1 //===- CFLAndersAliasAnalysis.cpp - Unification-based Alias Analysis ------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements a CFL-based, summary-based alias analysis algorithm. It
11 // differs from CFLSteensAliasAnalysis in its inclusion-based nature while
12 // CFLSteensAliasAnalysis is unification-based. This pass has worse performance
13 // than CFLSteensAliasAnalysis (the worst case complexity of
14 // CFLAndersAliasAnalysis is cubic, while the worst case complexity of
15 // CFLSteensAliasAnalysis is almost linear), but it is able to yield more
16 // precise analysis result. The precision of this analysis is roughly the same
17 // as that of an one level context-sensitive Andersen's algorithm.
19 // The algorithm used here is based on recursive state machine matching scheme
20 // proposed in "Demand-driven alias analysis for C" by Xin Zheng and Radu
21 // Rugina. The general idea is to extend the traditional transitive closure
22 // algorithm to perform CFL matching along the way: instead of recording
23 // "whether X is reachable from Y", we keep track of "whether X is reachable
24 // from Y at state Z", where the "state" field indicates where we are in the CFL
25 // matching process. To understand the matching better, it is advisable to have
26 // the state machine shown in Figure 3 of the paper available when reading the
27 // codes: all we do here is to selectively expand the transitive closure by
28 // discarding edges that are not recognized by the state machine.
30 // There are two differences between our current implementation and the one
31 // described in the paper:
32 // - Our algorithm eagerly computes all alias pairs after the CFLGraph is built,
33 // while in the paper the authors did the computation in a demand-driven
34 // fashion. We did not implement the demand-driven algorithm due to the
35 // additional coding complexity and higher memory profile, but if we found it
36 // necessary we may switch to it eventually.
37 // - In the paper the authors use a state machine that does not distinguish
38 // value reads from value writes. For example, if Y is reachable from X at state
39 // S3, it may be the case that X is written into Y, or it may be the case that
40 // there's a third value Z that writes into both X and Y. To make that
41 // distinction (which is crucial in building function summary as well as
42 // retrieving mod-ref info), we choose to duplicate some of the states in the
43 // paper's proposed state machine. The duplication does not change the set the
44 // machine accepts. Given a pair of reachable values, it only provides more
45 // detailed information on which value is being written into and which is being
48 //===----------------------------------------------------------------------===//
50 // N.B. AliasAnalysis as a whole is phrased as a FunctionPass at the moment, and
51 // CFLAndersAA is interprocedural. This is *technically* A Bad Thing, because
52 // FunctionPasses are only allowed to inspect the Function that they're being
53 // run on. Realistically, this likely isn't a problem until we allow
54 // FunctionPasses to run concurrently.
56 #include "llvm/Analysis/CFLAndersAliasAnalysis.h"
57 #include "AliasAnalysisSummary.h"
59 #include "llvm/ADT/DenseMap.h"
60 #include "llvm/ADT/DenseMapInfo.h"
61 #include "llvm/ADT/DenseSet.h"
62 #include "llvm/ADT/None.h"
63 #include "llvm/ADT/Optional.h"
64 #include "llvm/ADT/STLExtras.h"
65 #include "llvm/ADT/SmallVector.h"
66 #include "llvm/ADT/iterator_range.h"
67 #include "llvm/Analysis/AliasAnalysis.h"
68 #include "llvm/Analysis/MemoryLocation.h"
69 #include "llvm/IR/Argument.h"
70 #include "llvm/IR/Function.h"
71 #include "llvm/IR/PassManager.h"
72 #include "llvm/IR/Type.h"
73 #include "llvm/Pass.h"
74 #include "llvm/Support/Casting.h"
75 #include "llvm/Support/Compiler.h"
76 #include "llvm/Support/Debug.h"
77 #include "llvm/Support/raw_ostream.h"
88 using namespace llvm::cflaa
;
90 #define DEBUG_TYPE "cfl-anders-aa"
92 CFLAndersAAResult::CFLAndersAAResult(const TargetLibraryInfo
&TLI
) : TLI(TLI
) {}
93 CFLAndersAAResult::CFLAndersAAResult(CFLAndersAAResult
&&RHS
)
94 : AAResultBase(std::move(RHS
)), TLI(RHS
.TLI
) {}
95 CFLAndersAAResult::~CFLAndersAAResult() = default;
99 enum class MatchState
: uint8_t {
100 // The following state represents S1 in the paper.
101 FlowFromReadOnly
= 0,
102 // The following two states together represent S2 in the paper.
103 // The 'NoReadWrite' suffix indicates that there exists an alias path that
104 // does not contain assignment and reverse assignment edges.
105 // The 'ReadOnly' suffix indicates that there exists an alias path that
106 // contains reverse assignment edges only.
107 FlowFromMemAliasNoReadWrite
,
108 FlowFromMemAliasReadOnly
,
109 // The following two states together represent S3 in the paper.
110 // The 'WriteOnly' suffix indicates that there exists an alias path that
111 // contains assignment edges only.
112 // The 'ReadWrite' suffix indicates that there exists an alias path that
113 // contains both assignment and reverse assignment edges. Note that if X and Y
114 // are reachable at 'ReadWrite' state, it does NOT mean X is both read from
115 // and written to Y. Instead, it means that a third value Z is written to both
119 // The following two states together represent S4 in the paper.
120 FlowToMemAliasWriteOnly
,
121 FlowToMemAliasReadWrite
,
124 using StateSet
= std::bitset
<7>;
126 const unsigned ReadOnlyStateMask
=
127 (1U << static_cast<uint8_t>(MatchState::FlowFromReadOnly
)) |
128 (1U << static_cast<uint8_t>(MatchState::FlowFromMemAliasReadOnly
));
129 const unsigned WriteOnlyStateMask
=
130 (1U << static_cast<uint8_t>(MatchState::FlowToWriteOnly
)) |
131 (1U << static_cast<uint8_t>(MatchState::FlowToMemAliasWriteOnly
));
133 // A pair that consists of a value and an offset
139 bool operator==(OffsetValue LHS
, OffsetValue RHS
) {
140 return LHS
.Val
== RHS
.Val
&& LHS
.Offset
== RHS
.Offset
;
142 bool operator<(OffsetValue LHS
, OffsetValue RHS
) {
143 return std::less
<const Value
*>()(LHS
.Val
, RHS
.Val
) ||
144 (LHS
.Val
== RHS
.Val
&& LHS
.Offset
< RHS
.Offset
);
147 // A pair that consists of an InstantiatedValue and an offset
148 struct OffsetInstantiatedValue
{
149 InstantiatedValue IVal
;
153 bool operator==(OffsetInstantiatedValue LHS
, OffsetInstantiatedValue RHS
) {
154 return LHS
.IVal
== RHS
.IVal
&& LHS
.Offset
== RHS
.Offset
;
157 // We use ReachabilitySet to keep track of value aliases (The nonterminal "V" in
158 // the paper) during the analysis.
159 class ReachabilitySet
{
160 using ValueStateMap
= DenseMap
<InstantiatedValue
, StateSet
>;
161 using ValueReachMap
= DenseMap
<InstantiatedValue
, ValueStateMap
>;
163 ValueReachMap ReachMap
;
166 using const_valuestate_iterator
= ValueStateMap::const_iterator
;
167 using const_value_iterator
= ValueReachMap::const_iterator
;
169 // Insert edge 'From->To' at state 'State'
170 bool insert(InstantiatedValue From
, InstantiatedValue To
, MatchState State
) {
172 auto &States
= ReachMap
[To
][From
];
173 auto Idx
= static_cast<size_t>(State
);
174 if (!States
.test(Idx
)) {
181 // Return the set of all ('From', 'State') pair for a given node 'To'
182 iterator_range
<const_valuestate_iterator
>
183 reachableValueAliases(InstantiatedValue V
) const {
184 auto Itr
= ReachMap
.find(V
);
185 if (Itr
== ReachMap
.end())
186 return make_range
<const_valuestate_iterator
>(const_valuestate_iterator(),
187 const_valuestate_iterator());
188 return make_range
<const_valuestate_iterator
>(Itr
->second
.begin(),
192 iterator_range
<const_value_iterator
> value_mappings() const {
193 return make_range
<const_value_iterator
>(ReachMap
.begin(), ReachMap
.end());
197 // We use AliasMemSet to keep track of all memory aliases (the nonterminal "M"
198 // in the paper) during the analysis.
200 using MemSet
= DenseSet
<InstantiatedValue
>;
201 using MemMapType
= DenseMap
<InstantiatedValue
, MemSet
>;
206 using const_mem_iterator
= MemSet::const_iterator
;
208 bool insert(InstantiatedValue LHS
, InstantiatedValue RHS
) {
209 // Top-level values can never be memory aliases because one cannot take the
211 assert(LHS
.DerefLevel
> 0 && RHS
.DerefLevel
> 0);
212 return MemMap
[LHS
].insert(RHS
).second
;
215 const MemSet
*getMemoryAliases(InstantiatedValue V
) const {
216 auto Itr
= MemMap
.find(V
);
217 if (Itr
== MemMap
.end())
223 // We use AliasAttrMap to keep track of the AliasAttr of each node.
225 using MapType
= DenseMap
<InstantiatedValue
, AliasAttrs
>;
230 using const_iterator
= MapType::const_iterator
;
232 bool add(InstantiatedValue V
, AliasAttrs Attr
) {
233 auto &OldAttr
= AttrMap
[V
];
234 auto NewAttr
= OldAttr
| Attr
;
235 if (OldAttr
== NewAttr
)
241 AliasAttrs
getAttrs(InstantiatedValue V
) const {
243 auto Itr
= AttrMap
.find(V
);
244 if (Itr
!= AttrMap
.end())
249 iterator_range
<const_iterator
> mappings() const {
250 return make_range
<const_iterator
>(AttrMap
.begin(), AttrMap
.end());
254 struct WorkListItem
{
255 InstantiatedValue From
;
256 InstantiatedValue To
;
260 struct ValueSummary
{
262 InterfaceValue IValue
;
265 SmallVector
<Record
, 4> FromRecords
, ToRecords
;
268 } // end anonymous namespace
272 // Specialize DenseMapInfo for OffsetValue.
273 template <> struct DenseMapInfo
<OffsetValue
> {
274 static OffsetValue
getEmptyKey() {
275 return OffsetValue
{DenseMapInfo
<const Value
*>::getEmptyKey(),
276 DenseMapInfo
<int64_t>::getEmptyKey()};
279 static OffsetValue
getTombstoneKey() {
280 return OffsetValue
{DenseMapInfo
<const Value
*>::getTombstoneKey(),
281 DenseMapInfo
<int64_t>::getEmptyKey()};
284 static unsigned getHashValue(const OffsetValue
&OVal
) {
285 return DenseMapInfo
<std::pair
<const Value
*, int64_t>>::getHashValue(
286 std::make_pair(OVal
.Val
, OVal
.Offset
));
289 static bool isEqual(const OffsetValue
&LHS
, const OffsetValue
&RHS
) {
294 // Specialize DenseMapInfo for OffsetInstantiatedValue.
295 template <> struct DenseMapInfo
<OffsetInstantiatedValue
> {
296 static OffsetInstantiatedValue
getEmptyKey() {
297 return OffsetInstantiatedValue
{
298 DenseMapInfo
<InstantiatedValue
>::getEmptyKey(),
299 DenseMapInfo
<int64_t>::getEmptyKey()};
302 static OffsetInstantiatedValue
getTombstoneKey() {
303 return OffsetInstantiatedValue
{
304 DenseMapInfo
<InstantiatedValue
>::getTombstoneKey(),
305 DenseMapInfo
<int64_t>::getEmptyKey()};
308 static unsigned getHashValue(const OffsetInstantiatedValue
&OVal
) {
309 return DenseMapInfo
<std::pair
<InstantiatedValue
, int64_t>>::getHashValue(
310 std::make_pair(OVal
.IVal
, OVal
.Offset
));
313 static bool isEqual(const OffsetInstantiatedValue
&LHS
,
314 const OffsetInstantiatedValue
&RHS
) {
319 } // end namespace llvm
321 class CFLAndersAAResult::FunctionInfo
{
322 /// Map a value to other values that may alias it
323 /// Since the alias relation is symmetric, to save some space we assume values
324 /// are properly ordered: if a and b alias each other, and a < b, then b is in
325 /// AliasMap[a] but not vice versa.
326 DenseMap
<const Value
*, std::vector
<OffsetValue
>> AliasMap
;
328 /// Map a value to its corresponding AliasAttrs
329 DenseMap
<const Value
*, AliasAttrs
> AttrMap
;
331 /// Summary of externally visible effects.
332 AliasSummary Summary
;
334 Optional
<AliasAttrs
> getAttrs(const Value
*) const;
337 FunctionInfo(const Function
&, const SmallVectorImpl
<Value
*> &,
338 const ReachabilitySet
&, const AliasAttrMap
&);
340 bool mayAlias(const Value
*, LocationSize
, const Value
*, LocationSize
) const;
341 const AliasSummary
&getAliasSummary() const { return Summary
; }
344 static bool hasReadOnlyState(StateSet Set
) {
345 return (Set
& StateSet(ReadOnlyStateMask
)).any();
348 static bool hasWriteOnlyState(StateSet Set
) {
349 return (Set
& StateSet(WriteOnlyStateMask
)).any();
352 static Optional
<InterfaceValue
>
353 getInterfaceValue(InstantiatedValue IValue
,
354 const SmallVectorImpl
<Value
*> &RetVals
) {
355 auto Val
= IValue
.Val
;
357 Optional
<unsigned> Index
;
358 if (auto Arg
= dyn_cast
<Argument
>(Val
))
359 Index
= Arg
->getArgNo() + 1;
360 else if (is_contained(RetVals
, Val
))
364 return InterfaceValue
{*Index
, IValue
.DerefLevel
};
368 static void populateAttrMap(DenseMap
<const Value
*, AliasAttrs
> &AttrMap
,
369 const AliasAttrMap
&AMap
) {
370 for (const auto &Mapping
: AMap
.mappings()) {
371 auto IVal
= Mapping
.first
;
373 // Insert IVal into the map
374 auto &Attr
= AttrMap
[IVal
.Val
];
375 // AttrMap only cares about top-level values
376 if (IVal
.DerefLevel
== 0)
377 Attr
|= Mapping
.second
;
382 populateAliasMap(DenseMap
<const Value
*, std::vector
<OffsetValue
>> &AliasMap
,
383 const ReachabilitySet
&ReachSet
) {
384 for (const auto &OuterMapping
: ReachSet
.value_mappings()) {
385 // AliasMap only cares about top-level values
386 if (OuterMapping
.first
.DerefLevel
> 0)
389 auto Val
= OuterMapping
.first
.Val
;
390 auto &AliasList
= AliasMap
[Val
];
391 for (const auto &InnerMapping
: OuterMapping
.second
) {
392 // Again, AliasMap only cares about top-level values
393 if (InnerMapping
.first
.DerefLevel
== 0)
394 AliasList
.push_back(OffsetValue
{InnerMapping
.first
.Val
, UnknownOffset
});
397 // Sort AliasList for faster lookup
398 llvm::sort(AliasList
);
402 static void populateExternalRelations(
403 SmallVectorImpl
<ExternalRelation
> &ExtRelations
, const Function
&Fn
,
404 const SmallVectorImpl
<Value
*> &RetVals
, const ReachabilitySet
&ReachSet
) {
405 // If a function only returns one of its argument X, then X will be both an
406 // argument and a return value at the same time. This is an edge case that
407 // needs special handling here.
408 for (const auto &Arg
: Fn
.args()) {
409 if (is_contained(RetVals
, &Arg
)) {
410 auto ArgVal
= InterfaceValue
{Arg
.getArgNo() + 1, 0};
411 auto RetVal
= InterfaceValue
{0, 0};
412 ExtRelations
.push_back(ExternalRelation
{ArgVal
, RetVal
, 0});
416 // Below is the core summary construction logic.
417 // A naive solution of adding only the value aliases that are parameters or
418 // return values in ReachSet to the summary won't work: It is possible that a
419 // parameter P is written into an intermediate value I, and the function
420 // subsequently returns *I. In that case, *I is does not value alias anything
421 // in ReachSet, and the naive solution will miss a summary edge from (P, 1) to
423 // To account for the aforementioned case, we need to check each non-parameter
424 // and non-return value for the possibility of acting as an intermediate.
425 // 'ValueMap' here records, for each value, which InterfaceValues read from or
426 // write into it. If both the read list and the write list of a given value
427 // are non-empty, we know that a particular value is an intermidate and we
428 // need to add summary edges from the writes to the reads.
429 DenseMap
<Value
*, ValueSummary
> ValueMap
;
430 for (const auto &OuterMapping
: ReachSet
.value_mappings()) {
431 if (auto Dst
= getInterfaceValue(OuterMapping
.first
, RetVals
)) {
432 for (const auto &InnerMapping
: OuterMapping
.second
) {
433 // If Src is a param/return value, we get a same-level assignment.
434 if (auto Src
= getInterfaceValue(InnerMapping
.first
, RetVals
)) {
435 // This may happen if both Dst and Src are return values
439 if (hasReadOnlyState(InnerMapping
.second
))
440 ExtRelations
.push_back(ExternalRelation
{*Dst
, *Src
, UnknownOffset
});
441 // No need to check for WriteOnly state, since ReachSet is symmetric
443 // If Src is not a param/return, add it to ValueMap
444 auto SrcIVal
= InnerMapping
.first
;
445 if (hasReadOnlyState(InnerMapping
.second
))
446 ValueMap
[SrcIVal
.Val
].FromRecords
.push_back(
447 ValueSummary::Record
{*Dst
, SrcIVal
.DerefLevel
});
448 if (hasWriteOnlyState(InnerMapping
.second
))
449 ValueMap
[SrcIVal
.Val
].ToRecords
.push_back(
450 ValueSummary::Record
{*Dst
, SrcIVal
.DerefLevel
});
456 for (const auto &Mapping
: ValueMap
) {
457 for (const auto &FromRecord
: Mapping
.second
.FromRecords
) {
458 for (const auto &ToRecord
: Mapping
.second
.ToRecords
) {
459 auto ToLevel
= ToRecord
.DerefLevel
;
460 auto FromLevel
= FromRecord
.DerefLevel
;
461 // Same-level assignments should have already been processed by now
462 if (ToLevel
== FromLevel
)
465 auto SrcIndex
= FromRecord
.IValue
.Index
;
466 auto SrcLevel
= FromRecord
.IValue
.DerefLevel
;
467 auto DstIndex
= ToRecord
.IValue
.Index
;
468 auto DstLevel
= ToRecord
.IValue
.DerefLevel
;
469 if (ToLevel
> FromLevel
)
470 SrcLevel
+= ToLevel
- FromLevel
;
472 DstLevel
+= FromLevel
- ToLevel
;
474 ExtRelations
.push_back(ExternalRelation
{
475 InterfaceValue
{SrcIndex
, SrcLevel
},
476 InterfaceValue
{DstIndex
, DstLevel
}, UnknownOffset
});
481 // Remove duplicates in ExtRelations
482 llvm::sort(ExtRelations
);
483 ExtRelations
.erase(std::unique(ExtRelations
.begin(), ExtRelations
.end()),
487 static void populateExternalAttributes(
488 SmallVectorImpl
<ExternalAttribute
> &ExtAttributes
, const Function
&Fn
,
489 const SmallVectorImpl
<Value
*> &RetVals
, const AliasAttrMap
&AMap
) {
490 for (const auto &Mapping
: AMap
.mappings()) {
491 if (auto IVal
= getInterfaceValue(Mapping
.first
, RetVals
)) {
492 auto Attr
= getExternallyVisibleAttrs(Mapping
.second
);
494 ExtAttributes
.push_back(ExternalAttribute
{*IVal
, Attr
});
499 CFLAndersAAResult::FunctionInfo::FunctionInfo(
500 const Function
&Fn
, const SmallVectorImpl
<Value
*> &RetVals
,
501 const ReachabilitySet
&ReachSet
, const AliasAttrMap
&AMap
) {
502 populateAttrMap(AttrMap
, AMap
);
503 populateExternalAttributes(Summary
.RetParamAttributes
, Fn
, RetVals
, AMap
);
504 populateAliasMap(AliasMap
, ReachSet
);
505 populateExternalRelations(Summary
.RetParamRelations
, Fn
, RetVals
, ReachSet
);
509 CFLAndersAAResult::FunctionInfo::getAttrs(const Value
*V
) const {
510 assert(V
!= nullptr);
512 auto Itr
= AttrMap
.find(V
);
513 if (Itr
!= AttrMap
.end())
518 bool CFLAndersAAResult::FunctionInfo::mayAlias(
519 const Value
*LHS
, LocationSize MaybeLHSSize
, const Value
*RHS
,
520 LocationSize MaybeRHSSize
) const {
523 // Check if we've seen LHS and RHS before. Sometimes LHS or RHS can be created
524 // after the analysis gets executed, and we want to be conservative in those
526 auto MaybeAttrsA
= getAttrs(LHS
);
527 auto MaybeAttrsB
= getAttrs(RHS
);
528 if (!MaybeAttrsA
|| !MaybeAttrsB
)
531 // Check AliasAttrs before AliasMap lookup since it's cheaper
532 auto AttrsA
= *MaybeAttrsA
;
533 auto AttrsB
= *MaybeAttrsB
;
534 if (hasUnknownOrCallerAttr(AttrsA
))
536 if (hasUnknownOrCallerAttr(AttrsB
))
538 if (isGlobalOrArgAttr(AttrsA
))
539 return isGlobalOrArgAttr(AttrsB
);
540 if (isGlobalOrArgAttr(AttrsB
))
541 return isGlobalOrArgAttr(AttrsA
);
543 // At this point both LHS and RHS should point to locally allocated objects
545 auto Itr
= AliasMap
.find(LHS
);
546 if (Itr
!= AliasMap
.end()) {
548 // Find out all (X, Offset) where X == RHS
549 auto Comparator
= [](OffsetValue LHS
, OffsetValue RHS
) {
550 return std::less
<const Value
*>()(LHS
.Val
, RHS
.Val
);
552 #ifdef EXPENSIVE_CHECKS
553 assert(std::is_sorted(Itr
->second
.begin(), Itr
->second
.end(), Comparator
));
555 auto RangePair
= std::equal_range(Itr
->second
.begin(), Itr
->second
.end(),
556 OffsetValue
{RHS
, 0}, Comparator
);
558 if (RangePair
.first
!= RangePair
.second
) {
559 // Be conservative about unknown sizes
560 if (MaybeLHSSize
== LocationSize::unknown() ||
561 MaybeRHSSize
== LocationSize::unknown())
564 const uint64_t LHSSize
= MaybeLHSSize
.getValue();
565 const uint64_t RHSSize
= MaybeRHSSize
.getValue();
567 for (const auto &OVal
: make_range(RangePair
)) {
568 // Be conservative about UnknownOffset
569 if (OVal
.Offset
== UnknownOffset
)
572 // We know that LHS aliases (RHS + OVal.Offset) if the control flow
573 // reaches here. The may-alias query essentially becomes integer
574 // range-overlap queries over two ranges [OVal.Offset, OVal.Offset +
575 // LHSSize) and [0, RHSSize).
577 // Try to be conservative on super large offsets
578 if (LLVM_UNLIKELY(LHSSize
> INT64_MAX
|| RHSSize
> INT64_MAX
))
581 auto LHSStart
= OVal
.Offset
;
582 // FIXME: Do we need to guard against integer overflow?
583 auto LHSEnd
= OVal
.Offset
+ static_cast<int64_t>(LHSSize
);
585 auto RHSEnd
= static_cast<int64_t>(RHSSize
);
586 if (LHSEnd
> RHSStart
&& LHSStart
< RHSEnd
)
595 static void propagate(InstantiatedValue From
, InstantiatedValue To
,
596 MatchState State
, ReachabilitySet
&ReachSet
,
597 std::vector
<WorkListItem
> &WorkList
) {
600 if (ReachSet
.insert(From
, To
, State
))
601 WorkList
.push_back(WorkListItem
{From
, To
, State
});
604 static void initializeWorkList(std::vector
<WorkListItem
> &WorkList
,
605 ReachabilitySet
&ReachSet
,
606 const CFLGraph
&Graph
) {
607 for (const auto &Mapping
: Graph
.value_mappings()) {
608 auto Val
= Mapping
.first
;
609 auto &ValueInfo
= Mapping
.second
;
610 assert(ValueInfo
.getNumLevels() > 0);
612 // Insert all immediate assignment neighbors to the worklist
613 for (unsigned I
= 0, E
= ValueInfo
.getNumLevels(); I
< E
; ++I
) {
614 auto Src
= InstantiatedValue
{Val
, I
};
615 // If there's an assignment edge from X to Y, it means Y is reachable from
616 // X at S2 and X is reachable from Y at S1
617 for (auto &Edge
: ValueInfo
.getNodeInfoAtLevel(I
).Edges
) {
618 propagate(Edge
.Other
, Src
, MatchState::FlowFromReadOnly
, ReachSet
,
620 propagate(Src
, Edge
.Other
, MatchState::FlowToWriteOnly
, ReachSet
,
627 static Optional
<InstantiatedValue
> getNodeBelow(const CFLGraph
&Graph
,
628 InstantiatedValue V
) {
629 auto NodeBelow
= InstantiatedValue
{V
.Val
, V
.DerefLevel
+ 1};
630 if (Graph
.getNode(NodeBelow
))
635 static void processWorkListItem(const WorkListItem
&Item
, const CFLGraph
&Graph
,
636 ReachabilitySet
&ReachSet
, AliasMemSet
&MemSet
,
637 std::vector
<WorkListItem
> &WorkList
) {
638 auto FromNode
= Item
.From
;
639 auto ToNode
= Item
.To
;
641 auto NodeInfo
= Graph
.getNode(ToNode
);
642 assert(NodeInfo
!= nullptr);
644 // TODO: propagate field offsets
646 // FIXME: Here is a neat trick we can do: since both ReachSet and MemSet holds
647 // relations that are symmetric, we could actually cut the storage by half by
648 // sorting FromNode and ToNode before insertion happens.
650 // The newly added value alias pair may potentially generate more memory
651 // alias pairs. Check for them here.
652 auto FromNodeBelow
= getNodeBelow(Graph
, FromNode
);
653 auto ToNodeBelow
= getNodeBelow(Graph
, ToNode
);
654 if (FromNodeBelow
&& ToNodeBelow
&&
655 MemSet
.insert(*FromNodeBelow
, *ToNodeBelow
)) {
656 propagate(*FromNodeBelow
, *ToNodeBelow
,
657 MatchState::FlowFromMemAliasNoReadWrite
, ReachSet
, WorkList
);
658 for (const auto &Mapping
: ReachSet
.reachableValueAliases(*FromNodeBelow
)) {
659 auto Src
= Mapping
.first
;
660 auto MemAliasPropagate
= [&](MatchState FromState
, MatchState ToState
) {
661 if (Mapping
.second
.test(static_cast<size_t>(FromState
)))
662 propagate(Src
, *ToNodeBelow
, ToState
, ReachSet
, WorkList
);
665 MemAliasPropagate(MatchState::FlowFromReadOnly
,
666 MatchState::FlowFromMemAliasReadOnly
);
667 MemAliasPropagate(MatchState::FlowToWriteOnly
,
668 MatchState::FlowToMemAliasWriteOnly
);
669 MemAliasPropagate(MatchState::FlowToReadWrite
,
670 MatchState::FlowToMemAliasReadWrite
);
674 // This is the core of the state machine walking algorithm. We expand ReachSet
675 // based on which state we are at (which in turn dictates what edges we
677 // From a high-level point of view, the state machine here guarantees two
679 // - If *X and *Y are memory aliases, then X and Y are value aliases
680 // - If Y is an alias of X, then reverse assignment edges (if there is any)
681 // should precede any assignment edges on the path from X to Y.
682 auto NextAssignState
= [&](MatchState State
) {
683 for (const auto &AssignEdge
: NodeInfo
->Edges
)
684 propagate(FromNode
, AssignEdge
.Other
, State
, ReachSet
, WorkList
);
686 auto NextRevAssignState
= [&](MatchState State
) {
687 for (const auto &RevAssignEdge
: NodeInfo
->ReverseEdges
)
688 propagate(FromNode
, RevAssignEdge
.Other
, State
, ReachSet
, WorkList
);
690 auto NextMemState
= [&](MatchState State
) {
691 if (auto AliasSet
= MemSet
.getMemoryAliases(ToNode
)) {
692 for (const auto &MemAlias
: *AliasSet
)
693 propagate(FromNode
, MemAlias
, State
, ReachSet
, WorkList
);
697 switch (Item
.State
) {
698 case MatchState::FlowFromReadOnly
:
699 NextRevAssignState(MatchState::FlowFromReadOnly
);
700 NextAssignState(MatchState::FlowToReadWrite
);
701 NextMemState(MatchState::FlowFromMemAliasReadOnly
);
704 case MatchState::FlowFromMemAliasNoReadWrite
:
705 NextRevAssignState(MatchState::FlowFromReadOnly
);
706 NextAssignState(MatchState::FlowToWriteOnly
);
709 case MatchState::FlowFromMemAliasReadOnly
:
710 NextRevAssignState(MatchState::FlowFromReadOnly
);
711 NextAssignState(MatchState::FlowToReadWrite
);
714 case MatchState::FlowToWriteOnly
:
715 NextAssignState(MatchState::FlowToWriteOnly
);
716 NextMemState(MatchState::FlowToMemAliasWriteOnly
);
719 case MatchState::FlowToReadWrite
:
720 NextAssignState(MatchState::FlowToReadWrite
);
721 NextMemState(MatchState::FlowToMemAliasReadWrite
);
724 case MatchState::FlowToMemAliasWriteOnly
:
725 NextAssignState(MatchState::FlowToWriteOnly
);
728 case MatchState::FlowToMemAliasReadWrite
:
729 NextAssignState(MatchState::FlowToReadWrite
);
734 static AliasAttrMap
buildAttrMap(const CFLGraph
&Graph
,
735 const ReachabilitySet
&ReachSet
) {
736 AliasAttrMap AttrMap
;
737 std::vector
<InstantiatedValue
> WorkList
, NextList
;
739 // Initialize each node with its original AliasAttrs in CFLGraph
740 for (const auto &Mapping
: Graph
.value_mappings()) {
741 auto Val
= Mapping
.first
;
742 auto &ValueInfo
= Mapping
.second
;
743 for (unsigned I
= 0, E
= ValueInfo
.getNumLevels(); I
< E
; ++I
) {
744 auto Node
= InstantiatedValue
{Val
, I
};
745 AttrMap
.add(Node
, ValueInfo
.getNodeInfoAtLevel(I
).Attr
);
746 WorkList
.push_back(Node
);
750 while (!WorkList
.empty()) {
751 for (const auto &Dst
: WorkList
) {
752 auto DstAttr
= AttrMap
.getAttrs(Dst
);
756 // Propagate attr on the same level
757 for (const auto &Mapping
: ReachSet
.reachableValueAliases(Dst
)) {
758 auto Src
= Mapping
.first
;
759 if (AttrMap
.add(Src
, DstAttr
))
760 NextList
.push_back(Src
);
763 // Propagate attr to the levels below
764 auto DstBelow
= getNodeBelow(Graph
, Dst
);
766 if (AttrMap
.add(*DstBelow
, DstAttr
)) {
767 NextList
.push_back(*DstBelow
);
770 DstBelow
= getNodeBelow(Graph
, *DstBelow
);
773 WorkList
.swap(NextList
);
780 CFLAndersAAResult::FunctionInfo
781 CFLAndersAAResult::buildInfoFrom(const Function
&Fn
) {
782 CFLGraphBuilder
<CFLAndersAAResult
> GraphBuilder(
784 // Cast away the constness here due to GraphBuilder's API requirement
785 const_cast<Function
&>(Fn
));
786 auto &Graph
= GraphBuilder
.getCFLGraph();
788 ReachabilitySet ReachSet
;
791 std::vector
<WorkListItem
> WorkList
, NextList
;
792 initializeWorkList(WorkList
, ReachSet
, Graph
);
793 // TODO: make sure we don't stop before the fix point is reached
794 while (!WorkList
.empty()) {
795 for (const auto &Item
: WorkList
)
796 processWorkListItem(Item
, Graph
, ReachSet
, MemSet
, NextList
);
798 NextList
.swap(WorkList
);
802 // Now that we have all the reachability info, propagate AliasAttrs according
804 auto IValueAttrMap
= buildAttrMap(Graph
, ReachSet
);
806 return FunctionInfo(Fn
, GraphBuilder
.getReturnValues(), ReachSet
,
807 std::move(IValueAttrMap
));
810 void CFLAndersAAResult::scan(const Function
&Fn
) {
811 auto InsertPair
= Cache
.insert(std::make_pair(&Fn
, Optional
<FunctionInfo
>()));
813 assert(InsertPair
.second
&&
814 "Trying to scan a function that has already been cached");
816 // Note that we can't do Cache[Fn] = buildSetsFrom(Fn) here: the function call
817 // may get evaluated after operator[], potentially triggering a DenseMap
818 // resize and invalidating the reference returned by operator[]
819 auto FunInfo
= buildInfoFrom(Fn
);
820 Cache
[&Fn
] = std::move(FunInfo
);
821 Handles
.emplace_front(const_cast<Function
*>(&Fn
), this);
824 void CFLAndersAAResult::evict(const Function
*Fn
) { Cache
.erase(Fn
); }
826 const Optional
<CFLAndersAAResult::FunctionInfo
> &
827 CFLAndersAAResult::ensureCached(const Function
&Fn
) {
828 auto Iter
= Cache
.find(&Fn
);
829 if (Iter
== Cache
.end()) {
831 Iter
= Cache
.find(&Fn
);
832 assert(Iter
!= Cache
.end());
833 assert(Iter
->second
.hasValue());
838 const AliasSummary
*CFLAndersAAResult::getAliasSummary(const Function
&Fn
) {
839 auto &FunInfo
= ensureCached(Fn
);
840 if (FunInfo
.hasValue())
841 return &FunInfo
->getAliasSummary();
846 AliasResult
CFLAndersAAResult::query(const MemoryLocation
&LocA
,
847 const MemoryLocation
&LocB
) {
848 auto *ValA
= LocA
.Ptr
;
849 auto *ValB
= LocB
.Ptr
;
851 if (!ValA
->getType()->isPointerTy() || !ValB
->getType()->isPointerTy())
854 auto *Fn
= parentFunctionOfValue(ValA
);
856 Fn
= parentFunctionOfValue(ValB
);
858 // The only times this is known to happen are when globals + InlineAsm are
862 << "CFLAndersAA: could not extract parent function information.\n");
866 assert(!parentFunctionOfValue(ValB
) || parentFunctionOfValue(ValB
) == Fn
);
869 assert(Fn
!= nullptr);
870 auto &FunInfo
= ensureCached(*Fn
);
873 if (FunInfo
->mayAlias(ValA
, LocA
.Size
, ValB
, LocB
.Size
))
878 AliasResult
CFLAndersAAResult::alias(const MemoryLocation
&LocA
,
879 const MemoryLocation
&LocB
) {
880 if (LocA
.Ptr
== LocB
.Ptr
)
883 // Comparisons between global variables and other constants should be
884 // handled by BasicAA.
885 // CFLAndersAA may report NoAlias when comparing a GlobalValue and
886 // ConstantExpr, but every query needs to have at least one Value tied to a
887 // Function, and neither GlobalValues nor ConstantExprs are.
888 if (isa
<Constant
>(LocA
.Ptr
) && isa
<Constant
>(LocB
.Ptr
))
889 return AAResultBase::alias(LocA
, LocB
);
891 AliasResult QueryResult
= query(LocA
, LocB
);
892 if (QueryResult
== MayAlias
)
893 return AAResultBase::alias(LocA
, LocB
);
898 AnalysisKey
CFLAndersAA::Key
;
900 CFLAndersAAResult
CFLAndersAA::run(Function
&F
, FunctionAnalysisManager
&AM
) {
901 return CFLAndersAAResult(AM
.getResult
<TargetLibraryAnalysis
>(F
));
904 char CFLAndersAAWrapperPass::ID
= 0;
905 INITIALIZE_PASS(CFLAndersAAWrapperPass
, "cfl-anders-aa",
906 "Inclusion-Based CFL Alias Analysis", false, true)
908 ImmutablePass
*llvm::createCFLAndersAAWrapperPass() {
909 return new CFLAndersAAWrapperPass();
912 CFLAndersAAWrapperPass::CFLAndersAAWrapperPass() : ImmutablePass(ID
) {
913 initializeCFLAndersAAWrapperPassPass(*PassRegistry::getPassRegistry());
916 void CFLAndersAAWrapperPass::initializePass() {
917 auto &TLIWP
= getAnalysis
<TargetLibraryInfoWrapperPass
>();
918 Result
.reset(new CFLAndersAAResult(TLIWP
.getTLI()));
921 void CFLAndersAAWrapperPass::getAnalysisUsage(AnalysisUsage
&AU
) const {
922 AU
.setPreservesAll();
923 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();