1 //===---- LatencyPriorityQueue.cpp - A latency-oriented priority queue ----===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the LatencyPriorityQueue class, which is a
10 // SchedulingPriorityQueue that schedules using latency information to
11 // reduce the length of the critical path through the basic block.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/CodeGen/LatencyPriorityQueue.h"
16 #include "llvm/Config/llvm-config.h"
17 #include "llvm/Support/Debug.h"
18 #include "llvm/Support/raw_ostream.h"
21 #define DEBUG_TYPE "scheduler"
23 bool latency_sort::operator()(const SUnit
*LHS
, const SUnit
*RHS
) const {
24 // The isScheduleHigh flag allows nodes with wraparound dependencies that
25 // cannot easily be modeled as edges with latencies to be scheduled as
26 // soon as possible in a top-down schedule.
27 if (LHS
->isScheduleHigh
&& !RHS
->isScheduleHigh
)
29 if (!LHS
->isScheduleHigh
&& RHS
->isScheduleHigh
)
32 unsigned LHSNum
= LHS
->NodeNum
;
33 unsigned RHSNum
= RHS
->NodeNum
;
35 // The most important heuristic is scheduling the critical path.
36 unsigned LHSLatency
= PQ
->getLatency(LHSNum
);
37 unsigned RHSLatency
= PQ
->getLatency(RHSNum
);
38 if (LHSLatency
< RHSLatency
) return true;
39 if (LHSLatency
> RHSLatency
) return false;
41 // After that, if two nodes have identical latencies, look to see if one will
42 // unblock more other nodes than the other.
43 unsigned LHSBlocked
= PQ
->getNumSolelyBlockNodes(LHSNum
);
44 unsigned RHSBlocked
= PQ
->getNumSolelyBlockNodes(RHSNum
);
45 if (LHSBlocked
< RHSBlocked
) return true;
46 if (LHSBlocked
> RHSBlocked
) return false;
48 // Finally, just to provide a stable ordering, use the node number as a
50 return RHSNum
< LHSNum
;
54 /// getSingleUnscheduledPred - If there is exactly one unscheduled predecessor
55 /// of SU, return it, otherwise return null.
56 SUnit
*LatencyPriorityQueue::getSingleUnscheduledPred(SUnit
*SU
) {
57 SUnit
*OnlyAvailablePred
= nullptr;
58 for (SUnit::const_pred_iterator I
= SU
->Preds
.begin(), E
= SU
->Preds
.end();
60 SUnit
&Pred
= *I
->getSUnit();
61 if (!Pred
.isScheduled
) {
62 // We found an available, but not scheduled, predecessor. If it's the
63 // only one we have found, keep track of it... otherwise give up.
64 if (OnlyAvailablePred
&& OnlyAvailablePred
!= &Pred
)
66 OnlyAvailablePred
= &Pred
;
70 return OnlyAvailablePred
;
73 void LatencyPriorityQueue::push(SUnit
*SU
) {
74 // Look at all of the successors of this node. Count the number of nodes that
75 // this node is the sole unscheduled node for.
76 unsigned NumNodesBlocking
= 0;
77 for (SUnit::const_succ_iterator I
= SU
->Succs
.begin(), E
= SU
->Succs
.end();
79 if (getSingleUnscheduledPred(I
->getSUnit()) == SU
)
82 NumNodesSolelyBlocking
[SU
->NodeNum
] = NumNodesBlocking
;
88 // scheduledNode - As nodes are scheduled, we look to see if there are any
89 // successor nodes that have a single unscheduled predecessor. If so, that
90 // single predecessor has a higher priority, since scheduling it will make
91 // the node available.
92 void LatencyPriorityQueue::scheduledNode(SUnit
*SU
) {
93 for (SUnit::const_succ_iterator I
= SU
->Succs
.begin(), E
= SU
->Succs
.end();
95 AdjustPriorityOfUnscheduledPreds(I
->getSUnit());
99 /// AdjustPriorityOfUnscheduledPreds - One of the predecessors of SU was just
100 /// scheduled. If SU is not itself available, then there is at least one
101 /// predecessor node that has not been scheduled yet. If SU has exactly ONE
102 /// unscheduled predecessor, we want to increase its priority: it getting
103 /// scheduled will make this node available, so it is better than some other
104 /// node of the same priority that will not make a node available.
105 void LatencyPriorityQueue::AdjustPriorityOfUnscheduledPreds(SUnit
*SU
) {
106 if (SU
->isAvailable
) return; // All preds scheduled.
108 SUnit
*OnlyAvailablePred
= getSingleUnscheduledPred(SU
);
109 if (!OnlyAvailablePred
|| !OnlyAvailablePred
->isAvailable
) return;
111 // Okay, we found a single predecessor that is available, but not scheduled.
112 // Since it is available, it must be in the priority queue. First remove it.
113 remove(OnlyAvailablePred
);
115 // Reinsert the node into the priority queue, which recomputes its
116 // NumNodesSolelyBlocking value.
117 push(OnlyAvailablePred
);
120 SUnit
*LatencyPriorityQueue::pop() {
121 if (empty()) return nullptr;
122 std::vector
<SUnit
*>::iterator Best
= Queue
.begin();
123 for (std::vector
<SUnit
*>::iterator I
= std::next(Queue
.begin()),
124 E
= Queue
.end(); I
!= E
; ++I
)
125 if (Picker(*Best
, *I
))
128 if (Best
!= std::prev(Queue
.end()))
129 std::swap(*Best
, Queue
.back());
134 void LatencyPriorityQueue::remove(SUnit
*SU
) {
135 assert(!Queue
.empty() && "Queue is empty!");
136 std::vector
<SUnit
*>::iterator I
= find(Queue
, SU
);
137 assert(I
!= Queue
.end() && "Queue doesn't contain the SU being removed!");
138 if (I
!= std::prev(Queue
.end()))
139 std::swap(*I
, Queue
.back());
143 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
144 LLVM_DUMP_METHOD
void LatencyPriorityQueue::dump(ScheduleDAG
*DAG
) const {
145 dbgs() << "Latency Priority Queue\n";
146 dbgs() << " Number of Queue Entries: " << Queue
.size() << "\n";
147 for (const SUnit
*SU
: Queue
) {