[llvm-readobj] - Fix BB after r372087.
[llvm-complete.git] / lib / CodeGen / MachineBlockPlacement.cpp
blobbabc05195a1a58ec693da85a1ec68bb4ba384951
1 //===- MachineBlockPlacement.cpp - Basic Block Code Layout optimization ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements basic block placement transformations using the CFG
10 // structure and branch probability estimates.
12 // The pass strives to preserve the structure of the CFG (that is, retain
13 // a topological ordering of basic blocks) in the absence of a *strong* signal
14 // to the contrary from probabilities. However, within the CFG structure, it
15 // attempts to choose an ordering which favors placing more likely sequences of
16 // blocks adjacent to each other.
18 // The algorithm works from the inner-most loop within a function outward, and
19 // at each stage walks through the basic blocks, trying to coalesce them into
20 // sequential chains where allowed by the CFG (or demanded by heavy
21 // probabilities). Finally, it walks the blocks in topological order, and the
22 // first time it reaches a chain of basic blocks, it schedules them in the
23 // function in-order.
25 //===----------------------------------------------------------------------===//
27 #include "BranchFolding.h"
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SetVector.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
36 #include "llvm/CodeGen/MachineBasicBlock.h"
37 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
38 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineFunctionPass.h"
41 #include "llvm/CodeGen/MachineJumpTableInfo.h"
42 #include "llvm/CodeGen/MachineLoopInfo.h"
43 #include "llvm/CodeGen/MachineModuleInfo.h"
44 #include "llvm/CodeGen/MachinePostDominators.h"
45 #include "llvm/CodeGen/TailDuplicator.h"
46 #include "llvm/CodeGen/TargetInstrInfo.h"
47 #include "llvm/CodeGen/TargetLowering.h"
48 #include "llvm/CodeGen/TargetPassConfig.h"
49 #include "llvm/CodeGen/TargetSubtargetInfo.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/Allocator.h"
54 #include "llvm/Support/BlockFrequency.h"
55 #include "llvm/Support/BranchProbability.h"
56 #include "llvm/Support/CodeGen.h"
57 #include "llvm/Support/CommandLine.h"
58 #include "llvm/Support/Compiler.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include "llvm/Target/TargetMachine.h"
62 #include <algorithm>
63 #include <cassert>
64 #include <cstdint>
65 #include <iterator>
66 #include <memory>
67 #include <string>
68 #include <tuple>
69 #include <utility>
70 #include <vector>
72 using namespace llvm;
74 #define DEBUG_TYPE "block-placement"
76 STATISTIC(NumCondBranches, "Number of conditional branches");
77 STATISTIC(NumUncondBranches, "Number of unconditional branches");
78 STATISTIC(CondBranchTakenFreq,
79 "Potential frequency of taking conditional branches");
80 STATISTIC(UncondBranchTakenFreq,
81 "Potential frequency of taking unconditional branches");
83 static cl::opt<unsigned> AlignAllBlock(
84 "align-all-blocks",
85 cl::desc("Force the alignment of all blocks in the function in log2 format "
86 "(e.g 4 means align on 16B boundaries)."),
87 cl::init(0), cl::Hidden);
89 static cl::opt<unsigned> AlignAllNonFallThruBlocks(
90 "align-all-nofallthru-blocks",
91 cl::desc("Force the alignment of all blocks that have no fall-through "
92 "predecessors (i.e. don't add nops that are executed). In log2 "
93 "format (e.g 4 means align on 16B boundaries)."),
94 cl::init(0), cl::Hidden);
96 // FIXME: Find a good default for this flag and remove the flag.
97 static cl::opt<unsigned> ExitBlockBias(
98 "block-placement-exit-block-bias",
99 cl::desc("Block frequency percentage a loop exit block needs "
100 "over the original exit to be considered the new exit."),
101 cl::init(0), cl::Hidden);
103 // Definition:
104 // - Outlining: placement of a basic block outside the chain or hot path.
106 static cl::opt<unsigned> LoopToColdBlockRatio(
107 "loop-to-cold-block-ratio",
108 cl::desc("Outline loop blocks from loop chain if (frequency of loop) / "
109 "(frequency of block) is greater than this ratio"),
110 cl::init(5), cl::Hidden);
112 static cl::opt<bool> ForceLoopColdBlock(
113 "force-loop-cold-block",
114 cl::desc("Force outlining cold blocks from loops."),
115 cl::init(false), cl::Hidden);
117 static cl::opt<bool>
118 PreciseRotationCost("precise-rotation-cost",
119 cl::desc("Model the cost of loop rotation more "
120 "precisely by using profile data."),
121 cl::init(false), cl::Hidden);
123 static cl::opt<bool>
124 ForcePreciseRotationCost("force-precise-rotation-cost",
125 cl::desc("Force the use of precise cost "
126 "loop rotation strategy."),
127 cl::init(false), cl::Hidden);
129 static cl::opt<unsigned> MisfetchCost(
130 "misfetch-cost",
131 cl::desc("Cost that models the probabilistic risk of an instruction "
132 "misfetch due to a jump comparing to falling through, whose cost "
133 "is zero."),
134 cl::init(1), cl::Hidden);
136 static cl::opt<unsigned> JumpInstCost("jump-inst-cost",
137 cl::desc("Cost of jump instructions."),
138 cl::init(1), cl::Hidden);
139 static cl::opt<bool>
140 TailDupPlacement("tail-dup-placement",
141 cl::desc("Perform tail duplication during placement. "
142 "Creates more fallthrough opportunites in "
143 "outline branches."),
144 cl::init(true), cl::Hidden);
146 static cl::opt<bool>
147 BranchFoldPlacement("branch-fold-placement",
148 cl::desc("Perform branch folding during placement. "
149 "Reduces code size."),
150 cl::init(true), cl::Hidden);
152 // Heuristic for tail duplication.
153 static cl::opt<unsigned> TailDupPlacementThreshold(
154 "tail-dup-placement-threshold",
155 cl::desc("Instruction cutoff for tail duplication during layout. "
156 "Tail merging during layout is forced to have a threshold "
157 "that won't conflict."), cl::init(2),
158 cl::Hidden);
160 // Heuristic for aggressive tail duplication.
161 static cl::opt<unsigned> TailDupPlacementAggressiveThreshold(
162 "tail-dup-placement-aggressive-threshold",
163 cl::desc("Instruction cutoff for aggressive tail duplication during "
164 "layout. Used at -O3. Tail merging during layout is forced to "
165 "have a threshold that won't conflict."), cl::init(4),
166 cl::Hidden);
168 // Heuristic for tail duplication.
169 static cl::opt<unsigned> TailDupPlacementPenalty(
170 "tail-dup-placement-penalty",
171 cl::desc("Cost penalty for blocks that can avoid breaking CFG by copying. "
172 "Copying can increase fallthrough, but it also increases icache "
173 "pressure. This parameter controls the penalty to account for that. "
174 "Percent as integer."),
175 cl::init(2),
176 cl::Hidden);
178 // Heuristic for triangle chains.
179 static cl::opt<unsigned> TriangleChainCount(
180 "triangle-chain-count",
181 cl::desc("Number of triangle-shaped-CFG's that need to be in a row for the "
182 "triangle tail duplication heuristic to kick in. 0 to disable."),
183 cl::init(2),
184 cl::Hidden);
186 extern cl::opt<unsigned> StaticLikelyProb;
187 extern cl::opt<unsigned> ProfileLikelyProb;
189 // Internal option used to control BFI display only after MBP pass.
190 // Defined in CodeGen/MachineBlockFrequencyInfo.cpp:
191 // -view-block-layout-with-bfi=
192 extern cl::opt<GVDAGType> ViewBlockLayoutWithBFI;
194 // Command line option to specify the name of the function for CFG dump
195 // Defined in Analysis/BlockFrequencyInfo.cpp: -view-bfi-func-name=
196 extern cl::opt<std::string> ViewBlockFreqFuncName;
198 namespace {
200 class BlockChain;
202 /// Type for our function-wide basic block -> block chain mapping.
203 using BlockToChainMapType = DenseMap<const MachineBasicBlock *, BlockChain *>;
205 /// A chain of blocks which will be laid out contiguously.
207 /// This is the datastructure representing a chain of consecutive blocks that
208 /// are profitable to layout together in order to maximize fallthrough
209 /// probabilities and code locality. We also can use a block chain to represent
210 /// a sequence of basic blocks which have some external (correctness)
211 /// requirement for sequential layout.
213 /// Chains can be built around a single basic block and can be merged to grow
214 /// them. They participate in a block-to-chain mapping, which is updated
215 /// automatically as chains are merged together.
216 class BlockChain {
217 /// The sequence of blocks belonging to this chain.
219 /// This is the sequence of blocks for a particular chain. These will be laid
220 /// out in-order within the function.
221 SmallVector<MachineBasicBlock *, 4> Blocks;
223 /// A handle to the function-wide basic block to block chain mapping.
225 /// This is retained in each block chain to simplify the computation of child
226 /// block chains for SCC-formation and iteration. We store the edges to child
227 /// basic blocks, and map them back to their associated chains using this
228 /// structure.
229 BlockToChainMapType &BlockToChain;
231 public:
232 /// Construct a new BlockChain.
234 /// This builds a new block chain representing a single basic block in the
235 /// function. It also registers itself as the chain that block participates
236 /// in with the BlockToChain mapping.
237 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
238 : Blocks(1, BB), BlockToChain(BlockToChain) {
239 assert(BB && "Cannot create a chain with a null basic block");
240 BlockToChain[BB] = this;
243 /// Iterator over blocks within the chain.
244 using iterator = SmallVectorImpl<MachineBasicBlock *>::iterator;
245 using const_iterator = SmallVectorImpl<MachineBasicBlock *>::const_iterator;
247 /// Beginning of blocks within the chain.
248 iterator begin() { return Blocks.begin(); }
249 const_iterator begin() const { return Blocks.begin(); }
251 /// End of blocks within the chain.
252 iterator end() { return Blocks.end(); }
253 const_iterator end() const { return Blocks.end(); }
255 bool remove(MachineBasicBlock* BB) {
256 for(iterator i = begin(); i != end(); ++i) {
257 if (*i == BB) {
258 Blocks.erase(i);
259 return true;
262 return false;
265 /// Merge a block chain into this one.
267 /// This routine merges a block chain into this one. It takes care of forming
268 /// a contiguous sequence of basic blocks, updating the edge list, and
269 /// updating the block -> chain mapping. It does not free or tear down the
270 /// old chain, but the old chain's block list is no longer valid.
271 void merge(MachineBasicBlock *BB, BlockChain *Chain) {
272 assert(BB && "Can't merge a null block.");
273 assert(!Blocks.empty() && "Can't merge into an empty chain.");
275 // Fast path in case we don't have a chain already.
276 if (!Chain) {
277 assert(!BlockToChain[BB] &&
278 "Passed chain is null, but BB has entry in BlockToChain.");
279 Blocks.push_back(BB);
280 BlockToChain[BB] = this;
281 return;
284 assert(BB == *Chain->begin() && "Passed BB is not head of Chain.");
285 assert(Chain->begin() != Chain->end());
287 // Update the incoming blocks to point to this chain, and add them to the
288 // chain structure.
289 for (MachineBasicBlock *ChainBB : *Chain) {
290 Blocks.push_back(ChainBB);
291 assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain.");
292 BlockToChain[ChainBB] = this;
296 #ifndef NDEBUG
297 /// Dump the blocks in this chain.
298 LLVM_DUMP_METHOD void dump() {
299 for (MachineBasicBlock *MBB : *this)
300 MBB->dump();
302 #endif // NDEBUG
304 /// Count of predecessors of any block within the chain which have not
305 /// yet been scheduled. In general, we will delay scheduling this chain
306 /// until those predecessors are scheduled (or we find a sufficiently good
307 /// reason to override this heuristic.) Note that when forming loop chains,
308 /// blocks outside the loop are ignored and treated as if they were already
309 /// scheduled.
311 /// Note: This field is reinitialized multiple times - once for each loop,
312 /// and then once for the function as a whole.
313 unsigned UnscheduledPredecessors = 0;
316 class MachineBlockPlacement : public MachineFunctionPass {
317 /// A type for a block filter set.
318 using BlockFilterSet = SmallSetVector<const MachineBasicBlock *, 16>;
320 /// Pair struct containing basic block and taildup profitability
321 struct BlockAndTailDupResult {
322 MachineBasicBlock *BB;
323 bool ShouldTailDup;
326 /// Triple struct containing edge weight and the edge.
327 struct WeightedEdge {
328 BlockFrequency Weight;
329 MachineBasicBlock *Src;
330 MachineBasicBlock *Dest;
333 /// work lists of blocks that are ready to be laid out
334 SmallVector<MachineBasicBlock *, 16> BlockWorkList;
335 SmallVector<MachineBasicBlock *, 16> EHPadWorkList;
337 /// Edges that have already been computed as optimal.
338 DenseMap<const MachineBasicBlock *, BlockAndTailDupResult> ComputedEdges;
340 /// Machine Function
341 MachineFunction *F;
343 /// A handle to the branch probability pass.
344 const MachineBranchProbabilityInfo *MBPI;
346 /// A handle to the function-wide block frequency pass.
347 std::unique_ptr<BranchFolder::MBFIWrapper> MBFI;
349 /// A handle to the loop info.
350 MachineLoopInfo *MLI;
352 /// Preferred loop exit.
353 /// Member variable for convenience. It may be removed by duplication deep
354 /// in the call stack.
355 MachineBasicBlock *PreferredLoopExit;
357 /// A handle to the target's instruction info.
358 const TargetInstrInfo *TII;
360 /// A handle to the target's lowering info.
361 const TargetLoweringBase *TLI;
363 /// A handle to the post dominator tree.
364 MachinePostDominatorTree *MPDT;
366 /// Duplicator used to duplicate tails during placement.
368 /// Placement decisions can open up new tail duplication opportunities, but
369 /// since tail duplication affects placement decisions of later blocks, it
370 /// must be done inline.
371 TailDuplicator TailDup;
373 /// Allocator and owner of BlockChain structures.
375 /// We build BlockChains lazily while processing the loop structure of
376 /// a function. To reduce malloc traffic, we allocate them using this
377 /// slab-like allocator, and destroy them after the pass completes. An
378 /// important guarantee is that this allocator produces stable pointers to
379 /// the chains.
380 SpecificBumpPtrAllocator<BlockChain> ChainAllocator;
382 /// Function wide BasicBlock to BlockChain mapping.
384 /// This mapping allows efficiently moving from any given basic block to the
385 /// BlockChain it participates in, if any. We use it to, among other things,
386 /// allow implicitly defining edges between chains as the existing edges
387 /// between basic blocks.
388 DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChain;
390 #ifndef NDEBUG
391 /// The set of basic blocks that have terminators that cannot be fully
392 /// analyzed. These basic blocks cannot be re-ordered safely by
393 /// MachineBlockPlacement, and we must preserve physical layout of these
394 /// blocks and their successors through the pass.
395 SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits;
396 #endif
398 /// Decrease the UnscheduledPredecessors count for all blocks in chain, and
399 /// if the count goes to 0, add them to the appropriate work list.
400 void markChainSuccessors(
401 const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB,
402 const BlockFilterSet *BlockFilter = nullptr);
404 /// Decrease the UnscheduledPredecessors count for a single block, and
405 /// if the count goes to 0, add them to the appropriate work list.
406 void markBlockSuccessors(
407 const BlockChain &Chain, const MachineBasicBlock *BB,
408 const MachineBasicBlock *LoopHeaderBB,
409 const BlockFilterSet *BlockFilter = nullptr);
411 BranchProbability
412 collectViableSuccessors(
413 const MachineBasicBlock *BB, const BlockChain &Chain,
414 const BlockFilterSet *BlockFilter,
415 SmallVector<MachineBasicBlock *, 4> &Successors);
416 bool shouldPredBlockBeOutlined(
417 const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
418 const BlockChain &Chain, const BlockFilterSet *BlockFilter,
419 BranchProbability SuccProb, BranchProbability HotProb);
420 bool repeatedlyTailDuplicateBlock(
421 MachineBasicBlock *BB, MachineBasicBlock *&LPred,
422 const MachineBasicBlock *LoopHeaderBB,
423 BlockChain &Chain, BlockFilterSet *BlockFilter,
424 MachineFunction::iterator &PrevUnplacedBlockIt);
425 bool maybeTailDuplicateBlock(
426 MachineBasicBlock *BB, MachineBasicBlock *LPred,
427 BlockChain &Chain, BlockFilterSet *BlockFilter,
428 MachineFunction::iterator &PrevUnplacedBlockIt,
429 bool &DuplicatedToLPred);
430 bool hasBetterLayoutPredecessor(
431 const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
432 const BlockChain &SuccChain, BranchProbability SuccProb,
433 BranchProbability RealSuccProb, const BlockChain &Chain,
434 const BlockFilterSet *BlockFilter);
435 BlockAndTailDupResult selectBestSuccessor(
436 const MachineBasicBlock *BB, const BlockChain &Chain,
437 const BlockFilterSet *BlockFilter);
438 MachineBasicBlock *selectBestCandidateBlock(
439 const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList);
440 MachineBasicBlock *getFirstUnplacedBlock(
441 const BlockChain &PlacedChain,
442 MachineFunction::iterator &PrevUnplacedBlockIt,
443 const BlockFilterSet *BlockFilter);
445 /// Add a basic block to the work list if it is appropriate.
447 /// If the optional parameter BlockFilter is provided, only MBB
448 /// present in the set will be added to the worklist. If nullptr
449 /// is provided, no filtering occurs.
450 void fillWorkLists(const MachineBasicBlock *MBB,
451 SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
452 const BlockFilterSet *BlockFilter);
454 void buildChain(const MachineBasicBlock *BB, BlockChain &Chain,
455 BlockFilterSet *BlockFilter = nullptr);
456 bool canMoveBottomBlockToTop(const MachineBasicBlock *BottomBlock,
457 const MachineBasicBlock *OldTop);
458 bool hasViableTopFallthrough(const MachineBasicBlock *Top,
459 const BlockFilterSet &LoopBlockSet);
460 BlockFrequency TopFallThroughFreq(const MachineBasicBlock *Top,
461 const BlockFilterSet &LoopBlockSet);
462 BlockFrequency FallThroughGains(const MachineBasicBlock *NewTop,
463 const MachineBasicBlock *OldTop,
464 const MachineBasicBlock *ExitBB,
465 const BlockFilterSet &LoopBlockSet);
466 MachineBasicBlock *findBestLoopTopHelper(MachineBasicBlock *OldTop,
467 const MachineLoop &L, const BlockFilterSet &LoopBlockSet);
468 MachineBasicBlock *findBestLoopTop(
469 const MachineLoop &L, const BlockFilterSet &LoopBlockSet);
470 MachineBasicBlock *findBestLoopExit(
471 const MachineLoop &L, const BlockFilterSet &LoopBlockSet,
472 BlockFrequency &ExitFreq);
473 BlockFilterSet collectLoopBlockSet(const MachineLoop &L);
474 void buildLoopChains(const MachineLoop &L);
475 void rotateLoop(
476 BlockChain &LoopChain, const MachineBasicBlock *ExitingBB,
477 BlockFrequency ExitFreq, const BlockFilterSet &LoopBlockSet);
478 void rotateLoopWithProfile(
479 BlockChain &LoopChain, const MachineLoop &L,
480 const BlockFilterSet &LoopBlockSet);
481 void buildCFGChains();
482 void optimizeBranches();
483 void alignBlocks();
484 /// Returns true if a block should be tail-duplicated to increase fallthrough
485 /// opportunities.
486 bool shouldTailDuplicate(MachineBasicBlock *BB);
487 /// Check the edge frequencies to see if tail duplication will increase
488 /// fallthroughs.
489 bool isProfitableToTailDup(
490 const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
491 BranchProbability QProb,
492 const BlockChain &Chain, const BlockFilterSet *BlockFilter);
494 /// Check for a trellis layout.
495 bool isTrellis(const MachineBasicBlock *BB,
496 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
497 const BlockChain &Chain, const BlockFilterSet *BlockFilter);
499 /// Get the best successor given a trellis layout.
500 BlockAndTailDupResult getBestTrellisSuccessor(
501 const MachineBasicBlock *BB,
502 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
503 BranchProbability AdjustedSumProb, const BlockChain &Chain,
504 const BlockFilterSet *BlockFilter);
506 /// Get the best pair of non-conflicting edges.
507 static std::pair<WeightedEdge, WeightedEdge> getBestNonConflictingEdges(
508 const MachineBasicBlock *BB,
509 MutableArrayRef<SmallVector<WeightedEdge, 8>> Edges);
511 /// Returns true if a block can tail duplicate into all unplaced
512 /// predecessors. Filters based on loop.
513 bool canTailDuplicateUnplacedPreds(
514 const MachineBasicBlock *BB, MachineBasicBlock *Succ,
515 const BlockChain &Chain, const BlockFilterSet *BlockFilter);
517 /// Find chains of triangles to tail-duplicate where a global analysis works,
518 /// but a local analysis would not find them.
519 void precomputeTriangleChains();
521 public:
522 static char ID; // Pass identification, replacement for typeid
524 MachineBlockPlacement() : MachineFunctionPass(ID) {
525 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
528 bool runOnMachineFunction(MachineFunction &F) override;
530 bool allowTailDupPlacement() const {
531 assert(F);
532 return TailDupPlacement && !F->getTarget().requiresStructuredCFG();
535 void getAnalysisUsage(AnalysisUsage &AU) const override {
536 AU.addRequired<MachineBranchProbabilityInfo>();
537 AU.addRequired<MachineBlockFrequencyInfo>();
538 if (TailDupPlacement)
539 AU.addRequired<MachinePostDominatorTree>();
540 AU.addRequired<MachineLoopInfo>();
541 AU.addRequired<TargetPassConfig>();
542 MachineFunctionPass::getAnalysisUsage(AU);
546 } // end anonymous namespace
548 char MachineBlockPlacement::ID = 0;
550 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID;
552 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, DEBUG_TYPE,
553 "Branch Probability Basic Block Placement", false, false)
554 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
555 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
556 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
557 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
558 INITIALIZE_PASS_END(MachineBlockPlacement, DEBUG_TYPE,
559 "Branch Probability Basic Block Placement", false, false)
561 #ifndef NDEBUG
562 /// Helper to print the name of a MBB.
564 /// Only used by debug logging.
565 static std::string getBlockName(const MachineBasicBlock *BB) {
566 std::string Result;
567 raw_string_ostream OS(Result);
568 OS << printMBBReference(*BB);
569 OS << " ('" << BB->getName() << "')";
570 OS.flush();
571 return Result;
573 #endif
575 /// Mark a chain's successors as having one fewer preds.
577 /// When a chain is being merged into the "placed" chain, this routine will
578 /// quickly walk the successors of each block in the chain and mark them as
579 /// having one fewer active predecessor. It also adds any successors of this
580 /// chain which reach the zero-predecessor state to the appropriate worklist.
581 void MachineBlockPlacement::markChainSuccessors(
582 const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB,
583 const BlockFilterSet *BlockFilter) {
584 // Walk all the blocks in this chain, marking their successors as having
585 // a predecessor placed.
586 for (MachineBasicBlock *MBB : Chain) {
587 markBlockSuccessors(Chain, MBB, LoopHeaderBB, BlockFilter);
591 /// Mark a single block's successors as having one fewer preds.
593 /// Under normal circumstances, this is only called by markChainSuccessors,
594 /// but if a block that was to be placed is completely tail-duplicated away,
595 /// and was duplicated into the chain end, we need to redo markBlockSuccessors
596 /// for just that block.
597 void MachineBlockPlacement::markBlockSuccessors(
598 const BlockChain &Chain, const MachineBasicBlock *MBB,
599 const MachineBasicBlock *LoopHeaderBB, const BlockFilterSet *BlockFilter) {
600 // Add any successors for which this is the only un-placed in-loop
601 // predecessor to the worklist as a viable candidate for CFG-neutral
602 // placement. No subsequent placement of this block will violate the CFG
603 // shape, so we get to use heuristics to choose a favorable placement.
604 for (MachineBasicBlock *Succ : MBB->successors()) {
605 if (BlockFilter && !BlockFilter->count(Succ))
606 continue;
607 BlockChain &SuccChain = *BlockToChain[Succ];
608 // Disregard edges within a fixed chain, or edges to the loop header.
609 if (&Chain == &SuccChain || Succ == LoopHeaderBB)
610 continue;
612 // This is a cross-chain edge that is within the loop, so decrement the
613 // loop predecessor count of the destination chain.
614 if (SuccChain.UnscheduledPredecessors == 0 ||
615 --SuccChain.UnscheduledPredecessors > 0)
616 continue;
618 auto *NewBB = *SuccChain.begin();
619 if (NewBB->isEHPad())
620 EHPadWorkList.push_back(NewBB);
621 else
622 BlockWorkList.push_back(NewBB);
626 /// This helper function collects the set of successors of block
627 /// \p BB that are allowed to be its layout successors, and return
628 /// the total branch probability of edges from \p BB to those
629 /// blocks.
630 BranchProbability MachineBlockPlacement::collectViableSuccessors(
631 const MachineBasicBlock *BB, const BlockChain &Chain,
632 const BlockFilterSet *BlockFilter,
633 SmallVector<MachineBasicBlock *, 4> &Successors) {
634 // Adjust edge probabilities by excluding edges pointing to blocks that is
635 // either not in BlockFilter or is already in the current chain. Consider the
636 // following CFG:
638 // --->A
639 // | / \
640 // | B C
641 // | \ / \
642 // ----D E
644 // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after
645 // A->C is chosen as a fall-through, D won't be selected as a successor of C
646 // due to CFG constraint (the probability of C->D is not greater than
647 // HotProb to break topo-order). If we exclude E that is not in BlockFilter
648 // when calculating the probability of C->D, D will be selected and we
649 // will get A C D B as the layout of this loop.
650 auto AdjustedSumProb = BranchProbability::getOne();
651 for (MachineBasicBlock *Succ : BB->successors()) {
652 bool SkipSucc = false;
653 if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) {
654 SkipSucc = true;
655 } else {
656 BlockChain *SuccChain = BlockToChain[Succ];
657 if (SuccChain == &Chain) {
658 SkipSucc = true;
659 } else if (Succ != *SuccChain->begin()) {
660 LLVM_DEBUG(dbgs() << " " << getBlockName(Succ)
661 << " -> Mid chain!\n");
662 continue;
665 if (SkipSucc)
666 AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ);
667 else
668 Successors.push_back(Succ);
671 return AdjustedSumProb;
674 /// The helper function returns the branch probability that is adjusted
675 /// or normalized over the new total \p AdjustedSumProb.
676 static BranchProbability
677 getAdjustedProbability(BranchProbability OrigProb,
678 BranchProbability AdjustedSumProb) {
679 BranchProbability SuccProb;
680 uint32_t SuccProbN = OrigProb.getNumerator();
681 uint32_t SuccProbD = AdjustedSumProb.getNumerator();
682 if (SuccProbN >= SuccProbD)
683 SuccProb = BranchProbability::getOne();
684 else
685 SuccProb = BranchProbability(SuccProbN, SuccProbD);
687 return SuccProb;
690 /// Check if \p BB has exactly the successors in \p Successors.
691 static bool
692 hasSameSuccessors(MachineBasicBlock &BB,
693 SmallPtrSetImpl<const MachineBasicBlock *> &Successors) {
694 if (BB.succ_size() != Successors.size())
695 return false;
696 // We don't want to count self-loops
697 if (Successors.count(&BB))
698 return false;
699 for (MachineBasicBlock *Succ : BB.successors())
700 if (!Successors.count(Succ))
701 return false;
702 return true;
705 /// Check if a block should be tail duplicated to increase fallthrough
706 /// opportunities.
707 /// \p BB Block to check.
708 bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock *BB) {
709 // Blocks with single successors don't create additional fallthrough
710 // opportunities. Don't duplicate them. TODO: When conditional exits are
711 // analyzable, allow them to be duplicated.
712 bool IsSimple = TailDup.isSimpleBB(BB);
714 if (BB->succ_size() == 1)
715 return false;
716 return TailDup.shouldTailDuplicate(IsSimple, *BB);
719 /// Compare 2 BlockFrequency's with a small penalty for \p A.
720 /// In order to be conservative, we apply a X% penalty to account for
721 /// increased icache pressure and static heuristics. For small frequencies
722 /// we use only the numerators to improve accuracy. For simplicity, we assume the
723 /// penalty is less than 100%
724 /// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere.
725 static bool greaterWithBias(BlockFrequency A, BlockFrequency B,
726 uint64_t EntryFreq) {
727 BranchProbability ThresholdProb(TailDupPlacementPenalty, 100);
728 BlockFrequency Gain = A - B;
729 return (Gain / ThresholdProb).getFrequency() >= EntryFreq;
732 /// Check the edge frequencies to see if tail duplication will increase
733 /// fallthroughs. It only makes sense to call this function when
734 /// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is
735 /// always locally profitable if we would have picked \p Succ without
736 /// considering duplication.
737 bool MachineBlockPlacement::isProfitableToTailDup(
738 const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
739 BranchProbability QProb,
740 const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
741 // We need to do a probability calculation to make sure this is profitable.
742 // First: does succ have a successor that post-dominates? This affects the
743 // calculation. The 2 relevant cases are:
744 // BB BB
745 // | \Qout | \Qout
746 // P| C |P C
747 // = C' = C'
748 // | /Qin | /Qin
749 // | / | /
750 // Succ Succ
751 // / \ | \ V
752 // U/ =V |U \
753 // / \ = D
754 // D E | /
755 // | /
756 // |/
757 // PDom
758 // '=' : Branch taken for that CFG edge
759 // In the second case, Placing Succ while duplicating it into C prevents the
760 // fallthrough of Succ into either D or PDom, because they now have C as an
761 // unplaced predecessor
763 // Start by figuring out which case we fall into
764 MachineBasicBlock *PDom = nullptr;
765 SmallVector<MachineBasicBlock *, 4> SuccSuccs;
766 // Only scan the relevant successors
767 auto AdjustedSuccSumProb =
768 collectViableSuccessors(Succ, Chain, BlockFilter, SuccSuccs);
769 BranchProbability PProb = MBPI->getEdgeProbability(BB, Succ);
770 auto BBFreq = MBFI->getBlockFreq(BB);
771 auto SuccFreq = MBFI->getBlockFreq(Succ);
772 BlockFrequency P = BBFreq * PProb;
773 BlockFrequency Qout = BBFreq * QProb;
774 uint64_t EntryFreq = MBFI->getEntryFreq();
775 // If there are no more successors, it is profitable to copy, as it strictly
776 // increases fallthrough.
777 if (SuccSuccs.size() == 0)
778 return greaterWithBias(P, Qout, EntryFreq);
780 auto BestSuccSucc = BranchProbability::getZero();
781 // Find the PDom or the best Succ if no PDom exists.
782 for (MachineBasicBlock *SuccSucc : SuccSuccs) {
783 auto Prob = MBPI->getEdgeProbability(Succ, SuccSucc);
784 if (Prob > BestSuccSucc)
785 BestSuccSucc = Prob;
786 if (PDom == nullptr)
787 if (MPDT->dominates(SuccSucc, Succ)) {
788 PDom = SuccSucc;
789 break;
792 // For the comparisons, we need to know Succ's best incoming edge that isn't
793 // from BB.
794 auto SuccBestPred = BlockFrequency(0);
795 for (MachineBasicBlock *SuccPred : Succ->predecessors()) {
796 if (SuccPred == Succ || SuccPred == BB
797 || BlockToChain[SuccPred] == &Chain
798 || (BlockFilter && !BlockFilter->count(SuccPred)))
799 continue;
800 auto Freq = MBFI->getBlockFreq(SuccPred)
801 * MBPI->getEdgeProbability(SuccPred, Succ);
802 if (Freq > SuccBestPred)
803 SuccBestPred = Freq;
805 // Qin is Succ's best unplaced incoming edge that isn't BB
806 BlockFrequency Qin = SuccBestPred;
807 // If it doesn't have a post-dominating successor, here is the calculation:
808 // BB BB
809 // | \Qout | \
810 // P| C | =
811 // = C' | C
812 // | /Qin | |
813 // | / | C' (+Succ)
814 // Succ Succ /|
815 // / \ | \/ |
816 // U/ =V | == |
817 // / \ | / \|
818 // D E D E
819 // '=' : Branch taken for that CFG edge
820 // Cost in the first case is: P + V
821 // For this calculation, we always assume P > Qout. If Qout > P
822 // The result of this function will be ignored at the caller.
823 // Let F = SuccFreq - Qin
824 // Cost in the second case is: Qout + min(Qin, F) * U + max(Qin, F) * V
826 if (PDom == nullptr || !Succ->isSuccessor(PDom)) {
827 BranchProbability UProb = BestSuccSucc;
828 BranchProbability VProb = AdjustedSuccSumProb - UProb;
829 BlockFrequency F = SuccFreq - Qin;
830 BlockFrequency V = SuccFreq * VProb;
831 BlockFrequency QinU = std::min(Qin, F) * UProb;
832 BlockFrequency BaseCost = P + V;
833 BlockFrequency DupCost = Qout + QinU + std::max(Qin, F) * VProb;
834 return greaterWithBias(BaseCost, DupCost, EntryFreq);
836 BranchProbability UProb = MBPI->getEdgeProbability(Succ, PDom);
837 BranchProbability VProb = AdjustedSuccSumProb - UProb;
838 BlockFrequency U = SuccFreq * UProb;
839 BlockFrequency V = SuccFreq * VProb;
840 BlockFrequency F = SuccFreq - Qin;
841 // If there is a post-dominating successor, here is the calculation:
842 // BB BB BB BB
843 // | \Qout | \ | \Qout | \
844 // |P C | = |P C | =
845 // = C' |P C = C' |P C
846 // | /Qin | | | /Qin | |
847 // | / | C' (+Succ) | / | C' (+Succ)
848 // Succ Succ /| Succ Succ /|
849 // | \ V | \/ | | \ V | \/ |
850 // |U \ |U /\ =? |U = |U /\ |
851 // = D = = =?| | D | = =|
852 // | / |/ D | / |/ D
853 // | / | / | = | /
854 // |/ | / |/ | =
855 // Dom Dom Dom Dom
856 // '=' : Branch taken for that CFG edge
857 // The cost for taken branches in the first case is P + U
858 // Let F = SuccFreq - Qin
859 // The cost in the second case (assuming independence), given the layout:
860 // BB, Succ, (C+Succ), D, Dom or the layout:
861 // BB, Succ, D, Dom, (C+Succ)
862 // is Qout + max(F, Qin) * U + min(F, Qin)
863 // compare P + U vs Qout + P * U + Qin.
865 // The 3rd and 4th cases cover when Dom would be chosen to follow Succ.
867 // For the 3rd case, the cost is P + 2 * V
868 // For the 4th case, the cost is Qout + min(Qin, F) * U + max(Qin, F) * V + V
869 // We choose 4 over 3 when (P + V) > Qout + min(Qin, F) * U + max(Qin, F) * V
870 if (UProb > AdjustedSuccSumProb / 2 &&
871 !hasBetterLayoutPredecessor(Succ, PDom, *BlockToChain[PDom], UProb, UProb,
872 Chain, BlockFilter))
873 // Cases 3 & 4
874 return greaterWithBias(
875 (P + V), (Qout + std::max(Qin, F) * VProb + std::min(Qin, F) * UProb),
876 EntryFreq);
877 // Cases 1 & 2
878 return greaterWithBias((P + U),
879 (Qout + std::min(Qin, F) * AdjustedSuccSumProb +
880 std::max(Qin, F) * UProb),
881 EntryFreq);
884 /// Check for a trellis layout. \p BB is the upper part of a trellis if its
885 /// successors form the lower part of a trellis. A successor set S forms the
886 /// lower part of a trellis if all of the predecessors of S are either in S or
887 /// have all of S as successors. We ignore trellises where BB doesn't have 2
888 /// successors because for fewer than 2, it's trivial, and for 3 or greater they
889 /// are very uncommon and complex to compute optimally. Allowing edges within S
890 /// is not strictly a trellis, but the same algorithm works, so we allow it.
891 bool MachineBlockPlacement::isTrellis(
892 const MachineBasicBlock *BB,
893 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
894 const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
895 // Technically BB could form a trellis with branching factor higher than 2.
896 // But that's extremely uncommon.
897 if (BB->succ_size() != 2 || ViableSuccs.size() != 2)
898 return false;
900 SmallPtrSet<const MachineBasicBlock *, 2> Successors(BB->succ_begin(),
901 BB->succ_end());
902 // To avoid reviewing the same predecessors twice.
903 SmallPtrSet<const MachineBasicBlock *, 8> SeenPreds;
905 for (MachineBasicBlock *Succ : ViableSuccs) {
906 int PredCount = 0;
907 for (auto SuccPred : Succ->predecessors()) {
908 // Allow triangle successors, but don't count them.
909 if (Successors.count(SuccPred)) {
910 // Make sure that it is actually a triangle.
911 for (MachineBasicBlock *CheckSucc : SuccPred->successors())
912 if (!Successors.count(CheckSucc))
913 return false;
914 continue;
916 const BlockChain *PredChain = BlockToChain[SuccPred];
917 if (SuccPred == BB || (BlockFilter && !BlockFilter->count(SuccPred)) ||
918 PredChain == &Chain || PredChain == BlockToChain[Succ])
919 continue;
920 ++PredCount;
921 // Perform the successor check only once.
922 if (!SeenPreds.insert(SuccPred).second)
923 continue;
924 if (!hasSameSuccessors(*SuccPred, Successors))
925 return false;
927 // If one of the successors has only BB as a predecessor, it is not a
928 // trellis.
929 if (PredCount < 1)
930 return false;
932 return true;
935 /// Pick the highest total weight pair of edges that can both be laid out.
936 /// The edges in \p Edges[0] are assumed to have a different destination than
937 /// the edges in \p Edges[1]. Simple counting shows that the best pair is either
938 /// the individual highest weight edges to the 2 different destinations, or in
939 /// case of a conflict, one of them should be replaced with a 2nd best edge.
940 std::pair<MachineBlockPlacement::WeightedEdge,
941 MachineBlockPlacement::WeightedEdge>
942 MachineBlockPlacement::getBestNonConflictingEdges(
943 const MachineBasicBlock *BB,
944 MutableArrayRef<SmallVector<MachineBlockPlacement::WeightedEdge, 8>>
945 Edges) {
946 // Sort the edges, and then for each successor, find the best incoming
947 // predecessor. If the best incoming predecessors aren't the same,
948 // then that is clearly the best layout. If there is a conflict, one of the
949 // successors will have to fallthrough from the second best predecessor. We
950 // compare which combination is better overall.
952 // Sort for highest frequency.
953 auto Cmp = [](WeightedEdge A, WeightedEdge B) { return A.Weight > B.Weight; };
955 llvm::stable_sort(Edges[0], Cmp);
956 llvm::stable_sort(Edges[1], Cmp);
957 auto BestA = Edges[0].begin();
958 auto BestB = Edges[1].begin();
959 // Arrange for the correct answer to be in BestA and BestB
960 // If the 2 best edges don't conflict, the answer is already there.
961 if (BestA->Src == BestB->Src) {
962 // Compare the total fallthrough of (Best + Second Best) for both pairs
963 auto SecondBestA = std::next(BestA);
964 auto SecondBestB = std::next(BestB);
965 BlockFrequency BestAScore = BestA->Weight + SecondBestB->Weight;
966 BlockFrequency BestBScore = BestB->Weight + SecondBestA->Weight;
967 if (BestAScore < BestBScore)
968 BestA = SecondBestA;
969 else
970 BestB = SecondBestB;
972 // Arrange for the BB edge to be in BestA if it exists.
973 if (BestB->Src == BB)
974 std::swap(BestA, BestB);
975 return std::make_pair(*BestA, *BestB);
978 /// Get the best successor from \p BB based on \p BB being part of a trellis.
979 /// We only handle trellises with 2 successors, so the algorithm is
980 /// straightforward: Find the best pair of edges that don't conflict. We find
981 /// the best incoming edge for each successor in the trellis. If those conflict,
982 /// we consider which of them should be replaced with the second best.
983 /// Upon return the two best edges will be in \p BestEdges. If one of the edges
984 /// comes from \p BB, it will be in \p BestEdges[0]
985 MachineBlockPlacement::BlockAndTailDupResult
986 MachineBlockPlacement::getBestTrellisSuccessor(
987 const MachineBasicBlock *BB,
988 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
989 BranchProbability AdjustedSumProb, const BlockChain &Chain,
990 const BlockFilterSet *BlockFilter) {
992 BlockAndTailDupResult Result = {nullptr, false};
993 SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(),
994 BB->succ_end());
996 // We assume size 2 because it's common. For general n, we would have to do
997 // the Hungarian algorithm, but it's not worth the complexity because more
998 // than 2 successors is fairly uncommon, and a trellis even more so.
999 if (Successors.size() != 2 || ViableSuccs.size() != 2)
1000 return Result;
1002 // Collect the edge frequencies of all edges that form the trellis.
1003 SmallVector<WeightedEdge, 8> Edges[2];
1004 int SuccIndex = 0;
1005 for (auto Succ : ViableSuccs) {
1006 for (MachineBasicBlock *SuccPred : Succ->predecessors()) {
1007 // Skip any placed predecessors that are not BB
1008 if (SuccPred != BB)
1009 if ((BlockFilter && !BlockFilter->count(SuccPred)) ||
1010 BlockToChain[SuccPred] == &Chain ||
1011 BlockToChain[SuccPred] == BlockToChain[Succ])
1012 continue;
1013 BlockFrequency EdgeFreq = MBFI->getBlockFreq(SuccPred) *
1014 MBPI->getEdgeProbability(SuccPred, Succ);
1015 Edges[SuccIndex].push_back({EdgeFreq, SuccPred, Succ});
1017 ++SuccIndex;
1020 // Pick the best combination of 2 edges from all the edges in the trellis.
1021 WeightedEdge BestA, BestB;
1022 std::tie(BestA, BestB) = getBestNonConflictingEdges(BB, Edges);
1024 if (BestA.Src != BB) {
1025 // If we have a trellis, and BB doesn't have the best fallthrough edges,
1026 // we shouldn't choose any successor. We've already looked and there's a
1027 // better fallthrough edge for all the successors.
1028 LLVM_DEBUG(dbgs() << "Trellis, but not one of the chosen edges.\n");
1029 return Result;
1032 // Did we pick the triangle edge? If tail-duplication is profitable, do
1033 // that instead. Otherwise merge the triangle edge now while we know it is
1034 // optimal.
1035 if (BestA.Dest == BestB.Src) {
1036 // The edges are BB->Succ1->Succ2, and we're looking to see if BB->Succ2
1037 // would be better.
1038 MachineBasicBlock *Succ1 = BestA.Dest;
1039 MachineBasicBlock *Succ2 = BestB.Dest;
1040 // Check to see if tail-duplication would be profitable.
1041 if (allowTailDupPlacement() && shouldTailDuplicate(Succ2) &&
1042 canTailDuplicateUnplacedPreds(BB, Succ2, Chain, BlockFilter) &&
1043 isProfitableToTailDup(BB, Succ2, MBPI->getEdgeProbability(BB, Succ1),
1044 Chain, BlockFilter)) {
1045 LLVM_DEBUG(BranchProbability Succ2Prob = getAdjustedProbability(
1046 MBPI->getEdgeProbability(BB, Succ2), AdjustedSumProb);
1047 dbgs() << " Selected: " << getBlockName(Succ2)
1048 << ", probability: " << Succ2Prob
1049 << " (Tail Duplicate)\n");
1050 Result.BB = Succ2;
1051 Result.ShouldTailDup = true;
1052 return Result;
1055 // We have already computed the optimal edge for the other side of the
1056 // trellis.
1057 ComputedEdges[BestB.Src] = { BestB.Dest, false };
1059 auto TrellisSucc = BestA.Dest;
1060 LLVM_DEBUG(BranchProbability SuccProb = getAdjustedProbability(
1061 MBPI->getEdgeProbability(BB, TrellisSucc), AdjustedSumProb);
1062 dbgs() << " Selected: " << getBlockName(TrellisSucc)
1063 << ", probability: " << SuccProb << " (Trellis)\n");
1064 Result.BB = TrellisSucc;
1065 return Result;
1068 /// When the option allowTailDupPlacement() is on, this method checks if the
1069 /// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated
1070 /// into all of its unplaced, unfiltered predecessors, that are not BB.
1071 bool MachineBlockPlacement::canTailDuplicateUnplacedPreds(
1072 const MachineBasicBlock *BB, MachineBasicBlock *Succ,
1073 const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
1074 if (!shouldTailDuplicate(Succ))
1075 return false;
1077 // For CFG checking.
1078 SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(),
1079 BB->succ_end());
1080 for (MachineBasicBlock *Pred : Succ->predecessors()) {
1081 // Make sure all unplaced and unfiltered predecessors can be
1082 // tail-duplicated into.
1083 // Skip any blocks that are already placed or not in this loop.
1084 if (Pred == BB || (BlockFilter && !BlockFilter->count(Pred))
1085 || BlockToChain[Pred] == &Chain)
1086 continue;
1087 if (!TailDup.canTailDuplicate(Succ, Pred)) {
1088 if (Successors.size() > 1 && hasSameSuccessors(*Pred, Successors))
1089 // This will result in a trellis after tail duplication, so we don't
1090 // need to copy Succ into this predecessor. In the presence
1091 // of a trellis tail duplication can continue to be profitable.
1092 // For example:
1093 // A A
1094 // |\ |\
1095 // | \ | \
1096 // | C | C+BB
1097 // | / | |
1098 // |/ | |
1099 // BB => BB |
1100 // |\ |\/|
1101 // | \ |/\|
1102 // | D | D
1103 // | / | /
1104 // |/ |/
1105 // Succ Succ
1107 // After BB was duplicated into C, the layout looks like the one on the
1108 // right. BB and C now have the same successors. When considering
1109 // whether Succ can be duplicated into all its unplaced predecessors, we
1110 // ignore C.
1111 // We can do this because C already has a profitable fallthrough, namely
1112 // D. TODO(iteratee): ignore sufficiently cold predecessors for
1113 // duplication and for this test.
1115 // This allows trellises to be laid out in 2 separate chains
1116 // (A,B,Succ,...) and later (C,D,...) This is a reasonable heuristic
1117 // because it allows the creation of 2 fallthrough paths with links
1118 // between them, and we correctly identify the best layout for these
1119 // CFGs. We want to extend trellises that the user created in addition
1120 // to trellises created by tail-duplication, so we just look for the
1121 // CFG.
1122 continue;
1123 return false;
1126 return true;
1129 /// Find chains of triangles where we believe it would be profitable to
1130 /// tail-duplicate them all, but a local analysis would not find them.
1131 /// There are 3 ways this can be profitable:
1132 /// 1) The post-dominators marked 50% are actually taken 55% (This shrinks with
1133 /// longer chains)
1134 /// 2) The chains are statically correlated. Branch probabilities have a very
1135 /// U-shaped distribution.
1136 /// [http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805]
1137 /// If the branches in a chain are likely to be from the same side of the
1138 /// distribution as their predecessor, but are independent at runtime, this
1139 /// transformation is profitable. (Because the cost of being wrong is a small
1140 /// fixed cost, unlike the standard triangle layout where the cost of being
1141 /// wrong scales with the # of triangles.)
1142 /// 3) The chains are dynamically correlated. If the probability that a previous
1143 /// branch was taken positively influences whether the next branch will be
1144 /// taken
1145 /// We believe that 2 and 3 are common enough to justify the small margin in 1.
1146 void MachineBlockPlacement::precomputeTriangleChains() {
1147 struct TriangleChain {
1148 std::vector<MachineBasicBlock *> Edges;
1150 TriangleChain(MachineBasicBlock *src, MachineBasicBlock *dst)
1151 : Edges({src, dst}) {}
1153 void append(MachineBasicBlock *dst) {
1154 assert(getKey()->isSuccessor(dst) &&
1155 "Attempting to append a block that is not a successor.");
1156 Edges.push_back(dst);
1159 unsigned count() const { return Edges.size() - 1; }
1161 MachineBasicBlock *getKey() const {
1162 return Edges.back();
1166 if (TriangleChainCount == 0)
1167 return;
1169 LLVM_DEBUG(dbgs() << "Pre-computing triangle chains.\n");
1170 // Map from last block to the chain that contains it. This allows us to extend
1171 // chains as we find new triangles.
1172 DenseMap<const MachineBasicBlock *, TriangleChain> TriangleChainMap;
1173 for (MachineBasicBlock &BB : *F) {
1174 // If BB doesn't have 2 successors, it doesn't start a triangle.
1175 if (BB.succ_size() != 2)
1176 continue;
1177 MachineBasicBlock *PDom = nullptr;
1178 for (MachineBasicBlock *Succ : BB.successors()) {
1179 if (!MPDT->dominates(Succ, &BB))
1180 continue;
1181 PDom = Succ;
1182 break;
1184 // If BB doesn't have a post-dominating successor, it doesn't form a
1185 // triangle.
1186 if (PDom == nullptr)
1187 continue;
1188 // If PDom has a hint that it is low probability, skip this triangle.
1189 if (MBPI->getEdgeProbability(&BB, PDom) < BranchProbability(50, 100))
1190 continue;
1191 // If PDom isn't eligible for duplication, this isn't the kind of triangle
1192 // we're looking for.
1193 if (!shouldTailDuplicate(PDom))
1194 continue;
1195 bool CanTailDuplicate = true;
1196 // If PDom can't tail-duplicate into it's non-BB predecessors, then this
1197 // isn't the kind of triangle we're looking for.
1198 for (MachineBasicBlock* Pred : PDom->predecessors()) {
1199 if (Pred == &BB)
1200 continue;
1201 if (!TailDup.canTailDuplicate(PDom, Pred)) {
1202 CanTailDuplicate = false;
1203 break;
1206 // If we can't tail-duplicate PDom to its predecessors, then skip this
1207 // triangle.
1208 if (!CanTailDuplicate)
1209 continue;
1211 // Now we have an interesting triangle. Insert it if it's not part of an
1212 // existing chain.
1213 // Note: This cannot be replaced with a call insert() or emplace() because
1214 // the find key is BB, but the insert/emplace key is PDom.
1215 auto Found = TriangleChainMap.find(&BB);
1216 // If it is, remove the chain from the map, grow it, and put it back in the
1217 // map with the end as the new key.
1218 if (Found != TriangleChainMap.end()) {
1219 TriangleChain Chain = std::move(Found->second);
1220 TriangleChainMap.erase(Found);
1221 Chain.append(PDom);
1222 TriangleChainMap.insert(std::make_pair(Chain.getKey(), std::move(Chain)));
1223 } else {
1224 auto InsertResult = TriangleChainMap.try_emplace(PDom, &BB, PDom);
1225 assert(InsertResult.second && "Block seen twice.");
1226 (void)InsertResult;
1230 // Iterating over a DenseMap is safe here, because the only thing in the body
1231 // of the loop is inserting into another DenseMap (ComputedEdges).
1232 // ComputedEdges is never iterated, so this doesn't lead to non-determinism.
1233 for (auto &ChainPair : TriangleChainMap) {
1234 TriangleChain &Chain = ChainPair.second;
1235 // Benchmarking has shown that due to branch correlation duplicating 2 or
1236 // more triangles is profitable, despite the calculations assuming
1237 // independence.
1238 if (Chain.count() < TriangleChainCount)
1239 continue;
1240 MachineBasicBlock *dst = Chain.Edges.back();
1241 Chain.Edges.pop_back();
1242 for (MachineBasicBlock *src : reverse(Chain.Edges)) {
1243 LLVM_DEBUG(dbgs() << "Marking edge: " << getBlockName(src) << "->"
1244 << getBlockName(dst)
1245 << " as pre-computed based on triangles.\n");
1247 auto InsertResult = ComputedEdges.insert({src, {dst, true}});
1248 assert(InsertResult.second && "Block seen twice.");
1249 (void)InsertResult;
1251 dst = src;
1256 // When profile is not present, return the StaticLikelyProb.
1257 // When profile is available, we need to handle the triangle-shape CFG.
1258 static BranchProbability getLayoutSuccessorProbThreshold(
1259 const MachineBasicBlock *BB) {
1260 if (!BB->getParent()->getFunction().hasProfileData())
1261 return BranchProbability(StaticLikelyProb, 100);
1262 if (BB->succ_size() == 2) {
1263 const MachineBasicBlock *Succ1 = *BB->succ_begin();
1264 const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1);
1265 if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) {
1266 /* See case 1 below for the cost analysis. For BB->Succ to
1267 * be taken with smaller cost, the following needs to hold:
1268 * Prob(BB->Succ) > 2 * Prob(BB->Pred)
1269 * So the threshold T in the calculation below
1270 * (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred)
1271 * So T / (1 - T) = 2, Yielding T = 2/3
1272 * Also adding user specified branch bias, we have
1273 * T = (2/3)*(ProfileLikelyProb/50)
1274 * = (2*ProfileLikelyProb)/150)
1276 return BranchProbability(2 * ProfileLikelyProb, 150);
1279 return BranchProbability(ProfileLikelyProb, 100);
1282 /// Checks to see if the layout candidate block \p Succ has a better layout
1283 /// predecessor than \c BB. If yes, returns true.
1284 /// \p SuccProb: The probability adjusted for only remaining blocks.
1285 /// Only used for logging
1286 /// \p RealSuccProb: The un-adjusted probability.
1287 /// \p Chain: The chain that BB belongs to and Succ is being considered for.
1288 /// \p BlockFilter: if non-null, the set of blocks that make up the loop being
1289 /// considered
1290 bool MachineBlockPlacement::hasBetterLayoutPredecessor(
1291 const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
1292 const BlockChain &SuccChain, BranchProbability SuccProb,
1293 BranchProbability RealSuccProb, const BlockChain &Chain,
1294 const BlockFilterSet *BlockFilter) {
1296 // There isn't a better layout when there are no unscheduled predecessors.
1297 if (SuccChain.UnscheduledPredecessors == 0)
1298 return false;
1300 // There are two basic scenarios here:
1301 // -------------------------------------
1302 // Case 1: triangular shape CFG (if-then):
1303 // BB
1304 // | \
1305 // | \
1306 // | Pred
1307 // | /
1308 // Succ
1309 // In this case, we are evaluating whether to select edge -> Succ, e.g.
1310 // set Succ as the layout successor of BB. Picking Succ as BB's
1311 // successor breaks the CFG constraints (FIXME: define these constraints).
1312 // With this layout, Pred BB
1313 // is forced to be outlined, so the overall cost will be cost of the
1314 // branch taken from BB to Pred, plus the cost of back taken branch
1315 // from Pred to Succ, as well as the additional cost associated
1316 // with the needed unconditional jump instruction from Pred To Succ.
1318 // The cost of the topological order layout is the taken branch cost
1319 // from BB to Succ, so to make BB->Succ a viable candidate, the following
1320 // must hold:
1321 // 2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost
1322 // < freq(BB->Succ) * taken_branch_cost.
1323 // Ignoring unconditional jump cost, we get
1324 // freq(BB->Succ) > 2 * freq(BB->Pred), i.e.,
1325 // prob(BB->Succ) > 2 * prob(BB->Pred)
1327 // When real profile data is available, we can precisely compute the
1328 // probability threshold that is needed for edge BB->Succ to be considered.
1329 // Without profile data, the heuristic requires the branch bias to be
1330 // a lot larger to make sure the signal is very strong (e.g. 80% default).
1331 // -----------------------------------------------------------------
1332 // Case 2: diamond like CFG (if-then-else):
1333 // S
1334 // / \
1335 // | \
1336 // BB Pred
1337 // \ /
1338 // Succ
1339 // ..
1341 // The current block is BB and edge BB->Succ is now being evaluated.
1342 // Note that edge S->BB was previously already selected because
1343 // prob(S->BB) > prob(S->Pred).
1344 // At this point, 2 blocks can be placed after BB: Pred or Succ. If we
1345 // choose Pred, we will have a topological ordering as shown on the left
1346 // in the picture below. If we choose Succ, we have the solution as shown
1347 // on the right:
1349 // topo-order:
1351 // S----- ---S
1352 // | | | |
1353 // ---BB | | BB
1354 // | | | |
1355 // | Pred-- | Succ--
1356 // | | | |
1357 // ---Succ ---Pred--
1359 // cost = freq(S->Pred) + freq(BB->Succ) cost = 2 * freq (S->Pred)
1360 // = freq(S->Pred) + freq(S->BB)
1362 // If we have profile data (i.e, branch probabilities can be trusted), the
1363 // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 *
1364 // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB).
1365 // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which
1366 // means the cost of topological order is greater.
1367 // When profile data is not available, however, we need to be more
1368 // conservative. If the branch prediction is wrong, breaking the topo-order
1369 // will actually yield a layout with large cost. For this reason, we need
1370 // strong biased branch at block S with Prob(S->BB) in order to select
1371 // BB->Succ. This is equivalent to looking the CFG backward with backward
1372 // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without
1373 // profile data).
1374 // --------------------------------------------------------------------------
1375 // Case 3: forked diamond
1376 // S
1377 // / \
1378 // / \
1379 // BB Pred
1380 // | \ / |
1381 // | \ / |
1382 // | X |
1383 // | / \ |
1384 // | / \ |
1385 // S1 S2
1387 // The current block is BB and edge BB->S1 is now being evaluated.
1388 // As above S->BB was already selected because
1389 // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2).
1391 // topo-order:
1393 // S-------| ---S
1394 // | | | |
1395 // ---BB | | BB
1396 // | | | |
1397 // | Pred----| | S1----
1398 // | | | |
1399 // --(S1 or S2) ---Pred--
1400 // |
1401 // S2
1403 // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2)
1404 // + min(freq(Pred->S1), freq(Pred->S2))
1405 // Non-topo-order cost:
1406 // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2).
1407 // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2))
1408 // is 0. Then the non topo layout is better when
1409 // freq(S->Pred) < freq(BB->S1).
1410 // This is exactly what is checked below.
1411 // Note there are other shapes that apply (Pred may not be a single block,
1412 // but they all fit this general pattern.)
1413 BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB);
1415 // Make sure that a hot successor doesn't have a globally more
1416 // important predecessor.
1417 BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb;
1418 bool BadCFGConflict = false;
1420 for (MachineBasicBlock *Pred : Succ->predecessors()) {
1421 if (Pred == Succ || BlockToChain[Pred] == &SuccChain ||
1422 (BlockFilter && !BlockFilter->count(Pred)) ||
1423 BlockToChain[Pred] == &Chain ||
1424 // This check is redundant except for look ahead. This function is
1425 // called for lookahead by isProfitableToTailDup when BB hasn't been
1426 // placed yet.
1427 (Pred == BB))
1428 continue;
1429 // Do backward checking.
1430 // For all cases above, we need a backward checking to filter out edges that
1431 // are not 'strongly' biased.
1432 // BB Pred
1433 // \ /
1434 // Succ
1435 // We select edge BB->Succ if
1436 // freq(BB->Succ) > freq(Succ) * HotProb
1437 // i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) *
1438 // HotProb
1439 // i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb
1440 // Case 1 is covered too, because the first equation reduces to:
1441 // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle)
1442 BlockFrequency PredEdgeFreq =
1443 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ);
1444 if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) {
1445 BadCFGConflict = true;
1446 break;
1450 if (BadCFGConflict) {
1451 LLVM_DEBUG(dbgs() << " Not a candidate: " << getBlockName(Succ) << " -> "
1452 << SuccProb << " (prob) (non-cold CFG conflict)\n");
1453 return true;
1456 return false;
1459 /// Select the best successor for a block.
1461 /// This looks across all successors of a particular block and attempts to
1462 /// select the "best" one to be the layout successor. It only considers direct
1463 /// successors which also pass the block filter. It will attempt to avoid
1464 /// breaking CFG structure, but cave and break such structures in the case of
1465 /// very hot successor edges.
1467 /// \returns The best successor block found, or null if none are viable, along
1468 /// with a boolean indicating if tail duplication is necessary.
1469 MachineBlockPlacement::BlockAndTailDupResult
1470 MachineBlockPlacement::selectBestSuccessor(
1471 const MachineBasicBlock *BB, const BlockChain &Chain,
1472 const BlockFilterSet *BlockFilter) {
1473 const BranchProbability HotProb(StaticLikelyProb, 100);
1475 BlockAndTailDupResult BestSucc = { nullptr, false };
1476 auto BestProb = BranchProbability::getZero();
1478 SmallVector<MachineBasicBlock *, 4> Successors;
1479 auto AdjustedSumProb =
1480 collectViableSuccessors(BB, Chain, BlockFilter, Successors);
1482 LLVM_DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB)
1483 << "\n");
1485 // if we already precomputed the best successor for BB, return that if still
1486 // applicable.
1487 auto FoundEdge = ComputedEdges.find(BB);
1488 if (FoundEdge != ComputedEdges.end()) {
1489 MachineBasicBlock *Succ = FoundEdge->second.BB;
1490 ComputedEdges.erase(FoundEdge);
1491 BlockChain *SuccChain = BlockToChain[Succ];
1492 if (BB->isSuccessor(Succ) && (!BlockFilter || BlockFilter->count(Succ)) &&
1493 SuccChain != &Chain && Succ == *SuccChain->begin())
1494 return FoundEdge->second;
1497 // if BB is part of a trellis, Use the trellis to determine the optimal
1498 // fallthrough edges
1499 if (isTrellis(BB, Successors, Chain, BlockFilter))
1500 return getBestTrellisSuccessor(BB, Successors, AdjustedSumProb, Chain,
1501 BlockFilter);
1503 // For blocks with CFG violations, we may be able to lay them out anyway with
1504 // tail-duplication. We keep this vector so we can perform the probability
1505 // calculations the minimum number of times.
1506 SmallVector<std::tuple<BranchProbability, MachineBasicBlock *>, 4>
1507 DupCandidates;
1508 for (MachineBasicBlock *Succ : Successors) {
1509 auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ);
1510 BranchProbability SuccProb =
1511 getAdjustedProbability(RealSuccProb, AdjustedSumProb);
1513 BlockChain &SuccChain = *BlockToChain[Succ];
1514 // Skip the edge \c BB->Succ if block \c Succ has a better layout
1515 // predecessor that yields lower global cost.
1516 if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb,
1517 Chain, BlockFilter)) {
1518 // If tail duplication would make Succ profitable, place it.
1519 if (allowTailDupPlacement() && shouldTailDuplicate(Succ))
1520 DupCandidates.push_back(std::make_tuple(SuccProb, Succ));
1521 continue;
1524 LLVM_DEBUG(
1525 dbgs() << " Candidate: " << getBlockName(Succ)
1526 << ", probability: " << SuccProb
1527 << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "")
1528 << "\n");
1530 if (BestSucc.BB && BestProb >= SuccProb) {
1531 LLVM_DEBUG(dbgs() << " Not the best candidate, continuing\n");
1532 continue;
1535 LLVM_DEBUG(dbgs() << " Setting it as best candidate\n");
1536 BestSucc.BB = Succ;
1537 BestProb = SuccProb;
1539 // Handle the tail duplication candidates in order of decreasing probability.
1540 // Stop at the first one that is profitable. Also stop if they are less
1541 // profitable than BestSucc. Position is important because we preserve it and
1542 // prefer first best match. Here we aren't comparing in order, so we capture
1543 // the position instead.
1544 llvm::stable_sort(DupCandidates,
1545 [](std::tuple<BranchProbability, MachineBasicBlock *> L,
1546 std::tuple<BranchProbability, MachineBasicBlock *> R) {
1547 return std::get<0>(L) > std::get<0>(R);
1549 for (auto &Tup : DupCandidates) {
1550 BranchProbability DupProb;
1551 MachineBasicBlock *Succ;
1552 std::tie(DupProb, Succ) = Tup;
1553 if (DupProb < BestProb)
1554 break;
1555 if (canTailDuplicateUnplacedPreds(BB, Succ, Chain, BlockFilter)
1556 && (isProfitableToTailDup(BB, Succ, BestProb, Chain, BlockFilter))) {
1557 LLVM_DEBUG(dbgs() << " Candidate: " << getBlockName(Succ)
1558 << ", probability: " << DupProb
1559 << " (Tail Duplicate)\n");
1560 BestSucc.BB = Succ;
1561 BestSucc.ShouldTailDup = true;
1562 break;
1566 if (BestSucc.BB)
1567 LLVM_DEBUG(dbgs() << " Selected: " << getBlockName(BestSucc.BB) << "\n");
1569 return BestSucc;
1572 /// Select the best block from a worklist.
1574 /// This looks through the provided worklist as a list of candidate basic
1575 /// blocks and select the most profitable one to place. The definition of
1576 /// profitable only really makes sense in the context of a loop. This returns
1577 /// the most frequently visited block in the worklist, which in the case of
1578 /// a loop, is the one most desirable to be physically close to the rest of the
1579 /// loop body in order to improve i-cache behavior.
1581 /// \returns The best block found, or null if none are viable.
1582 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
1583 const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) {
1584 // Once we need to walk the worklist looking for a candidate, cleanup the
1585 // worklist of already placed entries.
1586 // FIXME: If this shows up on profiles, it could be folded (at the cost of
1587 // some code complexity) into the loop below.
1588 WorkList.erase(llvm::remove_if(WorkList,
1589 [&](MachineBasicBlock *BB) {
1590 return BlockToChain.lookup(BB) == &Chain;
1592 WorkList.end());
1594 if (WorkList.empty())
1595 return nullptr;
1597 bool IsEHPad = WorkList[0]->isEHPad();
1599 MachineBasicBlock *BestBlock = nullptr;
1600 BlockFrequency BestFreq;
1601 for (MachineBasicBlock *MBB : WorkList) {
1602 assert(MBB->isEHPad() == IsEHPad &&
1603 "EHPad mismatch between block and work list.");
1605 BlockChain &SuccChain = *BlockToChain[MBB];
1606 if (&SuccChain == &Chain)
1607 continue;
1609 assert(SuccChain.UnscheduledPredecessors == 0 &&
1610 "Found CFG-violating block");
1612 BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB);
1613 LLVM_DEBUG(dbgs() << " " << getBlockName(MBB) << " -> ";
1614 MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n");
1616 // For ehpad, we layout the least probable first as to avoid jumping back
1617 // from least probable landingpads to more probable ones.
1619 // FIXME: Using probability is probably (!) not the best way to achieve
1620 // this. We should probably have a more principled approach to layout
1621 // cleanup code.
1623 // The goal is to get:
1625 // +--------------------------+
1626 // | V
1627 // InnerLp -> InnerCleanup OuterLp -> OuterCleanup -> Resume
1629 // Rather than:
1631 // +-------------------------------------+
1632 // V |
1633 // OuterLp -> OuterCleanup -> Resume InnerLp -> InnerCleanup
1634 if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq)))
1635 continue;
1637 BestBlock = MBB;
1638 BestFreq = CandidateFreq;
1641 return BestBlock;
1644 /// Retrieve the first unplaced basic block.
1646 /// This routine is called when we are unable to use the CFG to walk through
1647 /// all of the basic blocks and form a chain due to unnatural loops in the CFG.
1648 /// We walk through the function's blocks in order, starting from the
1649 /// LastUnplacedBlockIt. We update this iterator on each call to avoid
1650 /// re-scanning the entire sequence on repeated calls to this routine.
1651 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
1652 const BlockChain &PlacedChain,
1653 MachineFunction::iterator &PrevUnplacedBlockIt,
1654 const BlockFilterSet *BlockFilter) {
1655 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E;
1656 ++I) {
1657 if (BlockFilter && !BlockFilter->count(&*I))
1658 continue;
1659 if (BlockToChain[&*I] != &PlacedChain) {
1660 PrevUnplacedBlockIt = I;
1661 // Now select the head of the chain to which the unplaced block belongs
1662 // as the block to place. This will force the entire chain to be placed,
1663 // and satisfies the requirements of merging chains.
1664 return *BlockToChain[&*I]->begin();
1667 return nullptr;
1670 void MachineBlockPlacement::fillWorkLists(
1671 const MachineBasicBlock *MBB,
1672 SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
1673 const BlockFilterSet *BlockFilter = nullptr) {
1674 BlockChain &Chain = *BlockToChain[MBB];
1675 if (!UpdatedPreds.insert(&Chain).second)
1676 return;
1678 assert(
1679 Chain.UnscheduledPredecessors == 0 &&
1680 "Attempting to place block with unscheduled predecessors in worklist.");
1681 for (MachineBasicBlock *ChainBB : Chain) {
1682 assert(BlockToChain[ChainBB] == &Chain &&
1683 "Block in chain doesn't match BlockToChain map.");
1684 for (MachineBasicBlock *Pred : ChainBB->predecessors()) {
1685 if (BlockFilter && !BlockFilter->count(Pred))
1686 continue;
1687 if (BlockToChain[Pred] == &Chain)
1688 continue;
1689 ++Chain.UnscheduledPredecessors;
1693 if (Chain.UnscheduledPredecessors != 0)
1694 return;
1696 MachineBasicBlock *BB = *Chain.begin();
1697 if (BB->isEHPad())
1698 EHPadWorkList.push_back(BB);
1699 else
1700 BlockWorkList.push_back(BB);
1703 void MachineBlockPlacement::buildChain(
1704 const MachineBasicBlock *HeadBB, BlockChain &Chain,
1705 BlockFilterSet *BlockFilter) {
1706 assert(HeadBB && "BB must not be null.\n");
1707 assert(BlockToChain[HeadBB] == &Chain && "BlockToChainMap mis-match.\n");
1708 MachineFunction::iterator PrevUnplacedBlockIt = F->begin();
1710 const MachineBasicBlock *LoopHeaderBB = HeadBB;
1711 markChainSuccessors(Chain, LoopHeaderBB, BlockFilter);
1712 MachineBasicBlock *BB = *std::prev(Chain.end());
1713 while (true) {
1714 assert(BB && "null block found at end of chain in loop.");
1715 assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop.");
1716 assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain.");
1719 // Look for the best viable successor if there is one to place immediately
1720 // after this block.
1721 auto Result = selectBestSuccessor(BB, Chain, BlockFilter);
1722 MachineBasicBlock* BestSucc = Result.BB;
1723 bool ShouldTailDup = Result.ShouldTailDup;
1724 if (allowTailDupPlacement())
1725 ShouldTailDup |= (BestSucc && shouldTailDuplicate(BestSucc));
1727 // If an immediate successor isn't available, look for the best viable
1728 // block among those we've identified as not violating the loop's CFG at
1729 // this point. This won't be a fallthrough, but it will increase locality.
1730 if (!BestSucc)
1731 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList);
1732 if (!BestSucc)
1733 BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList);
1735 if (!BestSucc) {
1736 BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter);
1737 if (!BestSucc)
1738 break;
1740 LLVM_DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
1741 "layout successor until the CFG reduces\n");
1744 // Placement may have changed tail duplication opportunities.
1745 // Check for that now.
1746 if (allowTailDupPlacement() && BestSucc && ShouldTailDup) {
1747 // If the chosen successor was duplicated into all its predecessors,
1748 // don't bother laying it out, just go round the loop again with BB as
1749 // the chain end.
1750 if (repeatedlyTailDuplicateBlock(BestSucc, BB, LoopHeaderBB, Chain,
1751 BlockFilter, PrevUnplacedBlockIt))
1752 continue;
1755 // Place this block, updating the datastructures to reflect its placement.
1756 BlockChain &SuccChain = *BlockToChain[BestSucc];
1757 // Zero out UnscheduledPredecessors for the successor we're about to merge in case
1758 // we selected a successor that didn't fit naturally into the CFG.
1759 SuccChain.UnscheduledPredecessors = 0;
1760 LLVM_DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to "
1761 << getBlockName(BestSucc) << "\n");
1762 markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter);
1763 Chain.merge(BestSucc, &SuccChain);
1764 BB = *std::prev(Chain.end());
1767 LLVM_DEBUG(dbgs() << "Finished forming chain for header block "
1768 << getBlockName(*Chain.begin()) << "\n");
1771 // If bottom of block BB has only one successor OldTop, in most cases it is
1772 // profitable to move it before OldTop, except the following case:
1774 // -->OldTop<-
1775 // | . |
1776 // | . |
1777 // | . |
1778 // ---Pred |
1779 // | |
1780 // BB-----
1782 // If BB is moved before OldTop, Pred needs a taken branch to BB, and it can't
1783 // layout the other successor below it, so it can't reduce taken branch.
1784 // In this case we keep its original layout.
1785 bool
1786 MachineBlockPlacement::canMoveBottomBlockToTop(
1787 const MachineBasicBlock *BottomBlock,
1788 const MachineBasicBlock *OldTop) {
1789 if (BottomBlock->pred_size() != 1)
1790 return true;
1791 MachineBasicBlock *Pred = *BottomBlock->pred_begin();
1792 if (Pred->succ_size() != 2)
1793 return true;
1795 MachineBasicBlock *OtherBB = *Pred->succ_begin();
1796 if (OtherBB == BottomBlock)
1797 OtherBB = *Pred->succ_rbegin();
1798 if (OtherBB == OldTop)
1799 return false;
1801 return true;
1804 // Find out the possible fall through frequence to the top of a loop.
1805 BlockFrequency
1806 MachineBlockPlacement::TopFallThroughFreq(
1807 const MachineBasicBlock *Top,
1808 const BlockFilterSet &LoopBlockSet) {
1809 BlockFrequency MaxFreq = 0;
1810 for (MachineBasicBlock *Pred : Top->predecessors()) {
1811 BlockChain *PredChain = BlockToChain[Pred];
1812 if (!LoopBlockSet.count(Pred) &&
1813 (!PredChain || Pred == *std::prev(PredChain->end()))) {
1814 // Found a Pred block can be placed before Top.
1815 // Check if Top is the best successor of Pred.
1816 auto TopProb = MBPI->getEdgeProbability(Pred, Top);
1817 bool TopOK = true;
1818 for (MachineBasicBlock *Succ : Pred->successors()) {
1819 auto SuccProb = MBPI->getEdgeProbability(Pred, Succ);
1820 BlockChain *SuccChain = BlockToChain[Succ];
1821 // Check if Succ can be placed after Pred.
1822 // Succ should not be in any chain, or it is the head of some chain.
1823 if (!LoopBlockSet.count(Succ) && (SuccProb > TopProb) &&
1824 (!SuccChain || Succ == *SuccChain->begin())) {
1825 TopOK = false;
1826 break;
1829 if (TopOK) {
1830 BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) *
1831 MBPI->getEdgeProbability(Pred, Top);
1832 if (EdgeFreq > MaxFreq)
1833 MaxFreq = EdgeFreq;
1837 return MaxFreq;
1840 // Compute the fall through gains when move NewTop before OldTop.
1842 // In following diagram, edges marked as "-" are reduced fallthrough, edges
1843 // marked as "+" are increased fallthrough, this function computes
1845 // SUM(increased fallthrough) - SUM(decreased fallthrough)
1847 // |
1848 // | -
1849 // V
1850 // --->OldTop
1851 // | .
1852 // | .
1853 // +| . +
1854 // | Pred --->
1855 // | |-
1856 // | V
1857 // --- NewTop <---
1858 // |-
1859 // V
1861 BlockFrequency
1862 MachineBlockPlacement::FallThroughGains(
1863 const MachineBasicBlock *NewTop,
1864 const MachineBasicBlock *OldTop,
1865 const MachineBasicBlock *ExitBB,
1866 const BlockFilterSet &LoopBlockSet) {
1867 BlockFrequency FallThrough2Top = TopFallThroughFreq(OldTop, LoopBlockSet);
1868 BlockFrequency FallThrough2Exit = 0;
1869 if (ExitBB)
1870 FallThrough2Exit = MBFI->getBlockFreq(NewTop) *
1871 MBPI->getEdgeProbability(NewTop, ExitBB);
1872 BlockFrequency BackEdgeFreq = MBFI->getBlockFreq(NewTop) *
1873 MBPI->getEdgeProbability(NewTop, OldTop);
1875 // Find the best Pred of NewTop.
1876 MachineBasicBlock *BestPred = nullptr;
1877 BlockFrequency FallThroughFromPred = 0;
1878 for (MachineBasicBlock *Pred : NewTop->predecessors()) {
1879 if (!LoopBlockSet.count(Pred))
1880 continue;
1881 BlockChain *PredChain = BlockToChain[Pred];
1882 if (!PredChain || Pred == *std::prev(PredChain->end())) {
1883 BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) *
1884 MBPI->getEdgeProbability(Pred, NewTop);
1885 if (EdgeFreq > FallThroughFromPred) {
1886 FallThroughFromPred = EdgeFreq;
1887 BestPred = Pred;
1892 // If NewTop is not placed after Pred, another successor can be placed
1893 // after Pred.
1894 BlockFrequency NewFreq = 0;
1895 if (BestPred) {
1896 for (MachineBasicBlock *Succ : BestPred->successors()) {
1897 if ((Succ == NewTop) || (Succ == BestPred) || !LoopBlockSet.count(Succ))
1898 continue;
1899 if (ComputedEdges.find(Succ) != ComputedEdges.end())
1900 continue;
1901 BlockChain *SuccChain = BlockToChain[Succ];
1902 if ((SuccChain && (Succ != *SuccChain->begin())) ||
1903 (SuccChain == BlockToChain[BestPred]))
1904 continue;
1905 BlockFrequency EdgeFreq = MBFI->getBlockFreq(BestPred) *
1906 MBPI->getEdgeProbability(BestPred, Succ);
1907 if (EdgeFreq > NewFreq)
1908 NewFreq = EdgeFreq;
1910 BlockFrequency OrigEdgeFreq = MBFI->getBlockFreq(BestPred) *
1911 MBPI->getEdgeProbability(BestPred, NewTop);
1912 if (NewFreq > OrigEdgeFreq) {
1913 // If NewTop is not the best successor of Pred, then Pred doesn't
1914 // fallthrough to NewTop. So there is no FallThroughFromPred and
1915 // NewFreq.
1916 NewFreq = 0;
1917 FallThroughFromPred = 0;
1921 BlockFrequency Result = 0;
1922 BlockFrequency Gains = BackEdgeFreq + NewFreq;
1923 BlockFrequency Lost = FallThrough2Top + FallThrough2Exit +
1924 FallThroughFromPred;
1925 if (Gains > Lost)
1926 Result = Gains - Lost;
1927 return Result;
1930 /// Helper function of findBestLoopTop. Find the best loop top block
1931 /// from predecessors of old top.
1933 /// Look for a block which is strictly better than the old top for laying
1934 /// out before the old top of the loop. This looks for only two patterns:
1936 /// 1. a block has only one successor, the old loop top
1938 /// Because such a block will always result in an unconditional jump,
1939 /// rotating it in front of the old top is always profitable.
1941 /// 2. a block has two successors, one is old top, another is exit
1942 /// and it has more than one predecessors
1944 /// If it is below one of its predecessors P, only P can fall through to
1945 /// it, all other predecessors need a jump to it, and another conditional
1946 /// jump to loop header. If it is moved before loop header, all its
1947 /// predecessors jump to it, then fall through to loop header. So all its
1948 /// predecessors except P can reduce one taken branch.
1949 /// At the same time, move it before old top increases the taken branch
1950 /// to loop exit block, so the reduced taken branch will be compared with
1951 /// the increased taken branch to the loop exit block.
1952 MachineBasicBlock *
1953 MachineBlockPlacement::findBestLoopTopHelper(
1954 MachineBasicBlock *OldTop,
1955 const MachineLoop &L,
1956 const BlockFilterSet &LoopBlockSet) {
1957 // Check that the header hasn't been fused with a preheader block due to
1958 // crazy branches. If it has, we need to start with the header at the top to
1959 // prevent pulling the preheader into the loop body.
1960 BlockChain &HeaderChain = *BlockToChain[OldTop];
1961 if (!LoopBlockSet.count(*HeaderChain.begin()))
1962 return OldTop;
1964 LLVM_DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(OldTop)
1965 << "\n");
1967 BlockFrequency BestGains = 0;
1968 MachineBasicBlock *BestPred = nullptr;
1969 for (MachineBasicBlock *Pred : OldTop->predecessors()) {
1970 if (!LoopBlockSet.count(Pred))
1971 continue;
1972 if (Pred == L.getHeader())
1973 continue;
1974 LLVM_DEBUG(dbgs() << " old top pred: " << getBlockName(Pred) << ", has "
1975 << Pred->succ_size() << " successors, ";
1976 MBFI->printBlockFreq(dbgs(), Pred) << " freq\n");
1977 if (Pred->succ_size() > 2)
1978 continue;
1980 MachineBasicBlock *OtherBB = nullptr;
1981 if (Pred->succ_size() == 2) {
1982 OtherBB = *Pred->succ_begin();
1983 if (OtherBB == OldTop)
1984 OtherBB = *Pred->succ_rbegin();
1987 if (!canMoveBottomBlockToTop(Pred, OldTop))
1988 continue;
1990 BlockFrequency Gains = FallThroughGains(Pred, OldTop, OtherBB,
1991 LoopBlockSet);
1992 if ((Gains > 0) && (Gains > BestGains ||
1993 ((Gains == BestGains) && Pred->isLayoutSuccessor(OldTop)))) {
1994 BestPred = Pred;
1995 BestGains = Gains;
1999 // If no direct predecessor is fine, just use the loop header.
2000 if (!BestPred) {
2001 LLVM_DEBUG(dbgs() << " final top unchanged\n");
2002 return OldTop;
2005 // Walk backwards through any straight line of predecessors.
2006 while (BestPred->pred_size() == 1 &&
2007 (*BestPred->pred_begin())->succ_size() == 1 &&
2008 *BestPred->pred_begin() != L.getHeader())
2009 BestPred = *BestPred->pred_begin();
2011 LLVM_DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n");
2012 return BestPred;
2015 /// Find the best loop top block for layout.
2017 /// This function iteratively calls findBestLoopTopHelper, until no new better
2018 /// BB can be found.
2019 MachineBasicBlock *
2020 MachineBlockPlacement::findBestLoopTop(const MachineLoop &L,
2021 const BlockFilterSet &LoopBlockSet) {
2022 // Placing the latch block before the header may introduce an extra branch
2023 // that skips this block the first time the loop is executed, which we want
2024 // to avoid when optimising for size.
2025 // FIXME: in theory there is a case that does not introduce a new branch,
2026 // i.e. when the layout predecessor does not fallthrough to the loop header.
2027 // In practice this never happens though: there always seems to be a preheader
2028 // that can fallthrough and that is also placed before the header.
2029 if (F->getFunction().hasOptSize())
2030 return L.getHeader();
2032 MachineBasicBlock *OldTop = nullptr;
2033 MachineBasicBlock *NewTop = L.getHeader();
2034 while (NewTop != OldTop) {
2035 OldTop = NewTop;
2036 NewTop = findBestLoopTopHelper(OldTop, L, LoopBlockSet);
2037 if (NewTop != OldTop)
2038 ComputedEdges[NewTop] = { OldTop, false };
2040 return NewTop;
2043 /// Find the best loop exiting block for layout.
2045 /// This routine implements the logic to analyze the loop looking for the best
2046 /// block to layout at the top of the loop. Typically this is done to maximize
2047 /// fallthrough opportunities.
2048 MachineBasicBlock *
2049 MachineBlockPlacement::findBestLoopExit(const MachineLoop &L,
2050 const BlockFilterSet &LoopBlockSet,
2051 BlockFrequency &ExitFreq) {
2052 // We don't want to layout the loop linearly in all cases. If the loop header
2053 // is just a normal basic block in the loop, we want to look for what block
2054 // within the loop is the best one to layout at the top. However, if the loop
2055 // header has be pre-merged into a chain due to predecessors not having
2056 // analyzable branches, *and* the predecessor it is merged with is *not* part
2057 // of the loop, rotating the header into the middle of the loop will create
2058 // a non-contiguous range of blocks which is Very Bad. So start with the
2059 // header and only rotate if safe.
2060 BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
2061 if (!LoopBlockSet.count(*HeaderChain.begin()))
2062 return nullptr;
2064 BlockFrequency BestExitEdgeFreq;
2065 unsigned BestExitLoopDepth = 0;
2066 MachineBasicBlock *ExitingBB = nullptr;
2067 // If there are exits to outer loops, loop rotation can severely limit
2068 // fallthrough opportunities unless it selects such an exit. Keep a set of
2069 // blocks where rotating to exit with that block will reach an outer loop.
2070 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop;
2072 LLVM_DEBUG(dbgs() << "Finding best loop exit for: "
2073 << getBlockName(L.getHeader()) << "\n");
2074 for (MachineBasicBlock *MBB : L.getBlocks()) {
2075 BlockChain &Chain = *BlockToChain[MBB];
2076 // Ensure that this block is at the end of a chain; otherwise it could be
2077 // mid-way through an inner loop or a successor of an unanalyzable branch.
2078 if (MBB != *std::prev(Chain.end()))
2079 continue;
2081 // Now walk the successors. We need to establish whether this has a viable
2082 // exiting successor and whether it has a viable non-exiting successor.
2083 // We store the old exiting state and restore it if a viable looping
2084 // successor isn't found.
2085 MachineBasicBlock *OldExitingBB = ExitingBB;
2086 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq;
2087 bool HasLoopingSucc = false;
2088 for (MachineBasicBlock *Succ : MBB->successors()) {
2089 if (Succ->isEHPad())
2090 continue;
2091 if (Succ == MBB)
2092 continue;
2093 BlockChain &SuccChain = *BlockToChain[Succ];
2094 // Don't split chains, either this chain or the successor's chain.
2095 if (&Chain == &SuccChain) {
2096 LLVM_DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> "
2097 << getBlockName(Succ) << " (chain conflict)\n");
2098 continue;
2101 auto SuccProb = MBPI->getEdgeProbability(MBB, Succ);
2102 if (LoopBlockSet.count(Succ)) {
2103 LLVM_DEBUG(dbgs() << " looping: " << getBlockName(MBB) << " -> "
2104 << getBlockName(Succ) << " (" << SuccProb << ")\n");
2105 HasLoopingSucc = true;
2106 continue;
2109 unsigned SuccLoopDepth = 0;
2110 if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) {
2111 SuccLoopDepth = ExitLoop->getLoopDepth();
2112 if (ExitLoop->contains(&L))
2113 BlocksExitingToOuterLoop.insert(MBB);
2116 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb;
2117 LLVM_DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> "
2118 << getBlockName(Succ) << " [L:" << SuccLoopDepth
2119 << "] (";
2120 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n");
2121 // Note that we bias this toward an existing layout successor to retain
2122 // incoming order in the absence of better information. The exit must have
2123 // a frequency higher than the current exit before we consider breaking
2124 // the layout.
2125 BranchProbability Bias(100 - ExitBlockBias, 100);
2126 if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth ||
2127 ExitEdgeFreq > BestExitEdgeFreq ||
2128 (MBB->isLayoutSuccessor(Succ) &&
2129 !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) {
2130 BestExitEdgeFreq = ExitEdgeFreq;
2131 ExitingBB = MBB;
2135 if (!HasLoopingSucc) {
2136 // Restore the old exiting state, no viable looping successor was found.
2137 ExitingBB = OldExitingBB;
2138 BestExitEdgeFreq = OldBestExitEdgeFreq;
2141 // Without a candidate exiting block or with only a single block in the
2142 // loop, just use the loop header to layout the loop.
2143 if (!ExitingBB) {
2144 LLVM_DEBUG(
2145 dbgs() << " No other candidate exit blocks, using loop header\n");
2146 return nullptr;
2148 if (L.getNumBlocks() == 1) {
2149 LLVM_DEBUG(dbgs() << " Loop has 1 block, using loop header as exit\n");
2150 return nullptr;
2153 // Also, if we have exit blocks which lead to outer loops but didn't select
2154 // one of them as the exiting block we are rotating toward, disable loop
2155 // rotation altogether.
2156 if (!BlocksExitingToOuterLoop.empty() &&
2157 !BlocksExitingToOuterLoop.count(ExitingBB))
2158 return nullptr;
2160 LLVM_DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB)
2161 << "\n");
2162 ExitFreq = BestExitEdgeFreq;
2163 return ExitingBB;
2166 /// Check if there is a fallthrough to loop header Top.
2168 /// 1. Look for a Pred that can be layout before Top.
2169 /// 2. Check if Top is the most possible successor of Pred.
2170 bool
2171 MachineBlockPlacement::hasViableTopFallthrough(
2172 const MachineBasicBlock *Top,
2173 const BlockFilterSet &LoopBlockSet) {
2174 for (MachineBasicBlock *Pred : Top->predecessors()) {
2175 BlockChain *PredChain = BlockToChain[Pred];
2176 if (!LoopBlockSet.count(Pred) &&
2177 (!PredChain || Pred == *std::prev(PredChain->end()))) {
2178 // Found a Pred block can be placed before Top.
2179 // Check if Top is the best successor of Pred.
2180 auto TopProb = MBPI->getEdgeProbability(Pred, Top);
2181 bool TopOK = true;
2182 for (MachineBasicBlock *Succ : Pred->successors()) {
2183 auto SuccProb = MBPI->getEdgeProbability(Pred, Succ);
2184 BlockChain *SuccChain = BlockToChain[Succ];
2185 // Check if Succ can be placed after Pred.
2186 // Succ should not be in any chain, or it is the head of some chain.
2187 if ((!SuccChain || Succ == *SuccChain->begin()) && SuccProb > TopProb) {
2188 TopOK = false;
2189 break;
2192 if (TopOK)
2193 return true;
2196 return false;
2199 /// Attempt to rotate an exiting block to the bottom of the loop.
2201 /// Once we have built a chain, try to rotate it to line up the hot exit block
2202 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary
2203 /// branches. For example, if the loop has fallthrough into its header and out
2204 /// of its bottom already, don't rotate it.
2205 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain,
2206 const MachineBasicBlock *ExitingBB,
2207 BlockFrequency ExitFreq,
2208 const BlockFilterSet &LoopBlockSet) {
2209 if (!ExitingBB)
2210 return;
2212 MachineBasicBlock *Top = *LoopChain.begin();
2213 MachineBasicBlock *Bottom = *std::prev(LoopChain.end());
2215 // If ExitingBB is already the last one in a chain then nothing to do.
2216 if (Bottom == ExitingBB)
2217 return;
2219 bool ViableTopFallthrough = hasViableTopFallthrough(Top, LoopBlockSet);
2221 // If the header has viable fallthrough, check whether the current loop
2222 // bottom is a viable exiting block. If so, bail out as rotating will
2223 // introduce an unnecessary branch.
2224 if (ViableTopFallthrough) {
2225 for (MachineBasicBlock *Succ : Bottom->successors()) {
2226 BlockChain *SuccChain = BlockToChain[Succ];
2227 if (!LoopBlockSet.count(Succ) &&
2228 (!SuccChain || Succ == *SuccChain->begin()))
2229 return;
2232 // Rotate will destroy the top fallthrough, we need to ensure the new exit
2233 // frequency is larger than top fallthrough.
2234 BlockFrequency FallThrough2Top = TopFallThroughFreq(Top, LoopBlockSet);
2235 if (FallThrough2Top >= ExitFreq)
2236 return;
2239 BlockChain::iterator ExitIt = llvm::find(LoopChain, ExitingBB);
2240 if (ExitIt == LoopChain.end())
2241 return;
2243 // Rotating a loop exit to the bottom when there is a fallthrough to top
2244 // trades the entry fallthrough for an exit fallthrough.
2245 // If there is no bottom->top edge, but the chosen exit block does have
2246 // a fallthrough, we break that fallthrough for nothing in return.
2248 // Let's consider an example. We have a built chain of basic blocks
2249 // B1, B2, ..., Bn, where Bk is a ExitingBB - chosen exit block.
2250 // By doing a rotation we get
2251 // Bk+1, ..., Bn, B1, ..., Bk
2252 // Break of fallthrough to B1 is compensated by a fallthrough from Bk.
2253 // If we had a fallthrough Bk -> Bk+1 it is broken now.
2254 // It might be compensated by fallthrough Bn -> B1.
2255 // So we have a condition to avoid creation of extra branch by loop rotation.
2256 // All below must be true to avoid loop rotation:
2257 // If there is a fallthrough to top (B1)
2258 // There was fallthrough from chosen exit block (Bk) to next one (Bk+1)
2259 // There is no fallthrough from bottom (Bn) to top (B1).
2260 // Please note that there is no exit fallthrough from Bn because we checked it
2261 // above.
2262 if (ViableTopFallthrough) {
2263 assert(std::next(ExitIt) != LoopChain.end() &&
2264 "Exit should not be last BB");
2265 MachineBasicBlock *NextBlockInChain = *std::next(ExitIt);
2266 if (ExitingBB->isSuccessor(NextBlockInChain))
2267 if (!Bottom->isSuccessor(Top))
2268 return;
2271 LLVM_DEBUG(dbgs() << "Rotating loop to put exit " << getBlockName(ExitingBB)
2272 << " at bottom\n");
2273 std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end());
2276 /// Attempt to rotate a loop based on profile data to reduce branch cost.
2278 /// With profile data, we can determine the cost in terms of missed fall through
2279 /// opportunities when rotating a loop chain and select the best rotation.
2280 /// Basically, there are three kinds of cost to consider for each rotation:
2281 /// 1. The possibly missed fall through edge (if it exists) from BB out of
2282 /// the loop to the loop header.
2283 /// 2. The possibly missed fall through edges (if they exist) from the loop
2284 /// exits to BB out of the loop.
2285 /// 3. The missed fall through edge (if it exists) from the last BB to the
2286 /// first BB in the loop chain.
2287 /// Therefore, the cost for a given rotation is the sum of costs listed above.
2288 /// We select the best rotation with the smallest cost.
2289 void MachineBlockPlacement::rotateLoopWithProfile(
2290 BlockChain &LoopChain, const MachineLoop &L,
2291 const BlockFilterSet &LoopBlockSet) {
2292 auto RotationPos = LoopChain.end();
2294 BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency();
2296 // A utility lambda that scales up a block frequency by dividing it by a
2297 // branch probability which is the reciprocal of the scale.
2298 auto ScaleBlockFrequency = [](BlockFrequency Freq,
2299 unsigned Scale) -> BlockFrequency {
2300 if (Scale == 0)
2301 return 0;
2302 // Use operator / between BlockFrequency and BranchProbability to implement
2303 // saturating multiplication.
2304 return Freq / BranchProbability(1, Scale);
2307 // Compute the cost of the missed fall-through edge to the loop header if the
2308 // chain head is not the loop header. As we only consider natural loops with
2309 // single header, this computation can be done only once.
2310 BlockFrequency HeaderFallThroughCost(0);
2311 MachineBasicBlock *ChainHeaderBB = *LoopChain.begin();
2312 for (auto *Pred : ChainHeaderBB->predecessors()) {
2313 BlockChain *PredChain = BlockToChain[Pred];
2314 if (!LoopBlockSet.count(Pred) &&
2315 (!PredChain || Pred == *std::prev(PredChain->end()))) {
2316 auto EdgeFreq = MBFI->getBlockFreq(Pred) *
2317 MBPI->getEdgeProbability(Pred, ChainHeaderBB);
2318 auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost);
2319 // If the predecessor has only an unconditional jump to the header, we
2320 // need to consider the cost of this jump.
2321 if (Pred->succ_size() == 1)
2322 FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost);
2323 HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost);
2327 // Here we collect all exit blocks in the loop, and for each exit we find out
2328 // its hottest exit edge. For each loop rotation, we define the loop exit cost
2329 // as the sum of frequencies of exit edges we collect here, excluding the exit
2330 // edge from the tail of the loop chain.
2331 SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq;
2332 for (auto BB : LoopChain) {
2333 auto LargestExitEdgeProb = BranchProbability::getZero();
2334 for (auto *Succ : BB->successors()) {
2335 BlockChain *SuccChain = BlockToChain[Succ];
2336 if (!LoopBlockSet.count(Succ) &&
2337 (!SuccChain || Succ == *SuccChain->begin())) {
2338 auto SuccProb = MBPI->getEdgeProbability(BB, Succ);
2339 LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb);
2342 if (LargestExitEdgeProb > BranchProbability::getZero()) {
2343 auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb;
2344 ExitsWithFreq.emplace_back(BB, ExitFreq);
2348 // In this loop we iterate every block in the loop chain and calculate the
2349 // cost assuming the block is the head of the loop chain. When the loop ends,
2350 // we should have found the best candidate as the loop chain's head.
2351 for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()),
2352 EndIter = LoopChain.end();
2353 Iter != EndIter; Iter++, TailIter++) {
2354 // TailIter is used to track the tail of the loop chain if the block we are
2355 // checking (pointed by Iter) is the head of the chain.
2356 if (TailIter == LoopChain.end())
2357 TailIter = LoopChain.begin();
2359 auto TailBB = *TailIter;
2361 // Calculate the cost by putting this BB to the top.
2362 BlockFrequency Cost = 0;
2364 // If the current BB is the loop header, we need to take into account the
2365 // cost of the missed fall through edge from outside of the loop to the
2366 // header.
2367 if (Iter != LoopChain.begin())
2368 Cost += HeaderFallThroughCost;
2370 // Collect the loop exit cost by summing up frequencies of all exit edges
2371 // except the one from the chain tail.
2372 for (auto &ExitWithFreq : ExitsWithFreq)
2373 if (TailBB != ExitWithFreq.first)
2374 Cost += ExitWithFreq.second;
2376 // The cost of breaking the once fall-through edge from the tail to the top
2377 // of the loop chain. Here we need to consider three cases:
2378 // 1. If the tail node has only one successor, then we will get an
2379 // additional jmp instruction. So the cost here is (MisfetchCost +
2380 // JumpInstCost) * tail node frequency.
2381 // 2. If the tail node has two successors, then we may still get an
2382 // additional jmp instruction if the layout successor after the loop
2383 // chain is not its CFG successor. Note that the more frequently executed
2384 // jmp instruction will be put ahead of the other one. Assume the
2385 // frequency of those two branches are x and y, where x is the frequency
2386 // of the edge to the chain head, then the cost will be
2387 // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency.
2388 // 3. If the tail node has more than two successors (this rarely happens),
2389 // we won't consider any additional cost.
2390 if (TailBB->isSuccessor(*Iter)) {
2391 auto TailBBFreq = MBFI->getBlockFreq(TailBB);
2392 if (TailBB->succ_size() == 1)
2393 Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(),
2394 MisfetchCost + JumpInstCost);
2395 else if (TailBB->succ_size() == 2) {
2396 auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter);
2397 auto TailToHeadFreq = TailBBFreq * TailToHeadProb;
2398 auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2)
2399 ? TailBBFreq * TailToHeadProb.getCompl()
2400 : TailToHeadFreq;
2401 Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) +
2402 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost);
2406 LLVM_DEBUG(dbgs() << "The cost of loop rotation by making "
2407 << getBlockName(*Iter)
2408 << " to the top: " << Cost.getFrequency() << "\n");
2410 if (Cost < SmallestRotationCost) {
2411 SmallestRotationCost = Cost;
2412 RotationPos = Iter;
2416 if (RotationPos != LoopChain.end()) {
2417 LLVM_DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos)
2418 << " to the top\n");
2419 std::rotate(LoopChain.begin(), RotationPos, LoopChain.end());
2423 /// Collect blocks in the given loop that are to be placed.
2425 /// When profile data is available, exclude cold blocks from the returned set;
2426 /// otherwise, collect all blocks in the loop.
2427 MachineBlockPlacement::BlockFilterSet
2428 MachineBlockPlacement::collectLoopBlockSet(const MachineLoop &L) {
2429 BlockFilterSet LoopBlockSet;
2431 // Filter cold blocks off from LoopBlockSet when profile data is available.
2432 // Collect the sum of frequencies of incoming edges to the loop header from
2433 // outside. If we treat the loop as a super block, this is the frequency of
2434 // the loop. Then for each block in the loop, we calculate the ratio between
2435 // its frequency and the frequency of the loop block. When it is too small,
2436 // don't add it to the loop chain. If there are outer loops, then this block
2437 // will be merged into the first outer loop chain for which this block is not
2438 // cold anymore. This needs precise profile data and we only do this when
2439 // profile data is available.
2440 if (F->getFunction().hasProfileData() || ForceLoopColdBlock) {
2441 BlockFrequency LoopFreq(0);
2442 for (auto LoopPred : L.getHeader()->predecessors())
2443 if (!L.contains(LoopPred))
2444 LoopFreq += MBFI->getBlockFreq(LoopPred) *
2445 MBPI->getEdgeProbability(LoopPred, L.getHeader());
2447 for (MachineBasicBlock *LoopBB : L.getBlocks()) {
2448 auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency();
2449 if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio)
2450 continue;
2451 LoopBlockSet.insert(LoopBB);
2453 } else
2454 LoopBlockSet.insert(L.block_begin(), L.block_end());
2456 return LoopBlockSet;
2459 /// Forms basic block chains from the natural loop structures.
2461 /// These chains are designed to preserve the existing *structure* of the code
2462 /// as much as possible. We can then stitch the chains together in a way which
2463 /// both preserves the topological structure and minimizes taken conditional
2464 /// branches.
2465 void MachineBlockPlacement::buildLoopChains(const MachineLoop &L) {
2466 // First recurse through any nested loops, building chains for those inner
2467 // loops.
2468 for (const MachineLoop *InnerLoop : L)
2469 buildLoopChains(*InnerLoop);
2471 assert(BlockWorkList.empty() &&
2472 "BlockWorkList not empty when starting to build loop chains.");
2473 assert(EHPadWorkList.empty() &&
2474 "EHPadWorkList not empty when starting to build loop chains.");
2475 BlockFilterSet LoopBlockSet = collectLoopBlockSet(L);
2477 // Check if we have profile data for this function. If yes, we will rotate
2478 // this loop by modeling costs more precisely which requires the profile data
2479 // for better layout.
2480 bool RotateLoopWithProfile =
2481 ForcePreciseRotationCost ||
2482 (PreciseRotationCost && F->getFunction().hasProfileData());
2484 // First check to see if there is an obviously preferable top block for the
2485 // loop. This will default to the header, but may end up as one of the
2486 // predecessors to the header if there is one which will result in strictly
2487 // fewer branches in the loop body.
2488 MachineBasicBlock *LoopTop = findBestLoopTop(L, LoopBlockSet);
2490 // If we selected just the header for the loop top, look for a potentially
2491 // profitable exit block in the event that rotating the loop can eliminate
2492 // branches by placing an exit edge at the bottom.
2494 // Loops are processed innermost to uttermost, make sure we clear
2495 // PreferredLoopExit before processing a new loop.
2496 PreferredLoopExit = nullptr;
2497 BlockFrequency ExitFreq;
2498 if (!RotateLoopWithProfile && LoopTop == L.getHeader())
2499 PreferredLoopExit = findBestLoopExit(L, LoopBlockSet, ExitFreq);
2501 BlockChain &LoopChain = *BlockToChain[LoopTop];
2503 // FIXME: This is a really lame way of walking the chains in the loop: we
2504 // walk the blocks, and use a set to prevent visiting a particular chain
2505 // twice.
2506 SmallPtrSet<BlockChain *, 4> UpdatedPreds;
2507 assert(LoopChain.UnscheduledPredecessors == 0 &&
2508 "LoopChain should not have unscheduled predecessors.");
2509 UpdatedPreds.insert(&LoopChain);
2511 for (const MachineBasicBlock *LoopBB : LoopBlockSet)
2512 fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet);
2514 buildChain(LoopTop, LoopChain, &LoopBlockSet);
2516 if (RotateLoopWithProfile)
2517 rotateLoopWithProfile(LoopChain, L, LoopBlockSet);
2518 else
2519 rotateLoop(LoopChain, PreferredLoopExit, ExitFreq, LoopBlockSet);
2521 LLVM_DEBUG({
2522 // Crash at the end so we get all of the debugging output first.
2523 bool BadLoop = false;
2524 if (LoopChain.UnscheduledPredecessors) {
2525 BadLoop = true;
2526 dbgs() << "Loop chain contains a block without its preds placed!\n"
2527 << " Loop header: " << getBlockName(*L.block_begin()) << "\n"
2528 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
2530 for (MachineBasicBlock *ChainBB : LoopChain) {
2531 dbgs() << " ... " << getBlockName(ChainBB) << "\n";
2532 if (!LoopBlockSet.remove(ChainBB)) {
2533 // We don't mark the loop as bad here because there are real situations
2534 // where this can occur. For example, with an unanalyzable fallthrough
2535 // from a loop block to a non-loop block or vice versa.
2536 dbgs() << "Loop chain contains a block not contained by the loop!\n"
2537 << " Loop header: " << getBlockName(*L.block_begin()) << "\n"
2538 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
2539 << " Bad block: " << getBlockName(ChainBB) << "\n";
2543 if (!LoopBlockSet.empty()) {
2544 BadLoop = true;
2545 for (const MachineBasicBlock *LoopBB : LoopBlockSet)
2546 dbgs() << "Loop contains blocks never placed into a chain!\n"
2547 << " Loop header: " << getBlockName(*L.block_begin()) << "\n"
2548 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
2549 << " Bad block: " << getBlockName(LoopBB) << "\n";
2551 assert(!BadLoop && "Detected problems with the placement of this loop.");
2554 BlockWorkList.clear();
2555 EHPadWorkList.clear();
2558 void MachineBlockPlacement::buildCFGChains() {
2559 // Ensure that every BB in the function has an associated chain to simplify
2560 // the assumptions of the remaining algorithm.
2561 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
2562 for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE;
2563 ++FI) {
2564 MachineBasicBlock *BB = &*FI;
2565 BlockChain *Chain =
2566 new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
2567 // Also, merge any blocks which we cannot reason about and must preserve
2568 // the exact fallthrough behavior for.
2569 while (true) {
2570 Cond.clear();
2571 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
2572 if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough())
2573 break;
2575 MachineFunction::iterator NextFI = std::next(FI);
2576 MachineBasicBlock *NextBB = &*NextFI;
2577 // Ensure that the layout successor is a viable block, as we know that
2578 // fallthrough is a possibility.
2579 assert(NextFI != FE && "Can't fallthrough past the last block.");
2580 LLVM_DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
2581 << getBlockName(BB) << " -> " << getBlockName(NextBB)
2582 << "\n");
2583 Chain->merge(NextBB, nullptr);
2584 #ifndef NDEBUG
2585 BlocksWithUnanalyzableExits.insert(&*BB);
2586 #endif
2587 FI = NextFI;
2588 BB = NextBB;
2592 // Build any loop-based chains.
2593 PreferredLoopExit = nullptr;
2594 for (MachineLoop *L : *MLI)
2595 buildLoopChains(*L);
2597 assert(BlockWorkList.empty() &&
2598 "BlockWorkList should be empty before building final chain.");
2599 assert(EHPadWorkList.empty() &&
2600 "EHPadWorkList should be empty before building final chain.");
2602 SmallPtrSet<BlockChain *, 4> UpdatedPreds;
2603 for (MachineBasicBlock &MBB : *F)
2604 fillWorkLists(&MBB, UpdatedPreds);
2606 BlockChain &FunctionChain = *BlockToChain[&F->front()];
2607 buildChain(&F->front(), FunctionChain);
2609 #ifndef NDEBUG
2610 using FunctionBlockSetType = SmallPtrSet<MachineBasicBlock *, 16>;
2611 #endif
2612 LLVM_DEBUG({
2613 // Crash at the end so we get all of the debugging output first.
2614 bool BadFunc = false;
2615 FunctionBlockSetType FunctionBlockSet;
2616 for (MachineBasicBlock &MBB : *F)
2617 FunctionBlockSet.insert(&MBB);
2619 for (MachineBasicBlock *ChainBB : FunctionChain)
2620 if (!FunctionBlockSet.erase(ChainBB)) {
2621 BadFunc = true;
2622 dbgs() << "Function chain contains a block not in the function!\n"
2623 << " Bad block: " << getBlockName(ChainBB) << "\n";
2626 if (!FunctionBlockSet.empty()) {
2627 BadFunc = true;
2628 for (MachineBasicBlock *RemainingBB : FunctionBlockSet)
2629 dbgs() << "Function contains blocks never placed into a chain!\n"
2630 << " Bad block: " << getBlockName(RemainingBB) << "\n";
2632 assert(!BadFunc && "Detected problems with the block placement.");
2635 // Splice the blocks into place.
2636 MachineFunction::iterator InsertPos = F->begin();
2637 LLVM_DEBUG(dbgs() << "[MBP] Function: " << F->getName() << "\n");
2638 for (MachineBasicBlock *ChainBB : FunctionChain) {
2639 LLVM_DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain "
2640 : " ... ")
2641 << getBlockName(ChainBB) << "\n");
2642 if (InsertPos != MachineFunction::iterator(ChainBB))
2643 F->splice(InsertPos, ChainBB);
2644 else
2645 ++InsertPos;
2647 // Update the terminator of the previous block.
2648 if (ChainBB == *FunctionChain.begin())
2649 continue;
2650 MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB));
2652 // FIXME: It would be awesome of updateTerminator would just return rather
2653 // than assert when the branch cannot be analyzed in order to remove this
2654 // boiler plate.
2655 Cond.clear();
2656 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
2658 #ifndef NDEBUG
2659 if (!BlocksWithUnanalyzableExits.count(PrevBB)) {
2660 // Given the exact block placement we chose, we may actually not _need_ to
2661 // be able to edit PrevBB's terminator sequence, but not being _able_ to
2662 // do that at this point is a bug.
2663 assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) ||
2664 !PrevBB->canFallThrough()) &&
2665 "Unexpected block with un-analyzable fallthrough!");
2666 Cond.clear();
2667 TBB = FBB = nullptr;
2669 #endif
2671 // The "PrevBB" is not yet updated to reflect current code layout, so,
2672 // o. it may fall-through to a block without explicit "goto" instruction
2673 // before layout, and no longer fall-through it after layout; or
2674 // o. just opposite.
2676 // analyzeBranch() may return erroneous value for FBB when these two
2677 // situations take place. For the first scenario FBB is mistakenly set NULL;
2678 // for the 2nd scenario, the FBB, which is expected to be NULL, is
2679 // mistakenly pointing to "*BI".
2680 // Thus, if the future change needs to use FBB before the layout is set, it
2681 // has to correct FBB first by using the code similar to the following:
2683 // if (!Cond.empty() && (!FBB || FBB == ChainBB)) {
2684 // PrevBB->updateTerminator();
2685 // Cond.clear();
2686 // TBB = FBB = nullptr;
2687 // if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) {
2688 // // FIXME: This should never take place.
2689 // TBB = FBB = nullptr;
2690 // }
2691 // }
2692 if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond))
2693 PrevBB->updateTerminator();
2696 // Fixup the last block.
2697 Cond.clear();
2698 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
2699 if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond))
2700 F->back().updateTerminator();
2702 BlockWorkList.clear();
2703 EHPadWorkList.clear();
2706 void MachineBlockPlacement::optimizeBranches() {
2707 BlockChain &FunctionChain = *BlockToChain[&F->front()];
2708 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
2710 // Now that all the basic blocks in the chain have the proper layout,
2711 // make a final call to AnalyzeBranch with AllowModify set.
2712 // Indeed, the target may be able to optimize the branches in a way we
2713 // cannot because all branches may not be analyzable.
2714 // E.g., the target may be able to remove an unconditional branch to
2715 // a fallthrough when it occurs after predicated terminators.
2716 SmallVector<MachineBasicBlock*, 4> EmptyBB;
2717 for (MachineBasicBlock *ChainBB : FunctionChain) {
2718 Cond.clear();
2719 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
2720 if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) {
2721 // If PrevBB has a two-way branch, try to re-order the branches
2722 // such that we branch to the successor with higher probability first.
2723 if (TBB && !Cond.empty() && FBB &&
2724 MBPI->getEdgeProbability(ChainBB, FBB) >
2725 MBPI->getEdgeProbability(ChainBB, TBB) &&
2726 !TII->reverseBranchCondition(Cond)) {
2727 LLVM_DEBUG(dbgs() << "Reverse order of the two branches: "
2728 << getBlockName(ChainBB) << "\n");
2729 LLVM_DEBUG(dbgs() << " Edge probability: "
2730 << MBPI->getEdgeProbability(ChainBB, FBB) << " vs "
2731 << MBPI->getEdgeProbability(ChainBB, TBB) << "\n");
2732 DebugLoc dl; // FIXME: this is nowhere
2733 TII->removeBranch(*ChainBB);
2734 TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl);
2735 ChainBB->updateTerminator();
2736 } else if (Cond.empty() && TBB && ChainBB != TBB && !TBB->empty() &&
2737 !TBB->canFallThrough()) {
2738 // When ChainBB is unconditional branch to the TBB, and TBB has no
2739 // fallthrough predecessor and fallthrough successor, try to merge
2740 // ChainBB and TBB. This is legal under the one of following conditions:
2741 // 1. ChainBB is empty except for an unconditional branch.
2742 // 2. TBB has only one predecessor.
2743 MachineFunction::iterator I(TBB);
2744 if (((TBB == &*F->begin()) || !std::prev(I)->canFallThrough()) &&
2745 (TailDup.isSimpleBB(ChainBB) || (TBB->pred_size() == 1))) {
2746 TII->removeBranch(*ChainBB);
2747 ChainBB->removeSuccessor(TBB);
2749 // Update the CFG.
2750 while (!TBB->pred_empty()) {
2751 MachineBasicBlock *Pred = *(TBB->pred_end() - 1);
2752 Pred->ReplaceUsesOfBlockWith(TBB, ChainBB);
2755 while (!TBB->succ_empty()) {
2756 MachineBasicBlock *Succ = *(TBB->succ_end() - 1);
2757 ChainBB->addSuccessor(Succ, MBPI->getEdgeProbability(TBB, Succ));
2758 TBB->removeSuccessor(Succ);
2761 // Move all the instructions of TBB to ChainBB.
2762 ChainBB->splice(ChainBB->end(), TBB, TBB->begin(), TBB->end());
2763 EmptyBB.push_back(TBB);
2765 // If TBB was the target of a jump table, update jump tables to go to
2766 // the ChainBB instead.
2767 if (MachineJumpTableInfo *MJTI = F->getJumpTableInfo())
2768 MJTI->ReplaceMBBInJumpTables(TBB, ChainBB);
2774 for (auto BB: EmptyBB) {
2775 MLI->removeBlock(BB);
2776 FunctionChain.remove(BB);
2777 BlockToChain.erase(BB);
2778 F->erase(BB);
2782 void MachineBlockPlacement::alignBlocks() {
2783 // Walk through the backedges of the function now that we have fully laid out
2784 // the basic blocks and align the destination of each backedge. We don't rely
2785 // exclusively on the loop info here so that we can align backedges in
2786 // unnatural CFGs and backedges that were introduced purely because of the
2787 // loop rotations done during this layout pass.
2788 if (F->getFunction().hasMinSize() ||
2789 (F->getFunction().hasOptSize() && !TLI->alignLoopsWithOptSize()))
2790 return;
2791 BlockChain &FunctionChain = *BlockToChain[&F->front()];
2792 if (FunctionChain.begin() == FunctionChain.end())
2793 return; // Empty chain.
2795 const BranchProbability ColdProb(1, 5); // 20%
2796 BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front());
2797 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb;
2798 for (MachineBasicBlock *ChainBB : FunctionChain) {
2799 if (ChainBB == *FunctionChain.begin())
2800 continue;
2802 // Don't align non-looping basic blocks. These are unlikely to execute
2803 // enough times to matter in practice. Note that we'll still handle
2804 // unnatural CFGs inside of a natural outer loop (the common case) and
2805 // rotated loops.
2806 MachineLoop *L = MLI->getLoopFor(ChainBB);
2807 if (!L)
2808 continue;
2810 const llvm::Align Align = TLI->getPrefLoopAlignment(L);
2811 if (Align == 1)
2812 continue; // Don't care about loop alignment.
2814 // If the block is cold relative to the function entry don't waste space
2815 // aligning it.
2816 BlockFrequency Freq = MBFI->getBlockFreq(ChainBB);
2817 if (Freq < WeightedEntryFreq)
2818 continue;
2820 // If the block is cold relative to its loop header, don't align it
2821 // regardless of what edges into the block exist.
2822 MachineBasicBlock *LoopHeader = L->getHeader();
2823 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader);
2824 if (Freq < (LoopHeaderFreq * ColdProb))
2825 continue;
2827 // Check for the existence of a non-layout predecessor which would benefit
2828 // from aligning this block.
2829 MachineBasicBlock *LayoutPred =
2830 &*std::prev(MachineFunction::iterator(ChainBB));
2832 // Force alignment if all the predecessors are jumps. We already checked
2833 // that the block isn't cold above.
2834 if (!LayoutPred->isSuccessor(ChainBB)) {
2835 ChainBB->setLogAlignment(Log2(Align));
2836 continue;
2839 // Align this block if the layout predecessor's edge into this block is
2840 // cold relative to the block. When this is true, other predecessors make up
2841 // all of the hot entries into the block and thus alignment is likely to be
2842 // important.
2843 BranchProbability LayoutProb =
2844 MBPI->getEdgeProbability(LayoutPred, ChainBB);
2845 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb;
2846 if (LayoutEdgeFreq <= (Freq * ColdProb))
2847 ChainBB->setLogAlignment(Log2(Align));
2851 /// Tail duplicate \p BB into (some) predecessors if profitable, repeating if
2852 /// it was duplicated into its chain predecessor and removed.
2853 /// \p BB - Basic block that may be duplicated.
2855 /// \p LPred - Chosen layout predecessor of \p BB.
2856 /// Updated to be the chain end if LPred is removed.
2857 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
2858 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
2859 /// Used to identify which blocks to update predecessor
2860 /// counts.
2861 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
2862 /// chosen in the given order due to unnatural CFG
2863 /// only needed if \p BB is removed and
2864 /// \p PrevUnplacedBlockIt pointed to \p BB.
2865 /// @return true if \p BB was removed.
2866 bool MachineBlockPlacement::repeatedlyTailDuplicateBlock(
2867 MachineBasicBlock *BB, MachineBasicBlock *&LPred,
2868 const MachineBasicBlock *LoopHeaderBB,
2869 BlockChain &Chain, BlockFilterSet *BlockFilter,
2870 MachineFunction::iterator &PrevUnplacedBlockIt) {
2871 bool Removed, DuplicatedToLPred;
2872 bool DuplicatedToOriginalLPred;
2873 Removed = maybeTailDuplicateBlock(BB, LPred, Chain, BlockFilter,
2874 PrevUnplacedBlockIt,
2875 DuplicatedToLPred);
2876 if (!Removed)
2877 return false;
2878 DuplicatedToOriginalLPred = DuplicatedToLPred;
2879 // Iteratively try to duplicate again. It can happen that a block that is
2880 // duplicated into is still small enough to be duplicated again.
2881 // No need to call markBlockSuccessors in this case, as the blocks being
2882 // duplicated from here on are already scheduled.
2883 // Note that DuplicatedToLPred always implies Removed.
2884 while (DuplicatedToLPred) {
2885 assert(Removed && "Block must have been removed to be duplicated into its "
2886 "layout predecessor.");
2887 MachineBasicBlock *DupBB, *DupPred;
2888 // The removal callback causes Chain.end() to be updated when a block is
2889 // removed. On the first pass through the loop, the chain end should be the
2890 // same as it was on function entry. On subsequent passes, because we are
2891 // duplicating the block at the end of the chain, if it is removed the
2892 // chain will have shrunk by one block.
2893 BlockChain::iterator ChainEnd = Chain.end();
2894 DupBB = *(--ChainEnd);
2895 // Now try to duplicate again.
2896 if (ChainEnd == Chain.begin())
2897 break;
2898 DupPred = *std::prev(ChainEnd);
2899 Removed = maybeTailDuplicateBlock(DupBB, DupPred, Chain, BlockFilter,
2900 PrevUnplacedBlockIt,
2901 DuplicatedToLPred);
2903 // If BB was duplicated into LPred, it is now scheduled. But because it was
2904 // removed, markChainSuccessors won't be called for its chain. Instead we
2905 // call markBlockSuccessors for LPred to achieve the same effect. This must go
2906 // at the end because repeating the tail duplication can increase the number
2907 // of unscheduled predecessors.
2908 LPred = *std::prev(Chain.end());
2909 if (DuplicatedToOriginalLPred)
2910 markBlockSuccessors(Chain, LPred, LoopHeaderBB, BlockFilter);
2911 return true;
2914 /// Tail duplicate \p BB into (some) predecessors if profitable.
2915 /// \p BB - Basic block that may be duplicated
2916 /// \p LPred - Chosen layout predecessor of \p BB
2917 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
2918 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
2919 /// Used to identify which blocks to update predecessor
2920 /// counts.
2921 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
2922 /// chosen in the given order due to unnatural CFG
2923 /// only needed if \p BB is removed and
2924 /// \p PrevUnplacedBlockIt pointed to \p BB.
2925 /// \p DuplicatedToLPred - True if the block was duplicated into LPred. Will
2926 /// only be true if the block was removed.
2927 /// \return - True if the block was duplicated into all preds and removed.
2928 bool MachineBlockPlacement::maybeTailDuplicateBlock(
2929 MachineBasicBlock *BB, MachineBasicBlock *LPred,
2930 BlockChain &Chain, BlockFilterSet *BlockFilter,
2931 MachineFunction::iterator &PrevUnplacedBlockIt,
2932 bool &DuplicatedToLPred) {
2933 DuplicatedToLPred = false;
2934 if (!shouldTailDuplicate(BB))
2935 return false;
2937 LLVM_DEBUG(dbgs() << "Redoing tail duplication for Succ#" << BB->getNumber()
2938 << "\n");
2940 // This has to be a callback because none of it can be done after
2941 // BB is deleted.
2942 bool Removed = false;
2943 auto RemovalCallback =
2944 [&](MachineBasicBlock *RemBB) {
2945 // Signal to outer function
2946 Removed = true;
2948 // Conservative default.
2949 bool InWorkList = true;
2950 // Remove from the Chain and Chain Map
2951 if (BlockToChain.count(RemBB)) {
2952 BlockChain *Chain = BlockToChain[RemBB];
2953 InWorkList = Chain->UnscheduledPredecessors == 0;
2954 Chain->remove(RemBB);
2955 BlockToChain.erase(RemBB);
2958 // Handle the unplaced block iterator
2959 if (&(*PrevUnplacedBlockIt) == RemBB) {
2960 PrevUnplacedBlockIt++;
2963 // Handle the Work Lists
2964 if (InWorkList) {
2965 SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList;
2966 if (RemBB->isEHPad())
2967 RemoveList = EHPadWorkList;
2968 RemoveList.erase(
2969 llvm::remove_if(RemoveList,
2970 [RemBB](MachineBasicBlock *BB) {
2971 return BB == RemBB;
2973 RemoveList.end());
2976 // Handle the filter set
2977 if (BlockFilter) {
2978 BlockFilter->remove(RemBB);
2981 // Remove the block from loop info.
2982 MLI->removeBlock(RemBB);
2983 if (RemBB == PreferredLoopExit)
2984 PreferredLoopExit = nullptr;
2986 LLVM_DEBUG(dbgs() << "TailDuplicator deleted block: "
2987 << getBlockName(RemBB) << "\n");
2989 auto RemovalCallbackRef =
2990 function_ref<void(MachineBasicBlock*)>(RemovalCallback);
2992 SmallVector<MachineBasicBlock *, 8> DuplicatedPreds;
2993 bool IsSimple = TailDup.isSimpleBB(BB);
2994 TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred,
2995 &DuplicatedPreds, &RemovalCallbackRef);
2997 // Update UnscheduledPredecessors to reflect tail-duplication.
2998 DuplicatedToLPred = false;
2999 for (MachineBasicBlock *Pred : DuplicatedPreds) {
3000 // We're only looking for unscheduled predecessors that match the filter.
3001 BlockChain* PredChain = BlockToChain[Pred];
3002 if (Pred == LPred)
3003 DuplicatedToLPred = true;
3004 if (Pred == LPred || (BlockFilter && !BlockFilter->count(Pred))
3005 || PredChain == &Chain)
3006 continue;
3007 for (MachineBasicBlock *NewSucc : Pred->successors()) {
3008 if (BlockFilter && !BlockFilter->count(NewSucc))
3009 continue;
3010 BlockChain *NewChain = BlockToChain[NewSucc];
3011 if (NewChain != &Chain && NewChain != PredChain)
3012 NewChain->UnscheduledPredecessors++;
3015 return Removed;
3018 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) {
3019 if (skipFunction(MF.getFunction()))
3020 return false;
3022 // Check for single-block functions and skip them.
3023 if (std::next(MF.begin()) == MF.end())
3024 return false;
3026 F = &MF;
3027 MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
3028 MBFI = std::make_unique<BranchFolder::MBFIWrapper>(
3029 getAnalysis<MachineBlockFrequencyInfo>());
3030 MLI = &getAnalysis<MachineLoopInfo>();
3031 TII = MF.getSubtarget().getInstrInfo();
3032 TLI = MF.getSubtarget().getTargetLowering();
3033 MPDT = nullptr;
3035 // Initialize PreferredLoopExit to nullptr here since it may never be set if
3036 // there are no MachineLoops.
3037 PreferredLoopExit = nullptr;
3039 assert(BlockToChain.empty() &&
3040 "BlockToChain map should be empty before starting placement.");
3041 assert(ComputedEdges.empty() &&
3042 "Computed Edge map should be empty before starting placement.");
3044 unsigned TailDupSize = TailDupPlacementThreshold;
3045 // If only the aggressive threshold is explicitly set, use it.
3046 if (TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0 &&
3047 TailDupPlacementThreshold.getNumOccurrences() == 0)
3048 TailDupSize = TailDupPlacementAggressiveThreshold;
3050 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
3051 // For aggressive optimization, we can adjust some thresholds to be less
3052 // conservative.
3053 if (PassConfig->getOptLevel() >= CodeGenOpt::Aggressive) {
3054 // At O3 we should be more willing to copy blocks for tail duplication. This
3055 // increases size pressure, so we only do it at O3
3056 // Do this unless only the regular threshold is explicitly set.
3057 if (TailDupPlacementThreshold.getNumOccurrences() == 0 ||
3058 TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0)
3059 TailDupSize = TailDupPlacementAggressiveThreshold;
3062 if (allowTailDupPlacement()) {
3063 MPDT = &getAnalysis<MachinePostDominatorTree>();
3064 if (MF.getFunction().hasOptSize())
3065 TailDupSize = 1;
3066 bool PreRegAlloc = false;
3067 TailDup.initMF(MF, PreRegAlloc, MBPI, /* LayoutMode */ true, TailDupSize);
3068 precomputeTriangleChains();
3071 buildCFGChains();
3073 // Changing the layout can create new tail merging opportunities.
3074 // TailMerge can create jump into if branches that make CFG irreducible for
3075 // HW that requires structured CFG.
3076 bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() &&
3077 PassConfig->getEnableTailMerge() &&
3078 BranchFoldPlacement;
3079 // No tail merging opportunities if the block number is less than four.
3080 if (MF.size() > 3 && EnableTailMerge) {
3081 unsigned TailMergeSize = TailDupSize + 1;
3082 BranchFolder BF(/*EnableTailMerge=*/true, /*CommonHoist=*/false, *MBFI,
3083 *MBPI, TailMergeSize);
3085 if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(),
3086 getAnalysisIfAvailable<MachineModuleInfo>(), MLI,
3087 /*AfterPlacement=*/true)) {
3088 // Redo the layout if tail merging creates/removes/moves blocks.
3089 BlockToChain.clear();
3090 ComputedEdges.clear();
3091 // Must redo the post-dominator tree if blocks were changed.
3092 if (MPDT)
3093 MPDT->runOnMachineFunction(MF);
3094 ChainAllocator.DestroyAll();
3095 buildCFGChains();
3099 // optimizeBranches() may change the blocks, but we haven't updated the
3100 // post-dominator tree. Because the post-dominator tree won't be used after
3101 // this function and this pass don't preserve the post-dominator tree.
3102 optimizeBranches();
3103 alignBlocks();
3105 BlockToChain.clear();
3106 ComputedEdges.clear();
3107 ChainAllocator.DestroyAll();
3109 if (AlignAllBlock)
3110 // Align all of the blocks in the function to a specific alignment.
3111 for (MachineBasicBlock &MBB : MF)
3112 MBB.setLogAlignment(AlignAllBlock);
3113 else if (AlignAllNonFallThruBlocks) {
3114 // Align all of the blocks that have no fall-through predecessors to a
3115 // specific alignment.
3116 for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) {
3117 auto LayoutPred = std::prev(MBI);
3118 if (!LayoutPred->isSuccessor(&*MBI))
3119 MBI->setLogAlignment(AlignAllNonFallThruBlocks);
3122 if (ViewBlockLayoutWithBFI != GVDT_None &&
3123 (ViewBlockFreqFuncName.empty() ||
3124 F->getFunction().getName().equals(ViewBlockFreqFuncName))) {
3125 MBFI->view("MBP." + MF.getName(), false);
3129 // We always return true as we have no way to track whether the final order
3130 // differs from the original order.
3131 return true;
3134 namespace {
3136 /// A pass to compute block placement statistics.
3138 /// A separate pass to compute interesting statistics for evaluating block
3139 /// placement. This is separate from the actual placement pass so that they can
3140 /// be computed in the absence of any placement transformations or when using
3141 /// alternative placement strategies.
3142 class MachineBlockPlacementStats : public MachineFunctionPass {
3143 /// A handle to the branch probability pass.
3144 const MachineBranchProbabilityInfo *MBPI;
3146 /// A handle to the function-wide block frequency pass.
3147 const MachineBlockFrequencyInfo *MBFI;
3149 public:
3150 static char ID; // Pass identification, replacement for typeid
3152 MachineBlockPlacementStats() : MachineFunctionPass(ID) {
3153 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
3156 bool runOnMachineFunction(MachineFunction &F) override;
3158 void getAnalysisUsage(AnalysisUsage &AU) const override {
3159 AU.addRequired<MachineBranchProbabilityInfo>();
3160 AU.addRequired<MachineBlockFrequencyInfo>();
3161 AU.setPreservesAll();
3162 MachineFunctionPass::getAnalysisUsage(AU);
3166 } // end anonymous namespace
3168 char MachineBlockPlacementStats::ID = 0;
3170 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID;
3172 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
3173 "Basic Block Placement Stats", false, false)
3174 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
3175 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
3176 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
3177 "Basic Block Placement Stats", false, false)
3179 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
3180 // Check for single-block functions and skip them.
3181 if (std::next(F.begin()) == F.end())
3182 return false;
3184 MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
3185 MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
3187 for (MachineBasicBlock &MBB : F) {
3188 BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB);
3189 Statistic &NumBranches =
3190 (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches;
3191 Statistic &BranchTakenFreq =
3192 (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq;
3193 for (MachineBasicBlock *Succ : MBB.successors()) {
3194 // Skip if this successor is a fallthrough.
3195 if (MBB.isLayoutSuccessor(Succ))
3196 continue;
3198 BlockFrequency EdgeFreq =
3199 BlockFreq * MBPI->getEdgeProbability(&MBB, Succ);
3200 ++NumBranches;
3201 BranchTakenFreq += EdgeFreq.getFrequency();
3205 return false;