1 //===- CGSCCPassManager.cpp - Managing & running CGSCC passes -------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 #include "llvm/Analysis/CGSCCPassManager.h"
11 #include "llvm/ADT/ArrayRef.h"
12 #include "llvm/ADT/Optional.h"
13 #include "llvm/ADT/STLExtras.h"
14 #include "llvm/ADT/SetVector.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/iterator_range.h"
18 #include "llvm/Analysis/LazyCallGraph.h"
19 #include "llvm/IR/CallSite.h"
20 #include "llvm/IR/Constant.h"
21 #include "llvm/IR/InstIterator.h"
22 #include "llvm/IR/Instruction.h"
23 #include "llvm/IR/PassManager.h"
24 #include "llvm/Support/Casting.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/raw_ostream.h"
31 #define DEBUG_TYPE "cgscc"
35 // Explicit template instantiations and specialization definitions for core
39 // Explicit instantiations for the core proxy templates.
40 template class AllAnalysesOn
<LazyCallGraph::SCC
>;
41 template class AnalysisManager
<LazyCallGraph::SCC
, LazyCallGraph
&>;
42 template class PassManager
<LazyCallGraph::SCC
, CGSCCAnalysisManager
,
43 LazyCallGraph
&, CGSCCUpdateResult
&>;
44 template class InnerAnalysisManagerProxy
<CGSCCAnalysisManager
, Module
>;
45 template class OuterAnalysisManagerProxy
<ModuleAnalysisManager
,
46 LazyCallGraph::SCC
, LazyCallGraph
&>;
47 template class OuterAnalysisManagerProxy
<CGSCCAnalysisManager
, Function
>;
49 /// Explicitly specialize the pass manager run method to handle call graph
53 PassManager
<LazyCallGraph::SCC
, CGSCCAnalysisManager
, LazyCallGraph
&,
54 CGSCCUpdateResult
&>::run(LazyCallGraph::SCC
&InitialC
,
55 CGSCCAnalysisManager
&AM
,
56 LazyCallGraph
&G
, CGSCCUpdateResult
&UR
) {
57 // Request PassInstrumentation from analysis manager, will use it to run
58 // instrumenting callbacks for the passes later.
59 PassInstrumentation PI
=
60 AM
.getResult
<PassInstrumentationAnalysis
>(InitialC
, G
);
62 PreservedAnalyses PA
= PreservedAnalyses::all();
65 dbgs() << "Starting CGSCC pass manager run.\n";
67 // The SCC may be refined while we are running passes over it, so set up
68 // a pointer that we can update.
69 LazyCallGraph::SCC
*C
= &InitialC
;
71 for (auto &Pass
: Passes
) {
73 dbgs() << "Running pass: " << Pass
->name() << " on " << *C
<< "\n";
75 // Check the PassInstrumentation's BeforePass callbacks before running the
76 // pass, skip its execution completely if asked to (callback returns false).
77 if (!PI
.runBeforePass(*Pass
, *C
))
80 PreservedAnalyses PassPA
= Pass
->run(*C
, AM
, G
, UR
);
82 PI
.runAfterPass(*Pass
, *C
);
84 // Update the SCC if necessary.
85 C
= UR
.UpdatedC
? UR
.UpdatedC
: C
;
87 // If the CGSCC pass wasn't able to provide a valid updated SCC, the
88 // current SCC may simply need to be skipped if invalid.
89 if (UR
.InvalidatedSCCs
.count(C
)) {
90 LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n");
93 // Check that we didn't miss any update scenario.
94 assert(C
->begin() != C
->end() && "Cannot have an empty SCC!");
96 // Update the analysis manager as each pass runs and potentially
97 // invalidates analyses.
98 AM
.invalidate(*C
, PassPA
);
100 // Finally, we intersect the final preserved analyses to compute the
101 // aggregate preserved set for this pass manager.
102 PA
.intersect(std::move(PassPA
));
104 // FIXME: Historically, the pass managers all called the LLVM context's
105 // yield function here. We don't have a generic way to acquire the
106 // context and it isn't yet clear what the right pattern is for yielding
107 // in the new pass manager so it is currently omitted.
108 // ...getContext().yield();
111 // Invalidation was handled after each pass in the above loop for the current
112 // SCC. Therefore, the remaining analysis results in the AnalysisManager are
113 // preserved. We mark this with a set so that we don't need to inspect each
115 PA
.preserveSet
<AllAnalysesOn
<LazyCallGraph::SCC
>>();
118 dbgs() << "Finished CGSCC pass manager run.\n";
123 bool CGSCCAnalysisManagerModuleProxy::Result::invalidate(
124 Module
&M
, const PreservedAnalyses
&PA
,
125 ModuleAnalysisManager::Invalidator
&Inv
) {
126 // If literally everything is preserved, we're done.
127 if (PA
.areAllPreserved())
128 return false; // This is still a valid proxy.
130 // If this proxy or the call graph is going to be invalidated, we also need
131 // to clear all the keys coming from that analysis.
133 // We also directly invalidate the FAM's module proxy if necessary, and if
134 // that proxy isn't preserved we can't preserve this proxy either. We rely on
135 // it to handle module -> function analysis invalidation in the face of
136 // structural changes and so if it's unavailable we conservatively clear the
137 // entire SCC layer as well rather than trying to do invalidation ourselves.
138 auto PAC
= PA
.getChecker
<CGSCCAnalysisManagerModuleProxy
>();
139 if (!(PAC
.preserved() || PAC
.preservedSet
<AllAnalysesOn
<Module
>>()) ||
140 Inv
.invalidate
<LazyCallGraphAnalysis
>(M
, PA
) ||
141 Inv
.invalidate
<FunctionAnalysisManagerModuleProxy
>(M
, PA
)) {
144 // And the proxy itself should be marked as invalid so that we can observe
145 // the new call graph. This isn't strictly necessary because we cheat
146 // above, but is still useful.
150 // Directly check if the relevant set is preserved so we can short circuit
151 // invalidating SCCs below.
152 bool AreSCCAnalysesPreserved
=
153 PA
.allAnalysesInSetPreserved
<AllAnalysesOn
<LazyCallGraph::SCC
>>();
155 // Ok, we have a graph, so we can propagate the invalidation down into it.
157 for (auto &RC
: G
->postorder_ref_sccs())
159 Optional
<PreservedAnalyses
> InnerPA
;
161 // Check to see whether the preserved set needs to be adjusted based on
162 // module-level analysis invalidation triggering deferred invalidation
164 if (auto *OuterProxy
=
165 InnerAM
->getCachedResult
<ModuleAnalysisManagerCGSCCProxy
>(C
))
166 for (const auto &OuterInvalidationPair
:
167 OuterProxy
->getOuterInvalidations()) {
168 AnalysisKey
*OuterAnalysisID
= OuterInvalidationPair
.first
;
169 const auto &InnerAnalysisIDs
= OuterInvalidationPair
.second
;
170 if (Inv
.invalidate(OuterAnalysisID
, M
, PA
)) {
173 for (AnalysisKey
*InnerAnalysisID
: InnerAnalysisIDs
)
174 InnerPA
->abandon(InnerAnalysisID
);
178 // Check if we needed a custom PA set. If so we'll need to run the inner
181 InnerAM
->invalidate(C
, *InnerPA
);
185 // Otherwise we only need to do invalidation if the original PA set didn't
186 // preserve all SCC analyses.
187 if (!AreSCCAnalysesPreserved
)
188 InnerAM
->invalidate(C
, PA
);
191 // Return false to indicate that this result is still a valid proxy.
196 CGSCCAnalysisManagerModuleProxy::Result
197 CGSCCAnalysisManagerModuleProxy::run(Module
&M
, ModuleAnalysisManager
&AM
) {
198 // Force the Function analysis manager to also be available so that it can
199 // be accessed in an SCC analysis and proxied onward to function passes.
200 // FIXME: It is pretty awkward to just drop the result here and assert that
201 // we can find it again later.
202 (void)AM
.getResult
<FunctionAnalysisManagerModuleProxy
>(M
);
204 return Result(*InnerAM
, AM
.getResult
<LazyCallGraphAnalysis
>(M
));
207 AnalysisKey
FunctionAnalysisManagerCGSCCProxy::Key
;
209 FunctionAnalysisManagerCGSCCProxy::Result
210 FunctionAnalysisManagerCGSCCProxy::run(LazyCallGraph::SCC
&C
,
211 CGSCCAnalysisManager
&AM
,
213 // Collect the FunctionAnalysisManager from the Module layer and use that to
214 // build the proxy result.
216 // This allows us to rely on the FunctionAnalysisMangaerModuleProxy to
217 // invalidate the function analyses.
218 auto &MAM
= AM
.getResult
<ModuleAnalysisManagerCGSCCProxy
>(C
, CG
).getManager();
219 Module
&M
= *C
.begin()->getFunction().getParent();
220 auto *FAMProxy
= MAM
.getCachedResult
<FunctionAnalysisManagerModuleProxy
>(M
);
221 assert(FAMProxy
&& "The CGSCC pass manager requires that the FAM module "
222 "proxy is run on the module prior to entering the CGSCC "
225 // Note that we special-case invalidation handling of this proxy in the CGSCC
226 // analysis manager's Module proxy. This avoids the need to do anything
227 // special here to recompute all of this if ever the FAM's module proxy goes
229 return Result(FAMProxy
->getManager());
232 bool FunctionAnalysisManagerCGSCCProxy::Result::invalidate(
233 LazyCallGraph::SCC
&C
, const PreservedAnalyses
&PA
,
234 CGSCCAnalysisManager::Invalidator
&Inv
) {
235 // If literally everything is preserved, we're done.
236 if (PA
.areAllPreserved())
237 return false; // This is still a valid proxy.
239 // If this proxy isn't marked as preserved, then even if the result remains
240 // valid, the key itself may no longer be valid, so we clear everything.
242 // Note that in order to preserve this proxy, a module pass must ensure that
243 // the FAM has been completely updated to handle the deletion of functions.
244 // Specifically, any FAM-cached results for those functions need to have been
245 // forcibly cleared. When preserved, this proxy will only invalidate results
246 // cached on functions *still in the module* at the end of the module pass.
247 auto PAC
= PA
.getChecker
<FunctionAnalysisManagerCGSCCProxy
>();
248 if (!PAC
.preserved() && !PAC
.preservedSet
<AllAnalysesOn
<LazyCallGraph::SCC
>>()) {
249 for (LazyCallGraph::Node
&N
: C
)
250 FAM
->clear(N
.getFunction(), N
.getFunction().getName());
255 // Directly check if the relevant set is preserved.
256 bool AreFunctionAnalysesPreserved
=
257 PA
.allAnalysesInSetPreserved
<AllAnalysesOn
<Function
>>();
259 // Now walk all the functions to see if any inner analysis invalidation is
261 for (LazyCallGraph::Node
&N
: C
) {
262 Function
&F
= N
.getFunction();
263 Optional
<PreservedAnalyses
> FunctionPA
;
265 // Check to see whether the preserved set needs to be pruned based on
266 // SCC-level analysis invalidation that triggers deferred invalidation
267 // registered with the outer analysis manager proxy for this function.
268 if (auto *OuterProxy
=
269 FAM
->getCachedResult
<CGSCCAnalysisManagerFunctionProxy
>(F
))
270 for (const auto &OuterInvalidationPair
:
271 OuterProxy
->getOuterInvalidations()) {
272 AnalysisKey
*OuterAnalysisID
= OuterInvalidationPair
.first
;
273 const auto &InnerAnalysisIDs
= OuterInvalidationPair
.second
;
274 if (Inv
.invalidate(OuterAnalysisID
, C
, PA
)) {
277 for (AnalysisKey
*InnerAnalysisID
: InnerAnalysisIDs
)
278 FunctionPA
->abandon(InnerAnalysisID
);
282 // Check if we needed a custom PA set, and if so we'll need to run the
283 // inner invalidation.
285 FAM
->invalidate(F
, *FunctionPA
);
289 // Otherwise we only need to do invalidation if the original PA set didn't
290 // preserve all function analyses.
291 if (!AreFunctionAnalysesPreserved
)
292 FAM
->invalidate(F
, PA
);
295 // Return false to indicate that this result is still a valid proxy.
299 } // end namespace llvm
301 /// When a new SCC is created for the graph and there might be function
302 /// analysis results cached for the functions now in that SCC two forms of
303 /// updates are required.
305 /// First, a proxy from the SCC to the FunctionAnalysisManager needs to be
306 /// created so that any subsequent invalidation events to the SCC are
307 /// propagated to the function analysis results cached for functions within it.
309 /// Second, if any of the functions within the SCC have analysis results with
310 /// outer analysis dependencies, then those dependencies would point to the
311 /// *wrong* SCC's analysis result. We forcibly invalidate the necessary
312 /// function analyses so that they don't retain stale handles.
313 static void updateNewSCCFunctionAnalyses(LazyCallGraph::SCC
&C
,
315 CGSCCAnalysisManager
&AM
) {
316 // Get the relevant function analysis manager.
318 AM
.getResult
<FunctionAnalysisManagerCGSCCProxy
>(C
, G
).getManager();
320 // Now walk the functions in this SCC and invalidate any function analysis
321 // results that might have outer dependencies on an SCC analysis.
322 for (LazyCallGraph::Node
&N
: C
) {
323 Function
&F
= N
.getFunction();
326 FAM
.getCachedResult
<CGSCCAnalysisManagerFunctionProxy
>(F
);
328 // No outer analyses were queried, nothing to do.
331 // Forcibly abandon all the inner analyses with dependencies, but
332 // invalidate nothing else.
333 auto PA
= PreservedAnalyses::all();
334 for (const auto &OuterInvalidationPair
:
335 OuterProxy
->getOuterInvalidations()) {
336 const auto &InnerAnalysisIDs
= OuterInvalidationPair
.second
;
337 for (AnalysisKey
*InnerAnalysisID
: InnerAnalysisIDs
)
338 PA
.abandon(InnerAnalysisID
);
341 // Now invalidate anything we found.
342 FAM
.invalidate(F
, PA
);
346 /// Helper function to update both the \c CGSCCAnalysisManager \p AM and the \c
347 /// CGSCCPassManager's \c CGSCCUpdateResult \p UR based on a range of newly
350 /// The range of new SCCs must be in postorder already. The SCC they were split
351 /// out of must be provided as \p C. The current node being mutated and
352 /// triggering updates must be passed as \p N.
354 /// This function returns the SCC containing \p N. This will be either \p C if
355 /// no new SCCs have been split out, or it will be the new SCC containing \p N.
356 template <typename SCCRangeT
>
357 static LazyCallGraph::SCC
*
358 incorporateNewSCCRange(const SCCRangeT
&NewSCCRange
, LazyCallGraph
&G
,
359 LazyCallGraph::Node
&N
, LazyCallGraph::SCC
*C
,
360 CGSCCAnalysisManager
&AM
, CGSCCUpdateResult
&UR
) {
361 using SCC
= LazyCallGraph::SCC
;
363 if (NewSCCRange
.begin() == NewSCCRange
.end())
366 // Add the current SCC to the worklist as its shape has changed.
367 UR
.CWorklist
.insert(C
);
368 LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist:" << *C
373 // Update the current SCC. Note that if we have new SCCs, this must actually
375 assert(C
!= &*NewSCCRange
.begin() &&
376 "Cannot insert new SCCs without changing current SCC!");
377 C
= &*NewSCCRange
.begin();
378 assert(G
.lookupSCC(N
) == C
&& "Failed to update current SCC!");
380 // If we had a cached FAM proxy originally, we will want to create more of
381 // them for each SCC that was split off.
383 AM
.getCachedResult
<FunctionAnalysisManagerCGSCCProxy
>(*OldC
) != nullptr;
385 // We need to propagate an invalidation call to all but the newly current SCC
386 // because the outer pass manager won't do that for us after splitting them.
387 // FIXME: We should accept a PreservedAnalysis from the CG updater so that if
388 // there are preserved analysis we can avoid invalidating them here for
390 // We know however that this will preserve any FAM proxy so go ahead and mark
392 PreservedAnalyses PA
;
393 PA
.preserve
<FunctionAnalysisManagerCGSCCProxy
>();
394 AM
.invalidate(*OldC
, PA
);
396 // Ensure the now-current SCC's function analyses are updated.
398 updateNewSCCFunctionAnalyses(*C
, G
, AM
);
400 for (SCC
&NewC
: llvm::reverse(make_range(std::next(NewSCCRange
.begin()),
401 NewSCCRange
.end()))) {
402 assert(C
!= &NewC
&& "No need to re-visit the current SCC!");
403 assert(OldC
!= &NewC
&& "Already handled the original SCC!");
404 UR
.CWorklist
.insert(&NewC
);
405 LLVM_DEBUG(dbgs() << "Enqueuing a newly formed SCC:" << NewC
<< "\n");
407 // Ensure new SCCs' function analyses are updated.
409 updateNewSCCFunctionAnalyses(NewC
, G
, AM
);
411 // Also propagate a normal invalidation to the new SCC as only the current
412 // will get one from the pass manager infrastructure.
413 AM
.invalidate(NewC
, PA
);
418 LazyCallGraph::SCC
&llvm::updateCGAndAnalysisManagerForFunctionPass(
419 LazyCallGraph
&G
, LazyCallGraph::SCC
&InitialC
, LazyCallGraph::Node
&N
,
420 CGSCCAnalysisManager
&AM
, CGSCCUpdateResult
&UR
) {
421 using Node
= LazyCallGraph::Node
;
422 using Edge
= LazyCallGraph::Edge
;
423 using SCC
= LazyCallGraph::SCC
;
424 using RefSCC
= LazyCallGraph::RefSCC
;
426 RefSCC
&InitialRC
= InitialC
.getOuterRefSCC();
428 RefSCC
*RC
= &InitialRC
;
429 Function
&F
= N
.getFunction();
431 // Walk the function body and build up the set of retained, promoted, and
433 SmallVector
<Constant
*, 16> Worklist
;
434 SmallPtrSet
<Constant
*, 16> Visited
;
435 SmallPtrSet
<Node
*, 16> RetainedEdges
;
436 SmallSetVector
<Node
*, 4> PromotedRefTargets
;
437 SmallSetVector
<Node
*, 4> DemotedCallTargets
;
439 // First walk the function and handle all called functions. We do this first
440 // because if there is a single call edge, whether there are ref edges is
442 for (Instruction
&I
: instructions(F
))
443 if (auto CS
= CallSite(&I
))
444 if (Function
*Callee
= CS
.getCalledFunction())
445 if (Visited
.insert(Callee
).second
&& !Callee
->isDeclaration()) {
446 Node
&CalleeN
= *G
.lookup(*Callee
);
447 Edge
*E
= N
->lookup(CalleeN
);
448 // FIXME: We should really handle adding new calls. While it will
449 // make downstream usage more complex, there is no fundamental
450 // limitation and it will allow passes within the CGSCC to be a bit
451 // more flexible in what transforms they can do. Until then, we
452 // verify that new calls haven't been introduced.
453 assert(E
&& "No function transformations should introduce *new* "
454 "call edges! Any new calls should be modeled as "
455 "promoted existing ref edges!");
456 bool Inserted
= RetainedEdges
.insert(&CalleeN
).second
;
458 assert(Inserted
&& "We should never visit a function twice.");
460 PromotedRefTargets
.insert(&CalleeN
);
463 // Now walk all references.
464 for (Instruction
&I
: instructions(F
))
465 for (Value
*Op
: I
.operand_values())
466 if (auto *C
= dyn_cast
<Constant
>(Op
))
467 if (Visited
.insert(C
).second
)
468 Worklist
.push_back(C
);
470 auto VisitRef
= [&](Function
&Referee
) {
471 Node
&RefereeN
= *G
.lookup(Referee
);
472 Edge
*E
= N
->lookup(RefereeN
);
473 // FIXME: Similarly to new calls, we also currently preclude
474 // introducing new references. See above for details.
475 assert(E
&& "No function transformations should introduce *new* ref "
476 "edges! Any new ref edges would require IPO which "
477 "function passes aren't allowed to do!");
478 bool Inserted
= RetainedEdges
.insert(&RefereeN
).second
;
480 assert(Inserted
&& "We should never visit a function twice.");
482 DemotedCallTargets
.insert(&RefereeN
);
484 LazyCallGraph::visitReferences(Worklist
, Visited
, VisitRef
);
486 // Include synthetic reference edges to known, defined lib functions.
487 for (auto *F
: G
.getLibFunctions())
488 // While the list of lib functions doesn't have repeats, don't re-visit
489 // anything handled above.
490 if (!Visited
.count(F
))
493 // First remove all of the edges that are no longer present in this function.
494 // The first step makes these edges uniformly ref edges and accumulates them
495 // into a separate data structure so removal doesn't invalidate anything.
496 SmallVector
<Node
*, 4> DeadTargets
;
498 if (RetainedEdges
.count(&E
.getNode()))
501 SCC
&TargetC
= *G
.lookupSCC(E
.getNode());
502 RefSCC
&TargetRC
= TargetC
.getOuterRefSCC();
503 if (&TargetRC
== RC
&& E
.isCall()) {
505 // For separate SCCs this is trivial.
506 RC
->switchTrivialInternalEdgeToRef(N
, E
.getNode());
508 // Now update the call graph.
509 C
= incorporateNewSCCRange(RC
->switchInternalEdgeToRef(N
, E
.getNode()),
514 // Now that this is ready for actual removal, put it into our list.
515 DeadTargets
.push_back(&E
.getNode());
517 // Remove the easy cases quickly and actually pull them out of our list.
519 llvm::remove_if(DeadTargets
,
521 SCC
&TargetC
= *G
.lookupSCC(*TargetN
);
522 RefSCC
&TargetRC
= TargetC
.getOuterRefSCC();
524 // We can't trivially remove internal targets, so skip
529 RC
->removeOutgoingEdge(N
, *TargetN
);
530 LLVM_DEBUG(dbgs() << "Deleting outgoing edge from '"
531 << N
<< "' to '" << TargetN
<< "'\n");
536 // Now do a batch removal of the internal ref edges left.
537 auto NewRefSCCs
= RC
->removeInternalRefEdge(N
, DeadTargets
);
538 if (!NewRefSCCs
.empty()) {
539 // The old RefSCC is dead, mark it as such.
540 UR
.InvalidatedRefSCCs
.insert(RC
);
542 // Note that we don't bother to invalidate analyses as ref-edge
543 // connectivity is not really observable in any way and is intended
544 // exclusively to be used for ordering of transforms rather than for
545 // analysis conclusions.
547 // Update RC to the "bottom".
548 assert(G
.lookupSCC(N
) == C
&& "Changed the SCC when splitting RefSCCs!");
549 RC
= &C
->getOuterRefSCC();
550 assert(G
.lookupRefSCC(N
) == RC
&& "Failed to update current RefSCC!");
552 // The RC worklist is in reverse postorder, so we enqueue the new ones in
553 // RPO except for the one which contains the source node as that is the
554 // "bottom" we will continue processing in the bottom-up walk.
555 assert(NewRefSCCs
.front() == RC
&&
556 "New current RefSCC not first in the returned list!");
557 for (RefSCC
*NewRC
: llvm::reverse(make_range(std::next(NewRefSCCs
.begin()),
558 NewRefSCCs
.end()))) {
559 assert(NewRC
!= RC
&& "Should not encounter the current RefSCC further "
560 "in the postorder list of new RefSCCs.");
561 UR
.RCWorklist
.insert(NewRC
);
562 LLVM_DEBUG(dbgs() << "Enqueuing a new RefSCC in the update worklist: "
567 // Next demote all the call edges that are now ref edges. This helps make
568 // the SCCs small which should minimize the work below as we don't want to
569 // form cycles that this would break.
570 for (Node
*RefTarget
: DemotedCallTargets
) {
571 SCC
&TargetC
= *G
.lookupSCC(*RefTarget
);
572 RefSCC
&TargetRC
= TargetC
.getOuterRefSCC();
574 // The easy case is when the target RefSCC is not this RefSCC. This is
575 // only supported when the target RefSCC is a child of this RefSCC.
576 if (&TargetRC
!= RC
) {
577 assert(RC
->isAncestorOf(TargetRC
) &&
578 "Cannot potentially form RefSCC cycles here!");
579 RC
->switchOutgoingEdgeToRef(N
, *RefTarget
);
580 LLVM_DEBUG(dbgs() << "Switch outgoing call edge to a ref edge from '" << N
581 << "' to '" << *RefTarget
<< "'\n");
585 // We are switching an internal call edge to a ref edge. This may split up
588 // For separate SCCs this is trivial.
589 RC
->switchTrivialInternalEdgeToRef(N
, *RefTarget
);
593 // Now update the call graph.
594 C
= incorporateNewSCCRange(RC
->switchInternalEdgeToRef(N
, *RefTarget
), G
, N
,
598 // Now promote ref edges into call edges.
599 for (Node
*CallTarget
: PromotedRefTargets
) {
600 SCC
&TargetC
= *G
.lookupSCC(*CallTarget
);
601 RefSCC
&TargetRC
= TargetC
.getOuterRefSCC();
603 // The easy case is when the target RefSCC is not this RefSCC. This is
604 // only supported when the target RefSCC is a child of this RefSCC.
605 if (&TargetRC
!= RC
) {
606 assert(RC
->isAncestorOf(TargetRC
) &&
607 "Cannot potentially form RefSCC cycles here!");
608 RC
->switchOutgoingEdgeToCall(N
, *CallTarget
);
609 LLVM_DEBUG(dbgs() << "Switch outgoing ref edge to a call edge from '" << N
610 << "' to '" << *CallTarget
<< "'\n");
613 LLVM_DEBUG(dbgs() << "Switch an internal ref edge to a call edge from '"
614 << N
<< "' to '" << *CallTarget
<< "'\n");
616 // Otherwise we are switching an internal ref edge to a call edge. This
617 // may merge away some SCCs, and we add those to the UpdateResult. We also
618 // need to make sure to update the worklist in the event SCCs have moved
619 // before the current one in the post-order sequence
620 bool HasFunctionAnalysisProxy
= false;
621 auto InitialSCCIndex
= RC
->find(*C
) - RC
->begin();
622 bool FormedCycle
= RC
->switchInternalEdgeToCall(
623 N
, *CallTarget
, [&](ArrayRef
<SCC
*> MergedSCCs
) {
624 for (SCC
*MergedC
: MergedSCCs
) {
625 assert(MergedC
!= &TargetC
&& "Cannot merge away the target SCC!");
627 HasFunctionAnalysisProxy
|=
628 AM
.getCachedResult
<FunctionAnalysisManagerCGSCCProxy
>(
629 *MergedC
) != nullptr;
631 // Mark that this SCC will no longer be valid.
632 UR
.InvalidatedSCCs
.insert(MergedC
);
634 // FIXME: We should really do a 'clear' here to forcibly release
635 // memory, but we don't have a good way of doing that and
636 // preserving the function analyses.
637 auto PA
= PreservedAnalyses::allInSet
<AllAnalysesOn
<Function
>>();
638 PA
.preserve
<FunctionAnalysisManagerCGSCCProxy
>();
639 AM
.invalidate(*MergedC
, PA
);
643 // If we formed a cycle by creating this call, we need to update more data
647 assert(G
.lookupSCC(N
) == C
&& "Failed to update current SCC!");
649 // If one of the invalidated SCCs had a cached proxy to a function
650 // analysis manager, we need to create a proxy in the new current SCC as
651 // the invalidated SCCs had their functions moved.
652 if (HasFunctionAnalysisProxy
)
653 AM
.getResult
<FunctionAnalysisManagerCGSCCProxy
>(*C
, G
);
655 // Any analyses cached for this SCC are no longer precise as the shape
656 // has changed by introducing this cycle. However, we have taken care to
657 // update the proxies so it remains valide.
658 auto PA
= PreservedAnalyses::allInSet
<AllAnalysesOn
<Function
>>();
659 PA
.preserve
<FunctionAnalysisManagerCGSCCProxy
>();
660 AM
.invalidate(*C
, PA
);
662 auto NewSCCIndex
= RC
->find(*C
) - RC
->begin();
663 // If we have actually moved an SCC to be topologically "below" the current
664 // one due to merging, we will need to revisit the current SCC after
665 // visiting those moved SCCs.
667 // It is critical that we *do not* revisit the current SCC unless we
668 // actually move SCCs in the process of merging because otherwise we may
669 // form a cycle where an SCC is split apart, merged, split, merged and so
671 if (InitialSCCIndex
< NewSCCIndex
) {
672 // Put our current SCC back onto the worklist as we'll visit other SCCs
673 // that are now definitively ordered prior to the current one in the
674 // post-order sequence, and may end up observing more precise context to
675 // optimize the current SCC.
676 UR
.CWorklist
.insert(C
);
677 LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist: " << *C
679 // Enqueue in reverse order as we pop off the back of the worklist.
680 for (SCC
&MovedC
: llvm::reverse(make_range(RC
->begin() + InitialSCCIndex
,
681 RC
->begin() + NewSCCIndex
))) {
682 UR
.CWorklist
.insert(&MovedC
);
683 LLVM_DEBUG(dbgs() << "Enqueuing a newly earlier in post-order SCC: "
689 assert(!UR
.InvalidatedSCCs
.count(C
) && "Invalidated the current SCC!");
690 assert(!UR
.InvalidatedRefSCCs
.count(RC
) && "Invalidated the current RefSCC!");
691 assert(&C
->getOuterRefSCC() == RC
&& "Current SCC not in current RefSCC!");
693 // Record the current RefSCC and SCC for higher layers of the CGSCC pass
694 // manager now that all the updates have been applied.
695 if (RC
!= &InitialRC
)