[llvm-exegesis] Fix missing std::move.
[llvm-complete.git] / lib / Analysis / CGSCCPassManager.cpp
blob6965235326df3fe2eb7c683475323919ea547d2a
1 //===- CGSCCPassManager.cpp - Managing & running CGSCC passes -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
10 #include "llvm/Analysis/CGSCCPassManager.h"
11 #include "llvm/ADT/ArrayRef.h"
12 #include "llvm/ADT/Optional.h"
13 #include "llvm/ADT/STLExtras.h"
14 #include "llvm/ADT/SetVector.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/iterator_range.h"
18 #include "llvm/Analysis/LazyCallGraph.h"
19 #include "llvm/IR/CallSite.h"
20 #include "llvm/IR/Constant.h"
21 #include "llvm/IR/InstIterator.h"
22 #include "llvm/IR/Instruction.h"
23 #include "llvm/IR/PassManager.h"
24 #include "llvm/Support/Casting.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include <algorithm>
28 #include <cassert>
29 #include <iterator>
31 #define DEBUG_TYPE "cgscc"
33 using namespace llvm;
35 // Explicit template instantiations and specialization definitions for core
36 // template typedefs.
37 namespace llvm {
39 // Explicit instantiations for the core proxy templates.
40 template class AllAnalysesOn<LazyCallGraph::SCC>;
41 template class AnalysisManager<LazyCallGraph::SCC, LazyCallGraph &>;
42 template class PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager,
43 LazyCallGraph &, CGSCCUpdateResult &>;
44 template class InnerAnalysisManagerProxy<CGSCCAnalysisManager, Module>;
45 template class OuterAnalysisManagerProxy<ModuleAnalysisManager,
46 LazyCallGraph::SCC, LazyCallGraph &>;
47 template class OuterAnalysisManagerProxy<CGSCCAnalysisManager, Function>;
49 /// Explicitly specialize the pass manager run method to handle call graph
50 /// updates.
51 template <>
52 PreservedAnalyses
53 PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, LazyCallGraph &,
54 CGSCCUpdateResult &>::run(LazyCallGraph::SCC &InitialC,
55 CGSCCAnalysisManager &AM,
56 LazyCallGraph &G, CGSCCUpdateResult &UR) {
57 // Request PassInstrumentation from analysis manager, will use it to run
58 // instrumenting callbacks for the passes later.
59 PassInstrumentation PI =
60 AM.getResult<PassInstrumentationAnalysis>(InitialC, G);
62 PreservedAnalyses PA = PreservedAnalyses::all();
64 if (DebugLogging)
65 dbgs() << "Starting CGSCC pass manager run.\n";
67 // The SCC may be refined while we are running passes over it, so set up
68 // a pointer that we can update.
69 LazyCallGraph::SCC *C = &InitialC;
71 for (auto &Pass : Passes) {
72 if (DebugLogging)
73 dbgs() << "Running pass: " << Pass->name() << " on " << *C << "\n";
75 // Check the PassInstrumentation's BeforePass callbacks before running the
76 // pass, skip its execution completely if asked to (callback returns false).
77 if (!PI.runBeforePass(*Pass, *C))
78 continue;
80 PreservedAnalyses PassPA = Pass->run(*C, AM, G, UR);
82 PI.runAfterPass(*Pass, *C);
84 // Update the SCC if necessary.
85 C = UR.UpdatedC ? UR.UpdatedC : C;
87 // If the CGSCC pass wasn't able to provide a valid updated SCC, the
88 // current SCC may simply need to be skipped if invalid.
89 if (UR.InvalidatedSCCs.count(C)) {
90 LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n");
91 break;
93 // Check that we didn't miss any update scenario.
94 assert(C->begin() != C->end() && "Cannot have an empty SCC!");
96 // Update the analysis manager as each pass runs and potentially
97 // invalidates analyses.
98 AM.invalidate(*C, PassPA);
100 // Finally, we intersect the final preserved analyses to compute the
101 // aggregate preserved set for this pass manager.
102 PA.intersect(std::move(PassPA));
104 // FIXME: Historically, the pass managers all called the LLVM context's
105 // yield function here. We don't have a generic way to acquire the
106 // context and it isn't yet clear what the right pattern is for yielding
107 // in the new pass manager so it is currently omitted.
108 // ...getContext().yield();
111 // Invalidation was handled after each pass in the above loop for the current
112 // SCC. Therefore, the remaining analysis results in the AnalysisManager are
113 // preserved. We mark this with a set so that we don't need to inspect each
114 // one individually.
115 PA.preserveSet<AllAnalysesOn<LazyCallGraph::SCC>>();
117 if (DebugLogging)
118 dbgs() << "Finished CGSCC pass manager run.\n";
120 return PA;
123 bool CGSCCAnalysisManagerModuleProxy::Result::invalidate(
124 Module &M, const PreservedAnalyses &PA,
125 ModuleAnalysisManager::Invalidator &Inv) {
126 // If literally everything is preserved, we're done.
127 if (PA.areAllPreserved())
128 return false; // This is still a valid proxy.
130 // If this proxy or the call graph is going to be invalidated, we also need
131 // to clear all the keys coming from that analysis.
133 // We also directly invalidate the FAM's module proxy if necessary, and if
134 // that proxy isn't preserved we can't preserve this proxy either. We rely on
135 // it to handle module -> function analysis invalidation in the face of
136 // structural changes and so if it's unavailable we conservatively clear the
137 // entire SCC layer as well rather than trying to do invalidation ourselves.
138 auto PAC = PA.getChecker<CGSCCAnalysisManagerModuleProxy>();
139 if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Module>>()) ||
140 Inv.invalidate<LazyCallGraphAnalysis>(M, PA) ||
141 Inv.invalidate<FunctionAnalysisManagerModuleProxy>(M, PA)) {
142 InnerAM->clear();
144 // And the proxy itself should be marked as invalid so that we can observe
145 // the new call graph. This isn't strictly necessary because we cheat
146 // above, but is still useful.
147 return true;
150 // Directly check if the relevant set is preserved so we can short circuit
151 // invalidating SCCs below.
152 bool AreSCCAnalysesPreserved =
153 PA.allAnalysesInSetPreserved<AllAnalysesOn<LazyCallGraph::SCC>>();
155 // Ok, we have a graph, so we can propagate the invalidation down into it.
156 G->buildRefSCCs();
157 for (auto &RC : G->postorder_ref_sccs())
158 for (auto &C : RC) {
159 Optional<PreservedAnalyses> InnerPA;
161 // Check to see whether the preserved set needs to be adjusted based on
162 // module-level analysis invalidation triggering deferred invalidation
163 // for this SCC.
164 if (auto *OuterProxy =
165 InnerAM->getCachedResult<ModuleAnalysisManagerCGSCCProxy>(C))
166 for (const auto &OuterInvalidationPair :
167 OuterProxy->getOuterInvalidations()) {
168 AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first;
169 const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
170 if (Inv.invalidate(OuterAnalysisID, M, PA)) {
171 if (!InnerPA)
172 InnerPA = PA;
173 for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
174 InnerPA->abandon(InnerAnalysisID);
178 // Check if we needed a custom PA set. If so we'll need to run the inner
179 // invalidation.
180 if (InnerPA) {
181 InnerAM->invalidate(C, *InnerPA);
182 continue;
185 // Otherwise we only need to do invalidation if the original PA set didn't
186 // preserve all SCC analyses.
187 if (!AreSCCAnalysesPreserved)
188 InnerAM->invalidate(C, PA);
191 // Return false to indicate that this result is still a valid proxy.
192 return false;
195 template <>
196 CGSCCAnalysisManagerModuleProxy::Result
197 CGSCCAnalysisManagerModuleProxy::run(Module &M, ModuleAnalysisManager &AM) {
198 // Force the Function analysis manager to also be available so that it can
199 // be accessed in an SCC analysis and proxied onward to function passes.
200 // FIXME: It is pretty awkward to just drop the result here and assert that
201 // we can find it again later.
202 (void)AM.getResult<FunctionAnalysisManagerModuleProxy>(M);
204 return Result(*InnerAM, AM.getResult<LazyCallGraphAnalysis>(M));
207 AnalysisKey FunctionAnalysisManagerCGSCCProxy::Key;
209 FunctionAnalysisManagerCGSCCProxy::Result
210 FunctionAnalysisManagerCGSCCProxy::run(LazyCallGraph::SCC &C,
211 CGSCCAnalysisManager &AM,
212 LazyCallGraph &CG) {
213 // Collect the FunctionAnalysisManager from the Module layer and use that to
214 // build the proxy result.
216 // This allows us to rely on the FunctionAnalysisMangaerModuleProxy to
217 // invalidate the function analyses.
218 auto &MAM = AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C, CG).getManager();
219 Module &M = *C.begin()->getFunction().getParent();
220 auto *FAMProxy = MAM.getCachedResult<FunctionAnalysisManagerModuleProxy>(M);
221 assert(FAMProxy && "The CGSCC pass manager requires that the FAM module "
222 "proxy is run on the module prior to entering the CGSCC "
223 "walk.");
225 // Note that we special-case invalidation handling of this proxy in the CGSCC
226 // analysis manager's Module proxy. This avoids the need to do anything
227 // special here to recompute all of this if ever the FAM's module proxy goes
228 // away.
229 return Result(FAMProxy->getManager());
232 bool FunctionAnalysisManagerCGSCCProxy::Result::invalidate(
233 LazyCallGraph::SCC &C, const PreservedAnalyses &PA,
234 CGSCCAnalysisManager::Invalidator &Inv) {
235 // If literally everything is preserved, we're done.
236 if (PA.areAllPreserved())
237 return false; // This is still a valid proxy.
239 // If this proxy isn't marked as preserved, then even if the result remains
240 // valid, the key itself may no longer be valid, so we clear everything.
242 // Note that in order to preserve this proxy, a module pass must ensure that
243 // the FAM has been completely updated to handle the deletion of functions.
244 // Specifically, any FAM-cached results for those functions need to have been
245 // forcibly cleared. When preserved, this proxy will only invalidate results
246 // cached on functions *still in the module* at the end of the module pass.
247 auto PAC = PA.getChecker<FunctionAnalysisManagerCGSCCProxy>();
248 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<LazyCallGraph::SCC>>()) {
249 for (LazyCallGraph::Node &N : C)
250 FAM->clear(N.getFunction(), N.getFunction().getName());
252 return true;
255 // Directly check if the relevant set is preserved.
256 bool AreFunctionAnalysesPreserved =
257 PA.allAnalysesInSetPreserved<AllAnalysesOn<Function>>();
259 // Now walk all the functions to see if any inner analysis invalidation is
260 // necessary.
261 for (LazyCallGraph::Node &N : C) {
262 Function &F = N.getFunction();
263 Optional<PreservedAnalyses> FunctionPA;
265 // Check to see whether the preserved set needs to be pruned based on
266 // SCC-level analysis invalidation that triggers deferred invalidation
267 // registered with the outer analysis manager proxy for this function.
268 if (auto *OuterProxy =
269 FAM->getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F))
270 for (const auto &OuterInvalidationPair :
271 OuterProxy->getOuterInvalidations()) {
272 AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first;
273 const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
274 if (Inv.invalidate(OuterAnalysisID, C, PA)) {
275 if (!FunctionPA)
276 FunctionPA = PA;
277 for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
278 FunctionPA->abandon(InnerAnalysisID);
282 // Check if we needed a custom PA set, and if so we'll need to run the
283 // inner invalidation.
284 if (FunctionPA) {
285 FAM->invalidate(F, *FunctionPA);
286 continue;
289 // Otherwise we only need to do invalidation if the original PA set didn't
290 // preserve all function analyses.
291 if (!AreFunctionAnalysesPreserved)
292 FAM->invalidate(F, PA);
295 // Return false to indicate that this result is still a valid proxy.
296 return false;
299 } // end namespace llvm
301 /// When a new SCC is created for the graph and there might be function
302 /// analysis results cached for the functions now in that SCC two forms of
303 /// updates are required.
305 /// First, a proxy from the SCC to the FunctionAnalysisManager needs to be
306 /// created so that any subsequent invalidation events to the SCC are
307 /// propagated to the function analysis results cached for functions within it.
309 /// Second, if any of the functions within the SCC have analysis results with
310 /// outer analysis dependencies, then those dependencies would point to the
311 /// *wrong* SCC's analysis result. We forcibly invalidate the necessary
312 /// function analyses so that they don't retain stale handles.
313 static void updateNewSCCFunctionAnalyses(LazyCallGraph::SCC &C,
314 LazyCallGraph &G,
315 CGSCCAnalysisManager &AM) {
316 // Get the relevant function analysis manager.
317 auto &FAM =
318 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, G).getManager();
320 // Now walk the functions in this SCC and invalidate any function analysis
321 // results that might have outer dependencies on an SCC analysis.
322 for (LazyCallGraph::Node &N : C) {
323 Function &F = N.getFunction();
325 auto *OuterProxy =
326 FAM.getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F);
327 if (!OuterProxy)
328 // No outer analyses were queried, nothing to do.
329 continue;
331 // Forcibly abandon all the inner analyses with dependencies, but
332 // invalidate nothing else.
333 auto PA = PreservedAnalyses::all();
334 for (const auto &OuterInvalidationPair :
335 OuterProxy->getOuterInvalidations()) {
336 const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
337 for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
338 PA.abandon(InnerAnalysisID);
341 // Now invalidate anything we found.
342 FAM.invalidate(F, PA);
346 /// Helper function to update both the \c CGSCCAnalysisManager \p AM and the \c
347 /// CGSCCPassManager's \c CGSCCUpdateResult \p UR based on a range of newly
348 /// added SCCs.
350 /// The range of new SCCs must be in postorder already. The SCC they were split
351 /// out of must be provided as \p C. The current node being mutated and
352 /// triggering updates must be passed as \p N.
354 /// This function returns the SCC containing \p N. This will be either \p C if
355 /// no new SCCs have been split out, or it will be the new SCC containing \p N.
356 template <typename SCCRangeT>
357 static LazyCallGraph::SCC *
358 incorporateNewSCCRange(const SCCRangeT &NewSCCRange, LazyCallGraph &G,
359 LazyCallGraph::Node &N, LazyCallGraph::SCC *C,
360 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR) {
361 using SCC = LazyCallGraph::SCC;
363 if (NewSCCRange.begin() == NewSCCRange.end())
364 return C;
366 // Add the current SCC to the worklist as its shape has changed.
367 UR.CWorklist.insert(C);
368 LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist:" << *C
369 << "\n");
371 SCC *OldC = C;
373 // Update the current SCC. Note that if we have new SCCs, this must actually
374 // change the SCC.
375 assert(C != &*NewSCCRange.begin() &&
376 "Cannot insert new SCCs without changing current SCC!");
377 C = &*NewSCCRange.begin();
378 assert(G.lookupSCC(N) == C && "Failed to update current SCC!");
380 // If we had a cached FAM proxy originally, we will want to create more of
381 // them for each SCC that was split off.
382 bool NeedFAMProxy =
383 AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(*OldC) != nullptr;
385 // We need to propagate an invalidation call to all but the newly current SCC
386 // because the outer pass manager won't do that for us after splitting them.
387 // FIXME: We should accept a PreservedAnalysis from the CG updater so that if
388 // there are preserved analysis we can avoid invalidating them here for
389 // split-off SCCs.
390 // We know however that this will preserve any FAM proxy so go ahead and mark
391 // that.
392 PreservedAnalyses PA;
393 PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
394 AM.invalidate(*OldC, PA);
396 // Ensure the now-current SCC's function analyses are updated.
397 if (NeedFAMProxy)
398 updateNewSCCFunctionAnalyses(*C, G, AM);
400 for (SCC &NewC : llvm::reverse(make_range(std::next(NewSCCRange.begin()),
401 NewSCCRange.end()))) {
402 assert(C != &NewC && "No need to re-visit the current SCC!");
403 assert(OldC != &NewC && "Already handled the original SCC!");
404 UR.CWorklist.insert(&NewC);
405 LLVM_DEBUG(dbgs() << "Enqueuing a newly formed SCC:" << NewC << "\n");
407 // Ensure new SCCs' function analyses are updated.
408 if (NeedFAMProxy)
409 updateNewSCCFunctionAnalyses(NewC, G, AM);
411 // Also propagate a normal invalidation to the new SCC as only the current
412 // will get one from the pass manager infrastructure.
413 AM.invalidate(NewC, PA);
415 return C;
418 LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForFunctionPass(
419 LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N,
420 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR) {
421 using Node = LazyCallGraph::Node;
422 using Edge = LazyCallGraph::Edge;
423 using SCC = LazyCallGraph::SCC;
424 using RefSCC = LazyCallGraph::RefSCC;
426 RefSCC &InitialRC = InitialC.getOuterRefSCC();
427 SCC *C = &InitialC;
428 RefSCC *RC = &InitialRC;
429 Function &F = N.getFunction();
431 // Walk the function body and build up the set of retained, promoted, and
432 // demoted edges.
433 SmallVector<Constant *, 16> Worklist;
434 SmallPtrSet<Constant *, 16> Visited;
435 SmallPtrSet<Node *, 16> RetainedEdges;
436 SmallSetVector<Node *, 4> PromotedRefTargets;
437 SmallSetVector<Node *, 4> DemotedCallTargets;
439 // First walk the function and handle all called functions. We do this first
440 // because if there is a single call edge, whether there are ref edges is
441 // irrelevant.
442 for (Instruction &I : instructions(F))
443 if (auto CS = CallSite(&I))
444 if (Function *Callee = CS.getCalledFunction())
445 if (Visited.insert(Callee).second && !Callee->isDeclaration()) {
446 Node &CalleeN = *G.lookup(*Callee);
447 Edge *E = N->lookup(CalleeN);
448 // FIXME: We should really handle adding new calls. While it will
449 // make downstream usage more complex, there is no fundamental
450 // limitation and it will allow passes within the CGSCC to be a bit
451 // more flexible in what transforms they can do. Until then, we
452 // verify that new calls haven't been introduced.
453 assert(E && "No function transformations should introduce *new* "
454 "call edges! Any new calls should be modeled as "
455 "promoted existing ref edges!");
456 bool Inserted = RetainedEdges.insert(&CalleeN).second;
457 (void)Inserted;
458 assert(Inserted && "We should never visit a function twice.");
459 if (!E->isCall())
460 PromotedRefTargets.insert(&CalleeN);
463 // Now walk all references.
464 for (Instruction &I : instructions(F))
465 for (Value *Op : I.operand_values())
466 if (auto *C = dyn_cast<Constant>(Op))
467 if (Visited.insert(C).second)
468 Worklist.push_back(C);
470 auto VisitRef = [&](Function &Referee) {
471 Node &RefereeN = *G.lookup(Referee);
472 Edge *E = N->lookup(RefereeN);
473 // FIXME: Similarly to new calls, we also currently preclude
474 // introducing new references. See above for details.
475 assert(E && "No function transformations should introduce *new* ref "
476 "edges! Any new ref edges would require IPO which "
477 "function passes aren't allowed to do!");
478 bool Inserted = RetainedEdges.insert(&RefereeN).second;
479 (void)Inserted;
480 assert(Inserted && "We should never visit a function twice.");
481 if (E->isCall())
482 DemotedCallTargets.insert(&RefereeN);
484 LazyCallGraph::visitReferences(Worklist, Visited, VisitRef);
486 // Include synthetic reference edges to known, defined lib functions.
487 for (auto *F : G.getLibFunctions())
488 // While the list of lib functions doesn't have repeats, don't re-visit
489 // anything handled above.
490 if (!Visited.count(F))
491 VisitRef(*F);
493 // First remove all of the edges that are no longer present in this function.
494 // The first step makes these edges uniformly ref edges and accumulates them
495 // into a separate data structure so removal doesn't invalidate anything.
496 SmallVector<Node *, 4> DeadTargets;
497 for (Edge &E : *N) {
498 if (RetainedEdges.count(&E.getNode()))
499 continue;
501 SCC &TargetC = *G.lookupSCC(E.getNode());
502 RefSCC &TargetRC = TargetC.getOuterRefSCC();
503 if (&TargetRC == RC && E.isCall()) {
504 if (C != &TargetC) {
505 // For separate SCCs this is trivial.
506 RC->switchTrivialInternalEdgeToRef(N, E.getNode());
507 } else {
508 // Now update the call graph.
509 C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, E.getNode()),
510 G, N, C, AM, UR);
514 // Now that this is ready for actual removal, put it into our list.
515 DeadTargets.push_back(&E.getNode());
517 // Remove the easy cases quickly and actually pull them out of our list.
518 DeadTargets.erase(
519 llvm::remove_if(DeadTargets,
520 [&](Node *TargetN) {
521 SCC &TargetC = *G.lookupSCC(*TargetN);
522 RefSCC &TargetRC = TargetC.getOuterRefSCC();
524 // We can't trivially remove internal targets, so skip
525 // those.
526 if (&TargetRC == RC)
527 return false;
529 RC->removeOutgoingEdge(N, *TargetN);
530 LLVM_DEBUG(dbgs() << "Deleting outgoing edge from '"
531 << N << "' to '" << TargetN << "'\n");
532 return true;
534 DeadTargets.end());
536 // Now do a batch removal of the internal ref edges left.
537 auto NewRefSCCs = RC->removeInternalRefEdge(N, DeadTargets);
538 if (!NewRefSCCs.empty()) {
539 // The old RefSCC is dead, mark it as such.
540 UR.InvalidatedRefSCCs.insert(RC);
542 // Note that we don't bother to invalidate analyses as ref-edge
543 // connectivity is not really observable in any way and is intended
544 // exclusively to be used for ordering of transforms rather than for
545 // analysis conclusions.
547 // Update RC to the "bottom".
548 assert(G.lookupSCC(N) == C && "Changed the SCC when splitting RefSCCs!");
549 RC = &C->getOuterRefSCC();
550 assert(G.lookupRefSCC(N) == RC && "Failed to update current RefSCC!");
552 // The RC worklist is in reverse postorder, so we enqueue the new ones in
553 // RPO except for the one which contains the source node as that is the
554 // "bottom" we will continue processing in the bottom-up walk.
555 assert(NewRefSCCs.front() == RC &&
556 "New current RefSCC not first in the returned list!");
557 for (RefSCC *NewRC : llvm::reverse(make_range(std::next(NewRefSCCs.begin()),
558 NewRefSCCs.end()))) {
559 assert(NewRC != RC && "Should not encounter the current RefSCC further "
560 "in the postorder list of new RefSCCs.");
561 UR.RCWorklist.insert(NewRC);
562 LLVM_DEBUG(dbgs() << "Enqueuing a new RefSCC in the update worklist: "
563 << *NewRC << "\n");
567 // Next demote all the call edges that are now ref edges. This helps make
568 // the SCCs small which should minimize the work below as we don't want to
569 // form cycles that this would break.
570 for (Node *RefTarget : DemotedCallTargets) {
571 SCC &TargetC = *G.lookupSCC(*RefTarget);
572 RefSCC &TargetRC = TargetC.getOuterRefSCC();
574 // The easy case is when the target RefSCC is not this RefSCC. This is
575 // only supported when the target RefSCC is a child of this RefSCC.
576 if (&TargetRC != RC) {
577 assert(RC->isAncestorOf(TargetRC) &&
578 "Cannot potentially form RefSCC cycles here!");
579 RC->switchOutgoingEdgeToRef(N, *RefTarget);
580 LLVM_DEBUG(dbgs() << "Switch outgoing call edge to a ref edge from '" << N
581 << "' to '" << *RefTarget << "'\n");
582 continue;
585 // We are switching an internal call edge to a ref edge. This may split up
586 // some SCCs.
587 if (C != &TargetC) {
588 // For separate SCCs this is trivial.
589 RC->switchTrivialInternalEdgeToRef(N, *RefTarget);
590 continue;
593 // Now update the call graph.
594 C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, *RefTarget), G, N,
595 C, AM, UR);
598 // Now promote ref edges into call edges.
599 for (Node *CallTarget : PromotedRefTargets) {
600 SCC &TargetC = *G.lookupSCC(*CallTarget);
601 RefSCC &TargetRC = TargetC.getOuterRefSCC();
603 // The easy case is when the target RefSCC is not this RefSCC. This is
604 // only supported when the target RefSCC is a child of this RefSCC.
605 if (&TargetRC != RC) {
606 assert(RC->isAncestorOf(TargetRC) &&
607 "Cannot potentially form RefSCC cycles here!");
608 RC->switchOutgoingEdgeToCall(N, *CallTarget);
609 LLVM_DEBUG(dbgs() << "Switch outgoing ref edge to a call edge from '" << N
610 << "' to '" << *CallTarget << "'\n");
611 continue;
613 LLVM_DEBUG(dbgs() << "Switch an internal ref edge to a call edge from '"
614 << N << "' to '" << *CallTarget << "'\n");
616 // Otherwise we are switching an internal ref edge to a call edge. This
617 // may merge away some SCCs, and we add those to the UpdateResult. We also
618 // need to make sure to update the worklist in the event SCCs have moved
619 // before the current one in the post-order sequence
620 bool HasFunctionAnalysisProxy = false;
621 auto InitialSCCIndex = RC->find(*C) - RC->begin();
622 bool FormedCycle = RC->switchInternalEdgeToCall(
623 N, *CallTarget, [&](ArrayRef<SCC *> MergedSCCs) {
624 for (SCC *MergedC : MergedSCCs) {
625 assert(MergedC != &TargetC && "Cannot merge away the target SCC!");
627 HasFunctionAnalysisProxy |=
628 AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(
629 *MergedC) != nullptr;
631 // Mark that this SCC will no longer be valid.
632 UR.InvalidatedSCCs.insert(MergedC);
634 // FIXME: We should really do a 'clear' here to forcibly release
635 // memory, but we don't have a good way of doing that and
636 // preserving the function analyses.
637 auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>();
638 PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
639 AM.invalidate(*MergedC, PA);
643 // If we formed a cycle by creating this call, we need to update more data
644 // structures.
645 if (FormedCycle) {
646 C = &TargetC;
647 assert(G.lookupSCC(N) == C && "Failed to update current SCC!");
649 // If one of the invalidated SCCs had a cached proxy to a function
650 // analysis manager, we need to create a proxy in the new current SCC as
651 // the invalidated SCCs had their functions moved.
652 if (HasFunctionAnalysisProxy)
653 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, G);
655 // Any analyses cached for this SCC are no longer precise as the shape
656 // has changed by introducing this cycle. However, we have taken care to
657 // update the proxies so it remains valide.
658 auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>();
659 PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
660 AM.invalidate(*C, PA);
662 auto NewSCCIndex = RC->find(*C) - RC->begin();
663 // If we have actually moved an SCC to be topologically "below" the current
664 // one due to merging, we will need to revisit the current SCC after
665 // visiting those moved SCCs.
667 // It is critical that we *do not* revisit the current SCC unless we
668 // actually move SCCs in the process of merging because otherwise we may
669 // form a cycle where an SCC is split apart, merged, split, merged and so
670 // on infinitely.
671 if (InitialSCCIndex < NewSCCIndex) {
672 // Put our current SCC back onto the worklist as we'll visit other SCCs
673 // that are now definitively ordered prior to the current one in the
674 // post-order sequence, and may end up observing more precise context to
675 // optimize the current SCC.
676 UR.CWorklist.insert(C);
677 LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist: " << *C
678 << "\n");
679 // Enqueue in reverse order as we pop off the back of the worklist.
680 for (SCC &MovedC : llvm::reverse(make_range(RC->begin() + InitialSCCIndex,
681 RC->begin() + NewSCCIndex))) {
682 UR.CWorklist.insert(&MovedC);
683 LLVM_DEBUG(dbgs() << "Enqueuing a newly earlier in post-order SCC: "
684 << MovedC << "\n");
689 assert(!UR.InvalidatedSCCs.count(C) && "Invalidated the current SCC!");
690 assert(!UR.InvalidatedRefSCCs.count(RC) && "Invalidated the current RefSCC!");
691 assert(&C->getOuterRefSCC() == RC && "Current SCC not in current RefSCC!");
693 // Record the current RefSCC and SCC for higher layers of the CGSCC pass
694 // manager now that all the updates have been applied.
695 if (RC != &InitialRC)
696 UR.UpdatedRC = RC;
697 if (C != &InitialC)
698 UR.UpdatedC = C;
700 return *C;