReg
)) {
2013 LLVM_DEBUG(dbgs() << "\t\tRegMask interference\n");
2018 // Skip any value computations, we are not adding new values to the
2019 // reserved register. Also skip merging the live ranges, the reserved
2020 // register live range doesn't need to be accurate as long as all the
2023 // Delete the identity copy.
2024 MachineInstr
*CopyMI
;
2025 if (CP
.isFlipped()) {
2026 // Physreg is copied into vreg
2027 // %y = COPY %physreg_x
2028 // ... //< no other def of %physreg_x here
2033 CopyMI
= MRI
->getVRegDef(SrcReg
);
2035 // VReg is copied into physreg:
2037 // ... //< no other def or use of %physreg_x here
2038 // %physreg_x = COPY %y
2042 if (!MRI
->hasOneNonDBGUse(SrcReg
)) {
2043 LLVM_DEBUG(dbgs() << "\t\tMultiple vreg uses!\n");
2047 if (!LIS
->intervalIsInOneMBB(RHS
)) {
2048 LLVM_DEBUG(dbgs() << "\t\tComplex control flow!\n");
2052 MachineInstr
&DestMI
= *MRI
->getVRegDef(SrcReg
);
2053 CopyMI
= &*MRI
->use_instr_nodbg_begin(SrcReg
);
2054 SlotIndex CopyRegIdx
= LIS
->getInstructionIndex(*CopyMI
).getRegSlot();
2055 SlotIndex DestRegIdx
= LIS
->getInstructionIndex(DestMI
).getRegSlot();
2057 if (!MRI
->isConstantPhysReg(DstReg
)) {
2058 // We checked above that there are no interfering defs of the physical
2059 // register. However, for this case, where we intend to move up the def of
2060 // the physical register, we also need to check for interfering uses.
2061 SlotIndexes
*Indexes
= LIS
->getSlotIndexes();
2062 for (SlotIndex SI
= Indexes
->getNextNonNullIndex(DestRegIdx
);
2063 SI
!= CopyRegIdx
; SI
= Indexes
->getNextNonNullIndex(SI
)) {
2064 MachineInstr
*MI
= LIS
->getInstructionFromIndex(SI
);
2065 if (MI
->readsRegister(DstReg
, TRI
)) {
2066 LLVM_DEBUG(dbgs() << "\t\tInterference (read): " << *MI
);
2072 // We're going to remove the copy which defines a physical reserved
2073 // register, so remove its valno, etc.
2074 LLVM_DEBUG(dbgs() << "\t\tRemoving phys reg def of "
2075 << printReg(DstReg
, TRI
) << " at " << CopyRegIdx
<< "\n");
2077 LIS
->removePhysRegDefAt(DstReg
, CopyRegIdx
);
2078 // Create a new dead def at the new def location.
2079 for (MCRegUnitIterator
UI(DstReg
, TRI
); UI
.isValid(); ++UI
) {
2080 LiveRange
&LR
= LIS
->getRegUnit(*UI
);
2081 LR
.createDeadDef(DestRegIdx
, LIS
->getVNInfoAllocator());
2085 deleteInstr(CopyMI
);
2087 // We don't track kills for reserved registers.
2088 MRI
->clearKillFlags(CP
.getSrcReg());
2093 //===----------------------------------------------------------------------===//
2094 // Interference checking and interval joining
2095 //===----------------------------------------------------------------------===//
2097 // In the easiest case, the two live ranges being joined are disjoint, and
2098 // there is no interference to consider. It is quite common, though, to have
2099 // overlapping live ranges, and we need to check if the interference can be
2102 // The live range of a single SSA value forms a sub-tree of the dominator tree.
2103 // This means that two SSA values overlap if and only if the def of one value
2104 // is contained in the live range of the other value. As a special case, the
2105 // overlapping values can be defined at the same index.
2107 // The interference from an overlapping def can be resolved in these cases:
2109 // 1. Coalescable copies. The value is defined by a copy that would become an
2110 // identity copy after joining SrcReg and DstReg. The copy instruction will
2111 // be removed, and the value will be merged with the source value.
2113 // There can be several copies back and forth, causing many values to be
2114 // merged into one. We compute a list of ultimate values in the joined live
2115 // range as well as a mappings from the old value numbers.
2117 // 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI
2118 // predecessors have a live out value. It doesn't cause real interference,
2119 // and can be merged into the value it overlaps. Like a coalescable copy, it
2120 // can be erased after joining.
2122 // 3. Copy of external value. The overlapping def may be a copy of a value that
2123 // is already in the other register. This is like a coalescable copy, but
2124 // the live range of the source register must be trimmed after erasing the
2125 // copy instruction:
2128 // %dst = COPY %ext <-- Remove this COPY, trim the live range of %ext.
2130 // 4. Clobbering undefined lanes. Vector registers are sometimes built by
2131 // defining one lane at a time:
2133 // %dst:ssub0<def,read-undef> = FOO
2135 // %dst:ssub1 = COPY %src
2137 // The live range of %src overlaps the %dst value defined by FOO, but
2138 // merging %src into %dst:ssub1 is only going to clobber the ssub1 lane
2139 // which was undef anyway.
2141 // The value mapping is more complicated in this case. The final live range
2142 // will have different value numbers for both FOO and BAR, but there is no
2143 // simple mapping from old to new values. It may even be necessary to add
2146 // 5. Clobbering dead lanes. A def may clobber a lane of a vector register that
2147 // is live, but never read. This can happen because we don't compute
2148 // individual live ranges per lane.
2152 // %dst:ssub1 = COPY %src
2154 // This kind of interference is only resolved locally. If the clobbered
2155 // lane value escapes the block, the join is aborted.
2159 /// Track information about values in a single virtual register about to be
2160 /// joined. Objects of this class are always created in pairs - one for each
2161 /// side of the CoalescerPair (or one for each lane of a side of the coalescer
2164 /// Live range we work on.
2167 /// (Main) register we work on.
2170 /// Reg (and therefore the values in this liverange) will end up as
2171 /// subregister SubIdx in the coalesced register. Either CP.DstIdx or
2173 const unsigned SubIdx
;
2175 /// The LaneMask that this liverange will occupy the coalesced register. May
2176 /// be smaller than the lanemask produced by SubIdx when merging subranges.
2177 const LaneBitmask LaneMask
;
2179 /// This is true when joining sub register ranges, false when joining main
2181 const bool SubRangeJoin
;
2183 /// Whether the current LiveInterval tracks subregister liveness.
2184 const bool TrackSubRegLiveness
;
2186 /// Values that will be present in the final live range.
2187 SmallVectorImpl
<VNInfo
*> &NewVNInfo
;
2189 const CoalescerPair
&CP
;
2191 SlotIndexes
*Indexes
;
2192 const TargetRegisterInfo
*TRI
;
2194 /// Value number assignments. Maps value numbers in LI to entries in
2195 /// NewVNInfo. This is suitable for passing to LiveInterval::join().
2196 SmallVector
<int, 8> Assignments
;
2198 /// Conflict resolution for overlapping values.
2199 enum ConflictResolution
{
2200 /// No overlap, simply keep this value.
2203 /// Merge this value into OtherVNI and erase the defining instruction.
2204 /// Used for IMPLICIT_DEF, coalescable copies, and copies from external
2208 /// Merge this value into OtherVNI but keep the defining instruction.
2209 /// This is for the special case where OtherVNI is defined by the same
2213 /// Keep this value, and have it replace OtherVNI where possible. This
2214 /// complicates value mapping since OtherVNI maps to two different values
2215 /// before and after this def.
2216 /// Used when clobbering undefined or dead lanes.
2219 /// Unresolved conflict. Visit later when all values have been mapped.
2222 /// Unresolvable conflict. Abort the join.
2226 /// Per-value info for LI. The lane bit masks are all relative to the final
2227 /// joined register, so they can be compared directly between SrcReg and
2230 ConflictResolution Resolution
= CR_Keep
;
2232 /// Lanes written by this def, 0 for unanalyzed values.
2233 LaneBitmask WriteLanes
;
2235 /// Lanes with defined values in this register. Other lanes are undef and
2236 /// safe to clobber.
2237 LaneBitmask ValidLanes
;
2239 /// Value in LI being redefined by this def.
2240 VNInfo
*RedefVNI
= nullptr;
2242 /// Value in the other live range that overlaps this def, if any.
2243 VNInfo
*OtherVNI
= nullptr;
2245 /// Is this value an IMPLICIT_DEF that can be erased?
2247 /// IMPLICIT_DEF values should only exist at the end of a basic block that
2248 /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be
2249 /// safely erased if they are overlapping a live value in the other live
2252 /// Weird control flow graphs and incomplete PHI handling in
2253 /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with
2254 /// longer live ranges. Such IMPLICIT_DEF values should be treated like
2256 bool ErasableImplicitDef
= false;
2258 /// True when the live range of this value will be pruned because of an
2259 /// overlapping CR_Replace value in the other live range.
2260 bool Pruned
= false;
2262 /// True once Pruned above has been computed.
2263 bool PrunedComputed
= false;
2265 /// True if this value is determined to be identical to OtherVNI
2266 /// (in valuesIdentical). This is used with CR_Erase where the erased
2267 /// copy is redundant, i.e. the source value is already the same as
2268 /// the destination. In such cases the subranges need to be updated
2269 /// properly. See comment at pruneSubRegValues for more info.
2270 bool Identical
= false;
2274 bool isAnalyzed() const { return WriteLanes
.any(); }
2277 /// One entry per value number in LI.
2278 SmallVector
<Val
, 8> Vals
;
2280 /// Compute the bitmask of lanes actually written by DefMI.
2281 /// Set Redef if there are any partial register definitions that depend on the
2282 /// previous value of the register.
2283 LaneBitmask
computeWriteLanes(const MachineInstr
*DefMI
, bool &Redef
) const;
2285 /// Find the ultimate value that VNI was copied from.
2286 std::pair
<const VNInfo
*,unsigned> followCopyChain(const VNInfo
*VNI
) const;
2288 bool valuesIdentical(VNInfo
*Value0
, VNInfo
*Value1
, const JoinVals
&Other
) const;
2290 /// Analyze ValNo in this live range, and set all fields of Vals[ValNo].
2291 /// Return a conflict resolution when possible, but leave the hard cases as
2293 /// Recursively calls computeAssignment() on this and Other, guaranteeing that
2294 /// both OtherVNI and RedefVNI have been analyzed and mapped before returning.
2295 /// The recursion always goes upwards in the dominator tree, making loops
2297 ConflictResolution
analyzeValue(unsigned ValNo
, JoinVals
&Other
);
2299 /// Compute the value assignment for ValNo in RI.
2300 /// This may be called recursively by analyzeValue(), but never for a ValNo on
2302 void computeAssignment(unsigned ValNo
, JoinVals
&Other
);
2304 /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute
2305 /// the extent of the tainted lanes in the block.
2307 /// Multiple values in Other.LR can be affected since partial redefinitions
2308 /// can preserve previously tainted lanes.
2310 /// 1 %dst = VLOAD <-- Define all lanes in %dst
2311 /// 2 %src = FOO <-- ValNo to be joined with %dst:ssub0
2312 /// 3 %dst:ssub1 = BAR <-- Partial redef doesn't clear taint in ssub0
2313 /// 4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read
2315 /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes)
2316 /// entry to TaintedVals.
2318 /// Returns false if the tainted lanes extend beyond the basic block.
2320 taintExtent(unsigned ValNo
, LaneBitmask TaintedLanes
, JoinVals
&Other
,
2321 SmallVectorImpl
<std::pair
<SlotIndex
, LaneBitmask
>> &TaintExtent
);
2323 /// Return true if MI uses any of the given Lanes from Reg.
2324 /// This does not include partial redefinitions of Reg.
2325 bool usesLanes(const MachineInstr
&MI
, unsigned, unsigned, LaneBitmask
) const;
2327 /// Determine if ValNo is a copy of a value number in LR or Other.LR that will
2330 /// %dst = COPY %src
2331 /// %src = COPY %dst <-- This value to be pruned.
2332 /// %dst = COPY %src <-- This value is a copy of a pruned value.
2333 bool isPrunedValue(unsigned ValNo
, JoinVals
&Other
);
2336 JoinVals(LiveRange
&LR
, unsigned Reg
, unsigned SubIdx
, LaneBitmask LaneMask
,
2337 SmallVectorImpl
<VNInfo
*> &newVNInfo
, const CoalescerPair
&cp
,
2338 LiveIntervals
*lis
, const TargetRegisterInfo
*TRI
, bool SubRangeJoin
,
2339 bool TrackSubRegLiveness
)
2340 : LR(LR
), Reg(Reg
), SubIdx(SubIdx
), LaneMask(LaneMask
),
2341 SubRangeJoin(SubRangeJoin
), TrackSubRegLiveness(TrackSubRegLiveness
),
2342 NewVNInfo(newVNInfo
), CP(cp
), LIS(lis
), Indexes(LIS
->getSlotIndexes()),
2343 TRI(TRI
), Assignments(LR
.getNumValNums(), -1), Vals(LR
.getNumValNums()) {}
2345 /// Analyze defs in LR and compute a value mapping in NewVNInfo.
2346 /// Returns false if any conflicts were impossible to resolve.
2347 bool mapValues(JoinVals
&Other
);
2349 /// Try to resolve conflicts that require all values to be mapped.
2350 /// Returns false if any conflicts were impossible to resolve.
2351 bool resolveConflicts(JoinVals
&Other
);
2353 /// Prune the live range of values in Other.LR where they would conflict with
2354 /// CR_Replace values in LR. Collect end points for restoring the live range
2356 void pruneValues(JoinVals
&Other
, SmallVectorImpl
<SlotIndex
> &EndPoints
,
2359 /// Removes subranges starting at copies that get removed. This sometimes
2360 /// happens when undefined subranges are copied around. These ranges contain
2361 /// no useful information and can be removed.
2362 void pruneSubRegValues(LiveInterval
&LI
, LaneBitmask
&ShrinkMask
);
2364 /// Pruning values in subranges can lead to removing segments in these
2365 /// subranges started by IMPLICIT_DEFs. The corresponding segments in
2366 /// the main range also need to be removed. This function will mark
2367 /// the corresponding values in the main range as pruned, so that
2368 /// eraseInstrs can do the final cleanup.
2369 /// The parameter @p LI must be the interval whose main range is the
2371 void pruneMainSegments(LiveInterval
&LI
, bool &ShrinkMainRange
);
2373 /// Erase any machine instructions that have been coalesced away.
2374 /// Add erased instructions to ErasedInstrs.
2375 /// Add foreign virtual registers to ShrinkRegs if their live range ended at
2376 /// the erased instrs.
2377 void eraseInstrs(SmallPtrSetImpl
<MachineInstr
*> &ErasedInstrs
,
2378 SmallVectorImpl
<unsigned> &ShrinkRegs
,
2379 LiveInterval
*LI
= nullptr);
2381 /// Remove liverange defs at places where implicit defs will be removed.
2382 void removeImplicitDefs();
2384 /// Get the value assignments suitable for passing to LiveInterval::join.
2385 const int *getAssignments() const { return Assignments
.data(); }
2388 } // end anonymous namespace
2390 LaneBitmask
JoinVals::computeWriteLanes(const MachineInstr
*DefMI
, bool &Redef
)
2393 for (const MachineOperand
&MO
: DefMI
->operands()) {
2394 if (!MO
.isReg() || MO
.getReg() != Reg
|| !MO
.isDef())
2396 L
|= TRI
->getSubRegIndexLaneMask(
2397 TRI
->composeSubRegIndices(SubIdx
, MO
.getSubReg()));
2404 std::pair
<const VNInfo
*, unsigned> JoinVals::followCopyChain(
2405 const VNInfo
*VNI
) const {
2406 unsigned TrackReg
= Reg
;
2408 while (!VNI
->isPHIDef()) {
2409 SlotIndex Def
= VNI
->def
;
2410 MachineInstr
*MI
= Indexes
->getInstructionFromIndex(Def
);
2411 assert(MI
&& "No defining instruction");
2412 if (!MI
->isFullCopy())
2413 return std::make_pair(VNI
, TrackReg
);
2414 unsigned SrcReg
= MI
->getOperand(1).getReg();
2415 if (!TargetRegisterInfo::isVirtualRegister(SrcReg
))
2416 return std::make_pair(VNI
, TrackReg
);
2418 const LiveInterval
&LI
= LIS
->getInterval(SrcReg
);
2419 const VNInfo
*ValueIn
;
2420 // No subrange involved.
2421 if (!SubRangeJoin
|| !LI
.hasSubRanges()) {
2422 LiveQueryResult LRQ
= LI
.Query(Def
);
2423 ValueIn
= LRQ
.valueIn();
2425 // Query subranges. Ensure that all matching ones take us to the same def
2426 // (allowing some of them to be undef).
2428 for (const LiveInterval::SubRange
&S
: LI
.subranges()) {
2429 // Transform lanemask to a mask in the joined live interval.
2430 LaneBitmask SMask
= TRI
->composeSubRegIndexLaneMask(SubIdx
, S
.LaneMask
);
2431 if ((SMask
& LaneMask
).none())
2433 LiveQueryResult LRQ
= S
.Query(Def
);
2435 ValueIn
= LRQ
.valueIn();
2438 if (LRQ
.valueIn() && ValueIn
!= LRQ
.valueIn())
2439 return std::make_pair(VNI
, TrackReg
);
2442 if (ValueIn
== nullptr) {
2443 // Reaching an undefined value is legitimate, for example:
2445 // 1 undef %0.sub1 = ... ;; %0.sub0 == undef
2446 // 2 %1 = COPY %0 ;; %1 is defined here.
2447 // 3 %0 = COPY %1 ;; Now %0.sub0 has a definition,
2448 // ;; but it's equivalent to "undef".
2449 return std::make_pair(nullptr, SrcReg
);
2454 return std::make_pair(VNI
, TrackReg
);
2457 bool JoinVals::valuesIdentical(VNInfo
*Value0
, VNInfo
*Value1
,
2458 const JoinVals
&Other
) const {
2459 const VNInfo
*Orig0
;
2461 std::tie(Orig0
, Reg0
) = followCopyChain(Value0
);
2462 if (Orig0
== Value1
&& Reg0
== Other
.Reg
)
2465 const VNInfo
*Orig1
;
2467 std::tie(Orig1
, Reg1
) = Other
.followCopyChain(Value1
);
2468 // If both values are undefined, and the source registers are the same
2469 // register, the values are identical. Filter out cases where only one
2470 // value is defined.
2471 if (Orig0
== nullptr || Orig1
== nullptr)
2472 return Orig0
== Orig1
&& Reg0
== Reg1
;
2474 // The values are equal if they are defined at the same place and use the
2475 // same register. Note that we cannot compare VNInfos directly as some of
2476 // them might be from a copy created in mergeSubRangeInto() while the other
2477 // is from the original LiveInterval.
2478 return Orig0
->def
== Orig1
->def
&& Reg0
== Reg1
;
2481 JoinVals::ConflictResolution
2482 JoinVals::analyzeValue(unsigned ValNo
, JoinVals
&Other
) {
2483 Val
&V
= Vals
[ValNo
];
2484 assert(!V
.isAnalyzed() && "Value has already been analyzed!");
2485 VNInfo
*VNI
= LR
.getValNumInfo(ValNo
);
2486 if (VNI
->isUnused()) {
2487 V
.WriteLanes
= LaneBitmask::getAll();
2491 // Get the instruction defining this value, compute the lanes written.
2492 const MachineInstr
*DefMI
= nullptr;
2493 if (VNI
->isPHIDef()) {
2494 // Conservatively assume that all lanes in a PHI are valid.
2495 LaneBitmask Lanes
= SubRangeJoin
? LaneBitmask::getLane(0)
2496 : TRI
->getSubRegIndexLaneMask(SubIdx
);
2497 V
.ValidLanes
= V
.WriteLanes
= Lanes
;
2499 DefMI
= Indexes
->getInstructionFromIndex(VNI
->def
);
2500 assert(DefMI
!= nullptr);
2502 // We don't care about the lanes when joining subregister ranges.
2503 V
.WriteLanes
= V
.ValidLanes
= LaneBitmask::getLane(0);
2504 if (DefMI
->isImplicitDef()) {
2505 V
.ValidLanes
= LaneBitmask::getNone();
2506 V
.ErasableImplicitDef
= true;
2510 V
.ValidLanes
= V
.WriteLanes
= computeWriteLanes(DefMI
, Redef
);
2512 // If this is a read-modify-write instruction, there may be more valid
2513 // lanes than the ones written by this instruction.
2514 // This only covers partial redef operands. DefMI may have normal use
2515 // operands reading the register. They don't contribute valid lanes.
2517 // This adds ssub1 to the set of valid lanes in %src:
2521 // This leaves only ssub1 valid, making any other lanes undef:
2523 // %src:ssub1<def,read-undef> = FOO %src:ssub2
2525 // The <read-undef> flag on the def operand means that old lane values are
2528 V
.RedefVNI
= LR
.Query(VNI
->def
).valueIn();
2529 assert((TrackSubRegLiveness
|| V
.RedefVNI
) &&
2530 "Instruction is reading nonexistent value");
2531 if (V
.RedefVNI
!= nullptr) {
2532 computeAssignment(V
.RedefVNI
->id
, Other
);
2533 V
.ValidLanes
|= Vals
[V
.RedefVNI
->id
].ValidLanes
;
2537 // An IMPLICIT_DEF writes undef values.
2538 if (DefMI
->isImplicitDef()) {
2539 // We normally expect IMPLICIT_DEF values to be live only until the end
2540 // of their block. If the value is really live longer and gets pruned in
2541 // another block, this flag is cleared again.
2543 // Clearing the valid lanes is deferred until it is sure this can be
2545 V
.ErasableImplicitDef
= true;
2550 // Find the value in Other that overlaps VNI->def, if any.
2551 LiveQueryResult OtherLRQ
= Other
.LR
.Query(VNI
->def
);
2553 // It is possible that both values are defined by the same instruction, or
2554 // the values are PHIs defined in the same block. When that happens, the two
2555 // values should be merged into one, but not into any preceding value.
2556 // The first value defined or visited gets CR_Keep, the other gets CR_Merge.
2557 if (VNInfo
*OtherVNI
= OtherLRQ
.valueDefined()) {
2558 assert(SlotIndex::isSameInstr(VNI
->def
, OtherVNI
->def
) && "Broken LRQ");
2560 // One value stays, the other is merged. Keep the earlier one, or the first
2562 if (OtherVNI
->def
< VNI
->def
)
2563 Other
.computeAssignment(OtherVNI
->id
, *this);
2564 else if (VNI
->def
< OtherVNI
->def
&& OtherLRQ
.valueIn()) {
2565 // This is an early-clobber def overlapping a live-in value in the other
2566 // register. Not mergeable.
2567 V
.OtherVNI
= OtherLRQ
.valueIn();
2568 return CR_Impossible
;
2570 V
.OtherVNI
= OtherVNI
;
2571 Val
&OtherV
= Other
.Vals
[OtherVNI
->id
];
2572 // Keep this value, check for conflicts when analyzing OtherVNI.
2573 if (!OtherV
.isAnalyzed())
2575 // Both sides have been analyzed now.
2576 // Allow overlapping PHI values. Any real interference would show up in a
2577 // predecessor, the PHI itself can't introduce any conflicts.
2578 if (VNI
->isPHIDef())
2580 if ((V
.ValidLanes
& OtherV
.ValidLanes
).any())
2581 // Overlapping lanes can't be resolved.
2582 return CR_Impossible
;
2587 // No simultaneous def. Is Other live at the def?
2588 V
.OtherVNI
= OtherLRQ
.valueIn();
2590 // No overlap, no conflict.
2593 assert(!SlotIndex::isSameInstr(VNI
->def
, V
.OtherVNI
->def
) && "Broken LRQ");
2595 // We have overlapping values, or possibly a kill of Other.
2596 // Recursively compute assignments up the dominator tree.
2597 Other
.computeAssignment(V
.OtherVNI
->id
, *this);
2598 Val
&OtherV
= Other
.Vals
[V
.OtherVNI
->id
];
2600 if (OtherV
.ErasableImplicitDef
) {
2601 // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block.
2602 // This shouldn't normally happen, but ProcessImplicitDefs can leave such
2603 // IMPLICIT_DEF instructions behind, and there is nothing wrong with it
2606 // When it happens, treat that IMPLICIT_DEF as a normal value, and don't try
2607 // to erase the IMPLICIT_DEF instruction.
2609 DefMI
->getParent() != Indexes
->getMBBFromIndex(V
.OtherVNI
->def
)) {
2610 LLVM_DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V
.OtherVNI
->def
2612 << printMBBReference(*DefMI
->getParent())
2613 << ", keeping it.\n");
2614 OtherV
.ErasableImplicitDef
= false;
2616 // We deferred clearing these lanes in case we needed to save them
2617 OtherV
.ValidLanes
&= ~OtherV
.WriteLanes
;
2621 // Allow overlapping PHI values. Any real interference would show up in a
2622 // predecessor, the PHI itself can't introduce any conflicts.
2623 if (VNI
->isPHIDef())
2626 // Check for simple erasable conflicts.
2627 if (DefMI
->isImplicitDef()) {
2628 // We need the def for the subregister if there is nothing else live at the
2629 // subrange at this point.
2630 if (TrackSubRegLiveness
2631 && (V
.WriteLanes
& (OtherV
.ValidLanes
| OtherV
.WriteLanes
)).none())
2636 // Include the non-conflict where DefMI is a coalescable copy that kills
2637 // OtherVNI. We still want the copy erased and value numbers merged.
2638 if (CP
.isCoalescable(DefMI
)) {
2639 // Some of the lanes copied from OtherVNI may be undef, making them undef
2641 V
.ValidLanes
&= ~V
.WriteLanes
| OtherV
.ValidLanes
;
2645 // This may not be a real conflict if DefMI simply kills Other and defines
2647 if (OtherLRQ
.isKill() && OtherLRQ
.endPoint() <= VNI
->def
)
2650 // Handle the case where VNI and OtherVNI can be proven to be identical:
2652 // %other = COPY %ext
2653 // %this = COPY %ext <-- Erase this copy
2655 if (DefMI
->isFullCopy() && !CP
.isPartial() &&
2656 valuesIdentical(VNI
, V
.OtherVNI
, Other
)) {
2661 // The remaining checks apply to the lanes, which aren't tracked here. This
2662 // was already decided to be OK via the following CR_Replace condition.
2667 // If the lanes written by this instruction were all undef in OtherVNI, it is
2668 // still safe to join the live ranges. This can't be done with a simple value
2669 // mapping, though - OtherVNI will map to multiple values:
2671 // 1 %dst:ssub0 = FOO <-- OtherVNI
2672 // 2 %src = BAR <-- VNI
2673 // 3 %dst:ssub1 = COPY killed %src <-- Eliminate this copy.
2674 // 4 BAZ killed %dst
2675 // 5 QUUX killed %src
2677 // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace
2678 // handles this complex value mapping.
2679 if ((V
.WriteLanes
& OtherV
.ValidLanes
).none())
2682 // If the other live range is killed by DefMI and the live ranges are still
2683 // overlapping, it must be because we're looking at an early clobber def:
2685 // %dst<def,early-clobber> = ASM killed %src
2687 // In this case, it is illegal to merge the two live ranges since the early
2688 // clobber def would clobber %src before it was read.
2689 if (OtherLRQ
.isKill()) {
2690 // This case where the def doesn't overlap the kill is handled above.
2691 assert(VNI
->def
.isEarlyClobber() &&
2692 "Only early clobber defs can overlap a kill");
2693 return CR_Impossible
;
2696 // VNI is clobbering live lanes in OtherVNI, but there is still the
2697 // possibility that no instructions actually read the clobbered lanes.
2698 // If we're clobbering all the lanes in OtherVNI, at least one must be read.
2699 // Otherwise Other.RI wouldn't be live here.
2700 if ((TRI
->getSubRegIndexLaneMask(Other
.SubIdx
) & ~V
.WriteLanes
).none())
2701 return CR_Impossible
;
2703 // We need to verify that no instructions are reading the clobbered lanes. To
2704 // save compile time, we'll only check that locally. Don't allow the tainted
2705 // value to escape the basic block.
2706 MachineBasicBlock
*MBB
= Indexes
->getMBBFromIndex(VNI
->def
);
2707 if (OtherLRQ
.endPoint() >= Indexes
->getMBBEndIdx(MBB
))
2708 return CR_Impossible
;
2710 // There are still some things that could go wrong besides clobbered lanes
2711 // being read, for example OtherVNI may be only partially redefined in MBB,
2712 // and some clobbered lanes could escape the block. Save this analysis for
2713 // resolveConflicts() when all values have been mapped. We need to know
2714 // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute
2715 // that now - the recursive analyzeValue() calls must go upwards in the
2717 return CR_Unresolved
;
2720 void JoinVals::computeAssignment(unsigned ValNo
, JoinVals
&Other
) {
2721 Val
&V
= Vals
[ValNo
];
2722 if (V
.isAnalyzed()) {
2723 // Recursion should always move up the dominator tree, so ValNo is not
2724 // supposed to reappear before it has been assigned.
2725 assert(Assignments
[ValNo
] != -1 && "Bad recursion?");
2728 switch ((V
.Resolution
= analyzeValue(ValNo
, Other
))) {
2731 // Merge this ValNo into OtherVNI.
2732 assert(V
.OtherVNI
&& "OtherVNI not assigned, can't merge.");
2733 assert(Other
.Vals
[V
.OtherVNI
->id
].isAnalyzed() && "Missing recursion");
2734 Assignments
[ValNo
] = Other
.Assignments
[V
.OtherVNI
->id
];
2735 LLVM_DEBUG(dbgs() << "\t\tmerge " << printReg(Reg
) << ':' << ValNo
<< '@'
2736 << LR
.getValNumInfo(ValNo
)->def
<< " into "
2737 << printReg(Other
.Reg
) << ':' << V
.OtherVNI
->id
<< '@'
2738 << V
.OtherVNI
->def
<< " --> @"
2739 << NewVNInfo
[Assignments
[ValNo
]]->def
<< '\n');
2742 case CR_Unresolved
: {
2743 // The other value is going to be pruned if this join is successful.
2744 assert(V
.OtherVNI
&& "OtherVNI not assigned, can't prune");
2745 Val
&OtherV
= Other
.Vals
[V
.OtherVNI
->id
];
2746 // We cannot erase an IMPLICIT_DEF if we don't have valid values for all
2748 if (OtherV
.ErasableImplicitDef
&&
2749 TrackSubRegLiveness
&&
2750 (OtherV
.WriteLanes
& ~V
.ValidLanes
).any()) {
2751 LLVM_DEBUG(dbgs() << "Cannot erase implicit_def with missing values\n");
2753 OtherV
.ErasableImplicitDef
= false;
2754 // The valid lanes written by the implicit_def were speculatively cleared
2755 // before, so make this more conservative. It may be better to track this,
2756 // I haven't found a testcase where it matters.
2757 OtherV
.ValidLanes
= LaneBitmask::getAll();
2760 OtherV
.Pruned
= true;
2764 // This value number needs to go in the final joined live range.
2765 Assignments
[ValNo
] = NewVNInfo
.size();
2766 NewVNInfo
.push_back(LR
.getValNumInfo(ValNo
));
2771 bool JoinVals::mapValues(JoinVals
&Other
) {
2772 for (unsigned i
= 0, e
= LR
.getNumValNums(); i
!= e
; ++i
) {
2773 computeAssignment(i
, Other
);
2774 if (Vals
[i
].Resolution
== CR_Impossible
) {
2775 LLVM_DEBUG(dbgs() << "\t\tinterference at " << printReg(Reg
) << ':' << i
2776 << '@' << LR
.getValNumInfo(i
)->def
<< '\n');
2784 taintExtent(unsigned ValNo
, LaneBitmask TaintedLanes
, JoinVals
&Other
,
2785 SmallVectorImpl
<std::pair
<SlotIndex
, LaneBitmask
>> &TaintExtent
) {
2786 VNInfo
*VNI
= LR
.getValNumInfo(ValNo
);
2787 MachineBasicBlock
*MBB
= Indexes
->getMBBFromIndex(VNI
->def
);
2788 SlotIndex MBBEnd
= Indexes
->getMBBEndIdx(MBB
);
2790 // Scan Other.LR from VNI.def to MBBEnd.
2791 LiveInterval::iterator OtherI
= Other
.LR
.find(VNI
->def
);
2792 assert(OtherI
!= Other
.LR
.end() && "No conflict?");
2794 // OtherI is pointing to a tainted value. Abort the join if the tainted
2795 // lanes escape the block.
2796 SlotIndex End
= OtherI
->end
;
2797 if (End
>= MBBEnd
) {
2798 LLVM_DEBUG(dbgs() << "\t\ttaints global " << printReg(Other
.Reg
) << ':'
2799 << OtherI
->valno
->id
<< '@' << OtherI
->start
<< '\n');
2802 LLVM_DEBUG(dbgs() << "\t\ttaints local " << printReg(Other
.Reg
) << ':'
2803 << OtherI
->valno
->id
<< '@' << OtherI
->start
<< " to "
2805 // A dead def is not a problem.
2808 TaintExtent
.push_back(std::make_pair(End
, TaintedLanes
));
2810 // Check for another def in the MBB.
2811 if (++OtherI
== Other
.LR
.end() || OtherI
->start
>= MBBEnd
)
2814 // Lanes written by the new def are no longer tainted.
2815 const Val
&OV
= Other
.Vals
[OtherI
->valno
->id
];
2816 TaintedLanes
&= ~OV
.WriteLanes
;
2819 } while (TaintedLanes
.any());
2823 bool JoinVals::usesLanes(const MachineInstr
&MI
, unsigned Reg
, unsigned SubIdx
,
2824 LaneBitmask Lanes
) const {
2825 if (MI
.isDebugInstr())
2827 for (const MachineOperand
&MO
: MI
.operands()) {
2828 if (!MO
.isReg() || MO
.isDef() || MO
.getReg() != Reg
)
2832 unsigned S
= TRI
->composeSubRegIndices(SubIdx
, MO
.getSubReg());
2833 if ((Lanes
& TRI
->getSubRegIndexLaneMask(S
)).any())
2839 bool JoinVals::resolveConflicts(JoinVals
&Other
) {
2840 for (unsigned i
= 0, e
= LR
.getNumValNums(); i
!= e
; ++i
) {
2842 assert(V
.Resolution
!= CR_Impossible
&& "Unresolvable conflict");
2843 if (V
.Resolution
!= CR_Unresolved
)
2845 LLVM_DEBUG(dbgs() << "\t\tconflict at " << printReg(Reg
) << ':' << i
<< '@'
2846 << LR
.getValNumInfo(i
)->def
<< '\n');
2851 assert(V
.OtherVNI
&& "Inconsistent conflict resolution.");
2852 VNInfo
*VNI
= LR
.getValNumInfo(i
);
2853 const Val
&OtherV
= Other
.Vals
[V
.OtherVNI
->id
];
2855 // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the
2856 // join, those lanes will be tainted with a wrong value. Get the extent of
2857 // the tainted lanes.
2858 LaneBitmask TaintedLanes
= V
.WriteLanes
& OtherV
.ValidLanes
;
2859 SmallVector
<std::pair
<SlotIndex
, LaneBitmask
>, 8> TaintExtent
;
2860 if (!taintExtent(i
, TaintedLanes
, Other
, TaintExtent
))
2861 // Tainted lanes would extend beyond the basic block.
2864 assert(!TaintExtent
.empty() && "There should be at least one conflict.");
2866 // Now look at the instructions from VNI->def to TaintExtent (inclusive).
2867 MachineBasicBlock
*MBB
= Indexes
->getMBBFromIndex(VNI
->def
);
2868 MachineBasicBlock::iterator MI
= MBB
->begin();
2869 if (!VNI
->isPHIDef()) {
2870 MI
= Indexes
->getInstructionFromIndex(VNI
->def
);
2871 // No need to check the instruction defining VNI for reads.
2874 assert(!SlotIndex::isSameInstr(VNI
->def
, TaintExtent
.front().first
) &&
2875 "Interference ends on VNI->def. Should have been handled earlier");
2876 MachineInstr
*LastMI
=
2877 Indexes
->getInstructionFromIndex(TaintExtent
.front().first
);
2878 assert(LastMI
&& "Range must end at a proper instruction");
2879 unsigned TaintNum
= 0;
2881 assert(MI
!= MBB
->end() && "Bad LastMI");
2882 if (usesLanes(*MI
, Other
.Reg
, Other
.SubIdx
, TaintedLanes
)) {
2883 LLVM_DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI
);
2886 // LastMI is the last instruction to use the current value.
2887 if (&*MI
== LastMI
) {
2888 if (++TaintNum
== TaintExtent
.size())
2890 LastMI
= Indexes
->getInstructionFromIndex(TaintExtent
[TaintNum
].first
);
2891 assert(LastMI
&& "Range must end at a proper instruction");
2892 TaintedLanes
= TaintExtent
[TaintNum
].second
;
2897 // The tainted lanes are unused.
2898 V
.Resolution
= CR_Replace
;
2904 bool JoinVals::isPrunedValue(unsigned ValNo
, JoinVals
&Other
) {
2905 Val
&V
= Vals
[ValNo
];
2906 if (V
.Pruned
|| V
.PrunedComputed
)
2909 if (V
.Resolution
!= CR_Erase
&& V
.Resolution
!= CR_Merge
)
2912 // Follow copies up the dominator tree and check if any intermediate value
2914 V
.PrunedComputed
= true;
2915 V
.Pruned
= Other
.isPrunedValue(V
.OtherVNI
->id
, *this);
2919 void JoinVals::pruneValues(JoinVals
&Other
,
2920 SmallVectorImpl
<SlotIndex
> &EndPoints
,
2921 bool changeInstrs
) {
2922 for (unsigned i
= 0, e
= LR
.getNumValNums(); i
!= e
; ++i
) {
2923 SlotIndex Def
= LR
.getValNumInfo(i
)->def
;
2924 switch (Vals
[i
].Resolution
) {
2928 // This value takes precedence over the value in Other.LR.
2929 LIS
->pruneValue(Other
.LR
, Def
, &EndPoints
);
2930 // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF
2931 // instructions are only inserted to provide a live-out value for PHI
2932 // predecessors, so the instruction should simply go away once its value
2933 // has been replaced.
2934 Val
&OtherV
= Other
.Vals
[Vals
[i
].OtherVNI
->id
];
2935 bool EraseImpDef
= OtherV
.ErasableImplicitDef
&&
2936 OtherV
.Resolution
== CR_Keep
;
2937 if (!Def
.isBlock()) {
2939 // Remove <def,read-undef> flags. This def is now a partial redef.
2940 // Also remove dead flags since the joined live range will
2941 // continue past this instruction.
2942 for (MachineOperand
&MO
:
2943 Indexes
->getInstructionFromIndex(Def
)->operands()) {
2944 if (MO
.isReg() && MO
.isDef() && MO
.getReg() == Reg
) {
2945 if (MO
.getSubReg() != 0 && MO
.isUndef() && !EraseImpDef
)
2946 MO
.setIsUndef(false);
2947 MO
.setIsDead(false);
2951 // This value will reach instructions below, but we need to make sure
2952 // the live range also reaches the instruction at Def.
2954 EndPoints
.push_back(Def
);
2956 LLVM_DEBUG(dbgs() << "\t\tpruned " << printReg(Other
.Reg
) << " at " << Def
2957 << ": " << Other
.LR
<< '\n');
2962 if (isPrunedValue(i
, Other
)) {
2963 // This value is ultimately a copy of a pruned value in LR or Other.LR.
2964 // We can no longer trust the value mapping computed by
2965 // computeAssignment(), the value that was originally copied could have
2967 LIS
->pruneValue(LR
, Def
, &EndPoints
);
2968 LLVM_DEBUG(dbgs() << "\t\tpruned all of " << printReg(Reg
) << " at "
2969 << Def
<< ": " << LR
<< '\n');
2974 llvm_unreachable("Unresolved conflicts");
2979 /// Consider the following situation when coalescing the copy between
2980 /// %31 and %45 at 800. (The vertical lines represent live range segments.)
2982 /// Main range Subrange 0004 (sub2)
2984 /// 544 %45 = COPY %28 + +
2987 /// 624 = %45.sub2 | v2 | v2
2988 /// 800 %31 = COPY %45 + + + +
2990 /// 816 %31.sub1 = ... + |
2991 /// 880 %30 = COPY %31 | v1 +
2992 /// 928 %45 = COPY %30 | + +
2993 /// | | v0 | v0 <--+
2994 /// 992B ; backedge -> bb.1 | + + |
2995 /// 1040 = %31.sub0 + |
2996 /// This value must remain
2999 /// Assuming that %31 is coalesced into %45, the copy at 928 becomes
3000 /// redundant, since it copies the value from %45 back into it. The
3001 /// conflict resolution for the main range determines that %45.v0 is
3002 /// to be erased, which is ok since %31.v1 is identical to it.
3003 /// The problem happens with the subrange for sub2: it has to be live
3004 /// on exit from the block, but since 928 was actually a point of
3005 /// definition of %45.sub2, %45.sub2 was not live immediately prior
3006 /// to that definition. As a result, when 928 was erased, the value v0
3007 /// for %45.sub2 was pruned in pruneSubRegValues. Consequently, an
3008 /// IMPLICIT_DEF was inserted as a "backedge" definition for %45.sub2,
3009 /// providing an incorrect value to the use at 624.
3011 /// Since the main-range values %31.v1 and %45.v0 were proved to be
3012 /// identical, the corresponding values in subranges must also be the
3013 /// same. A redundant copy is removed because it's not needed, and not
3014 /// because it copied an undefined value, so any liveness that originated
3015 /// from that copy cannot disappear. When pruning a value that started
3016 /// at the removed copy, the corresponding identical value must be
3017 /// extended to replace it.
3018 void JoinVals::pruneSubRegValues(LiveInterval
&LI
, LaneBitmask
&ShrinkMask
) {
3019 // Look for values being erased.
3020 bool DidPrune
= false;
3021 for (unsigned i
= 0, e
= LR
.getNumValNums(); i
!= e
; ++i
) {
3023 // We should trigger in all cases in which eraseInstrs() does something.
3024 // match what eraseInstrs() is doing, print a message so
3025 if (V
.Resolution
!= CR_Erase
&&
3026 (V
.Resolution
!= CR_Keep
|| !V
.ErasableImplicitDef
|| !V
.Pruned
))
3029 // Check subranges at the point where the copy will be removed.
3030 SlotIndex Def
= LR
.getValNumInfo(i
)->def
;
3033 OtherDef
= V
.OtherVNI
->def
;
3035 // Print message so mismatches with eraseInstrs() can be diagnosed.
3036 LLVM_DEBUG(dbgs() << "\t\tExpecting instruction removal at " << Def
3038 for (LiveInterval::SubRange
&S
: LI
.subranges()) {
3039 LiveQueryResult Q
= S
.Query(Def
);
3041 // If a subrange starts at the copy then an undefined value has been
3042 // copied and we must remove that subrange value as well.
3043 VNInfo
*ValueOut
= Q
.valueOutOrDead();
3044 if (ValueOut
!= nullptr && (Q
.valueIn() == nullptr ||
3045 (V
.Identical
&& V
.Resolution
== CR_Erase
&&
3046 ValueOut
->def
== Def
))) {
3047 LLVM_DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S
.LaneMask
)
3048 << " at " << Def
<< "\n");
3049 SmallVector
<SlotIndex
,8> EndPoints
;
3050 LIS
->pruneValue(S
, Def
, &EndPoints
);
3052 // Mark value number as unused.
3053 ValueOut
->markUnused();
3055 if (V
.Identical
&& S
.Query(OtherDef
).valueOutOrDead()) {
3056 // If V is identical to V.OtherVNI (and S was live at OtherDef),
3057 // then we can't simply prune V from S. V needs to be replaced
3059 LIS
->extendToIndices(S
, EndPoints
);
3063 // If a subrange ends at the copy, then a value was copied but only
3064 // partially used later. Shrink the subregister range appropriately.
3065 if (Q
.valueIn() != nullptr && Q
.valueOut() == nullptr) {
3066 LLVM_DEBUG(dbgs() << "\t\tDead uses at sublane "
3067 << PrintLaneMask(S
.LaneMask
) << " at " << Def
3069 ShrinkMask
|= S
.LaneMask
;
3074 LI
.removeEmptySubRanges();
3077 /// Check if any of the subranges of @p LI contain a definition at @p Def.
3078 static bool isDefInSubRange(LiveInterval
&LI
, SlotIndex Def
) {
3079 for (LiveInterval::SubRange
&SR
: LI
.subranges()) {
3080 if (VNInfo
*VNI
= SR
.Query(Def
).valueOutOrDead())
3081 if (VNI
->def
== Def
)
3087 void JoinVals::pruneMainSegments(LiveInterval
&LI
, bool &ShrinkMainRange
) {
3088 assert(&static_cast<LiveRange
&>(LI
) == &LR
);
3090 for (unsigned i
= 0, e
= LR
.getNumValNums(); i
!= e
; ++i
) {
3091 if (Vals
[i
].Resolution
!= CR_Keep
)
3093 VNInfo
*VNI
= LR
.getValNumInfo(i
);
3094 if (VNI
->isUnused() || VNI
->isPHIDef() || isDefInSubRange(LI
, VNI
->def
))
3096 Vals
[i
].Pruned
= true;
3097 ShrinkMainRange
= true;
3101 void JoinVals::removeImplicitDefs() {
3102 for (unsigned i
= 0, e
= LR
.getNumValNums(); i
!= e
; ++i
) {
3104 if (V
.Resolution
!= CR_Keep
|| !V
.ErasableImplicitDef
|| !V
.Pruned
)
3107 VNInfo
*VNI
= LR
.getValNumInfo(i
);
3109 LR
.removeValNo(VNI
);
3113 void JoinVals::eraseInstrs(SmallPtrSetImpl
<MachineInstr
*> &ErasedInstrs
,
3114 SmallVectorImpl
<unsigned> &ShrinkRegs
,
3116 for (unsigned i
= 0, e
= LR
.getNumValNums(); i
!= e
; ++i
) {
3117 // Get the def location before markUnused() below invalidates it.
3118 SlotIndex Def
= LR
.getValNumInfo(i
)->def
;
3119 switch (Vals
[i
].Resolution
) {
3121 // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any
3122 // longer. The IMPLICIT_DEF instructions are only inserted by
3123 // PHIElimination to guarantee that all PHI predecessors have a value.
3124 if (!Vals
[i
].ErasableImplicitDef
|| !Vals
[i
].Pruned
)
3126 // Remove value number i from LR.
3127 // For intervals with subranges, removing a segment from the main range
3128 // may require extending the previous segment: for each definition of
3129 // a subregister, there will be a corresponding def in the main range.
3130 // That def may fall in the middle of a segment from another subrange.
3131 // In such cases, removing this def from the main range must be
3132 // complemented by extending the main range to account for the liveness
3133 // of the other subrange.
3134 VNInfo
*VNI
= LR
.getValNumInfo(i
);
3135 SlotIndex Def
= VNI
->def
;
3136 // The new end point of the main range segment to be extended.
3138 if (LI
!= nullptr) {
3139 LiveRange::iterator I
= LR
.FindSegmentContaining(Def
);
3140 assert(I
!= LR
.end());
3141 // Do not extend beyond the end of the segment being removed.
3142 // The segment may have been pruned in preparation for joining
3147 LR
.removeValNo(VNI
);
3148 // Note that this VNInfo is reused and still referenced in NewVNInfo,
3149 // make it appear like an unused value number.
3152 if (LI
!= nullptr && LI
->hasSubRanges()) {
3153 assert(static_cast<LiveRange
*>(LI
) == &LR
);
3154 // Determine the end point based on the subrange information:
3155 // minimum of (earliest def of next segment,
3156 // latest end point of containing segment)
3158 for (LiveInterval::SubRange
&SR
: LI
->subranges()) {
3159 LiveRange::iterator I
= SR
.find(Def
);
3163 ED
= ED
.isValid() ? std::min(ED
, I
->start
) : I
->start
;
3165 LE
= LE
.isValid() ? std::max(LE
, I
->end
) : I
->end
;
3168 NewEnd
= std::min(NewEnd
, LE
);
3170 NewEnd
= std::min(NewEnd
, ED
);
3172 // We only want to do the extension if there was a subrange that
3173 // was live across Def.
3175 LiveRange::iterator S
= LR
.find(Def
);
3176 if (S
!= LR
.begin())
3177 std::prev(S
)->end
= NewEnd
;
3181 dbgs() << "\t\tremoved " << i
<< '@' << Def
<< ": " << LR
<< '\n';
3183 dbgs() << "\t\t LHS = " << *LI
<< '\n';
3189 MachineInstr
*MI
= Indexes
->getInstructionFromIndex(Def
);
3190 assert(MI
&& "No instruction to erase");
3192 unsigned Reg
= MI
->getOperand(1).getReg();
3193 if (TargetRegisterInfo::isVirtualRegister(Reg
) &&
3194 Reg
!= CP
.getSrcReg() && Reg
!= CP
.getDstReg())
3195 ShrinkRegs
.push_back(Reg
);
3197 ErasedInstrs
.insert(MI
);
3198 LLVM_DEBUG(dbgs() << "\t\terased:\t" << Def
<< '\t' << *MI
);
3199 LIS
->RemoveMachineInstrFromMaps(*MI
);
3200 MI
->eraseFromParent();
3209 void RegisterCoalescer::joinSubRegRanges(LiveRange
&LRange
, LiveRange
&RRange
,
3210 LaneBitmask LaneMask
,
3211 const CoalescerPair
&CP
) {
3212 SmallVector
<VNInfo
*, 16> NewVNInfo
;
3213 JoinVals
RHSVals(RRange
, CP
.getSrcReg(), CP
.getSrcIdx(), LaneMask
,
3214 NewVNInfo
, CP
, LIS
, TRI
, true, true);
3215 JoinVals
LHSVals(LRange
, CP
.getDstReg(), CP
.getDstIdx(), LaneMask
,
3216 NewVNInfo
, CP
, LIS
, TRI
, true, true);
3218 // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs())
3219 // We should be able to resolve all conflicts here as we could successfully do
3220 // it on the mainrange already. There is however a problem when multiple
3221 // ranges get mapped to the "overflow" lane mask bit which creates unexpected
3223 if (!LHSVals
.mapValues(RHSVals
) || !RHSVals
.mapValues(LHSVals
)) {
3224 // We already determined that it is legal to merge the intervals, so this
3225 // should never fail.
3226 llvm_unreachable("*** Couldn't join subrange!\n");
3228 if (!LHSVals
.resolveConflicts(RHSVals
) ||
3229 !RHSVals
.resolveConflicts(LHSVals
)) {
3230 // We already determined that it is legal to merge the intervals, so this
3231 // should never fail.
3232 llvm_unreachable("*** Couldn't join subrange!\n");
3235 // The merging algorithm in LiveInterval::join() can't handle conflicting
3236 // value mappings, so we need to remove any live ranges that overlap a
3237 // CR_Replace resolution. Collect a set of end points that can be used to
3238 // restore the live range after joining.
3239 SmallVector
<SlotIndex
, 8> EndPoints
;
3240 LHSVals
.pruneValues(RHSVals
, EndPoints
, false);
3241 RHSVals
.pruneValues(LHSVals
, EndPoints
, false);
3243 LHSVals
.removeImplicitDefs();
3244 RHSVals
.removeImplicitDefs();
3249 // Join RRange into LHS.
3250 LRange
.join(RRange
, LHSVals
.getAssignments(), RHSVals
.getAssignments(),
3253 LLVM_DEBUG(dbgs() << "\t\tjoined lanes: " << PrintLaneMask(LaneMask
)
3254 << ' ' << LRange
<< "\n");
3255 if (EndPoints
.empty())
3258 // Recompute the parts of the live range we had to remove because of
3259 // CR_Replace conflicts.
3261 dbgs() << "\t\trestoring liveness to " << EndPoints
.size() << " points: ";
3262 for (unsigned i
= 0, n
= EndPoints
.size(); i
!= n
; ++i
) {
3263 dbgs() << EndPoints
[i
];
3267 dbgs() << ": " << LRange
<< '\n';
3269 LIS
->extendToIndices(LRange
, EndPoints
);
3272 void RegisterCoalescer::mergeSubRangeInto(LiveInterval
&LI
,
3273 const LiveRange
&ToMerge
,
3274 LaneBitmask LaneMask
,
3275 CoalescerPair
&CP
) {
3276 BumpPtrAllocator
&Allocator
= LIS
->getVNInfoAllocator();
3278 Allocator
, LaneMask
,
3279 [this, &Allocator
, &ToMerge
, &CP
](LiveInterval::SubRange
&SR
) {
3281 SR
.assign(ToMerge
, Allocator
);
3283 // joinSubRegRange() destroys the merged range, so we need a copy.
3284 LiveRange
RangeCopy(ToMerge
, Allocator
);
3285 joinSubRegRanges(SR
, RangeCopy
, SR
.LaneMask
, CP
);
3288 *LIS
->getSlotIndexes(), *TRI
);
3291 bool RegisterCoalescer::isHighCostLiveInterval(LiveInterval
&LI
) {
3292 if (LI
.valnos
.size() < LargeIntervalSizeThreshold
)
3294 auto &Counter
= LargeLIVisitCounter
[LI
.reg
];
3295 if (Counter
< LargeIntervalFreqThreshold
) {
3302 bool RegisterCoalescer::joinVirtRegs(CoalescerPair
&CP
) {
3303 SmallVector
<VNInfo
*, 16> NewVNInfo
;
3304 LiveInterval
&RHS
= LIS
->getInterval(CP
.getSrcReg());
3305 LiveInterval
&LHS
= LIS
->getInterval(CP
.getDstReg());
3306 bool TrackSubRegLiveness
= MRI
->shouldTrackSubRegLiveness(*CP
.getNewRC());
3307 JoinVals
RHSVals(RHS
, CP
.getSrcReg(), CP
.getSrcIdx(), LaneBitmask::getNone(),
3308 NewVNInfo
, CP
, LIS
, TRI
, false, TrackSubRegLiveness
);
3309 JoinVals
LHSVals(LHS
, CP
.getDstReg(), CP
.getDstIdx(), LaneBitmask::getNone(),
3310 NewVNInfo
, CP
, LIS
, TRI
, false, TrackSubRegLiveness
);
3312 LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS
<< "\n\t\tLHS = " << LHS
<< '\n');
3314 if (isHighCostLiveInterval(LHS
) || isHighCostLiveInterval(RHS
))
3317 // First compute NewVNInfo and the simple value mappings.
3318 // Detect impossible conflicts early.
3319 if (!LHSVals
.mapValues(RHSVals
) || !RHSVals
.mapValues(LHSVals
))
3322 // Some conflicts can only be resolved after all values have been mapped.
3323 if (!LHSVals
.resolveConflicts(RHSVals
) || !RHSVals
.resolveConflicts(LHSVals
))
3326 // All clear, the live ranges can be merged.
3327 if (RHS
.hasSubRanges() || LHS
.hasSubRanges()) {
3328 BumpPtrAllocator
&Allocator
= LIS
->getVNInfoAllocator();
3330 // Transform lanemasks from the LHS to masks in the coalesced register and
3331 // create initial subranges if necessary.
3332 unsigned DstIdx
= CP
.getDstIdx();
3333 if (!LHS
.hasSubRanges()) {
3334 LaneBitmask Mask
= DstIdx
== 0 ? CP
.getNewRC()->getLaneMask()
3335 : TRI
->getSubRegIndexLaneMask(DstIdx
);
3336 // LHS must support subregs or we wouldn't be in this codepath.
3338 LHS
.createSubRangeFrom(Allocator
, Mask
, LHS
);
3339 } else if (DstIdx
!= 0) {
3340 // Transform LHS lanemasks to new register class if necessary.
3341 for (LiveInterval::SubRange
&R
: LHS
.subranges()) {
3342 LaneBitmask Mask
= TRI
->composeSubRegIndexLaneMask(DstIdx
, R
.LaneMask
);
3346 LLVM_DEBUG(dbgs() << "\t\tLHST = " << printReg(CP
.getDstReg()) << ' ' << LHS
3349 // Determine lanemasks of RHS in the coalesced register and merge subranges.
3350 unsigned SrcIdx
= CP
.getSrcIdx();
3351 if (!RHS
.hasSubRanges()) {
3352 LaneBitmask Mask
= SrcIdx
== 0 ? CP
.getNewRC()->getLaneMask()
3353 : TRI
->getSubRegIndexLaneMask(SrcIdx
);
3354 mergeSubRangeInto(LHS
, RHS
, Mask
, CP
);
3356 // Pair up subranges and merge.
3357 for (LiveInterval::SubRange
&R
: RHS
.subranges()) {
3358 LaneBitmask Mask
= TRI
->composeSubRegIndexLaneMask(SrcIdx
, R
.LaneMask
);
3359 mergeSubRangeInto(LHS
, R
, Mask
, CP
);
3362 LLVM_DEBUG(dbgs() << "\tJoined SubRanges " << LHS
<< "\n");
3364 // Pruning implicit defs from subranges may result in the main range
3365 // having stale segments.
3366 LHSVals
.pruneMainSegments(LHS
, ShrinkMainRange
);
3368 LHSVals
.pruneSubRegValues(LHS
, ShrinkMask
);
3369 RHSVals
.pruneSubRegValues(LHS
, ShrinkMask
);
3372 // The merging algorithm in LiveInterval::join() can't handle conflicting
3373 // value mappings, so we need to remove any live ranges that overlap a
3374 // CR_Replace resolution. Collect a set of end points that can be used to
3375 // restore the live range after joining.
3376 SmallVector
<SlotIndex
, 8> EndPoints
;
3377 LHSVals
.pruneValues(RHSVals
, EndPoints
, true);
3378 RHSVals
.pruneValues(LHSVals
, EndPoints
, true);
3380 // Erase COPY and IMPLICIT_DEF instructions. This may cause some external
3381 // registers to require trimming.
3382 SmallVector
<unsigned, 8> ShrinkRegs
;
3383 LHSVals
.eraseInstrs(ErasedInstrs
, ShrinkRegs
, &LHS
);
3384 RHSVals
.eraseInstrs(ErasedInstrs
, ShrinkRegs
);
3385 while (!ShrinkRegs
.empty())
3386 shrinkToUses(&LIS
->getInterval(ShrinkRegs
.pop_back_val()));
3388 // Join RHS into LHS.
3389 LHS
.join(RHS
, LHSVals
.getAssignments(), RHSVals
.getAssignments(), NewVNInfo
);
3391 // Kill flags are going to be wrong if the live ranges were overlapping.
3392 // Eventually, we should simply clear all kill flags when computing live
3393 // ranges. They are reinserted after register allocation.
3394 MRI
->clearKillFlags(LHS
.reg
);
3395 MRI
->clearKillFlags(RHS
.reg
);
3397 if (!EndPoints
.empty()) {
3398 // Recompute the parts of the live range we had to remove because of
3399 // CR_Replace conflicts.
3401 dbgs() << "\t\trestoring liveness to " << EndPoints
.size() << " points: ";
3402 for (unsigned i
= 0, n
= EndPoints
.size(); i
!= n
; ++i
) {
3403 dbgs() << EndPoints
[i
];
3407 dbgs() << ": " << LHS
<< '\n';
3409 LIS
->extendToIndices((LiveRange
&)LHS
, EndPoints
);
3415 bool RegisterCoalescer::joinIntervals(CoalescerPair
&CP
) {
3416 return CP
.isPhys() ? joinReservedPhysReg(CP
) : joinVirtRegs(CP
);
3421 /// Information concerning MBB coalescing priority.
3422 struct MBBPriorityInfo
{
3423 MachineBasicBlock
*MBB
;
3427 MBBPriorityInfo(MachineBasicBlock
*mbb
, unsigned depth
, bool issplit
)
3428 : MBB(mbb
), Depth(depth
), IsSplit(issplit
) {}
3431 } // end anonymous namespace
3433 /// C-style comparator that sorts first based on the loop depth of the basic
3434 /// block (the unsigned), and then on the MBB number.
3436 /// EnableGlobalCopies assumes that the primary sort key is loop depth.
3437 static int compareMBBPriority(const MBBPriorityInfo
*LHS
,
3438 const MBBPriorityInfo
*RHS
) {
3439 // Deeper loops first
3440 if (LHS
->Depth
!= RHS
->Depth
)
3441 return LHS
->Depth
> RHS
->Depth
? -1 : 1;
3443 // Try to unsplit critical edges next.
3444 if (LHS
->IsSplit
!= RHS
->IsSplit
)
3445 return LHS
->IsSplit
? -1 : 1;
3447 // Prefer blocks that are more connected in the CFG. This takes care of
3448 // the most difficult copies first while intervals are short.
3449 unsigned cl
= LHS
->MBB
->pred_size() + LHS
->MBB
->succ_size();
3450 unsigned cr
= RHS
->MBB
->pred_size() + RHS
->MBB
->succ_size();
3452 return cl
> cr
? -1 : 1;
3454 // As a last resort, sort by block number.
3455 return LHS
->MBB
->getNumber() < RHS
->MBB
->getNumber() ? -1 : 1;
3458 /// \returns true if the given copy uses or defines a local live range.
3459 static bool isLocalCopy(MachineInstr
*Copy
, const LiveIntervals
*LIS
) {
3460 if (!Copy
->isCopy())
3463 if (Copy
->getOperand(1).isUndef())
3466 unsigned SrcReg
= Copy
->getOperand(1).getReg();
3467 unsigned DstReg
= Copy
->getOperand(0).getReg();
3468 if (TargetRegisterInfo::isPhysicalRegister(SrcReg
)
3469 || TargetRegisterInfo::isPhysicalRegister(DstReg
))
3472 return LIS
->intervalIsInOneMBB(LIS
->getInterval(SrcReg
))
3473 || LIS
->intervalIsInOneMBB(LIS
->getInterval(DstReg
));
3476 void RegisterCoalescer::lateLiveIntervalUpdate() {
3477 for (unsigned reg
: ToBeUpdated
) {
3478 if (!LIS
->hasInterval(reg
))
3480 LiveInterval
&LI
= LIS
->getInterval(reg
);
3481 shrinkToUses(&LI
, &DeadDefs
);
3482 if (!DeadDefs
.empty())
3483 eliminateDeadDefs();
3485 ToBeUpdated
.clear();
3488 bool RegisterCoalescer::
3489 copyCoalesceWorkList(MutableArrayRef
<MachineInstr
*> CurrList
) {
3490 bool Progress
= false;
3491 for (unsigned i
= 0, e
= CurrList
.size(); i
!= e
; ++i
) {
3494 // Skip instruction pointers that have already been erased, for example by
3495 // dead code elimination.
3496 if (ErasedInstrs
.count(CurrList
[i
])) {
3497 CurrList
[i
] = nullptr;
3501 bool Success
= joinCopy(CurrList
[i
], Again
);
3502 Progress
|= Success
;
3503 if (Success
|| !Again
)
3504 CurrList
[i
] = nullptr;
3509 /// Check if DstReg is a terminal node.
3510 /// I.e., it does not have any affinity other than \p Copy.
3511 static bool isTerminalReg(unsigned DstReg
, const MachineInstr
&Copy
,
3512 const MachineRegisterInfo
*MRI
) {
3513 assert(Copy
.isCopyLike());
3514 // Check if the destination of this copy as any other affinity.
3515 for (const MachineInstr
&MI
: MRI
->reg_nodbg_instructions(DstReg
))
3516 if (&MI
!= &Copy
&& MI
.isCopyLike())
3521 bool RegisterCoalescer::applyTerminalRule(const MachineInstr
&Copy
) const {
3522 assert(Copy
.isCopyLike());
3523 if (!UseTerminalRule
)
3525 unsigned DstReg
, DstSubReg
, SrcReg
, SrcSubReg
;
3526 if (!isMoveInstr(*TRI
, &Copy
, SrcReg
, DstReg
, SrcSubReg
, DstSubReg
))
3528 // Check if the destination of this copy has any other affinity.
3529 if (TargetRegisterInfo::isPhysicalRegister(DstReg
) ||
3530 // If SrcReg is a physical register, the copy won't be coalesced.
3531 // Ignoring it may have other side effect (like missing
3532 // rematerialization). So keep it.
3533 TargetRegisterInfo::isPhysicalRegister(SrcReg
) ||
3534 !isTerminalReg(DstReg
, Copy
, MRI
))
3537 // DstReg is a terminal node. Check if it interferes with any other
3538 // copy involving SrcReg.
3539 const MachineBasicBlock
*OrigBB
= Copy
.getParent();
3540 const LiveInterval
&DstLI
= LIS
->getInterval(DstReg
);
3541 for (const MachineInstr
&MI
: MRI
->reg_nodbg_instructions(SrcReg
)) {
3542 // Technically we should check if the weight of the new copy is
3543 // interesting compared to the other one and update the weight
3544 // of the copies accordingly. However, this would only work if
3545 // we would gather all the copies first then coalesce, whereas
3546 // right now we interleave both actions.
3547 // For now, just consider the copies that are in the same block.
3548 if (&MI
== &Copy
|| !MI
.isCopyLike() || MI
.getParent() != OrigBB
)
3550 unsigned OtherReg
, OtherSubReg
, OtherSrcReg
, OtherSrcSubReg
;
3551 if (!isMoveInstr(*TRI
, &Copy
, OtherSrcReg
, OtherReg
, OtherSrcSubReg
,
3554 if (OtherReg
== SrcReg
)
3555 OtherReg
= OtherSrcReg
;
3556 // Check if OtherReg is a non-terminal.
3557 if (TargetRegisterInfo::isPhysicalRegister(OtherReg
) ||
3558 isTerminalReg(OtherReg
, MI
, MRI
))
3560 // Check that OtherReg interfere with DstReg.
3561 if (LIS
->getInterval(OtherReg
).overlaps(DstLI
)) {
3562 LLVM_DEBUG(dbgs() << "Apply terminal rule for: " << printReg(DstReg
)
3571 RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock
*MBB
) {
3572 LLVM_DEBUG(dbgs() << MBB
->getName() << ":\n");
3574 // Collect all copy-like instructions in MBB. Don't start coalescing anything
3575 // yet, it might invalidate the iterator.
3576 const unsigned PrevSize
= WorkList
.size();
3577 if (JoinGlobalCopies
) {
3578 SmallVector
<MachineInstr
*, 2> LocalTerminals
;
3579 SmallVector
<MachineInstr
*, 2> GlobalTerminals
;
3580 // Coalesce copies bottom-up to coalesce local defs before local uses. They
3581 // are not inherently easier to resolve, but slightly preferable until we
3582 // have local live range splitting. In particular this is required by
3583 // cmp+jmp macro fusion.
3584 for (MachineBasicBlock::iterator MII
= MBB
->begin(), E
= MBB
->end();
3586 if (!MII
->isCopyLike())
3588 bool ApplyTerminalRule
= applyTerminalRule(*MII
);
3589 if (isLocalCopy(&(*MII
), LIS
)) {
3590 if (ApplyTerminalRule
)
3591 LocalTerminals
.push_back(&(*MII
));
3593 LocalWorkList
.push_back(&(*MII
));
3595 if (ApplyTerminalRule
)
3596 GlobalTerminals
.push_back(&(*MII
));
3598 WorkList
.push_back(&(*MII
));
3601 // Append the copies evicted by the terminal rule at the end of the list.
3602 LocalWorkList
.append(LocalTerminals
.begin(), LocalTerminals
.end());
3603 WorkList
.append(GlobalTerminals
.begin(), GlobalTerminals
.end());
3606 SmallVector
<MachineInstr
*, 2> Terminals
;
3607 for (MachineInstr
&MII
: *MBB
)
3608 if (MII
.isCopyLike()) {
3609 if (applyTerminalRule(MII
))
3610 Terminals
.push_back(&MII
);
3612 WorkList
.push_back(&MII
);
3614 // Append the copies evicted by the terminal rule at the end of the list.
3615 WorkList
.append(Terminals
.begin(), Terminals
.end());
3617 // Try coalescing the collected copies immediately, and remove the nulls.
3618 // This prevents the WorkList from getting too large since most copies are
3619 // joinable on the first attempt.
3620 MutableArrayRef
<MachineInstr
*>
3621 CurrList(WorkList
.begin() + PrevSize
, WorkList
.end());
3622 if (copyCoalesceWorkList(CurrList
))
3623 WorkList
.erase(std::remove(WorkList
.begin() + PrevSize
, WorkList
.end(),
3624 nullptr), WorkList
.end());
3627 void RegisterCoalescer::coalesceLocals() {
3628 copyCoalesceWorkList(LocalWorkList
);
3629 for (unsigned j
= 0, je
= LocalWorkList
.size(); j
!= je
; ++j
) {
3630 if (LocalWorkList
[j
])
3631 WorkList
.push_back(LocalWorkList
[j
]);
3633 LocalWorkList
.clear();
3636 void RegisterCoalescer::joinAllIntervals() {
3637 LLVM_DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
3638 assert(WorkList
.empty() && LocalWorkList
.empty() && "Old data still around.");
3640 std::vector
<MBBPriorityInfo
> MBBs
;
3641 MBBs
.reserve(MF
->size());
3642 for (MachineFunction::iterator I
= MF
->begin(), E
= MF
->end(); I
!= E
; ++I
) {
3643 MachineBasicBlock
*MBB
= &*I
;
3644 MBBs
.push_back(MBBPriorityInfo(MBB
, Loops
->getLoopDepth(MBB
),
3645 JoinSplitEdges
&& isSplitEdge(MBB
)));
3647 array_pod_sort(MBBs
.begin(), MBBs
.end(), compareMBBPriority
);
3649 // Coalesce intervals in MBB priority order.
3650 unsigned CurrDepth
= std::numeric_limits
<unsigned>::max();
3651 for (unsigned i
= 0, e
= MBBs
.size(); i
!= e
; ++i
) {
3652 // Try coalescing the collected local copies for deeper loops.
3653 if (JoinGlobalCopies
&& MBBs
[i
].Depth
< CurrDepth
) {
3655 CurrDepth
= MBBs
[i
].Depth
;
3657 copyCoalesceInMBB(MBBs
[i
].MBB
);
3659 lateLiveIntervalUpdate();
3662 // Joining intervals can allow other intervals to be joined. Iteratively join
3663 // until we make no progress.
3664 while (copyCoalesceWorkList(WorkList
))
3666 lateLiveIntervalUpdate();
3669 void RegisterCoalescer::releaseMemory() {
3670 ErasedInstrs
.clear();
3673 InflateRegs
.clear();
3674 LargeLIVisitCounter
.clear();
3677 bool RegisterCoalescer::runOnMachineFunction(MachineFunction
&fn
) {
3679 MRI
= &fn
.getRegInfo();
3680 const TargetSubtargetInfo
&STI
= fn
.getSubtarget();
3681 TRI
= STI
.getRegisterInfo();
3682 TII
= STI
.getInstrInfo();
3683 LIS
= &getAnalysis
<LiveIntervals
>();
3684 AA
= &getAnalysis
<AAResultsWrapperPass
>().getAAResults();
3685 Loops
= &getAnalysis
<MachineLoopInfo
>();
3686 if (EnableGlobalCopies
== cl::BOU_UNSET
)
3687 JoinGlobalCopies
= STI
.enableJoinGlobalCopies();
3689 JoinGlobalCopies
= (EnableGlobalCopies
== cl::BOU_TRUE
);
3691 // The MachineScheduler does not currently require JoinSplitEdges. This will
3692 // either be enabled unconditionally or replaced by a more general live range
3693 // splitting optimization.
3694 JoinSplitEdges
= EnableJoinSplits
;
3696 LLVM_DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
3697 << "********** Function: " << MF
->getName() << '\n');
3699 if (VerifyCoalescing
)
3700 MF
->verify(this, "Before register coalescing");
3702 RegClassInfo
.runOnMachineFunction(fn
);
3704 // Join (coalesce) intervals if requested.
3708 // After deleting a lot of copies, register classes may be less constrained.
3709 // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 ->
3711 array_pod_sort(InflateRegs
.begin(), InflateRegs
.end());
3712 InflateRegs
.erase(std::unique(InflateRegs
.begin(), InflateRegs
.end()),
3714 LLVM_DEBUG(dbgs() << "Trying to inflate " << InflateRegs
.size()
3716 for (unsigned i
= 0, e
= InflateRegs
.size(); i
!= e
; ++i
) {
3717 unsigned Reg
= InflateRegs
[i
];
3718 if (MRI
->reg_nodbg_empty(Reg
))
3720 if (MRI
->recomputeRegClass(Reg
)) {
3721 LLVM_DEBUG(dbgs() << printReg(Reg
) << " inflated to "
3722 << TRI
->getRegClassName(MRI
->getRegClass(Reg
)) << '\n');
3725 LiveInterval
&LI
= LIS
->getInterval(Reg
);
3726 if (LI
.hasSubRanges()) {
3727 // If the inflated register class does not support subregisters anymore
3728 // remove the subranges.
3729 if (!MRI
->shouldTrackSubRegLiveness(Reg
)) {
3730 LI
.clearSubRanges();
3733 LaneBitmask MaxMask
= MRI
->getMaxLaneMaskForVReg(Reg
);
3734 // If subranges are still supported, then the same subregs
3735 // should still be supported.
3736 for (LiveInterval::SubRange
&S
: LI
.subranges()) {
3737 assert((S
.LaneMask
& ~MaxMask
).none());
3746 if (VerifyCoalescing
)
3747 MF
->verify(this, "After register coalescing");
3751 void RegisterCoalescer::print(raw_ostream
&O
, const Module
* m
) const {