1 //===-- CallingConvLower.cpp - Calling Conventions ------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the CCState class, used for lowering and implementing
10 // calling conventions.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/CallingConvLower.h"
15 #include "llvm/CodeGen/MachineFrameInfo.h"
16 #include "llvm/CodeGen/MachineRegisterInfo.h"
17 #include "llvm/CodeGen/TargetLowering.h"
18 #include "llvm/CodeGen/TargetRegisterInfo.h"
19 #include "llvm/CodeGen/TargetSubtargetInfo.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/ErrorHandling.h"
23 #include "llvm/Support/SaveAndRestore.h"
24 #include "llvm/Support/raw_ostream.h"
29 CCState::CCState(CallingConv::ID CC
, bool isVarArg
, MachineFunction
&mf
,
30 SmallVectorImpl
<CCValAssign
> &locs
, LLVMContext
&C
)
31 : CallingConv(CC
), IsVarArg(isVarArg
), MF(mf
),
32 TRI(*MF
.getSubtarget().getRegisterInfo()), Locs(locs
), Context(C
) {
37 UsedRegs
.resize((TRI
.getNumRegs()+31)/32);
40 /// Allocate space on the stack large enough to pass an argument by value.
41 /// The size and alignment information of the argument is encoded in
42 /// its parameter attribute.
43 void CCState::HandleByVal(unsigned ValNo
, MVT ValVT
, MVT LocVT
,
44 CCValAssign::LocInfo LocInfo
, int MinSize
,
45 int MinAlignment
, ISD::ArgFlagsTy ArgFlags
) {
46 llvm::Align
MinAlign(MinAlignment
);
47 llvm::Align
Align(ArgFlags
.getByValAlign());
48 unsigned Size
= ArgFlags
.getByValSize();
49 if (MinSize
> (int)Size
)
53 ensureMaxAlignment(Align
);
54 MF
.getSubtarget().getTargetLowering()->HandleByVal(this, Size
, Align
.value());
55 Size
= unsigned(alignTo(Size
, MinAlign
));
56 unsigned Offset
= AllocateStack(Size
, Align
.value());
57 addLoc(CCValAssign::getMem(ValNo
, ValVT
, Offset
, LocVT
, LocInfo
));
60 /// Mark a register and all of its aliases as allocated.
61 void CCState::MarkAllocated(unsigned Reg
) {
62 for (MCRegAliasIterator
AI(Reg
, &TRI
, true); AI
.isValid(); ++AI
)
63 UsedRegs
[*AI
/32] |= 1 << (*AI
&31);
66 bool CCState::IsShadowAllocatedReg(unsigned Reg
) const {
67 if (!isAllocated(Reg
))
70 for (auto const &ValAssign
: Locs
) {
71 if (ValAssign
.isRegLoc()) {
72 for (MCRegAliasIterator
AI(ValAssign
.getLocReg(), &TRI
, true);
82 /// Analyze an array of argument values,
83 /// incorporating info about the formals into this state.
85 CCState::AnalyzeFormalArguments(const SmallVectorImpl
<ISD::InputArg
> &Ins
,
87 unsigned NumArgs
= Ins
.size();
89 for (unsigned i
= 0; i
!= NumArgs
; ++i
) {
90 MVT ArgVT
= Ins
[i
].VT
;
91 ISD::ArgFlagsTy ArgFlags
= Ins
[i
].Flags
;
92 if (Fn(i
, ArgVT
, ArgVT
, CCValAssign::Full
, ArgFlags
, *this))
93 report_fatal_error("unable to allocate function argument #" + Twine(i
));
97 /// Analyze the return values of a function, returning true if the return can
98 /// be performed without sret-demotion and false otherwise.
99 bool CCState::CheckReturn(const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
101 // Determine which register each value should be copied into.
102 for (unsigned i
= 0, e
= Outs
.size(); i
!= e
; ++i
) {
104 ISD::ArgFlagsTy ArgFlags
= Outs
[i
].Flags
;
105 if (Fn(i
, VT
, VT
, CCValAssign::Full
, ArgFlags
, *this))
111 /// Analyze the returned values of a return,
112 /// incorporating info about the result values into this state.
113 void CCState::AnalyzeReturn(const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
115 // Determine which register each value should be copied into.
116 for (unsigned i
= 0, e
= Outs
.size(); i
!= e
; ++i
) {
118 ISD::ArgFlagsTy ArgFlags
= Outs
[i
].Flags
;
119 if (Fn(i
, VT
, VT
, CCValAssign::Full
, ArgFlags
, *this))
120 report_fatal_error("unable to allocate function return #" + Twine(i
));
124 /// Analyze the outgoing arguments to a call,
125 /// incorporating info about the passed values into this state.
126 void CCState::AnalyzeCallOperands(const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
128 unsigned NumOps
= Outs
.size();
129 for (unsigned i
= 0; i
!= NumOps
; ++i
) {
130 MVT ArgVT
= Outs
[i
].VT
;
131 ISD::ArgFlagsTy ArgFlags
= Outs
[i
].Flags
;
132 if (Fn(i
, ArgVT
, ArgVT
, CCValAssign::Full
, ArgFlags
, *this)) {
134 dbgs() << "Call operand #" << i
<< " has unhandled type "
135 << EVT(ArgVT
).getEVTString() << '\n';
137 llvm_unreachable(nullptr);
142 /// Same as above except it takes vectors of types and argument flags.
143 void CCState::AnalyzeCallOperands(SmallVectorImpl
<MVT
> &ArgVTs
,
144 SmallVectorImpl
<ISD::ArgFlagsTy
> &Flags
,
146 unsigned NumOps
= ArgVTs
.size();
147 for (unsigned i
= 0; i
!= NumOps
; ++i
) {
148 MVT ArgVT
= ArgVTs
[i
];
149 ISD::ArgFlagsTy ArgFlags
= Flags
[i
];
150 if (Fn(i
, ArgVT
, ArgVT
, CCValAssign::Full
, ArgFlags
, *this)) {
152 dbgs() << "Call operand #" << i
<< " has unhandled type "
153 << EVT(ArgVT
).getEVTString() << '\n';
155 llvm_unreachable(nullptr);
160 /// Analyze the return values of a call, incorporating info about the passed
161 /// values into this state.
162 void CCState::AnalyzeCallResult(const SmallVectorImpl
<ISD::InputArg
> &Ins
,
164 for (unsigned i
= 0, e
= Ins
.size(); i
!= e
; ++i
) {
166 ISD::ArgFlagsTy Flags
= Ins
[i
].Flags
;
167 if (Fn(i
, VT
, VT
, CCValAssign::Full
, Flags
, *this)) {
169 dbgs() << "Call result #" << i
<< " has unhandled type "
170 << EVT(VT
).getEVTString() << '\n';
172 llvm_unreachable(nullptr);
177 /// Same as above except it's specialized for calls that produce a single value.
178 void CCState::AnalyzeCallResult(MVT VT
, CCAssignFn Fn
) {
179 if (Fn(0, VT
, VT
, CCValAssign::Full
, ISD::ArgFlagsTy(), *this)) {
181 dbgs() << "Call result has unhandled type "
182 << EVT(VT
).getEVTString() << '\n';
184 llvm_unreachable(nullptr);
188 static bool isValueTypeInRegForCC(CallingConv::ID CC
, MVT VT
) {
190 return true; // Assume -msse-regparm might be in effect.
193 if (CC
== CallingConv::X86_VectorCall
|| CC
== CallingConv::X86_FastCall
)
198 void CCState::getRemainingRegParmsForType(SmallVectorImpl
<MCPhysReg
> &Regs
,
199 MVT VT
, CCAssignFn Fn
) {
200 unsigned SavedStackOffset
= StackOffset
;
201 llvm::Align SavedMaxStackArgAlign
= MaxStackArgAlign
;
202 unsigned NumLocs
= Locs
.size();
204 // Set the 'inreg' flag if it is used for this calling convention.
205 ISD::ArgFlagsTy Flags
;
206 if (isValueTypeInRegForCC(CallingConv
, VT
))
209 // Allocate something of this value type repeatedly until we get assigned a
210 // location in memory.
211 bool HaveRegParm
= true;
212 while (HaveRegParm
) {
213 if (Fn(0, VT
, VT
, CCValAssign::Full
, Flags
, *this)) {
215 dbgs() << "Call has unhandled type " << EVT(VT
).getEVTString()
216 << " while computing remaining regparms\n";
218 llvm_unreachable(nullptr);
220 HaveRegParm
= Locs
.back().isRegLoc();
223 // Copy all the registers from the value locations we added.
224 assert(NumLocs
< Locs
.size() && "CC assignment failed to add location");
225 for (unsigned I
= NumLocs
, E
= Locs
.size(); I
!= E
; ++I
)
226 if (Locs
[I
].isRegLoc())
227 Regs
.push_back(MCPhysReg(Locs
[I
].getLocReg()));
229 // Clear the assigned values and stack memory. We leave the registers marked
230 // as allocated so that future queries don't return the same registers, i.e.
231 // when i64 and f64 are both passed in GPRs.
232 StackOffset
= SavedStackOffset
;
233 MaxStackArgAlign
= SavedMaxStackArgAlign
;
234 Locs
.resize(NumLocs
);
237 void CCState::analyzeMustTailForwardedRegisters(
238 SmallVectorImpl
<ForwardedRegister
> &Forwards
, ArrayRef
<MVT
> RegParmTypes
,
240 // Oftentimes calling conventions will not user register parameters for
241 // variadic functions, so we need to assume we're not variadic so that we get
242 // all the registers that might be used in a non-variadic call.
243 SaveAndRestore
<bool> SavedVarArg(IsVarArg
, false);
244 SaveAndRestore
<bool> SavedMustTail(AnalyzingMustTailForwardedRegs
, true);
246 for (MVT RegVT
: RegParmTypes
) {
247 SmallVector
<MCPhysReg
, 8> RemainingRegs
;
248 getRemainingRegParmsForType(RemainingRegs
, RegVT
, Fn
);
249 const TargetLowering
*TL
= MF
.getSubtarget().getTargetLowering();
250 const TargetRegisterClass
*RC
= TL
->getRegClassFor(RegVT
);
251 for (MCPhysReg PReg
: RemainingRegs
) {
252 unsigned VReg
= MF
.addLiveIn(PReg
, RC
);
253 Forwards
.push_back(ForwardedRegister(VReg
, PReg
, RegVT
));
258 bool CCState::resultsCompatible(CallingConv::ID CalleeCC
,
259 CallingConv::ID CallerCC
, MachineFunction
&MF
,
261 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
262 CCAssignFn CalleeFn
, CCAssignFn CallerFn
) {
263 if (CalleeCC
== CallerCC
)
265 SmallVector
<CCValAssign
, 4> RVLocs1
;
266 CCState
CCInfo1(CalleeCC
, false, MF
, RVLocs1
, C
);
267 CCInfo1
.AnalyzeCallResult(Ins
, CalleeFn
);
269 SmallVector
<CCValAssign
, 4> RVLocs2
;
270 CCState
CCInfo2(CallerCC
, false, MF
, RVLocs2
, C
);
271 CCInfo2
.AnalyzeCallResult(Ins
, CallerFn
);
273 if (RVLocs1
.size() != RVLocs2
.size())
275 for (unsigned I
= 0, E
= RVLocs1
.size(); I
!= E
; ++I
) {
276 const CCValAssign
&Loc1
= RVLocs1
[I
];
277 const CCValAssign
&Loc2
= RVLocs2
[I
];
278 if (Loc1
.getLocInfo() != Loc2
.getLocInfo())
280 bool RegLoc1
= Loc1
.isRegLoc();
281 if (RegLoc1
!= Loc2
.isRegLoc())
284 if (Loc1
.getLocReg() != Loc2
.getLocReg())
287 if (Loc1
.getLocMemOffset() != Loc2
.getLocMemOffset())