1 //===- LiveDebugValues.cpp - Tracking Debug Value MIs ---------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 /// This pass implements a data flow analysis that propagates debug location
10 /// information by inserting additional DBG_VALUE insts into the machine
11 /// instruction stream. Before running, each DBG_VALUE inst corresponds to a
12 /// source assignment of a variable. Afterwards, a DBG_VALUE inst specifies a
13 /// variable location for the current basic block (see SourceLevelDebugging.rst).
15 /// This is a separate pass from DbgValueHistoryCalculator to facilitate
16 /// testing and improve modularity.
18 /// Each variable location is represented by a VarLoc object that identifies the
19 /// source variable, its current machine-location, and the DBG_VALUE inst that
20 /// specifies the location. Each VarLoc is indexed in the (function-scope)
21 /// VarLocMap, giving each VarLoc a unique index. Rather than operate directly
22 /// on machine locations, the dataflow analysis in this pass identifies
23 /// locations by their index in the VarLocMap, meaning all the variable
24 /// locations in a block can be described by a sparse vector of VarLocMap
27 //===----------------------------------------------------------------------===//
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/PostOrderIterator.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/SparseBitVector.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/ADT/UniqueVector.h"
37 #include "llvm/CodeGen/LexicalScopes.h"
38 #include "llvm/CodeGen/MachineBasicBlock.h"
39 #include "llvm/CodeGen/MachineFrameInfo.h"
40 #include "llvm/CodeGen/MachineFunction.h"
41 #include "llvm/CodeGen/MachineFunctionPass.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineMemOperand.h"
45 #include "llvm/CodeGen/MachineOperand.h"
46 #include "llvm/CodeGen/PseudoSourceValue.h"
47 #include "llvm/CodeGen/RegisterScavenging.h"
48 #include "llvm/CodeGen/TargetFrameLowering.h"
49 #include "llvm/CodeGen/TargetInstrInfo.h"
50 #include "llvm/CodeGen/TargetLowering.h"
51 #include "llvm/CodeGen/TargetPassConfig.h"
52 #include "llvm/CodeGen/TargetRegisterInfo.h"
53 #include "llvm/CodeGen/TargetSubtargetInfo.h"
54 #include "llvm/Config/llvm-config.h"
55 #include "llvm/IR/DIBuilder.h"
56 #include "llvm/IR/DebugInfoMetadata.h"
57 #include "llvm/IR/DebugLoc.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/Module.h"
60 #include "llvm/MC/MCRegisterInfo.h"
61 #include "llvm/Pass.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/Compiler.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/raw_ostream.h"
77 #define DEBUG_TYPE "livedebugvalues"
79 STATISTIC(NumInserted
, "Number of DBG_VALUE instructions inserted");
80 STATISTIC(NumRemoved
, "Number of DBG_VALUE instructions removed");
82 // If @MI is a DBG_VALUE with debug value described by a defined
83 // register, returns the number of this register. In the other case, returns 0.
84 static Register
isDbgValueDescribedByReg(const MachineInstr
&MI
) {
85 assert(MI
.isDebugValue() && "expected a DBG_VALUE");
86 assert(MI
.getNumOperands() == 4 && "malformed DBG_VALUE");
87 // If location of variable is described using a register (directly
88 // or indirectly), this register is always a first operand.
89 return MI
.getOperand(0).isReg() ? MI
.getOperand(0).getReg() : Register();
94 class LiveDebugValues
: public MachineFunctionPass
{
96 const TargetRegisterInfo
*TRI
;
97 const TargetInstrInfo
*TII
;
98 const TargetFrameLowering
*TFI
;
99 BitVector CalleeSavedRegs
;
102 enum struct TransferKind
{ TransferCopy
, TransferSpill
, TransferRestore
};
104 /// Keeps track of lexical scopes associated with a user value's source
106 class UserValueScopes
{
109 SmallPtrSet
<const MachineBasicBlock
*, 4> LBlocks
;
112 UserValueScopes(DebugLoc D
, LexicalScopes
&L
) : DL(std::move(D
)), LS(L
) {}
114 /// Return true if current scope dominates at least one machine
115 /// instruction in a given machine basic block.
116 bool dominates(MachineBasicBlock
*MBB
) {
118 LS
.getMachineBasicBlocks(DL
, LBlocks
);
119 return LBlocks
.count(MBB
) != 0 || LS
.dominates(DL
, MBB
);
123 using FragmentInfo
= DIExpression::FragmentInfo
;
124 using OptFragmentInfo
= Optional
<DIExpression::FragmentInfo
>;
126 /// Storage for identifying a potentially inlined instance of a variable,
127 /// or a fragment thereof.
128 class DebugVariable
{
129 const DILocalVariable
*Variable
;
130 OptFragmentInfo Fragment
;
131 const DILocation
*InlinedAt
;
133 /// Fragment that will overlap all other fragments. Used as default when
134 /// caller demands a fragment.
135 static const FragmentInfo DefaultFragment
;
138 DebugVariable(const DILocalVariable
*Var
, OptFragmentInfo
&&FragmentInfo
,
139 const DILocation
*InlinedAt
)
140 : Variable(Var
), Fragment(FragmentInfo
), InlinedAt(InlinedAt
) {}
142 DebugVariable(const DILocalVariable
*Var
, OptFragmentInfo
&FragmentInfo
,
143 const DILocation
*InlinedAt
)
144 : Variable(Var
), Fragment(FragmentInfo
), InlinedAt(InlinedAt
) {}
146 DebugVariable(const DILocalVariable
*Var
, const DIExpression
*DIExpr
,
147 const DILocation
*InlinedAt
)
148 : DebugVariable(Var
, DIExpr
->getFragmentInfo(), InlinedAt
) {}
150 DebugVariable(const MachineInstr
&MI
)
151 : DebugVariable(MI
.getDebugVariable(),
152 MI
.getDebugExpression()->getFragmentInfo(),
153 MI
.getDebugLoc()->getInlinedAt()) {}
155 const DILocalVariable
*getVar() const { return Variable
; }
156 const OptFragmentInfo
&getFragment() const { return Fragment
; }
157 const DILocation
*getInlinedAt() const { return InlinedAt
; }
159 const FragmentInfo
getFragmentDefault() const {
160 return Fragment
.getValueOr(DefaultFragment
);
163 static bool isFragmentDefault(FragmentInfo
&F
) {
164 return F
== DefaultFragment
;
167 bool operator==(const DebugVariable
&Other
) const {
168 return std::tie(Variable
, Fragment
, InlinedAt
) ==
169 std::tie(Other
.Variable
, Other
.Fragment
, Other
.InlinedAt
);
172 bool operator<(const DebugVariable
&Other
) const {
173 return std::tie(Variable
, Fragment
, InlinedAt
) <
174 std::tie(Other
.Variable
, Other
.Fragment
, Other
.InlinedAt
);
178 friend struct llvm::DenseMapInfo
<DebugVariable
>;
180 /// A pair of debug variable and value location.
182 // The location at which a spilled variable resides. It consists of a
183 // register and an offset.
187 bool operator==(const SpillLoc
&Other
) const {
188 return SpillBase
== Other
.SpillBase
&& SpillOffset
== Other
.SpillOffset
;
192 /// Identity of the variable at this location.
193 const DebugVariable Var
;
195 /// The expression applied to this location.
196 const DIExpression
*Expr
;
198 /// DBG_VALUE to clone var/expr information from if this location
200 const MachineInstr
&MI
;
202 mutable UserValueScopes UVS
;
209 } Kind
= InvalidKind
;
211 /// The value location. Stored separately to avoid repeatedly
212 /// extracting it from MI.
215 SpillLoc SpillLocation
;
218 const ConstantFP
*FPImm
;
219 const ConstantInt
*CImm
;
222 VarLoc(const MachineInstr
&MI
, LexicalScopes
&LS
,
223 VarLocKind K
= InvalidKind
)
224 : Var(MI
), Expr(MI
.getDebugExpression()), MI(MI
),
225 UVS(MI
.getDebugLoc(), LS
) {
226 static_assert((sizeof(Loc
) == sizeof(uint64_t)),
227 "hash does not cover all members of Loc");
228 assert(MI
.isDebugValue() && "not a DBG_VALUE");
229 assert(MI
.getNumOperands() == 4 && "malformed DBG_VALUE");
230 if (int RegNo
= isDbgValueDescribedByReg(MI
)) {
231 Kind
= MI
.isDebugEntryValue() ? EntryValueKind
: RegisterKind
;
233 } else if (MI
.getOperand(0).isImm()) {
234 Kind
= ImmediateKind
;
235 Loc
.Immediate
= MI
.getOperand(0).getImm();
236 } else if (MI
.getOperand(0).isFPImm()) {
237 Kind
= ImmediateKind
;
238 Loc
.FPImm
= MI
.getOperand(0).getFPImm();
239 } else if (MI
.getOperand(0).isCImm()) {
240 Kind
= ImmediateKind
;
241 Loc
.CImm
= MI
.getOperand(0).getCImm();
243 assert((Kind
!= ImmediateKind
|| !MI
.isDebugEntryValue()) &&
244 "entry values must be register locations");
247 /// The constructor for spill locations.
248 VarLoc(const MachineInstr
&MI
, unsigned SpillBase
, int SpillOffset
,
249 LexicalScopes
&LS
, const MachineInstr
&OrigMI
)
250 : Var(MI
), Expr(MI
.getDebugExpression()), MI(OrigMI
),
251 UVS(MI
.getDebugLoc(), LS
) {
252 assert(MI
.isDebugValue() && "not a DBG_VALUE");
253 assert(MI
.getNumOperands() == 4 && "malformed DBG_VALUE");
255 Loc
.SpillLocation
= {SpillBase
, SpillOffset
};
258 // Is the Loc field a constant or constant object?
259 bool isConstant() const { return Kind
== ImmediateKind
; }
261 /// If this variable is described by a register, return it,
262 /// otherwise return 0.
263 unsigned isDescribedByReg() const {
264 if (Kind
== RegisterKind
)
269 /// Determine whether the lexical scope of this value's debug location
271 bool dominates(MachineBasicBlock
&MBB
) const { return UVS
.dominates(&MBB
); }
273 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
274 LLVM_DUMP_METHOD
void dump() const { MI
.dump(); }
277 bool operator==(const VarLoc
&Other
) const {
278 return Kind
== Other
.Kind
&& Var
== Other
.Var
&&
279 Loc
.Hash
== Other
.Loc
.Hash
&& Expr
== Other
.Expr
;
282 /// This operator guarantees that VarLocs are sorted by Variable first.
283 bool operator<(const VarLoc
&Other
) const {
284 return std::tie(Var
, Kind
, Loc
.Hash
, Expr
) <
285 std::tie(Other
.Var
, Other
.Kind
, Other
.Loc
.Hash
, Other
.Expr
);
289 using DebugParamMap
= SmallDenseMap
<const DILocalVariable
*, MachineInstr
*>;
290 using VarLocMap
= UniqueVector
<VarLoc
>;
291 using VarLocSet
= SparseBitVector
<>;
292 using VarLocInMBB
= SmallDenseMap
<const MachineBasicBlock
*, VarLocSet
>;
293 struct TransferDebugPair
{
294 MachineInstr
*TransferInst
;
295 MachineInstr
*DebugInst
;
297 using TransferMap
= SmallVector
<TransferDebugPair
, 4>;
299 // Types for recording sets of variable fragments that overlap. For a given
300 // local variable, we record all other fragments of that variable that could
301 // overlap it, to reduce search time.
302 using FragmentOfVar
=
303 std::pair
<const DILocalVariable
*, DIExpression::FragmentInfo
>;
305 DenseMap
<FragmentOfVar
, SmallVector
<DIExpression::FragmentInfo
, 1>>;
307 // Helper while building OverlapMap, a map of all fragments seen for a given
309 using VarToFragments
=
310 DenseMap
<const DILocalVariable
*, SmallSet
<FragmentInfo
, 4>>;
312 /// This holds the working set of currently open ranges. For fast
313 /// access, this is done both as a set of VarLocIDs, and a map of
314 /// DebugVariable to recent VarLocID. Note that a DBG_VALUE ends all
315 /// previous open ranges for the same variable.
316 class OpenRangesSet
{
318 SmallDenseMap
<DebugVariable
, unsigned, 8> Vars
;
319 OverlapMap
&OverlappingFragments
;
322 OpenRangesSet(OverlapMap
&_OLapMap
) : OverlappingFragments(_OLapMap
) {}
324 const VarLocSet
&getVarLocs() const { return VarLocs
; }
326 /// Terminate all open ranges for Var by removing it from the set.
327 void erase(DebugVariable Var
);
329 /// Terminate all open ranges listed in \c KillSet by removing
330 /// them from the set.
331 void erase(const VarLocSet
&KillSet
, const VarLocMap
&VarLocIDs
) {
332 VarLocs
.intersectWithComplement(KillSet
);
333 for (unsigned ID
: KillSet
)
334 Vars
.erase(VarLocIDs
[ID
].Var
);
337 /// Insert a new range into the set.
338 void insert(unsigned VarLocID
, DebugVariable Var
) {
339 VarLocs
.set(VarLocID
);
340 Vars
.insert({Var
, VarLocID
});
343 /// Insert a set of ranges.
344 void insertFromLocSet(const VarLocSet
&ToLoad
, const VarLocMap
&Map
) {
345 for (unsigned Id
: ToLoad
) {
346 const VarLoc
&Var
= Map
[Id
];
357 /// Return whether the set is empty or not.
359 assert(Vars
.empty() == VarLocs
.empty() && "open ranges are inconsistent");
360 return VarLocs
.empty();
364 /// Tests whether this instruction is a spill to a stack location.
365 bool isSpillInstruction(const MachineInstr
&MI
, MachineFunction
*MF
);
367 /// Decide if @MI is a spill instruction and return true if it is. We use 2
368 /// criteria to make this decision:
369 /// - Is this instruction a store to a spill slot?
370 /// - Is there a register operand that is both used and killed?
371 /// TODO: Store optimization can fold spills into other stores (including
372 /// other spills). We do not handle this yet (more than one memory operand).
373 bool isLocationSpill(const MachineInstr
&MI
, MachineFunction
*MF
,
376 /// If a given instruction is identified as a spill, return the spill location
377 /// and set \p Reg to the spilled register.
378 Optional
<VarLoc::SpillLoc
> isRestoreInstruction(const MachineInstr
&MI
,
381 /// Given a spill instruction, extract the register and offset used to
382 /// address the spill location in a target independent way.
383 VarLoc::SpillLoc
extractSpillBaseRegAndOffset(const MachineInstr
&MI
);
384 void insertTransferDebugPair(MachineInstr
&MI
, OpenRangesSet
&OpenRanges
,
385 TransferMap
&Transfers
, VarLocMap
&VarLocIDs
,
386 unsigned OldVarID
, TransferKind Kind
,
387 unsigned NewReg
= 0);
389 void transferDebugValue(const MachineInstr
&MI
, OpenRangesSet
&OpenRanges
,
390 VarLocMap
&VarLocIDs
);
391 void transferSpillOrRestoreInst(MachineInstr
&MI
, OpenRangesSet
&OpenRanges
,
392 VarLocMap
&VarLocIDs
, TransferMap
&Transfers
);
393 void emitEntryValues(MachineInstr
&MI
, OpenRangesSet
&OpenRanges
,
394 VarLocMap
&VarLocIDs
, TransferMap
&Transfers
,
395 DebugParamMap
&DebugEntryVals
,
396 SparseBitVector
<> &KillSet
);
397 void transferRegisterCopy(MachineInstr
&MI
, OpenRangesSet
&OpenRanges
,
398 VarLocMap
&VarLocIDs
, TransferMap
&Transfers
);
399 void transferRegisterDef(MachineInstr
&MI
, OpenRangesSet
&OpenRanges
,
400 VarLocMap
&VarLocIDs
, TransferMap
&Transfers
,
401 DebugParamMap
&DebugEntryVals
);
402 bool transferTerminator(MachineBasicBlock
*MBB
, OpenRangesSet
&OpenRanges
,
403 VarLocInMBB
&OutLocs
, const VarLocMap
&VarLocIDs
);
405 void process(MachineInstr
&MI
, OpenRangesSet
&OpenRanges
,
406 VarLocInMBB
&OutLocs
, VarLocMap
&VarLocIDs
,
407 TransferMap
&Transfers
, DebugParamMap
&DebugEntryVals
,
408 OverlapMap
&OverlapFragments
,
409 VarToFragments
&SeenFragments
);
411 void accumulateFragmentMap(MachineInstr
&MI
, VarToFragments
&SeenFragments
,
412 OverlapMap
&OLapMap
);
414 bool join(MachineBasicBlock
&MBB
, VarLocInMBB
&OutLocs
, VarLocInMBB
&InLocs
,
415 const VarLocMap
&VarLocIDs
,
416 SmallPtrSet
<const MachineBasicBlock
*, 16> &Visited
,
417 SmallPtrSetImpl
<const MachineBasicBlock
*> &ArtificialBlocks
,
418 VarLocInMBB
&PendingInLocs
);
420 /// Create DBG_VALUE insts for inlocs that have been propagated but
421 /// had their instruction creation deferred.
422 void flushPendingLocs(VarLocInMBB
&PendingInLocs
, VarLocMap
&VarLocIDs
);
424 bool ExtendRanges(MachineFunction
&MF
);
429 /// Default construct and initialize the pass.
432 /// Tell the pass manager which passes we depend on and what
433 /// information we preserve.
434 void getAnalysisUsage(AnalysisUsage
&AU
) const override
;
436 MachineFunctionProperties
getRequiredProperties() const override
{
437 return MachineFunctionProperties().set(
438 MachineFunctionProperties::Property::NoVRegs
);
441 /// Print to ostream with a message.
442 void printVarLocInMBB(const MachineFunction
&MF
, const VarLocInMBB
&V
,
443 const VarLocMap
&VarLocIDs
, const char *msg
,
444 raw_ostream
&Out
) const;
446 /// Calculate the liveness information for the given machine function.
447 bool runOnMachineFunction(MachineFunction
&MF
) override
;
450 } // end anonymous namespace
454 template <> struct DenseMapInfo
<LiveDebugValues::DebugVariable
> {
455 using DV
= LiveDebugValues::DebugVariable
;
456 using OptFragmentInfo
= LiveDebugValues::OptFragmentInfo
;
457 using FragmentInfo
= LiveDebugValues::FragmentInfo
;
459 // Empty key: no key should be generated that has no DILocalVariable.
460 static inline DV
getEmptyKey() {
461 return DV(nullptr, OptFragmentInfo(), nullptr);
464 // Difference in tombstone is that the Optional is meaningful
465 static inline DV
getTombstoneKey() {
466 return DV(nullptr, OptFragmentInfo({0, 0}), nullptr);
469 static unsigned getHashValue(const DV
&D
) {
471 const OptFragmentInfo
&Fragment
= D
.getFragment();
473 HV
= DenseMapInfo
<FragmentInfo
>::getHashValue(*Fragment
);
475 return hash_combine(D
.getVar(), HV
, D
.getInlinedAt());
478 static bool isEqual(const DV
&A
, const DV
&B
) { return A
== B
; }
483 //===----------------------------------------------------------------------===//
485 //===----------------------------------------------------------------------===//
487 const DIExpression::FragmentInfo
488 LiveDebugValues::DebugVariable::DefaultFragment
= {
489 std::numeric_limits
<uint64_t>::max(),
490 std::numeric_limits
<uint64_t>::min()};
492 char LiveDebugValues::ID
= 0;
494 char &llvm::LiveDebugValuesID
= LiveDebugValues::ID
;
496 INITIALIZE_PASS(LiveDebugValues
, DEBUG_TYPE
, "Live DEBUG_VALUE analysis",
499 /// Default construct and initialize the pass.
500 LiveDebugValues::LiveDebugValues() : MachineFunctionPass(ID
) {
501 initializeLiveDebugValuesPass(*PassRegistry::getPassRegistry());
504 /// Tell the pass manager which passes we depend on and what information we
506 void LiveDebugValues::getAnalysisUsage(AnalysisUsage
&AU
) const {
507 AU
.setPreservesCFG();
508 MachineFunctionPass::getAnalysisUsage(AU
);
511 /// Erase a variable from the set of open ranges, and additionally erase any
512 /// fragments that may overlap it.
513 void LiveDebugValues::OpenRangesSet::erase(DebugVariable Var
) {
515 auto DoErase
= [this](DebugVariable VarToErase
) {
516 auto It
= Vars
.find(VarToErase
);
517 if (It
!= Vars
.end()) {
518 unsigned ID
= It
->second
;
524 // Erase the variable/fragment that ends here.
527 // Extract the fragment. Interpret an empty fragment as one that covers all
529 FragmentInfo ThisFragment
= Var
.getFragmentDefault();
531 // There may be fragments that overlap the designated fragment. Look them up
532 // in the pre-computed overlap map, and erase them too.
533 auto MapIt
= OverlappingFragments
.find({Var
.getVar(), ThisFragment
});
534 if (MapIt
!= OverlappingFragments
.end()) {
535 for (auto Fragment
: MapIt
->second
) {
536 LiveDebugValues::OptFragmentInfo FragmentHolder
;
537 if (!DebugVariable::isFragmentDefault(Fragment
))
538 FragmentHolder
= LiveDebugValues::OptFragmentInfo(Fragment
);
539 DoErase({Var
.getVar(), FragmentHolder
, Var
.getInlinedAt()});
544 //===----------------------------------------------------------------------===//
545 // Debug Range Extension Implementation
546 //===----------------------------------------------------------------------===//
549 void LiveDebugValues::printVarLocInMBB(const MachineFunction
&MF
,
550 const VarLocInMBB
&V
,
551 const VarLocMap
&VarLocIDs
,
553 raw_ostream
&Out
) const {
554 Out
<< '\n' << msg
<< '\n';
555 for (const MachineBasicBlock
&BB
: MF
) {
556 const VarLocSet
&L
= V
.lookup(&BB
);
559 Out
<< "MBB: " << BB
.getNumber() << ":\n";
560 for (unsigned VLL
: L
) {
561 const VarLoc
&VL
= VarLocIDs
[VLL
];
562 Out
<< " Var: " << VL
.Var
.getVar()->getName();
571 LiveDebugValues::VarLoc::SpillLoc
572 LiveDebugValues::extractSpillBaseRegAndOffset(const MachineInstr
&MI
) {
573 assert(MI
.hasOneMemOperand() &&
574 "Spill instruction does not have exactly one memory operand?");
575 auto MMOI
= MI
.memoperands_begin();
576 const PseudoSourceValue
*PVal
= (*MMOI
)->getPseudoValue();
577 assert(PVal
->kind() == PseudoSourceValue::FixedStack
&&
578 "Inconsistent memory operand in spill instruction");
579 int FI
= cast
<FixedStackPseudoSourceValue
>(PVal
)->getFrameIndex();
580 const MachineBasicBlock
*MBB
= MI
.getParent();
582 int Offset
= TFI
->getFrameIndexReference(*MBB
->getParent(), FI
, Reg
);
583 return {Reg
, Offset
};
586 /// End all previous ranges related to @MI and start a new range from @MI
587 /// if it is a DBG_VALUE instr.
588 void LiveDebugValues::transferDebugValue(const MachineInstr
&MI
,
589 OpenRangesSet
&OpenRanges
,
590 VarLocMap
&VarLocIDs
) {
591 if (!MI
.isDebugValue())
593 const DILocalVariable
*Var
= MI
.getDebugVariable();
594 const DIExpression
*Expr
= MI
.getDebugExpression();
595 const DILocation
*DebugLoc
= MI
.getDebugLoc();
596 const DILocation
*InlinedAt
= DebugLoc
->getInlinedAt();
597 assert(Var
->isValidLocationForIntrinsic(DebugLoc
) &&
598 "Expected inlined-at fields to agree");
600 // End all previous ranges of Var.
601 DebugVariable
V(Var
, Expr
, InlinedAt
);
604 // Add the VarLoc to OpenRanges from this DBG_VALUE.
606 if (isDbgValueDescribedByReg(MI
) || MI
.getOperand(0).isImm() ||
607 MI
.getOperand(0).isFPImm() || MI
.getOperand(0).isCImm()) {
608 // Use normal VarLoc constructor for registers and immediates.
610 ID
= VarLocIDs
.insert(VL
);
611 OpenRanges
.insert(ID
, VL
.Var
);
612 } else if (MI
.hasOneMemOperand()) {
613 llvm_unreachable("DBG_VALUE with mem operand encountered after regalloc?");
615 // This must be an undefined location. We should leave OpenRanges closed.
616 assert(MI
.getOperand(0).isReg() && MI
.getOperand(0).getReg() == 0 &&
617 "Unexpected non-undef DBG_VALUE encountered");
621 void LiveDebugValues::emitEntryValues(MachineInstr
&MI
,
622 OpenRangesSet
&OpenRanges
,
623 VarLocMap
&VarLocIDs
,
624 TransferMap
&Transfers
,
625 DebugParamMap
&DebugEntryVals
,
626 SparseBitVector
<> &KillSet
) {
627 MachineFunction
*MF
= MI
.getParent()->getParent();
628 for (unsigned ID
: KillSet
) {
629 if (!VarLocIDs
[ID
].Var
.getVar()->isParameter())
632 const MachineInstr
*CurrDebugInstr
= &VarLocIDs
[ID
].MI
;
634 // If parameter's DBG_VALUE is not in the map that means we can't
635 // generate parameter's entry value.
636 if (!DebugEntryVals
.count(CurrDebugInstr
->getDebugVariable()))
639 auto ParamDebugInstr
= DebugEntryVals
[CurrDebugInstr
->getDebugVariable()];
640 DIExpression
*NewExpr
= DIExpression::prepend(
641 ParamDebugInstr
->getDebugExpression(), DIExpression::EntryValue
);
642 MachineInstr
*EntryValDbgMI
=
643 BuildMI(*MF
, ParamDebugInstr
->getDebugLoc(), ParamDebugInstr
->getDesc(),
644 ParamDebugInstr
->isIndirectDebugValue(),
645 ParamDebugInstr
->getOperand(0).getReg(),
646 ParamDebugInstr
->getDebugVariable(), NewExpr
);
648 if (ParamDebugInstr
->isIndirectDebugValue())
649 EntryValDbgMI
->getOperand(1).setImm(
650 ParamDebugInstr
->getOperand(1).getImm());
652 Transfers
.push_back({&MI
, EntryValDbgMI
});
653 VarLoc
VL(*EntryValDbgMI
, LS
);
654 unsigned EntryValLocID
= VarLocIDs
.insert(VL
);
655 OpenRanges
.insert(EntryValLocID
, VL
.Var
);
659 /// Create new TransferDebugPair and insert it in \p Transfers. The VarLoc
660 /// with \p OldVarID should be deleted form \p OpenRanges and replaced with
661 /// new VarLoc. If \p NewReg is different than default zero value then the
662 /// new location will be register location created by the copy like instruction,
663 /// otherwise it is variable's location on the stack.
664 void LiveDebugValues::insertTransferDebugPair(
665 MachineInstr
&MI
, OpenRangesSet
&OpenRanges
, TransferMap
&Transfers
,
666 VarLocMap
&VarLocIDs
, unsigned OldVarID
, TransferKind Kind
,
668 const MachineInstr
*DebugInstr
= &VarLocIDs
[OldVarID
].MI
;
669 MachineFunction
*MF
= MI
.getParent()->getParent();
670 MachineInstr
*NewDebugInstr
;
672 auto ProcessVarLoc
= [&MI
, &OpenRanges
, &Transfers
, &DebugInstr
,
673 &VarLocIDs
](VarLoc
&VL
, MachineInstr
*NewDebugInstr
) {
674 unsigned LocId
= VarLocIDs
.insert(VL
);
676 // Close this variable's previous location range.
677 DebugVariable
V(*DebugInstr
);
680 OpenRanges
.insert(LocId
, VL
.Var
);
681 // The newly created DBG_VALUE instruction NewDebugInstr must be inserted
682 // after MI. Keep track of the pairing.
683 TransferDebugPair MIP
= {&MI
, NewDebugInstr
};
684 Transfers
.push_back(MIP
);
687 // End all previous ranges of Var.
688 OpenRanges
.erase(VarLocIDs
[OldVarID
].Var
);
690 case TransferKind::TransferCopy
: {
692 "No register supplied when handling a copy of a debug value");
693 // Create a DBG_VALUE instruction to describe the Var in its new
694 // register location.
695 NewDebugInstr
= BuildMI(
696 *MF
, DebugInstr
->getDebugLoc(), DebugInstr
->getDesc(),
697 DebugInstr
->isIndirectDebugValue(), NewReg
,
698 DebugInstr
->getDebugVariable(), DebugInstr
->getDebugExpression());
699 if (DebugInstr
->isIndirectDebugValue())
700 NewDebugInstr
->getOperand(1).setImm(DebugInstr
->getOperand(1).getImm());
701 VarLoc
VL(*NewDebugInstr
, LS
);
702 ProcessVarLoc(VL
, NewDebugInstr
);
703 LLVM_DEBUG(dbgs() << "Creating DBG_VALUE inst for register copy: ";
704 NewDebugInstr
->print(dbgs(), /*IsStandalone*/false,
705 /*SkipOpers*/false, /*SkipDebugLoc*/false,
706 /*AddNewLine*/true, TII
));
709 case TransferKind::TransferSpill
: {
710 // Create a DBG_VALUE instruction to describe the Var in its spilled
712 VarLoc::SpillLoc SpillLocation
= extractSpillBaseRegAndOffset(MI
);
713 auto *SpillExpr
= DIExpression::prepend(DebugInstr
->getDebugExpression(),
714 DIExpression::ApplyOffset
,
715 SpillLocation
.SpillOffset
);
716 NewDebugInstr
= BuildMI(
717 *MF
, DebugInstr
->getDebugLoc(), DebugInstr
->getDesc(), true,
718 SpillLocation
.SpillBase
, DebugInstr
->getDebugVariable(), SpillExpr
);
719 VarLoc
VL(*NewDebugInstr
, SpillLocation
.SpillBase
,
720 SpillLocation
.SpillOffset
, LS
, *DebugInstr
);
721 ProcessVarLoc(VL
, NewDebugInstr
);
722 LLVM_DEBUG(dbgs() << "Creating DBG_VALUE inst for spill: ";
723 NewDebugInstr
->print(dbgs(), /*IsStandalone*/false,
724 /*SkipOpers*/false, /*SkipDebugLoc*/false,
725 /*AddNewLine*/true, TII
));
728 case TransferKind::TransferRestore
: {
730 "No register supplied when handling a restore of a debug value");
731 MachineFunction
*MF
= MI
.getMF();
732 DIBuilder
DIB(*const_cast<Function
&>(MF
->getFunction()).getParent());
733 // DebugInstr refers to the pre-spill location, therefore we can reuse
735 NewDebugInstr
= BuildMI(
736 *MF
, DebugInstr
->getDebugLoc(), DebugInstr
->getDesc(), false, NewReg
,
737 DebugInstr
->getDebugVariable(), DebugInstr
->getDebugExpression());
738 VarLoc
VL(*NewDebugInstr
, LS
);
739 ProcessVarLoc(VL
, NewDebugInstr
);
740 LLVM_DEBUG(dbgs() << "Creating DBG_VALUE inst for register restore: ";
741 NewDebugInstr
->print(dbgs(), /*IsStandalone*/false,
742 /*SkipOpers*/false, /*SkipDebugLoc*/false,
743 /*AddNewLine*/true, TII
));
747 llvm_unreachable("Invalid transfer kind");
750 /// A definition of a register may mark the end of a range.
751 void LiveDebugValues::transferRegisterDef(
752 MachineInstr
&MI
, OpenRangesSet
&OpenRanges
, VarLocMap
&VarLocIDs
,
753 TransferMap
&Transfers
, DebugParamMap
&DebugEntryVals
) {
754 MachineFunction
*MF
= MI
.getMF();
755 const TargetLowering
*TLI
= MF
->getSubtarget().getTargetLowering();
756 unsigned SP
= TLI
->getStackPointerRegisterToSaveRestore();
757 SparseBitVector
<> KillSet
;
758 for (const MachineOperand
&MO
: MI
.operands()) {
759 // Determine whether the operand is a register def. Assume that call
760 // instructions never clobber SP, because some backends (e.g., AArch64)
761 // never list SP in the regmask.
762 if (MO
.isReg() && MO
.isDef() && MO
.getReg() &&
763 Register::isPhysicalRegister(MO
.getReg()) &&
764 !(MI
.isCall() && MO
.getReg() == SP
)) {
765 // Remove ranges of all aliased registers.
766 for (MCRegAliasIterator
RAI(MO
.getReg(), TRI
, true); RAI
.isValid(); ++RAI
)
767 for (unsigned ID
: OpenRanges
.getVarLocs())
768 if (VarLocIDs
[ID
].isDescribedByReg() == *RAI
)
770 } else if (MO
.isRegMask()) {
771 // Remove ranges of all clobbered registers. Register masks don't usually
772 // list SP as preserved. While the debug info may be off for an
773 // instruction or two around callee-cleanup calls, transferring the
774 // DEBUG_VALUE across the call is still a better user experience.
775 for (unsigned ID
: OpenRanges
.getVarLocs()) {
776 unsigned Reg
= VarLocIDs
[ID
].isDescribedByReg();
777 if (Reg
&& Reg
!= SP
&& MO
.clobbersPhysReg(Reg
))
782 OpenRanges
.erase(KillSet
, VarLocIDs
);
784 if (auto *TPC
= getAnalysisIfAvailable
<TargetPassConfig
>()) {
785 auto &TM
= TPC
->getTM
<TargetMachine
>();
786 if (TM
.Options
.EnableDebugEntryValues
)
787 emitEntryValues(MI
, OpenRanges
, VarLocIDs
, Transfers
, DebugEntryVals
,
792 bool LiveDebugValues::isSpillInstruction(const MachineInstr
&MI
,
793 MachineFunction
*MF
) {
794 // TODO: Handle multiple stores folded into one.
795 if (!MI
.hasOneMemOperand())
798 if (!MI
.getSpillSize(TII
) && !MI
.getFoldedSpillSize(TII
))
799 return false; // This is not a spill instruction, since no valid size was
800 // returned from either function.
805 bool LiveDebugValues::isLocationSpill(const MachineInstr
&MI
,
806 MachineFunction
*MF
, unsigned &Reg
) {
807 if (!isSpillInstruction(MI
, MF
))
810 auto isKilledReg
= [&](const MachineOperand MO
, unsigned &Reg
) {
811 if (!MO
.isReg() || !MO
.isUse()) {
819 for (const MachineOperand
&MO
: MI
.operands()) {
820 // In a spill instruction generated by the InlineSpiller the spilled
821 // register has its kill flag set.
822 if (isKilledReg(MO
, Reg
))
825 // Check whether next instruction kills the spilled register.
826 // FIXME: Current solution does not cover search for killed register in
827 // bundles and instructions further down the chain.
828 auto NextI
= std::next(MI
.getIterator());
829 // Skip next instruction that points to basic block end iterator.
830 if (MI
.getParent()->end() == NextI
)
833 for (const MachineOperand
&MONext
: NextI
->operands()) {
834 // Return true if we came across the register from the
835 // previous spill instruction that is killed in NextI.
836 if (isKilledReg(MONext
, RegNext
) && RegNext
== Reg
)
841 // Return false if we didn't find spilled register.
845 Optional
<LiveDebugValues::VarLoc::SpillLoc
>
846 LiveDebugValues::isRestoreInstruction(const MachineInstr
&MI
,
847 MachineFunction
*MF
, unsigned &Reg
) {
848 if (!MI
.hasOneMemOperand())
851 // FIXME: Handle folded restore instructions with more than one memory
853 if (MI
.getRestoreSize(TII
)) {
854 Reg
= MI
.getOperand(0).getReg();
855 return extractSpillBaseRegAndOffset(MI
);
860 /// A spilled register may indicate that we have to end the current range of
861 /// a variable and create a new one for the spill location.
862 /// A restored register may indicate the reverse situation.
863 /// We don't want to insert any instructions in process(), so we just create
864 /// the DBG_VALUE without inserting it and keep track of it in \p Transfers.
865 /// It will be inserted into the BB when we're done iterating over the
867 void LiveDebugValues::transferSpillOrRestoreInst(MachineInstr
&MI
,
868 OpenRangesSet
&OpenRanges
,
869 VarLocMap
&VarLocIDs
,
870 TransferMap
&Transfers
) {
871 MachineFunction
*MF
= MI
.getMF();
874 Optional
<VarLoc::SpillLoc
> Loc
;
876 LLVM_DEBUG(dbgs() << "Examining instruction: "; MI
.dump(););
878 // First, if there are any DBG_VALUEs pointing at a spill slot that is
879 // written to, then close the variable location. The value in memory
880 // will have changed.
882 if (isSpillInstruction(MI
, MF
)) {
883 Loc
= extractSpillBaseRegAndOffset(MI
);
884 for (unsigned ID
: OpenRanges
.getVarLocs()) {
885 const VarLoc
&VL
= VarLocIDs
[ID
];
886 if (VL
.Kind
== VarLoc::SpillLocKind
&& VL
.Loc
.SpillLocation
== *Loc
) {
887 // This location is overwritten by the current instruction -- terminate
888 // the open range, and insert an explicit DBG_VALUE $noreg.
890 // Doing this at a later stage would require re-interpreting all
891 // DBG_VALUes and DIExpressions to identify whether they point at
892 // memory, and then analysing all memory writes to see if they
893 // overwrite that memory, which is expensive.
895 // At this stage, we already know which DBG_VALUEs are for spills and
896 // where they are located; it's best to fix handle overwrites now.
898 MachineInstr
*NewDebugInstr
=
899 BuildMI(*MF
, VL
.MI
.getDebugLoc(), VL
.MI
.getDesc(),
900 VL
.MI
.isIndirectDebugValue(), 0, // $noreg
901 VL
.MI
.getDebugVariable(), VL
.MI
.getDebugExpression());
902 Transfers
.push_back({&MI
, NewDebugInstr
});
905 OpenRanges
.erase(KillSet
, VarLocIDs
);
908 // Try to recognise spill and restore instructions that may create a new
909 // variable location.
910 if (isLocationSpill(MI
, MF
, Reg
)) {
911 TKind
= TransferKind::TransferSpill
;
912 LLVM_DEBUG(dbgs() << "Recognized as spill: "; MI
.dump(););
913 LLVM_DEBUG(dbgs() << "Register: " << Reg
<< " " << printReg(Reg
, TRI
)
916 if (!(Loc
= isRestoreInstruction(MI
, MF
, Reg
)))
918 TKind
= TransferKind::TransferRestore
;
919 LLVM_DEBUG(dbgs() << "Recognized as restore: "; MI
.dump(););
920 LLVM_DEBUG(dbgs() << "Register: " << Reg
<< " " << printReg(Reg
, TRI
)
923 // Check if the register or spill location is the location of a debug value.
924 for (unsigned ID
: OpenRanges
.getVarLocs()) {
925 if (TKind
== TransferKind::TransferSpill
&&
926 VarLocIDs
[ID
].isDescribedByReg() == Reg
) {
927 LLVM_DEBUG(dbgs() << "Spilling Register " << printReg(Reg
, TRI
) << '('
928 << VarLocIDs
[ID
].Var
.getVar()->getName() << ")\n");
929 } else if (TKind
== TransferKind::TransferRestore
&&
930 VarLocIDs
[ID
].Kind
== VarLoc::SpillLocKind
&&
931 VarLocIDs
[ID
].Loc
.SpillLocation
== *Loc
) {
932 LLVM_DEBUG(dbgs() << "Restoring Register " << printReg(Reg
, TRI
) << '('
933 << VarLocIDs
[ID
].Var
.getVar()->getName() << ")\n");
936 insertTransferDebugPair(MI
, OpenRanges
, Transfers
, VarLocIDs
, ID
, TKind
,
942 /// If \p MI is a register copy instruction, that copies a previously tracked
943 /// value from one register to another register that is callee saved, we
944 /// create new DBG_VALUE instruction described with copy destination register.
945 void LiveDebugValues::transferRegisterCopy(MachineInstr
&MI
,
946 OpenRangesSet
&OpenRanges
,
947 VarLocMap
&VarLocIDs
,
948 TransferMap
&Transfers
) {
949 const MachineOperand
*SrcRegOp
, *DestRegOp
;
951 if (!TII
->isCopyInstr(MI
, SrcRegOp
, DestRegOp
) || !SrcRegOp
->isKill() ||
955 auto isCalleSavedReg
= [&](unsigned Reg
) {
956 for (MCRegAliasIterator
RAI(Reg
, TRI
, true); RAI
.isValid(); ++RAI
)
957 if (CalleeSavedRegs
.test(*RAI
))
962 Register SrcReg
= SrcRegOp
->getReg();
963 Register DestReg
= DestRegOp
->getReg();
965 // We want to recognize instructions where destination register is callee
966 // saved register. If register that could be clobbered by the call is
967 // included, there would be a great chance that it is going to be clobbered
968 // soon. It is more likely that previous register location, which is callee
969 // saved, is going to stay unclobbered longer, even if it is killed.
970 if (!isCalleSavedReg(DestReg
))
973 for (unsigned ID
: OpenRanges
.getVarLocs()) {
974 if (VarLocIDs
[ID
].isDescribedByReg() == SrcReg
) {
975 insertTransferDebugPair(MI
, OpenRanges
, Transfers
, VarLocIDs
, ID
,
976 TransferKind::TransferCopy
, DestReg
);
982 /// Terminate all open ranges at the end of the current basic block.
983 bool LiveDebugValues::transferTerminator(MachineBasicBlock
*CurMBB
,
984 OpenRangesSet
&OpenRanges
,
985 VarLocInMBB
&OutLocs
,
986 const VarLocMap
&VarLocIDs
) {
987 bool Changed
= false;
989 if (OpenRanges
.empty())
992 LLVM_DEBUG(for (unsigned ID
993 : OpenRanges
.getVarLocs()) {
994 // Copy OpenRanges to OutLocs, if not already present.
995 dbgs() << "Add to OutLocs in MBB #" << CurMBB
->getNumber() << ": ";
996 VarLocIDs
[ID
].dump();
998 VarLocSet
&VLS
= OutLocs
[CurMBB
];
999 Changed
= VLS
!= OpenRanges
.getVarLocs();
1000 // New OutLocs set may be different due to spill, restore or register
1001 // copy instruction processing.
1003 VLS
= OpenRanges
.getVarLocs();
1008 /// Accumulate a mapping between each DILocalVariable fragment and other
1009 /// fragments of that DILocalVariable which overlap. This reduces work during
1010 /// the data-flow stage from "Find any overlapping fragments" to "Check if the
1011 /// known-to-overlap fragments are present".
1012 /// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for
1014 /// \param SeenFragments Map from DILocalVariable to all fragments of that
1015 /// Variable which are known to exist.
1016 /// \param OverlappingFragments The overlap map being constructed, from one
1017 /// Var/Fragment pair to a vector of fragments known to overlap.
1018 void LiveDebugValues::accumulateFragmentMap(MachineInstr
&MI
,
1019 VarToFragments
&SeenFragments
,
1020 OverlapMap
&OverlappingFragments
) {
1021 DebugVariable
MIVar(MI
);
1022 FragmentInfo ThisFragment
= MIVar
.getFragmentDefault();
1024 // If this is the first sighting of this variable, then we are guaranteed
1025 // there are currently no overlapping fragments either. Initialize the set
1026 // of seen fragments, record no overlaps for the current one, and return.
1027 auto SeenIt
= SeenFragments
.find(MIVar
.getVar());
1028 if (SeenIt
== SeenFragments
.end()) {
1029 SmallSet
<FragmentInfo
, 4> OneFragment
;
1030 OneFragment
.insert(ThisFragment
);
1031 SeenFragments
.insert({MIVar
.getVar(), OneFragment
});
1033 OverlappingFragments
.insert({{MIVar
.getVar(), ThisFragment
}, {}});
1037 // If this particular Variable/Fragment pair already exists in the overlap
1038 // map, it has already been accounted for.
1040 OverlappingFragments
.insert({{MIVar
.getVar(), ThisFragment
}, {}});
1041 if (!IsInOLapMap
.second
)
1044 auto &ThisFragmentsOverlaps
= IsInOLapMap
.first
->second
;
1045 auto &AllSeenFragments
= SeenIt
->second
;
1047 // Otherwise, examine all other seen fragments for this variable, with "this"
1048 // fragment being a previously unseen fragment. Record any pair of
1049 // overlapping fragments.
1050 for (auto &ASeenFragment
: AllSeenFragments
) {
1051 // Does this previously seen fragment overlap?
1052 if (DIExpression::fragmentsOverlap(ThisFragment
, ASeenFragment
)) {
1053 // Yes: Mark the current fragment as being overlapped.
1054 ThisFragmentsOverlaps
.push_back(ASeenFragment
);
1055 // Mark the previously seen fragment as being overlapped by the current
1057 auto ASeenFragmentsOverlaps
=
1058 OverlappingFragments
.find({MIVar
.getVar(), ASeenFragment
});
1059 assert(ASeenFragmentsOverlaps
!= OverlappingFragments
.end() &&
1060 "Previously seen var fragment has no vector of overlaps");
1061 ASeenFragmentsOverlaps
->second
.push_back(ThisFragment
);
1065 AllSeenFragments
.insert(ThisFragment
);
1068 /// This routine creates OpenRanges and OutLocs.
1069 void LiveDebugValues::process(MachineInstr
&MI
, OpenRangesSet
&OpenRanges
,
1070 VarLocInMBB
&OutLocs
, VarLocMap
&VarLocIDs
,
1071 TransferMap
&Transfers
,
1072 DebugParamMap
&DebugEntryVals
,
1073 OverlapMap
&OverlapFragments
,
1074 VarToFragments
&SeenFragments
) {
1075 transferDebugValue(MI
, OpenRanges
, VarLocIDs
);
1076 transferRegisterDef(MI
, OpenRanges
, VarLocIDs
, Transfers
,
1078 transferRegisterCopy(MI
, OpenRanges
, VarLocIDs
, Transfers
);
1079 transferSpillOrRestoreInst(MI
, OpenRanges
, VarLocIDs
, Transfers
);
1082 /// This routine joins the analysis results of all incoming edges in @MBB by
1083 /// inserting a new DBG_VALUE instruction at the start of the @MBB - if the same
1084 /// source variable in all the predecessors of @MBB reside in the same location.
1085 bool LiveDebugValues::join(
1086 MachineBasicBlock
&MBB
, VarLocInMBB
&OutLocs
, VarLocInMBB
&InLocs
,
1087 const VarLocMap
&VarLocIDs
,
1088 SmallPtrSet
<const MachineBasicBlock
*, 16> &Visited
,
1089 SmallPtrSetImpl
<const MachineBasicBlock
*> &ArtificialBlocks
,
1090 VarLocInMBB
&PendingInLocs
) {
1091 LLVM_DEBUG(dbgs() << "join MBB: " << MBB
.getNumber() << "\n");
1092 bool Changed
= false;
1094 VarLocSet InLocsT
; // Temporary incoming locations.
1096 // For all predecessors of this MBB, find the set of VarLocs that
1099 for (auto p
: MBB
.predecessors()) {
1100 // Ignore backedges if we have not visited the predecessor yet. As the
1101 // predecessor hasn't yet had locations propagated into it, most locations
1102 // will not yet be valid, so treat them as all being uninitialized and
1103 // potentially valid. If a location guessed to be correct here is
1104 // invalidated later, we will remove it when we revisit this block.
1105 if (!Visited
.count(p
)) {
1106 LLVM_DEBUG(dbgs() << " ignoring unvisited pred MBB: " << p
->getNumber()
1110 auto OL
= OutLocs
.find(p
);
1111 // Join is null in case of empty OutLocs from any of the pred.
1112 if (OL
== OutLocs
.end())
1115 // Just copy over the Out locs to incoming locs for the first visited
1116 // predecessor, and for all other predecessors join the Out locs.
1118 InLocsT
= OL
->second
;
1120 InLocsT
&= OL
->second
;
1123 if (!InLocsT
.empty()) {
1124 for (auto ID
: InLocsT
)
1125 dbgs() << " gathered candidate incoming var: "
1126 << VarLocIDs
[ID
].Var
.getVar()->getName() << "\n";
1133 // Filter out DBG_VALUES that are out of scope.
1135 bool IsArtificial
= ArtificialBlocks
.count(&MBB
);
1136 if (!IsArtificial
) {
1137 for (auto ID
: InLocsT
) {
1138 if (!VarLocIDs
[ID
].dominates(MBB
)) {
1141 auto Name
= VarLocIDs
[ID
].Var
.getVar()->getName();
1142 dbgs() << " killing " << Name
<< ", it doesn't dominate MBB\n";
1147 InLocsT
.intersectWithComplement(KillSet
);
1149 // As we are processing blocks in reverse post-order we
1150 // should have processed at least one predecessor, unless it
1151 // is the entry block which has no predecessor.
1152 assert((NumVisited
|| MBB
.pred_empty()) &&
1153 "Should have processed at least one predecessor");
1155 VarLocSet
&ILS
= InLocs
[&MBB
];
1156 VarLocSet
&Pending
= PendingInLocs
[&MBB
];
1158 // New locations will have DBG_VALUE insts inserted at the start of the
1159 // block, after location propagation has finished. Record the insertions
1160 // that we need to perform in the Pending set.
1161 VarLocSet Diff
= InLocsT
;
1162 Diff
.intersectWithComplement(ILS
);
1163 for (auto ID
: Diff
) {
1170 // We may have lost locations by learning about a predecessor that either
1171 // loses or moves a variable. Find any locations in ILS that are not in the
1172 // new in-locations, and delete those.
1173 VarLocSet Removed
= ILS
;
1174 Removed
.intersectWithComplement(InLocsT
);
1175 for (auto ID
: Removed
) {
1185 void LiveDebugValues::flushPendingLocs(VarLocInMBB
&PendingInLocs
,
1186 VarLocMap
&VarLocIDs
) {
1187 // PendingInLocs records all locations propagated into blocks, which have
1188 // not had DBG_VALUE insts created. Go through and create those insts now.
1189 for (auto &Iter
: PendingInLocs
) {
1190 // Map is keyed on a constant pointer, unwrap it so we can insert insts.
1191 auto &MBB
= const_cast<MachineBasicBlock
&>(*Iter
.first
);
1192 VarLocSet
&Pending
= Iter
.second
;
1194 for (unsigned ID
: Pending
) {
1195 // The ID location is live-in to MBB -- work out what kind of machine
1196 // location it is and create a DBG_VALUE.
1197 const VarLoc
&DiffIt
= VarLocIDs
[ID
];
1198 const MachineInstr
*DebugInstr
= &DiffIt
.MI
;
1199 MachineInstr
*MI
= nullptr;
1201 if (DiffIt
.isConstant()) {
1202 MachineOperand
MO(DebugInstr
->getOperand(0));
1203 MI
= BuildMI(MBB
, MBB
.instr_begin(), DebugInstr
->getDebugLoc(),
1204 DebugInstr
->getDesc(), false, MO
,
1205 DebugInstr
->getDebugVariable(),
1206 DebugInstr
->getDebugExpression());
1208 auto *DebugExpr
= DebugInstr
->getDebugExpression();
1209 Register Reg
= DebugInstr
->getOperand(0).getReg();
1210 bool IsIndirect
= DebugInstr
->isIndirectDebugValue();
1212 if (DiffIt
.Kind
== VarLoc::SpillLocKind
) {
1213 // This is is a spilt location; DebugInstr refers to the unspilt
1214 // location. We need to rebuild the spilt location expression and
1215 // point the DBG_VALUE at the frame register.
1216 DebugExpr
= DIExpression::prepend(
1217 DebugInstr
->getDebugExpression(), DIExpression::ApplyOffset
,
1218 DiffIt
.Loc
.SpillLocation
.SpillOffset
);
1219 Reg
= TRI
->getFrameRegister(*DebugInstr
->getMF());
1223 MI
= BuildMI(MBB
, MBB
.instr_begin(), DebugInstr
->getDebugLoc(),
1224 DebugInstr
->getDesc(), IsIndirect
, Reg
,
1225 DebugInstr
->getDebugVariable(), DebugExpr
);
1228 LLVM_DEBUG(dbgs() << "Inserted: "; MI
->dump(););
1233 /// Calculate the liveness information for the given machine function and
1234 /// extend ranges across basic blocks.
1235 bool LiveDebugValues::ExtendRanges(MachineFunction
&MF
) {
1236 LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n");
1238 bool Changed
= false;
1239 bool OLChanged
= false;
1240 bool MBBJoined
= false;
1242 VarLocMap VarLocIDs
; // Map VarLoc<>unique ID for use in bitvectors.
1243 OverlapMap OverlapFragments
; // Map of overlapping variable fragments
1244 OpenRangesSet
OpenRanges(OverlapFragments
);
1245 // Ranges that are open until end of bb.
1246 VarLocInMBB OutLocs
; // Ranges that exist beyond bb.
1247 VarLocInMBB InLocs
; // Ranges that are incoming after joining.
1248 TransferMap Transfers
; // DBG_VALUEs associated with spills.
1249 VarLocInMBB PendingInLocs
; // Ranges that are incoming after joining, but
1250 // that we have deferred creating DBG_VALUE insts
1253 VarToFragments SeenFragments
;
1255 // Blocks which are artificial, i.e. blocks which exclusively contain
1256 // instructions without locations, or with line 0 locations.
1257 SmallPtrSet
<const MachineBasicBlock
*, 16> ArtificialBlocks
;
1259 DenseMap
<unsigned int, MachineBasicBlock
*> OrderToBB
;
1260 DenseMap
<MachineBasicBlock
*, unsigned int> BBToOrder
;
1261 std::priority_queue
<unsigned int, std::vector
<unsigned int>,
1262 std::greater
<unsigned int>>
1264 std::priority_queue
<unsigned int, std::vector
<unsigned int>,
1265 std::greater
<unsigned int>>
1268 // Besides parameter's modification, check whether a DBG_VALUE is inlined
1269 // in order to deduce whether the variable that it tracks comes from
1270 // a different function. If that is the case we can't track its entry value.
1271 auto IsUnmodifiedFuncParam
= [&](const MachineInstr
&MI
) {
1272 auto *DIVar
= MI
.getDebugVariable();
1273 return DIVar
->isParameter() && DIVar
->isNotModified() &&
1274 !MI
.getDebugLoc()->getInlinedAt();
1277 const TargetLowering
*TLI
= MF
.getSubtarget().getTargetLowering();
1278 unsigned SP
= TLI
->getStackPointerRegisterToSaveRestore();
1279 Register FP
= TRI
->getFrameRegister(MF
);
1280 auto IsRegOtherThanSPAndFP
= [&](const MachineOperand
&Op
) -> bool {
1281 return Op
.isReg() && Op
.getReg() != SP
&& Op
.getReg() != FP
;
1284 // Working set of currently collected debug variables mapped to DBG_VALUEs
1285 // representing candidates for production of debug entry values.
1286 DebugParamMap DebugEntryVals
;
1288 MachineBasicBlock
&First_MBB
= *(MF
.begin());
1289 // Only in the case of entry MBB collect DBG_VALUEs representing
1290 // function parameters in order to generate debug entry values for them.
1291 // Currently, we generate debug entry values only for parameters that are
1292 // unmodified throughout the function and located in a register.
1293 // TODO: Add support for parameters that are described as fragments.
1294 // TODO: Add support for modified arguments that can be expressed
1295 // by using its entry value.
1296 // TODO: Add support for local variables that are expressed in terms of
1297 // parameters entry values.
1298 for (auto &MI
: First_MBB
)
1299 if (MI
.isDebugValue() && IsUnmodifiedFuncParam(MI
) &&
1300 !MI
.isIndirectDebugValue() && IsRegOtherThanSPAndFP(MI
.getOperand(0)) &&
1301 !DebugEntryVals
.count(MI
.getDebugVariable()) &&
1302 !MI
.getDebugExpression()->isFragment())
1303 DebugEntryVals
[MI
.getDebugVariable()] = &MI
;
1305 // Initialize per-block structures and scan for fragment overlaps.
1306 for (auto &MBB
: MF
) {
1307 PendingInLocs
[&MBB
] = VarLocSet();
1309 for (auto &MI
: MBB
) {
1310 if (MI
.isDebugValue())
1311 accumulateFragmentMap(MI
, SeenFragments
, OverlapFragments
);
1315 auto hasNonArtificialLocation
= [](const MachineInstr
&MI
) -> bool {
1316 if (const DebugLoc
&DL
= MI
.getDebugLoc())
1317 return DL
.getLine() != 0;
1320 for (auto &MBB
: MF
)
1321 if (none_of(MBB
.instrs(), hasNonArtificialLocation
))
1322 ArtificialBlocks
.insert(&MBB
);
1324 LLVM_DEBUG(printVarLocInMBB(MF
, OutLocs
, VarLocIDs
,
1325 "OutLocs after initialization", dbgs()));
1327 ReversePostOrderTraversal
<MachineFunction
*> RPOT(&MF
);
1328 unsigned int RPONumber
= 0;
1329 for (auto RI
= RPOT
.begin(), RE
= RPOT
.end(); RI
!= RE
; ++RI
) {
1330 OrderToBB
[RPONumber
] = *RI
;
1331 BBToOrder
[*RI
] = RPONumber
;
1332 Worklist
.push(RPONumber
);
1335 // This is a standard "union of predecessor outs" dataflow problem.
1336 // To solve it, we perform join() and process() using the two worklist method
1337 // until the ranges converge.
1338 // Ranges have converged when both worklists are empty.
1339 SmallPtrSet
<const MachineBasicBlock
*, 16> Visited
;
1340 while (!Worklist
.empty() || !Pending
.empty()) {
1341 // We track what is on the pending worklist to avoid inserting the same
1342 // thing twice. We could avoid this with a custom priority queue, but this
1343 // is probably not worth it.
1344 SmallPtrSet
<MachineBasicBlock
*, 16> OnPending
;
1345 LLVM_DEBUG(dbgs() << "Processing Worklist\n");
1346 while (!Worklist
.empty()) {
1347 MachineBasicBlock
*MBB
= OrderToBB
[Worklist
.top()];
1349 MBBJoined
= join(*MBB
, OutLocs
, InLocs
, VarLocIDs
, Visited
,
1350 ArtificialBlocks
, PendingInLocs
);
1351 MBBJoined
|= Visited
.insert(MBB
).second
;
1355 // Now that we have started to extend ranges across BBs we need to
1356 // examine spill instructions to see whether they spill registers that
1357 // correspond to user variables.
1358 // First load any pending inlocs.
1359 OpenRanges
.insertFromLocSet(PendingInLocs
[MBB
], VarLocIDs
);
1360 for (auto &MI
: *MBB
)
1361 process(MI
, OpenRanges
, OutLocs
, VarLocIDs
, Transfers
,
1362 DebugEntryVals
, OverlapFragments
, SeenFragments
);
1363 OLChanged
|= transferTerminator(MBB
, OpenRanges
, OutLocs
, VarLocIDs
);
1365 // Add any DBG_VALUE instructions necessitated by spills.
1366 for (auto &TR
: Transfers
)
1367 MBB
->insertAfterBundle(TR
.TransferInst
->getIterator(), TR
.DebugInst
);
1370 LLVM_DEBUG(printVarLocInMBB(MF
, OutLocs
, VarLocIDs
,
1371 "OutLocs after propagating", dbgs()));
1372 LLVM_DEBUG(printVarLocInMBB(MF
, InLocs
, VarLocIDs
,
1373 "InLocs after propagating", dbgs()));
1377 for (auto s
: MBB
->successors())
1378 if (OnPending
.insert(s
).second
) {
1379 Pending
.push(BBToOrder
[s
]);
1384 Worklist
.swap(Pending
);
1385 // At this point, pending must be empty, since it was just the empty
1387 assert(Pending
.empty() && "Pending should be empty");
1390 // Deferred inlocs will not have had any DBG_VALUE insts created; do
1392 flushPendingLocs(PendingInLocs
, VarLocIDs
);
1394 LLVM_DEBUG(printVarLocInMBB(MF
, OutLocs
, VarLocIDs
, "Final OutLocs", dbgs()));
1395 LLVM_DEBUG(printVarLocInMBB(MF
, InLocs
, VarLocIDs
, "Final InLocs", dbgs()));
1399 bool LiveDebugValues::runOnMachineFunction(MachineFunction
&MF
) {
1400 if (!MF
.getFunction().getSubprogram())
1401 // LiveDebugValues will already have removed all DBG_VALUEs.
1404 // Skip functions from NoDebug compilation units.
1405 if (MF
.getFunction().getSubprogram()->getUnit()->getEmissionKind() ==
1406 DICompileUnit::NoDebug
)
1409 TRI
= MF
.getSubtarget().getRegisterInfo();
1410 TII
= MF
.getSubtarget().getInstrInfo();
1411 TFI
= MF
.getSubtarget().getFrameLowering();
1412 TFI
->determineCalleeSaves(MF
, CalleeSavedRegs
,
1413 std::make_unique
<RegScavenger
>().get());
1416 bool Changed
= ExtendRanges(MF
);