1 //===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines routines for folding instructions into constants.
12 // Also, to supplement the basic IR ConstantExpr simplifications,
13 // this file defines some additional folding routines that can make use of
14 // DataLayout information. These functions cannot go in IR due to library
17 //===----------------------------------------------------------------------===//
19 #include "llvm/Analysis/ConstantFolding.h"
20 #include "llvm/ADT/APFloat.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/Analysis/TargetLibraryInfo.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/Config/config.h"
30 #include "llvm/IR/Constant.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/DerivedTypes.h"
34 #include "llvm/IR/Function.h"
35 #include "llvm/IR/GlobalValue.h"
36 #include "llvm/IR/GlobalVariable.h"
37 #include "llvm/IR/InstrTypes.h"
38 #include "llvm/IR/Instruction.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/Operator.h"
41 #include "llvm/IR/Type.h"
42 #include "llvm/IR/Value.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/KnownBits.h"
46 #include "llvm/Support/MathExtras.h"
58 //===----------------------------------------------------------------------===//
59 // Constant Folding internal helper functions
60 //===----------------------------------------------------------------------===//
62 static Constant
*foldConstVectorToAPInt(APInt
&Result
, Type
*DestTy
,
63 Constant
*C
, Type
*SrcEltTy
,
65 const DataLayout
&DL
) {
66 // Now that we know that the input value is a vector of integers, just shift
67 // and insert them into our result.
68 unsigned BitShift
= DL
.getTypeSizeInBits(SrcEltTy
);
69 for (unsigned i
= 0; i
!= NumSrcElts
; ++i
) {
71 if (DL
.isLittleEndian())
72 Element
= C
->getAggregateElement(NumSrcElts
- i
- 1);
74 Element
= C
->getAggregateElement(i
);
76 if (Element
&& isa
<UndefValue
>(Element
)) {
81 auto *ElementCI
= dyn_cast_or_null
<ConstantInt
>(Element
);
83 return ConstantExpr::getBitCast(C
, DestTy
);
86 Result
|= ElementCI
->getValue().zextOrSelf(Result
.getBitWidth());
92 /// Constant fold bitcast, symbolically evaluating it with DataLayout.
93 /// This always returns a non-null constant, but it may be a
94 /// ConstantExpr if unfoldable.
95 Constant
*FoldBitCast(Constant
*C
, Type
*DestTy
, const DataLayout
&DL
) {
96 // Catch the obvious splat cases.
97 if (C
->isNullValue() && !DestTy
->isX86_MMXTy())
98 return Constant::getNullValue(DestTy
);
99 if (C
->isAllOnesValue() && !DestTy
->isX86_MMXTy() &&
100 !DestTy
->isPtrOrPtrVectorTy()) // Don't get ones for ptr types!
101 return Constant::getAllOnesValue(DestTy
);
103 if (auto *VTy
= dyn_cast
<VectorType
>(C
->getType())) {
104 // Handle a vector->scalar integer/fp cast.
105 if (isa
<IntegerType
>(DestTy
) || DestTy
->isFloatingPointTy()) {
106 unsigned NumSrcElts
= VTy
->getNumElements();
107 Type
*SrcEltTy
= VTy
->getElementType();
109 // If the vector is a vector of floating point, convert it to vector of int
110 // to simplify things.
111 if (SrcEltTy
->isFloatingPointTy()) {
112 unsigned FPWidth
= SrcEltTy
->getPrimitiveSizeInBits();
114 VectorType::get(IntegerType::get(C
->getContext(), FPWidth
), NumSrcElts
);
115 // Ask IR to do the conversion now that #elts line up.
116 C
= ConstantExpr::getBitCast(C
, SrcIVTy
);
119 APInt
Result(DL
.getTypeSizeInBits(DestTy
), 0);
120 if (Constant
*CE
= foldConstVectorToAPInt(Result
, DestTy
, C
,
121 SrcEltTy
, NumSrcElts
, DL
))
124 if (isa
<IntegerType
>(DestTy
))
125 return ConstantInt::get(DestTy
, Result
);
127 APFloat
FP(DestTy
->getFltSemantics(), Result
);
128 return ConstantFP::get(DestTy
->getContext(), FP
);
132 // The code below only handles casts to vectors currently.
133 auto *DestVTy
= dyn_cast
<VectorType
>(DestTy
);
135 return ConstantExpr::getBitCast(C
, DestTy
);
137 // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
138 // vector so the code below can handle it uniformly.
139 if (isa
<ConstantFP
>(C
) || isa
<ConstantInt
>(C
)) {
140 Constant
*Ops
= C
; // don't take the address of C!
141 return FoldBitCast(ConstantVector::get(Ops
), DestTy
, DL
);
144 // If this is a bitcast from constant vector -> vector, fold it.
145 if (!isa
<ConstantDataVector
>(C
) && !isa
<ConstantVector
>(C
))
146 return ConstantExpr::getBitCast(C
, DestTy
);
148 // If the element types match, IR can fold it.
149 unsigned NumDstElt
= DestVTy
->getNumElements();
150 unsigned NumSrcElt
= C
->getType()->getVectorNumElements();
151 if (NumDstElt
== NumSrcElt
)
152 return ConstantExpr::getBitCast(C
, DestTy
);
154 Type
*SrcEltTy
= C
->getType()->getVectorElementType();
155 Type
*DstEltTy
= DestVTy
->getElementType();
157 // Otherwise, we're changing the number of elements in a vector, which
158 // requires endianness information to do the right thing. For example,
159 // bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
160 // folds to (little endian):
161 // <4 x i32> <i32 0, i32 0, i32 1, i32 0>
162 // and to (big endian):
163 // <4 x i32> <i32 0, i32 0, i32 0, i32 1>
165 // First thing is first. We only want to think about integer here, so if
166 // we have something in FP form, recast it as integer.
167 if (DstEltTy
->isFloatingPointTy()) {
168 // Fold to an vector of integers with same size as our FP type.
169 unsigned FPWidth
= DstEltTy
->getPrimitiveSizeInBits();
171 VectorType::get(IntegerType::get(C
->getContext(), FPWidth
), NumDstElt
);
172 // Recursively handle this integer conversion, if possible.
173 C
= FoldBitCast(C
, DestIVTy
, DL
);
175 // Finally, IR can handle this now that #elts line up.
176 return ConstantExpr::getBitCast(C
, DestTy
);
179 // Okay, we know the destination is integer, if the input is FP, convert
180 // it to integer first.
181 if (SrcEltTy
->isFloatingPointTy()) {
182 unsigned FPWidth
= SrcEltTy
->getPrimitiveSizeInBits();
184 VectorType::get(IntegerType::get(C
->getContext(), FPWidth
), NumSrcElt
);
185 // Ask IR to do the conversion now that #elts line up.
186 C
= ConstantExpr::getBitCast(C
, SrcIVTy
);
187 // If IR wasn't able to fold it, bail out.
188 if (!isa
<ConstantVector
>(C
) && // FIXME: Remove ConstantVector.
189 !isa
<ConstantDataVector
>(C
))
193 // Now we know that the input and output vectors are both integer vectors
194 // of the same size, and that their #elements is not the same. Do the
195 // conversion here, which depends on whether the input or output has
197 bool isLittleEndian
= DL
.isLittleEndian();
199 SmallVector
<Constant
*, 32> Result
;
200 if (NumDstElt
< NumSrcElt
) {
201 // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
202 Constant
*Zero
= Constant::getNullValue(DstEltTy
);
203 unsigned Ratio
= NumSrcElt
/NumDstElt
;
204 unsigned SrcBitSize
= SrcEltTy
->getPrimitiveSizeInBits();
206 for (unsigned i
= 0; i
!= NumDstElt
; ++i
) {
207 // Build each element of the result.
208 Constant
*Elt
= Zero
;
209 unsigned ShiftAmt
= isLittleEndian
? 0 : SrcBitSize
*(Ratio
-1);
210 for (unsigned j
= 0; j
!= Ratio
; ++j
) {
211 Constant
*Src
= C
->getAggregateElement(SrcElt
++);
212 if (Src
&& isa
<UndefValue
>(Src
))
213 Src
= Constant::getNullValue(C
->getType()->getVectorElementType());
215 Src
= dyn_cast_or_null
<ConstantInt
>(Src
);
216 if (!Src
) // Reject constantexpr elements.
217 return ConstantExpr::getBitCast(C
, DestTy
);
219 // Zero extend the element to the right size.
220 Src
= ConstantExpr::getZExt(Src
, Elt
->getType());
222 // Shift it to the right place, depending on endianness.
223 Src
= ConstantExpr::getShl(Src
,
224 ConstantInt::get(Src
->getType(), ShiftAmt
));
225 ShiftAmt
+= isLittleEndian
? SrcBitSize
: -SrcBitSize
;
228 Elt
= ConstantExpr::getOr(Elt
, Src
);
230 Result
.push_back(Elt
);
232 return ConstantVector::get(Result
);
235 // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
236 unsigned Ratio
= NumDstElt
/NumSrcElt
;
237 unsigned DstBitSize
= DL
.getTypeSizeInBits(DstEltTy
);
239 // Loop over each source value, expanding into multiple results.
240 for (unsigned i
= 0; i
!= NumSrcElt
; ++i
) {
241 auto *Element
= C
->getAggregateElement(i
);
243 if (!Element
) // Reject constantexpr elements.
244 return ConstantExpr::getBitCast(C
, DestTy
);
246 if (isa
<UndefValue
>(Element
)) {
247 // Correctly Propagate undef values.
248 Result
.append(Ratio
, UndefValue::get(DstEltTy
));
252 auto *Src
= dyn_cast
<ConstantInt
>(Element
);
254 return ConstantExpr::getBitCast(C
, DestTy
);
256 unsigned ShiftAmt
= isLittleEndian
? 0 : DstBitSize
*(Ratio
-1);
257 for (unsigned j
= 0; j
!= Ratio
; ++j
) {
258 // Shift the piece of the value into the right place, depending on
260 Constant
*Elt
= ConstantExpr::getLShr(Src
,
261 ConstantInt::get(Src
->getType(), ShiftAmt
));
262 ShiftAmt
+= isLittleEndian
? DstBitSize
: -DstBitSize
;
264 // Truncate the element to an integer with the same pointer size and
265 // convert the element back to a pointer using a inttoptr.
266 if (DstEltTy
->isPointerTy()) {
267 IntegerType
*DstIntTy
= Type::getIntNTy(C
->getContext(), DstBitSize
);
268 Constant
*CE
= ConstantExpr::getTrunc(Elt
, DstIntTy
);
269 Result
.push_back(ConstantExpr::getIntToPtr(CE
, DstEltTy
));
273 // Truncate and remember this piece.
274 Result
.push_back(ConstantExpr::getTrunc(Elt
, DstEltTy
));
278 return ConstantVector::get(Result
);
281 } // end anonymous namespace
283 /// If this constant is a constant offset from a global, return the global and
284 /// the constant. Because of constantexprs, this function is recursive.
285 bool llvm::IsConstantOffsetFromGlobal(Constant
*C
, GlobalValue
*&GV
,
286 APInt
&Offset
, const DataLayout
&DL
) {
287 // Trivial case, constant is the global.
288 if ((GV
= dyn_cast
<GlobalValue
>(C
))) {
289 unsigned BitWidth
= DL
.getIndexTypeSizeInBits(GV
->getType());
290 Offset
= APInt(BitWidth
, 0);
294 // Otherwise, if this isn't a constant expr, bail out.
295 auto *CE
= dyn_cast
<ConstantExpr
>(C
);
296 if (!CE
) return false;
298 // Look through ptr->int and ptr->ptr casts.
299 if (CE
->getOpcode() == Instruction::PtrToInt
||
300 CE
->getOpcode() == Instruction::BitCast
)
301 return IsConstantOffsetFromGlobal(CE
->getOperand(0), GV
, Offset
, DL
);
303 // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
304 auto *GEP
= dyn_cast
<GEPOperator
>(CE
);
308 unsigned BitWidth
= DL
.getIndexTypeSizeInBits(GEP
->getType());
309 APInt
TmpOffset(BitWidth
, 0);
311 // If the base isn't a global+constant, we aren't either.
312 if (!IsConstantOffsetFromGlobal(CE
->getOperand(0), GV
, TmpOffset
, DL
))
315 // Otherwise, add any offset that our operands provide.
316 if (!GEP
->accumulateConstantOffset(DL
, TmpOffset
))
323 Constant
*llvm::ConstantFoldLoadThroughBitcast(Constant
*C
, Type
*DestTy
,
324 const DataLayout
&DL
) {
326 Type
*SrcTy
= C
->getType();
328 // If the type sizes are the same and a cast is legal, just directly
329 // cast the constant.
330 if (DL
.getTypeSizeInBits(DestTy
) == DL
.getTypeSizeInBits(SrcTy
)) {
331 Instruction::CastOps Cast
= Instruction::BitCast
;
332 // If we are going from a pointer to int or vice versa, we spell the cast
334 if (SrcTy
->isIntegerTy() && DestTy
->isPointerTy())
335 Cast
= Instruction::IntToPtr
;
336 else if (SrcTy
->isPointerTy() && DestTy
->isIntegerTy())
337 Cast
= Instruction::PtrToInt
;
339 if (CastInst::castIsValid(Cast
, C
, DestTy
))
340 return ConstantExpr::getCast(Cast
, C
, DestTy
);
343 // If this isn't an aggregate type, there is nothing we can do to drill down
344 // and find a bitcastable constant.
345 if (!SrcTy
->isAggregateType())
348 // We're simulating a load through a pointer that was bitcast to point to
349 // a different type, so we can try to walk down through the initial
350 // elements of an aggregate to see if some part of th e aggregate is
351 // castable to implement the "load" semantic model.
352 C
= C
->getAggregateElement(0u);
360 /// Recursive helper to read bits out of global. C is the constant being copied
361 /// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy
362 /// results into and BytesLeft is the number of bytes left in
363 /// the CurPtr buffer. DL is the DataLayout.
364 bool ReadDataFromGlobal(Constant
*C
, uint64_t ByteOffset
, unsigned char *CurPtr
,
365 unsigned BytesLeft
, const DataLayout
&DL
) {
366 assert(ByteOffset
<= DL
.getTypeAllocSize(C
->getType()) &&
367 "Out of range access");
369 // If this element is zero or undefined, we can just return since *CurPtr is
371 if (isa
<ConstantAggregateZero
>(C
) || isa
<UndefValue
>(C
))
374 if (auto *CI
= dyn_cast
<ConstantInt
>(C
)) {
375 if (CI
->getBitWidth() > 64 ||
376 (CI
->getBitWidth() & 7) != 0)
379 uint64_t Val
= CI
->getZExtValue();
380 unsigned IntBytes
= unsigned(CI
->getBitWidth()/8);
382 for (unsigned i
= 0; i
!= BytesLeft
&& ByteOffset
!= IntBytes
; ++i
) {
384 if (!DL
.isLittleEndian())
385 n
= IntBytes
- n
- 1;
386 CurPtr
[i
] = (unsigned char)(Val
>> (n
* 8));
392 if (auto *CFP
= dyn_cast
<ConstantFP
>(C
)) {
393 if (CFP
->getType()->isDoubleTy()) {
394 C
= FoldBitCast(C
, Type::getInt64Ty(C
->getContext()), DL
);
395 return ReadDataFromGlobal(C
, ByteOffset
, CurPtr
, BytesLeft
, DL
);
397 if (CFP
->getType()->isFloatTy()){
398 C
= FoldBitCast(C
, Type::getInt32Ty(C
->getContext()), DL
);
399 return ReadDataFromGlobal(C
, ByteOffset
, CurPtr
, BytesLeft
, DL
);
401 if (CFP
->getType()->isHalfTy()){
402 C
= FoldBitCast(C
, Type::getInt16Ty(C
->getContext()), DL
);
403 return ReadDataFromGlobal(C
, ByteOffset
, CurPtr
, BytesLeft
, DL
);
408 if (auto *CS
= dyn_cast
<ConstantStruct
>(C
)) {
409 const StructLayout
*SL
= DL
.getStructLayout(CS
->getType());
410 unsigned Index
= SL
->getElementContainingOffset(ByteOffset
);
411 uint64_t CurEltOffset
= SL
->getElementOffset(Index
);
412 ByteOffset
-= CurEltOffset
;
415 // If the element access is to the element itself and not to tail padding,
416 // read the bytes from the element.
417 uint64_t EltSize
= DL
.getTypeAllocSize(CS
->getOperand(Index
)->getType());
419 if (ByteOffset
< EltSize
&&
420 !ReadDataFromGlobal(CS
->getOperand(Index
), ByteOffset
, CurPtr
,
426 // Check to see if we read from the last struct element, if so we're done.
427 if (Index
== CS
->getType()->getNumElements())
430 // If we read all of the bytes we needed from this element we're done.
431 uint64_t NextEltOffset
= SL
->getElementOffset(Index
);
433 if (BytesLeft
<= NextEltOffset
- CurEltOffset
- ByteOffset
)
436 // Move to the next element of the struct.
437 CurPtr
+= NextEltOffset
- CurEltOffset
- ByteOffset
;
438 BytesLeft
-= NextEltOffset
- CurEltOffset
- ByteOffset
;
440 CurEltOffset
= NextEltOffset
;
445 if (isa
<ConstantArray
>(C
) || isa
<ConstantVector
>(C
) ||
446 isa
<ConstantDataSequential
>(C
)) {
447 Type
*EltTy
= C
->getType()->getSequentialElementType();
448 uint64_t EltSize
= DL
.getTypeAllocSize(EltTy
);
449 uint64_t Index
= ByteOffset
/ EltSize
;
450 uint64_t Offset
= ByteOffset
- Index
* EltSize
;
452 if (auto *AT
= dyn_cast
<ArrayType
>(C
->getType()))
453 NumElts
= AT
->getNumElements();
455 NumElts
= C
->getType()->getVectorNumElements();
457 for (; Index
!= NumElts
; ++Index
) {
458 if (!ReadDataFromGlobal(C
->getAggregateElement(Index
), Offset
, CurPtr
,
462 uint64_t BytesWritten
= EltSize
- Offset
;
463 assert(BytesWritten
<= EltSize
&& "Not indexing into this element?");
464 if (BytesWritten
>= BytesLeft
)
468 BytesLeft
-= BytesWritten
;
469 CurPtr
+= BytesWritten
;
474 if (auto *CE
= dyn_cast
<ConstantExpr
>(C
)) {
475 if (CE
->getOpcode() == Instruction::IntToPtr
&&
476 CE
->getOperand(0)->getType() == DL
.getIntPtrType(CE
->getType())) {
477 return ReadDataFromGlobal(CE
->getOperand(0), ByteOffset
, CurPtr
,
482 // Otherwise, unknown initializer type.
486 Constant
*FoldReinterpretLoadFromConstPtr(Constant
*C
, Type
*LoadTy
,
487 const DataLayout
&DL
) {
488 auto *PTy
= cast
<PointerType
>(C
->getType());
489 auto *IntType
= dyn_cast
<IntegerType
>(LoadTy
);
491 // If this isn't an integer load we can't fold it directly.
493 unsigned AS
= PTy
->getAddressSpace();
495 // If this is a float/double load, we can try folding it as an int32/64 load
496 // and then bitcast the result. This can be useful for union cases. Note
497 // that address spaces don't matter here since we're not going to result in
498 // an actual new load.
500 if (LoadTy
->isHalfTy())
501 MapTy
= Type::getInt16Ty(C
->getContext());
502 else if (LoadTy
->isFloatTy())
503 MapTy
= Type::getInt32Ty(C
->getContext());
504 else if (LoadTy
->isDoubleTy())
505 MapTy
= Type::getInt64Ty(C
->getContext());
506 else if (LoadTy
->isVectorTy()) {
507 MapTy
= PointerType::getIntNTy(C
->getContext(),
508 DL
.getTypeAllocSizeInBits(LoadTy
));
512 C
= FoldBitCast(C
, MapTy
->getPointerTo(AS
), DL
);
513 if (Constant
*Res
= FoldReinterpretLoadFromConstPtr(C
, MapTy
, DL
))
514 return FoldBitCast(Res
, LoadTy
, DL
);
518 unsigned BytesLoaded
= (IntType
->getBitWidth() + 7) / 8;
519 if (BytesLoaded
> 32 || BytesLoaded
== 0)
524 if (!IsConstantOffsetFromGlobal(C
, GVal
, OffsetAI
, DL
))
527 auto *GV
= dyn_cast
<GlobalVariable
>(GVal
);
528 if (!GV
|| !GV
->isConstant() || !GV
->hasDefinitiveInitializer() ||
529 !GV
->getInitializer()->getType()->isSized())
532 int64_t Offset
= OffsetAI
.getSExtValue();
533 int64_t InitializerSize
= DL
.getTypeAllocSize(GV
->getInitializer()->getType());
535 // If we're not accessing anything in this constant, the result is undefined.
536 if (Offset
+ BytesLoaded
<= 0)
537 return UndefValue::get(IntType
);
539 // If we're not accessing anything in this constant, the result is undefined.
540 if (Offset
>= InitializerSize
)
541 return UndefValue::get(IntType
);
543 unsigned char RawBytes
[32] = {0};
544 unsigned char *CurPtr
= RawBytes
;
545 unsigned BytesLeft
= BytesLoaded
;
547 // If we're loading off the beginning of the global, some bytes may be valid.
554 if (!ReadDataFromGlobal(GV
->getInitializer(), Offset
, CurPtr
, BytesLeft
, DL
))
557 APInt ResultVal
= APInt(IntType
->getBitWidth(), 0);
558 if (DL
.isLittleEndian()) {
559 ResultVal
= RawBytes
[BytesLoaded
- 1];
560 for (unsigned i
= 1; i
!= BytesLoaded
; ++i
) {
562 ResultVal
|= RawBytes
[BytesLoaded
- 1 - i
];
565 ResultVal
= RawBytes
[0];
566 for (unsigned i
= 1; i
!= BytesLoaded
; ++i
) {
568 ResultVal
|= RawBytes
[i
];
572 return ConstantInt::get(IntType
->getContext(), ResultVal
);
575 Constant
*ConstantFoldLoadThroughBitcastExpr(ConstantExpr
*CE
, Type
*DestTy
,
576 const DataLayout
&DL
) {
577 auto *SrcPtr
= CE
->getOperand(0);
578 auto *SrcPtrTy
= dyn_cast
<PointerType
>(SrcPtr
->getType());
581 Type
*SrcTy
= SrcPtrTy
->getPointerElementType();
583 Constant
*C
= ConstantFoldLoadFromConstPtr(SrcPtr
, SrcTy
, DL
);
587 return llvm::ConstantFoldLoadThroughBitcast(C
, DestTy
, DL
);
590 } // end anonymous namespace
592 Constant
*llvm::ConstantFoldLoadFromConstPtr(Constant
*C
, Type
*Ty
,
593 const DataLayout
&DL
) {
594 // First, try the easy cases:
595 if (auto *GV
= dyn_cast
<GlobalVariable
>(C
))
596 if (GV
->isConstant() && GV
->hasDefinitiveInitializer())
597 return GV
->getInitializer();
599 if (auto *GA
= dyn_cast
<GlobalAlias
>(C
))
600 if (GA
->getAliasee() && !GA
->isInterposable())
601 return ConstantFoldLoadFromConstPtr(GA
->getAliasee(), Ty
, DL
);
603 // If the loaded value isn't a constant expr, we can't handle it.
604 auto *CE
= dyn_cast
<ConstantExpr
>(C
);
608 if (CE
->getOpcode() == Instruction::GetElementPtr
) {
609 if (auto *GV
= dyn_cast
<GlobalVariable
>(CE
->getOperand(0))) {
610 if (GV
->isConstant() && GV
->hasDefinitiveInitializer()) {
612 ConstantFoldLoadThroughGEPConstantExpr(GV
->getInitializer(), CE
))
618 if (CE
->getOpcode() == Instruction::BitCast
)
619 if (Constant
*LoadedC
= ConstantFoldLoadThroughBitcastExpr(CE
, Ty
, DL
))
622 // Instead of loading constant c string, use corresponding integer value
623 // directly if string length is small enough.
625 if (getConstantStringInfo(CE
, Str
) && !Str
.empty()) {
626 size_t StrLen
= Str
.size();
627 unsigned NumBits
= Ty
->getPrimitiveSizeInBits();
628 // Replace load with immediate integer if the result is an integer or fp
630 if ((NumBits
>> 3) == StrLen
+ 1 && (NumBits
& 7) == 0 &&
631 (isa
<IntegerType
>(Ty
) || Ty
->isFloatingPointTy())) {
632 APInt
StrVal(NumBits
, 0);
633 APInt
SingleChar(NumBits
, 0);
634 if (DL
.isLittleEndian()) {
635 for (unsigned char C
: reverse(Str
.bytes())) {
636 SingleChar
= static_cast<uint64_t>(C
);
637 StrVal
= (StrVal
<< 8) | SingleChar
;
640 for (unsigned char C
: Str
.bytes()) {
641 SingleChar
= static_cast<uint64_t>(C
);
642 StrVal
= (StrVal
<< 8) | SingleChar
;
644 // Append NULL at the end.
646 StrVal
= (StrVal
<< 8) | SingleChar
;
649 Constant
*Res
= ConstantInt::get(CE
->getContext(), StrVal
);
650 if (Ty
->isFloatingPointTy())
651 Res
= ConstantExpr::getBitCast(Res
, Ty
);
656 // If this load comes from anywhere in a constant global, and if the global
657 // is all undef or zero, we know what it loads.
658 if (auto *GV
= dyn_cast
<GlobalVariable
>(GetUnderlyingObject(CE
, DL
))) {
659 if (GV
->isConstant() && GV
->hasDefinitiveInitializer()) {
660 if (GV
->getInitializer()->isNullValue())
661 return Constant::getNullValue(Ty
);
662 if (isa
<UndefValue
>(GV
->getInitializer()))
663 return UndefValue::get(Ty
);
667 // Try hard to fold loads from bitcasted strange and non-type-safe things.
668 return FoldReinterpretLoadFromConstPtr(CE
, Ty
, DL
);
673 Constant
*ConstantFoldLoadInst(const LoadInst
*LI
, const DataLayout
&DL
) {
674 if (LI
->isVolatile()) return nullptr;
676 if (auto *C
= dyn_cast
<Constant
>(LI
->getOperand(0)))
677 return ConstantFoldLoadFromConstPtr(C
, LI
->getType(), DL
);
682 /// One of Op0/Op1 is a constant expression.
683 /// Attempt to symbolically evaluate the result of a binary operator merging
684 /// these together. If target data info is available, it is provided as DL,
685 /// otherwise DL is null.
686 Constant
*SymbolicallyEvaluateBinop(unsigned Opc
, Constant
*Op0
, Constant
*Op1
,
687 const DataLayout
&DL
) {
690 // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
691 // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
694 if (Opc
== Instruction::And
) {
695 KnownBits Known0
= computeKnownBits(Op0
, DL
);
696 KnownBits Known1
= computeKnownBits(Op1
, DL
);
697 if ((Known1
.One
| Known0
.Zero
).isAllOnesValue()) {
698 // All the bits of Op0 that the 'and' could be masking are already zero.
701 if ((Known0
.One
| Known1
.Zero
).isAllOnesValue()) {
702 // All the bits of Op1 that the 'and' could be masking are already zero.
706 Known0
.Zero
|= Known1
.Zero
;
707 Known0
.One
&= Known1
.One
;
708 if (Known0
.isConstant())
709 return ConstantInt::get(Op0
->getType(), Known0
.getConstant());
712 // If the constant expr is something like &A[123] - &A[4].f, fold this into a
713 // constant. This happens frequently when iterating over a global array.
714 if (Opc
== Instruction::Sub
) {
715 GlobalValue
*GV1
, *GV2
;
718 if (IsConstantOffsetFromGlobal(Op0
, GV1
, Offs1
, DL
))
719 if (IsConstantOffsetFromGlobal(Op1
, GV2
, Offs2
, DL
) && GV1
== GV2
) {
720 unsigned OpSize
= DL
.getTypeSizeInBits(Op0
->getType());
722 // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
723 // PtrToInt may change the bitwidth so we have convert to the right size
725 return ConstantInt::get(Op0
->getType(), Offs1
.zextOrTrunc(OpSize
) -
726 Offs2
.zextOrTrunc(OpSize
));
733 /// If array indices are not pointer-sized integers, explicitly cast them so
734 /// that they aren't implicitly casted by the getelementptr.
735 Constant
*CastGEPIndices(Type
*SrcElemTy
, ArrayRef
<Constant
*> Ops
,
736 Type
*ResultTy
, Optional
<unsigned> InRangeIndex
,
737 const DataLayout
&DL
, const TargetLibraryInfo
*TLI
) {
738 Type
*IntPtrTy
= DL
.getIntPtrType(ResultTy
);
739 Type
*IntPtrScalarTy
= IntPtrTy
->getScalarType();
742 SmallVector
<Constant
*, 32> NewIdxs
;
743 for (unsigned i
= 1, e
= Ops
.size(); i
!= e
; ++i
) {
745 !isa
<StructType
>(GetElementPtrInst::getIndexedType(
746 SrcElemTy
, Ops
.slice(1, i
- 1)))) &&
747 Ops
[i
]->getType()->getScalarType() != IntPtrScalarTy
) {
749 Type
*NewType
= Ops
[i
]->getType()->isVectorTy()
751 : IntPtrTy
->getScalarType();
752 NewIdxs
.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops
[i
],
758 NewIdxs
.push_back(Ops
[i
]);
764 Constant
*C
= ConstantExpr::getGetElementPtr(
765 SrcElemTy
, Ops
[0], NewIdxs
, /*InBounds=*/false, InRangeIndex
);
766 if (Constant
*Folded
= ConstantFoldConstant(C
, DL
, TLI
))
772 /// Strip the pointer casts, but preserve the address space information.
773 Constant
* StripPtrCastKeepAS(Constant
* Ptr
, Type
*&ElemTy
) {
774 assert(Ptr
->getType()->isPointerTy() && "Not a pointer type");
775 auto *OldPtrTy
= cast
<PointerType
>(Ptr
->getType());
776 Ptr
= Ptr
->stripPointerCasts();
777 auto *NewPtrTy
= cast
<PointerType
>(Ptr
->getType());
779 ElemTy
= NewPtrTy
->getPointerElementType();
781 // Preserve the address space number of the pointer.
782 if (NewPtrTy
->getAddressSpace() != OldPtrTy
->getAddressSpace()) {
783 NewPtrTy
= ElemTy
->getPointerTo(OldPtrTy
->getAddressSpace());
784 Ptr
= ConstantExpr::getPointerCast(Ptr
, NewPtrTy
);
789 /// If we can symbolically evaluate the GEP constant expression, do so.
790 Constant
*SymbolicallyEvaluateGEP(const GEPOperator
*GEP
,
791 ArrayRef
<Constant
*> Ops
,
792 const DataLayout
&DL
,
793 const TargetLibraryInfo
*TLI
) {
794 const GEPOperator
*InnermostGEP
= GEP
;
795 bool InBounds
= GEP
->isInBounds();
797 Type
*SrcElemTy
= GEP
->getSourceElementType();
798 Type
*ResElemTy
= GEP
->getResultElementType();
799 Type
*ResTy
= GEP
->getType();
800 if (!SrcElemTy
->isSized())
803 if (Constant
*C
= CastGEPIndices(SrcElemTy
, Ops
, ResTy
,
804 GEP
->getInRangeIndex(), DL
, TLI
))
807 Constant
*Ptr
= Ops
[0];
808 if (!Ptr
->getType()->isPointerTy())
811 Type
*IntPtrTy
= DL
.getIntPtrType(Ptr
->getType());
813 // If this is a constant expr gep that is effectively computing an
814 // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
815 for (unsigned i
= 1, e
= Ops
.size(); i
!= e
; ++i
)
816 if (!isa
<ConstantInt
>(Ops
[i
])) {
818 // If this is "gep i8* Ptr, (sub 0, V)", fold this as:
819 // "inttoptr (sub (ptrtoint Ptr), V)"
820 if (Ops
.size() == 2 && ResElemTy
->isIntegerTy(8)) {
821 auto *CE
= dyn_cast
<ConstantExpr
>(Ops
[1]);
822 assert((!CE
|| CE
->getType() == IntPtrTy
) &&
823 "CastGEPIndices didn't canonicalize index types!");
824 if (CE
&& CE
->getOpcode() == Instruction::Sub
&&
825 CE
->getOperand(0)->isNullValue()) {
826 Constant
*Res
= ConstantExpr::getPtrToInt(Ptr
, CE
->getType());
827 Res
= ConstantExpr::getSub(Res
, CE
->getOperand(1));
828 Res
= ConstantExpr::getIntToPtr(Res
, ResTy
);
829 if (auto *FoldedRes
= ConstantFoldConstant(Res
, DL
, TLI
))
837 unsigned BitWidth
= DL
.getTypeSizeInBits(IntPtrTy
);
840 DL
.getIndexedOffsetInType(
842 makeArrayRef((Value
* const *)Ops
.data() + 1, Ops
.size() - 1)));
843 Ptr
= StripPtrCastKeepAS(Ptr
, SrcElemTy
);
845 // If this is a GEP of a GEP, fold it all into a single GEP.
846 while (auto *GEP
= dyn_cast
<GEPOperator
>(Ptr
)) {
848 InBounds
&= GEP
->isInBounds();
850 SmallVector
<Value
*, 4> NestedOps(GEP
->op_begin() + 1, GEP
->op_end());
852 // Do not try the incorporate the sub-GEP if some index is not a number.
853 bool AllConstantInt
= true;
854 for (Value
*NestedOp
: NestedOps
)
855 if (!isa
<ConstantInt
>(NestedOp
)) {
856 AllConstantInt
= false;
862 Ptr
= cast
<Constant
>(GEP
->getOperand(0));
863 SrcElemTy
= GEP
->getSourceElementType();
864 Offset
+= APInt(BitWidth
, DL
.getIndexedOffsetInType(SrcElemTy
, NestedOps
));
865 Ptr
= StripPtrCastKeepAS(Ptr
, SrcElemTy
);
868 // If the base value for this address is a literal integer value, fold the
869 // getelementptr to the resulting integer value casted to the pointer type.
870 APInt
BasePtr(BitWidth
, 0);
871 if (auto *CE
= dyn_cast
<ConstantExpr
>(Ptr
)) {
872 if (CE
->getOpcode() == Instruction::IntToPtr
) {
873 if (auto *Base
= dyn_cast
<ConstantInt
>(CE
->getOperand(0)))
874 BasePtr
= Base
->getValue().zextOrTrunc(BitWidth
);
878 auto *PTy
= cast
<PointerType
>(Ptr
->getType());
879 if ((Ptr
->isNullValue() || BasePtr
!= 0) &&
880 !DL
.isNonIntegralPointerType(PTy
)) {
881 Constant
*C
= ConstantInt::get(Ptr
->getContext(), Offset
+ BasePtr
);
882 return ConstantExpr::getIntToPtr(C
, ResTy
);
885 // Otherwise form a regular getelementptr. Recompute the indices so that
886 // we eliminate over-indexing of the notional static type array bounds.
887 // This makes it easy to determine if the getelementptr is "inbounds".
888 // Also, this helps GlobalOpt do SROA on GlobalVariables.
890 SmallVector
<Constant
*, 32> NewIdxs
;
893 if (!Ty
->isStructTy()) {
894 if (Ty
->isPointerTy()) {
895 // The only pointer indexing we'll do is on the first index of the GEP.
896 if (!NewIdxs
.empty())
901 // Only handle pointers to sized types, not pointers to functions.
904 } else if (auto *ATy
= dyn_cast
<SequentialType
>(Ty
)) {
905 Ty
= ATy
->getElementType();
907 // We've reached some non-indexable type.
911 // Determine which element of the array the offset points into.
912 APInt
ElemSize(BitWidth
, DL
.getTypeAllocSize(Ty
));
914 // The element size is 0. This may be [0 x Ty]*, so just use a zero
915 // index for this level and proceed to the next level to see if it can
916 // accommodate the offset.
917 NewIdxs
.push_back(ConstantInt::get(IntPtrTy
, 0));
919 // The element size is non-zero divide the offset by the element
920 // size (rounding down), to compute the index at this level.
922 APInt NewIdx
= Offset
.sdiv_ov(ElemSize
, Overflow
);
925 Offset
-= NewIdx
* ElemSize
;
926 NewIdxs
.push_back(ConstantInt::get(IntPtrTy
, NewIdx
));
929 auto *STy
= cast
<StructType
>(Ty
);
930 // If we end up with an offset that isn't valid for this struct type, we
931 // can't re-form this GEP in a regular form, so bail out. The pointer
932 // operand likely went through casts that are necessary to make the GEP
934 const StructLayout
&SL
= *DL
.getStructLayout(STy
);
935 if (Offset
.isNegative() || Offset
.uge(SL
.getSizeInBytes()))
938 // Determine which field of the struct the offset points into. The
939 // getZExtValue is fine as we've already ensured that the offset is
940 // within the range representable by the StructLayout API.
941 unsigned ElIdx
= SL
.getElementContainingOffset(Offset
.getZExtValue());
942 NewIdxs
.push_back(ConstantInt::get(Type::getInt32Ty(Ty
->getContext()),
944 Offset
-= APInt(BitWidth
, SL
.getElementOffset(ElIdx
));
945 Ty
= STy
->getTypeAtIndex(ElIdx
);
947 } while (Ty
!= ResElemTy
);
949 // If we haven't used up the entire offset by descending the static
950 // type, then the offset is pointing into the middle of an indivisible
951 // member, so we can't simplify it.
955 // Preserve the inrange index from the innermost GEP if possible. We must
956 // have calculated the same indices up to and including the inrange index.
957 Optional
<unsigned> InRangeIndex
;
958 if (Optional
<unsigned> LastIRIndex
= InnermostGEP
->getInRangeIndex())
959 if (SrcElemTy
== InnermostGEP
->getSourceElementType() &&
960 NewIdxs
.size() > *LastIRIndex
) {
961 InRangeIndex
= LastIRIndex
;
962 for (unsigned I
= 0; I
<= *LastIRIndex
; ++I
)
963 if (NewIdxs
[I
] != InnermostGEP
->getOperand(I
+ 1))
968 Constant
*C
= ConstantExpr::getGetElementPtr(SrcElemTy
, Ptr
, NewIdxs
,
969 InBounds
, InRangeIndex
);
970 assert(C
->getType()->getPointerElementType() == Ty
&&
971 "Computed GetElementPtr has unexpected type!");
973 // If we ended up indexing a member with a type that doesn't match
974 // the type of what the original indices indexed, add a cast.
976 C
= FoldBitCast(C
, ResTy
, DL
);
981 /// Attempt to constant fold an instruction with the
982 /// specified opcode and operands. If successful, the constant result is
983 /// returned, if not, null is returned. Note that this function can fail when
984 /// attempting to fold instructions like loads and stores, which have no
985 /// constant expression form.
986 Constant
*ConstantFoldInstOperandsImpl(const Value
*InstOrCE
, unsigned Opcode
,
987 ArrayRef
<Constant
*> Ops
,
988 const DataLayout
&DL
,
989 const TargetLibraryInfo
*TLI
) {
990 Type
*DestTy
= InstOrCE
->getType();
992 // Handle easy binops first.
993 if (Instruction::isBinaryOp(Opcode
))
994 return ConstantFoldBinaryOpOperands(Opcode
, Ops
[0], Ops
[1], DL
);
996 if (Instruction::isCast(Opcode
))
997 return ConstantFoldCastOperand(Opcode
, Ops
[0], DestTy
, DL
);
999 if (auto *GEP
= dyn_cast
<GEPOperator
>(InstOrCE
)) {
1000 if (Constant
*C
= SymbolicallyEvaluateGEP(GEP
, Ops
, DL
, TLI
))
1003 return ConstantExpr::getGetElementPtr(GEP
->getSourceElementType(), Ops
[0],
1004 Ops
.slice(1), GEP
->isInBounds(),
1005 GEP
->getInRangeIndex());
1008 if (auto *CE
= dyn_cast
<ConstantExpr
>(InstOrCE
))
1009 return CE
->getWithOperands(Ops
);
1012 default: return nullptr;
1013 case Instruction::ICmp
:
1014 case Instruction::FCmp
: llvm_unreachable("Invalid for compares");
1015 case Instruction::Call
:
1016 if (auto *F
= dyn_cast
<Function
>(Ops
.back())) {
1017 ImmutableCallSite
CS(cast
<CallInst
>(InstOrCE
));
1018 if (canConstantFoldCallTo(CS
, F
))
1019 return ConstantFoldCall(CS
, F
, Ops
.slice(0, Ops
.size() - 1), TLI
);
1022 case Instruction::Select
:
1023 return ConstantExpr::getSelect(Ops
[0], Ops
[1], Ops
[2]);
1024 case Instruction::ExtractElement
:
1025 return ConstantExpr::getExtractElement(Ops
[0], Ops
[1]);
1026 case Instruction::InsertElement
:
1027 return ConstantExpr::getInsertElement(Ops
[0], Ops
[1], Ops
[2]);
1028 case Instruction::ShuffleVector
:
1029 return ConstantExpr::getShuffleVector(Ops
[0], Ops
[1], Ops
[2]);
1033 } // end anonymous namespace
1035 //===----------------------------------------------------------------------===//
1036 // Constant Folding public APIs
1037 //===----------------------------------------------------------------------===//
1042 ConstantFoldConstantImpl(const Constant
*C
, const DataLayout
&DL
,
1043 const TargetLibraryInfo
*TLI
,
1044 SmallDenseMap
<Constant
*, Constant
*> &FoldedOps
) {
1045 if (!isa
<ConstantVector
>(C
) && !isa
<ConstantExpr
>(C
))
1048 SmallVector
<Constant
*, 8> Ops
;
1049 for (const Use
&NewU
: C
->operands()) {
1050 auto *NewC
= cast
<Constant
>(&NewU
);
1051 // Recursively fold the ConstantExpr's operands. If we have already folded
1052 // a ConstantExpr, we don't have to process it again.
1053 if (isa
<ConstantVector
>(NewC
) || isa
<ConstantExpr
>(NewC
)) {
1054 auto It
= FoldedOps
.find(NewC
);
1055 if (It
== FoldedOps
.end()) {
1057 ConstantFoldConstantImpl(NewC
, DL
, TLI
, FoldedOps
)) {
1058 FoldedOps
.insert({NewC
, FoldedC
});
1061 FoldedOps
.insert({NewC
, NewC
});
1067 Ops
.push_back(NewC
);
1070 if (auto *CE
= dyn_cast
<ConstantExpr
>(C
)) {
1071 if (CE
->isCompare())
1072 return ConstantFoldCompareInstOperands(CE
->getPredicate(), Ops
[0], Ops
[1],
1075 return ConstantFoldInstOperandsImpl(CE
, CE
->getOpcode(), Ops
, DL
, TLI
);
1078 assert(isa
<ConstantVector
>(C
));
1079 return ConstantVector::get(Ops
);
1082 } // end anonymous namespace
1084 Constant
*llvm::ConstantFoldInstruction(Instruction
*I
, const DataLayout
&DL
,
1085 const TargetLibraryInfo
*TLI
) {
1086 // Handle PHI nodes quickly here...
1087 if (auto *PN
= dyn_cast
<PHINode
>(I
)) {
1088 Constant
*CommonValue
= nullptr;
1090 SmallDenseMap
<Constant
*, Constant
*> FoldedOps
;
1091 for (Value
*Incoming
: PN
->incoming_values()) {
1092 // If the incoming value is undef then skip it. Note that while we could
1093 // skip the value if it is equal to the phi node itself we choose not to
1094 // because that would break the rule that constant folding only applies if
1095 // all operands are constants.
1096 if (isa
<UndefValue
>(Incoming
))
1098 // If the incoming value is not a constant, then give up.
1099 auto *C
= dyn_cast
<Constant
>(Incoming
);
1102 // Fold the PHI's operands.
1103 if (auto *FoldedC
= ConstantFoldConstantImpl(C
, DL
, TLI
, FoldedOps
))
1105 // If the incoming value is a different constant to
1106 // the one we saw previously, then give up.
1107 if (CommonValue
&& C
!= CommonValue
)
1112 // If we reach here, all incoming values are the same constant or undef.
1113 return CommonValue
? CommonValue
: UndefValue::get(PN
->getType());
1116 // Scan the operand list, checking to see if they are all constants, if so,
1117 // hand off to ConstantFoldInstOperandsImpl.
1118 if (!all_of(I
->operands(), [](Use
&U
) { return isa
<Constant
>(U
); }))
1121 SmallDenseMap
<Constant
*, Constant
*> FoldedOps
;
1122 SmallVector
<Constant
*, 8> Ops
;
1123 for (const Use
&OpU
: I
->operands()) {
1124 auto *Op
= cast
<Constant
>(&OpU
);
1125 // Fold the Instruction's operands.
1126 if (auto *FoldedOp
= ConstantFoldConstantImpl(Op
, DL
, TLI
, FoldedOps
))
1132 if (const auto *CI
= dyn_cast
<CmpInst
>(I
))
1133 return ConstantFoldCompareInstOperands(CI
->getPredicate(), Ops
[0], Ops
[1],
1136 if (const auto *LI
= dyn_cast
<LoadInst
>(I
))
1137 return ConstantFoldLoadInst(LI
, DL
);
1139 if (auto *IVI
= dyn_cast
<InsertValueInst
>(I
)) {
1140 return ConstantExpr::getInsertValue(
1141 cast
<Constant
>(IVI
->getAggregateOperand()),
1142 cast
<Constant
>(IVI
->getInsertedValueOperand()),
1146 if (auto *EVI
= dyn_cast
<ExtractValueInst
>(I
)) {
1147 return ConstantExpr::getExtractValue(
1148 cast
<Constant
>(EVI
->getAggregateOperand()),
1152 return ConstantFoldInstOperands(I
, Ops
, DL
, TLI
);
1155 Constant
*llvm::ConstantFoldConstant(const Constant
*C
, const DataLayout
&DL
,
1156 const TargetLibraryInfo
*TLI
) {
1157 SmallDenseMap
<Constant
*, Constant
*> FoldedOps
;
1158 return ConstantFoldConstantImpl(C
, DL
, TLI
, FoldedOps
);
1161 Constant
*llvm::ConstantFoldInstOperands(Instruction
*I
,
1162 ArrayRef
<Constant
*> Ops
,
1163 const DataLayout
&DL
,
1164 const TargetLibraryInfo
*TLI
) {
1165 return ConstantFoldInstOperandsImpl(I
, I
->getOpcode(), Ops
, DL
, TLI
);
1168 Constant
*llvm::ConstantFoldCompareInstOperands(unsigned Predicate
,
1169 Constant
*Ops0
, Constant
*Ops1
,
1170 const DataLayout
&DL
,
1171 const TargetLibraryInfo
*TLI
) {
1172 // fold: icmp (inttoptr x), null -> icmp x, 0
1173 // fold: icmp null, (inttoptr x) -> icmp 0, x
1174 // fold: icmp (ptrtoint x), 0 -> icmp x, null
1175 // fold: icmp 0, (ptrtoint x) -> icmp null, x
1176 // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
1177 // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
1179 // FIXME: The following comment is out of data and the DataLayout is here now.
1180 // ConstantExpr::getCompare cannot do this, because it doesn't have DL
1181 // around to know if bit truncation is happening.
1182 if (auto *CE0
= dyn_cast
<ConstantExpr
>(Ops0
)) {
1183 if (Ops1
->isNullValue()) {
1184 if (CE0
->getOpcode() == Instruction::IntToPtr
) {
1185 Type
*IntPtrTy
= DL
.getIntPtrType(CE0
->getType());
1186 // Convert the integer value to the right size to ensure we get the
1187 // proper extension or truncation.
1188 Constant
*C
= ConstantExpr::getIntegerCast(CE0
->getOperand(0),
1190 Constant
*Null
= Constant::getNullValue(C
->getType());
1191 return ConstantFoldCompareInstOperands(Predicate
, C
, Null
, DL
, TLI
);
1194 // Only do this transformation if the int is intptrty in size, otherwise
1195 // there is a truncation or extension that we aren't modeling.
1196 if (CE0
->getOpcode() == Instruction::PtrToInt
) {
1197 Type
*IntPtrTy
= DL
.getIntPtrType(CE0
->getOperand(0)->getType());
1198 if (CE0
->getType() == IntPtrTy
) {
1199 Constant
*C
= CE0
->getOperand(0);
1200 Constant
*Null
= Constant::getNullValue(C
->getType());
1201 return ConstantFoldCompareInstOperands(Predicate
, C
, Null
, DL
, TLI
);
1206 if (auto *CE1
= dyn_cast
<ConstantExpr
>(Ops1
)) {
1207 if (CE0
->getOpcode() == CE1
->getOpcode()) {
1208 if (CE0
->getOpcode() == Instruction::IntToPtr
) {
1209 Type
*IntPtrTy
= DL
.getIntPtrType(CE0
->getType());
1211 // Convert the integer value to the right size to ensure we get the
1212 // proper extension or truncation.
1213 Constant
*C0
= ConstantExpr::getIntegerCast(CE0
->getOperand(0),
1215 Constant
*C1
= ConstantExpr::getIntegerCast(CE1
->getOperand(0),
1217 return ConstantFoldCompareInstOperands(Predicate
, C0
, C1
, DL
, TLI
);
1220 // Only do this transformation if the int is intptrty in size, otherwise
1221 // there is a truncation or extension that we aren't modeling.
1222 if (CE0
->getOpcode() == Instruction::PtrToInt
) {
1223 Type
*IntPtrTy
= DL
.getIntPtrType(CE0
->getOperand(0)->getType());
1224 if (CE0
->getType() == IntPtrTy
&&
1225 CE0
->getOperand(0)->getType() == CE1
->getOperand(0)->getType()) {
1226 return ConstantFoldCompareInstOperands(
1227 Predicate
, CE0
->getOperand(0), CE1
->getOperand(0), DL
, TLI
);
1233 // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
1234 // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
1235 if ((Predicate
== ICmpInst::ICMP_EQ
|| Predicate
== ICmpInst::ICMP_NE
) &&
1236 CE0
->getOpcode() == Instruction::Or
&& Ops1
->isNullValue()) {
1237 Constant
*LHS
= ConstantFoldCompareInstOperands(
1238 Predicate
, CE0
->getOperand(0), Ops1
, DL
, TLI
);
1239 Constant
*RHS
= ConstantFoldCompareInstOperands(
1240 Predicate
, CE0
->getOperand(1), Ops1
, DL
, TLI
);
1242 Predicate
== ICmpInst::ICMP_EQ
? Instruction::And
: Instruction::Or
;
1243 return ConstantFoldBinaryOpOperands(OpC
, LHS
, RHS
, DL
);
1245 } else if (isa
<ConstantExpr
>(Ops1
)) {
1246 // If RHS is a constant expression, but the left side isn't, swap the
1247 // operands and try again.
1248 Predicate
= ICmpInst::getSwappedPredicate((ICmpInst::Predicate
)Predicate
);
1249 return ConstantFoldCompareInstOperands(Predicate
, Ops1
, Ops0
, DL
, TLI
);
1252 return ConstantExpr::getCompare(Predicate
, Ops0
, Ops1
);
1255 Constant
*llvm::ConstantFoldBinaryOpOperands(unsigned Opcode
, Constant
*LHS
,
1257 const DataLayout
&DL
) {
1258 assert(Instruction::isBinaryOp(Opcode
));
1259 if (isa
<ConstantExpr
>(LHS
) || isa
<ConstantExpr
>(RHS
))
1260 if (Constant
*C
= SymbolicallyEvaluateBinop(Opcode
, LHS
, RHS
, DL
))
1263 return ConstantExpr::get(Opcode
, LHS
, RHS
);
1266 Constant
*llvm::ConstantFoldCastOperand(unsigned Opcode
, Constant
*C
,
1267 Type
*DestTy
, const DataLayout
&DL
) {
1268 assert(Instruction::isCast(Opcode
));
1271 llvm_unreachable("Missing case");
1272 case Instruction::PtrToInt
:
1273 // If the input is a inttoptr, eliminate the pair. This requires knowing
1274 // the width of a pointer, so it can't be done in ConstantExpr::getCast.
1275 if (auto *CE
= dyn_cast
<ConstantExpr
>(C
)) {
1276 if (CE
->getOpcode() == Instruction::IntToPtr
) {
1277 Constant
*Input
= CE
->getOperand(0);
1278 unsigned InWidth
= Input
->getType()->getScalarSizeInBits();
1279 unsigned PtrWidth
= DL
.getPointerTypeSizeInBits(CE
->getType());
1280 if (PtrWidth
< InWidth
) {
1282 ConstantInt::get(CE
->getContext(),
1283 APInt::getLowBitsSet(InWidth
, PtrWidth
));
1284 Input
= ConstantExpr::getAnd(Input
, Mask
);
1286 // Do a zext or trunc to get to the dest size.
1287 return ConstantExpr::getIntegerCast(Input
, DestTy
, false);
1290 return ConstantExpr::getCast(Opcode
, C
, DestTy
);
1291 case Instruction::IntToPtr
:
1292 // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
1293 // the int size is >= the ptr size and the address spaces are the same.
1294 // This requires knowing the width of a pointer, so it can't be done in
1295 // ConstantExpr::getCast.
1296 if (auto *CE
= dyn_cast
<ConstantExpr
>(C
)) {
1297 if (CE
->getOpcode() == Instruction::PtrToInt
) {
1298 Constant
*SrcPtr
= CE
->getOperand(0);
1299 unsigned SrcPtrSize
= DL
.getPointerTypeSizeInBits(SrcPtr
->getType());
1300 unsigned MidIntSize
= CE
->getType()->getScalarSizeInBits();
1302 if (MidIntSize
>= SrcPtrSize
) {
1303 unsigned SrcAS
= SrcPtr
->getType()->getPointerAddressSpace();
1304 if (SrcAS
== DestTy
->getPointerAddressSpace())
1305 return FoldBitCast(CE
->getOperand(0), DestTy
, DL
);
1310 return ConstantExpr::getCast(Opcode
, C
, DestTy
);
1311 case Instruction::Trunc
:
1312 case Instruction::ZExt
:
1313 case Instruction::SExt
:
1314 case Instruction::FPTrunc
:
1315 case Instruction::FPExt
:
1316 case Instruction::UIToFP
:
1317 case Instruction::SIToFP
:
1318 case Instruction::FPToUI
:
1319 case Instruction::FPToSI
:
1320 case Instruction::AddrSpaceCast
:
1321 return ConstantExpr::getCast(Opcode
, C
, DestTy
);
1322 case Instruction::BitCast
:
1323 return FoldBitCast(C
, DestTy
, DL
);
1327 Constant
*llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant
*C
,
1329 if (!CE
->getOperand(1)->isNullValue())
1330 return nullptr; // Do not allow stepping over the value!
1332 // Loop over all of the operands, tracking down which value we are
1334 for (unsigned i
= 2, e
= CE
->getNumOperands(); i
!= e
; ++i
) {
1335 C
= C
->getAggregateElement(CE
->getOperand(i
));
1343 llvm::ConstantFoldLoadThroughGEPIndices(Constant
*C
,
1344 ArrayRef
<Constant
*> Indices
) {
1345 // Loop over all of the operands, tracking down which value we are
1347 for (Constant
*Index
: Indices
) {
1348 C
= C
->getAggregateElement(Index
);
1355 //===----------------------------------------------------------------------===//
1356 // Constant Folding for Calls
1359 bool llvm::canConstantFoldCallTo(ImmutableCallSite CS
, const Function
*F
) {
1360 if (CS
.isNoBuiltin() || CS
.isStrictFP())
1362 switch (F
->getIntrinsicID()) {
1363 case Intrinsic::fabs
:
1364 case Intrinsic::minnum
:
1365 case Intrinsic::maxnum
:
1366 case Intrinsic::log
:
1367 case Intrinsic::log2
:
1368 case Intrinsic::log10
:
1369 case Intrinsic::exp
:
1370 case Intrinsic::exp2
:
1371 case Intrinsic::floor
:
1372 case Intrinsic::ceil
:
1373 case Intrinsic::sqrt
:
1374 case Intrinsic::sin
:
1375 case Intrinsic::cos
:
1376 case Intrinsic::trunc
:
1377 case Intrinsic::rint
:
1378 case Intrinsic::nearbyint
:
1379 case Intrinsic::pow
:
1380 case Intrinsic::powi
:
1381 case Intrinsic::bswap
:
1382 case Intrinsic::ctpop
:
1383 case Intrinsic::ctlz
:
1384 case Intrinsic::cttz
:
1385 case Intrinsic::fshl
:
1386 case Intrinsic::fshr
:
1387 case Intrinsic::fma
:
1388 case Intrinsic::fmuladd
:
1389 case Intrinsic::copysign
:
1390 case Intrinsic::launder_invariant_group
:
1391 case Intrinsic::strip_invariant_group
:
1392 case Intrinsic::round
:
1393 case Intrinsic::masked_load
:
1394 case Intrinsic::sadd_with_overflow
:
1395 case Intrinsic::uadd_with_overflow
:
1396 case Intrinsic::ssub_with_overflow
:
1397 case Intrinsic::usub_with_overflow
:
1398 case Intrinsic::smul_with_overflow
:
1399 case Intrinsic::umul_with_overflow
:
1400 case Intrinsic::convert_from_fp16
:
1401 case Intrinsic::convert_to_fp16
:
1402 case Intrinsic::bitreverse
:
1403 case Intrinsic::x86_sse_cvtss2si
:
1404 case Intrinsic::x86_sse_cvtss2si64
:
1405 case Intrinsic::x86_sse_cvttss2si
:
1406 case Intrinsic::x86_sse_cvttss2si64
:
1407 case Intrinsic::x86_sse2_cvtsd2si
:
1408 case Intrinsic::x86_sse2_cvtsd2si64
:
1409 case Intrinsic::x86_sse2_cvttsd2si
:
1410 case Intrinsic::x86_sse2_cvttsd2si64
:
1411 case Intrinsic::x86_avx512_vcvtss2si32
:
1412 case Intrinsic::x86_avx512_vcvtss2si64
:
1413 case Intrinsic::x86_avx512_cvttss2si
:
1414 case Intrinsic::x86_avx512_cvttss2si64
:
1415 case Intrinsic::x86_avx512_vcvtsd2si32
:
1416 case Intrinsic::x86_avx512_vcvtsd2si64
:
1417 case Intrinsic::x86_avx512_cvttsd2si
:
1418 case Intrinsic::x86_avx512_cvttsd2si64
:
1419 case Intrinsic::x86_avx512_vcvtss2usi32
:
1420 case Intrinsic::x86_avx512_vcvtss2usi64
:
1421 case Intrinsic::x86_avx512_cvttss2usi
:
1422 case Intrinsic::x86_avx512_cvttss2usi64
:
1423 case Intrinsic::x86_avx512_vcvtsd2usi32
:
1424 case Intrinsic::x86_avx512_vcvtsd2usi64
:
1425 case Intrinsic::x86_avx512_cvttsd2usi
:
1426 case Intrinsic::x86_avx512_cvttsd2usi64
:
1430 case Intrinsic::not_intrinsic
: break;
1435 StringRef Name
= F
->getName();
1437 // In these cases, the check of the length is required. We don't want to
1438 // return true for a name like "cos\0blah" which strcmp would return equal to
1439 // "cos", but has length 8.
1444 return Name
== "acos" || Name
== "asin" || Name
== "atan" ||
1445 Name
== "atan2" || Name
== "acosf" || Name
== "asinf" ||
1446 Name
== "atanf" || Name
== "atan2f";
1448 return Name
== "ceil" || Name
== "cos" || Name
== "cosh" ||
1449 Name
== "ceilf" || Name
== "cosf" || Name
== "coshf";
1451 return Name
== "exp" || Name
== "exp2" || Name
== "expf" || Name
== "exp2f";
1453 return Name
== "fabs" || Name
== "floor" || Name
== "fmod" ||
1454 Name
== "fabsf" || Name
== "floorf" || Name
== "fmodf";
1456 return Name
== "log" || Name
== "log10" || Name
== "logf" ||
1459 return Name
== "pow" || Name
== "powf";
1461 return Name
== "round" || Name
== "roundf";
1463 return Name
== "sin" || Name
== "sinh" || Name
== "sqrt" ||
1464 Name
== "sinf" || Name
== "sinhf" || Name
== "sqrtf";
1466 return Name
== "tan" || Name
== "tanh" || Name
== "tanf" || Name
== "tanhf";
1469 // Check for various function names that get used for the math functions
1470 // when the header files are preprocessed with the macro
1471 // __FINITE_MATH_ONLY__ enabled.
1472 // The '12' here is the length of the shortest name that can match.
1473 // We need to check the size before looking at Name[1] and Name[2]
1474 // so we may as well check a limit that will eliminate mismatches.
1475 if (Name
.size() < 12 || Name
[1] != '_')
1481 return Name
== "__acos_finite" || Name
== "__acosf_finite" ||
1482 Name
== "__asin_finite" || Name
== "__asinf_finite" ||
1483 Name
== "__atan2_finite" || Name
== "__atan2f_finite";
1485 return Name
== "__cosh_finite" || Name
== "__coshf_finite";
1487 return Name
== "__exp_finite" || Name
== "__expf_finite" ||
1488 Name
== "__exp2_finite" || Name
== "__exp2f_finite";
1490 return Name
== "__log_finite" || Name
== "__logf_finite" ||
1491 Name
== "__log10_finite" || Name
== "__log10f_finite";
1493 return Name
== "__pow_finite" || Name
== "__powf_finite";
1495 return Name
== "__sinh_finite" || Name
== "__sinhf_finite";
1502 Constant
*GetConstantFoldFPValue(double V
, Type
*Ty
) {
1503 if (Ty
->isHalfTy()) {
1506 APF
.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven
, &unused
);
1507 return ConstantFP::get(Ty
->getContext(), APF
);
1509 if (Ty
->isFloatTy())
1510 return ConstantFP::get(Ty
->getContext(), APFloat((float)V
));
1511 if (Ty
->isDoubleTy())
1512 return ConstantFP::get(Ty
->getContext(), APFloat(V
));
1513 llvm_unreachable("Can only constant fold half/float/double");
1516 /// Clear the floating-point exception state.
1517 inline void llvm_fenv_clearexcept() {
1518 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT
1519 feclearexcept(FE_ALL_EXCEPT
);
1524 /// Test if a floating-point exception was raised.
1525 inline bool llvm_fenv_testexcept() {
1526 int errno_val
= errno
;
1527 if (errno_val
== ERANGE
|| errno_val
== EDOM
)
1529 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
1530 if (fetestexcept(FE_ALL_EXCEPT
& ~FE_INEXACT
))
1536 Constant
*ConstantFoldFP(double (*NativeFP
)(double), double V
, Type
*Ty
) {
1537 llvm_fenv_clearexcept();
1539 if (llvm_fenv_testexcept()) {
1540 llvm_fenv_clearexcept();
1544 return GetConstantFoldFPValue(V
, Ty
);
1547 Constant
*ConstantFoldBinaryFP(double (*NativeFP
)(double, double), double V
,
1548 double W
, Type
*Ty
) {
1549 llvm_fenv_clearexcept();
1551 if (llvm_fenv_testexcept()) {
1552 llvm_fenv_clearexcept();
1556 return GetConstantFoldFPValue(V
, Ty
);
1559 /// Attempt to fold an SSE floating point to integer conversion of a constant
1560 /// floating point. If roundTowardZero is false, the default IEEE rounding is
1561 /// used (toward nearest, ties to even). This matches the behavior of the
1562 /// non-truncating SSE instructions in the default rounding mode. The desired
1563 /// integer type Ty is used to select how many bits are available for the
1564 /// result. Returns null if the conversion cannot be performed, otherwise
1565 /// returns the Constant value resulting from the conversion.
1566 Constant
*ConstantFoldSSEConvertToInt(const APFloat
&Val
, bool roundTowardZero
,
1567 Type
*Ty
, bool IsSigned
) {
1568 // All of these conversion intrinsics form an integer of at most 64bits.
1569 unsigned ResultWidth
= Ty
->getIntegerBitWidth();
1570 assert(ResultWidth
<= 64 &&
1571 "Can only constant fold conversions to 64 and 32 bit ints");
1574 bool isExact
= false;
1575 APFloat::roundingMode mode
= roundTowardZero
? APFloat::rmTowardZero
1576 : APFloat::rmNearestTiesToEven
;
1577 APFloat::opStatus status
=
1578 Val
.convertToInteger(makeMutableArrayRef(UIntVal
), ResultWidth
,
1579 IsSigned
, mode
, &isExact
);
1580 if (status
!= APFloat::opOK
&&
1581 (!roundTowardZero
|| status
!= APFloat::opInexact
))
1583 return ConstantInt::get(Ty
, UIntVal
, IsSigned
);
1586 double getValueAsDouble(ConstantFP
*Op
) {
1587 Type
*Ty
= Op
->getType();
1589 if (Ty
->isFloatTy())
1590 return Op
->getValueAPF().convertToFloat();
1592 if (Ty
->isDoubleTy())
1593 return Op
->getValueAPF().convertToDouble();
1596 APFloat APF
= Op
->getValueAPF();
1597 APF
.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven
, &unused
);
1598 return APF
.convertToDouble();
1601 Constant
*ConstantFoldScalarCall(StringRef Name
, unsigned IntrinsicID
, Type
*Ty
,
1602 ArrayRef
<Constant
*> Operands
,
1603 const TargetLibraryInfo
*TLI
,
1604 ImmutableCallSite CS
) {
1605 if (Operands
.size() == 1) {
1606 if (isa
<UndefValue
>(Operands
[0])) {
1607 // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN
1608 if (IntrinsicID
== Intrinsic::cos
)
1609 return Constant::getNullValue(Ty
);
1610 if (IntrinsicID
== Intrinsic::bswap
||
1611 IntrinsicID
== Intrinsic::bitreverse
||
1612 IntrinsicID
== Intrinsic::launder_invariant_group
||
1613 IntrinsicID
== Intrinsic::strip_invariant_group
)
1617 if (isa
<ConstantPointerNull
>(Operands
[0])) {
1618 // launder(null) == null == strip(null) iff in addrspace 0
1619 if (IntrinsicID
== Intrinsic::launder_invariant_group
||
1620 IntrinsicID
== Intrinsic::strip_invariant_group
) {
1621 // If instruction is not yet put in a basic block (e.g. when cloning
1622 // a function during inlining), CS caller may not be available.
1623 // So check CS's BB first before querying CS.getCaller.
1624 const Function
*Caller
= CS
.getParent() ? CS
.getCaller() : nullptr;
1626 !NullPointerIsDefined(
1627 Caller
, Operands
[0]->getType()->getPointerAddressSpace())) {
1634 if (auto *Op
= dyn_cast
<ConstantFP
>(Operands
[0])) {
1635 if (IntrinsicID
== Intrinsic::convert_to_fp16
) {
1636 APFloat
Val(Op
->getValueAPF());
1639 Val
.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven
, &lost
);
1641 return ConstantInt::get(Ty
->getContext(), Val
.bitcastToAPInt());
1644 if (!Ty
->isHalfTy() && !Ty
->isFloatTy() && !Ty
->isDoubleTy())
1647 if (IntrinsicID
== Intrinsic::round
) {
1648 APFloat V
= Op
->getValueAPF();
1649 V
.roundToIntegral(APFloat::rmNearestTiesToAway
);
1650 return ConstantFP::get(Ty
->getContext(), V
);
1653 if (IntrinsicID
== Intrinsic::floor
) {
1654 APFloat V
= Op
->getValueAPF();
1655 V
.roundToIntegral(APFloat::rmTowardNegative
);
1656 return ConstantFP::get(Ty
->getContext(), V
);
1659 if (IntrinsicID
== Intrinsic::ceil
) {
1660 APFloat V
= Op
->getValueAPF();
1661 V
.roundToIntegral(APFloat::rmTowardPositive
);
1662 return ConstantFP::get(Ty
->getContext(), V
);
1665 if (IntrinsicID
== Intrinsic::trunc
) {
1666 APFloat V
= Op
->getValueAPF();
1667 V
.roundToIntegral(APFloat::rmTowardZero
);
1668 return ConstantFP::get(Ty
->getContext(), V
);
1671 if (IntrinsicID
== Intrinsic::rint
) {
1672 APFloat V
= Op
->getValueAPF();
1673 V
.roundToIntegral(APFloat::rmNearestTiesToEven
);
1674 return ConstantFP::get(Ty
->getContext(), V
);
1677 if (IntrinsicID
== Intrinsic::nearbyint
) {
1678 APFloat V
= Op
->getValueAPF();
1679 V
.roundToIntegral(APFloat::rmNearestTiesToEven
);
1680 return ConstantFP::get(Ty
->getContext(), V
);
1683 /// We only fold functions with finite arguments. Folding NaN and inf is
1684 /// likely to be aborted with an exception anyway, and some host libms
1685 /// have known errors raising exceptions.
1686 if (Op
->getValueAPF().isNaN() || Op
->getValueAPF().isInfinity())
1689 /// Currently APFloat versions of these functions do not exist, so we use
1690 /// the host native double versions. Float versions are not called
1691 /// directly but for all these it is true (float)(f((double)arg)) ==
1692 /// f(arg). Long double not supported yet.
1693 double V
= getValueAsDouble(Op
);
1695 switch (IntrinsicID
) {
1697 case Intrinsic::fabs
:
1698 return ConstantFoldFP(fabs
, V
, Ty
);
1699 case Intrinsic::log2
:
1700 return ConstantFoldFP(Log2
, V
, Ty
);
1701 case Intrinsic::log
:
1702 return ConstantFoldFP(log
, V
, Ty
);
1703 case Intrinsic::log10
:
1704 return ConstantFoldFP(log10
, V
, Ty
);
1705 case Intrinsic::exp
:
1706 return ConstantFoldFP(exp
, V
, Ty
);
1707 case Intrinsic::exp2
:
1708 return ConstantFoldFP(exp2
, V
, Ty
);
1709 case Intrinsic::sin
:
1710 return ConstantFoldFP(sin
, V
, Ty
);
1711 case Intrinsic::cos
:
1712 return ConstantFoldFP(cos
, V
, Ty
);
1713 case Intrinsic::sqrt
:
1714 return ConstantFoldFP(sqrt
, V
, Ty
);
1720 char NameKeyChar
= Name
[0];
1721 if (Name
[0] == '_' && Name
.size() > 2 && Name
[1] == '_')
1722 NameKeyChar
= Name
[2];
1724 switch (NameKeyChar
) {
1726 if ((Name
== "acos" && TLI
->has(LibFunc_acos
)) ||
1727 (Name
== "acosf" && TLI
->has(LibFunc_acosf
)) ||
1728 (Name
== "__acos_finite" && TLI
->has(LibFunc_acos_finite
)) ||
1729 (Name
== "__acosf_finite" && TLI
->has(LibFunc_acosf_finite
)))
1730 return ConstantFoldFP(acos
, V
, Ty
);
1731 else if ((Name
== "asin" && TLI
->has(LibFunc_asin
)) ||
1732 (Name
== "asinf" && TLI
->has(LibFunc_asinf
)) ||
1733 (Name
== "__asin_finite" && TLI
->has(LibFunc_asin_finite
)) ||
1734 (Name
== "__asinf_finite" && TLI
->has(LibFunc_asinf_finite
)))
1735 return ConstantFoldFP(asin
, V
, Ty
);
1736 else if ((Name
== "atan" && TLI
->has(LibFunc_atan
)) ||
1737 (Name
== "atanf" && TLI
->has(LibFunc_atanf
)))
1738 return ConstantFoldFP(atan
, V
, Ty
);
1741 if ((Name
== "ceil" && TLI
->has(LibFunc_ceil
)) ||
1742 (Name
== "ceilf" && TLI
->has(LibFunc_ceilf
)))
1743 return ConstantFoldFP(ceil
, V
, Ty
);
1744 else if ((Name
== "cos" && TLI
->has(LibFunc_cos
)) ||
1745 (Name
== "cosf" && TLI
->has(LibFunc_cosf
)))
1746 return ConstantFoldFP(cos
, V
, Ty
);
1747 else if ((Name
== "cosh" && TLI
->has(LibFunc_cosh
)) ||
1748 (Name
== "coshf" && TLI
->has(LibFunc_coshf
)) ||
1749 (Name
== "__cosh_finite" && TLI
->has(LibFunc_cosh_finite
)) ||
1750 (Name
== "__coshf_finite" && TLI
->has(LibFunc_coshf_finite
)))
1751 return ConstantFoldFP(cosh
, V
, Ty
);
1754 if ((Name
== "exp" && TLI
->has(LibFunc_exp
)) ||
1755 (Name
== "expf" && TLI
->has(LibFunc_expf
)) ||
1756 (Name
== "__exp_finite" && TLI
->has(LibFunc_exp_finite
)) ||
1757 (Name
== "__expf_finite" && TLI
->has(LibFunc_expf_finite
)))
1758 return ConstantFoldFP(exp
, V
, Ty
);
1759 if ((Name
== "exp2" && TLI
->has(LibFunc_exp2
)) ||
1760 (Name
== "exp2f" && TLI
->has(LibFunc_exp2f
)) ||
1761 (Name
== "__exp2_finite" && TLI
->has(LibFunc_exp2_finite
)) ||
1762 (Name
== "__exp2f_finite" && TLI
->has(LibFunc_exp2f_finite
)))
1763 // Constant fold exp2(x) as pow(2,x) in case the host doesn't have a
1765 return ConstantFoldBinaryFP(pow
, 2.0, V
, Ty
);
1768 if ((Name
== "fabs" && TLI
->has(LibFunc_fabs
)) ||
1769 (Name
== "fabsf" && TLI
->has(LibFunc_fabsf
)))
1770 return ConstantFoldFP(fabs
, V
, Ty
);
1771 else if ((Name
== "floor" && TLI
->has(LibFunc_floor
)) ||
1772 (Name
== "floorf" && TLI
->has(LibFunc_floorf
)))
1773 return ConstantFoldFP(floor
, V
, Ty
);
1776 if ((Name
== "log" && V
> 0 && TLI
->has(LibFunc_log
)) ||
1777 (Name
== "logf" && V
> 0 && TLI
->has(LibFunc_logf
)) ||
1778 (Name
== "__log_finite" && V
> 0 &&
1779 TLI
->has(LibFunc_log_finite
)) ||
1780 (Name
== "__logf_finite" && V
> 0 &&
1781 TLI
->has(LibFunc_logf_finite
)))
1782 return ConstantFoldFP(log
, V
, Ty
);
1783 else if ((Name
== "log10" && V
> 0 && TLI
->has(LibFunc_log10
)) ||
1784 (Name
== "log10f" && V
> 0 && TLI
->has(LibFunc_log10f
)) ||
1785 (Name
== "__log10_finite" && V
> 0 &&
1786 TLI
->has(LibFunc_log10_finite
)) ||
1787 (Name
== "__log10f_finite" && V
> 0 &&
1788 TLI
->has(LibFunc_log10f_finite
)))
1789 return ConstantFoldFP(log10
, V
, Ty
);
1792 if ((Name
== "round" && TLI
->has(LibFunc_round
)) ||
1793 (Name
== "roundf" && TLI
->has(LibFunc_roundf
)))
1794 return ConstantFoldFP(round
, V
, Ty
);
1797 if ((Name
== "sin" && TLI
->has(LibFunc_sin
)) ||
1798 (Name
== "sinf" && TLI
->has(LibFunc_sinf
)))
1799 return ConstantFoldFP(sin
, V
, Ty
);
1800 else if ((Name
== "sinh" && TLI
->has(LibFunc_sinh
)) ||
1801 (Name
== "sinhf" && TLI
->has(LibFunc_sinhf
)) ||
1802 (Name
== "__sinh_finite" && TLI
->has(LibFunc_sinh_finite
)) ||
1803 (Name
== "__sinhf_finite" && TLI
->has(LibFunc_sinhf_finite
)))
1804 return ConstantFoldFP(sinh
, V
, Ty
);
1805 else if ((Name
== "sqrt" && V
>= 0 && TLI
->has(LibFunc_sqrt
)) ||
1806 (Name
== "sqrtf" && V
>= 0 && TLI
->has(LibFunc_sqrtf
)))
1807 return ConstantFoldFP(sqrt
, V
, Ty
);
1810 if ((Name
== "tan" && TLI
->has(LibFunc_tan
)) ||
1811 (Name
== "tanf" && TLI
->has(LibFunc_tanf
)))
1812 return ConstantFoldFP(tan
, V
, Ty
);
1813 else if ((Name
== "tanh" && TLI
->has(LibFunc_tanh
)) ||
1814 (Name
== "tanhf" && TLI
->has(LibFunc_tanhf
)))
1815 return ConstantFoldFP(tanh
, V
, Ty
);
1823 if (auto *Op
= dyn_cast
<ConstantInt
>(Operands
[0])) {
1824 switch (IntrinsicID
) {
1825 case Intrinsic::bswap
:
1826 return ConstantInt::get(Ty
->getContext(), Op
->getValue().byteSwap());
1827 case Intrinsic::ctpop
:
1828 return ConstantInt::get(Ty
, Op
->getValue().countPopulation());
1829 case Intrinsic::bitreverse
:
1830 return ConstantInt::get(Ty
->getContext(), Op
->getValue().reverseBits());
1831 case Intrinsic::convert_from_fp16
: {
1832 APFloat
Val(APFloat::IEEEhalf(), Op
->getValue());
1835 APFloat::opStatus status
= Val
.convert(
1836 Ty
->getFltSemantics(), APFloat::rmNearestTiesToEven
, &lost
);
1838 // Conversion is always precise.
1840 assert(status
== APFloat::opOK
&& !lost
&&
1841 "Precision lost during fp16 constfolding");
1843 return ConstantFP::get(Ty
->getContext(), Val
);
1850 // Support ConstantVector in case we have an Undef in the top.
1851 if (isa
<ConstantVector
>(Operands
[0]) ||
1852 isa
<ConstantDataVector
>(Operands
[0])) {
1853 auto *Op
= cast
<Constant
>(Operands
[0]);
1854 switch (IntrinsicID
) {
1856 case Intrinsic::x86_sse_cvtss2si
:
1857 case Intrinsic::x86_sse_cvtss2si64
:
1858 case Intrinsic::x86_sse2_cvtsd2si
:
1859 case Intrinsic::x86_sse2_cvtsd2si64
:
1860 if (ConstantFP
*FPOp
=
1861 dyn_cast_or_null
<ConstantFP
>(Op
->getAggregateElement(0U)))
1862 return ConstantFoldSSEConvertToInt(FPOp
->getValueAPF(),
1863 /*roundTowardZero=*/false, Ty
,
1866 case Intrinsic::x86_sse_cvttss2si
:
1867 case Intrinsic::x86_sse_cvttss2si64
:
1868 case Intrinsic::x86_sse2_cvttsd2si
:
1869 case Intrinsic::x86_sse2_cvttsd2si64
:
1870 if (ConstantFP
*FPOp
=
1871 dyn_cast_or_null
<ConstantFP
>(Op
->getAggregateElement(0U)))
1872 return ConstantFoldSSEConvertToInt(FPOp
->getValueAPF(),
1873 /*roundTowardZero=*/true, Ty
,
1882 if (Operands
.size() == 2) {
1883 if (auto *Op1
= dyn_cast
<ConstantFP
>(Operands
[0])) {
1884 if (!Ty
->isHalfTy() && !Ty
->isFloatTy() && !Ty
->isDoubleTy())
1886 double Op1V
= getValueAsDouble(Op1
);
1888 if (auto *Op2
= dyn_cast
<ConstantFP
>(Operands
[1])) {
1889 if (Op2
->getType() != Op1
->getType())
1892 double Op2V
= getValueAsDouble(Op2
);
1893 if (IntrinsicID
== Intrinsic::pow
) {
1894 return ConstantFoldBinaryFP(pow
, Op1V
, Op2V
, Ty
);
1896 if (IntrinsicID
== Intrinsic::copysign
) {
1897 APFloat V1
= Op1
->getValueAPF();
1898 const APFloat
&V2
= Op2
->getValueAPF();
1900 return ConstantFP::get(Ty
->getContext(), V1
);
1903 if (IntrinsicID
== Intrinsic::minnum
) {
1904 const APFloat
&C1
= Op1
->getValueAPF();
1905 const APFloat
&C2
= Op2
->getValueAPF();
1906 return ConstantFP::get(Ty
->getContext(), minnum(C1
, C2
));
1909 if (IntrinsicID
== Intrinsic::maxnum
) {
1910 const APFloat
&C1
= Op1
->getValueAPF();
1911 const APFloat
&C2
= Op2
->getValueAPF();
1912 return ConstantFP::get(Ty
->getContext(), maxnum(C1
, C2
));
1917 if ((Name
== "pow" && TLI
->has(LibFunc_pow
)) ||
1918 (Name
== "powf" && TLI
->has(LibFunc_powf
)) ||
1919 (Name
== "__pow_finite" && TLI
->has(LibFunc_pow_finite
)) ||
1920 (Name
== "__powf_finite" && TLI
->has(LibFunc_powf_finite
)))
1921 return ConstantFoldBinaryFP(pow
, Op1V
, Op2V
, Ty
);
1922 if ((Name
== "fmod" && TLI
->has(LibFunc_fmod
)) ||
1923 (Name
== "fmodf" && TLI
->has(LibFunc_fmodf
)))
1924 return ConstantFoldBinaryFP(fmod
, Op1V
, Op2V
, Ty
);
1925 if ((Name
== "atan2" && TLI
->has(LibFunc_atan2
)) ||
1926 (Name
== "atan2f" && TLI
->has(LibFunc_atan2f
)) ||
1927 (Name
== "__atan2_finite" && TLI
->has(LibFunc_atan2_finite
)) ||
1928 (Name
== "__atan2f_finite" && TLI
->has(LibFunc_atan2f_finite
)))
1929 return ConstantFoldBinaryFP(atan2
, Op1V
, Op2V
, Ty
);
1930 } else if (auto *Op2C
= dyn_cast
<ConstantInt
>(Operands
[1])) {
1931 if (IntrinsicID
== Intrinsic::powi
&& Ty
->isHalfTy())
1932 return ConstantFP::get(Ty
->getContext(),
1933 APFloat((float)std::pow((float)Op1V
,
1934 (int)Op2C
->getZExtValue())));
1935 if (IntrinsicID
== Intrinsic::powi
&& Ty
->isFloatTy())
1936 return ConstantFP::get(Ty
->getContext(),
1937 APFloat((float)std::pow((float)Op1V
,
1938 (int)Op2C
->getZExtValue())));
1939 if (IntrinsicID
== Intrinsic::powi
&& Ty
->isDoubleTy())
1940 return ConstantFP::get(Ty
->getContext(),
1941 APFloat((double)std::pow((double)Op1V
,
1942 (int)Op2C
->getZExtValue())));
1947 if (auto *Op1
= dyn_cast
<ConstantInt
>(Operands
[0])) {
1948 if (auto *Op2
= dyn_cast
<ConstantInt
>(Operands
[1])) {
1949 switch (IntrinsicID
) {
1951 case Intrinsic::sadd_with_overflow
:
1952 case Intrinsic::uadd_with_overflow
:
1953 case Intrinsic::ssub_with_overflow
:
1954 case Intrinsic::usub_with_overflow
:
1955 case Intrinsic::smul_with_overflow
:
1956 case Intrinsic::umul_with_overflow
: {
1959 switch (IntrinsicID
) {
1960 default: llvm_unreachable("Invalid case");
1961 case Intrinsic::sadd_with_overflow
:
1962 Res
= Op1
->getValue().sadd_ov(Op2
->getValue(), Overflow
);
1964 case Intrinsic::uadd_with_overflow
:
1965 Res
= Op1
->getValue().uadd_ov(Op2
->getValue(), Overflow
);
1967 case Intrinsic::ssub_with_overflow
:
1968 Res
= Op1
->getValue().ssub_ov(Op2
->getValue(), Overflow
);
1970 case Intrinsic::usub_with_overflow
:
1971 Res
= Op1
->getValue().usub_ov(Op2
->getValue(), Overflow
);
1973 case Intrinsic::smul_with_overflow
:
1974 Res
= Op1
->getValue().smul_ov(Op2
->getValue(), Overflow
);
1976 case Intrinsic::umul_with_overflow
:
1977 Res
= Op1
->getValue().umul_ov(Op2
->getValue(), Overflow
);
1981 ConstantInt::get(Ty
->getContext(), Res
),
1982 ConstantInt::get(Type::getInt1Ty(Ty
->getContext()), Overflow
)
1984 return ConstantStruct::get(cast
<StructType
>(Ty
), Ops
);
1986 case Intrinsic::cttz
:
1987 if (Op2
->isOne() && Op1
->isZero()) // cttz(0, 1) is undef.
1988 return UndefValue::get(Ty
);
1989 return ConstantInt::get(Ty
, Op1
->getValue().countTrailingZeros());
1990 case Intrinsic::ctlz
:
1991 if (Op2
->isOne() && Op1
->isZero()) // ctlz(0, 1) is undef.
1992 return UndefValue::get(Ty
);
1993 return ConstantInt::get(Ty
, Op1
->getValue().countLeadingZeros());
2000 // Support ConstantVector in case we have an Undef in the top.
2001 if ((isa
<ConstantVector
>(Operands
[0]) ||
2002 isa
<ConstantDataVector
>(Operands
[0])) &&
2003 // Check for default rounding mode.
2004 // FIXME: Support other rounding modes?
2005 isa
<ConstantInt
>(Operands
[1]) &&
2006 cast
<ConstantInt
>(Operands
[1])->getValue() == 4) {
2007 auto *Op
= cast
<Constant
>(Operands
[0]);
2008 switch (IntrinsicID
) {
2010 case Intrinsic::x86_avx512_vcvtss2si32
:
2011 case Intrinsic::x86_avx512_vcvtss2si64
:
2012 case Intrinsic::x86_avx512_vcvtsd2si32
:
2013 case Intrinsic::x86_avx512_vcvtsd2si64
:
2014 if (ConstantFP
*FPOp
=
2015 dyn_cast_or_null
<ConstantFP
>(Op
->getAggregateElement(0U)))
2016 return ConstantFoldSSEConvertToInt(FPOp
->getValueAPF(),
2017 /*roundTowardZero=*/false, Ty
,
2020 case Intrinsic::x86_avx512_vcvtss2usi32
:
2021 case Intrinsic::x86_avx512_vcvtss2usi64
:
2022 case Intrinsic::x86_avx512_vcvtsd2usi32
:
2023 case Intrinsic::x86_avx512_vcvtsd2usi64
:
2024 if (ConstantFP
*FPOp
=
2025 dyn_cast_or_null
<ConstantFP
>(Op
->getAggregateElement(0U)))
2026 return ConstantFoldSSEConvertToInt(FPOp
->getValueAPF(),
2027 /*roundTowardZero=*/false, Ty
,
2030 case Intrinsic::x86_avx512_cvttss2si
:
2031 case Intrinsic::x86_avx512_cvttss2si64
:
2032 case Intrinsic::x86_avx512_cvttsd2si
:
2033 case Intrinsic::x86_avx512_cvttsd2si64
:
2034 if (ConstantFP
*FPOp
=
2035 dyn_cast_or_null
<ConstantFP
>(Op
->getAggregateElement(0U)))
2036 return ConstantFoldSSEConvertToInt(FPOp
->getValueAPF(),
2037 /*roundTowardZero=*/true, Ty
,
2040 case Intrinsic::x86_avx512_cvttss2usi
:
2041 case Intrinsic::x86_avx512_cvttss2usi64
:
2042 case Intrinsic::x86_avx512_cvttsd2usi
:
2043 case Intrinsic::x86_avx512_cvttsd2usi64
:
2044 if (ConstantFP
*FPOp
=
2045 dyn_cast_or_null
<ConstantFP
>(Op
->getAggregateElement(0U)))
2046 return ConstantFoldSSEConvertToInt(FPOp
->getValueAPF(),
2047 /*roundTowardZero=*/true, Ty
,
2055 if (Operands
.size() != 3)
2058 if (const auto *Op1
= dyn_cast
<ConstantFP
>(Operands
[0])) {
2059 if (const auto *Op2
= dyn_cast
<ConstantFP
>(Operands
[1])) {
2060 if (const auto *Op3
= dyn_cast
<ConstantFP
>(Operands
[2])) {
2061 switch (IntrinsicID
) {
2063 case Intrinsic::fma
:
2064 case Intrinsic::fmuladd
: {
2065 APFloat V
= Op1
->getValueAPF();
2066 APFloat::opStatus s
= V
.fusedMultiplyAdd(Op2
->getValueAPF(),
2068 APFloat::rmNearestTiesToEven
);
2069 if (s
!= APFloat::opInvalidOp
)
2070 return ConstantFP::get(Ty
->getContext(), V
);
2079 if (IntrinsicID
== Intrinsic::fshl
|| IntrinsicID
== Intrinsic::fshr
) {
2080 auto *C0
= dyn_cast
<ConstantInt
>(Operands
[0]);
2081 auto *C1
= dyn_cast
<ConstantInt
>(Operands
[1]);
2082 auto *C2
= dyn_cast
<ConstantInt
>(Operands
[2]);
2083 if (!(C0
&& C1
&& C2
))
2086 // The shift amount is interpreted as modulo the bitwidth. If the shift
2087 // amount is effectively 0, avoid UB due to oversized inverse shift below.
2088 unsigned BitWidth
= C0
->getBitWidth();
2089 unsigned ShAmt
= C2
->getValue().urem(BitWidth
);
2090 bool IsRight
= IntrinsicID
== Intrinsic::fshr
;
2092 return IsRight
? C1
: C0
;
2094 // (X << ShlAmt) | (Y >> LshrAmt)
2095 const APInt
&X
= C0
->getValue();
2096 const APInt
&Y
= C1
->getValue();
2097 unsigned LshrAmt
= IsRight
? ShAmt
: BitWidth
- ShAmt
;
2098 unsigned ShlAmt
= !IsRight
? ShAmt
: BitWidth
- ShAmt
;
2099 return ConstantInt::get(Ty
->getContext(), X
.shl(ShlAmt
) | Y
.lshr(LshrAmt
));
2105 Constant
*ConstantFoldVectorCall(StringRef Name
, unsigned IntrinsicID
,
2106 VectorType
*VTy
, ArrayRef
<Constant
*> Operands
,
2107 const DataLayout
&DL
,
2108 const TargetLibraryInfo
*TLI
,
2109 ImmutableCallSite CS
) {
2110 SmallVector
<Constant
*, 4> Result(VTy
->getNumElements());
2111 SmallVector
<Constant
*, 4> Lane(Operands
.size());
2112 Type
*Ty
= VTy
->getElementType();
2114 if (IntrinsicID
== Intrinsic::masked_load
) {
2115 auto *SrcPtr
= Operands
[0];
2116 auto *Mask
= Operands
[2];
2117 auto *Passthru
= Operands
[3];
2119 Constant
*VecData
= ConstantFoldLoadFromConstPtr(SrcPtr
, VTy
, DL
);
2121 SmallVector
<Constant
*, 32> NewElements
;
2122 for (unsigned I
= 0, E
= VTy
->getNumElements(); I
!= E
; ++I
) {
2123 auto *MaskElt
= Mask
->getAggregateElement(I
);
2126 auto *PassthruElt
= Passthru
->getAggregateElement(I
);
2127 auto *VecElt
= VecData
? VecData
->getAggregateElement(I
) : nullptr;
2128 if (isa
<UndefValue
>(MaskElt
)) {
2130 NewElements
.push_back(PassthruElt
);
2132 NewElements
.push_back(VecElt
);
2136 if (MaskElt
->isNullValue()) {
2139 NewElements
.push_back(PassthruElt
);
2140 } else if (MaskElt
->isOneValue()) {
2143 NewElements
.push_back(VecElt
);
2148 if (NewElements
.size() != VTy
->getNumElements())
2150 return ConstantVector::get(NewElements
);
2153 for (unsigned I
= 0, E
= VTy
->getNumElements(); I
!= E
; ++I
) {
2154 // Gather a column of constants.
2155 for (unsigned J
= 0, JE
= Operands
.size(); J
!= JE
; ++J
) {
2156 // These intrinsics use a scalar type for their second argument.
2158 (IntrinsicID
== Intrinsic::cttz
|| IntrinsicID
== Intrinsic::ctlz
||
2159 IntrinsicID
== Intrinsic::powi
)) {
2160 Lane
[J
] = Operands
[J
];
2164 Constant
*Agg
= Operands
[J
]->getAggregateElement(I
);
2171 // Use the regular scalar folding to simplify this column.
2172 Constant
*Folded
= ConstantFoldScalarCall(Name
, IntrinsicID
, Ty
, Lane
, TLI
, CS
);
2178 return ConstantVector::get(Result
);
2181 } // end anonymous namespace
2184 llvm::ConstantFoldCall(ImmutableCallSite CS
, Function
*F
,
2185 ArrayRef
<Constant
*> Operands
,
2186 const TargetLibraryInfo
*TLI
) {
2187 if (CS
.isNoBuiltin() || CS
.isStrictFP())
2191 StringRef Name
= F
->getName();
2193 Type
*Ty
= F
->getReturnType();
2195 if (auto *VTy
= dyn_cast
<VectorType
>(Ty
))
2196 return ConstantFoldVectorCall(Name
, F
->getIntrinsicID(), VTy
, Operands
,
2197 F
->getParent()->getDataLayout(), TLI
, CS
);
2199 return ConstantFoldScalarCall(Name
, F
->getIntrinsicID(), Ty
, Operands
, TLI
, CS
);
2202 bool llvm::isMathLibCallNoop(CallSite CS
, const TargetLibraryInfo
*TLI
) {
2203 // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap
2204 // (and to some extent ConstantFoldScalarCall).
2205 if (CS
.isNoBuiltin() || CS
.isStrictFP())
2207 Function
*F
= CS
.getCalledFunction();
2212 if (!TLI
|| !TLI
->getLibFunc(*F
, Func
))
2215 if (CS
.getNumArgOperands() == 1) {
2216 if (ConstantFP
*OpC
= dyn_cast
<ConstantFP
>(CS
.getArgOperand(0))) {
2217 const APFloat
&Op
= OpC
->getValueAPF();
2225 case LibFunc_log10l
:
2227 case LibFunc_log10f
:
2228 return Op
.isNaN() || (!Op
.isZero() && !Op
.isNegative());
2233 // FIXME: These boundaries are slightly conservative.
2234 if (OpC
->getType()->isDoubleTy())
2235 return Op
.compare(APFloat(-745.0)) != APFloat::cmpLessThan
&&
2236 Op
.compare(APFloat(709.0)) != APFloat::cmpGreaterThan
;
2237 if (OpC
->getType()->isFloatTy())
2238 return Op
.compare(APFloat(-103.0f
)) != APFloat::cmpLessThan
&&
2239 Op
.compare(APFloat(88.0f
)) != APFloat::cmpGreaterThan
;
2245 // FIXME: These boundaries are slightly conservative.
2246 if (OpC
->getType()->isDoubleTy())
2247 return Op
.compare(APFloat(-1074.0)) != APFloat::cmpLessThan
&&
2248 Op
.compare(APFloat(1023.0)) != APFloat::cmpGreaterThan
;
2249 if (OpC
->getType()->isFloatTy())
2250 return Op
.compare(APFloat(-149.0f
)) != APFloat::cmpLessThan
&&
2251 Op
.compare(APFloat(127.0f
)) != APFloat::cmpGreaterThan
;
2260 return !Op
.isInfinity();
2264 case LibFunc_tanf
: {
2265 // FIXME: Stop using the host math library.
2266 // FIXME: The computation isn't done in the right precision.
2267 Type
*Ty
= OpC
->getType();
2268 if (Ty
->isDoubleTy() || Ty
->isFloatTy() || Ty
->isHalfTy()) {
2269 double OpV
= getValueAsDouble(OpC
);
2270 return ConstantFoldFP(tan
, OpV
, Ty
) != nullptr;
2281 return Op
.compare(APFloat(Op
.getSemantics(), "-1")) !=
2282 APFloat::cmpLessThan
&&
2283 Op
.compare(APFloat(Op
.getSemantics(), "1")) !=
2284 APFloat::cmpGreaterThan
;
2292 // FIXME: These boundaries are slightly conservative.
2293 if (OpC
->getType()->isDoubleTy())
2294 return Op
.compare(APFloat(-710.0)) != APFloat::cmpLessThan
&&
2295 Op
.compare(APFloat(710.0)) != APFloat::cmpGreaterThan
;
2296 if (OpC
->getType()->isFloatTy())
2297 return Op
.compare(APFloat(-89.0f
)) != APFloat::cmpLessThan
&&
2298 Op
.compare(APFloat(89.0f
)) != APFloat::cmpGreaterThan
;
2304 return Op
.isNaN() || Op
.isZero() || !Op
.isNegative();
2306 // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p,
2314 if (CS
.getNumArgOperands() == 2) {
2315 ConstantFP
*Op0C
= dyn_cast
<ConstantFP
>(CS
.getArgOperand(0));
2316 ConstantFP
*Op1C
= dyn_cast
<ConstantFP
>(CS
.getArgOperand(1));
2318 const APFloat
&Op0
= Op0C
->getValueAPF();
2319 const APFloat
&Op1
= Op1C
->getValueAPF();
2324 case LibFunc_powf
: {
2325 // FIXME: Stop using the host math library.
2326 // FIXME: The computation isn't done in the right precision.
2327 Type
*Ty
= Op0C
->getType();
2328 if (Ty
->isDoubleTy() || Ty
->isFloatTy() || Ty
->isHalfTy()) {
2329 if (Ty
== Op1C
->getType()) {
2330 double Op0V
= getValueAsDouble(Op0C
);
2331 double Op1V
= getValueAsDouble(Op1C
);
2332 return ConstantFoldBinaryFP(pow
, Op0V
, Op1V
, Ty
) != nullptr;
2341 return Op0
.isNaN() || Op1
.isNaN() ||
2342 (!Op0
.isInfinity() && !Op1
.isZero());