1 //===- Type.cpp - Implement the Type class --------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the Type class for the IR library.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/IR/Type.h"
14 #include "LLVMContextImpl.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/StringMap.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/IR/Constant.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DerivedTypes.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/IR/Value.h"
26 #include "llvm/Support/Casting.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/raw_ostream.h"
34 //===----------------------------------------------------------------------===//
35 // Type Class Implementation
36 //===----------------------------------------------------------------------===//
38 Type
*Type::getPrimitiveType(LLVMContext
&C
, TypeID IDNumber
) {
40 case VoidTyID
: return getVoidTy(C
);
41 case HalfTyID
: return getHalfTy(C
);
42 case FloatTyID
: return getFloatTy(C
);
43 case DoubleTyID
: return getDoubleTy(C
);
44 case X86_FP80TyID
: return getX86_FP80Ty(C
);
45 case FP128TyID
: return getFP128Ty(C
);
46 case PPC_FP128TyID
: return getPPC_FP128Ty(C
);
47 case LabelTyID
: return getLabelTy(C
);
48 case MetadataTyID
: return getMetadataTy(C
);
49 case X86_MMXTyID
: return getX86_MMXTy(C
);
50 case TokenTyID
: return getTokenTy(C
);
56 bool Type::isIntegerTy(unsigned Bitwidth
) const {
57 return isIntegerTy() && cast
<IntegerType
>(this)->getBitWidth() == Bitwidth
;
60 bool Type::canLosslesslyBitCastTo(Type
*Ty
) const {
61 // Identity cast means no change so return true
65 // They are not convertible unless they are at least first class types
66 if (!this->isFirstClassType() || !Ty
->isFirstClassType())
69 // Vector -> Vector conversions are always lossless if the two vector types
70 // have the same size, otherwise not. Also, 64-bit vector types can be
71 // converted to x86mmx.
72 if (auto *thisPTy
= dyn_cast
<VectorType
>(this)) {
73 if (auto *thatPTy
= dyn_cast
<VectorType
>(Ty
))
74 return thisPTy
->getBitWidth() == thatPTy
->getBitWidth();
75 if (Ty
->getTypeID() == Type::X86_MMXTyID
&&
76 thisPTy
->getBitWidth() == 64)
80 if (this->getTypeID() == Type::X86_MMXTyID
)
81 if (auto *thatPTy
= dyn_cast
<VectorType
>(Ty
))
82 if (thatPTy
->getBitWidth() == 64)
85 // At this point we have only various mismatches of the first class types
86 // remaining and ptr->ptr. Just select the lossless conversions. Everything
87 // else is not lossless. Conservatively assume we can't losslessly convert
88 // between pointers with different address spaces.
89 if (auto *PTy
= dyn_cast
<PointerType
>(this)) {
90 if (auto *OtherPTy
= dyn_cast
<PointerType
>(Ty
))
91 return PTy
->getAddressSpace() == OtherPTy
->getAddressSpace();
94 return false; // Other types have no identity values
97 bool Type::isEmptyTy() const {
98 if (auto *ATy
= dyn_cast
<ArrayType
>(this)) {
99 unsigned NumElements
= ATy
->getNumElements();
100 return NumElements
== 0 || ATy
->getElementType()->isEmptyTy();
103 if (auto *STy
= dyn_cast
<StructType
>(this)) {
104 unsigned NumElements
= STy
->getNumElements();
105 for (unsigned i
= 0; i
< NumElements
; ++i
)
106 if (!STy
->getElementType(i
)->isEmptyTy())
114 unsigned Type::getPrimitiveSizeInBits() const {
115 switch (getTypeID()) {
116 case Type::HalfTyID
: return 16;
117 case Type::FloatTyID
: return 32;
118 case Type::DoubleTyID
: return 64;
119 case Type::X86_FP80TyID
: return 80;
120 case Type::FP128TyID
: return 128;
121 case Type::PPC_FP128TyID
: return 128;
122 case Type::X86_MMXTyID
: return 64;
123 case Type::IntegerTyID
: return cast
<IntegerType
>(this)->getBitWidth();
124 case Type::VectorTyID
: return cast
<VectorType
>(this)->getBitWidth();
129 unsigned Type::getScalarSizeInBits() const {
130 return getScalarType()->getPrimitiveSizeInBits();
133 int Type::getFPMantissaWidth() const {
134 if (auto *VTy
= dyn_cast
<VectorType
>(this))
135 return VTy
->getElementType()->getFPMantissaWidth();
136 assert(isFloatingPointTy() && "Not a floating point type!");
137 if (getTypeID() == HalfTyID
) return 11;
138 if (getTypeID() == FloatTyID
) return 24;
139 if (getTypeID() == DoubleTyID
) return 53;
140 if (getTypeID() == X86_FP80TyID
) return 64;
141 if (getTypeID() == FP128TyID
) return 113;
142 assert(getTypeID() == PPC_FP128TyID
&& "unknown fp type");
146 bool Type::isSizedDerivedType(SmallPtrSetImpl
<Type
*> *Visited
) const {
147 if (auto *ATy
= dyn_cast
<ArrayType
>(this))
148 return ATy
->getElementType()->isSized(Visited
);
150 if (auto *VTy
= dyn_cast
<VectorType
>(this))
151 return VTy
->getElementType()->isSized(Visited
);
153 return cast
<StructType
>(this)->isSized(Visited
);
156 //===----------------------------------------------------------------------===//
157 // Primitive 'Type' data
158 //===----------------------------------------------------------------------===//
160 Type
*Type::getVoidTy(LLVMContext
&C
) { return &C
.pImpl
->VoidTy
; }
161 Type
*Type::getLabelTy(LLVMContext
&C
) { return &C
.pImpl
->LabelTy
; }
162 Type
*Type::getHalfTy(LLVMContext
&C
) { return &C
.pImpl
->HalfTy
; }
163 Type
*Type::getFloatTy(LLVMContext
&C
) { return &C
.pImpl
->FloatTy
; }
164 Type
*Type::getDoubleTy(LLVMContext
&C
) { return &C
.pImpl
->DoubleTy
; }
165 Type
*Type::getMetadataTy(LLVMContext
&C
) { return &C
.pImpl
->MetadataTy
; }
166 Type
*Type::getTokenTy(LLVMContext
&C
) { return &C
.pImpl
->TokenTy
; }
167 Type
*Type::getX86_FP80Ty(LLVMContext
&C
) { return &C
.pImpl
->X86_FP80Ty
; }
168 Type
*Type::getFP128Ty(LLVMContext
&C
) { return &C
.pImpl
->FP128Ty
; }
169 Type
*Type::getPPC_FP128Ty(LLVMContext
&C
) { return &C
.pImpl
->PPC_FP128Ty
; }
170 Type
*Type::getX86_MMXTy(LLVMContext
&C
) { return &C
.pImpl
->X86_MMXTy
; }
172 IntegerType
*Type::getInt1Ty(LLVMContext
&C
) { return &C
.pImpl
->Int1Ty
; }
173 IntegerType
*Type::getInt8Ty(LLVMContext
&C
) { return &C
.pImpl
->Int8Ty
; }
174 IntegerType
*Type::getInt16Ty(LLVMContext
&C
) { return &C
.pImpl
->Int16Ty
; }
175 IntegerType
*Type::getInt32Ty(LLVMContext
&C
) { return &C
.pImpl
->Int32Ty
; }
176 IntegerType
*Type::getInt64Ty(LLVMContext
&C
) { return &C
.pImpl
->Int64Ty
; }
177 IntegerType
*Type::getInt128Ty(LLVMContext
&C
) { return &C
.pImpl
->Int128Ty
; }
179 IntegerType
*Type::getIntNTy(LLVMContext
&C
, unsigned N
) {
180 return IntegerType::get(C
, N
);
183 PointerType
*Type::getHalfPtrTy(LLVMContext
&C
, unsigned AS
) {
184 return getHalfTy(C
)->getPointerTo(AS
);
187 PointerType
*Type::getFloatPtrTy(LLVMContext
&C
, unsigned AS
) {
188 return getFloatTy(C
)->getPointerTo(AS
);
191 PointerType
*Type::getDoublePtrTy(LLVMContext
&C
, unsigned AS
) {
192 return getDoubleTy(C
)->getPointerTo(AS
);
195 PointerType
*Type::getX86_FP80PtrTy(LLVMContext
&C
, unsigned AS
) {
196 return getX86_FP80Ty(C
)->getPointerTo(AS
);
199 PointerType
*Type::getFP128PtrTy(LLVMContext
&C
, unsigned AS
) {
200 return getFP128Ty(C
)->getPointerTo(AS
);
203 PointerType
*Type::getPPC_FP128PtrTy(LLVMContext
&C
, unsigned AS
) {
204 return getPPC_FP128Ty(C
)->getPointerTo(AS
);
207 PointerType
*Type::getX86_MMXPtrTy(LLVMContext
&C
, unsigned AS
) {
208 return getX86_MMXTy(C
)->getPointerTo(AS
);
211 PointerType
*Type::getIntNPtrTy(LLVMContext
&C
, unsigned N
, unsigned AS
) {
212 return getIntNTy(C
, N
)->getPointerTo(AS
);
215 PointerType
*Type::getInt1PtrTy(LLVMContext
&C
, unsigned AS
) {
216 return getInt1Ty(C
)->getPointerTo(AS
);
219 PointerType
*Type::getInt8PtrTy(LLVMContext
&C
, unsigned AS
) {
220 return getInt8Ty(C
)->getPointerTo(AS
);
223 PointerType
*Type::getInt16PtrTy(LLVMContext
&C
, unsigned AS
) {
224 return getInt16Ty(C
)->getPointerTo(AS
);
227 PointerType
*Type::getInt32PtrTy(LLVMContext
&C
, unsigned AS
) {
228 return getInt32Ty(C
)->getPointerTo(AS
);
231 PointerType
*Type::getInt64PtrTy(LLVMContext
&C
, unsigned AS
) {
232 return getInt64Ty(C
)->getPointerTo(AS
);
235 //===----------------------------------------------------------------------===//
236 // IntegerType Implementation
237 //===----------------------------------------------------------------------===//
239 IntegerType
*IntegerType::get(LLVMContext
&C
, unsigned NumBits
) {
240 assert(NumBits
>= MIN_INT_BITS
&& "bitwidth too small");
241 assert(NumBits
<= MAX_INT_BITS
&& "bitwidth too large");
243 // Check for the built-in integer types
245 case 1: return cast
<IntegerType
>(Type::getInt1Ty(C
));
246 case 8: return cast
<IntegerType
>(Type::getInt8Ty(C
));
247 case 16: return cast
<IntegerType
>(Type::getInt16Ty(C
));
248 case 32: return cast
<IntegerType
>(Type::getInt32Ty(C
));
249 case 64: return cast
<IntegerType
>(Type::getInt64Ty(C
));
250 case 128: return cast
<IntegerType
>(Type::getInt128Ty(C
));
255 IntegerType
*&Entry
= C
.pImpl
->IntegerTypes
[NumBits
];
258 Entry
= new (C
.pImpl
->Alloc
) IntegerType(C
, NumBits
);
263 bool IntegerType::isPowerOf2ByteWidth() const {
264 unsigned BitWidth
= getBitWidth();
265 return (BitWidth
> 7) && isPowerOf2_32(BitWidth
);
268 APInt
IntegerType::getMask() const {
269 return APInt::getAllOnesValue(getBitWidth());
272 //===----------------------------------------------------------------------===//
273 // FunctionType Implementation
274 //===----------------------------------------------------------------------===//
276 FunctionType::FunctionType(Type
*Result
, ArrayRef
<Type
*> Params
,
278 : Type(Result
->getContext(), FunctionTyID
) {
279 Type
**SubTys
= reinterpret_cast<Type
**>(this+1);
280 assert(isValidReturnType(Result
) && "invalid return type for function");
281 setSubclassData(IsVarArgs
);
285 for (unsigned i
= 0, e
= Params
.size(); i
!= e
; ++i
) {
286 assert(isValidArgumentType(Params
[i
]) &&
287 "Not a valid type for function argument!");
288 SubTys
[i
+1] = Params
[i
];
291 ContainedTys
= SubTys
;
292 NumContainedTys
= Params
.size() + 1; // + 1 for result type
295 // This is the factory function for the FunctionType class.
296 FunctionType
*FunctionType::get(Type
*ReturnType
,
297 ArrayRef
<Type
*> Params
, bool isVarArg
) {
298 LLVMContextImpl
*pImpl
= ReturnType
->getContext().pImpl
;
299 const FunctionTypeKeyInfo::KeyTy
Key(ReturnType
, Params
, isVarArg
);
301 // Since we only want to allocate a fresh function type in case none is found
302 // and we don't want to perform two lookups (one for checking if existent and
303 // one for inserting the newly allocated one), here we instead lookup based on
304 // Key and update the reference to the function type in-place to a newly
305 // allocated one if not found.
306 auto Insertion
= pImpl
->FunctionTypes
.insert_as(nullptr, Key
);
307 if (Insertion
.second
) {
308 // The function type was not found. Allocate one and update FunctionTypes
310 FT
= (FunctionType
*)pImpl
->Alloc
.Allocate(
311 sizeof(FunctionType
) + sizeof(Type
*) * (Params
.size() + 1),
312 alignof(FunctionType
));
313 new (FT
) FunctionType(ReturnType
, Params
, isVarArg
);
314 *Insertion
.first
= FT
;
316 // The function type was found. Just return it.
317 FT
= *Insertion
.first
;
322 FunctionType
*FunctionType::get(Type
*Result
, bool isVarArg
) {
323 return get(Result
, None
, isVarArg
);
326 bool FunctionType::isValidReturnType(Type
*RetTy
) {
327 return !RetTy
->isFunctionTy() && !RetTy
->isLabelTy() &&
328 !RetTy
->isMetadataTy();
331 bool FunctionType::isValidArgumentType(Type
*ArgTy
) {
332 return ArgTy
->isFirstClassType();
335 //===----------------------------------------------------------------------===//
336 // StructType Implementation
337 //===----------------------------------------------------------------------===//
339 // Primitive Constructors.
341 StructType
*StructType::get(LLVMContext
&Context
, ArrayRef
<Type
*> ETypes
,
343 LLVMContextImpl
*pImpl
= Context
.pImpl
;
344 const AnonStructTypeKeyInfo::KeyTy
Key(ETypes
, isPacked
);
347 // Since we only want to allocate a fresh struct type in case none is found
348 // and we don't want to perform two lookups (one for checking if existent and
349 // one for inserting the newly allocated one), here we instead lookup based on
350 // Key and update the reference to the struct type in-place to a newly
351 // allocated one if not found.
352 auto Insertion
= pImpl
->AnonStructTypes
.insert_as(nullptr, Key
);
353 if (Insertion
.second
) {
354 // The struct type was not found. Allocate one and update AnonStructTypes
356 ST
= new (Context
.pImpl
->Alloc
) StructType(Context
);
357 ST
->setSubclassData(SCDB_IsLiteral
); // Literal struct.
358 ST
->setBody(ETypes
, isPacked
);
359 *Insertion
.first
= ST
;
361 // The struct type was found. Just return it.
362 ST
= *Insertion
.first
;
368 void StructType::setBody(ArrayRef
<Type
*> Elements
, bool isPacked
) {
369 assert(isOpaque() && "Struct body already set!");
371 setSubclassData(getSubclassData() | SCDB_HasBody
);
373 setSubclassData(getSubclassData() | SCDB_Packed
);
375 NumContainedTys
= Elements
.size();
377 if (Elements
.empty()) {
378 ContainedTys
= nullptr;
382 ContainedTys
= Elements
.copy(getContext().pImpl
->Alloc
).data();
385 void StructType::setName(StringRef Name
) {
386 if (Name
== getName()) return;
388 StringMap
<StructType
*> &SymbolTable
= getContext().pImpl
->NamedStructTypes
;
390 using EntryTy
= StringMap
<StructType
*>::MapEntryTy
;
392 // If this struct already had a name, remove its symbol table entry. Don't
393 // delete the data yet because it may be part of the new name.
394 if (SymbolTableEntry
)
395 SymbolTable
.remove((EntryTy
*)SymbolTableEntry
);
397 // If this is just removing the name, we're done.
399 if (SymbolTableEntry
) {
400 // Delete the old string data.
401 ((EntryTy
*)SymbolTableEntry
)->Destroy(SymbolTable
.getAllocator());
402 SymbolTableEntry
= nullptr;
407 // Look up the entry for the name.
409 getContext().pImpl
->NamedStructTypes
.insert(std::make_pair(Name
, this));
411 // While we have a name collision, try a random rename.
412 if (!IterBool
.second
) {
413 SmallString
<64> TempStr(Name
);
414 TempStr
.push_back('.');
415 raw_svector_ostream
TmpStream(TempStr
);
416 unsigned NameSize
= Name
.size();
419 TempStr
.resize(NameSize
+ 1);
420 TmpStream
<< getContext().pImpl
->NamedStructTypesUniqueID
++;
422 IterBool
= getContext().pImpl
->NamedStructTypes
.insert(
423 std::make_pair(TmpStream
.str(), this));
424 } while (!IterBool
.second
);
427 // Delete the old string data.
428 if (SymbolTableEntry
)
429 ((EntryTy
*)SymbolTableEntry
)->Destroy(SymbolTable
.getAllocator());
430 SymbolTableEntry
= &*IterBool
.first
;
433 //===----------------------------------------------------------------------===//
434 // StructType Helper functions.
436 StructType
*StructType::create(LLVMContext
&Context
, StringRef Name
) {
437 StructType
*ST
= new (Context
.pImpl
->Alloc
) StructType(Context
);
443 StructType
*StructType::get(LLVMContext
&Context
, bool isPacked
) {
444 return get(Context
, None
, isPacked
);
447 StructType
*StructType::create(LLVMContext
&Context
, ArrayRef
<Type
*> Elements
,
448 StringRef Name
, bool isPacked
) {
449 StructType
*ST
= create(Context
, Name
);
450 ST
->setBody(Elements
, isPacked
);
454 StructType
*StructType::create(LLVMContext
&Context
, ArrayRef
<Type
*> Elements
) {
455 return create(Context
, Elements
, StringRef());
458 StructType
*StructType::create(LLVMContext
&Context
) {
459 return create(Context
, StringRef());
462 StructType
*StructType::create(ArrayRef
<Type
*> Elements
, StringRef Name
,
464 assert(!Elements
.empty() &&
465 "This method may not be invoked with an empty list");
466 return create(Elements
[0]->getContext(), Elements
, Name
, isPacked
);
469 StructType
*StructType::create(ArrayRef
<Type
*> Elements
) {
470 assert(!Elements
.empty() &&
471 "This method may not be invoked with an empty list");
472 return create(Elements
[0]->getContext(), Elements
, StringRef());
475 bool StructType::isSized(SmallPtrSetImpl
<Type
*> *Visited
) const {
476 if ((getSubclassData() & SCDB_IsSized
) != 0)
481 if (Visited
&& !Visited
->insert(const_cast<StructType
*>(this)).second
)
484 // Okay, our struct is sized if all of the elements are, but if one of the
485 // elements is opaque, the struct isn't sized *yet*, but may become sized in
486 // the future, so just bail out without caching.
487 for (element_iterator I
= element_begin(), E
= element_end(); I
!= E
; ++I
)
488 if (!(*I
)->isSized(Visited
))
491 // Here we cheat a bit and cast away const-ness. The goal is to memoize when
492 // we find a sized type, as types can only move from opaque to sized, not the
494 const_cast<StructType
*>(this)->setSubclassData(
495 getSubclassData() | SCDB_IsSized
);
499 StringRef
StructType::getName() const {
500 assert(!isLiteral() && "Literal structs never have names");
501 if (!SymbolTableEntry
) return StringRef();
503 return ((StringMapEntry
<StructType
*> *)SymbolTableEntry
)->getKey();
506 bool StructType::isValidElementType(Type
*ElemTy
) {
507 if (auto *VTy
= dyn_cast
<VectorType
>(ElemTy
))
508 return !VTy
->isScalable();
509 return !ElemTy
->isVoidTy() && !ElemTy
->isLabelTy() &&
510 !ElemTy
->isMetadataTy() && !ElemTy
->isFunctionTy() &&
511 !ElemTy
->isTokenTy();
514 bool StructType::isLayoutIdentical(StructType
*Other
) const {
515 if (this == Other
) return true;
517 if (isPacked() != Other
->isPacked())
520 return elements() == Other
->elements();
523 StructType
*Module::getTypeByName(StringRef Name
) const {
524 return getContext().pImpl
->NamedStructTypes
.lookup(Name
);
527 //===----------------------------------------------------------------------===//
528 // CompositeType Implementation
529 //===----------------------------------------------------------------------===//
531 Type
*CompositeType::getTypeAtIndex(const Value
*V
) const {
532 if (auto *STy
= dyn_cast
<StructType
>(this)) {
534 (unsigned)cast
<Constant
>(V
)->getUniqueInteger().getZExtValue();
535 assert(indexValid(Idx
) && "Invalid structure index!");
536 return STy
->getElementType(Idx
);
539 return cast
<SequentialType
>(this)->getElementType();
542 Type
*CompositeType::getTypeAtIndex(unsigned Idx
) const{
543 if (auto *STy
= dyn_cast
<StructType
>(this)) {
544 assert(indexValid(Idx
) && "Invalid structure index!");
545 return STy
->getElementType(Idx
);
548 return cast
<SequentialType
>(this)->getElementType();
551 bool CompositeType::indexValid(const Value
*V
) const {
552 if (auto *STy
= dyn_cast
<StructType
>(this)) {
553 // Structure indexes require (vectors of) 32-bit integer constants. In the
554 // vector case all of the indices must be equal.
555 if (!V
->getType()->isIntOrIntVectorTy(32))
557 const Constant
*C
= dyn_cast
<Constant
>(V
);
558 if (C
&& V
->getType()->isVectorTy())
559 C
= C
->getSplatValue();
560 const ConstantInt
*CU
= dyn_cast_or_null
<ConstantInt
>(C
);
561 return CU
&& CU
->getZExtValue() < STy
->getNumElements();
564 // Sequential types can be indexed by any integer.
565 return V
->getType()->isIntOrIntVectorTy();
568 bool CompositeType::indexValid(unsigned Idx
) const {
569 if (auto *STy
= dyn_cast
<StructType
>(this))
570 return Idx
< STy
->getNumElements();
571 // Sequential types can be indexed by any integer.
575 //===----------------------------------------------------------------------===//
576 // ArrayType Implementation
577 //===----------------------------------------------------------------------===//
579 ArrayType::ArrayType(Type
*ElType
, uint64_t NumEl
)
580 : SequentialType(ArrayTyID
, ElType
, NumEl
) {}
582 ArrayType
*ArrayType::get(Type
*ElementType
, uint64_t NumElements
) {
583 assert(isValidElementType(ElementType
) && "Invalid type for array element!");
585 LLVMContextImpl
*pImpl
= ElementType
->getContext().pImpl
;
587 pImpl
->ArrayTypes
[std::make_pair(ElementType
, NumElements
)];
590 Entry
= new (pImpl
->Alloc
) ArrayType(ElementType
, NumElements
);
594 bool ArrayType::isValidElementType(Type
*ElemTy
) {
595 if (auto *VTy
= dyn_cast
<VectorType
>(ElemTy
))
596 return !VTy
->isScalable();
597 return !ElemTy
->isVoidTy() && !ElemTy
->isLabelTy() &&
598 !ElemTy
->isMetadataTy() && !ElemTy
->isFunctionTy() &&
599 !ElemTy
->isTokenTy();
602 //===----------------------------------------------------------------------===//
603 // VectorType Implementation
604 //===----------------------------------------------------------------------===//
606 VectorType::VectorType(Type
*ElType
, ElementCount EC
)
607 : SequentialType(VectorTyID
, ElType
, EC
.Min
), Scalable(EC
.Scalable
) {}
609 VectorType
*VectorType::get(Type
*ElementType
, ElementCount EC
) {
610 assert(EC
.Min
> 0 && "#Elements of a VectorType must be greater than 0");
611 assert(isValidElementType(ElementType
) && "Element type of a VectorType must "
612 "be an integer, floating point, or "
615 LLVMContextImpl
*pImpl
= ElementType
->getContext().pImpl
;
616 VectorType
*&Entry
= ElementType
->getContext().pImpl
617 ->VectorTypes
[std::make_pair(ElementType
, EC
)];
619 Entry
= new (pImpl
->Alloc
) VectorType(ElementType
, EC
);
623 bool VectorType::isValidElementType(Type
*ElemTy
) {
624 return ElemTy
->isIntegerTy() || ElemTy
->isFloatingPointTy() ||
625 ElemTy
->isPointerTy();
628 //===----------------------------------------------------------------------===//
629 // PointerType Implementation
630 //===----------------------------------------------------------------------===//
632 PointerType
*PointerType::get(Type
*EltTy
, unsigned AddressSpace
) {
633 assert(EltTy
&& "Can't get a pointer to <null> type!");
634 assert(isValidElementType(EltTy
) && "Invalid type for pointer element!");
636 LLVMContextImpl
*CImpl
= EltTy
->getContext().pImpl
;
638 // Since AddressSpace #0 is the common case, we special case it.
639 PointerType
*&Entry
= AddressSpace
== 0 ? CImpl
->PointerTypes
[EltTy
]
640 : CImpl
->ASPointerTypes
[std::make_pair(EltTy
, AddressSpace
)];
643 Entry
= new (CImpl
->Alloc
) PointerType(EltTy
, AddressSpace
);
647 PointerType::PointerType(Type
*E
, unsigned AddrSpace
)
648 : Type(E
->getContext(), PointerTyID
), PointeeTy(E
) {
649 ContainedTys
= &PointeeTy
;
651 setSubclassData(AddrSpace
);
654 PointerType
*Type::getPointerTo(unsigned addrs
) const {
655 return PointerType::get(const_cast<Type
*>(this), addrs
);
658 bool PointerType::isValidElementType(Type
*ElemTy
) {
659 return !ElemTy
->isVoidTy() && !ElemTy
->isLabelTy() &&
660 !ElemTy
->isMetadataTy() && !ElemTy
->isTokenTy();
663 bool PointerType::isLoadableOrStorableType(Type
*ElemTy
) {
664 return isValidElementType(ElemTy
) && !ElemTy
->isFunctionTy();