[llvm-readobj] - Fix BB after r372087.
[llvm-complete.git] / lib / CodeGen / CallingConvLower.cpp
blob39eabd926903eed6748d806c837d5f04e57752ac
1 //===-- CallingConvLower.cpp - Calling Conventions ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the CCState class, used for lowering and implementing
10 // calling conventions.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/CallingConvLower.h"
15 #include "llvm/CodeGen/MachineFrameInfo.h"
16 #include "llvm/CodeGen/MachineRegisterInfo.h"
17 #include "llvm/CodeGen/TargetLowering.h"
18 #include "llvm/CodeGen/TargetRegisterInfo.h"
19 #include "llvm/CodeGen/TargetSubtargetInfo.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/ErrorHandling.h"
23 #include "llvm/Support/SaveAndRestore.h"
24 #include "llvm/Support/raw_ostream.h"
25 #include <algorithm>
27 using namespace llvm;
29 CCState::CCState(CallingConv::ID CC, bool isVarArg, MachineFunction &mf,
30 SmallVectorImpl<CCValAssign> &locs, LLVMContext &C)
31 : CallingConv(CC), IsVarArg(isVarArg), MF(mf),
32 TRI(*MF.getSubtarget().getRegisterInfo()), Locs(locs), Context(C) {
33 // No stack is used.
34 StackOffset = 0;
36 clearByValRegsInfo();
37 UsedRegs.resize((TRI.getNumRegs()+31)/32);
40 /// Allocate space on the stack large enough to pass an argument by value.
41 /// The size and alignment information of the argument is encoded in
42 /// its parameter attribute.
43 void CCState::HandleByVal(unsigned ValNo, MVT ValVT, MVT LocVT,
44 CCValAssign::LocInfo LocInfo, int MinSize,
45 int MinAlignment, ISD::ArgFlagsTy ArgFlags) {
46 llvm::Align MinAlign(MinAlignment);
47 llvm::Align Align(ArgFlags.getByValAlign());
48 unsigned Size = ArgFlags.getByValSize();
49 if (MinSize > (int)Size)
50 Size = MinSize;
51 if (MinAlign > Align)
52 Align = MinAlign;
53 ensureMaxAlignment(Align);
54 MF.getSubtarget().getTargetLowering()->HandleByVal(this, Size, Align.value());
55 Size = unsigned(alignTo(Size, MinAlign));
56 unsigned Offset = AllocateStack(Size, Align.value());
57 addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
60 /// Mark a register and all of its aliases as allocated.
61 void CCState::MarkAllocated(unsigned Reg) {
62 for (MCRegAliasIterator AI(Reg, &TRI, true); AI.isValid(); ++AI)
63 UsedRegs[*AI/32] |= 1 << (*AI&31);
66 bool CCState::IsShadowAllocatedReg(unsigned Reg) const {
67 if (!isAllocated(Reg))
68 return false;
70 for (auto const &ValAssign : Locs) {
71 if (ValAssign.isRegLoc()) {
72 for (MCRegAliasIterator AI(ValAssign.getLocReg(), &TRI, true);
73 AI.isValid(); ++AI) {
74 if (*AI == Reg)
75 return false;
79 return true;
82 /// Analyze an array of argument values,
83 /// incorporating info about the formals into this state.
84 void
85 CCState::AnalyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Ins,
86 CCAssignFn Fn) {
87 unsigned NumArgs = Ins.size();
89 for (unsigned i = 0; i != NumArgs; ++i) {
90 MVT ArgVT = Ins[i].VT;
91 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
92 if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this))
93 report_fatal_error("unable to allocate function argument #" + Twine(i));
97 /// Analyze the return values of a function, returning true if the return can
98 /// be performed without sret-demotion and false otherwise.
99 bool CCState::CheckReturn(const SmallVectorImpl<ISD::OutputArg> &Outs,
100 CCAssignFn Fn) {
101 // Determine which register each value should be copied into.
102 for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
103 MVT VT = Outs[i].VT;
104 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
105 if (Fn(i, VT, VT, CCValAssign::Full, ArgFlags, *this))
106 return false;
108 return true;
111 /// Analyze the returned values of a return,
112 /// incorporating info about the result values into this state.
113 void CCState::AnalyzeReturn(const SmallVectorImpl<ISD::OutputArg> &Outs,
114 CCAssignFn Fn) {
115 // Determine which register each value should be copied into.
116 for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
117 MVT VT = Outs[i].VT;
118 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
119 if (Fn(i, VT, VT, CCValAssign::Full, ArgFlags, *this))
120 report_fatal_error("unable to allocate function return #" + Twine(i));
124 /// Analyze the outgoing arguments to a call,
125 /// incorporating info about the passed values into this state.
126 void CCState::AnalyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Outs,
127 CCAssignFn Fn) {
128 unsigned NumOps = Outs.size();
129 for (unsigned i = 0; i != NumOps; ++i) {
130 MVT ArgVT = Outs[i].VT;
131 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
132 if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this)) {
133 #ifndef NDEBUG
134 dbgs() << "Call operand #" << i << " has unhandled type "
135 << EVT(ArgVT).getEVTString() << '\n';
136 #endif
137 llvm_unreachable(nullptr);
142 /// Same as above except it takes vectors of types and argument flags.
143 void CCState::AnalyzeCallOperands(SmallVectorImpl<MVT> &ArgVTs,
144 SmallVectorImpl<ISD::ArgFlagsTy> &Flags,
145 CCAssignFn Fn) {
146 unsigned NumOps = ArgVTs.size();
147 for (unsigned i = 0; i != NumOps; ++i) {
148 MVT ArgVT = ArgVTs[i];
149 ISD::ArgFlagsTy ArgFlags = Flags[i];
150 if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this)) {
151 #ifndef NDEBUG
152 dbgs() << "Call operand #" << i << " has unhandled type "
153 << EVT(ArgVT).getEVTString() << '\n';
154 #endif
155 llvm_unreachable(nullptr);
160 /// Analyze the return values of a call, incorporating info about the passed
161 /// values into this state.
162 void CCState::AnalyzeCallResult(const SmallVectorImpl<ISD::InputArg> &Ins,
163 CCAssignFn Fn) {
164 for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
165 MVT VT = Ins[i].VT;
166 ISD::ArgFlagsTy Flags = Ins[i].Flags;
167 if (Fn(i, VT, VT, CCValAssign::Full, Flags, *this)) {
168 #ifndef NDEBUG
169 dbgs() << "Call result #" << i << " has unhandled type "
170 << EVT(VT).getEVTString() << '\n';
171 #endif
172 llvm_unreachable(nullptr);
177 /// Same as above except it's specialized for calls that produce a single value.
178 void CCState::AnalyzeCallResult(MVT VT, CCAssignFn Fn) {
179 if (Fn(0, VT, VT, CCValAssign::Full, ISD::ArgFlagsTy(), *this)) {
180 #ifndef NDEBUG
181 dbgs() << "Call result has unhandled type "
182 << EVT(VT).getEVTString() << '\n';
183 #endif
184 llvm_unreachable(nullptr);
188 static bool isValueTypeInRegForCC(CallingConv::ID CC, MVT VT) {
189 if (VT.isVector())
190 return true; // Assume -msse-regparm might be in effect.
191 if (!VT.isInteger())
192 return false;
193 if (CC == CallingConv::X86_VectorCall || CC == CallingConv::X86_FastCall)
194 return true;
195 return false;
198 void CCState::getRemainingRegParmsForType(SmallVectorImpl<MCPhysReg> &Regs,
199 MVT VT, CCAssignFn Fn) {
200 unsigned SavedStackOffset = StackOffset;
201 llvm::Align SavedMaxStackArgAlign = MaxStackArgAlign;
202 unsigned NumLocs = Locs.size();
204 // Set the 'inreg' flag if it is used for this calling convention.
205 ISD::ArgFlagsTy Flags;
206 if (isValueTypeInRegForCC(CallingConv, VT))
207 Flags.setInReg();
209 // Allocate something of this value type repeatedly until we get assigned a
210 // location in memory.
211 bool HaveRegParm = true;
212 while (HaveRegParm) {
213 if (Fn(0, VT, VT, CCValAssign::Full, Flags, *this)) {
214 #ifndef NDEBUG
215 dbgs() << "Call has unhandled type " << EVT(VT).getEVTString()
216 << " while computing remaining regparms\n";
217 #endif
218 llvm_unreachable(nullptr);
220 HaveRegParm = Locs.back().isRegLoc();
223 // Copy all the registers from the value locations we added.
224 assert(NumLocs < Locs.size() && "CC assignment failed to add location");
225 for (unsigned I = NumLocs, E = Locs.size(); I != E; ++I)
226 if (Locs[I].isRegLoc())
227 Regs.push_back(MCPhysReg(Locs[I].getLocReg()));
229 // Clear the assigned values and stack memory. We leave the registers marked
230 // as allocated so that future queries don't return the same registers, i.e.
231 // when i64 and f64 are both passed in GPRs.
232 StackOffset = SavedStackOffset;
233 MaxStackArgAlign = SavedMaxStackArgAlign;
234 Locs.resize(NumLocs);
237 void CCState::analyzeMustTailForwardedRegisters(
238 SmallVectorImpl<ForwardedRegister> &Forwards, ArrayRef<MVT> RegParmTypes,
239 CCAssignFn Fn) {
240 // Oftentimes calling conventions will not user register parameters for
241 // variadic functions, so we need to assume we're not variadic so that we get
242 // all the registers that might be used in a non-variadic call.
243 SaveAndRestore<bool> SavedVarArg(IsVarArg, false);
244 SaveAndRestore<bool> SavedMustTail(AnalyzingMustTailForwardedRegs, true);
246 for (MVT RegVT : RegParmTypes) {
247 SmallVector<MCPhysReg, 8> RemainingRegs;
248 getRemainingRegParmsForType(RemainingRegs, RegVT, Fn);
249 const TargetLowering *TL = MF.getSubtarget().getTargetLowering();
250 const TargetRegisterClass *RC = TL->getRegClassFor(RegVT);
251 for (MCPhysReg PReg : RemainingRegs) {
252 unsigned VReg = MF.addLiveIn(PReg, RC);
253 Forwards.push_back(ForwardedRegister(VReg, PReg, RegVT));
258 bool CCState::resultsCompatible(CallingConv::ID CalleeCC,
259 CallingConv::ID CallerCC, MachineFunction &MF,
260 LLVMContext &C,
261 const SmallVectorImpl<ISD::InputArg> &Ins,
262 CCAssignFn CalleeFn, CCAssignFn CallerFn) {
263 if (CalleeCC == CallerCC)
264 return true;
265 SmallVector<CCValAssign, 4> RVLocs1;
266 CCState CCInfo1(CalleeCC, false, MF, RVLocs1, C);
267 CCInfo1.AnalyzeCallResult(Ins, CalleeFn);
269 SmallVector<CCValAssign, 4> RVLocs2;
270 CCState CCInfo2(CallerCC, false, MF, RVLocs2, C);
271 CCInfo2.AnalyzeCallResult(Ins, CallerFn);
273 if (RVLocs1.size() != RVLocs2.size())
274 return false;
275 for (unsigned I = 0, E = RVLocs1.size(); I != E; ++I) {
276 const CCValAssign &Loc1 = RVLocs1[I];
277 const CCValAssign &Loc2 = RVLocs2[I];
278 if (Loc1.getLocInfo() != Loc2.getLocInfo())
279 return false;
280 bool RegLoc1 = Loc1.isRegLoc();
281 if (RegLoc1 != Loc2.isRegLoc())
282 return false;
283 if (RegLoc1) {
284 if (Loc1.getLocReg() != Loc2.getLocReg())
285 return false;
286 } else {
287 if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset())
288 return false;
291 return true;