1 //===-- ConstantRange.cpp - ConstantRange implementation ------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // Represent a range of possible values that may occur when the program is run
11 // for an integral value. This keeps track of a lower and upper bound for the
12 // constant, which MAY wrap around the end of the numeric range. To do this, it
13 // keeps track of a [lower, upper) bound, which specifies an interval just like
14 // STL iterators. When used with boolean values, the following are important
15 // ranges (other integral ranges use min/max values for special range values):
17 // [F, F) = {} = Empty set
20 // [T, T) = {F, T} = Full set
22 //===----------------------------------------------------------------------===//
24 #include "llvm/Support/ConstantRange.h"
25 #include "llvm/Constants.h"
26 #include "llvm/Instruction.h"
27 #include "llvm/Type.h"
32 static ConstantIntegral
*Next(ConstantIntegral
*CI
) {
33 if (CI
->getType() == Type::BoolTy
)
34 return CI
== ConstantBool::True
? ConstantBool::False
: ConstantBool::True
;
36 Constant
*Result
= ConstantExpr::getAdd(CI
,
37 ConstantInt::get(CI
->getType(), 1));
38 return cast
<ConstantIntegral
>(Result
);
41 static bool LT(ConstantIntegral
*A
, ConstantIntegral
*B
) {
42 Constant
*C
= ConstantExpr::getSetLT(A
, B
);
43 assert(isa
<ConstantBool
>(C
) && "Constant folding of integrals not impl??");
44 return cast
<ConstantBool
>(C
)->getValue();
47 static bool LTE(ConstantIntegral
*A
, ConstantIntegral
*B
) {
48 Constant
*C
= ConstantExpr::getSetLE(A
, B
);
49 assert(isa
<ConstantBool
>(C
) && "Constant folding of integrals not impl??");
50 return cast
<ConstantBool
>(C
)->getValue();
53 static bool GT(ConstantIntegral
*A
, ConstantIntegral
*B
) { return LT(B
, A
); }
55 static ConstantIntegral
*Min(ConstantIntegral
*A
, ConstantIntegral
*B
) {
56 return LT(A
, B
) ? A
: B
;
58 static ConstantIntegral
*Max(ConstantIntegral
*A
, ConstantIntegral
*B
) {
59 return GT(A
, B
) ? A
: B
;
62 /// Initialize a full (the default) or empty set for the specified type.
64 ConstantRange::ConstantRange(const Type
*Ty
, bool Full
) {
65 assert(Ty
->isIntegral() &&
66 "Cannot make constant range of non-integral type!");
68 Lower
= Upper
= ConstantIntegral::getMaxValue(Ty
);
70 Lower
= Upper
= ConstantIntegral::getMinValue(Ty
);
73 /// Initialize a range to hold the single specified value.
75 ConstantRange::ConstantRange(Constant
*V
)
76 : Lower(cast
<ConstantIntegral
>(V
)), Upper(Next(cast
<ConstantIntegral
>(V
))) {
79 /// Initialize a range of values explicitly... this will assert out if
80 /// Lower==Upper and Lower != Min or Max for its type (or if the two constants
81 /// have different types)
83 ConstantRange::ConstantRange(Constant
*L
, Constant
*U
)
84 : Lower(cast
<ConstantIntegral
>(L
)), Upper(cast
<ConstantIntegral
>(U
)) {
85 assert(Lower
->getType() == Upper
->getType() &&
86 "Incompatible types for ConstantRange!");
88 // Make sure that if L & U are equal that they are either Min or Max...
89 assert((L
!= U
|| (L
== ConstantIntegral::getMaxValue(L
->getType()) ||
90 L
== ConstantIntegral::getMinValue(L
->getType()))) &&
91 "Lower == Upper, but they aren't min or max for type!");
94 /// Initialize a set of values that all satisfy the condition with C.
96 ConstantRange::ConstantRange(unsigned SetCCOpcode
, ConstantIntegral
*C
) {
97 switch (SetCCOpcode
) {
98 default: assert(0 && "Invalid SetCC opcode to ConstantRange ctor!");
99 case Instruction::SetEQ
: Lower
= C
; Upper
= Next(C
); return;
100 case Instruction::SetNE
: Upper
= C
; Lower
= Next(C
); return;
101 case Instruction::SetLT
:
102 Lower
= ConstantIntegral::getMinValue(C
->getType());
105 case Instruction::SetGT
:
107 Upper
= ConstantIntegral::getMinValue(C
->getType()); // Min = Next(Max)
109 case Instruction::SetLE
:
110 Lower
= ConstantIntegral::getMinValue(C
->getType());
113 case Instruction::SetGE
:
115 Upper
= ConstantIntegral::getMinValue(C
->getType()); // Min = Next(Max)
120 /// getType - Return the LLVM data type of this range.
122 const Type
*ConstantRange::getType() const { return Lower
->getType(); }
124 /// isFullSet - Return true if this set contains all of the elements possible
125 /// for this data-type
126 bool ConstantRange::isFullSet() const {
127 return Lower
== Upper
&& Lower
== ConstantIntegral::getMaxValue(getType());
130 /// isEmptySet - Return true if this set contains no members.
132 bool ConstantRange::isEmptySet() const {
133 return Lower
== Upper
&& Lower
== ConstantIntegral::getMinValue(getType());
136 /// isWrappedSet - Return true if this set wraps around the top of the range,
137 /// for example: [100, 8)
139 bool ConstantRange::isWrappedSet() const {
140 return GT(Lower
, Upper
);
144 /// getSingleElement - If this set contains a single element, return it,
145 /// otherwise return null.
146 ConstantIntegral
*ConstantRange::getSingleElement() const {
147 if (Upper
== Next(Lower
)) // Is it a single element range?
152 /// getSetSize - Return the number of elements in this set.
154 uint64_t ConstantRange::getSetSize() const {
155 if (isEmptySet()) return 0;
156 if (getType() == Type::BoolTy
) {
157 if (Lower
!= Upper
) // One of T or F in the set...
159 return 2; // Must be full set...
162 // Simply subtract the bounds...
163 Constant
*Result
= ConstantExpr::getSub(Upper
, Lower
);
164 return cast
<ConstantInt
>(Result
)->getRawValue();
167 /// contains - Return true if the specified value is in the set.
169 bool ConstantRange::contains(ConstantInt
*Val
) const {
170 if (Lower
== Upper
) {
171 if (isFullSet()) return true;
176 return LTE(Lower
, Val
) && LT(Val
, Upper
);
177 return LTE(Lower
, Val
) || LT(Val
, Upper
);
182 /// subtract - Subtract the specified constant from the endpoints of this
184 ConstantRange
ConstantRange::subtract(ConstantInt
*CI
) const {
185 assert(CI
->getType() == getType() && getType()->isInteger() &&
186 "Cannot subtract from different type range or non-integer!");
187 // If the set is empty or full, don't modify the endpoints.
188 if (Lower
== Upper
) return *this;
189 return ConstantRange(ConstantExpr::getSub(Lower
, CI
),
190 ConstantExpr::getSub(Upper
, CI
));
194 // intersect1Wrapped - This helper function is used to intersect two ranges when
195 // it is known that LHS is wrapped and RHS isn't.
197 static ConstantRange
intersect1Wrapped(const ConstantRange
&LHS
,
198 const ConstantRange
&RHS
) {
199 assert(LHS
.isWrappedSet() && !RHS
.isWrappedSet());
201 // Check to see if we overlap on the Left side of RHS...
203 if (LT(RHS
.getLower(), LHS
.getUpper())) {
204 // We do overlap on the left side of RHS, see if we overlap on the right of
206 if (GT(RHS
.getUpper(), LHS
.getLower())) {
207 // Ok, the result overlaps on both the left and right sides. See if the
208 // resultant interval will be smaller if we wrap or not...
210 if (LHS
.getSetSize() < RHS
.getSetSize())
216 // No overlap on the right, just on the left.
217 return ConstantRange(RHS
.getLower(), LHS
.getUpper());
221 // We don't overlap on the left side of RHS, see if we overlap on the right
223 if (GT(RHS
.getUpper(), LHS
.getLower())) {
225 return ConstantRange(LHS
.getLower(), RHS
.getUpper());
228 return ConstantRange(LHS
.getType(), false);
233 /// intersect - Return the range that results from the intersection of this
234 /// range with another range.
236 ConstantRange
ConstantRange::intersectWith(const ConstantRange
&CR
) const {
237 assert(getType() == CR
.getType() && "ConstantRange types don't agree!");
238 // Handle common special cases
239 if (isEmptySet() || CR
.isFullSet()) return *this;
240 if (isFullSet() || CR
.isEmptySet()) return CR
;
242 if (!isWrappedSet()) {
243 if (!CR
.isWrappedSet()) {
244 ConstantIntegral
*L
= Max(Lower
, CR
.Lower
);
245 ConstantIntegral
*U
= Min(Upper
, CR
.Upper
);
247 if (LT(L
, U
)) // If range isn't empty...
248 return ConstantRange(L
, U
);
250 return ConstantRange(getType(), false); // Otherwise, return empty set
252 return intersect1Wrapped(CR
, *this);
253 } else { // We know "this" is wrapped...
254 if (!CR
.isWrappedSet())
255 return intersect1Wrapped(*this, CR
);
257 // Both ranges are wrapped...
258 ConstantIntegral
*L
= Max(Lower
, CR
.Lower
);
259 ConstantIntegral
*U
= Min(Upper
, CR
.Upper
);
260 return ConstantRange(L
, U
);
266 /// union - Return the range that results from the union of this range with
267 /// another range. The resultant range is guaranteed to include the elements of
268 /// both sets, but may contain more. For example, [3, 9) union [12,15) is [3,
269 /// 15), which includes 9, 10, and 11, which were not included in either set
272 ConstantRange
ConstantRange::unionWith(const ConstantRange
&CR
) const {
273 assert(getType() == CR
.getType() && "ConstantRange types don't agree!");
275 assert(0 && "Range union not implemented yet!");
280 /// zeroExtend - Return a new range in the specified integer type, which must
281 /// be strictly larger than the current type. The returned range will
282 /// correspond to the possible range of values if the source range had been
284 ConstantRange
ConstantRange::zeroExtend(const Type
*Ty
) const {
285 assert(getLower()->getType()->getPrimitiveSize() < Ty
->getPrimitiveSize() &&
286 "Not a value extension");
288 // Change a source full set into [0, 1 << 8*numbytes)
289 unsigned SrcTySize
= getLower()->getType()->getPrimitiveSize();
290 return ConstantRange(Constant::getNullValue(Ty
),
291 ConstantUInt::get(Ty
, 1ULL << SrcTySize
*8));
294 Constant
*Lower
= getLower();
295 Constant
*Upper
= getUpper();
296 if (Lower
->getType()->isInteger() && !Lower
->getType()->isUnsigned()) {
297 // Ensure we are doing a ZERO extension even if the input range is signed.
298 Lower
= ConstantExpr::getCast(Lower
, Ty
->getUnsignedVersion());
299 Upper
= ConstantExpr::getCast(Upper
, Ty
->getUnsignedVersion());
302 return ConstantRange(ConstantExpr::getCast(Lower
, Ty
),
303 ConstantExpr::getCast(Upper
, Ty
));
306 /// truncate - Return a new range in the specified integer type, which must be
307 /// strictly smaller than the current type. The returned range will
308 /// correspond to the possible range of values if the source range had been
309 /// truncated to the specified type.
310 ConstantRange
ConstantRange::truncate(const Type
*Ty
) const {
311 assert(getLower()->getType()->getPrimitiveSize() > Ty
->getPrimitiveSize() &&
312 "Not a value truncation");
313 uint64_t Size
= 1ULL << Ty
->getPrimitiveSize()*8;
314 if (isFullSet() || getSetSize() >= Size
)
315 return ConstantRange(getType());
317 return ConstantRange(ConstantExpr::getCast(getLower(), Ty
),
318 ConstantExpr::getCast(getUpper(), Ty
));
322 /// print - Print out the bounds to a stream...
324 void ConstantRange::print(std::ostream
&OS
) const {
325 OS
<< "[" << *Lower
<< "," << *Upper
<< " )";
328 /// dump - Allow printing from a debugger easily...
330 void ConstantRange::dump() const {