[llvm-exegesis] Fix missing std::move.
[llvm-complete.git] / lib / Analysis / CFLGraph.h
blob12121d7174339bcb58e15d1c371762040877d965
1 //===- CFLGraph.h - Abstract stratified sets implementation. -----*- C++-*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// This file defines CFLGraph, an auxiliary data structure used by CFL-based
12 /// alias analysis.
14 //===----------------------------------------------------------------------===//
16 #ifndef LLVM_LIB_ANALYSIS_CFLGRAPH_H
17 #define LLVM_LIB_ANALYSIS_CFLGRAPH_H
19 #include "AliasAnalysisSummary.h"
20 #include "llvm/ADT/APInt.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/iterator_range.h"
24 #include "llvm/Analysis/MemoryBuiltins.h"
25 #include "llvm/Analysis/TargetLibraryInfo.h"
26 #include "llvm/IR/Argument.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/CallSite.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/GlobalValue.h"
33 #include "llvm/IR/InstVisitor.h"
34 #include "llvm/IR/InstrTypes.h"
35 #include "llvm/IR/Instruction.h"
36 #include "llvm/IR/Instructions.h"
37 #include "llvm/IR/Operator.h"
38 #include "llvm/IR/Type.h"
39 #include "llvm/IR/Value.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include <cassert>
43 #include <cstdint>
44 #include <vector>
46 namespace llvm {
47 namespace cflaa {
49 /// The Program Expression Graph (PEG) of CFL analysis
50 /// CFLGraph is auxiliary data structure used by CFL-based alias analysis to
51 /// describe flow-insensitive pointer-related behaviors. Given an LLVM function,
52 /// the main purpose of this graph is to abstract away unrelated facts and
53 /// translate the rest into a form that can be easily digested by CFL analyses.
54 /// Each Node in the graph is an InstantiatedValue, and each edge represent a
55 /// pointer assignment between InstantiatedValue. Pointer
56 /// references/dereferences are not explicitly stored in the graph: we
57 /// implicitly assume that for each node (X, I) it has a dereference edge to (X,
58 /// I+1) and a reference edge to (X, I-1).
59 class CFLGraph {
60 public:
61 using Node = InstantiatedValue;
63 struct Edge {
64 Node Other;
65 int64_t Offset;
68 using EdgeList = std::vector<Edge>;
70 struct NodeInfo {
71 EdgeList Edges, ReverseEdges;
72 AliasAttrs Attr;
75 class ValueInfo {
76 std::vector<NodeInfo> Levels;
78 public:
79 bool addNodeToLevel(unsigned Level) {
80 auto NumLevels = Levels.size();
81 if (NumLevels > Level)
82 return false;
83 Levels.resize(Level + 1);
84 return true;
87 NodeInfo &getNodeInfoAtLevel(unsigned Level) {
88 assert(Level < Levels.size());
89 return Levels[Level];
91 const NodeInfo &getNodeInfoAtLevel(unsigned Level) const {
92 assert(Level < Levels.size());
93 return Levels[Level];
96 unsigned getNumLevels() const { return Levels.size(); }
99 private:
100 using ValueMap = DenseMap<Value *, ValueInfo>;
102 ValueMap ValueImpls;
104 NodeInfo *getNode(Node N) {
105 auto Itr = ValueImpls.find(N.Val);
106 if (Itr == ValueImpls.end() || Itr->second.getNumLevels() <= N.DerefLevel)
107 return nullptr;
108 return &Itr->second.getNodeInfoAtLevel(N.DerefLevel);
111 public:
112 using const_value_iterator = ValueMap::const_iterator;
114 bool addNode(Node N, AliasAttrs Attr = AliasAttrs()) {
115 assert(N.Val != nullptr);
116 auto &ValInfo = ValueImpls[N.Val];
117 auto Changed = ValInfo.addNodeToLevel(N.DerefLevel);
118 ValInfo.getNodeInfoAtLevel(N.DerefLevel).Attr |= Attr;
119 return Changed;
122 void addAttr(Node N, AliasAttrs Attr) {
123 auto *Info = getNode(N);
124 assert(Info != nullptr);
125 Info->Attr |= Attr;
128 void addEdge(Node From, Node To, int64_t Offset = 0) {
129 auto *FromInfo = getNode(From);
130 assert(FromInfo != nullptr);
131 auto *ToInfo = getNode(To);
132 assert(ToInfo != nullptr);
134 FromInfo->Edges.push_back(Edge{To, Offset});
135 ToInfo->ReverseEdges.push_back(Edge{From, Offset});
138 const NodeInfo *getNode(Node N) const {
139 auto Itr = ValueImpls.find(N.Val);
140 if (Itr == ValueImpls.end() || Itr->second.getNumLevels() <= N.DerefLevel)
141 return nullptr;
142 return &Itr->second.getNodeInfoAtLevel(N.DerefLevel);
145 AliasAttrs attrFor(Node N) const {
146 auto *Info = getNode(N);
147 assert(Info != nullptr);
148 return Info->Attr;
151 iterator_range<const_value_iterator> value_mappings() const {
152 return make_range<const_value_iterator>(ValueImpls.begin(),
153 ValueImpls.end());
157 ///A builder class used to create CFLGraph instance from a given function
158 /// The CFL-AA that uses this builder must provide its own type as a template
159 /// argument. This is necessary for interprocedural processing: CFLGraphBuilder
160 /// needs a way of obtaining the summary of other functions when callinsts are
161 /// encountered.
162 /// As a result, we expect the said CFL-AA to expose a getAliasSummary() public
163 /// member function that takes a Function& and returns the corresponding summary
164 /// as a const AliasSummary*.
165 template <typename CFLAA> class CFLGraphBuilder {
166 // Input of the builder
167 CFLAA &Analysis;
168 const TargetLibraryInfo &TLI;
170 // Output of the builder
171 CFLGraph Graph;
172 SmallVector<Value *, 4> ReturnedValues;
174 // Helper class
175 /// Gets the edges our graph should have, based on an Instruction*
176 class GetEdgesVisitor : public InstVisitor<GetEdgesVisitor, void> {
177 CFLAA &AA;
178 const DataLayout &DL;
179 const TargetLibraryInfo &TLI;
181 CFLGraph &Graph;
182 SmallVectorImpl<Value *> &ReturnValues;
184 static bool hasUsefulEdges(ConstantExpr *CE) {
185 // ConstantExpr doesn't have terminators, invokes, or fences, so only
186 // needs
187 // to check for compares.
188 return CE->getOpcode() != Instruction::ICmp &&
189 CE->getOpcode() != Instruction::FCmp;
192 // Returns possible functions called by CS into the given SmallVectorImpl.
193 // Returns true if targets found, false otherwise.
194 static bool getPossibleTargets(CallSite CS,
195 SmallVectorImpl<Function *> &Output) {
196 if (auto *Fn = CS.getCalledFunction()) {
197 Output.push_back(Fn);
198 return true;
201 // TODO: If the call is indirect, we might be able to enumerate all
202 // potential
203 // targets of the call and return them, rather than just failing.
204 return false;
207 void addNode(Value *Val, AliasAttrs Attr = AliasAttrs()) {
208 assert(Val != nullptr && Val->getType()->isPointerTy());
209 if (auto GVal = dyn_cast<GlobalValue>(Val)) {
210 if (Graph.addNode(InstantiatedValue{GVal, 0},
211 getGlobalOrArgAttrFromValue(*GVal)))
212 Graph.addNode(InstantiatedValue{GVal, 1}, getAttrUnknown());
213 } else if (auto CExpr = dyn_cast<ConstantExpr>(Val)) {
214 if (hasUsefulEdges(CExpr)) {
215 if (Graph.addNode(InstantiatedValue{CExpr, 0}))
216 visitConstantExpr(CExpr);
218 } else
219 Graph.addNode(InstantiatedValue{Val, 0}, Attr);
222 void addAssignEdge(Value *From, Value *To, int64_t Offset = 0) {
223 assert(From != nullptr && To != nullptr);
224 if (!From->getType()->isPointerTy() || !To->getType()->isPointerTy())
225 return;
226 addNode(From);
227 if (To != From) {
228 addNode(To);
229 Graph.addEdge(InstantiatedValue{From, 0}, InstantiatedValue{To, 0},
230 Offset);
234 void addDerefEdge(Value *From, Value *To, bool IsRead) {
235 assert(From != nullptr && To != nullptr);
236 // FIXME: This is subtly broken, due to how we model some instructions
237 // (e.g. extractvalue, extractelement) as loads. Since those take
238 // non-pointer operands, we'll entirely skip adding edges for those.
240 // addAssignEdge seems to have a similar issue with insertvalue, etc.
241 if (!From->getType()->isPointerTy() || !To->getType()->isPointerTy())
242 return;
243 addNode(From);
244 addNode(To);
245 if (IsRead) {
246 Graph.addNode(InstantiatedValue{From, 1});
247 Graph.addEdge(InstantiatedValue{From, 1}, InstantiatedValue{To, 0});
248 } else {
249 Graph.addNode(InstantiatedValue{To, 1});
250 Graph.addEdge(InstantiatedValue{From, 0}, InstantiatedValue{To, 1});
254 void addLoadEdge(Value *From, Value *To) { addDerefEdge(From, To, true); }
255 void addStoreEdge(Value *From, Value *To) { addDerefEdge(From, To, false); }
257 public:
258 GetEdgesVisitor(CFLGraphBuilder &Builder, const DataLayout &DL)
259 : AA(Builder.Analysis), DL(DL), TLI(Builder.TLI), Graph(Builder.Graph),
260 ReturnValues(Builder.ReturnedValues) {}
262 void visitInstruction(Instruction &) {
263 llvm_unreachable("Unsupported instruction encountered");
266 void visitReturnInst(ReturnInst &Inst) {
267 if (auto RetVal = Inst.getReturnValue()) {
268 if (RetVal->getType()->isPointerTy()) {
269 addNode(RetVal);
270 ReturnValues.push_back(RetVal);
275 void visitPtrToIntInst(PtrToIntInst &Inst) {
276 auto *Ptr = Inst.getOperand(0);
277 addNode(Ptr, getAttrEscaped());
280 void visitIntToPtrInst(IntToPtrInst &Inst) {
281 auto *Ptr = &Inst;
282 addNode(Ptr, getAttrUnknown());
285 void visitCastInst(CastInst &Inst) {
286 auto *Src = Inst.getOperand(0);
287 addAssignEdge(Src, &Inst);
290 void visitBinaryOperator(BinaryOperator &Inst) {
291 auto *Op1 = Inst.getOperand(0);
292 auto *Op2 = Inst.getOperand(1);
293 addAssignEdge(Op1, &Inst);
294 addAssignEdge(Op2, &Inst);
297 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &Inst) {
298 auto *Ptr = Inst.getPointerOperand();
299 auto *Val = Inst.getNewValOperand();
300 addStoreEdge(Val, Ptr);
303 void visitAtomicRMWInst(AtomicRMWInst &Inst) {
304 auto *Ptr = Inst.getPointerOperand();
305 auto *Val = Inst.getValOperand();
306 addStoreEdge(Val, Ptr);
309 void visitPHINode(PHINode &Inst) {
310 for (Value *Val : Inst.incoming_values())
311 addAssignEdge(Val, &Inst);
314 void visitGEP(GEPOperator &GEPOp) {
315 uint64_t Offset = UnknownOffset;
316 APInt APOffset(DL.getPointerSizeInBits(GEPOp.getPointerAddressSpace()),
318 if (GEPOp.accumulateConstantOffset(DL, APOffset))
319 Offset = APOffset.getSExtValue();
321 auto *Op = GEPOp.getPointerOperand();
322 addAssignEdge(Op, &GEPOp, Offset);
325 void visitGetElementPtrInst(GetElementPtrInst &Inst) {
326 auto *GEPOp = cast<GEPOperator>(&Inst);
327 visitGEP(*GEPOp);
330 void visitSelectInst(SelectInst &Inst) {
331 // Condition is not processed here (The actual statement producing
332 // the condition result is processed elsewhere). For select, the
333 // condition is evaluated, but not loaded, stored, or assigned
334 // simply as a result of being the condition of a select.
336 auto *TrueVal = Inst.getTrueValue();
337 auto *FalseVal = Inst.getFalseValue();
338 addAssignEdge(TrueVal, &Inst);
339 addAssignEdge(FalseVal, &Inst);
342 void visitAllocaInst(AllocaInst &Inst) { addNode(&Inst); }
344 void visitLoadInst(LoadInst &Inst) {
345 auto *Ptr = Inst.getPointerOperand();
346 auto *Val = &Inst;
347 addLoadEdge(Ptr, Val);
350 void visitStoreInst(StoreInst &Inst) {
351 auto *Ptr = Inst.getPointerOperand();
352 auto *Val = Inst.getValueOperand();
353 addStoreEdge(Val, Ptr);
356 void visitVAArgInst(VAArgInst &Inst) {
357 // We can't fully model va_arg here. For *Ptr = Inst.getOperand(0), it
358 // does
359 // two things:
360 // 1. Loads a value from *((T*)*Ptr).
361 // 2. Increments (stores to) *Ptr by some target-specific amount.
362 // For now, we'll handle this like a landingpad instruction (by placing
363 // the
364 // result in its own group, and having that group alias externals).
365 if (Inst.getType()->isPointerTy())
366 addNode(&Inst, getAttrUnknown());
369 static bool isFunctionExternal(Function *Fn) {
370 return !Fn->hasExactDefinition();
373 bool tryInterproceduralAnalysis(CallSite CS,
374 const SmallVectorImpl<Function *> &Fns) {
375 assert(Fns.size() > 0);
377 if (CS.arg_size() > MaxSupportedArgsInSummary)
378 return false;
380 // Exit early if we'll fail anyway
381 for (auto *Fn : Fns) {
382 if (isFunctionExternal(Fn) || Fn->isVarArg())
383 return false;
384 // Fail if the caller does not provide enough arguments
385 assert(Fn->arg_size() <= CS.arg_size());
386 if (!AA.getAliasSummary(*Fn))
387 return false;
390 for (auto *Fn : Fns) {
391 auto Summary = AA.getAliasSummary(*Fn);
392 assert(Summary != nullptr);
394 auto &RetParamRelations = Summary->RetParamRelations;
395 for (auto &Relation : RetParamRelations) {
396 auto IRelation = instantiateExternalRelation(Relation, CS);
397 if (IRelation.hasValue()) {
398 Graph.addNode(IRelation->From);
399 Graph.addNode(IRelation->To);
400 Graph.addEdge(IRelation->From, IRelation->To);
404 auto &RetParamAttributes = Summary->RetParamAttributes;
405 for (auto &Attribute : RetParamAttributes) {
406 auto IAttr = instantiateExternalAttribute(Attribute, CS);
407 if (IAttr.hasValue())
408 Graph.addNode(IAttr->IValue, IAttr->Attr);
412 return true;
415 void visitCallSite(CallSite CS) {
416 auto Inst = CS.getInstruction();
418 // Make sure all arguments and return value are added to the graph first
419 for (Value *V : CS.args())
420 if (V->getType()->isPointerTy())
421 addNode(V);
422 if (Inst->getType()->isPointerTy())
423 addNode(Inst);
425 // Check if Inst is a call to a library function that
426 // allocates/deallocates on the heap. Those kinds of functions do not
427 // introduce any aliases.
428 // TODO: address other common library functions such as realloc(),
429 // strdup(), etc.
430 if (isMallocOrCallocLikeFn(Inst, &TLI) || isFreeCall(Inst, &TLI))
431 return;
433 // TODO: Add support for noalias args/all the other fun function
434 // attributes that we can tack on.
435 SmallVector<Function *, 4> Targets;
436 if (getPossibleTargets(CS, Targets))
437 if (tryInterproceduralAnalysis(CS, Targets))
438 return;
440 // Because the function is opaque, we need to note that anything
441 // could have happened to the arguments (unless the function is marked
442 // readonly or readnone), and that the result could alias just about
443 // anything, too (unless the result is marked noalias).
444 if (!CS.onlyReadsMemory())
445 for (Value *V : CS.args()) {
446 if (V->getType()->isPointerTy()) {
447 // The argument itself escapes.
448 Graph.addAttr(InstantiatedValue{V, 0}, getAttrEscaped());
449 // The fate of argument memory is unknown. Note that since
450 // AliasAttrs is transitive with respect to dereference, we only
451 // need to specify it for the first-level memory.
452 Graph.addNode(InstantiatedValue{V, 1}, getAttrUnknown());
456 if (Inst->getType()->isPointerTy()) {
457 auto *Fn = CS.getCalledFunction();
458 if (Fn == nullptr || !Fn->returnDoesNotAlias())
459 // No need to call addNode() since we've added Inst at the
460 // beginning of this function and we know it is not a global.
461 Graph.addAttr(InstantiatedValue{Inst, 0}, getAttrUnknown());
465 /// Because vectors/aggregates are immutable and unaddressable, there's
466 /// nothing we can do to coax a value out of them, other than calling
467 /// Extract{Element,Value}. We can effectively treat them as pointers to
468 /// arbitrary memory locations we can store in and load from.
469 void visitExtractElementInst(ExtractElementInst &Inst) {
470 auto *Ptr = Inst.getVectorOperand();
471 auto *Val = &Inst;
472 addLoadEdge(Ptr, Val);
475 void visitInsertElementInst(InsertElementInst &Inst) {
476 auto *Vec = Inst.getOperand(0);
477 auto *Val = Inst.getOperand(1);
478 addAssignEdge(Vec, &Inst);
479 addStoreEdge(Val, &Inst);
482 void visitLandingPadInst(LandingPadInst &Inst) {
483 // Exceptions come from "nowhere", from our analysis' perspective.
484 // So we place the instruction its own group, noting that said group may
485 // alias externals
486 if (Inst.getType()->isPointerTy())
487 addNode(&Inst, getAttrUnknown());
490 void visitInsertValueInst(InsertValueInst &Inst) {
491 auto *Agg = Inst.getOperand(0);
492 auto *Val = Inst.getOperand(1);
493 addAssignEdge(Agg, &Inst);
494 addStoreEdge(Val, &Inst);
497 void visitExtractValueInst(ExtractValueInst &Inst) {
498 auto *Ptr = Inst.getAggregateOperand();
499 addLoadEdge(Ptr, &Inst);
502 void visitShuffleVectorInst(ShuffleVectorInst &Inst) {
503 auto *From1 = Inst.getOperand(0);
504 auto *From2 = Inst.getOperand(1);
505 addAssignEdge(From1, &Inst);
506 addAssignEdge(From2, &Inst);
509 void visitConstantExpr(ConstantExpr *CE) {
510 switch (CE->getOpcode()) {
511 case Instruction::GetElementPtr: {
512 auto GEPOp = cast<GEPOperator>(CE);
513 visitGEP(*GEPOp);
514 break;
517 case Instruction::PtrToInt: {
518 addNode(CE->getOperand(0), getAttrEscaped());
519 break;
522 case Instruction::IntToPtr: {
523 addNode(CE, getAttrUnknown());
524 break;
527 case Instruction::BitCast:
528 case Instruction::AddrSpaceCast:
529 case Instruction::Trunc:
530 case Instruction::ZExt:
531 case Instruction::SExt:
532 case Instruction::FPExt:
533 case Instruction::FPTrunc:
534 case Instruction::UIToFP:
535 case Instruction::SIToFP:
536 case Instruction::FPToUI:
537 case Instruction::FPToSI: {
538 addAssignEdge(CE->getOperand(0), CE);
539 break;
542 case Instruction::Select: {
543 addAssignEdge(CE->getOperand(1), CE);
544 addAssignEdge(CE->getOperand(2), CE);
545 break;
548 case Instruction::InsertElement:
549 case Instruction::InsertValue: {
550 addAssignEdge(CE->getOperand(0), CE);
551 addStoreEdge(CE->getOperand(1), CE);
552 break;
555 case Instruction::ExtractElement:
556 case Instruction::ExtractValue: {
557 addLoadEdge(CE->getOperand(0), CE);
558 break;
561 case Instruction::Add:
562 case Instruction::Sub:
563 case Instruction::FSub:
564 case Instruction::Mul:
565 case Instruction::FMul:
566 case Instruction::UDiv:
567 case Instruction::SDiv:
568 case Instruction::FDiv:
569 case Instruction::URem:
570 case Instruction::SRem:
571 case Instruction::FRem:
572 case Instruction::And:
573 case Instruction::Or:
574 case Instruction::Xor:
575 case Instruction::Shl:
576 case Instruction::LShr:
577 case Instruction::AShr:
578 case Instruction::ICmp:
579 case Instruction::FCmp:
580 case Instruction::ShuffleVector: {
581 addAssignEdge(CE->getOperand(0), CE);
582 addAssignEdge(CE->getOperand(1), CE);
583 break;
586 default:
587 llvm_unreachable("Unknown instruction type encountered!");
592 // Helper functions
594 // Determines whether or not we an instruction is useless to us (e.g.
595 // FenceInst)
596 static bool hasUsefulEdges(Instruction *Inst) {
597 bool IsNonInvokeRetTerminator = Inst->isTerminator() &&
598 !isa<InvokeInst>(Inst) &&
599 !isa<ReturnInst>(Inst);
600 return !isa<CmpInst>(Inst) && !isa<FenceInst>(Inst) &&
601 !IsNonInvokeRetTerminator;
604 void addArgumentToGraph(Argument &Arg) {
605 if (Arg.getType()->isPointerTy()) {
606 Graph.addNode(InstantiatedValue{&Arg, 0},
607 getGlobalOrArgAttrFromValue(Arg));
608 // Pointees of a formal parameter is known to the caller
609 Graph.addNode(InstantiatedValue{&Arg, 1}, getAttrCaller());
613 // Given an Instruction, this will add it to the graph, along with any
614 // Instructions that are potentially only available from said Instruction
615 // For example, given the following line:
616 // %0 = load i16* getelementptr ([1 x i16]* @a, 0, 0), align 2
617 // addInstructionToGraph would add both the `load` and `getelementptr`
618 // instructions to the graph appropriately.
619 void addInstructionToGraph(GetEdgesVisitor &Visitor, Instruction &Inst) {
620 if (!hasUsefulEdges(&Inst))
621 return;
623 Visitor.visit(Inst);
626 // Builds the graph needed for constructing the StratifiedSets for the given
627 // function
628 void buildGraphFrom(Function &Fn) {
629 GetEdgesVisitor Visitor(*this, Fn.getParent()->getDataLayout());
631 for (auto &Bb : Fn.getBasicBlockList())
632 for (auto &Inst : Bb.getInstList())
633 addInstructionToGraph(Visitor, Inst);
635 for (auto &Arg : Fn.args())
636 addArgumentToGraph(Arg);
639 public:
640 CFLGraphBuilder(CFLAA &Analysis, const TargetLibraryInfo &TLI, Function &Fn)
641 : Analysis(Analysis), TLI(TLI) {
642 buildGraphFrom(Fn);
645 const CFLGraph &getCFLGraph() const { return Graph; }
646 const SmallVector<Value *, 4> &getReturnValues() const {
647 return ReturnedValues;
651 } // end namespace cflaa
652 } // end namespace llvm
654 #endif // LLVM_LIB_ANALYSIS_CFLGRAPH_H