1 //===-- DependenceAnalysis.cpp - DA Implementation --------------*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // DependenceAnalysis is an LLVM pass that analyses dependences between memory
11 // accesses. Currently, it is an (incomplete) implementation of the approach
14 // Practical Dependence Testing
15 // Goff, Kennedy, Tseng
18 // There's a single entry point that analyzes the dependence between a pair
19 // of memory references in a function, returning either NULL, for no dependence,
20 // or a more-or-less detailed description of the dependence between them.
22 // Currently, the implementation cannot propagate constraints between
23 // coupled RDIV subscripts and lacks a multi-subscript MIV test.
24 // Both of these are conservative weaknesses;
25 // that is, not a source of correctness problems.
27 // Since Clang linearizes some array subscripts, the dependence
28 // analysis is using SCEV->delinearize to recover the representation of multiple
29 // subscripts, and thus avoid the more expensive and less precise MIV tests. The
30 // delinearization is controlled by the flag -da-delinearize.
32 // We should pay some careful attention to the possibility of integer overflow
33 // in the implementation of the various tests. This could happen with Add,
34 // Subtract, or Multiply, with both APInt's and SCEV's.
36 // Some non-linear subscript pairs can be handled by the GCD test
37 // (and perhaps other tests).
38 // Should explore how often these things occur.
40 // Finally, it seems like certain test cases expose weaknesses in the SCEV
41 // simplification, especially in the handling of sign and zero extensions.
42 // It could be useful to spend time exploring these.
44 // Please note that this is work in progress and the interface is subject to
47 //===----------------------------------------------------------------------===//
49 // In memory of Ken Kennedy, 1945 - 2007 //
51 //===----------------------------------------------------------------------===//
53 #include "llvm/Analysis/DependenceAnalysis.h"
54 #include "llvm/ADT/STLExtras.h"
55 #include "llvm/ADT/Statistic.h"
56 #include "llvm/Analysis/AliasAnalysis.h"
57 #include "llvm/Analysis/LoopInfo.h"
58 #include "llvm/Analysis/ScalarEvolution.h"
59 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
60 #include "llvm/Analysis/ValueTracking.h"
61 #include "llvm/Config/llvm-config.h"
62 #include "llvm/IR/InstIterator.h"
63 #include "llvm/IR/Module.h"
64 #include "llvm/IR/Operator.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/raw_ostream.h"
72 #define DEBUG_TYPE "da"
74 //===----------------------------------------------------------------------===//
77 STATISTIC(TotalArrayPairs
, "Array pairs tested");
78 STATISTIC(SeparableSubscriptPairs
, "Separable subscript pairs");
79 STATISTIC(CoupledSubscriptPairs
, "Coupled subscript pairs");
80 STATISTIC(NonlinearSubscriptPairs
, "Nonlinear subscript pairs");
81 STATISTIC(ZIVapplications
, "ZIV applications");
82 STATISTIC(ZIVindependence
, "ZIV independence");
83 STATISTIC(StrongSIVapplications
, "Strong SIV applications");
84 STATISTIC(StrongSIVsuccesses
, "Strong SIV successes");
85 STATISTIC(StrongSIVindependence
, "Strong SIV independence");
86 STATISTIC(WeakCrossingSIVapplications
, "Weak-Crossing SIV applications");
87 STATISTIC(WeakCrossingSIVsuccesses
, "Weak-Crossing SIV successes");
88 STATISTIC(WeakCrossingSIVindependence
, "Weak-Crossing SIV independence");
89 STATISTIC(ExactSIVapplications
, "Exact SIV applications");
90 STATISTIC(ExactSIVsuccesses
, "Exact SIV successes");
91 STATISTIC(ExactSIVindependence
, "Exact SIV independence");
92 STATISTIC(WeakZeroSIVapplications
, "Weak-Zero SIV applications");
93 STATISTIC(WeakZeroSIVsuccesses
, "Weak-Zero SIV successes");
94 STATISTIC(WeakZeroSIVindependence
, "Weak-Zero SIV independence");
95 STATISTIC(ExactRDIVapplications
, "Exact RDIV applications");
96 STATISTIC(ExactRDIVindependence
, "Exact RDIV independence");
97 STATISTIC(SymbolicRDIVapplications
, "Symbolic RDIV applications");
98 STATISTIC(SymbolicRDIVindependence
, "Symbolic RDIV independence");
99 STATISTIC(DeltaApplications
, "Delta applications");
100 STATISTIC(DeltaSuccesses
, "Delta successes");
101 STATISTIC(DeltaIndependence
, "Delta independence");
102 STATISTIC(DeltaPropagations
, "Delta propagations");
103 STATISTIC(GCDapplications
, "GCD applications");
104 STATISTIC(GCDsuccesses
, "GCD successes");
105 STATISTIC(GCDindependence
, "GCD independence");
106 STATISTIC(BanerjeeApplications
, "Banerjee applications");
107 STATISTIC(BanerjeeIndependence
, "Banerjee independence");
108 STATISTIC(BanerjeeSuccesses
, "Banerjee successes");
111 Delinearize("da-delinearize", cl::init(true), cl::Hidden
, cl::ZeroOrMore
,
112 cl::desc("Try to delinearize array references."));
114 //===----------------------------------------------------------------------===//
117 DependenceAnalysis::Result
118 DependenceAnalysis::run(Function
&F
, FunctionAnalysisManager
&FAM
) {
119 auto &AA
= FAM
.getResult
<AAManager
>(F
);
120 auto &SE
= FAM
.getResult
<ScalarEvolutionAnalysis
>(F
);
121 auto &LI
= FAM
.getResult
<LoopAnalysis
>(F
);
122 return DependenceInfo(&F
, &AA
, &SE
, &LI
);
125 AnalysisKey
DependenceAnalysis::Key
;
127 INITIALIZE_PASS_BEGIN(DependenceAnalysisWrapperPass
, "da",
128 "Dependence Analysis", true, true)
129 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass
)
130 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass
)
131 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass
)
132 INITIALIZE_PASS_END(DependenceAnalysisWrapperPass
, "da", "Dependence Analysis",
135 char DependenceAnalysisWrapperPass::ID
= 0;
137 FunctionPass
*llvm::createDependenceAnalysisWrapperPass() {
138 return new DependenceAnalysisWrapperPass();
141 bool DependenceAnalysisWrapperPass::runOnFunction(Function
&F
) {
142 auto &AA
= getAnalysis
<AAResultsWrapperPass
>().getAAResults();
143 auto &SE
= getAnalysis
<ScalarEvolutionWrapperPass
>().getSE();
144 auto &LI
= getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
145 info
.reset(new DependenceInfo(&F
, &AA
, &SE
, &LI
));
149 DependenceInfo
&DependenceAnalysisWrapperPass::getDI() const { return *info
; }
151 void DependenceAnalysisWrapperPass::releaseMemory() { info
.reset(); }
153 void DependenceAnalysisWrapperPass::getAnalysisUsage(AnalysisUsage
&AU
) const {
154 AU
.setPreservesAll();
155 AU
.addRequiredTransitive
<AAResultsWrapperPass
>();
156 AU
.addRequiredTransitive
<ScalarEvolutionWrapperPass
>();
157 AU
.addRequiredTransitive
<LoopInfoWrapperPass
>();
161 // Used to test the dependence analyzer.
162 // Looks through the function, noting loads and stores.
163 // Calls depends() on every possible pair and prints out the result.
164 // Ignores all other instructions.
165 static void dumpExampleDependence(raw_ostream
&OS
, DependenceInfo
*DA
) {
166 auto *F
= DA
->getFunction();
167 for (inst_iterator SrcI
= inst_begin(F
), SrcE
= inst_end(F
); SrcI
!= SrcE
;
169 if (isa
<StoreInst
>(*SrcI
) || isa
<LoadInst
>(*SrcI
)) {
170 for (inst_iterator DstI
= SrcI
, DstE
= inst_end(F
);
171 DstI
!= DstE
; ++DstI
) {
172 if (isa
<StoreInst
>(*DstI
) || isa
<LoadInst
>(*DstI
)) {
173 OS
<< "da analyze - ";
174 if (auto D
= DA
->depends(&*SrcI
, &*DstI
, true)) {
176 for (unsigned Level
= 1; Level
<= D
->getLevels(); Level
++) {
177 if (D
->isSplitable(Level
)) {
178 OS
<< "da analyze - split level = " << Level
;
179 OS
<< ", iteration = " << *DA
->getSplitIteration(*D
, Level
);
192 void DependenceAnalysisWrapperPass::print(raw_ostream
&OS
,
193 const Module
*) const {
194 dumpExampleDependence(OS
, info
.get());
197 //===----------------------------------------------------------------------===//
198 // Dependence methods
200 // Returns true if this is an input dependence.
201 bool Dependence::isInput() const {
202 return Src
->mayReadFromMemory() && Dst
->mayReadFromMemory();
206 // Returns true if this is an output dependence.
207 bool Dependence::isOutput() const {
208 return Src
->mayWriteToMemory() && Dst
->mayWriteToMemory();
212 // Returns true if this is an flow (aka true) dependence.
213 bool Dependence::isFlow() const {
214 return Src
->mayWriteToMemory() && Dst
->mayReadFromMemory();
218 // Returns true if this is an anti dependence.
219 bool Dependence::isAnti() const {
220 return Src
->mayReadFromMemory() && Dst
->mayWriteToMemory();
224 // Returns true if a particular level is scalar; that is,
225 // if no subscript in the source or destination mention the induction
226 // variable associated with the loop at this level.
227 // Leave this out of line, so it will serve as a virtual method anchor
228 bool Dependence::isScalar(unsigned level
) const {
233 //===----------------------------------------------------------------------===//
234 // FullDependence methods
236 FullDependence::FullDependence(Instruction
*Source
, Instruction
*Destination
,
237 bool PossiblyLoopIndependent
,
238 unsigned CommonLevels
)
239 : Dependence(Source
, Destination
), Levels(CommonLevels
),
240 LoopIndependent(PossiblyLoopIndependent
) {
243 DV
= make_unique
<DVEntry
[]>(CommonLevels
);
246 // The rest are simple getters that hide the implementation.
248 // getDirection - Returns the direction associated with a particular level.
249 unsigned FullDependence::getDirection(unsigned Level
) const {
250 assert(0 < Level
&& Level
<= Levels
&& "Level out of range");
251 return DV
[Level
- 1].Direction
;
255 // Returns the distance (or NULL) associated with a particular level.
256 const SCEV
*FullDependence::getDistance(unsigned Level
) const {
257 assert(0 < Level
&& Level
<= Levels
&& "Level out of range");
258 return DV
[Level
- 1].Distance
;
262 // Returns true if a particular level is scalar; that is,
263 // if no subscript in the source or destination mention the induction
264 // variable associated with the loop at this level.
265 bool FullDependence::isScalar(unsigned Level
) const {
266 assert(0 < Level
&& Level
<= Levels
&& "Level out of range");
267 return DV
[Level
- 1].Scalar
;
271 // Returns true if peeling the first iteration from this loop
272 // will break this dependence.
273 bool FullDependence::isPeelFirst(unsigned Level
) const {
274 assert(0 < Level
&& Level
<= Levels
&& "Level out of range");
275 return DV
[Level
- 1].PeelFirst
;
279 // Returns true if peeling the last iteration from this loop
280 // will break this dependence.
281 bool FullDependence::isPeelLast(unsigned Level
) const {
282 assert(0 < Level
&& Level
<= Levels
&& "Level out of range");
283 return DV
[Level
- 1].PeelLast
;
287 // Returns true if splitting this loop will break the dependence.
288 bool FullDependence::isSplitable(unsigned Level
) const {
289 assert(0 < Level
&& Level
<= Levels
&& "Level out of range");
290 return DV
[Level
- 1].Splitable
;
294 //===----------------------------------------------------------------------===//
295 // DependenceInfo::Constraint methods
297 // If constraint is a point <X, Y>, returns X.
299 const SCEV
*DependenceInfo::Constraint::getX() const {
300 assert(Kind
== Point
&& "Kind should be Point");
305 // If constraint is a point <X, Y>, returns Y.
307 const SCEV
*DependenceInfo::Constraint::getY() const {
308 assert(Kind
== Point
&& "Kind should be Point");
313 // If constraint is a line AX + BY = C, returns A.
315 const SCEV
*DependenceInfo::Constraint::getA() const {
316 assert((Kind
== Line
|| Kind
== Distance
) &&
317 "Kind should be Line (or Distance)");
322 // If constraint is a line AX + BY = C, returns B.
324 const SCEV
*DependenceInfo::Constraint::getB() const {
325 assert((Kind
== Line
|| Kind
== Distance
) &&
326 "Kind should be Line (or Distance)");
331 // If constraint is a line AX + BY = C, returns C.
333 const SCEV
*DependenceInfo::Constraint::getC() const {
334 assert((Kind
== Line
|| Kind
== Distance
) &&
335 "Kind should be Line (or Distance)");
340 // If constraint is a distance, returns D.
342 const SCEV
*DependenceInfo::Constraint::getD() const {
343 assert(Kind
== Distance
&& "Kind should be Distance");
344 return SE
->getNegativeSCEV(C
);
348 // Returns the loop associated with this constraint.
349 const Loop
*DependenceInfo::Constraint::getAssociatedLoop() const {
350 assert((Kind
== Distance
|| Kind
== Line
|| Kind
== Point
) &&
351 "Kind should be Distance, Line, or Point");
352 return AssociatedLoop
;
355 void DependenceInfo::Constraint::setPoint(const SCEV
*X
, const SCEV
*Y
,
356 const Loop
*CurLoop
) {
360 AssociatedLoop
= CurLoop
;
363 void DependenceInfo::Constraint::setLine(const SCEV
*AA
, const SCEV
*BB
,
364 const SCEV
*CC
, const Loop
*CurLoop
) {
369 AssociatedLoop
= CurLoop
;
372 void DependenceInfo::Constraint::setDistance(const SCEV
*D
,
373 const Loop
*CurLoop
) {
375 A
= SE
->getOne(D
->getType());
376 B
= SE
->getNegativeSCEV(A
);
377 C
= SE
->getNegativeSCEV(D
);
378 AssociatedLoop
= CurLoop
;
381 void DependenceInfo::Constraint::setEmpty() { Kind
= Empty
; }
383 void DependenceInfo::Constraint::setAny(ScalarEvolution
*NewSE
) {
388 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
389 // For debugging purposes. Dumps the constraint out to OS.
390 LLVM_DUMP_METHOD
void DependenceInfo::Constraint::dump(raw_ostream
&OS
) const {
396 OS
<< " Point is <" << *getX() << ", " << *getY() << ">\n";
397 else if (isDistance())
398 OS
<< " Distance is " << *getD() <<
399 " (" << *getA() << "*X + " << *getB() << "*Y = " << *getC() << ")\n";
401 OS
<< " Line is " << *getA() << "*X + " <<
402 *getB() << "*Y = " << *getC() << "\n";
404 llvm_unreachable("unknown constraint type in Constraint::dump");
409 // Updates X with the intersection
410 // of the Constraints X and Y. Returns true if X has changed.
411 // Corresponds to Figure 4 from the paper
413 // Practical Dependence Testing
414 // Goff, Kennedy, Tseng
416 bool DependenceInfo::intersectConstraints(Constraint
*X
, const Constraint
*Y
) {
418 LLVM_DEBUG(dbgs() << "\tintersect constraints\n");
419 LLVM_DEBUG(dbgs() << "\t X ="; X
->dump(dbgs()));
420 LLVM_DEBUG(dbgs() << "\t Y ="; Y
->dump(dbgs()));
421 assert(!Y
->isPoint() && "Y must not be a Point");
435 if (X
->isDistance() && Y
->isDistance()) {
436 LLVM_DEBUG(dbgs() << "\t intersect 2 distances\n");
437 if (isKnownPredicate(CmpInst::ICMP_EQ
, X
->getD(), Y
->getD()))
439 if (isKnownPredicate(CmpInst::ICMP_NE
, X
->getD(), Y
->getD())) {
444 // Hmmm, interesting situation.
445 // I guess if either is constant, keep it and ignore the other.
446 if (isa
<SCEVConstant
>(Y
->getD())) {
453 // At this point, the pseudo-code in Figure 4 of the paper
454 // checks if (X->isPoint() && Y->isPoint()).
455 // This case can't occur in our implementation,
456 // since a Point can only arise as the result of intersecting
457 // two Line constraints, and the right-hand value, Y, is never
458 // the result of an intersection.
459 assert(!(X
->isPoint() && Y
->isPoint()) &&
460 "We shouldn't ever see X->isPoint() && Y->isPoint()");
462 if (X
->isLine() && Y
->isLine()) {
463 LLVM_DEBUG(dbgs() << "\t intersect 2 lines\n");
464 const SCEV
*Prod1
= SE
->getMulExpr(X
->getA(), Y
->getB());
465 const SCEV
*Prod2
= SE
->getMulExpr(X
->getB(), Y
->getA());
466 if (isKnownPredicate(CmpInst::ICMP_EQ
, Prod1
, Prod2
)) {
467 // slopes are equal, so lines are parallel
468 LLVM_DEBUG(dbgs() << "\t\tsame slope\n");
469 Prod1
= SE
->getMulExpr(X
->getC(), Y
->getB());
470 Prod2
= SE
->getMulExpr(X
->getB(), Y
->getC());
471 if (isKnownPredicate(CmpInst::ICMP_EQ
, Prod1
, Prod2
))
473 if (isKnownPredicate(CmpInst::ICMP_NE
, Prod1
, Prod2
)) {
480 if (isKnownPredicate(CmpInst::ICMP_NE
, Prod1
, Prod2
)) {
481 // slopes differ, so lines intersect
482 LLVM_DEBUG(dbgs() << "\t\tdifferent slopes\n");
483 const SCEV
*C1B2
= SE
->getMulExpr(X
->getC(), Y
->getB());
484 const SCEV
*C1A2
= SE
->getMulExpr(X
->getC(), Y
->getA());
485 const SCEV
*C2B1
= SE
->getMulExpr(Y
->getC(), X
->getB());
486 const SCEV
*C2A1
= SE
->getMulExpr(Y
->getC(), X
->getA());
487 const SCEV
*A1B2
= SE
->getMulExpr(X
->getA(), Y
->getB());
488 const SCEV
*A2B1
= SE
->getMulExpr(Y
->getA(), X
->getB());
489 const SCEVConstant
*C1A2_C2A1
=
490 dyn_cast
<SCEVConstant
>(SE
->getMinusSCEV(C1A2
, C2A1
));
491 const SCEVConstant
*C1B2_C2B1
=
492 dyn_cast
<SCEVConstant
>(SE
->getMinusSCEV(C1B2
, C2B1
));
493 const SCEVConstant
*A1B2_A2B1
=
494 dyn_cast
<SCEVConstant
>(SE
->getMinusSCEV(A1B2
, A2B1
));
495 const SCEVConstant
*A2B1_A1B2
=
496 dyn_cast
<SCEVConstant
>(SE
->getMinusSCEV(A2B1
, A1B2
));
497 if (!C1B2_C2B1
|| !C1A2_C2A1
||
498 !A1B2_A2B1
|| !A2B1_A1B2
)
500 APInt Xtop
= C1B2_C2B1
->getAPInt();
501 APInt Xbot
= A1B2_A2B1
->getAPInt();
502 APInt Ytop
= C1A2_C2A1
->getAPInt();
503 APInt Ybot
= A2B1_A1B2
->getAPInt();
504 LLVM_DEBUG(dbgs() << "\t\tXtop = " << Xtop
<< "\n");
505 LLVM_DEBUG(dbgs() << "\t\tXbot = " << Xbot
<< "\n");
506 LLVM_DEBUG(dbgs() << "\t\tYtop = " << Ytop
<< "\n");
507 LLVM_DEBUG(dbgs() << "\t\tYbot = " << Ybot
<< "\n");
508 APInt Xq
= Xtop
; // these need to be initialized, even
509 APInt Xr
= Xtop
; // though they're just going to be overwritten
510 APInt::sdivrem(Xtop
, Xbot
, Xq
, Xr
);
513 APInt::sdivrem(Ytop
, Ybot
, Yq
, Yr
);
514 if (Xr
!= 0 || Yr
!= 0) {
519 LLVM_DEBUG(dbgs() << "\t\tX = " << Xq
<< ", Y = " << Yq
<< "\n");
520 if (Xq
.slt(0) || Yq
.slt(0)) {
525 if (const SCEVConstant
*CUB
=
526 collectConstantUpperBound(X
->getAssociatedLoop(), Prod1
->getType())) {
527 const APInt
&UpperBound
= CUB
->getAPInt();
528 LLVM_DEBUG(dbgs() << "\t\tupper bound = " << UpperBound
<< "\n");
529 if (Xq
.sgt(UpperBound
) || Yq
.sgt(UpperBound
)) {
535 X
->setPoint(SE
->getConstant(Xq
),
537 X
->getAssociatedLoop());
544 // if (X->isLine() && Y->isPoint()) This case can't occur.
545 assert(!(X
->isLine() && Y
->isPoint()) && "This case should never occur");
547 if (X
->isPoint() && Y
->isLine()) {
548 LLVM_DEBUG(dbgs() << "\t intersect Point and Line\n");
549 const SCEV
*A1X1
= SE
->getMulExpr(Y
->getA(), X
->getX());
550 const SCEV
*B1Y1
= SE
->getMulExpr(Y
->getB(), X
->getY());
551 const SCEV
*Sum
= SE
->getAddExpr(A1X1
, B1Y1
);
552 if (isKnownPredicate(CmpInst::ICMP_EQ
, Sum
, Y
->getC()))
554 if (isKnownPredicate(CmpInst::ICMP_NE
, Sum
, Y
->getC())) {
562 llvm_unreachable("shouldn't reach the end of Constraint intersection");
567 //===----------------------------------------------------------------------===//
568 // DependenceInfo methods
570 // For debugging purposes. Dumps a dependence to OS.
571 void Dependence::dump(raw_ostream
&OS
) const {
572 bool Splitable
= false;
586 unsigned Levels
= getLevels();
588 for (unsigned II
= 1; II
<= Levels
; ++II
) {
593 const SCEV
*Distance
= getDistance(II
);
596 else if (isScalar(II
))
599 unsigned Direction
= getDirection(II
);
600 if (Direction
== DVEntry::ALL
)
603 if (Direction
& DVEntry::LT
)
605 if (Direction
& DVEntry::EQ
)
607 if (Direction
& DVEntry::GT
)
616 if (isLoopIndependent())
625 // Returns NoAlias/MayAliass/MustAlias for two memory locations based upon their
626 // underlaying objects. If LocA and LocB are known to not alias (for any reason:
627 // tbaa, non-overlapping regions etc), then it is known there is no dependecy.
628 // Otherwise the underlying objects are checked to see if they point to
629 // different identifiable objects.
630 static AliasResult
underlyingObjectsAlias(AliasAnalysis
*AA
,
631 const DataLayout
&DL
,
632 const MemoryLocation
&LocA
,
633 const MemoryLocation
&LocB
) {
634 // Check the original locations (minus size) for noalias, which can happen for
635 // tbaa, incompatible underlying object locations, etc.
636 MemoryLocation
LocAS(LocA
.Ptr
, LocationSize::unknown(), LocA
.AATags
);
637 MemoryLocation
LocBS(LocB
.Ptr
, LocationSize::unknown(), LocB
.AATags
);
638 if (AA
->alias(LocAS
, LocBS
) == NoAlias
)
641 // Check the underlying objects are the same
642 const Value
*AObj
= GetUnderlyingObject(LocA
.Ptr
, DL
);
643 const Value
*BObj
= GetUnderlyingObject(LocB
.Ptr
, DL
);
645 // If the underlying objects are the same, they must alias
649 // We may have hit the recursion limit for underlying objects, or have
650 // underlying objects where we don't know they will alias.
651 if (!isIdentifiedObject(AObj
) || !isIdentifiedObject(BObj
))
654 // Otherwise we know the objects are different and both identified objects so
660 // Returns true if the load or store can be analyzed. Atomic and volatile
661 // operations have properties which this analysis does not understand.
663 bool isLoadOrStore(const Instruction
*I
) {
664 if (const LoadInst
*LI
= dyn_cast
<LoadInst
>(I
))
665 return LI
->isUnordered();
666 else if (const StoreInst
*SI
= dyn_cast
<StoreInst
>(I
))
667 return SI
->isUnordered();
672 // Examines the loop nesting of the Src and Dst
673 // instructions and establishes their shared loops. Sets the variables
674 // CommonLevels, SrcLevels, and MaxLevels.
675 // The source and destination instructions needn't be contained in the same
676 // loop. The routine establishNestingLevels finds the level of most deeply
677 // nested loop that contains them both, CommonLevels. An instruction that's
678 // not contained in a loop is at level = 0. MaxLevels is equal to the level
679 // of the source plus the level of the destination, minus CommonLevels.
680 // This lets us allocate vectors MaxLevels in length, with room for every
681 // distinct loop referenced in both the source and destination subscripts.
682 // The variable SrcLevels is the nesting depth of the source instruction.
683 // It's used to help calculate distinct loops referenced by the destination.
684 // Here's the map from loops to levels:
686 // 1 - outermost common loop
687 // ... - other common loops
688 // CommonLevels - innermost common loop
689 // ... - loops containing Src but not Dst
690 // SrcLevels - innermost loop containing Src but not Dst
691 // ... - loops containing Dst but not Src
692 // MaxLevels - innermost loops containing Dst but not Src
693 // Consider the follow code fragment:
710 // If we're looking at the possibility of a dependence between the store
711 // to A (the Src) and the load from A (the Dst), we'll note that they
712 // have 2 loops in common, so CommonLevels will equal 2 and the direction
713 // vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7.
714 // A map from loop names to loop numbers would look like
716 // b - 2 = CommonLevels
722 void DependenceInfo::establishNestingLevels(const Instruction
*Src
,
723 const Instruction
*Dst
) {
724 const BasicBlock
*SrcBlock
= Src
->getParent();
725 const BasicBlock
*DstBlock
= Dst
->getParent();
726 unsigned SrcLevel
= LI
->getLoopDepth(SrcBlock
);
727 unsigned DstLevel
= LI
->getLoopDepth(DstBlock
);
728 const Loop
*SrcLoop
= LI
->getLoopFor(SrcBlock
);
729 const Loop
*DstLoop
= LI
->getLoopFor(DstBlock
);
730 SrcLevels
= SrcLevel
;
731 MaxLevels
= SrcLevel
+ DstLevel
;
732 while (SrcLevel
> DstLevel
) {
733 SrcLoop
= SrcLoop
->getParentLoop();
736 while (DstLevel
> SrcLevel
) {
737 DstLoop
= DstLoop
->getParentLoop();
740 while (SrcLoop
!= DstLoop
) {
741 SrcLoop
= SrcLoop
->getParentLoop();
742 DstLoop
= DstLoop
->getParentLoop();
745 CommonLevels
= SrcLevel
;
746 MaxLevels
-= CommonLevels
;
750 // Given one of the loops containing the source, return
751 // its level index in our numbering scheme.
752 unsigned DependenceInfo::mapSrcLoop(const Loop
*SrcLoop
) const {
753 return SrcLoop
->getLoopDepth();
757 // Given one of the loops containing the destination,
758 // return its level index in our numbering scheme.
759 unsigned DependenceInfo::mapDstLoop(const Loop
*DstLoop
) const {
760 unsigned D
= DstLoop
->getLoopDepth();
761 if (D
> CommonLevels
)
762 return D
- CommonLevels
+ SrcLevels
;
768 // Returns true if Expression is loop invariant in LoopNest.
769 bool DependenceInfo::isLoopInvariant(const SCEV
*Expression
,
770 const Loop
*LoopNest
) const {
773 return SE
->isLoopInvariant(Expression
, LoopNest
) &&
774 isLoopInvariant(Expression
, LoopNest
->getParentLoop());
779 // Finds the set of loops from the LoopNest that
780 // have a level <= CommonLevels and are referred to by the SCEV Expression.
781 void DependenceInfo::collectCommonLoops(const SCEV
*Expression
,
782 const Loop
*LoopNest
,
783 SmallBitVector
&Loops
) const {
785 unsigned Level
= LoopNest
->getLoopDepth();
786 if (Level
<= CommonLevels
&& !SE
->isLoopInvariant(Expression
, LoopNest
))
788 LoopNest
= LoopNest
->getParentLoop();
792 void DependenceInfo::unifySubscriptType(ArrayRef
<Subscript
*> Pairs
) {
794 unsigned widestWidthSeen
= 0;
797 // Go through each pair and find the widest bit to which we need
798 // to extend all of them.
799 for (Subscript
*Pair
: Pairs
) {
800 const SCEV
*Src
= Pair
->Src
;
801 const SCEV
*Dst
= Pair
->Dst
;
802 IntegerType
*SrcTy
= dyn_cast
<IntegerType
>(Src
->getType());
803 IntegerType
*DstTy
= dyn_cast
<IntegerType
>(Dst
->getType());
804 if (SrcTy
== nullptr || DstTy
== nullptr) {
805 assert(SrcTy
== DstTy
&& "This function only unify integer types and "
806 "expect Src and Dst share the same type "
810 if (SrcTy
->getBitWidth() > widestWidthSeen
) {
811 widestWidthSeen
= SrcTy
->getBitWidth();
814 if (DstTy
->getBitWidth() > widestWidthSeen
) {
815 widestWidthSeen
= DstTy
->getBitWidth();
821 assert(widestWidthSeen
> 0);
823 // Now extend each pair to the widest seen.
824 for (Subscript
*Pair
: Pairs
) {
825 const SCEV
*Src
= Pair
->Src
;
826 const SCEV
*Dst
= Pair
->Dst
;
827 IntegerType
*SrcTy
= dyn_cast
<IntegerType
>(Src
->getType());
828 IntegerType
*DstTy
= dyn_cast
<IntegerType
>(Dst
->getType());
829 if (SrcTy
== nullptr || DstTy
== nullptr) {
830 assert(SrcTy
== DstTy
&& "This function only unify integer types and "
831 "expect Src and Dst share the same type "
835 if (SrcTy
->getBitWidth() < widestWidthSeen
)
836 // Sign-extend Src to widestType
837 Pair
->Src
= SE
->getSignExtendExpr(Src
, widestType
);
838 if (DstTy
->getBitWidth() < widestWidthSeen
) {
839 // Sign-extend Dst to widestType
840 Pair
->Dst
= SE
->getSignExtendExpr(Dst
, widestType
);
845 // removeMatchingExtensions - Examines a subscript pair.
846 // If the source and destination are identically sign (or zero)
847 // extended, it strips off the extension in an effect to simplify
848 // the actual analysis.
849 void DependenceInfo::removeMatchingExtensions(Subscript
*Pair
) {
850 const SCEV
*Src
= Pair
->Src
;
851 const SCEV
*Dst
= Pair
->Dst
;
852 if ((isa
<SCEVZeroExtendExpr
>(Src
) && isa
<SCEVZeroExtendExpr
>(Dst
)) ||
853 (isa
<SCEVSignExtendExpr
>(Src
) && isa
<SCEVSignExtendExpr
>(Dst
))) {
854 const SCEVCastExpr
*SrcCast
= cast
<SCEVCastExpr
>(Src
);
855 const SCEVCastExpr
*DstCast
= cast
<SCEVCastExpr
>(Dst
);
856 const SCEV
*SrcCastOp
= SrcCast
->getOperand();
857 const SCEV
*DstCastOp
= DstCast
->getOperand();
858 if (SrcCastOp
->getType() == DstCastOp
->getType()) {
859 Pair
->Src
= SrcCastOp
;
860 Pair
->Dst
= DstCastOp
;
866 // Examine the scev and return true iff it's linear.
867 // Collect any loops mentioned in the set of "Loops".
868 bool DependenceInfo::checkSrcSubscript(const SCEV
*Src
, const Loop
*LoopNest
,
869 SmallBitVector
&Loops
) {
870 const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(Src
);
872 return isLoopInvariant(Src
, LoopNest
);
873 const SCEV
*Start
= AddRec
->getStart();
874 const SCEV
*Step
= AddRec
->getStepRecurrence(*SE
);
875 const SCEV
*UB
= SE
->getBackedgeTakenCount(AddRec
->getLoop());
876 if (!isa
<SCEVCouldNotCompute
>(UB
)) {
877 if (SE
->getTypeSizeInBits(Start
->getType()) <
878 SE
->getTypeSizeInBits(UB
->getType())) {
879 if (!AddRec
->getNoWrapFlags())
883 if (!isLoopInvariant(Step
, LoopNest
))
885 Loops
.set(mapSrcLoop(AddRec
->getLoop()));
886 return checkSrcSubscript(Start
, LoopNest
, Loops
);
891 // Examine the scev and return true iff it's linear.
892 // Collect any loops mentioned in the set of "Loops".
893 bool DependenceInfo::checkDstSubscript(const SCEV
*Dst
, const Loop
*LoopNest
,
894 SmallBitVector
&Loops
) {
895 const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(Dst
);
897 return isLoopInvariant(Dst
, LoopNest
);
898 const SCEV
*Start
= AddRec
->getStart();
899 const SCEV
*Step
= AddRec
->getStepRecurrence(*SE
);
900 const SCEV
*UB
= SE
->getBackedgeTakenCount(AddRec
->getLoop());
901 if (!isa
<SCEVCouldNotCompute
>(UB
)) {
902 if (SE
->getTypeSizeInBits(Start
->getType()) <
903 SE
->getTypeSizeInBits(UB
->getType())) {
904 if (!AddRec
->getNoWrapFlags())
908 if (!isLoopInvariant(Step
, LoopNest
))
910 Loops
.set(mapDstLoop(AddRec
->getLoop()));
911 return checkDstSubscript(Start
, LoopNest
, Loops
);
915 // Examines the subscript pair (the Src and Dst SCEVs)
916 // and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear.
917 // Collects the associated loops in a set.
918 DependenceInfo::Subscript::ClassificationKind
919 DependenceInfo::classifyPair(const SCEV
*Src
, const Loop
*SrcLoopNest
,
920 const SCEV
*Dst
, const Loop
*DstLoopNest
,
921 SmallBitVector
&Loops
) {
922 SmallBitVector
SrcLoops(MaxLevels
+ 1);
923 SmallBitVector
DstLoops(MaxLevels
+ 1);
924 if (!checkSrcSubscript(Src
, SrcLoopNest
, SrcLoops
))
925 return Subscript::NonLinear
;
926 if (!checkDstSubscript(Dst
, DstLoopNest
, DstLoops
))
927 return Subscript::NonLinear
;
930 unsigned N
= Loops
.count();
932 return Subscript::ZIV
;
934 return Subscript::SIV
;
935 if (N
== 2 && (SrcLoops
.count() == 0 ||
936 DstLoops
.count() == 0 ||
937 (SrcLoops
.count() == 1 && DstLoops
.count() == 1)))
938 return Subscript::RDIV
;
939 return Subscript::MIV
;
943 // A wrapper around SCEV::isKnownPredicate.
944 // Looks for cases where we're interested in comparing for equality.
945 // If both X and Y have been identically sign or zero extended,
946 // it strips off the (confusing) extensions before invoking
947 // SCEV::isKnownPredicate. Perhaps, someday, the ScalarEvolution package
948 // will be similarly updated.
950 // If SCEV::isKnownPredicate can't prove the predicate,
951 // we try simple subtraction, which seems to help in some cases
952 // involving symbolics.
953 bool DependenceInfo::isKnownPredicate(ICmpInst::Predicate Pred
, const SCEV
*X
,
954 const SCEV
*Y
) const {
955 if (Pred
== CmpInst::ICMP_EQ
||
956 Pred
== CmpInst::ICMP_NE
) {
957 if ((isa
<SCEVSignExtendExpr
>(X
) &&
958 isa
<SCEVSignExtendExpr
>(Y
)) ||
959 (isa
<SCEVZeroExtendExpr
>(X
) &&
960 isa
<SCEVZeroExtendExpr
>(Y
))) {
961 const SCEVCastExpr
*CX
= cast
<SCEVCastExpr
>(X
);
962 const SCEVCastExpr
*CY
= cast
<SCEVCastExpr
>(Y
);
963 const SCEV
*Xop
= CX
->getOperand();
964 const SCEV
*Yop
= CY
->getOperand();
965 if (Xop
->getType() == Yop
->getType()) {
971 if (SE
->isKnownPredicate(Pred
, X
, Y
))
973 // If SE->isKnownPredicate can't prove the condition,
974 // we try the brute-force approach of subtracting
975 // and testing the difference.
976 // By testing with SE->isKnownPredicate first, we avoid
977 // the possibility of overflow when the arguments are constants.
978 const SCEV
*Delta
= SE
->getMinusSCEV(X
, Y
);
980 case CmpInst::ICMP_EQ
:
981 return Delta
->isZero();
982 case CmpInst::ICMP_NE
:
983 return SE
->isKnownNonZero(Delta
);
984 case CmpInst::ICMP_SGE
:
985 return SE
->isKnownNonNegative(Delta
);
986 case CmpInst::ICMP_SLE
:
987 return SE
->isKnownNonPositive(Delta
);
988 case CmpInst::ICMP_SGT
:
989 return SE
->isKnownPositive(Delta
);
990 case CmpInst::ICMP_SLT
:
991 return SE
->isKnownNegative(Delta
);
993 llvm_unreachable("unexpected predicate in isKnownPredicate");
997 /// Compare to see if S is less than Size, using isKnownNegative(S - max(Size, 1))
998 /// with some extra checking if S is an AddRec and we can prove less-than using
1000 bool DependenceInfo::isKnownLessThan(const SCEV
*S
, const SCEV
*Size
) const {
1001 // First unify to the same type
1002 auto *SType
= dyn_cast
<IntegerType
>(S
->getType());
1003 auto *SizeType
= dyn_cast
<IntegerType
>(Size
->getType());
1004 if (!SType
|| !SizeType
)
1007 (SType
->getBitWidth() >= SizeType
->getBitWidth()) ? SType
: SizeType
;
1008 S
= SE
->getTruncateOrZeroExtend(S
, MaxType
);
1009 Size
= SE
->getTruncateOrZeroExtend(Size
, MaxType
);
1011 // Special check for addrecs using BE taken count
1012 const SCEV
*Bound
= SE
->getMinusSCEV(S
, Size
);
1013 if (const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(Bound
)) {
1014 if (AddRec
->isAffine()) {
1015 const SCEV
*BECount
= SE
->getBackedgeTakenCount(AddRec
->getLoop());
1016 if (!isa
<SCEVCouldNotCompute
>(BECount
)) {
1017 const SCEV
*Limit
= AddRec
->evaluateAtIteration(BECount
, *SE
);
1018 if (SE
->isKnownNegative(Limit
))
1024 // Check using normal isKnownNegative
1025 const SCEV
*LimitedBound
=
1026 SE
->getMinusSCEV(S
, SE
->getSMaxExpr(Size
, SE
->getOne(Size
->getType())));
1027 return SE
->isKnownNegative(LimitedBound
);
1030 bool DependenceInfo::isKnownNonNegative(const SCEV
*S
, const Value
*Ptr
) const {
1031 bool Inbounds
= false;
1032 if (auto *SrcGEP
= dyn_cast
<GetElementPtrInst
>(Ptr
))
1033 Inbounds
= SrcGEP
->isInBounds();
1035 if (const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(S
)) {
1036 if (AddRec
->isAffine()) {
1037 // We know S is for Ptr, the operand on a load/store, so doesn't wrap.
1038 // If both parts are NonNegative, the end result will be NonNegative
1039 if (SE
->isKnownNonNegative(AddRec
->getStart()) &&
1040 SE
->isKnownNonNegative(AddRec
->getOperand(1)))
1046 return SE
->isKnownNonNegative(S
);
1049 // All subscripts are all the same type.
1050 // Loop bound may be smaller (e.g., a char).
1051 // Should zero extend loop bound, since it's always >= 0.
1052 // This routine collects upper bound and extends or truncates if needed.
1053 // Truncating is safe when subscripts are known not to wrap. Cases without
1054 // nowrap flags should have been rejected earlier.
1055 // Return null if no bound available.
1056 const SCEV
*DependenceInfo::collectUpperBound(const Loop
*L
, Type
*T
) const {
1057 if (SE
->hasLoopInvariantBackedgeTakenCount(L
)) {
1058 const SCEV
*UB
= SE
->getBackedgeTakenCount(L
);
1059 return SE
->getTruncateOrZeroExtend(UB
, T
);
1065 // Calls collectUpperBound(), then attempts to cast it to SCEVConstant.
1066 // If the cast fails, returns NULL.
1067 const SCEVConstant
*DependenceInfo::collectConstantUpperBound(const Loop
*L
,
1069 if (const SCEV
*UB
= collectUpperBound(L
, T
))
1070 return dyn_cast
<SCEVConstant
>(UB
);
1076 // When we have a pair of subscripts of the form [c1] and [c2],
1077 // where c1 and c2 are both loop invariant, we attack it using
1078 // the ZIV test. Basically, we test by comparing the two values,
1079 // but there are actually three possible results:
1080 // 1) the values are equal, so there's a dependence
1081 // 2) the values are different, so there's no dependence
1082 // 3) the values might be equal, so we have to assume a dependence.
1084 // Return true if dependence disproved.
1085 bool DependenceInfo::testZIV(const SCEV
*Src
, const SCEV
*Dst
,
1086 FullDependence
&Result
) const {
1087 LLVM_DEBUG(dbgs() << " src = " << *Src
<< "\n");
1088 LLVM_DEBUG(dbgs() << " dst = " << *Dst
<< "\n");
1090 if (isKnownPredicate(CmpInst::ICMP_EQ
, Src
, Dst
)) {
1091 LLVM_DEBUG(dbgs() << " provably dependent\n");
1092 return false; // provably dependent
1094 if (isKnownPredicate(CmpInst::ICMP_NE
, Src
, Dst
)) {
1095 LLVM_DEBUG(dbgs() << " provably independent\n");
1097 return true; // provably independent
1099 LLVM_DEBUG(dbgs() << " possibly dependent\n");
1100 Result
.Consistent
= false;
1101 return false; // possibly dependent
1106 // From the paper, Practical Dependence Testing, Section 4.2.1
1108 // When we have a pair of subscripts of the form [c1 + a*i] and [c2 + a*i],
1109 // where i is an induction variable, c1 and c2 are loop invariant,
1110 // and a is a constant, we can solve it exactly using the Strong SIV test.
1112 // Can prove independence. Failing that, can compute distance (and direction).
1113 // In the presence of symbolic terms, we can sometimes make progress.
1115 // If there's a dependence,
1117 // c1 + a*i = c2 + a*i'
1119 // The dependence distance is
1121 // d = i' - i = (c1 - c2)/a
1123 // A dependence only exists if d is an integer and abs(d) <= U, where U is the
1124 // loop's upper bound. If a dependence exists, the dependence direction is
1128 // direction = { = if d = 0
1131 // Return true if dependence disproved.
1132 bool DependenceInfo::strongSIVtest(const SCEV
*Coeff
, const SCEV
*SrcConst
,
1133 const SCEV
*DstConst
, const Loop
*CurLoop
,
1134 unsigned Level
, FullDependence
&Result
,
1135 Constraint
&NewConstraint
) const {
1136 LLVM_DEBUG(dbgs() << "\tStrong SIV test\n");
1137 LLVM_DEBUG(dbgs() << "\t Coeff = " << *Coeff
);
1138 LLVM_DEBUG(dbgs() << ", " << *Coeff
->getType() << "\n");
1139 LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst
);
1140 LLVM_DEBUG(dbgs() << ", " << *SrcConst
->getType() << "\n");
1141 LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst
);
1142 LLVM_DEBUG(dbgs() << ", " << *DstConst
->getType() << "\n");
1143 ++StrongSIVapplications
;
1144 assert(0 < Level
&& Level
<= CommonLevels
&& "level out of range");
1147 const SCEV
*Delta
= SE
->getMinusSCEV(SrcConst
, DstConst
);
1148 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta
);
1149 LLVM_DEBUG(dbgs() << ", " << *Delta
->getType() << "\n");
1151 // check that |Delta| < iteration count
1152 if (const SCEV
*UpperBound
= collectUpperBound(CurLoop
, Delta
->getType())) {
1153 LLVM_DEBUG(dbgs() << "\t UpperBound = " << *UpperBound
);
1154 LLVM_DEBUG(dbgs() << ", " << *UpperBound
->getType() << "\n");
1155 const SCEV
*AbsDelta
=
1156 SE
->isKnownNonNegative(Delta
) ? Delta
: SE
->getNegativeSCEV(Delta
);
1157 const SCEV
*AbsCoeff
=
1158 SE
->isKnownNonNegative(Coeff
) ? Coeff
: SE
->getNegativeSCEV(Coeff
);
1159 const SCEV
*Product
= SE
->getMulExpr(UpperBound
, AbsCoeff
);
1160 if (isKnownPredicate(CmpInst::ICMP_SGT
, AbsDelta
, Product
)) {
1161 // Distance greater than trip count - no dependence
1162 ++StrongSIVindependence
;
1163 ++StrongSIVsuccesses
;
1168 // Can we compute distance?
1169 if (isa
<SCEVConstant
>(Delta
) && isa
<SCEVConstant
>(Coeff
)) {
1170 APInt ConstDelta
= cast
<SCEVConstant
>(Delta
)->getAPInt();
1171 APInt ConstCoeff
= cast
<SCEVConstant
>(Coeff
)->getAPInt();
1172 APInt Distance
= ConstDelta
; // these need to be initialized
1173 APInt Remainder
= ConstDelta
;
1174 APInt::sdivrem(ConstDelta
, ConstCoeff
, Distance
, Remainder
);
1175 LLVM_DEBUG(dbgs() << "\t Distance = " << Distance
<< "\n");
1176 LLVM_DEBUG(dbgs() << "\t Remainder = " << Remainder
<< "\n");
1177 // Make sure Coeff divides Delta exactly
1178 if (Remainder
!= 0) {
1179 // Coeff doesn't divide Distance, no dependence
1180 ++StrongSIVindependence
;
1181 ++StrongSIVsuccesses
;
1184 Result
.DV
[Level
].Distance
= SE
->getConstant(Distance
);
1185 NewConstraint
.setDistance(SE
->getConstant(Distance
), CurLoop
);
1186 if (Distance
.sgt(0))
1187 Result
.DV
[Level
].Direction
&= Dependence::DVEntry::LT
;
1188 else if (Distance
.slt(0))
1189 Result
.DV
[Level
].Direction
&= Dependence::DVEntry::GT
;
1191 Result
.DV
[Level
].Direction
&= Dependence::DVEntry::EQ
;
1192 ++StrongSIVsuccesses
;
1194 else if (Delta
->isZero()) {
1196 Result
.DV
[Level
].Distance
= Delta
;
1197 NewConstraint
.setDistance(Delta
, CurLoop
);
1198 Result
.DV
[Level
].Direction
&= Dependence::DVEntry::EQ
;
1199 ++StrongSIVsuccesses
;
1202 if (Coeff
->isOne()) {
1203 LLVM_DEBUG(dbgs() << "\t Distance = " << *Delta
<< "\n");
1204 Result
.DV
[Level
].Distance
= Delta
; // since X/1 == X
1205 NewConstraint
.setDistance(Delta
, CurLoop
);
1208 Result
.Consistent
= false;
1209 NewConstraint
.setLine(Coeff
,
1210 SE
->getNegativeSCEV(Coeff
),
1211 SE
->getNegativeSCEV(Delta
), CurLoop
);
1214 // maybe we can get a useful direction
1215 bool DeltaMaybeZero
= !SE
->isKnownNonZero(Delta
);
1216 bool DeltaMaybePositive
= !SE
->isKnownNonPositive(Delta
);
1217 bool DeltaMaybeNegative
= !SE
->isKnownNonNegative(Delta
);
1218 bool CoeffMaybePositive
= !SE
->isKnownNonPositive(Coeff
);
1219 bool CoeffMaybeNegative
= !SE
->isKnownNonNegative(Coeff
);
1220 // The double negatives above are confusing.
1221 // It helps to read !SE->isKnownNonZero(Delta)
1222 // as "Delta might be Zero"
1223 unsigned NewDirection
= Dependence::DVEntry::NONE
;
1224 if ((DeltaMaybePositive
&& CoeffMaybePositive
) ||
1225 (DeltaMaybeNegative
&& CoeffMaybeNegative
))
1226 NewDirection
= Dependence::DVEntry::LT
;
1228 NewDirection
|= Dependence::DVEntry::EQ
;
1229 if ((DeltaMaybeNegative
&& CoeffMaybePositive
) ||
1230 (DeltaMaybePositive
&& CoeffMaybeNegative
))
1231 NewDirection
|= Dependence::DVEntry::GT
;
1232 if (NewDirection
< Result
.DV
[Level
].Direction
)
1233 ++StrongSIVsuccesses
;
1234 Result
.DV
[Level
].Direction
&= NewDirection
;
1240 // weakCrossingSIVtest -
1241 // From the paper, Practical Dependence Testing, Section 4.2.2
1243 // When we have a pair of subscripts of the form [c1 + a*i] and [c2 - a*i],
1244 // where i is an induction variable, c1 and c2 are loop invariant,
1245 // and a is a constant, we can solve it exactly using the
1246 // Weak-Crossing SIV test.
1248 // Given c1 + a*i = c2 - a*i', we can look for the intersection of
1249 // the two lines, where i = i', yielding
1251 // c1 + a*i = c2 - a*i
1255 // If i < 0, there is no dependence.
1256 // If i > upperbound, there is no dependence.
1257 // If i = 0 (i.e., if c1 = c2), there's a dependence with distance = 0.
1258 // If i = upperbound, there's a dependence with distance = 0.
1259 // If i is integral, there's a dependence (all directions).
1260 // If the non-integer part = 1/2, there's a dependence (<> directions).
1261 // Otherwise, there's no dependence.
1263 // Can prove independence. Failing that,
1264 // can sometimes refine the directions.
1265 // Can determine iteration for splitting.
1267 // Return true if dependence disproved.
1268 bool DependenceInfo::weakCrossingSIVtest(
1269 const SCEV
*Coeff
, const SCEV
*SrcConst
, const SCEV
*DstConst
,
1270 const Loop
*CurLoop
, unsigned Level
, FullDependence
&Result
,
1271 Constraint
&NewConstraint
, const SCEV
*&SplitIter
) const {
1272 LLVM_DEBUG(dbgs() << "\tWeak-Crossing SIV test\n");
1273 LLVM_DEBUG(dbgs() << "\t Coeff = " << *Coeff
<< "\n");
1274 LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst
<< "\n");
1275 LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst
<< "\n");
1276 ++WeakCrossingSIVapplications
;
1277 assert(0 < Level
&& Level
<= CommonLevels
&& "Level out of range");
1279 Result
.Consistent
= false;
1280 const SCEV
*Delta
= SE
->getMinusSCEV(DstConst
, SrcConst
);
1281 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta
<< "\n");
1282 NewConstraint
.setLine(Coeff
, Coeff
, Delta
, CurLoop
);
1283 if (Delta
->isZero()) {
1284 Result
.DV
[Level
].Direction
&= unsigned(~Dependence::DVEntry::LT
);
1285 Result
.DV
[Level
].Direction
&= unsigned(~Dependence::DVEntry::GT
);
1286 ++WeakCrossingSIVsuccesses
;
1287 if (!Result
.DV
[Level
].Direction
) {
1288 ++WeakCrossingSIVindependence
;
1291 Result
.DV
[Level
].Distance
= Delta
; // = 0
1294 const SCEVConstant
*ConstCoeff
= dyn_cast
<SCEVConstant
>(Coeff
);
1298 Result
.DV
[Level
].Splitable
= true;
1299 if (SE
->isKnownNegative(ConstCoeff
)) {
1300 ConstCoeff
= dyn_cast
<SCEVConstant
>(SE
->getNegativeSCEV(ConstCoeff
));
1301 assert(ConstCoeff
&&
1302 "dynamic cast of negative of ConstCoeff should yield constant");
1303 Delta
= SE
->getNegativeSCEV(Delta
);
1305 assert(SE
->isKnownPositive(ConstCoeff
) && "ConstCoeff should be positive");
1307 // compute SplitIter for use by DependenceInfo::getSplitIteration()
1308 SplitIter
= SE
->getUDivExpr(
1309 SE
->getSMaxExpr(SE
->getZero(Delta
->getType()), Delta
),
1310 SE
->getMulExpr(SE
->getConstant(Delta
->getType(), 2), ConstCoeff
));
1311 LLVM_DEBUG(dbgs() << "\t Split iter = " << *SplitIter
<< "\n");
1313 const SCEVConstant
*ConstDelta
= dyn_cast
<SCEVConstant
>(Delta
);
1317 // We're certain that ConstCoeff > 0; therefore,
1318 // if Delta < 0, then no dependence.
1319 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta
<< "\n");
1320 LLVM_DEBUG(dbgs() << "\t ConstCoeff = " << *ConstCoeff
<< "\n");
1321 if (SE
->isKnownNegative(Delta
)) {
1322 // No dependence, Delta < 0
1323 ++WeakCrossingSIVindependence
;
1324 ++WeakCrossingSIVsuccesses
;
1328 // We're certain that Delta > 0 and ConstCoeff > 0.
1329 // Check Delta/(2*ConstCoeff) against upper loop bound
1330 if (const SCEV
*UpperBound
= collectUpperBound(CurLoop
, Delta
->getType())) {
1331 LLVM_DEBUG(dbgs() << "\t UpperBound = " << *UpperBound
<< "\n");
1332 const SCEV
*ConstantTwo
= SE
->getConstant(UpperBound
->getType(), 2);
1333 const SCEV
*ML
= SE
->getMulExpr(SE
->getMulExpr(ConstCoeff
, UpperBound
),
1335 LLVM_DEBUG(dbgs() << "\t ML = " << *ML
<< "\n");
1336 if (isKnownPredicate(CmpInst::ICMP_SGT
, Delta
, ML
)) {
1337 // Delta too big, no dependence
1338 ++WeakCrossingSIVindependence
;
1339 ++WeakCrossingSIVsuccesses
;
1342 if (isKnownPredicate(CmpInst::ICMP_EQ
, Delta
, ML
)) {
1344 Result
.DV
[Level
].Direction
&= unsigned(~Dependence::DVEntry::LT
);
1345 Result
.DV
[Level
].Direction
&= unsigned(~Dependence::DVEntry::GT
);
1346 ++WeakCrossingSIVsuccesses
;
1347 if (!Result
.DV
[Level
].Direction
) {
1348 ++WeakCrossingSIVindependence
;
1351 Result
.DV
[Level
].Splitable
= false;
1352 Result
.DV
[Level
].Distance
= SE
->getZero(Delta
->getType());
1357 // check that Coeff divides Delta
1358 APInt APDelta
= ConstDelta
->getAPInt();
1359 APInt APCoeff
= ConstCoeff
->getAPInt();
1360 APInt Distance
= APDelta
; // these need to be initialzed
1361 APInt Remainder
= APDelta
;
1362 APInt::sdivrem(APDelta
, APCoeff
, Distance
, Remainder
);
1363 LLVM_DEBUG(dbgs() << "\t Remainder = " << Remainder
<< "\n");
1364 if (Remainder
!= 0) {
1365 // Coeff doesn't divide Delta, no dependence
1366 ++WeakCrossingSIVindependence
;
1367 ++WeakCrossingSIVsuccesses
;
1370 LLVM_DEBUG(dbgs() << "\t Distance = " << Distance
<< "\n");
1372 // if 2*Coeff doesn't divide Delta, then the equal direction isn't possible
1373 APInt Two
= APInt(Distance
.getBitWidth(), 2, true);
1374 Remainder
= Distance
.srem(Two
);
1375 LLVM_DEBUG(dbgs() << "\t Remainder = " << Remainder
<< "\n");
1376 if (Remainder
!= 0) {
1377 // Equal direction isn't possible
1378 Result
.DV
[Level
].Direction
&= unsigned(~Dependence::DVEntry::EQ
);
1379 ++WeakCrossingSIVsuccesses
;
1385 // Kirch's algorithm, from
1387 // Optimizing Supercompilers for Supercomputers
1391 // Program 2.1, page 29.
1392 // Computes the GCD of AM and BM.
1393 // Also finds a solution to the equation ax - by = gcd(a, b).
1394 // Returns true if dependence disproved; i.e., gcd does not divide Delta.
1395 static bool findGCD(unsigned Bits
, const APInt
&AM
, const APInt
&BM
,
1396 const APInt
&Delta
, APInt
&G
, APInt
&X
, APInt
&Y
) {
1397 APInt
A0(Bits
, 1, true), A1(Bits
, 0, true);
1398 APInt
B0(Bits
, 0, true), B1(Bits
, 1, true);
1399 APInt G0
= AM
.abs();
1400 APInt G1
= BM
.abs();
1401 APInt Q
= G0
; // these need to be initialized
1403 APInt::sdivrem(G0
, G1
, Q
, R
);
1405 APInt A2
= A0
- Q
*A1
; A0
= A1
; A1
= A2
;
1406 APInt B2
= B0
- Q
*B1
; B0
= B1
; B1
= B2
;
1408 APInt::sdivrem(G0
, G1
, Q
, R
);
1411 LLVM_DEBUG(dbgs() << "\t GCD = " << G
<< "\n");
1412 X
= AM
.slt(0) ? -A1
: A1
;
1413 Y
= BM
.slt(0) ? B1
: -B1
;
1415 // make sure gcd divides Delta
1418 return true; // gcd doesn't divide Delta, no dependence
1425 static APInt
floorOfQuotient(const APInt
&A
, const APInt
&B
) {
1426 APInt Q
= A
; // these need to be initialized
1428 APInt::sdivrem(A
, B
, Q
, R
);
1431 if ((A
.sgt(0) && B
.sgt(0)) ||
1432 (A
.slt(0) && B
.slt(0)))
1438 static APInt
ceilingOfQuotient(const APInt
&A
, const APInt
&B
) {
1439 APInt Q
= A
; // these need to be initialized
1441 APInt::sdivrem(A
, B
, Q
, R
);
1444 if ((A
.sgt(0) && B
.sgt(0)) ||
1445 (A
.slt(0) && B
.slt(0)))
1453 APInt
maxAPInt(APInt A
, APInt B
) {
1454 return A
.sgt(B
) ? A
: B
;
1459 APInt
minAPInt(APInt A
, APInt B
) {
1460 return A
.slt(B
) ? A
: B
;
1465 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*i],
1466 // where i is an induction variable, c1 and c2 are loop invariant, and a1
1467 // and a2 are constant, we can solve it exactly using an algorithm developed
1468 // by Banerjee and Wolfe. See Section 2.5.3 in
1470 // Optimizing Supercompilers for Supercomputers
1474 // It's slower than the specialized tests (strong SIV, weak-zero SIV, etc),
1475 // so use them if possible. They're also a bit better with symbolics and,
1476 // in the case of the strong SIV test, can compute Distances.
1478 // Return true if dependence disproved.
1479 bool DependenceInfo::exactSIVtest(const SCEV
*SrcCoeff
, const SCEV
*DstCoeff
,
1480 const SCEV
*SrcConst
, const SCEV
*DstConst
,
1481 const Loop
*CurLoop
, unsigned Level
,
1482 FullDependence
&Result
,
1483 Constraint
&NewConstraint
) const {
1484 LLVM_DEBUG(dbgs() << "\tExact SIV test\n");
1485 LLVM_DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff
<< " = AM\n");
1486 LLVM_DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff
<< " = BM\n");
1487 LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst
<< "\n");
1488 LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst
<< "\n");
1489 ++ExactSIVapplications
;
1490 assert(0 < Level
&& Level
<= CommonLevels
&& "Level out of range");
1492 Result
.Consistent
= false;
1493 const SCEV
*Delta
= SE
->getMinusSCEV(DstConst
, SrcConst
);
1494 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta
<< "\n");
1495 NewConstraint
.setLine(SrcCoeff
, SE
->getNegativeSCEV(DstCoeff
),
1497 const SCEVConstant
*ConstDelta
= dyn_cast
<SCEVConstant
>(Delta
);
1498 const SCEVConstant
*ConstSrcCoeff
= dyn_cast
<SCEVConstant
>(SrcCoeff
);
1499 const SCEVConstant
*ConstDstCoeff
= dyn_cast
<SCEVConstant
>(DstCoeff
);
1500 if (!ConstDelta
|| !ConstSrcCoeff
|| !ConstDstCoeff
)
1505 APInt AM
= ConstSrcCoeff
->getAPInt();
1506 APInt BM
= ConstDstCoeff
->getAPInt();
1507 unsigned Bits
= AM
.getBitWidth();
1508 if (findGCD(Bits
, AM
, BM
, ConstDelta
->getAPInt(), G
, X
, Y
)) {
1509 // gcd doesn't divide Delta, no dependence
1510 ++ExactSIVindependence
;
1511 ++ExactSIVsuccesses
;
1515 LLVM_DEBUG(dbgs() << "\t X = " << X
<< ", Y = " << Y
<< "\n");
1517 // since SCEV construction normalizes, LM = 0
1518 APInt
UM(Bits
, 1, true);
1519 bool UMvalid
= false;
1520 // UM is perhaps unavailable, let's check
1521 if (const SCEVConstant
*CUB
=
1522 collectConstantUpperBound(CurLoop
, Delta
->getType())) {
1523 UM
= CUB
->getAPInt();
1524 LLVM_DEBUG(dbgs() << "\t UM = " << UM
<< "\n");
1528 APInt
TU(APInt::getSignedMaxValue(Bits
));
1529 APInt
TL(APInt::getSignedMinValue(Bits
));
1531 // test(BM/G, LM-X) and test(-BM/G, X-UM)
1532 APInt TMUL
= BM
.sdiv(G
);
1534 TL
= maxAPInt(TL
, ceilingOfQuotient(-X
, TMUL
));
1535 LLVM_DEBUG(dbgs() << "\t TL = " << TL
<< "\n");
1537 TU
= minAPInt(TU
, floorOfQuotient(UM
- X
, TMUL
));
1538 LLVM_DEBUG(dbgs() << "\t TU = " << TU
<< "\n");
1542 TU
= minAPInt(TU
, floorOfQuotient(-X
, TMUL
));
1543 LLVM_DEBUG(dbgs() << "\t TU = " << TU
<< "\n");
1545 TL
= maxAPInt(TL
, ceilingOfQuotient(UM
- X
, TMUL
));
1546 LLVM_DEBUG(dbgs() << "\t TL = " << TL
<< "\n");
1550 // test(AM/G, LM-Y) and test(-AM/G, Y-UM)
1553 TL
= maxAPInt(TL
, ceilingOfQuotient(-Y
, TMUL
));
1554 LLVM_DEBUG(dbgs() << "\t TL = " << TL
<< "\n");
1556 TU
= minAPInt(TU
, floorOfQuotient(UM
- Y
, TMUL
));
1557 LLVM_DEBUG(dbgs() << "\t TU = " << TU
<< "\n");
1561 TU
= minAPInt(TU
, floorOfQuotient(-Y
, TMUL
));
1562 LLVM_DEBUG(dbgs() << "\t TU = " << TU
<< "\n");
1564 TL
= maxAPInt(TL
, ceilingOfQuotient(UM
- Y
, TMUL
));
1565 LLVM_DEBUG(dbgs() << "\t TL = " << TL
<< "\n");
1569 ++ExactSIVindependence
;
1570 ++ExactSIVsuccesses
;
1574 // explore directions
1575 unsigned NewDirection
= Dependence::DVEntry::NONE
;
1578 APInt
SaveTU(TU
); // save these
1580 LLVM_DEBUG(dbgs() << "\t exploring LT direction\n");
1583 TL
= maxAPInt(TL
, ceilingOfQuotient(X
- Y
+ 1, TMUL
));
1584 LLVM_DEBUG(dbgs() << "\t\t TL = " << TL
<< "\n");
1587 TU
= minAPInt(TU
, floorOfQuotient(X
- Y
+ 1, TMUL
));
1588 LLVM_DEBUG(dbgs() << "\t\t TU = " << TU
<< "\n");
1591 NewDirection
|= Dependence::DVEntry::LT
;
1592 ++ExactSIVsuccesses
;
1596 TU
= SaveTU
; // restore
1598 LLVM_DEBUG(dbgs() << "\t exploring EQ direction\n");
1600 TL
= maxAPInt(TL
, ceilingOfQuotient(X
- Y
, TMUL
));
1601 LLVM_DEBUG(dbgs() << "\t\t TL = " << TL
<< "\n");
1604 TU
= minAPInt(TU
, floorOfQuotient(X
- Y
, TMUL
));
1605 LLVM_DEBUG(dbgs() << "\t\t TU = " << TU
<< "\n");
1609 TL
= maxAPInt(TL
, ceilingOfQuotient(Y
- X
, TMUL
));
1610 LLVM_DEBUG(dbgs() << "\t\t TL = " << TL
<< "\n");
1613 TU
= minAPInt(TU
, floorOfQuotient(Y
- X
, TMUL
));
1614 LLVM_DEBUG(dbgs() << "\t\t TU = " << TU
<< "\n");
1617 NewDirection
|= Dependence::DVEntry::EQ
;
1618 ++ExactSIVsuccesses
;
1622 TU
= SaveTU
; // restore
1624 LLVM_DEBUG(dbgs() << "\t exploring GT direction\n");
1626 TL
= maxAPInt(TL
, ceilingOfQuotient(Y
- X
+ 1, TMUL
));
1627 LLVM_DEBUG(dbgs() << "\t\t TL = " << TL
<< "\n");
1630 TU
= minAPInt(TU
, floorOfQuotient(Y
- X
+ 1, TMUL
));
1631 LLVM_DEBUG(dbgs() << "\t\t TU = " << TU
<< "\n");
1634 NewDirection
|= Dependence::DVEntry::GT
;
1635 ++ExactSIVsuccesses
;
1639 Result
.DV
[Level
].Direction
&= NewDirection
;
1640 if (Result
.DV
[Level
].Direction
== Dependence::DVEntry::NONE
)
1641 ++ExactSIVindependence
;
1642 return Result
.DV
[Level
].Direction
== Dependence::DVEntry::NONE
;
1647 // Return true if the divisor evenly divides the dividend.
1649 bool isRemainderZero(const SCEVConstant
*Dividend
,
1650 const SCEVConstant
*Divisor
) {
1651 const APInt
&ConstDividend
= Dividend
->getAPInt();
1652 const APInt
&ConstDivisor
= Divisor
->getAPInt();
1653 return ConstDividend
.srem(ConstDivisor
) == 0;
1657 // weakZeroSrcSIVtest -
1658 // From the paper, Practical Dependence Testing, Section 4.2.2
1660 // When we have a pair of subscripts of the form [c1] and [c2 + a*i],
1661 // where i is an induction variable, c1 and c2 are loop invariant,
1662 // and a is a constant, we can solve it exactly using the
1663 // Weak-Zero SIV test.
1673 // If i is not an integer, there's no dependence.
1674 // If i < 0 or > UB, there's no dependence.
1675 // If i = 0, the direction is >= and peeling the
1676 // 1st iteration will break the dependence.
1677 // If i = UB, the direction is <= and peeling the
1678 // last iteration will break the dependence.
1679 // Otherwise, the direction is *.
1681 // Can prove independence. Failing that, we can sometimes refine
1682 // the directions. Can sometimes show that first or last
1683 // iteration carries all the dependences (so worth peeling).
1685 // (see also weakZeroDstSIVtest)
1687 // Return true if dependence disproved.
1688 bool DependenceInfo::weakZeroSrcSIVtest(const SCEV
*DstCoeff
,
1689 const SCEV
*SrcConst
,
1690 const SCEV
*DstConst
,
1691 const Loop
*CurLoop
, unsigned Level
,
1692 FullDependence
&Result
,
1693 Constraint
&NewConstraint
) const {
1694 // For the WeakSIV test, it's possible the loop isn't common to
1695 // the Src and Dst loops. If it isn't, then there's no need to
1696 // record a direction.
1697 LLVM_DEBUG(dbgs() << "\tWeak-Zero (src) SIV test\n");
1698 LLVM_DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff
<< "\n");
1699 LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst
<< "\n");
1700 LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst
<< "\n");
1701 ++WeakZeroSIVapplications
;
1702 assert(0 < Level
&& Level
<= MaxLevels
&& "Level out of range");
1704 Result
.Consistent
= false;
1705 const SCEV
*Delta
= SE
->getMinusSCEV(SrcConst
, DstConst
);
1706 NewConstraint
.setLine(SE
->getZero(Delta
->getType()), DstCoeff
, Delta
,
1708 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta
<< "\n");
1709 if (isKnownPredicate(CmpInst::ICMP_EQ
, SrcConst
, DstConst
)) {
1710 if (Level
< CommonLevels
) {
1711 Result
.DV
[Level
].Direction
&= Dependence::DVEntry::GE
;
1712 Result
.DV
[Level
].PeelFirst
= true;
1713 ++WeakZeroSIVsuccesses
;
1715 return false; // dependences caused by first iteration
1717 const SCEVConstant
*ConstCoeff
= dyn_cast
<SCEVConstant
>(DstCoeff
);
1720 const SCEV
*AbsCoeff
=
1721 SE
->isKnownNegative(ConstCoeff
) ?
1722 SE
->getNegativeSCEV(ConstCoeff
) : ConstCoeff
;
1723 const SCEV
*NewDelta
=
1724 SE
->isKnownNegative(ConstCoeff
) ? SE
->getNegativeSCEV(Delta
) : Delta
;
1726 // check that Delta/SrcCoeff < iteration count
1727 // really check NewDelta < count*AbsCoeff
1728 if (const SCEV
*UpperBound
= collectUpperBound(CurLoop
, Delta
->getType())) {
1729 LLVM_DEBUG(dbgs() << "\t UpperBound = " << *UpperBound
<< "\n");
1730 const SCEV
*Product
= SE
->getMulExpr(AbsCoeff
, UpperBound
);
1731 if (isKnownPredicate(CmpInst::ICMP_SGT
, NewDelta
, Product
)) {
1732 ++WeakZeroSIVindependence
;
1733 ++WeakZeroSIVsuccesses
;
1736 if (isKnownPredicate(CmpInst::ICMP_EQ
, NewDelta
, Product
)) {
1737 // dependences caused by last iteration
1738 if (Level
< CommonLevels
) {
1739 Result
.DV
[Level
].Direction
&= Dependence::DVEntry::LE
;
1740 Result
.DV
[Level
].PeelLast
= true;
1741 ++WeakZeroSIVsuccesses
;
1747 // check that Delta/SrcCoeff >= 0
1748 // really check that NewDelta >= 0
1749 if (SE
->isKnownNegative(NewDelta
)) {
1750 // No dependence, newDelta < 0
1751 ++WeakZeroSIVindependence
;
1752 ++WeakZeroSIVsuccesses
;
1756 // if SrcCoeff doesn't divide Delta, then no dependence
1757 if (isa
<SCEVConstant
>(Delta
) &&
1758 !isRemainderZero(cast
<SCEVConstant
>(Delta
), ConstCoeff
)) {
1759 ++WeakZeroSIVindependence
;
1760 ++WeakZeroSIVsuccesses
;
1767 // weakZeroDstSIVtest -
1768 // From the paper, Practical Dependence Testing, Section 4.2.2
1770 // When we have a pair of subscripts of the form [c1 + a*i] and [c2],
1771 // where i is an induction variable, c1 and c2 are loop invariant,
1772 // and a is a constant, we can solve it exactly using the
1773 // Weak-Zero SIV test.
1783 // If i is not an integer, there's no dependence.
1784 // If i < 0 or > UB, there's no dependence.
1785 // If i = 0, the direction is <= and peeling the
1786 // 1st iteration will break the dependence.
1787 // If i = UB, the direction is >= and peeling the
1788 // last iteration will break the dependence.
1789 // Otherwise, the direction is *.
1791 // Can prove independence. Failing that, we can sometimes refine
1792 // the directions. Can sometimes show that first or last
1793 // iteration carries all the dependences (so worth peeling).
1795 // (see also weakZeroSrcSIVtest)
1797 // Return true if dependence disproved.
1798 bool DependenceInfo::weakZeroDstSIVtest(const SCEV
*SrcCoeff
,
1799 const SCEV
*SrcConst
,
1800 const SCEV
*DstConst
,
1801 const Loop
*CurLoop
, unsigned Level
,
1802 FullDependence
&Result
,
1803 Constraint
&NewConstraint
) const {
1804 // For the WeakSIV test, it's possible the loop isn't common to the
1805 // Src and Dst loops. If it isn't, then there's no need to record a direction.
1806 LLVM_DEBUG(dbgs() << "\tWeak-Zero (dst) SIV test\n");
1807 LLVM_DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff
<< "\n");
1808 LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst
<< "\n");
1809 LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst
<< "\n");
1810 ++WeakZeroSIVapplications
;
1811 assert(0 < Level
&& Level
<= SrcLevels
&& "Level out of range");
1813 Result
.Consistent
= false;
1814 const SCEV
*Delta
= SE
->getMinusSCEV(DstConst
, SrcConst
);
1815 NewConstraint
.setLine(SrcCoeff
, SE
->getZero(Delta
->getType()), Delta
,
1817 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta
<< "\n");
1818 if (isKnownPredicate(CmpInst::ICMP_EQ
, DstConst
, SrcConst
)) {
1819 if (Level
< CommonLevels
) {
1820 Result
.DV
[Level
].Direction
&= Dependence::DVEntry::LE
;
1821 Result
.DV
[Level
].PeelFirst
= true;
1822 ++WeakZeroSIVsuccesses
;
1824 return false; // dependences caused by first iteration
1826 const SCEVConstant
*ConstCoeff
= dyn_cast
<SCEVConstant
>(SrcCoeff
);
1829 const SCEV
*AbsCoeff
=
1830 SE
->isKnownNegative(ConstCoeff
) ?
1831 SE
->getNegativeSCEV(ConstCoeff
) : ConstCoeff
;
1832 const SCEV
*NewDelta
=
1833 SE
->isKnownNegative(ConstCoeff
) ? SE
->getNegativeSCEV(Delta
) : Delta
;
1835 // check that Delta/SrcCoeff < iteration count
1836 // really check NewDelta < count*AbsCoeff
1837 if (const SCEV
*UpperBound
= collectUpperBound(CurLoop
, Delta
->getType())) {
1838 LLVM_DEBUG(dbgs() << "\t UpperBound = " << *UpperBound
<< "\n");
1839 const SCEV
*Product
= SE
->getMulExpr(AbsCoeff
, UpperBound
);
1840 if (isKnownPredicate(CmpInst::ICMP_SGT
, NewDelta
, Product
)) {
1841 ++WeakZeroSIVindependence
;
1842 ++WeakZeroSIVsuccesses
;
1845 if (isKnownPredicate(CmpInst::ICMP_EQ
, NewDelta
, Product
)) {
1846 // dependences caused by last iteration
1847 if (Level
< CommonLevels
) {
1848 Result
.DV
[Level
].Direction
&= Dependence::DVEntry::GE
;
1849 Result
.DV
[Level
].PeelLast
= true;
1850 ++WeakZeroSIVsuccesses
;
1856 // check that Delta/SrcCoeff >= 0
1857 // really check that NewDelta >= 0
1858 if (SE
->isKnownNegative(NewDelta
)) {
1859 // No dependence, newDelta < 0
1860 ++WeakZeroSIVindependence
;
1861 ++WeakZeroSIVsuccesses
;
1865 // if SrcCoeff doesn't divide Delta, then no dependence
1866 if (isa
<SCEVConstant
>(Delta
) &&
1867 !isRemainderZero(cast
<SCEVConstant
>(Delta
), ConstCoeff
)) {
1868 ++WeakZeroSIVindependence
;
1869 ++WeakZeroSIVsuccesses
;
1876 // exactRDIVtest - Tests the RDIV subscript pair for dependence.
1877 // Things of the form [c1 + a*i] and [c2 + b*j],
1878 // where i and j are induction variable, c1 and c2 are loop invariant,
1879 // and a and b are constants.
1880 // Returns true if any possible dependence is disproved.
1881 // Marks the result as inconsistent.
1882 // Works in some cases that symbolicRDIVtest doesn't, and vice versa.
1883 bool DependenceInfo::exactRDIVtest(const SCEV
*SrcCoeff
, const SCEV
*DstCoeff
,
1884 const SCEV
*SrcConst
, const SCEV
*DstConst
,
1885 const Loop
*SrcLoop
, const Loop
*DstLoop
,
1886 FullDependence
&Result
) const {
1887 LLVM_DEBUG(dbgs() << "\tExact RDIV test\n");
1888 LLVM_DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff
<< " = AM\n");
1889 LLVM_DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff
<< " = BM\n");
1890 LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst
<< "\n");
1891 LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst
<< "\n");
1892 ++ExactRDIVapplications
;
1893 Result
.Consistent
= false;
1894 const SCEV
*Delta
= SE
->getMinusSCEV(DstConst
, SrcConst
);
1895 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta
<< "\n");
1896 const SCEVConstant
*ConstDelta
= dyn_cast
<SCEVConstant
>(Delta
);
1897 const SCEVConstant
*ConstSrcCoeff
= dyn_cast
<SCEVConstant
>(SrcCoeff
);
1898 const SCEVConstant
*ConstDstCoeff
= dyn_cast
<SCEVConstant
>(DstCoeff
);
1899 if (!ConstDelta
|| !ConstSrcCoeff
|| !ConstDstCoeff
)
1904 APInt AM
= ConstSrcCoeff
->getAPInt();
1905 APInt BM
= ConstDstCoeff
->getAPInt();
1906 unsigned Bits
= AM
.getBitWidth();
1907 if (findGCD(Bits
, AM
, BM
, ConstDelta
->getAPInt(), G
, X
, Y
)) {
1908 // gcd doesn't divide Delta, no dependence
1909 ++ExactRDIVindependence
;
1913 LLVM_DEBUG(dbgs() << "\t X = " << X
<< ", Y = " << Y
<< "\n");
1915 // since SCEV construction seems to normalize, LM = 0
1916 APInt
SrcUM(Bits
, 1, true);
1917 bool SrcUMvalid
= false;
1918 // SrcUM is perhaps unavailable, let's check
1919 if (const SCEVConstant
*UpperBound
=
1920 collectConstantUpperBound(SrcLoop
, Delta
->getType())) {
1921 SrcUM
= UpperBound
->getAPInt();
1922 LLVM_DEBUG(dbgs() << "\t SrcUM = " << SrcUM
<< "\n");
1926 APInt
DstUM(Bits
, 1, true);
1927 bool DstUMvalid
= false;
1928 // UM is perhaps unavailable, let's check
1929 if (const SCEVConstant
*UpperBound
=
1930 collectConstantUpperBound(DstLoop
, Delta
->getType())) {
1931 DstUM
= UpperBound
->getAPInt();
1932 LLVM_DEBUG(dbgs() << "\t DstUM = " << DstUM
<< "\n");
1936 APInt
TU(APInt::getSignedMaxValue(Bits
));
1937 APInt
TL(APInt::getSignedMinValue(Bits
));
1939 // test(BM/G, LM-X) and test(-BM/G, X-UM)
1940 APInt TMUL
= BM
.sdiv(G
);
1942 TL
= maxAPInt(TL
, ceilingOfQuotient(-X
, TMUL
));
1943 LLVM_DEBUG(dbgs() << "\t TL = " << TL
<< "\n");
1945 TU
= minAPInt(TU
, floorOfQuotient(SrcUM
- X
, TMUL
));
1946 LLVM_DEBUG(dbgs() << "\t TU = " << TU
<< "\n");
1950 TU
= minAPInt(TU
, floorOfQuotient(-X
, TMUL
));
1951 LLVM_DEBUG(dbgs() << "\t TU = " << TU
<< "\n");
1953 TL
= maxAPInt(TL
, ceilingOfQuotient(SrcUM
- X
, TMUL
));
1954 LLVM_DEBUG(dbgs() << "\t TL = " << TL
<< "\n");
1958 // test(AM/G, LM-Y) and test(-AM/G, Y-UM)
1961 TL
= maxAPInt(TL
, ceilingOfQuotient(-Y
, TMUL
));
1962 LLVM_DEBUG(dbgs() << "\t TL = " << TL
<< "\n");
1964 TU
= minAPInt(TU
, floorOfQuotient(DstUM
- Y
, TMUL
));
1965 LLVM_DEBUG(dbgs() << "\t TU = " << TU
<< "\n");
1969 TU
= minAPInt(TU
, floorOfQuotient(-Y
, TMUL
));
1970 LLVM_DEBUG(dbgs() << "\t TU = " << TU
<< "\n");
1972 TL
= maxAPInt(TL
, ceilingOfQuotient(DstUM
- Y
, TMUL
));
1973 LLVM_DEBUG(dbgs() << "\t TL = " << TL
<< "\n");
1977 ++ExactRDIVindependence
;
1982 // symbolicRDIVtest -
1983 // In Section 4.5 of the Practical Dependence Testing paper,the authors
1984 // introduce a special case of Banerjee's Inequalities (also called the
1985 // Extreme-Value Test) that can handle some of the SIV and RDIV cases,
1986 // particularly cases with symbolics. Since it's only able to disprove
1987 // dependence (not compute distances or directions), we'll use it as a
1988 // fall back for the other tests.
1990 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
1991 // where i and j are induction variables and c1 and c2 are loop invariants,
1992 // we can use the symbolic tests to disprove some dependences, serving as a
1993 // backup for the RDIV test. Note that i and j can be the same variable,
1994 // letting this test serve as a backup for the various SIV tests.
1996 // For a dependence to exist, c1 + a1*i must equal c2 + a2*j for some
1997 // 0 <= i <= N1 and some 0 <= j <= N2, where N1 and N2 are the (normalized)
1998 // loop bounds for the i and j loops, respectively. So, ...
2000 // c1 + a1*i = c2 + a2*j
2001 // a1*i - a2*j = c2 - c1
2003 // To test for a dependence, we compute c2 - c1 and make sure it's in the
2004 // range of the maximum and minimum possible values of a1*i - a2*j.
2005 // Considering the signs of a1 and a2, we have 4 possible cases:
2007 // 1) If a1 >= 0 and a2 >= 0, then
2008 // a1*0 - a2*N2 <= c2 - c1 <= a1*N1 - a2*0
2009 // -a2*N2 <= c2 - c1 <= a1*N1
2011 // 2) If a1 >= 0 and a2 <= 0, then
2012 // a1*0 - a2*0 <= c2 - c1 <= a1*N1 - a2*N2
2013 // 0 <= c2 - c1 <= a1*N1 - a2*N2
2015 // 3) If a1 <= 0 and a2 >= 0, then
2016 // a1*N1 - a2*N2 <= c2 - c1 <= a1*0 - a2*0
2017 // a1*N1 - a2*N2 <= c2 - c1 <= 0
2019 // 4) If a1 <= 0 and a2 <= 0, then
2020 // a1*N1 - a2*0 <= c2 - c1 <= a1*0 - a2*N2
2021 // a1*N1 <= c2 - c1 <= -a2*N2
2023 // return true if dependence disproved
2024 bool DependenceInfo::symbolicRDIVtest(const SCEV
*A1
, const SCEV
*A2
,
2025 const SCEV
*C1
, const SCEV
*C2
,
2027 const Loop
*Loop2
) const {
2028 ++SymbolicRDIVapplications
;
2029 LLVM_DEBUG(dbgs() << "\ttry symbolic RDIV test\n");
2030 LLVM_DEBUG(dbgs() << "\t A1 = " << *A1
);
2031 LLVM_DEBUG(dbgs() << ", type = " << *A1
->getType() << "\n");
2032 LLVM_DEBUG(dbgs() << "\t A2 = " << *A2
<< "\n");
2033 LLVM_DEBUG(dbgs() << "\t C1 = " << *C1
<< "\n");
2034 LLVM_DEBUG(dbgs() << "\t C2 = " << *C2
<< "\n");
2035 const SCEV
*N1
= collectUpperBound(Loop1
, A1
->getType());
2036 const SCEV
*N2
= collectUpperBound(Loop2
, A1
->getType());
2037 LLVM_DEBUG(if (N1
) dbgs() << "\t N1 = " << *N1
<< "\n");
2038 LLVM_DEBUG(if (N2
) dbgs() << "\t N2 = " << *N2
<< "\n");
2039 const SCEV
*C2_C1
= SE
->getMinusSCEV(C2
, C1
);
2040 const SCEV
*C1_C2
= SE
->getMinusSCEV(C1
, C2
);
2041 LLVM_DEBUG(dbgs() << "\t C2 - C1 = " << *C2_C1
<< "\n");
2042 LLVM_DEBUG(dbgs() << "\t C1 - C2 = " << *C1_C2
<< "\n");
2043 if (SE
->isKnownNonNegative(A1
)) {
2044 if (SE
->isKnownNonNegative(A2
)) {
2045 // A1 >= 0 && A2 >= 0
2047 // make sure that c2 - c1 <= a1*N1
2048 const SCEV
*A1N1
= SE
->getMulExpr(A1
, N1
);
2049 LLVM_DEBUG(dbgs() << "\t A1*N1 = " << *A1N1
<< "\n");
2050 if (isKnownPredicate(CmpInst::ICMP_SGT
, C2_C1
, A1N1
)) {
2051 ++SymbolicRDIVindependence
;
2056 // make sure that -a2*N2 <= c2 - c1, or a2*N2 >= c1 - c2
2057 const SCEV
*A2N2
= SE
->getMulExpr(A2
, N2
);
2058 LLVM_DEBUG(dbgs() << "\t A2*N2 = " << *A2N2
<< "\n");
2059 if (isKnownPredicate(CmpInst::ICMP_SLT
, A2N2
, C1_C2
)) {
2060 ++SymbolicRDIVindependence
;
2065 else if (SE
->isKnownNonPositive(A2
)) {
2066 // a1 >= 0 && a2 <= 0
2068 // make sure that c2 - c1 <= a1*N1 - a2*N2
2069 const SCEV
*A1N1
= SE
->getMulExpr(A1
, N1
);
2070 const SCEV
*A2N2
= SE
->getMulExpr(A2
, N2
);
2071 const SCEV
*A1N1_A2N2
= SE
->getMinusSCEV(A1N1
, A2N2
);
2072 LLVM_DEBUG(dbgs() << "\t A1*N1 - A2*N2 = " << *A1N1_A2N2
<< "\n");
2073 if (isKnownPredicate(CmpInst::ICMP_SGT
, C2_C1
, A1N1_A2N2
)) {
2074 ++SymbolicRDIVindependence
;
2078 // make sure that 0 <= c2 - c1
2079 if (SE
->isKnownNegative(C2_C1
)) {
2080 ++SymbolicRDIVindependence
;
2085 else if (SE
->isKnownNonPositive(A1
)) {
2086 if (SE
->isKnownNonNegative(A2
)) {
2087 // a1 <= 0 && a2 >= 0
2089 // make sure that a1*N1 - a2*N2 <= c2 - c1
2090 const SCEV
*A1N1
= SE
->getMulExpr(A1
, N1
);
2091 const SCEV
*A2N2
= SE
->getMulExpr(A2
, N2
);
2092 const SCEV
*A1N1_A2N2
= SE
->getMinusSCEV(A1N1
, A2N2
);
2093 LLVM_DEBUG(dbgs() << "\t A1*N1 - A2*N2 = " << *A1N1_A2N2
<< "\n");
2094 if (isKnownPredicate(CmpInst::ICMP_SGT
, A1N1_A2N2
, C2_C1
)) {
2095 ++SymbolicRDIVindependence
;
2099 // make sure that c2 - c1 <= 0
2100 if (SE
->isKnownPositive(C2_C1
)) {
2101 ++SymbolicRDIVindependence
;
2105 else if (SE
->isKnownNonPositive(A2
)) {
2106 // a1 <= 0 && a2 <= 0
2108 // make sure that a1*N1 <= c2 - c1
2109 const SCEV
*A1N1
= SE
->getMulExpr(A1
, N1
);
2110 LLVM_DEBUG(dbgs() << "\t A1*N1 = " << *A1N1
<< "\n");
2111 if (isKnownPredicate(CmpInst::ICMP_SGT
, A1N1
, C2_C1
)) {
2112 ++SymbolicRDIVindependence
;
2117 // make sure that c2 - c1 <= -a2*N2, or c1 - c2 >= a2*N2
2118 const SCEV
*A2N2
= SE
->getMulExpr(A2
, N2
);
2119 LLVM_DEBUG(dbgs() << "\t A2*N2 = " << *A2N2
<< "\n");
2120 if (isKnownPredicate(CmpInst::ICMP_SLT
, C1_C2
, A2N2
)) {
2121 ++SymbolicRDIVindependence
;
2132 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 - a2*i]
2133 // where i is an induction variable, c1 and c2 are loop invariant, and a1 and
2134 // a2 are constant, we attack it with an SIV test. While they can all be
2135 // solved with the Exact SIV test, it's worthwhile to use simpler tests when
2136 // they apply; they're cheaper and sometimes more precise.
2138 // Return true if dependence disproved.
2139 bool DependenceInfo::testSIV(const SCEV
*Src
, const SCEV
*Dst
, unsigned &Level
,
2140 FullDependence
&Result
, Constraint
&NewConstraint
,
2141 const SCEV
*&SplitIter
) const {
2142 LLVM_DEBUG(dbgs() << " src = " << *Src
<< "\n");
2143 LLVM_DEBUG(dbgs() << " dst = " << *Dst
<< "\n");
2144 const SCEVAddRecExpr
*SrcAddRec
= dyn_cast
<SCEVAddRecExpr
>(Src
);
2145 const SCEVAddRecExpr
*DstAddRec
= dyn_cast
<SCEVAddRecExpr
>(Dst
);
2146 if (SrcAddRec
&& DstAddRec
) {
2147 const SCEV
*SrcConst
= SrcAddRec
->getStart();
2148 const SCEV
*DstConst
= DstAddRec
->getStart();
2149 const SCEV
*SrcCoeff
= SrcAddRec
->getStepRecurrence(*SE
);
2150 const SCEV
*DstCoeff
= DstAddRec
->getStepRecurrence(*SE
);
2151 const Loop
*CurLoop
= SrcAddRec
->getLoop();
2152 assert(CurLoop
== DstAddRec
->getLoop() &&
2153 "both loops in SIV should be same");
2154 Level
= mapSrcLoop(CurLoop
);
2156 if (SrcCoeff
== DstCoeff
)
2157 disproven
= strongSIVtest(SrcCoeff
, SrcConst
, DstConst
, CurLoop
,
2158 Level
, Result
, NewConstraint
);
2159 else if (SrcCoeff
== SE
->getNegativeSCEV(DstCoeff
))
2160 disproven
= weakCrossingSIVtest(SrcCoeff
, SrcConst
, DstConst
, CurLoop
,
2161 Level
, Result
, NewConstraint
, SplitIter
);
2163 disproven
= exactSIVtest(SrcCoeff
, DstCoeff
, SrcConst
, DstConst
, CurLoop
,
2164 Level
, Result
, NewConstraint
);
2166 gcdMIVtest(Src
, Dst
, Result
) ||
2167 symbolicRDIVtest(SrcCoeff
, DstCoeff
, SrcConst
, DstConst
, CurLoop
, CurLoop
);
2170 const SCEV
*SrcConst
= SrcAddRec
->getStart();
2171 const SCEV
*SrcCoeff
= SrcAddRec
->getStepRecurrence(*SE
);
2172 const SCEV
*DstConst
= Dst
;
2173 const Loop
*CurLoop
= SrcAddRec
->getLoop();
2174 Level
= mapSrcLoop(CurLoop
);
2175 return weakZeroDstSIVtest(SrcCoeff
, SrcConst
, DstConst
, CurLoop
,
2176 Level
, Result
, NewConstraint
) ||
2177 gcdMIVtest(Src
, Dst
, Result
);
2180 const SCEV
*DstConst
= DstAddRec
->getStart();
2181 const SCEV
*DstCoeff
= DstAddRec
->getStepRecurrence(*SE
);
2182 const SCEV
*SrcConst
= Src
;
2183 const Loop
*CurLoop
= DstAddRec
->getLoop();
2184 Level
= mapDstLoop(CurLoop
);
2185 return weakZeroSrcSIVtest(DstCoeff
, SrcConst
, DstConst
,
2186 CurLoop
, Level
, Result
, NewConstraint
) ||
2187 gcdMIVtest(Src
, Dst
, Result
);
2189 llvm_unreachable("SIV test expected at least one AddRec");
2195 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
2196 // where i and j are induction variables, c1 and c2 are loop invariant,
2197 // and a1 and a2 are constant, we can solve it exactly with an easy adaptation
2198 // of the Exact SIV test, the Restricted Double Index Variable (RDIV) test.
2199 // It doesn't make sense to talk about distance or direction in this case,
2200 // so there's no point in making special versions of the Strong SIV test or
2201 // the Weak-crossing SIV test.
2203 // With minor algebra, this test can also be used for things like
2204 // [c1 + a1*i + a2*j][c2].
2206 // Return true if dependence disproved.
2207 bool DependenceInfo::testRDIV(const SCEV
*Src
, const SCEV
*Dst
,
2208 FullDependence
&Result
) const {
2209 // we have 3 possible situations here:
2210 // 1) [a*i + b] and [c*j + d]
2211 // 2) [a*i + c*j + b] and [d]
2212 // 3) [b] and [a*i + c*j + d]
2213 // We need to find what we've got and get organized
2215 const SCEV
*SrcConst
, *DstConst
;
2216 const SCEV
*SrcCoeff
, *DstCoeff
;
2217 const Loop
*SrcLoop
, *DstLoop
;
2219 LLVM_DEBUG(dbgs() << " src = " << *Src
<< "\n");
2220 LLVM_DEBUG(dbgs() << " dst = " << *Dst
<< "\n");
2221 const SCEVAddRecExpr
*SrcAddRec
= dyn_cast
<SCEVAddRecExpr
>(Src
);
2222 const SCEVAddRecExpr
*DstAddRec
= dyn_cast
<SCEVAddRecExpr
>(Dst
);
2223 if (SrcAddRec
&& DstAddRec
) {
2224 SrcConst
= SrcAddRec
->getStart();
2225 SrcCoeff
= SrcAddRec
->getStepRecurrence(*SE
);
2226 SrcLoop
= SrcAddRec
->getLoop();
2227 DstConst
= DstAddRec
->getStart();
2228 DstCoeff
= DstAddRec
->getStepRecurrence(*SE
);
2229 DstLoop
= DstAddRec
->getLoop();
2231 else if (SrcAddRec
) {
2232 if (const SCEVAddRecExpr
*tmpAddRec
=
2233 dyn_cast
<SCEVAddRecExpr
>(SrcAddRec
->getStart())) {
2234 SrcConst
= tmpAddRec
->getStart();
2235 SrcCoeff
= tmpAddRec
->getStepRecurrence(*SE
);
2236 SrcLoop
= tmpAddRec
->getLoop();
2238 DstCoeff
= SE
->getNegativeSCEV(SrcAddRec
->getStepRecurrence(*SE
));
2239 DstLoop
= SrcAddRec
->getLoop();
2242 llvm_unreachable("RDIV reached by surprising SCEVs");
2244 else if (DstAddRec
) {
2245 if (const SCEVAddRecExpr
*tmpAddRec
=
2246 dyn_cast
<SCEVAddRecExpr
>(DstAddRec
->getStart())) {
2247 DstConst
= tmpAddRec
->getStart();
2248 DstCoeff
= tmpAddRec
->getStepRecurrence(*SE
);
2249 DstLoop
= tmpAddRec
->getLoop();
2251 SrcCoeff
= SE
->getNegativeSCEV(DstAddRec
->getStepRecurrence(*SE
));
2252 SrcLoop
= DstAddRec
->getLoop();
2255 llvm_unreachable("RDIV reached by surprising SCEVs");
2258 llvm_unreachable("RDIV expected at least one AddRec");
2259 return exactRDIVtest(SrcCoeff
, DstCoeff
,
2263 gcdMIVtest(Src
, Dst
, Result
) ||
2264 symbolicRDIVtest(SrcCoeff
, DstCoeff
,
2270 // Tests the single-subscript MIV pair (Src and Dst) for dependence.
2271 // Return true if dependence disproved.
2272 // Can sometimes refine direction vectors.
2273 bool DependenceInfo::testMIV(const SCEV
*Src
, const SCEV
*Dst
,
2274 const SmallBitVector
&Loops
,
2275 FullDependence
&Result
) const {
2276 LLVM_DEBUG(dbgs() << " src = " << *Src
<< "\n");
2277 LLVM_DEBUG(dbgs() << " dst = " << *Dst
<< "\n");
2278 Result
.Consistent
= false;
2279 return gcdMIVtest(Src
, Dst
, Result
) ||
2280 banerjeeMIVtest(Src
, Dst
, Loops
, Result
);
2284 // Given a product, e.g., 10*X*Y, returns the first constant operand,
2285 // in this case 10. If there is no constant part, returns NULL.
2287 const SCEVConstant
*getConstantPart(const SCEV
*Expr
) {
2288 if (const auto *Constant
= dyn_cast
<SCEVConstant
>(Expr
))
2290 else if (const auto *Product
= dyn_cast
<SCEVMulExpr
>(Expr
))
2291 if (const auto *Constant
= dyn_cast
<SCEVConstant
>(Product
->getOperand(0)))
2297 //===----------------------------------------------------------------------===//
2299 // Tests an MIV subscript pair for dependence.
2300 // Returns true if any possible dependence is disproved.
2301 // Marks the result as inconsistent.
2302 // Can sometimes disprove the equal direction for 1 or more loops,
2303 // as discussed in Michael Wolfe's book,
2304 // High Performance Compilers for Parallel Computing, page 235.
2306 // We spend some effort (code!) to handle cases like
2307 // [10*i + 5*N*j + 15*M + 6], where i and j are induction variables,
2308 // but M and N are just loop-invariant variables.
2309 // This should help us handle linearized subscripts;
2310 // also makes this test a useful backup to the various SIV tests.
2312 // It occurs to me that the presence of loop-invariant variables
2313 // changes the nature of the test from "greatest common divisor"
2314 // to "a common divisor".
2315 bool DependenceInfo::gcdMIVtest(const SCEV
*Src
, const SCEV
*Dst
,
2316 FullDependence
&Result
) const {
2317 LLVM_DEBUG(dbgs() << "starting gcd\n");
2319 unsigned BitWidth
= SE
->getTypeSizeInBits(Src
->getType());
2320 APInt RunningGCD
= APInt::getNullValue(BitWidth
);
2322 // Examine Src coefficients.
2323 // Compute running GCD and record source constant.
2324 // Because we're looking for the constant at the end of the chain,
2325 // we can't quit the loop just because the GCD == 1.
2326 const SCEV
*Coefficients
= Src
;
2327 while (const SCEVAddRecExpr
*AddRec
=
2328 dyn_cast
<SCEVAddRecExpr
>(Coefficients
)) {
2329 const SCEV
*Coeff
= AddRec
->getStepRecurrence(*SE
);
2330 // If the coefficient is the product of a constant and other stuff,
2331 // we can use the constant in the GCD computation.
2332 const auto *Constant
= getConstantPart(Coeff
);
2335 APInt ConstCoeff
= Constant
->getAPInt();
2336 RunningGCD
= APIntOps::GreatestCommonDivisor(RunningGCD
, ConstCoeff
.abs());
2337 Coefficients
= AddRec
->getStart();
2339 const SCEV
*SrcConst
= Coefficients
;
2341 // Examine Dst coefficients.
2342 // Compute running GCD and record destination constant.
2343 // Because we're looking for the constant at the end of the chain,
2344 // we can't quit the loop just because the GCD == 1.
2346 while (const SCEVAddRecExpr
*AddRec
=
2347 dyn_cast
<SCEVAddRecExpr
>(Coefficients
)) {
2348 const SCEV
*Coeff
= AddRec
->getStepRecurrence(*SE
);
2349 // If the coefficient is the product of a constant and other stuff,
2350 // we can use the constant in the GCD computation.
2351 const auto *Constant
= getConstantPart(Coeff
);
2354 APInt ConstCoeff
= Constant
->getAPInt();
2355 RunningGCD
= APIntOps::GreatestCommonDivisor(RunningGCD
, ConstCoeff
.abs());
2356 Coefficients
= AddRec
->getStart();
2358 const SCEV
*DstConst
= Coefficients
;
2360 APInt ExtraGCD
= APInt::getNullValue(BitWidth
);
2361 const SCEV
*Delta
= SE
->getMinusSCEV(DstConst
, SrcConst
);
2362 LLVM_DEBUG(dbgs() << " Delta = " << *Delta
<< "\n");
2363 const SCEVConstant
*Constant
= dyn_cast
<SCEVConstant
>(Delta
);
2364 if (const SCEVAddExpr
*Sum
= dyn_cast
<SCEVAddExpr
>(Delta
)) {
2365 // If Delta is a sum of products, we may be able to make further progress.
2366 for (unsigned Op
= 0, Ops
= Sum
->getNumOperands(); Op
< Ops
; Op
++) {
2367 const SCEV
*Operand
= Sum
->getOperand(Op
);
2368 if (isa
<SCEVConstant
>(Operand
)) {
2369 assert(!Constant
&& "Surprised to find multiple constants");
2370 Constant
= cast
<SCEVConstant
>(Operand
);
2372 else if (const SCEVMulExpr
*Product
= dyn_cast
<SCEVMulExpr
>(Operand
)) {
2373 // Search for constant operand to participate in GCD;
2374 // If none found; return false.
2375 const SCEVConstant
*ConstOp
= getConstantPart(Product
);
2378 APInt ConstOpValue
= ConstOp
->getAPInt();
2379 ExtraGCD
= APIntOps::GreatestCommonDivisor(ExtraGCD
,
2380 ConstOpValue
.abs());
2388 APInt ConstDelta
= cast
<SCEVConstant
>(Constant
)->getAPInt();
2389 LLVM_DEBUG(dbgs() << " ConstDelta = " << ConstDelta
<< "\n");
2390 if (ConstDelta
== 0)
2392 RunningGCD
= APIntOps::GreatestCommonDivisor(RunningGCD
, ExtraGCD
);
2393 LLVM_DEBUG(dbgs() << " RunningGCD = " << RunningGCD
<< "\n");
2394 APInt Remainder
= ConstDelta
.srem(RunningGCD
);
2395 if (Remainder
!= 0) {
2400 // Try to disprove equal directions.
2401 // For example, given a subscript pair [3*i + 2*j] and [i' + 2*j' - 1],
2402 // the code above can't disprove the dependence because the GCD = 1.
2403 // So we consider what happen if i = i' and what happens if j = j'.
2404 // If i = i', we can simplify the subscript to [2*i + 2*j] and [2*j' - 1],
2405 // which is infeasible, so we can disallow the = direction for the i level.
2406 // Setting j = j' doesn't help matters, so we end up with a direction vector
2409 // Given A[5*i + 10*j*M + 9*M*N] and A[15*i + 20*j*M - 21*N*M + 5],
2410 // we need to remember that the constant part is 5 and the RunningGCD should
2411 // be initialized to ExtraGCD = 30.
2412 LLVM_DEBUG(dbgs() << " ExtraGCD = " << ExtraGCD
<< '\n');
2414 bool Improved
= false;
2416 while (const SCEVAddRecExpr
*AddRec
=
2417 dyn_cast
<SCEVAddRecExpr
>(Coefficients
)) {
2418 Coefficients
= AddRec
->getStart();
2419 const Loop
*CurLoop
= AddRec
->getLoop();
2420 RunningGCD
= ExtraGCD
;
2421 const SCEV
*SrcCoeff
= AddRec
->getStepRecurrence(*SE
);
2422 const SCEV
*DstCoeff
= SE
->getMinusSCEV(SrcCoeff
, SrcCoeff
);
2423 const SCEV
*Inner
= Src
;
2424 while (RunningGCD
!= 1 && isa
<SCEVAddRecExpr
>(Inner
)) {
2425 AddRec
= cast
<SCEVAddRecExpr
>(Inner
);
2426 const SCEV
*Coeff
= AddRec
->getStepRecurrence(*SE
);
2427 if (CurLoop
== AddRec
->getLoop())
2428 ; // SrcCoeff == Coeff
2430 // If the coefficient is the product of a constant and other stuff,
2431 // we can use the constant in the GCD computation.
2432 Constant
= getConstantPart(Coeff
);
2435 APInt ConstCoeff
= Constant
->getAPInt();
2436 RunningGCD
= APIntOps::GreatestCommonDivisor(RunningGCD
, ConstCoeff
.abs());
2438 Inner
= AddRec
->getStart();
2441 while (RunningGCD
!= 1 && isa
<SCEVAddRecExpr
>(Inner
)) {
2442 AddRec
= cast
<SCEVAddRecExpr
>(Inner
);
2443 const SCEV
*Coeff
= AddRec
->getStepRecurrence(*SE
);
2444 if (CurLoop
== AddRec
->getLoop())
2447 // If the coefficient is the product of a constant and other stuff,
2448 // we can use the constant in the GCD computation.
2449 Constant
= getConstantPart(Coeff
);
2452 APInt ConstCoeff
= Constant
->getAPInt();
2453 RunningGCD
= APIntOps::GreatestCommonDivisor(RunningGCD
, ConstCoeff
.abs());
2455 Inner
= AddRec
->getStart();
2457 Delta
= SE
->getMinusSCEV(SrcCoeff
, DstCoeff
);
2458 // If the coefficient is the product of a constant and other stuff,
2459 // we can use the constant in the GCD computation.
2460 Constant
= getConstantPart(Delta
);
2462 // The difference of the two coefficients might not be a product
2463 // or constant, in which case we give up on this direction.
2465 APInt ConstCoeff
= Constant
->getAPInt();
2466 RunningGCD
= APIntOps::GreatestCommonDivisor(RunningGCD
, ConstCoeff
.abs());
2467 LLVM_DEBUG(dbgs() << "\tRunningGCD = " << RunningGCD
<< "\n");
2468 if (RunningGCD
!= 0) {
2469 Remainder
= ConstDelta
.srem(RunningGCD
);
2470 LLVM_DEBUG(dbgs() << "\tRemainder = " << Remainder
<< "\n");
2471 if (Remainder
!= 0) {
2472 unsigned Level
= mapSrcLoop(CurLoop
);
2473 Result
.DV
[Level
- 1].Direction
&= unsigned(~Dependence::DVEntry::EQ
);
2480 LLVM_DEBUG(dbgs() << "all done\n");
2485 //===----------------------------------------------------------------------===//
2486 // banerjeeMIVtest -
2487 // Use Banerjee's Inequalities to test an MIV subscript pair.
2488 // (Wolfe, in the race-car book, calls this the Extreme Value Test.)
2489 // Generally follows the discussion in Section 2.5.2 of
2491 // Optimizing Supercompilers for Supercomputers
2494 // The inequalities given on page 25 are simplified in that loops are
2495 // normalized so that the lower bound is always 0 and the stride is always 1.
2496 // For example, Wolfe gives
2498 // LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2500 // where A_k is the coefficient of the kth index in the source subscript,
2501 // B_k is the coefficient of the kth index in the destination subscript,
2502 // U_k is the upper bound of the kth index, L_k is the lower bound of the Kth
2503 // index, and N_k is the stride of the kth index. Since all loops are normalized
2504 // by the SCEV package, N_k = 1 and L_k = 0, allowing us to simplify the
2507 // LB^<_k = (A^-_k - B_k)^- (U_k - 0 - 1) + (A_k - B_k)0 - B_k 1
2508 // = (A^-_k - B_k)^- (U_k - 1) - B_k
2510 // Similar simplifications are possible for the other equations.
2512 // When we can't determine the number of iterations for a loop,
2513 // we use NULL as an indicator for the worst case, infinity.
2514 // When computing the upper bound, NULL denotes +inf;
2515 // for the lower bound, NULL denotes -inf.
2517 // Return true if dependence disproved.
2518 bool DependenceInfo::banerjeeMIVtest(const SCEV
*Src
, const SCEV
*Dst
,
2519 const SmallBitVector
&Loops
,
2520 FullDependence
&Result
) const {
2521 LLVM_DEBUG(dbgs() << "starting Banerjee\n");
2522 ++BanerjeeApplications
;
2523 LLVM_DEBUG(dbgs() << " Src = " << *Src
<< '\n');
2525 CoefficientInfo
*A
= collectCoeffInfo(Src
, true, A0
);
2526 LLVM_DEBUG(dbgs() << " Dst = " << *Dst
<< '\n');
2528 CoefficientInfo
*B
= collectCoeffInfo(Dst
, false, B0
);
2529 BoundInfo
*Bound
= new BoundInfo
[MaxLevels
+ 1];
2530 const SCEV
*Delta
= SE
->getMinusSCEV(B0
, A0
);
2531 LLVM_DEBUG(dbgs() << "\tDelta = " << *Delta
<< '\n');
2533 // Compute bounds for all the * directions.
2534 LLVM_DEBUG(dbgs() << "\tBounds[*]\n");
2535 for (unsigned K
= 1; K
<= MaxLevels
; ++K
) {
2536 Bound
[K
].Iterations
= A
[K
].Iterations
? A
[K
].Iterations
: B
[K
].Iterations
;
2537 Bound
[K
].Direction
= Dependence::DVEntry::ALL
;
2538 Bound
[K
].DirSet
= Dependence::DVEntry::NONE
;
2539 findBoundsALL(A
, B
, Bound
, K
);
2541 LLVM_DEBUG(dbgs() << "\t " << K
<< '\t');
2542 if (Bound
[K
].Lower
[Dependence::DVEntry::ALL
])
2543 LLVM_DEBUG(dbgs() << *Bound
[K
].Lower
[Dependence::DVEntry::ALL
] << '\t');
2545 LLVM_DEBUG(dbgs() << "-inf\t");
2546 if (Bound
[K
].Upper
[Dependence::DVEntry::ALL
])
2547 LLVM_DEBUG(dbgs() << *Bound
[K
].Upper
[Dependence::DVEntry::ALL
] << '\n');
2549 LLVM_DEBUG(dbgs() << "+inf\n");
2553 // Test the *, *, *, ... case.
2554 bool Disproved
= false;
2555 if (testBounds(Dependence::DVEntry::ALL
, 0, Bound
, Delta
)) {
2556 // Explore the direction vector hierarchy.
2557 unsigned DepthExpanded
= 0;
2558 unsigned NewDeps
= exploreDirections(1, A
, B
, Bound
,
2559 Loops
, DepthExpanded
, Delta
);
2561 bool Improved
= false;
2562 for (unsigned K
= 1; K
<= CommonLevels
; ++K
) {
2564 unsigned Old
= Result
.DV
[K
- 1].Direction
;
2565 Result
.DV
[K
- 1].Direction
= Old
& Bound
[K
].DirSet
;
2566 Improved
|= Old
!= Result
.DV
[K
- 1].Direction
;
2567 if (!Result
.DV
[K
- 1].Direction
) {
2575 ++BanerjeeSuccesses
;
2578 ++BanerjeeIndependence
;
2583 ++BanerjeeIndependence
;
2593 // Hierarchically expands the direction vector
2594 // search space, combining the directions of discovered dependences
2595 // in the DirSet field of Bound. Returns the number of distinct
2596 // dependences discovered. If the dependence is disproved,
2597 // it will return 0.
2598 unsigned DependenceInfo::exploreDirections(unsigned Level
, CoefficientInfo
*A
,
2599 CoefficientInfo
*B
, BoundInfo
*Bound
,
2600 const SmallBitVector
&Loops
,
2601 unsigned &DepthExpanded
,
2602 const SCEV
*Delta
) const {
2603 if (Level
> CommonLevels
) {
2605 LLVM_DEBUG(dbgs() << "\t[");
2606 for (unsigned K
= 1; K
<= CommonLevels
; ++K
) {
2608 Bound
[K
].DirSet
|= Bound
[K
].Direction
;
2610 switch (Bound
[K
].Direction
) {
2611 case Dependence::DVEntry::LT
:
2612 LLVM_DEBUG(dbgs() << " <");
2614 case Dependence::DVEntry::EQ
:
2615 LLVM_DEBUG(dbgs() << " =");
2617 case Dependence::DVEntry::GT
:
2618 LLVM_DEBUG(dbgs() << " >");
2620 case Dependence::DVEntry::ALL
:
2621 LLVM_DEBUG(dbgs() << " *");
2624 llvm_unreachable("unexpected Bound[K].Direction");
2629 LLVM_DEBUG(dbgs() << " ]\n");
2633 if (Level
> DepthExpanded
) {
2634 DepthExpanded
= Level
;
2635 // compute bounds for <, =, > at current level
2636 findBoundsLT(A
, B
, Bound
, Level
);
2637 findBoundsGT(A
, B
, Bound
, Level
);
2638 findBoundsEQ(A
, B
, Bound
, Level
);
2640 LLVM_DEBUG(dbgs() << "\tBound for level = " << Level
<< '\n');
2641 LLVM_DEBUG(dbgs() << "\t <\t");
2642 if (Bound
[Level
].Lower
[Dependence::DVEntry::LT
])
2643 LLVM_DEBUG(dbgs() << *Bound
[Level
].Lower
[Dependence::DVEntry::LT
]
2646 LLVM_DEBUG(dbgs() << "-inf\t");
2647 if (Bound
[Level
].Upper
[Dependence::DVEntry::LT
])
2648 LLVM_DEBUG(dbgs() << *Bound
[Level
].Upper
[Dependence::DVEntry::LT
]
2651 LLVM_DEBUG(dbgs() << "+inf\n");
2652 LLVM_DEBUG(dbgs() << "\t =\t");
2653 if (Bound
[Level
].Lower
[Dependence::DVEntry::EQ
])
2654 LLVM_DEBUG(dbgs() << *Bound
[Level
].Lower
[Dependence::DVEntry::EQ
]
2657 LLVM_DEBUG(dbgs() << "-inf\t");
2658 if (Bound
[Level
].Upper
[Dependence::DVEntry::EQ
])
2659 LLVM_DEBUG(dbgs() << *Bound
[Level
].Upper
[Dependence::DVEntry::EQ
]
2662 LLVM_DEBUG(dbgs() << "+inf\n");
2663 LLVM_DEBUG(dbgs() << "\t >\t");
2664 if (Bound
[Level
].Lower
[Dependence::DVEntry::GT
])
2665 LLVM_DEBUG(dbgs() << *Bound
[Level
].Lower
[Dependence::DVEntry::GT
]
2668 LLVM_DEBUG(dbgs() << "-inf\t");
2669 if (Bound
[Level
].Upper
[Dependence::DVEntry::GT
])
2670 LLVM_DEBUG(dbgs() << *Bound
[Level
].Upper
[Dependence::DVEntry::GT
]
2673 LLVM_DEBUG(dbgs() << "+inf\n");
2677 unsigned NewDeps
= 0;
2679 // test bounds for <, *, *, ...
2680 if (testBounds(Dependence::DVEntry::LT
, Level
, Bound
, Delta
))
2681 NewDeps
+= exploreDirections(Level
+ 1, A
, B
, Bound
,
2682 Loops
, DepthExpanded
, Delta
);
2684 // Test bounds for =, *, *, ...
2685 if (testBounds(Dependence::DVEntry::EQ
, Level
, Bound
, Delta
))
2686 NewDeps
+= exploreDirections(Level
+ 1, A
, B
, Bound
,
2687 Loops
, DepthExpanded
, Delta
);
2689 // test bounds for >, *, *, ...
2690 if (testBounds(Dependence::DVEntry::GT
, Level
, Bound
, Delta
))
2691 NewDeps
+= exploreDirections(Level
+ 1, A
, B
, Bound
,
2692 Loops
, DepthExpanded
, Delta
);
2694 Bound
[Level
].Direction
= Dependence::DVEntry::ALL
;
2698 return exploreDirections(Level
+ 1, A
, B
, Bound
, Loops
, DepthExpanded
, Delta
);
2702 // Returns true iff the current bounds are plausible.
2703 bool DependenceInfo::testBounds(unsigned char DirKind
, unsigned Level
,
2704 BoundInfo
*Bound
, const SCEV
*Delta
) const {
2705 Bound
[Level
].Direction
= DirKind
;
2706 if (const SCEV
*LowerBound
= getLowerBound(Bound
))
2707 if (isKnownPredicate(CmpInst::ICMP_SGT
, LowerBound
, Delta
))
2709 if (const SCEV
*UpperBound
= getUpperBound(Bound
))
2710 if (isKnownPredicate(CmpInst::ICMP_SGT
, Delta
, UpperBound
))
2716 // Computes the upper and lower bounds for level K
2717 // using the * direction. Records them in Bound.
2718 // Wolfe gives the equations
2720 // LB^*_k = (A^-_k - B^+_k)(U_k - L_k) + (A_k - B_k)L_k
2721 // UB^*_k = (A^+_k - B^-_k)(U_k - L_k) + (A_k - B_k)L_k
2723 // Since we normalize loops, we can simplify these equations to
2725 // LB^*_k = (A^-_k - B^+_k)U_k
2726 // UB^*_k = (A^+_k - B^-_k)U_k
2728 // We must be careful to handle the case where the upper bound is unknown.
2729 // Note that the lower bound is always <= 0
2730 // and the upper bound is always >= 0.
2731 void DependenceInfo::findBoundsALL(CoefficientInfo
*A
, CoefficientInfo
*B
,
2732 BoundInfo
*Bound
, unsigned K
) const {
2733 Bound
[K
].Lower
[Dependence::DVEntry::ALL
] = nullptr; // Default value = -infinity.
2734 Bound
[K
].Upper
[Dependence::DVEntry::ALL
] = nullptr; // Default value = +infinity.
2735 if (Bound
[K
].Iterations
) {
2736 Bound
[K
].Lower
[Dependence::DVEntry::ALL
] =
2737 SE
->getMulExpr(SE
->getMinusSCEV(A
[K
].NegPart
, B
[K
].PosPart
),
2738 Bound
[K
].Iterations
);
2739 Bound
[K
].Upper
[Dependence::DVEntry::ALL
] =
2740 SE
->getMulExpr(SE
->getMinusSCEV(A
[K
].PosPart
, B
[K
].NegPart
),
2741 Bound
[K
].Iterations
);
2744 // If the difference is 0, we won't need to know the number of iterations.
2745 if (isKnownPredicate(CmpInst::ICMP_EQ
, A
[K
].NegPart
, B
[K
].PosPart
))
2746 Bound
[K
].Lower
[Dependence::DVEntry::ALL
] =
2747 SE
->getZero(A
[K
].Coeff
->getType());
2748 if (isKnownPredicate(CmpInst::ICMP_EQ
, A
[K
].PosPart
, B
[K
].NegPart
))
2749 Bound
[K
].Upper
[Dependence::DVEntry::ALL
] =
2750 SE
->getZero(A
[K
].Coeff
->getType());
2755 // Computes the upper and lower bounds for level K
2756 // using the = direction. Records them in Bound.
2757 // Wolfe gives the equations
2759 // LB^=_k = (A_k - B_k)^- (U_k - L_k) + (A_k - B_k)L_k
2760 // UB^=_k = (A_k - B_k)^+ (U_k - L_k) + (A_k - B_k)L_k
2762 // Since we normalize loops, we can simplify these equations to
2764 // LB^=_k = (A_k - B_k)^- U_k
2765 // UB^=_k = (A_k - B_k)^+ U_k
2767 // We must be careful to handle the case where the upper bound is unknown.
2768 // Note that the lower bound is always <= 0
2769 // and the upper bound is always >= 0.
2770 void DependenceInfo::findBoundsEQ(CoefficientInfo
*A
, CoefficientInfo
*B
,
2771 BoundInfo
*Bound
, unsigned K
) const {
2772 Bound
[K
].Lower
[Dependence::DVEntry::EQ
] = nullptr; // Default value = -infinity.
2773 Bound
[K
].Upper
[Dependence::DVEntry::EQ
] = nullptr; // Default value = +infinity.
2774 if (Bound
[K
].Iterations
) {
2775 const SCEV
*Delta
= SE
->getMinusSCEV(A
[K
].Coeff
, B
[K
].Coeff
);
2776 const SCEV
*NegativePart
= getNegativePart(Delta
);
2777 Bound
[K
].Lower
[Dependence::DVEntry::EQ
] =
2778 SE
->getMulExpr(NegativePart
, Bound
[K
].Iterations
);
2779 const SCEV
*PositivePart
= getPositivePart(Delta
);
2780 Bound
[K
].Upper
[Dependence::DVEntry::EQ
] =
2781 SE
->getMulExpr(PositivePart
, Bound
[K
].Iterations
);
2784 // If the positive/negative part of the difference is 0,
2785 // we won't need to know the number of iterations.
2786 const SCEV
*Delta
= SE
->getMinusSCEV(A
[K
].Coeff
, B
[K
].Coeff
);
2787 const SCEV
*NegativePart
= getNegativePart(Delta
);
2788 if (NegativePart
->isZero())
2789 Bound
[K
].Lower
[Dependence::DVEntry::EQ
] = NegativePart
; // Zero
2790 const SCEV
*PositivePart
= getPositivePart(Delta
);
2791 if (PositivePart
->isZero())
2792 Bound
[K
].Upper
[Dependence::DVEntry::EQ
] = PositivePart
; // Zero
2797 // Computes the upper and lower bounds for level K
2798 // using the < direction. Records them in Bound.
2799 // Wolfe gives the equations
2801 // LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2802 // UB^<_k = (A^+_k - B_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2804 // Since we normalize loops, we can simplify these equations to
2806 // LB^<_k = (A^-_k - B_k)^- (U_k - 1) - B_k
2807 // UB^<_k = (A^+_k - B_k)^+ (U_k - 1) - B_k
2809 // We must be careful to handle the case where the upper bound is unknown.
2810 void DependenceInfo::findBoundsLT(CoefficientInfo
*A
, CoefficientInfo
*B
,
2811 BoundInfo
*Bound
, unsigned K
) const {
2812 Bound
[K
].Lower
[Dependence::DVEntry::LT
] = nullptr; // Default value = -infinity.
2813 Bound
[K
].Upper
[Dependence::DVEntry::LT
] = nullptr; // Default value = +infinity.
2814 if (Bound
[K
].Iterations
) {
2815 const SCEV
*Iter_1
= SE
->getMinusSCEV(
2816 Bound
[K
].Iterations
, SE
->getOne(Bound
[K
].Iterations
->getType()));
2817 const SCEV
*NegPart
=
2818 getNegativePart(SE
->getMinusSCEV(A
[K
].NegPart
, B
[K
].Coeff
));
2819 Bound
[K
].Lower
[Dependence::DVEntry::LT
] =
2820 SE
->getMinusSCEV(SE
->getMulExpr(NegPart
, Iter_1
), B
[K
].Coeff
);
2821 const SCEV
*PosPart
=
2822 getPositivePart(SE
->getMinusSCEV(A
[K
].PosPart
, B
[K
].Coeff
));
2823 Bound
[K
].Upper
[Dependence::DVEntry::LT
] =
2824 SE
->getMinusSCEV(SE
->getMulExpr(PosPart
, Iter_1
), B
[K
].Coeff
);
2827 // If the positive/negative part of the difference is 0,
2828 // we won't need to know the number of iterations.
2829 const SCEV
*NegPart
=
2830 getNegativePart(SE
->getMinusSCEV(A
[K
].NegPart
, B
[K
].Coeff
));
2831 if (NegPart
->isZero())
2832 Bound
[K
].Lower
[Dependence::DVEntry::LT
] = SE
->getNegativeSCEV(B
[K
].Coeff
);
2833 const SCEV
*PosPart
=
2834 getPositivePart(SE
->getMinusSCEV(A
[K
].PosPart
, B
[K
].Coeff
));
2835 if (PosPart
->isZero())
2836 Bound
[K
].Upper
[Dependence::DVEntry::LT
] = SE
->getNegativeSCEV(B
[K
].Coeff
);
2841 // Computes the upper and lower bounds for level K
2842 // using the > direction. Records them in Bound.
2843 // Wolfe gives the equations
2845 // LB^>_k = (A_k - B^+_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
2846 // UB^>_k = (A_k - B^-_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
2848 // Since we normalize loops, we can simplify these equations to
2850 // LB^>_k = (A_k - B^+_k)^- (U_k - 1) + A_k
2851 // UB^>_k = (A_k - B^-_k)^+ (U_k - 1) + A_k
2853 // We must be careful to handle the case where the upper bound is unknown.
2854 void DependenceInfo::findBoundsGT(CoefficientInfo
*A
, CoefficientInfo
*B
,
2855 BoundInfo
*Bound
, unsigned K
) const {
2856 Bound
[K
].Lower
[Dependence::DVEntry::GT
] = nullptr; // Default value = -infinity.
2857 Bound
[K
].Upper
[Dependence::DVEntry::GT
] = nullptr; // Default value = +infinity.
2858 if (Bound
[K
].Iterations
) {
2859 const SCEV
*Iter_1
= SE
->getMinusSCEV(
2860 Bound
[K
].Iterations
, SE
->getOne(Bound
[K
].Iterations
->getType()));
2861 const SCEV
*NegPart
=
2862 getNegativePart(SE
->getMinusSCEV(A
[K
].Coeff
, B
[K
].PosPart
));
2863 Bound
[K
].Lower
[Dependence::DVEntry::GT
] =
2864 SE
->getAddExpr(SE
->getMulExpr(NegPart
, Iter_1
), A
[K
].Coeff
);
2865 const SCEV
*PosPart
=
2866 getPositivePart(SE
->getMinusSCEV(A
[K
].Coeff
, B
[K
].NegPart
));
2867 Bound
[K
].Upper
[Dependence::DVEntry::GT
] =
2868 SE
->getAddExpr(SE
->getMulExpr(PosPart
, Iter_1
), A
[K
].Coeff
);
2871 // If the positive/negative part of the difference is 0,
2872 // we won't need to know the number of iterations.
2873 const SCEV
*NegPart
= getNegativePart(SE
->getMinusSCEV(A
[K
].Coeff
, B
[K
].PosPart
));
2874 if (NegPart
->isZero())
2875 Bound
[K
].Lower
[Dependence::DVEntry::GT
] = A
[K
].Coeff
;
2876 const SCEV
*PosPart
= getPositivePart(SE
->getMinusSCEV(A
[K
].Coeff
, B
[K
].NegPart
));
2877 if (PosPart
->isZero())
2878 Bound
[K
].Upper
[Dependence::DVEntry::GT
] = A
[K
].Coeff
;
2884 const SCEV
*DependenceInfo::getPositivePart(const SCEV
*X
) const {
2885 return SE
->getSMaxExpr(X
, SE
->getZero(X
->getType()));
2890 const SCEV
*DependenceInfo::getNegativePart(const SCEV
*X
) const {
2891 return SE
->getSMinExpr(X
, SE
->getZero(X
->getType()));
2895 // Walks through the subscript,
2896 // collecting each coefficient, the associated loop bounds,
2897 // and recording its positive and negative parts for later use.
2898 DependenceInfo::CoefficientInfo
*
2899 DependenceInfo::collectCoeffInfo(const SCEV
*Subscript
, bool SrcFlag
,
2900 const SCEV
*&Constant
) const {
2901 const SCEV
*Zero
= SE
->getZero(Subscript
->getType());
2902 CoefficientInfo
*CI
= new CoefficientInfo
[MaxLevels
+ 1];
2903 for (unsigned K
= 1; K
<= MaxLevels
; ++K
) {
2905 CI
[K
].PosPart
= Zero
;
2906 CI
[K
].NegPart
= Zero
;
2907 CI
[K
].Iterations
= nullptr;
2909 while (const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(Subscript
)) {
2910 const Loop
*L
= AddRec
->getLoop();
2911 unsigned K
= SrcFlag
? mapSrcLoop(L
) : mapDstLoop(L
);
2912 CI
[K
].Coeff
= AddRec
->getStepRecurrence(*SE
);
2913 CI
[K
].PosPart
= getPositivePart(CI
[K
].Coeff
);
2914 CI
[K
].NegPart
= getNegativePart(CI
[K
].Coeff
);
2915 CI
[K
].Iterations
= collectUpperBound(L
, Subscript
->getType());
2916 Subscript
= AddRec
->getStart();
2918 Constant
= Subscript
;
2920 LLVM_DEBUG(dbgs() << "\tCoefficient Info\n");
2921 for (unsigned K
= 1; K
<= MaxLevels
; ++K
) {
2922 LLVM_DEBUG(dbgs() << "\t " << K
<< "\t" << *CI
[K
].Coeff
);
2923 LLVM_DEBUG(dbgs() << "\tPos Part = ");
2924 LLVM_DEBUG(dbgs() << *CI
[K
].PosPart
);
2925 LLVM_DEBUG(dbgs() << "\tNeg Part = ");
2926 LLVM_DEBUG(dbgs() << *CI
[K
].NegPart
);
2927 LLVM_DEBUG(dbgs() << "\tUpper Bound = ");
2928 if (CI
[K
].Iterations
)
2929 LLVM_DEBUG(dbgs() << *CI
[K
].Iterations
);
2931 LLVM_DEBUG(dbgs() << "+inf");
2932 LLVM_DEBUG(dbgs() << '\n');
2934 LLVM_DEBUG(dbgs() << "\t Constant = " << *Subscript
<< '\n');
2940 // Looks through all the bounds info and
2941 // computes the lower bound given the current direction settings
2942 // at each level. If the lower bound for any level is -inf,
2943 // the result is -inf.
2944 const SCEV
*DependenceInfo::getLowerBound(BoundInfo
*Bound
) const {
2945 const SCEV
*Sum
= Bound
[1].Lower
[Bound
[1].Direction
];
2946 for (unsigned K
= 2; Sum
&& K
<= MaxLevels
; ++K
) {
2947 if (Bound
[K
].Lower
[Bound
[K
].Direction
])
2948 Sum
= SE
->getAddExpr(Sum
, Bound
[K
].Lower
[Bound
[K
].Direction
]);
2956 // Looks through all the bounds info and
2957 // computes the upper bound given the current direction settings
2958 // at each level. If the upper bound at any level is +inf,
2959 // the result is +inf.
2960 const SCEV
*DependenceInfo::getUpperBound(BoundInfo
*Bound
) const {
2961 const SCEV
*Sum
= Bound
[1].Upper
[Bound
[1].Direction
];
2962 for (unsigned K
= 2; Sum
&& K
<= MaxLevels
; ++K
) {
2963 if (Bound
[K
].Upper
[Bound
[K
].Direction
])
2964 Sum
= SE
->getAddExpr(Sum
, Bound
[K
].Upper
[Bound
[K
].Direction
]);
2972 //===----------------------------------------------------------------------===//
2973 // Constraint manipulation for Delta test.
2975 // Given a linear SCEV,
2976 // return the coefficient (the step)
2977 // corresponding to the specified loop.
2978 // If there isn't one, return 0.
2979 // For example, given a*i + b*j + c*k, finding the coefficient
2980 // corresponding to the j loop would yield b.
2981 const SCEV
*DependenceInfo::findCoefficient(const SCEV
*Expr
,
2982 const Loop
*TargetLoop
) const {
2983 const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(Expr
);
2985 return SE
->getZero(Expr
->getType());
2986 if (AddRec
->getLoop() == TargetLoop
)
2987 return AddRec
->getStepRecurrence(*SE
);
2988 return findCoefficient(AddRec
->getStart(), TargetLoop
);
2992 // Given a linear SCEV,
2993 // return the SCEV given by zeroing out the coefficient
2994 // corresponding to the specified loop.
2995 // For example, given a*i + b*j + c*k, zeroing the coefficient
2996 // corresponding to the j loop would yield a*i + c*k.
2997 const SCEV
*DependenceInfo::zeroCoefficient(const SCEV
*Expr
,
2998 const Loop
*TargetLoop
) const {
2999 const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(Expr
);
3001 return Expr
; // ignore
3002 if (AddRec
->getLoop() == TargetLoop
)
3003 return AddRec
->getStart();
3004 return SE
->getAddRecExpr(zeroCoefficient(AddRec
->getStart(), TargetLoop
),
3005 AddRec
->getStepRecurrence(*SE
),
3007 AddRec
->getNoWrapFlags());
3011 // Given a linear SCEV Expr,
3012 // return the SCEV given by adding some Value to the
3013 // coefficient corresponding to the specified TargetLoop.
3014 // For example, given a*i + b*j + c*k, adding 1 to the coefficient
3015 // corresponding to the j loop would yield a*i + (b+1)*j + c*k.
3016 const SCEV
*DependenceInfo::addToCoefficient(const SCEV
*Expr
,
3017 const Loop
*TargetLoop
,
3018 const SCEV
*Value
) const {
3019 const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(Expr
);
3020 if (!AddRec
) // create a new addRec
3021 return SE
->getAddRecExpr(Expr
,
3024 SCEV::FlagAnyWrap
); // Worst case, with no info.
3025 if (AddRec
->getLoop() == TargetLoop
) {
3026 const SCEV
*Sum
= SE
->getAddExpr(AddRec
->getStepRecurrence(*SE
), Value
);
3028 return AddRec
->getStart();
3029 return SE
->getAddRecExpr(AddRec
->getStart(),
3032 AddRec
->getNoWrapFlags());
3034 if (SE
->isLoopInvariant(AddRec
, TargetLoop
))
3035 return SE
->getAddRecExpr(AddRec
, Value
, TargetLoop
, SCEV::FlagAnyWrap
);
3036 return SE
->getAddRecExpr(
3037 addToCoefficient(AddRec
->getStart(), TargetLoop
, Value
),
3038 AddRec
->getStepRecurrence(*SE
), AddRec
->getLoop(),
3039 AddRec
->getNoWrapFlags());
3043 // Review the constraints, looking for opportunities
3044 // to simplify a subscript pair (Src and Dst).
3045 // Return true if some simplification occurs.
3046 // If the simplification isn't exact (that is, if it is conservative
3047 // in terms of dependence), set consistent to false.
3048 // Corresponds to Figure 5 from the paper
3050 // Practical Dependence Testing
3051 // Goff, Kennedy, Tseng
3053 bool DependenceInfo::propagate(const SCEV
*&Src
, const SCEV
*&Dst
,
3054 SmallBitVector
&Loops
,
3055 SmallVectorImpl
<Constraint
> &Constraints
,
3057 bool Result
= false;
3058 for (unsigned LI
: Loops
.set_bits()) {
3059 LLVM_DEBUG(dbgs() << "\t Constraint[" << LI
<< "] is");
3060 LLVM_DEBUG(Constraints
[LI
].dump(dbgs()));
3061 if (Constraints
[LI
].isDistance())
3062 Result
|= propagateDistance(Src
, Dst
, Constraints
[LI
], Consistent
);
3063 else if (Constraints
[LI
].isLine())
3064 Result
|= propagateLine(Src
, Dst
, Constraints
[LI
], Consistent
);
3065 else if (Constraints
[LI
].isPoint())
3066 Result
|= propagatePoint(Src
, Dst
, Constraints
[LI
]);
3072 // Attempt to propagate a distance
3073 // constraint into a subscript pair (Src and Dst).
3074 // Return true if some simplification occurs.
3075 // If the simplification isn't exact (that is, if it is conservative
3076 // in terms of dependence), set consistent to false.
3077 bool DependenceInfo::propagateDistance(const SCEV
*&Src
, const SCEV
*&Dst
,
3078 Constraint
&CurConstraint
,
3080 const Loop
*CurLoop
= CurConstraint
.getAssociatedLoop();
3081 LLVM_DEBUG(dbgs() << "\t\tSrc is " << *Src
<< "\n");
3082 const SCEV
*A_K
= findCoefficient(Src
, CurLoop
);
3085 const SCEV
*DA_K
= SE
->getMulExpr(A_K
, CurConstraint
.getD());
3086 Src
= SE
->getMinusSCEV(Src
, DA_K
);
3087 Src
= zeroCoefficient(Src
, CurLoop
);
3088 LLVM_DEBUG(dbgs() << "\t\tnew Src is " << *Src
<< "\n");
3089 LLVM_DEBUG(dbgs() << "\t\tDst is " << *Dst
<< "\n");
3090 Dst
= addToCoefficient(Dst
, CurLoop
, SE
->getNegativeSCEV(A_K
));
3091 LLVM_DEBUG(dbgs() << "\t\tnew Dst is " << *Dst
<< "\n");
3092 if (!findCoefficient(Dst
, CurLoop
)->isZero())
3098 // Attempt to propagate a line
3099 // constraint into a subscript pair (Src and Dst).
3100 // Return true if some simplification occurs.
3101 // If the simplification isn't exact (that is, if it is conservative
3102 // in terms of dependence), set consistent to false.
3103 bool DependenceInfo::propagateLine(const SCEV
*&Src
, const SCEV
*&Dst
,
3104 Constraint
&CurConstraint
,
3106 const Loop
*CurLoop
= CurConstraint
.getAssociatedLoop();
3107 const SCEV
*A
= CurConstraint
.getA();
3108 const SCEV
*B
= CurConstraint
.getB();
3109 const SCEV
*C
= CurConstraint
.getC();
3110 LLVM_DEBUG(dbgs() << "\t\tA = " << *A
<< ", B = " << *B
<< ", C = " << *C
3112 LLVM_DEBUG(dbgs() << "\t\tSrc = " << *Src
<< "\n");
3113 LLVM_DEBUG(dbgs() << "\t\tDst = " << *Dst
<< "\n");
3115 const SCEVConstant
*Bconst
= dyn_cast
<SCEVConstant
>(B
);
3116 const SCEVConstant
*Cconst
= dyn_cast
<SCEVConstant
>(C
);
3117 if (!Bconst
|| !Cconst
) return false;
3118 APInt Beta
= Bconst
->getAPInt();
3119 APInt Charlie
= Cconst
->getAPInt();
3120 APInt CdivB
= Charlie
.sdiv(Beta
);
3121 assert(Charlie
.srem(Beta
) == 0 && "C should be evenly divisible by B");
3122 const SCEV
*AP_K
= findCoefficient(Dst
, CurLoop
);
3123 // Src = SE->getAddExpr(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
3124 Src
= SE
->getMinusSCEV(Src
, SE
->getMulExpr(AP_K
, SE
->getConstant(CdivB
)));
3125 Dst
= zeroCoefficient(Dst
, CurLoop
);
3126 if (!findCoefficient(Src
, CurLoop
)->isZero())
3129 else if (B
->isZero()) {
3130 const SCEVConstant
*Aconst
= dyn_cast
<SCEVConstant
>(A
);
3131 const SCEVConstant
*Cconst
= dyn_cast
<SCEVConstant
>(C
);
3132 if (!Aconst
|| !Cconst
) return false;
3133 APInt Alpha
= Aconst
->getAPInt();
3134 APInt Charlie
= Cconst
->getAPInt();
3135 APInt CdivA
= Charlie
.sdiv(Alpha
);
3136 assert(Charlie
.srem(Alpha
) == 0 && "C should be evenly divisible by A");
3137 const SCEV
*A_K
= findCoefficient(Src
, CurLoop
);
3138 Src
= SE
->getAddExpr(Src
, SE
->getMulExpr(A_K
, SE
->getConstant(CdivA
)));
3139 Src
= zeroCoefficient(Src
, CurLoop
);
3140 if (!findCoefficient(Dst
, CurLoop
)->isZero())
3143 else if (isKnownPredicate(CmpInst::ICMP_EQ
, A
, B
)) {
3144 const SCEVConstant
*Aconst
= dyn_cast
<SCEVConstant
>(A
);
3145 const SCEVConstant
*Cconst
= dyn_cast
<SCEVConstant
>(C
);
3146 if (!Aconst
|| !Cconst
) return false;
3147 APInt Alpha
= Aconst
->getAPInt();
3148 APInt Charlie
= Cconst
->getAPInt();
3149 APInt CdivA
= Charlie
.sdiv(Alpha
);
3150 assert(Charlie
.srem(Alpha
) == 0 && "C should be evenly divisible by A");
3151 const SCEV
*A_K
= findCoefficient(Src
, CurLoop
);
3152 Src
= SE
->getAddExpr(Src
, SE
->getMulExpr(A_K
, SE
->getConstant(CdivA
)));
3153 Src
= zeroCoefficient(Src
, CurLoop
);
3154 Dst
= addToCoefficient(Dst
, CurLoop
, A_K
);
3155 if (!findCoefficient(Dst
, CurLoop
)->isZero())
3159 // paper is incorrect here, or perhaps just misleading
3160 const SCEV
*A_K
= findCoefficient(Src
, CurLoop
);
3161 Src
= SE
->getMulExpr(Src
, A
);
3162 Dst
= SE
->getMulExpr(Dst
, A
);
3163 Src
= SE
->getAddExpr(Src
, SE
->getMulExpr(A_K
, C
));
3164 Src
= zeroCoefficient(Src
, CurLoop
);
3165 Dst
= addToCoefficient(Dst
, CurLoop
, SE
->getMulExpr(A_K
, B
));
3166 if (!findCoefficient(Dst
, CurLoop
)->isZero())
3169 LLVM_DEBUG(dbgs() << "\t\tnew Src = " << *Src
<< "\n");
3170 LLVM_DEBUG(dbgs() << "\t\tnew Dst = " << *Dst
<< "\n");
3175 // Attempt to propagate a point
3176 // constraint into a subscript pair (Src and Dst).
3177 // Return true if some simplification occurs.
3178 bool DependenceInfo::propagatePoint(const SCEV
*&Src
, const SCEV
*&Dst
,
3179 Constraint
&CurConstraint
) {
3180 const Loop
*CurLoop
= CurConstraint
.getAssociatedLoop();
3181 const SCEV
*A_K
= findCoefficient(Src
, CurLoop
);
3182 const SCEV
*AP_K
= findCoefficient(Dst
, CurLoop
);
3183 const SCEV
*XA_K
= SE
->getMulExpr(A_K
, CurConstraint
.getX());
3184 const SCEV
*YAP_K
= SE
->getMulExpr(AP_K
, CurConstraint
.getY());
3185 LLVM_DEBUG(dbgs() << "\t\tSrc is " << *Src
<< "\n");
3186 Src
= SE
->getAddExpr(Src
, SE
->getMinusSCEV(XA_K
, YAP_K
));
3187 Src
= zeroCoefficient(Src
, CurLoop
);
3188 LLVM_DEBUG(dbgs() << "\t\tnew Src is " << *Src
<< "\n");
3189 LLVM_DEBUG(dbgs() << "\t\tDst is " << *Dst
<< "\n");
3190 Dst
= zeroCoefficient(Dst
, CurLoop
);
3191 LLVM_DEBUG(dbgs() << "\t\tnew Dst is " << *Dst
<< "\n");
3196 // Update direction vector entry based on the current constraint.
3197 void DependenceInfo::updateDirection(Dependence::DVEntry
&Level
,
3198 const Constraint
&CurConstraint
) const {
3199 LLVM_DEBUG(dbgs() << "\tUpdate direction, constraint =");
3200 LLVM_DEBUG(CurConstraint
.dump(dbgs()));
3201 if (CurConstraint
.isAny())
3203 else if (CurConstraint
.isDistance()) {
3204 // this one is consistent, the others aren't
3205 Level
.Scalar
= false;
3206 Level
.Distance
= CurConstraint
.getD();
3207 unsigned NewDirection
= Dependence::DVEntry::NONE
;
3208 if (!SE
->isKnownNonZero(Level
.Distance
)) // if may be zero
3209 NewDirection
= Dependence::DVEntry::EQ
;
3210 if (!SE
->isKnownNonPositive(Level
.Distance
)) // if may be positive
3211 NewDirection
|= Dependence::DVEntry::LT
;
3212 if (!SE
->isKnownNonNegative(Level
.Distance
)) // if may be negative
3213 NewDirection
|= Dependence::DVEntry::GT
;
3214 Level
.Direction
&= NewDirection
;
3216 else if (CurConstraint
.isLine()) {
3217 Level
.Scalar
= false;
3218 Level
.Distance
= nullptr;
3219 // direction should be accurate
3221 else if (CurConstraint
.isPoint()) {
3222 Level
.Scalar
= false;
3223 Level
.Distance
= nullptr;
3224 unsigned NewDirection
= Dependence::DVEntry::NONE
;
3225 if (!isKnownPredicate(CmpInst::ICMP_NE
,
3226 CurConstraint
.getY(),
3227 CurConstraint
.getX()))
3229 NewDirection
|= Dependence::DVEntry::EQ
;
3230 if (!isKnownPredicate(CmpInst::ICMP_SLE
,
3231 CurConstraint
.getY(),
3232 CurConstraint
.getX()))
3234 NewDirection
|= Dependence::DVEntry::LT
;
3235 if (!isKnownPredicate(CmpInst::ICMP_SGE
,
3236 CurConstraint
.getY(),
3237 CurConstraint
.getX()))
3239 NewDirection
|= Dependence::DVEntry::GT
;
3240 Level
.Direction
&= NewDirection
;
3243 llvm_unreachable("constraint has unexpected kind");
3246 /// Check if we can delinearize the subscripts. If the SCEVs representing the
3247 /// source and destination array references are recurrences on a nested loop,
3248 /// this function flattens the nested recurrences into separate recurrences
3249 /// for each loop level.
3250 bool DependenceInfo::tryDelinearize(Instruction
*Src
, Instruction
*Dst
,
3251 SmallVectorImpl
<Subscript
> &Pair
) {
3252 assert(isLoadOrStore(Src
) && "instruction is not load or store");
3253 assert(isLoadOrStore(Dst
) && "instruction is not load or store");
3254 Value
*SrcPtr
= getLoadStorePointerOperand(Src
);
3255 Value
*DstPtr
= getLoadStorePointerOperand(Dst
);
3257 Loop
*SrcLoop
= LI
->getLoopFor(Src
->getParent());
3258 Loop
*DstLoop
= LI
->getLoopFor(Dst
->getParent());
3260 // Below code mimics the code in Delinearization.cpp
3261 const SCEV
*SrcAccessFn
=
3262 SE
->getSCEVAtScope(SrcPtr
, SrcLoop
);
3263 const SCEV
*DstAccessFn
=
3264 SE
->getSCEVAtScope(DstPtr
, DstLoop
);
3266 const SCEVUnknown
*SrcBase
=
3267 dyn_cast
<SCEVUnknown
>(SE
->getPointerBase(SrcAccessFn
));
3268 const SCEVUnknown
*DstBase
=
3269 dyn_cast
<SCEVUnknown
>(SE
->getPointerBase(DstAccessFn
));
3271 if (!SrcBase
|| !DstBase
|| SrcBase
!= DstBase
)
3274 const SCEV
*ElementSize
= SE
->getElementSize(Src
);
3275 if (ElementSize
!= SE
->getElementSize(Dst
))
3278 const SCEV
*SrcSCEV
= SE
->getMinusSCEV(SrcAccessFn
, SrcBase
);
3279 const SCEV
*DstSCEV
= SE
->getMinusSCEV(DstAccessFn
, DstBase
);
3281 const SCEVAddRecExpr
*SrcAR
= dyn_cast
<SCEVAddRecExpr
>(SrcSCEV
);
3282 const SCEVAddRecExpr
*DstAR
= dyn_cast
<SCEVAddRecExpr
>(DstSCEV
);
3283 if (!SrcAR
|| !DstAR
|| !SrcAR
->isAffine() || !DstAR
->isAffine())
3286 // First step: collect parametric terms in both array references.
3287 SmallVector
<const SCEV
*, 4> Terms
;
3288 SE
->collectParametricTerms(SrcAR
, Terms
);
3289 SE
->collectParametricTerms(DstAR
, Terms
);
3291 // Second step: find subscript sizes.
3292 SmallVector
<const SCEV
*, 4> Sizes
;
3293 SE
->findArrayDimensions(Terms
, Sizes
, ElementSize
);
3295 // Third step: compute the access functions for each subscript.
3296 SmallVector
<const SCEV
*, 4> SrcSubscripts
, DstSubscripts
;
3297 SE
->computeAccessFunctions(SrcAR
, SrcSubscripts
, Sizes
);
3298 SE
->computeAccessFunctions(DstAR
, DstSubscripts
, Sizes
);
3300 // Fail when there is only a subscript: that's a linearized access function.
3301 if (SrcSubscripts
.size() < 2 || DstSubscripts
.size() < 2 ||
3302 SrcSubscripts
.size() != DstSubscripts
.size())
3305 int size
= SrcSubscripts
.size();
3307 // Statically check that the array bounds are in-range. The first subscript we
3308 // don't have a size for and it cannot overflow into another subscript, so is
3309 // always safe. The others need to be 0 <= subscript[i] < bound, for both src
3311 // FIXME: It may be better to record these sizes and add them as constraints
3312 // to the dependency checks.
3313 for (int i
= 1; i
< size
; ++i
) {
3314 if (!isKnownNonNegative(SrcSubscripts
[i
], SrcPtr
))
3317 if (!isKnownLessThan(SrcSubscripts
[i
], Sizes
[i
- 1]))
3320 if (!isKnownNonNegative(DstSubscripts
[i
], DstPtr
))
3323 if (!isKnownLessThan(DstSubscripts
[i
], Sizes
[i
- 1]))
3328 dbgs() << "\nSrcSubscripts: ";
3329 for (int i
= 0; i
< size
; i
++)
3330 dbgs() << *SrcSubscripts
[i
];
3331 dbgs() << "\nDstSubscripts: ";
3332 for (int i
= 0; i
< size
; i
++)
3333 dbgs() << *DstSubscripts
[i
];
3336 // The delinearization transforms a single-subscript MIV dependence test into
3337 // a multi-subscript SIV dependence test that is easier to compute. So we
3338 // resize Pair to contain as many pairs of subscripts as the delinearization
3339 // has found, and then initialize the pairs following the delinearization.
3341 for (int i
= 0; i
< size
; ++i
) {
3342 Pair
[i
].Src
= SrcSubscripts
[i
];
3343 Pair
[i
].Dst
= DstSubscripts
[i
];
3344 unifySubscriptType(&Pair
[i
]);
3350 //===----------------------------------------------------------------------===//
3353 // For debugging purposes, dump a small bit vector to dbgs().
3354 static void dumpSmallBitVector(SmallBitVector
&BV
) {
3356 for (unsigned VI
: BV
.set_bits()) {
3358 if (BV
.find_next(VI
) >= 0)
3366 // Returns NULL if there is no dependence.
3367 // Otherwise, return a Dependence with as many details as possible.
3368 // Corresponds to Section 3.1 in the paper
3370 // Practical Dependence Testing
3371 // Goff, Kennedy, Tseng
3374 // Care is required to keep the routine below, getSplitIteration(),
3375 // up to date with respect to this routine.
3376 std::unique_ptr
<Dependence
>
3377 DependenceInfo::depends(Instruction
*Src
, Instruction
*Dst
,
3378 bool PossiblyLoopIndependent
) {
3380 PossiblyLoopIndependent
= false;
3382 if ((!Src
->mayReadFromMemory() && !Src
->mayWriteToMemory()) ||
3383 (!Dst
->mayReadFromMemory() && !Dst
->mayWriteToMemory()))
3384 // if both instructions don't reference memory, there's no dependence
3387 if (!isLoadOrStore(Src
) || !isLoadOrStore(Dst
)) {
3388 // can only analyze simple loads and stores, i.e., no calls, invokes, etc.
3389 LLVM_DEBUG(dbgs() << "can only handle simple loads and stores\n");
3390 return make_unique
<Dependence
>(Src
, Dst
);
3393 assert(isLoadOrStore(Src
) && "instruction is not load or store");
3394 assert(isLoadOrStore(Dst
) && "instruction is not load or store");
3395 Value
*SrcPtr
= getLoadStorePointerOperand(Src
);
3396 Value
*DstPtr
= getLoadStorePointerOperand(Dst
);
3398 switch (underlyingObjectsAlias(AA
, F
->getParent()->getDataLayout(),
3399 MemoryLocation::get(Dst
),
3400 MemoryLocation::get(Src
))) {
3403 // cannot analyse objects if we don't understand their aliasing.
3404 LLVM_DEBUG(dbgs() << "can't analyze may or partial alias\n");
3405 return make_unique
<Dependence
>(Src
, Dst
);
3407 // If the objects noalias, they are distinct, accesses are independent.
3408 LLVM_DEBUG(dbgs() << "no alias\n");
3411 break; // The underlying objects alias; test accesses for dependence.
3414 // establish loop nesting levels
3415 establishNestingLevels(Src
, Dst
);
3416 LLVM_DEBUG(dbgs() << " common nesting levels = " << CommonLevels
<< "\n");
3417 LLVM_DEBUG(dbgs() << " maximum nesting levels = " << MaxLevels
<< "\n");
3419 FullDependence
Result(Src
, Dst
, PossiblyLoopIndependent
, CommonLevels
);
3423 SmallVector
<Subscript
, 2> Pair(Pairs
);
3424 const SCEV
*SrcSCEV
= SE
->getSCEV(SrcPtr
);
3425 const SCEV
*DstSCEV
= SE
->getSCEV(DstPtr
);
3426 LLVM_DEBUG(dbgs() << " SrcSCEV = " << *SrcSCEV
<< "\n");
3427 LLVM_DEBUG(dbgs() << " DstSCEV = " << *DstSCEV
<< "\n");
3428 Pair
[0].Src
= SrcSCEV
;
3429 Pair
[0].Dst
= DstSCEV
;
3432 if (tryDelinearize(Src
, Dst
, Pair
)) {
3433 LLVM_DEBUG(dbgs() << " delinearized\n");
3434 Pairs
= Pair
.size();
3438 for (unsigned P
= 0; P
< Pairs
; ++P
) {
3439 Pair
[P
].Loops
.resize(MaxLevels
+ 1);
3440 Pair
[P
].GroupLoops
.resize(MaxLevels
+ 1);
3441 Pair
[P
].Group
.resize(Pairs
);
3442 removeMatchingExtensions(&Pair
[P
]);
3443 Pair
[P
].Classification
=
3444 classifyPair(Pair
[P
].Src
, LI
->getLoopFor(Src
->getParent()),
3445 Pair
[P
].Dst
, LI
->getLoopFor(Dst
->getParent()),
3447 Pair
[P
].GroupLoops
= Pair
[P
].Loops
;
3448 Pair
[P
].Group
.set(P
);
3449 LLVM_DEBUG(dbgs() << " subscript " << P
<< "\n");
3450 LLVM_DEBUG(dbgs() << "\tsrc = " << *Pair
[P
].Src
<< "\n");
3451 LLVM_DEBUG(dbgs() << "\tdst = " << *Pair
[P
].Dst
<< "\n");
3452 LLVM_DEBUG(dbgs() << "\tclass = " << Pair
[P
].Classification
<< "\n");
3453 LLVM_DEBUG(dbgs() << "\tloops = ");
3454 LLVM_DEBUG(dumpSmallBitVector(Pair
[P
].Loops
));
3457 SmallBitVector
Separable(Pairs
);
3458 SmallBitVector
Coupled(Pairs
);
3460 // Partition subscripts into separable and minimally-coupled groups
3461 // Algorithm in paper is algorithmically better;
3462 // this may be faster in practice. Check someday.
3464 // Here's an example of how it works. Consider this code:
3471 // A[i][j][k][m] = ...;
3472 // ... = A[0][j][l][i + j];
3479 // There are 4 subscripts here:
3483 // 3 [m] and [i + j]
3485 // We've already classified each subscript pair as ZIV, SIV, etc.,
3486 // and collected all the loops mentioned by pair P in Pair[P].Loops.
3487 // In addition, we've initialized Pair[P].GroupLoops to Pair[P].Loops
3488 // and set Pair[P].Group = {P}.
3490 // Src Dst Classification Loops GroupLoops Group
3491 // 0 [i] [0] SIV {1} {1} {0}
3492 // 1 [j] [j] SIV {2} {2} {1}
3493 // 2 [k] [l] RDIV {3,4} {3,4} {2}
3494 // 3 [m] [i + j] MIV {1,2,5} {1,2,5} {3}
3496 // For each subscript SI 0 .. 3, we consider each remaining subscript, SJ.
3497 // So, 0 is compared against 1, 2, and 3; 1 is compared against 2 and 3, etc.
3499 // We begin by comparing 0 and 1. The intersection of the GroupLoops is empty.
3500 // Next, 0 and 2. Again, the intersection of their GroupLoops is empty.
3501 // Next 0 and 3. The intersection of their GroupLoop = {1}, not empty,
3502 // so Pair[3].Group = {0,3} and Done = false (that is, 0 will not be added
3503 // to either Separable or Coupled).
3505 // Next, we consider 1 and 2. The intersection of the GroupLoops is empty.
3506 // Next, 1 and 3. The intersectionof their GroupLoops = {2}, not empty,
3507 // so Pair[3].Group = {0, 1, 3} and Done = false.
3509 // Next, we compare 2 against 3. The intersection of the GroupLoops is empty.
3510 // Since Done remains true, we add 2 to the set of Separable pairs.
3512 // Finally, we consider 3. There's nothing to compare it with,
3513 // so Done remains true and we add it to the Coupled set.
3514 // Pair[3].Group = {0, 1, 3} and GroupLoops = {1, 2, 5}.
3516 // In the end, we've got 1 separable subscript and 1 coupled group.
3517 for (unsigned SI
= 0; SI
< Pairs
; ++SI
) {
3518 if (Pair
[SI
].Classification
== Subscript::NonLinear
) {
3519 // ignore these, but collect loops for later
3520 ++NonlinearSubscriptPairs
;
3521 collectCommonLoops(Pair
[SI
].Src
,
3522 LI
->getLoopFor(Src
->getParent()),
3524 collectCommonLoops(Pair
[SI
].Dst
,
3525 LI
->getLoopFor(Dst
->getParent()),
3527 Result
.Consistent
= false;
3528 } else if (Pair
[SI
].Classification
== Subscript::ZIV
) {
3533 // SIV, RDIV, or MIV, so check for coupled group
3535 for (unsigned SJ
= SI
+ 1; SJ
< Pairs
; ++SJ
) {
3536 SmallBitVector Intersection
= Pair
[SI
].GroupLoops
;
3537 Intersection
&= Pair
[SJ
].GroupLoops
;
3538 if (Intersection
.any()) {
3539 // accumulate set of all the loops in group
3540 Pair
[SJ
].GroupLoops
|= Pair
[SI
].GroupLoops
;
3541 // accumulate set of all subscripts in group
3542 Pair
[SJ
].Group
|= Pair
[SI
].Group
;
3547 if (Pair
[SI
].Group
.count() == 1) {
3549 ++SeparableSubscriptPairs
;
3553 ++CoupledSubscriptPairs
;
3559 LLVM_DEBUG(dbgs() << " Separable = ");
3560 LLVM_DEBUG(dumpSmallBitVector(Separable
));
3561 LLVM_DEBUG(dbgs() << " Coupled = ");
3562 LLVM_DEBUG(dumpSmallBitVector(Coupled
));
3564 Constraint NewConstraint
;
3565 NewConstraint
.setAny(SE
);
3567 // test separable subscripts
3568 for (unsigned SI
: Separable
.set_bits()) {
3569 LLVM_DEBUG(dbgs() << "testing subscript " << SI
);
3570 switch (Pair
[SI
].Classification
) {
3571 case Subscript::ZIV
:
3572 LLVM_DEBUG(dbgs() << ", ZIV\n");
3573 if (testZIV(Pair
[SI
].Src
, Pair
[SI
].Dst
, Result
))
3576 case Subscript::SIV
: {
3577 LLVM_DEBUG(dbgs() << ", SIV\n");
3579 const SCEV
*SplitIter
= nullptr;
3580 if (testSIV(Pair
[SI
].Src
, Pair
[SI
].Dst
, Level
, Result
, NewConstraint
,
3585 case Subscript::RDIV
:
3586 LLVM_DEBUG(dbgs() << ", RDIV\n");
3587 if (testRDIV(Pair
[SI
].Src
, Pair
[SI
].Dst
, Result
))
3590 case Subscript::MIV
:
3591 LLVM_DEBUG(dbgs() << ", MIV\n");
3592 if (testMIV(Pair
[SI
].Src
, Pair
[SI
].Dst
, Pair
[SI
].Loops
, Result
))
3596 llvm_unreachable("subscript has unexpected classification");
3600 if (Coupled
.count()) {
3601 // test coupled subscript groups
3602 LLVM_DEBUG(dbgs() << "starting on coupled subscripts\n");
3603 LLVM_DEBUG(dbgs() << "MaxLevels + 1 = " << MaxLevels
+ 1 << "\n");
3604 SmallVector
<Constraint
, 4> Constraints(MaxLevels
+ 1);
3605 for (unsigned II
= 0; II
<= MaxLevels
; ++II
)
3606 Constraints
[II
].setAny(SE
);
3607 for (unsigned SI
: Coupled
.set_bits()) {
3608 LLVM_DEBUG(dbgs() << "testing subscript group " << SI
<< " { ");
3609 SmallBitVector
Group(Pair
[SI
].Group
);
3610 SmallBitVector
Sivs(Pairs
);
3611 SmallBitVector
Mivs(Pairs
);
3612 SmallBitVector
ConstrainedLevels(MaxLevels
+ 1);
3613 SmallVector
<Subscript
*, 4> PairsInGroup
;
3614 for (unsigned SJ
: Group
.set_bits()) {
3615 LLVM_DEBUG(dbgs() << SJ
<< " ");
3616 if (Pair
[SJ
].Classification
== Subscript::SIV
)
3620 PairsInGroup
.push_back(&Pair
[SJ
]);
3622 unifySubscriptType(PairsInGroup
);
3623 LLVM_DEBUG(dbgs() << "}\n");
3624 while (Sivs
.any()) {
3625 bool Changed
= false;
3626 for (unsigned SJ
: Sivs
.set_bits()) {
3627 LLVM_DEBUG(dbgs() << "testing subscript " << SJ
<< ", SIV\n");
3628 // SJ is an SIV subscript that's part of the current coupled group
3630 const SCEV
*SplitIter
= nullptr;
3631 LLVM_DEBUG(dbgs() << "SIV\n");
3632 if (testSIV(Pair
[SJ
].Src
, Pair
[SJ
].Dst
, Level
, Result
, NewConstraint
,
3635 ConstrainedLevels
.set(Level
);
3636 if (intersectConstraints(&Constraints
[Level
], &NewConstraint
)) {
3637 if (Constraints
[Level
].isEmpty()) {
3638 ++DeltaIndependence
;
3646 // propagate, possibly creating new SIVs and ZIVs
3647 LLVM_DEBUG(dbgs() << " propagating\n");
3648 LLVM_DEBUG(dbgs() << "\tMivs = ");
3649 LLVM_DEBUG(dumpSmallBitVector(Mivs
));
3650 for (unsigned SJ
: Mivs
.set_bits()) {
3651 // SJ is an MIV subscript that's part of the current coupled group
3652 LLVM_DEBUG(dbgs() << "\tSJ = " << SJ
<< "\n");
3653 if (propagate(Pair
[SJ
].Src
, Pair
[SJ
].Dst
, Pair
[SJ
].Loops
,
3654 Constraints
, Result
.Consistent
)) {
3655 LLVM_DEBUG(dbgs() << "\t Changed\n");
3656 ++DeltaPropagations
;
3657 Pair
[SJ
].Classification
=
3658 classifyPair(Pair
[SJ
].Src
, LI
->getLoopFor(Src
->getParent()),
3659 Pair
[SJ
].Dst
, LI
->getLoopFor(Dst
->getParent()),
3661 switch (Pair
[SJ
].Classification
) {
3662 case Subscript::ZIV
:
3663 LLVM_DEBUG(dbgs() << "ZIV\n");
3664 if (testZIV(Pair
[SJ
].Src
, Pair
[SJ
].Dst
, Result
))
3668 case Subscript::SIV
:
3672 case Subscript::RDIV
:
3673 case Subscript::MIV
:
3676 llvm_unreachable("bad subscript classification");
3683 // test & propagate remaining RDIVs
3684 for (unsigned SJ
: Mivs
.set_bits()) {
3685 if (Pair
[SJ
].Classification
== Subscript::RDIV
) {
3686 LLVM_DEBUG(dbgs() << "RDIV test\n");
3687 if (testRDIV(Pair
[SJ
].Src
, Pair
[SJ
].Dst
, Result
))
3689 // I don't yet understand how to propagate RDIV results
3694 // test remaining MIVs
3695 // This code is temporary.
3696 // Better to somehow test all remaining subscripts simultaneously.
3697 for (unsigned SJ
: Mivs
.set_bits()) {
3698 if (Pair
[SJ
].Classification
== Subscript::MIV
) {
3699 LLVM_DEBUG(dbgs() << "MIV test\n");
3700 if (testMIV(Pair
[SJ
].Src
, Pair
[SJ
].Dst
, Pair
[SJ
].Loops
, Result
))
3704 llvm_unreachable("expected only MIV subscripts at this point");
3707 // update Result.DV from constraint vector
3708 LLVM_DEBUG(dbgs() << " updating\n");
3709 for (unsigned SJ
: ConstrainedLevels
.set_bits()) {
3710 if (SJ
> CommonLevels
)
3712 updateDirection(Result
.DV
[SJ
- 1], Constraints
[SJ
]);
3713 if (Result
.DV
[SJ
- 1].Direction
== Dependence::DVEntry::NONE
)
3719 // Make sure the Scalar flags are set correctly.
3720 SmallBitVector
CompleteLoops(MaxLevels
+ 1);
3721 for (unsigned SI
= 0; SI
< Pairs
; ++SI
)
3722 CompleteLoops
|= Pair
[SI
].Loops
;
3723 for (unsigned II
= 1; II
<= CommonLevels
; ++II
)
3724 if (CompleteLoops
[II
])
3725 Result
.DV
[II
- 1].Scalar
= false;
3727 if (PossiblyLoopIndependent
) {
3728 // Make sure the LoopIndependent flag is set correctly.
3729 // All directions must include equal, otherwise no
3730 // loop-independent dependence is possible.
3731 for (unsigned II
= 1; II
<= CommonLevels
; ++II
) {
3732 if (!(Result
.getDirection(II
) & Dependence::DVEntry::EQ
)) {
3733 Result
.LoopIndependent
= false;
3739 // On the other hand, if all directions are equal and there's no
3740 // loop-independent dependence possible, then no dependence exists.
3741 bool AllEqual
= true;
3742 for (unsigned II
= 1; II
<= CommonLevels
; ++II
) {
3743 if (Result
.getDirection(II
) != Dependence::DVEntry::EQ
) {
3752 return make_unique
<FullDependence
>(std::move(Result
));
3757 //===----------------------------------------------------------------------===//
3758 // getSplitIteration -
3759 // Rather than spend rarely-used space recording the splitting iteration
3760 // during the Weak-Crossing SIV test, we re-compute it on demand.
3761 // The re-computation is basically a repeat of the entire dependence test,
3762 // though simplified since we know that the dependence exists.
3763 // It's tedious, since we must go through all propagations, etc.
3765 // Care is required to keep this code up to date with respect to the routine
3766 // above, depends().
3768 // Generally, the dependence analyzer will be used to build
3769 // a dependence graph for a function (basically a map from instructions
3770 // to dependences). Looking for cycles in the graph shows us loops
3771 // that cannot be trivially vectorized/parallelized.
3773 // We can try to improve the situation by examining all the dependences
3774 // that make up the cycle, looking for ones we can break.
3775 // Sometimes, peeling the first or last iteration of a loop will break
3776 // dependences, and we've got flags for those possibilities.
3777 // Sometimes, splitting a loop at some other iteration will do the trick,
3778 // and we've got a flag for that case. Rather than waste the space to
3779 // record the exact iteration (since we rarely know), we provide
3780 // a method that calculates the iteration. It's a drag that it must work
3781 // from scratch, but wonderful in that it's possible.
3783 // Here's an example:
3785 // for (i = 0; i < 10; i++)
3789 // There's a loop-carried flow dependence from the store to the load,
3790 // found by the weak-crossing SIV test. The dependence will have a flag,
3791 // indicating that the dependence can be broken by splitting the loop.
3792 // Calling getSplitIteration will return 5.
3793 // Splitting the loop breaks the dependence, like so:
3795 // for (i = 0; i <= 5; i++)
3798 // for (i = 6; i < 10; i++)
3802 // breaks the dependence and allows us to vectorize/parallelize
3804 const SCEV
*DependenceInfo::getSplitIteration(const Dependence
&Dep
,
3805 unsigned SplitLevel
) {
3806 assert(Dep
.isSplitable(SplitLevel
) &&
3807 "Dep should be splitable at SplitLevel");
3808 Instruction
*Src
= Dep
.getSrc();
3809 Instruction
*Dst
= Dep
.getDst();
3810 assert(Src
->mayReadFromMemory() || Src
->mayWriteToMemory());
3811 assert(Dst
->mayReadFromMemory() || Dst
->mayWriteToMemory());
3812 assert(isLoadOrStore(Src
));
3813 assert(isLoadOrStore(Dst
));
3814 Value
*SrcPtr
= getLoadStorePointerOperand(Src
);
3815 Value
*DstPtr
= getLoadStorePointerOperand(Dst
);
3816 assert(underlyingObjectsAlias(AA
, F
->getParent()->getDataLayout(),
3817 MemoryLocation::get(Dst
),
3818 MemoryLocation::get(Src
)) == MustAlias
);
3820 // establish loop nesting levels
3821 establishNestingLevels(Src
, Dst
);
3823 FullDependence
Result(Src
, Dst
, false, CommonLevels
);
3826 SmallVector
<Subscript
, 2> Pair(Pairs
);
3827 const SCEV
*SrcSCEV
= SE
->getSCEV(SrcPtr
);
3828 const SCEV
*DstSCEV
= SE
->getSCEV(DstPtr
);
3829 Pair
[0].Src
= SrcSCEV
;
3830 Pair
[0].Dst
= DstSCEV
;
3833 if (tryDelinearize(Src
, Dst
, Pair
)) {
3834 LLVM_DEBUG(dbgs() << " delinearized\n");
3835 Pairs
= Pair
.size();
3839 for (unsigned P
= 0; P
< Pairs
; ++P
) {
3840 Pair
[P
].Loops
.resize(MaxLevels
+ 1);
3841 Pair
[P
].GroupLoops
.resize(MaxLevels
+ 1);
3842 Pair
[P
].Group
.resize(Pairs
);
3843 removeMatchingExtensions(&Pair
[P
]);
3844 Pair
[P
].Classification
=
3845 classifyPair(Pair
[P
].Src
, LI
->getLoopFor(Src
->getParent()),
3846 Pair
[P
].Dst
, LI
->getLoopFor(Dst
->getParent()),
3848 Pair
[P
].GroupLoops
= Pair
[P
].Loops
;
3849 Pair
[P
].Group
.set(P
);
3852 SmallBitVector
Separable(Pairs
);
3853 SmallBitVector
Coupled(Pairs
);
3855 // partition subscripts into separable and minimally-coupled groups
3856 for (unsigned SI
= 0; SI
< Pairs
; ++SI
) {
3857 if (Pair
[SI
].Classification
== Subscript::NonLinear
) {
3858 // ignore these, but collect loops for later
3859 collectCommonLoops(Pair
[SI
].Src
,
3860 LI
->getLoopFor(Src
->getParent()),
3862 collectCommonLoops(Pair
[SI
].Dst
,
3863 LI
->getLoopFor(Dst
->getParent()),
3865 Result
.Consistent
= false;
3867 else if (Pair
[SI
].Classification
== Subscript::ZIV
)
3870 // SIV, RDIV, or MIV, so check for coupled group
3872 for (unsigned SJ
= SI
+ 1; SJ
< Pairs
; ++SJ
) {
3873 SmallBitVector Intersection
= Pair
[SI
].GroupLoops
;
3874 Intersection
&= Pair
[SJ
].GroupLoops
;
3875 if (Intersection
.any()) {
3876 // accumulate set of all the loops in group
3877 Pair
[SJ
].GroupLoops
|= Pair
[SI
].GroupLoops
;
3878 // accumulate set of all subscripts in group
3879 Pair
[SJ
].Group
|= Pair
[SI
].Group
;
3884 if (Pair
[SI
].Group
.count() == 1)
3892 Constraint NewConstraint
;
3893 NewConstraint
.setAny(SE
);
3895 // test separable subscripts
3896 for (unsigned SI
: Separable
.set_bits()) {
3897 switch (Pair
[SI
].Classification
) {
3898 case Subscript::SIV
: {
3900 const SCEV
*SplitIter
= nullptr;
3901 (void) testSIV(Pair
[SI
].Src
, Pair
[SI
].Dst
, Level
,
3902 Result
, NewConstraint
, SplitIter
);
3903 if (Level
== SplitLevel
) {
3904 assert(SplitIter
!= nullptr);
3909 case Subscript::ZIV
:
3910 case Subscript::RDIV
:
3911 case Subscript::MIV
:
3914 llvm_unreachable("subscript has unexpected classification");
3918 if (Coupled
.count()) {
3919 // test coupled subscript groups
3920 SmallVector
<Constraint
, 4> Constraints(MaxLevels
+ 1);
3921 for (unsigned II
= 0; II
<= MaxLevels
; ++II
)
3922 Constraints
[II
].setAny(SE
);
3923 for (unsigned SI
: Coupled
.set_bits()) {
3924 SmallBitVector
Group(Pair
[SI
].Group
);
3925 SmallBitVector
Sivs(Pairs
);
3926 SmallBitVector
Mivs(Pairs
);
3927 SmallBitVector
ConstrainedLevels(MaxLevels
+ 1);
3928 for (unsigned SJ
: Group
.set_bits()) {
3929 if (Pair
[SJ
].Classification
== Subscript::SIV
)
3934 while (Sivs
.any()) {
3935 bool Changed
= false;
3936 for (unsigned SJ
: Sivs
.set_bits()) {
3937 // SJ is an SIV subscript that's part of the current coupled group
3939 const SCEV
*SplitIter
= nullptr;
3940 (void) testSIV(Pair
[SJ
].Src
, Pair
[SJ
].Dst
, Level
,
3941 Result
, NewConstraint
, SplitIter
);
3942 if (Level
== SplitLevel
&& SplitIter
)
3944 ConstrainedLevels
.set(Level
);
3945 if (intersectConstraints(&Constraints
[Level
], &NewConstraint
))
3950 // propagate, possibly creating new SIVs and ZIVs
3951 for (unsigned SJ
: Mivs
.set_bits()) {
3952 // SJ is an MIV subscript that's part of the current coupled group
3953 if (propagate(Pair
[SJ
].Src
, Pair
[SJ
].Dst
,
3954 Pair
[SJ
].Loops
, Constraints
, Result
.Consistent
)) {
3955 Pair
[SJ
].Classification
=
3956 classifyPair(Pair
[SJ
].Src
, LI
->getLoopFor(Src
->getParent()),
3957 Pair
[SJ
].Dst
, LI
->getLoopFor(Dst
->getParent()),
3959 switch (Pair
[SJ
].Classification
) {
3960 case Subscript::ZIV
:
3963 case Subscript::SIV
:
3967 case Subscript::RDIV
:
3968 case Subscript::MIV
:
3971 llvm_unreachable("bad subscript classification");
3979 llvm_unreachable("somehow reached end of routine");