1 //===- BranchProbabilityInfo.cpp - Branch Probability Analysis ------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // Loops should be simplified before this analysis.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Analysis/BranchProbabilityInfo.h"
15 #include "llvm/ADT/PostOrderIterator.h"
16 #include "llvm/ADT/SCCIterator.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/TargetLibraryInfo.h"
21 #include "llvm/IR/Attributes.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/CFG.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/Dominators.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/PassManager.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/Value.h"
35 #include "llvm/Pass.h"
36 #include "llvm/Support/BranchProbability.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/raw_ostream.h"
47 #define DEBUG_TYPE "branch-prob"
49 static cl::opt
<bool> PrintBranchProb(
50 "print-bpi", cl::init(false), cl::Hidden
,
51 cl::desc("Print the branch probability info."));
53 cl::opt
<std::string
> PrintBranchProbFuncName(
54 "print-bpi-func-name", cl::Hidden
,
55 cl::desc("The option to specify the name of the function "
56 "whose branch probability info is printed."));
58 INITIALIZE_PASS_BEGIN(BranchProbabilityInfoWrapperPass
, "branch-prob",
59 "Branch Probability Analysis", false, true)
60 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass
)
61 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass
)
62 INITIALIZE_PASS_END(BranchProbabilityInfoWrapperPass
, "branch-prob",
63 "Branch Probability Analysis", false, true)
65 char BranchProbabilityInfoWrapperPass::ID
= 0;
67 // Weights are for internal use only. They are used by heuristics to help to
68 // estimate edges' probability. Example:
70 // Using "Loop Branch Heuristics" we predict weights of edges for the
85 // Probability of the edge BB2->BB1 = 124 / (124 + 4) = 0.96875
86 // Probability of the edge BB2->BB3 = 4 / (124 + 4) = 0.03125
87 static const uint32_t LBH_TAKEN_WEIGHT
= 124;
88 static const uint32_t LBH_NONTAKEN_WEIGHT
= 4;
89 // Unlikely edges within a loop are half as likely as other edges
90 static const uint32_t LBH_UNLIKELY_WEIGHT
= 62;
92 /// Unreachable-terminating branch taken probability.
94 /// This is the probability for a branch being taken to a block that terminates
95 /// (eventually) in unreachable. These are predicted as unlikely as possible.
96 /// All reachable probability will equally share the remaining part.
97 static const BranchProbability UR_TAKEN_PROB
= BranchProbability::getRaw(1);
99 /// Weight for a branch taken going into a cold block.
101 /// This is the weight for a branch taken toward a block marked
102 /// cold. A block is marked cold if it's postdominated by a
103 /// block containing a call to a cold function. Cold functions
104 /// are those marked with attribute 'cold'.
105 static const uint32_t CC_TAKEN_WEIGHT
= 4;
107 /// Weight for a branch not-taken into a cold block.
109 /// This is the weight for a branch not taken toward a block marked
111 static const uint32_t CC_NONTAKEN_WEIGHT
= 64;
113 static const uint32_t PH_TAKEN_WEIGHT
= 20;
114 static const uint32_t PH_NONTAKEN_WEIGHT
= 12;
116 static const uint32_t ZH_TAKEN_WEIGHT
= 20;
117 static const uint32_t ZH_NONTAKEN_WEIGHT
= 12;
119 static const uint32_t FPH_TAKEN_WEIGHT
= 20;
120 static const uint32_t FPH_NONTAKEN_WEIGHT
= 12;
122 /// Invoke-terminating normal branch taken weight
124 /// This is the weight for branching to the normal destination of an invoke
125 /// instruction. We expect this to happen most of the time. Set the weight to an
126 /// absurdly high value so that nested loops subsume it.
127 static const uint32_t IH_TAKEN_WEIGHT
= 1024 * 1024 - 1;
129 /// Invoke-terminating normal branch not-taken weight.
131 /// This is the weight for branching to the unwind destination of an invoke
132 /// instruction. This is essentially never taken.
133 static const uint32_t IH_NONTAKEN_WEIGHT
= 1;
135 /// Add \p BB to PostDominatedByUnreachable set if applicable.
137 BranchProbabilityInfo::updatePostDominatedByUnreachable(const BasicBlock
*BB
) {
138 const TerminatorInst
*TI
= BB
->getTerminator();
139 if (TI
->getNumSuccessors() == 0) {
140 if (isa
<UnreachableInst
>(TI
) ||
141 // If this block is terminated by a call to
142 // @llvm.experimental.deoptimize then treat it like an unreachable since
143 // the @llvm.experimental.deoptimize call is expected to practically
145 BB
->getTerminatingDeoptimizeCall())
146 PostDominatedByUnreachable
.insert(BB
);
150 // If the terminator is an InvokeInst, check only the normal destination block
151 // as the unwind edge of InvokeInst is also very unlikely taken.
152 if (auto *II
= dyn_cast
<InvokeInst
>(TI
)) {
153 if (PostDominatedByUnreachable
.count(II
->getNormalDest()))
154 PostDominatedByUnreachable
.insert(BB
);
158 for (auto *I
: successors(BB
))
159 // If any of successor is not post dominated then BB is also not.
160 if (!PostDominatedByUnreachable
.count(I
))
163 PostDominatedByUnreachable
.insert(BB
);
166 /// Add \p BB to PostDominatedByColdCall set if applicable.
168 BranchProbabilityInfo::updatePostDominatedByColdCall(const BasicBlock
*BB
) {
169 assert(!PostDominatedByColdCall
.count(BB
));
170 const TerminatorInst
*TI
= BB
->getTerminator();
171 if (TI
->getNumSuccessors() == 0)
174 // If all of successor are post dominated then BB is also done.
175 if (llvm::all_of(successors(BB
), [&](const BasicBlock
*SuccBB
) {
176 return PostDominatedByColdCall
.count(SuccBB
);
178 PostDominatedByColdCall
.insert(BB
);
182 // If the terminator is an InvokeInst, check only the normal destination
183 // block as the unwind edge of InvokeInst is also very unlikely taken.
184 if (auto *II
= dyn_cast
<InvokeInst
>(TI
))
185 if (PostDominatedByColdCall
.count(II
->getNormalDest())) {
186 PostDominatedByColdCall
.insert(BB
);
190 // Otherwise, if the block itself contains a cold function, add it to the
191 // set of blocks post-dominated by a cold call.
193 if (const CallInst
*CI
= dyn_cast
<CallInst
>(&I
))
194 if (CI
->hasFnAttr(Attribute::Cold
)) {
195 PostDominatedByColdCall
.insert(BB
);
200 /// Calculate edge weights for successors lead to unreachable.
202 /// Predict that a successor which leads necessarily to an
203 /// unreachable-terminated block as extremely unlikely.
204 bool BranchProbabilityInfo::calcUnreachableHeuristics(const BasicBlock
*BB
) {
205 const TerminatorInst
*TI
= BB
->getTerminator();
207 assert(TI
->getNumSuccessors() > 1 && "expected more than one successor!");
208 assert(!isa
<InvokeInst
>(TI
) &&
209 "Invokes should have already been handled by calcInvokeHeuristics");
211 SmallVector
<unsigned, 4> UnreachableEdges
;
212 SmallVector
<unsigned, 4> ReachableEdges
;
214 for (succ_const_iterator I
= succ_begin(BB
), E
= succ_end(BB
); I
!= E
; ++I
)
215 if (PostDominatedByUnreachable
.count(*I
))
216 UnreachableEdges
.push_back(I
.getSuccessorIndex());
218 ReachableEdges
.push_back(I
.getSuccessorIndex());
220 // Skip probabilities if all were reachable.
221 if (UnreachableEdges
.empty())
224 if (ReachableEdges
.empty()) {
225 BranchProbability
Prob(1, UnreachableEdges
.size());
226 for (unsigned SuccIdx
: UnreachableEdges
)
227 setEdgeProbability(BB
, SuccIdx
, Prob
);
231 auto UnreachableProb
= UR_TAKEN_PROB
;
233 (BranchProbability::getOne() - UR_TAKEN_PROB
* UnreachableEdges
.size()) /
234 ReachableEdges
.size();
236 for (unsigned SuccIdx
: UnreachableEdges
)
237 setEdgeProbability(BB
, SuccIdx
, UnreachableProb
);
238 for (unsigned SuccIdx
: ReachableEdges
)
239 setEdgeProbability(BB
, SuccIdx
, ReachableProb
);
244 // Propagate existing explicit probabilities from either profile data or
245 // 'expect' intrinsic processing. Examine metadata against unreachable
246 // heuristic. The probability of the edge coming to unreachable block is
247 // set to min of metadata and unreachable heuristic.
248 bool BranchProbabilityInfo::calcMetadataWeights(const BasicBlock
*BB
) {
249 const TerminatorInst
*TI
= BB
->getTerminator();
250 assert(TI
->getNumSuccessors() > 1 && "expected more than one successor!");
251 if (!(isa
<BranchInst
>(TI
) || isa
<SwitchInst
>(TI
) || isa
<IndirectBrInst
>(TI
)))
254 MDNode
*WeightsNode
= TI
->getMetadata(LLVMContext::MD_prof
);
258 // Check that the number of successors is manageable.
259 assert(TI
->getNumSuccessors() < UINT32_MAX
&& "Too many successors");
261 // Ensure there are weights for all of the successors. Note that the first
262 // operand to the metadata node is a name, not a weight.
263 if (WeightsNode
->getNumOperands() != TI
->getNumSuccessors() + 1)
266 // Build up the final weights that will be used in a temporary buffer.
267 // Compute the sum of all weights to later decide whether they need to
268 // be scaled to fit in 32 bits.
269 uint64_t WeightSum
= 0;
270 SmallVector
<uint32_t, 2> Weights
;
271 SmallVector
<unsigned, 2> UnreachableIdxs
;
272 SmallVector
<unsigned, 2> ReachableIdxs
;
273 Weights
.reserve(TI
->getNumSuccessors());
274 for (unsigned i
= 1, e
= WeightsNode
->getNumOperands(); i
!= e
; ++i
) {
275 ConstantInt
*Weight
=
276 mdconst::dyn_extract
<ConstantInt
>(WeightsNode
->getOperand(i
));
279 assert(Weight
->getValue().getActiveBits() <= 32 &&
280 "Too many bits for uint32_t");
281 Weights
.push_back(Weight
->getZExtValue());
282 WeightSum
+= Weights
.back();
283 if (PostDominatedByUnreachable
.count(TI
->getSuccessor(i
- 1)))
284 UnreachableIdxs
.push_back(i
- 1);
286 ReachableIdxs
.push_back(i
- 1);
288 assert(Weights
.size() == TI
->getNumSuccessors() && "Checked above");
290 // If the sum of weights does not fit in 32 bits, scale every weight down
292 uint64_t ScalingFactor
=
293 (WeightSum
> UINT32_MAX
) ? WeightSum
/ UINT32_MAX
+ 1 : 1;
295 if (ScalingFactor
> 1) {
297 for (unsigned i
= 0, e
= TI
->getNumSuccessors(); i
!= e
; ++i
) {
298 Weights
[i
] /= ScalingFactor
;
299 WeightSum
+= Weights
[i
];
302 assert(WeightSum
<= UINT32_MAX
&&
303 "Expected weights to scale down to 32 bits");
305 if (WeightSum
== 0 || ReachableIdxs
.size() == 0) {
306 for (unsigned i
= 0, e
= TI
->getNumSuccessors(); i
!= e
; ++i
)
308 WeightSum
= TI
->getNumSuccessors();
311 // Set the probability.
312 SmallVector
<BranchProbability
, 2> BP
;
313 for (unsigned i
= 0, e
= TI
->getNumSuccessors(); i
!= e
; ++i
)
314 BP
.push_back({ Weights
[i
], static_cast<uint32_t>(WeightSum
) });
316 // Examine the metadata against unreachable heuristic.
317 // If the unreachable heuristic is more strong then we use it for this edge.
318 if (UnreachableIdxs
.size() > 0 && ReachableIdxs
.size() > 0) {
319 auto ToDistribute
= BranchProbability::getZero();
320 auto UnreachableProb
= UR_TAKEN_PROB
;
321 for (auto i
: UnreachableIdxs
)
322 if (UnreachableProb
< BP
[i
]) {
323 ToDistribute
+= BP
[i
] - UnreachableProb
;
324 BP
[i
] = UnreachableProb
;
327 // If we modified the probability of some edges then we must distribute
328 // the difference between reachable blocks.
329 if (ToDistribute
> BranchProbability::getZero()) {
330 BranchProbability PerEdge
= ToDistribute
/ ReachableIdxs
.size();
331 for (auto i
: ReachableIdxs
)
336 for (unsigned i
= 0, e
= TI
->getNumSuccessors(); i
!= e
; ++i
)
337 setEdgeProbability(BB
, i
, BP
[i
]);
342 /// Calculate edge weights for edges leading to cold blocks.
344 /// A cold block is one post-dominated by a block with a call to a
345 /// cold function. Those edges are unlikely to be taken, so we give
346 /// them relatively low weight.
348 /// Return true if we could compute the weights for cold edges.
349 /// Return false, otherwise.
350 bool BranchProbabilityInfo::calcColdCallHeuristics(const BasicBlock
*BB
) {
351 const TerminatorInst
*TI
= BB
->getTerminator();
353 assert(TI
->getNumSuccessors() > 1 && "expected more than one successor!");
354 assert(!isa
<InvokeInst
>(TI
) &&
355 "Invokes should have already been handled by calcInvokeHeuristics");
357 // Determine which successors are post-dominated by a cold block.
358 SmallVector
<unsigned, 4> ColdEdges
;
359 SmallVector
<unsigned, 4> NormalEdges
;
360 for (succ_const_iterator I
= succ_begin(BB
), E
= succ_end(BB
); I
!= E
; ++I
)
361 if (PostDominatedByColdCall
.count(*I
))
362 ColdEdges
.push_back(I
.getSuccessorIndex());
364 NormalEdges
.push_back(I
.getSuccessorIndex());
366 // Skip probabilities if no cold edges.
367 if (ColdEdges
.empty())
370 if (NormalEdges
.empty()) {
371 BranchProbability
Prob(1, ColdEdges
.size());
372 for (unsigned SuccIdx
: ColdEdges
)
373 setEdgeProbability(BB
, SuccIdx
, Prob
);
377 auto ColdProb
= BranchProbability::getBranchProbability(
379 (CC_TAKEN_WEIGHT
+ CC_NONTAKEN_WEIGHT
) * uint64_t(ColdEdges
.size()));
380 auto NormalProb
= BranchProbability::getBranchProbability(
382 (CC_TAKEN_WEIGHT
+ CC_NONTAKEN_WEIGHT
) * uint64_t(NormalEdges
.size()));
384 for (unsigned SuccIdx
: ColdEdges
)
385 setEdgeProbability(BB
, SuccIdx
, ColdProb
);
386 for (unsigned SuccIdx
: NormalEdges
)
387 setEdgeProbability(BB
, SuccIdx
, NormalProb
);
392 // Calculate Edge Weights using "Pointer Heuristics". Predict a comparison
393 // between two pointer or pointer and NULL will fail.
394 bool BranchProbabilityInfo::calcPointerHeuristics(const BasicBlock
*BB
) {
395 const BranchInst
*BI
= dyn_cast
<BranchInst
>(BB
->getTerminator());
396 if (!BI
|| !BI
->isConditional())
399 Value
*Cond
= BI
->getCondition();
400 ICmpInst
*CI
= dyn_cast
<ICmpInst
>(Cond
);
401 if (!CI
|| !CI
->isEquality())
404 Value
*LHS
= CI
->getOperand(0);
406 if (!LHS
->getType()->isPointerTy())
409 assert(CI
->getOperand(1)->getType()->isPointerTy());
411 // p != 0 -> isProb = true
412 // p == 0 -> isProb = false
413 // p != q -> isProb = true
414 // p == q -> isProb = false;
415 unsigned TakenIdx
= 0, NonTakenIdx
= 1;
416 bool isProb
= CI
->getPredicate() == ICmpInst::ICMP_NE
;
418 std::swap(TakenIdx
, NonTakenIdx
);
420 BranchProbability
TakenProb(PH_TAKEN_WEIGHT
,
421 PH_TAKEN_WEIGHT
+ PH_NONTAKEN_WEIGHT
);
422 setEdgeProbability(BB
, TakenIdx
, TakenProb
);
423 setEdgeProbability(BB
, NonTakenIdx
, TakenProb
.getCompl());
427 static int getSCCNum(const BasicBlock
*BB
,
428 const BranchProbabilityInfo::SccInfo
&SccI
) {
429 auto SccIt
= SccI
.SccNums
.find(BB
);
430 if (SccIt
== SccI
.SccNums
.end())
432 return SccIt
->second
;
435 // Consider any block that is an entry point to the SCC as a header.
436 static bool isSCCHeader(const BasicBlock
*BB
, int SccNum
,
437 BranchProbabilityInfo::SccInfo
&SccI
) {
438 assert(getSCCNum(BB
, SccI
) == SccNum
);
440 // Lazily compute the set of headers for a given SCC and cache the results
441 // in the SccHeaderMap.
442 if (SccI
.SccHeaders
.size() <= static_cast<unsigned>(SccNum
))
443 SccI
.SccHeaders
.resize(SccNum
+ 1);
444 auto &HeaderMap
= SccI
.SccHeaders
[SccNum
];
446 BranchProbabilityInfo::SccHeaderMap::iterator HeaderMapIt
;
447 std::tie(HeaderMapIt
, Inserted
) = HeaderMap
.insert(std::make_pair(BB
, false));
449 bool IsHeader
= llvm::any_of(make_range(pred_begin(BB
), pred_end(BB
)),
450 [&](const BasicBlock
*Pred
) {
451 return getSCCNum(Pred
, SccI
) != SccNum
;
453 HeaderMapIt
->second
= IsHeader
;
456 return HeaderMapIt
->second
;
459 // Compute the unlikely successors to the block BB in the loop L, specifically
460 // those that are unlikely because this is a loop, and add them to the
461 // UnlikelyBlocks set.
463 computeUnlikelySuccessors(const BasicBlock
*BB
, Loop
*L
,
464 SmallPtrSetImpl
<const BasicBlock
*> &UnlikelyBlocks
) {
465 // Sometimes in a loop we have a branch whose condition is made false by
466 // taking it. This is typically something like
473 // In this sort of situation taking the branch means that at the very least it
474 // won't be taken again in the next iteration of the loop, so we should
475 // consider it less likely than a typical branch.
477 // We detect this by looking back through the graph of PHI nodes that sets the
478 // value that the condition depends on, and seeing if we can reach a successor
479 // block which can be determined to make the condition false.
481 // FIXME: We currently consider unlikely blocks to be half as likely as other
482 // blocks, but if we consider the example above the likelyhood is actually
483 // 1/MAX. We could therefore be more precise in how unlikely we consider
484 // blocks to be, but it would require more careful examination of the form
485 // of the comparison expression.
486 const BranchInst
*BI
= dyn_cast
<BranchInst
>(BB
->getTerminator());
487 if (!BI
|| !BI
->isConditional())
490 // Check if the branch is based on an instruction compared with a constant
491 CmpInst
*CI
= dyn_cast
<CmpInst
>(BI
->getCondition());
492 if (!CI
|| !isa
<Instruction
>(CI
->getOperand(0)) ||
493 !isa
<Constant
>(CI
->getOperand(1)))
496 // Either the instruction must be a PHI, or a chain of operations involving
497 // constants that ends in a PHI which we can then collapse into a single value
498 // if the PHI value is known.
499 Instruction
*CmpLHS
= dyn_cast
<Instruction
>(CI
->getOperand(0));
500 PHINode
*CmpPHI
= dyn_cast
<PHINode
>(CmpLHS
);
501 Constant
*CmpConst
= dyn_cast
<Constant
>(CI
->getOperand(1));
502 // Collect the instructions until we hit a PHI
503 SmallVector
<BinaryOperator
*, 1> InstChain
;
504 while (!CmpPHI
&& CmpLHS
&& isa
<BinaryOperator
>(CmpLHS
) &&
505 isa
<Constant
>(CmpLHS
->getOperand(1))) {
506 // Stop if the chain extends outside of the loop
507 if (!L
->contains(CmpLHS
))
509 InstChain
.push_back(cast
<BinaryOperator
>(CmpLHS
));
510 CmpLHS
= dyn_cast
<Instruction
>(CmpLHS
->getOperand(0));
512 CmpPHI
= dyn_cast
<PHINode
>(CmpLHS
);
514 if (!CmpPHI
|| !L
->contains(CmpPHI
))
517 // Trace the phi node to find all values that come from successors of BB
518 SmallPtrSet
<PHINode
*, 8> VisitedInsts
;
519 SmallVector
<PHINode
*, 8> WorkList
;
520 WorkList
.push_back(CmpPHI
);
521 VisitedInsts
.insert(CmpPHI
);
522 while (!WorkList
.empty()) {
523 PHINode
*P
= WorkList
.back();
525 for (BasicBlock
*B
: P
->blocks()) {
526 // Skip blocks that aren't part of the loop
529 Value
*V
= P
->getIncomingValueForBlock(B
);
530 // If the source is a PHI add it to the work list if we haven't
531 // already visited it.
532 if (PHINode
*PN
= dyn_cast
<PHINode
>(V
)) {
533 if (VisitedInsts
.insert(PN
).second
)
534 WorkList
.push_back(PN
);
537 // If this incoming value is a constant and B is a successor of BB, then
538 // we can constant-evaluate the compare to see if it makes the branch be
540 Constant
*CmpLHSConst
= dyn_cast
<Constant
>(V
);
542 std::find(succ_begin(BB
), succ_end(BB
), B
) == succ_end(BB
))
544 // First collapse InstChain
545 for (Instruction
*I
: llvm::reverse(InstChain
)) {
546 CmpLHSConst
= ConstantExpr::get(I
->getOpcode(), CmpLHSConst
,
547 cast
<Constant
>(I
->getOperand(1)), true);
553 // Now constant-evaluate the compare
554 Constant
*Result
= ConstantExpr::getCompare(CI
->getPredicate(),
555 CmpLHSConst
, CmpConst
, true);
556 // If the result means we don't branch to the block then that block is
559 ((Result
->isZeroValue() && B
== BI
->getSuccessor(0)) ||
560 (Result
->isOneValue() && B
== BI
->getSuccessor(1))))
561 UnlikelyBlocks
.insert(B
);
566 // Calculate Edge Weights using "Loop Branch Heuristics". Predict backedges
567 // as taken, exiting edges as not-taken.
568 bool BranchProbabilityInfo::calcLoopBranchHeuristics(const BasicBlock
*BB
,
572 Loop
*L
= LI
.getLoopFor(BB
);
574 SccNum
= getSCCNum(BB
, SccI
);
579 SmallPtrSet
<const BasicBlock
*, 8> UnlikelyBlocks
;
581 computeUnlikelySuccessors(BB
, L
, UnlikelyBlocks
);
583 SmallVector
<unsigned, 8> BackEdges
;
584 SmallVector
<unsigned, 8> ExitingEdges
;
585 SmallVector
<unsigned, 8> InEdges
; // Edges from header to the loop.
586 SmallVector
<unsigned, 8> UnlikelyEdges
;
588 for (succ_const_iterator I
= succ_begin(BB
), E
= succ_end(BB
); I
!= E
; ++I
) {
589 // Use LoopInfo if we have it, otherwise fall-back to SCC info to catch
590 // irreducible loops.
592 if (UnlikelyBlocks
.count(*I
) != 0)
593 UnlikelyEdges
.push_back(I
.getSuccessorIndex());
594 else if (!L
->contains(*I
))
595 ExitingEdges
.push_back(I
.getSuccessorIndex());
596 else if (L
->getHeader() == *I
)
597 BackEdges
.push_back(I
.getSuccessorIndex());
599 InEdges
.push_back(I
.getSuccessorIndex());
601 if (getSCCNum(*I
, SccI
) != SccNum
)
602 ExitingEdges
.push_back(I
.getSuccessorIndex());
603 else if (isSCCHeader(*I
, SccNum
, SccI
))
604 BackEdges
.push_back(I
.getSuccessorIndex());
606 InEdges
.push_back(I
.getSuccessorIndex());
610 if (BackEdges
.empty() && ExitingEdges
.empty() && UnlikelyEdges
.empty())
613 // Collect the sum of probabilities of back-edges/in-edges/exiting-edges, and
614 // normalize them so that they sum up to one.
615 unsigned Denom
= (BackEdges
.empty() ? 0 : LBH_TAKEN_WEIGHT
) +
616 (InEdges
.empty() ? 0 : LBH_TAKEN_WEIGHT
) +
617 (UnlikelyEdges
.empty() ? 0 : LBH_UNLIKELY_WEIGHT
) +
618 (ExitingEdges
.empty() ? 0 : LBH_NONTAKEN_WEIGHT
);
620 if (uint32_t numBackEdges
= BackEdges
.size()) {
621 BranchProbability TakenProb
= BranchProbability(LBH_TAKEN_WEIGHT
, Denom
);
622 auto Prob
= TakenProb
/ numBackEdges
;
623 for (unsigned SuccIdx
: BackEdges
)
624 setEdgeProbability(BB
, SuccIdx
, Prob
);
627 if (uint32_t numInEdges
= InEdges
.size()) {
628 BranchProbability TakenProb
= BranchProbability(LBH_TAKEN_WEIGHT
, Denom
);
629 auto Prob
= TakenProb
/ numInEdges
;
630 for (unsigned SuccIdx
: InEdges
)
631 setEdgeProbability(BB
, SuccIdx
, Prob
);
634 if (uint32_t numExitingEdges
= ExitingEdges
.size()) {
635 BranchProbability NotTakenProb
= BranchProbability(LBH_NONTAKEN_WEIGHT
,
637 auto Prob
= NotTakenProb
/ numExitingEdges
;
638 for (unsigned SuccIdx
: ExitingEdges
)
639 setEdgeProbability(BB
, SuccIdx
, Prob
);
642 if (uint32_t numUnlikelyEdges
= UnlikelyEdges
.size()) {
643 BranchProbability UnlikelyProb
= BranchProbability(LBH_UNLIKELY_WEIGHT
,
645 auto Prob
= UnlikelyProb
/ numUnlikelyEdges
;
646 for (unsigned SuccIdx
: UnlikelyEdges
)
647 setEdgeProbability(BB
, SuccIdx
, Prob
);
653 bool BranchProbabilityInfo::calcZeroHeuristics(const BasicBlock
*BB
,
654 const TargetLibraryInfo
*TLI
) {
655 const BranchInst
*BI
= dyn_cast
<BranchInst
>(BB
->getTerminator());
656 if (!BI
|| !BI
->isConditional())
659 Value
*Cond
= BI
->getCondition();
660 ICmpInst
*CI
= dyn_cast
<ICmpInst
>(Cond
);
664 Value
*RHS
= CI
->getOperand(1);
665 ConstantInt
*CV
= dyn_cast
<ConstantInt
>(RHS
);
669 // If the LHS is the result of AND'ing a value with a single bit bitmask,
670 // we don't have information about probabilities.
671 if (Instruction
*LHS
= dyn_cast
<Instruction
>(CI
->getOperand(0)))
672 if (LHS
->getOpcode() == Instruction::And
)
673 if (ConstantInt
*AndRHS
= dyn_cast
<ConstantInt
>(LHS
->getOperand(1)))
674 if (AndRHS
->getValue().isPowerOf2())
677 // Check if the LHS is the return value of a library function
678 LibFunc Func
= NumLibFuncs
;
680 if (CallInst
*Call
= dyn_cast
<CallInst
>(CI
->getOperand(0)))
681 if (Function
*CalledFn
= Call
->getCalledFunction())
682 TLI
->getLibFunc(*CalledFn
, Func
);
685 if (Func
== LibFunc_strcasecmp
||
686 Func
== LibFunc_strcmp
||
687 Func
== LibFunc_strncasecmp
||
688 Func
== LibFunc_strncmp
||
689 Func
== LibFunc_memcmp
) {
690 // strcmp and similar functions return zero, negative, or positive, if the
691 // first string is equal, less, or greater than the second. We consider it
692 // likely that the strings are not equal, so a comparison with zero is
693 // probably false, but also a comparison with any other number is also
694 // probably false given that what exactly is returned for nonzero values is
695 // not specified. Any kind of comparison other than equality we know
697 switch (CI
->getPredicate()) {
698 case CmpInst::ICMP_EQ
:
701 case CmpInst::ICMP_NE
:
707 } else if (CV
->isZero()) {
708 switch (CI
->getPredicate()) {
709 case CmpInst::ICMP_EQ
:
710 // X == 0 -> Unlikely
713 case CmpInst::ICMP_NE
:
717 case CmpInst::ICMP_SLT
:
721 case CmpInst::ICMP_SGT
:
728 } else if (CV
->isOne() && CI
->getPredicate() == CmpInst::ICMP_SLT
) {
729 // InstCombine canonicalizes X <= 0 into X < 1.
730 // X <= 0 -> Unlikely
732 } else if (CV
->isMinusOne()) {
733 switch (CI
->getPredicate()) {
734 case CmpInst::ICMP_EQ
:
735 // X == -1 -> Unlikely
738 case CmpInst::ICMP_NE
:
742 case CmpInst::ICMP_SGT
:
743 // InstCombine canonicalizes X >= 0 into X > -1.
754 unsigned TakenIdx
= 0, NonTakenIdx
= 1;
757 std::swap(TakenIdx
, NonTakenIdx
);
759 BranchProbability
TakenProb(ZH_TAKEN_WEIGHT
,
760 ZH_TAKEN_WEIGHT
+ ZH_NONTAKEN_WEIGHT
);
761 setEdgeProbability(BB
, TakenIdx
, TakenProb
);
762 setEdgeProbability(BB
, NonTakenIdx
, TakenProb
.getCompl());
766 bool BranchProbabilityInfo::calcFloatingPointHeuristics(const BasicBlock
*BB
) {
767 const BranchInst
*BI
= dyn_cast
<BranchInst
>(BB
->getTerminator());
768 if (!BI
|| !BI
->isConditional())
771 Value
*Cond
= BI
->getCondition();
772 FCmpInst
*FCmp
= dyn_cast
<FCmpInst
>(Cond
);
777 if (FCmp
->isEquality()) {
778 // f1 == f2 -> Unlikely
779 // f1 != f2 -> Likely
780 isProb
= !FCmp
->isTrueWhenEqual();
781 } else if (FCmp
->getPredicate() == FCmpInst::FCMP_ORD
) {
784 } else if (FCmp
->getPredicate() == FCmpInst::FCMP_UNO
) {
791 unsigned TakenIdx
= 0, NonTakenIdx
= 1;
794 std::swap(TakenIdx
, NonTakenIdx
);
796 BranchProbability
TakenProb(FPH_TAKEN_WEIGHT
,
797 FPH_TAKEN_WEIGHT
+ FPH_NONTAKEN_WEIGHT
);
798 setEdgeProbability(BB
, TakenIdx
, TakenProb
);
799 setEdgeProbability(BB
, NonTakenIdx
, TakenProb
.getCompl());
803 bool BranchProbabilityInfo::calcInvokeHeuristics(const BasicBlock
*BB
) {
804 const InvokeInst
*II
= dyn_cast
<InvokeInst
>(BB
->getTerminator());
808 BranchProbability
TakenProb(IH_TAKEN_WEIGHT
,
809 IH_TAKEN_WEIGHT
+ IH_NONTAKEN_WEIGHT
);
810 setEdgeProbability(BB
, 0 /*Index for Normal*/, TakenProb
);
811 setEdgeProbability(BB
, 1 /*Index for Unwind*/, TakenProb
.getCompl());
815 void BranchProbabilityInfo::releaseMemory() {
819 void BranchProbabilityInfo::print(raw_ostream
&OS
) const {
820 OS
<< "---- Branch Probabilities ----\n";
821 // We print the probabilities from the last function the analysis ran over,
822 // or the function it is currently running over.
823 assert(LastF
&& "Cannot print prior to running over a function");
824 for (const auto &BI
: *LastF
) {
825 for (succ_const_iterator SI
= succ_begin(&BI
), SE
= succ_end(&BI
); SI
!= SE
;
827 printEdgeProbability(OS
<< " ", &BI
, *SI
);
832 bool BranchProbabilityInfo::
833 isEdgeHot(const BasicBlock
*Src
, const BasicBlock
*Dst
) const {
834 // Hot probability is at least 4/5 = 80%
835 // FIXME: Compare against a static "hot" BranchProbability.
836 return getEdgeProbability(Src
, Dst
) > BranchProbability(4, 5);
840 BranchProbabilityInfo::getHotSucc(const BasicBlock
*BB
) const {
841 auto MaxProb
= BranchProbability::getZero();
842 const BasicBlock
*MaxSucc
= nullptr;
844 for (succ_const_iterator I
= succ_begin(BB
), E
= succ_end(BB
); I
!= E
; ++I
) {
845 const BasicBlock
*Succ
= *I
;
846 auto Prob
= getEdgeProbability(BB
, Succ
);
847 if (Prob
> MaxProb
) {
853 // Hot probability is at least 4/5 = 80%
854 if (MaxProb
> BranchProbability(4, 5))
860 /// Get the raw edge probability for the edge. If can't find it, return a
861 /// default probability 1/N where N is the number of successors. Here an edge is
862 /// specified using PredBlock and an
863 /// index to the successors.
865 BranchProbabilityInfo::getEdgeProbability(const BasicBlock
*Src
,
866 unsigned IndexInSuccessors
) const {
867 auto I
= Probs
.find(std::make_pair(Src
, IndexInSuccessors
));
869 if (I
!= Probs
.end())
872 return {1, static_cast<uint32_t>(succ_size(Src
))};
876 BranchProbabilityInfo::getEdgeProbability(const BasicBlock
*Src
,
877 succ_const_iterator Dst
) const {
878 return getEdgeProbability(Src
, Dst
.getSuccessorIndex());
881 /// Get the raw edge probability calculated for the block pair. This returns the
882 /// sum of all raw edge probabilities from Src to Dst.
884 BranchProbabilityInfo::getEdgeProbability(const BasicBlock
*Src
,
885 const BasicBlock
*Dst
) const {
886 auto Prob
= BranchProbability::getZero();
887 bool FoundProb
= false;
888 for (succ_const_iterator I
= succ_begin(Src
), E
= succ_end(Src
); I
!= E
; ++I
)
890 auto MapI
= Probs
.find(std::make_pair(Src
, I
.getSuccessorIndex()));
891 if (MapI
!= Probs
.end()) {
893 Prob
+= MapI
->second
;
896 uint32_t succ_num
= std::distance(succ_begin(Src
), succ_end(Src
));
897 return FoundProb
? Prob
: BranchProbability(1, succ_num
);
900 /// Set the edge probability for a given edge specified by PredBlock and an
901 /// index to the successors.
902 void BranchProbabilityInfo::setEdgeProbability(const BasicBlock
*Src
,
903 unsigned IndexInSuccessors
,
904 BranchProbability Prob
) {
905 Probs
[std::make_pair(Src
, IndexInSuccessors
)] = Prob
;
906 Handles
.insert(BasicBlockCallbackVH(Src
, this));
907 LLVM_DEBUG(dbgs() << "set edge " << Src
->getName() << " -> "
908 << IndexInSuccessors
<< " successor probability to " << Prob
913 BranchProbabilityInfo::printEdgeProbability(raw_ostream
&OS
,
914 const BasicBlock
*Src
,
915 const BasicBlock
*Dst
) const {
916 const BranchProbability Prob
= getEdgeProbability(Src
, Dst
);
917 OS
<< "edge " << Src
->getName() << " -> " << Dst
->getName()
918 << " probability is " << Prob
919 << (isEdgeHot(Src
, Dst
) ? " [HOT edge]\n" : "\n");
924 void BranchProbabilityInfo::eraseBlock(const BasicBlock
*BB
) {
925 for (auto I
= Probs
.begin(), E
= Probs
.end(); I
!= E
; ++I
) {
932 void BranchProbabilityInfo::calculate(const Function
&F
, const LoopInfo
&LI
,
933 const TargetLibraryInfo
*TLI
) {
934 LLVM_DEBUG(dbgs() << "---- Branch Probability Info : " << F
.getName()
936 LastF
= &F
; // Store the last function we ran on for printing.
937 assert(PostDominatedByUnreachable
.empty());
938 assert(PostDominatedByColdCall
.empty());
940 // Record SCC numbers of blocks in the CFG to identify irreducible loops.
941 // FIXME: We could only calculate this if the CFG is known to be irreducible
942 // (perhaps cache this info in LoopInfo if we can easily calculate it there?).
945 for (scc_iterator
<const Function
*> It
= scc_begin(&F
); !It
.isAtEnd();
947 // Ignore single-block SCCs since they either aren't loops or LoopInfo will
949 const std::vector
<const BasicBlock
*> &Scc
= *It
;
953 LLVM_DEBUG(dbgs() << "BPI: SCC " << SccNum
<< ":");
954 for (auto *BB
: Scc
) {
955 LLVM_DEBUG(dbgs() << " " << BB
->getName());
956 SccI
.SccNums
[BB
] = SccNum
;
958 LLVM_DEBUG(dbgs() << "\n");
961 // Walk the basic blocks in post-order so that we can build up state about
962 // the successors of a block iteratively.
963 for (auto BB
: post_order(&F
.getEntryBlock())) {
964 LLVM_DEBUG(dbgs() << "Computing probabilities for " << BB
->getName()
966 updatePostDominatedByUnreachable(BB
);
967 updatePostDominatedByColdCall(BB
);
968 // If there is no at least two successors, no sense to set probability.
969 if (BB
->getTerminator()->getNumSuccessors() < 2)
971 if (calcMetadataWeights(BB
))
973 if (calcInvokeHeuristics(BB
))
975 if (calcUnreachableHeuristics(BB
))
977 if (calcColdCallHeuristics(BB
))
979 if (calcLoopBranchHeuristics(BB
, LI
, SccI
))
981 if (calcPointerHeuristics(BB
))
983 if (calcZeroHeuristics(BB
, TLI
))
985 if (calcFloatingPointHeuristics(BB
))
989 PostDominatedByUnreachable
.clear();
990 PostDominatedByColdCall
.clear();
992 if (PrintBranchProb
&&
993 (PrintBranchProbFuncName
.empty() ||
994 F
.getName().equals(PrintBranchProbFuncName
))) {
999 void BranchProbabilityInfoWrapperPass::getAnalysisUsage(
1000 AnalysisUsage
&AU
) const {
1001 // We require DT so it's available when LI is available. The LI updating code
1002 // asserts that DT is also present so if we don't make sure that we have DT
1003 // here, that assert will trigger.
1004 AU
.addRequired
<DominatorTreeWrapperPass
>();
1005 AU
.addRequired
<LoopInfoWrapperPass
>();
1006 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
1007 AU
.setPreservesAll();
1010 bool BranchProbabilityInfoWrapperPass::runOnFunction(Function
&F
) {
1011 const LoopInfo
&LI
= getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
1012 const TargetLibraryInfo
&TLI
= getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI();
1013 BPI
.calculate(F
, LI
, &TLI
);
1017 void BranchProbabilityInfoWrapperPass::releaseMemory() { BPI
.releaseMemory(); }
1019 void BranchProbabilityInfoWrapperPass::print(raw_ostream
&OS
,
1020 const Module
*) const {
1024 AnalysisKey
BranchProbabilityAnalysis::Key
;
1025 BranchProbabilityInfo
1026 BranchProbabilityAnalysis::run(Function
&F
, FunctionAnalysisManager
&AM
) {
1027 BranchProbabilityInfo BPI
;
1028 BPI
.calculate(F
, AM
.getResult
<LoopAnalysis
>(F
), &AM
.getResult
<TargetLibraryAnalysis
>(F
));
1033 BranchProbabilityPrinterPass::run(Function
&F
, FunctionAnalysisManager
&AM
) {
1034 OS
<< "Printing analysis results of BPI for function "
1035 << "'" << F
.getName() << "':"
1037 AM
.getResult
<BranchProbabilityAnalysis
>(F
).print(OS
);
1038 return PreservedAnalyses::all();