[llvm-exegesis] Fix missing std::move.
[llvm-complete.git] / lib / Analysis / DependenceAnalysis.cpp
blobb544ae5f535d3abf27249771db6e8236a67bfc77
1 //===-- DependenceAnalysis.cpp - DA Implementation --------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // DependenceAnalysis is an LLVM pass that analyses dependences between memory
11 // accesses. Currently, it is an (incomplete) implementation of the approach
12 // described in
14 // Practical Dependence Testing
15 // Goff, Kennedy, Tseng
16 // PLDI 1991
18 // There's a single entry point that analyzes the dependence between a pair
19 // of memory references in a function, returning either NULL, for no dependence,
20 // or a more-or-less detailed description of the dependence between them.
22 // Currently, the implementation cannot propagate constraints between
23 // coupled RDIV subscripts and lacks a multi-subscript MIV test.
24 // Both of these are conservative weaknesses;
25 // that is, not a source of correctness problems.
27 // Since Clang linearizes some array subscripts, the dependence
28 // analysis is using SCEV->delinearize to recover the representation of multiple
29 // subscripts, and thus avoid the more expensive and less precise MIV tests. The
30 // delinearization is controlled by the flag -da-delinearize.
32 // We should pay some careful attention to the possibility of integer overflow
33 // in the implementation of the various tests. This could happen with Add,
34 // Subtract, or Multiply, with both APInt's and SCEV's.
36 // Some non-linear subscript pairs can be handled by the GCD test
37 // (and perhaps other tests).
38 // Should explore how often these things occur.
40 // Finally, it seems like certain test cases expose weaknesses in the SCEV
41 // simplification, especially in the handling of sign and zero extensions.
42 // It could be useful to spend time exploring these.
44 // Please note that this is work in progress and the interface is subject to
45 // change.
47 //===----------------------------------------------------------------------===//
48 // //
49 // In memory of Ken Kennedy, 1945 - 2007 //
50 // //
51 //===----------------------------------------------------------------------===//
53 #include "llvm/Analysis/DependenceAnalysis.h"
54 #include "llvm/ADT/STLExtras.h"
55 #include "llvm/ADT/Statistic.h"
56 #include "llvm/Analysis/AliasAnalysis.h"
57 #include "llvm/Analysis/LoopInfo.h"
58 #include "llvm/Analysis/ScalarEvolution.h"
59 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
60 #include "llvm/Analysis/ValueTracking.h"
61 #include "llvm/Config/llvm-config.h"
62 #include "llvm/IR/InstIterator.h"
63 #include "llvm/IR/Module.h"
64 #include "llvm/IR/Operator.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/raw_ostream.h"
70 using namespace llvm;
72 #define DEBUG_TYPE "da"
74 //===----------------------------------------------------------------------===//
75 // statistics
77 STATISTIC(TotalArrayPairs, "Array pairs tested");
78 STATISTIC(SeparableSubscriptPairs, "Separable subscript pairs");
79 STATISTIC(CoupledSubscriptPairs, "Coupled subscript pairs");
80 STATISTIC(NonlinearSubscriptPairs, "Nonlinear subscript pairs");
81 STATISTIC(ZIVapplications, "ZIV applications");
82 STATISTIC(ZIVindependence, "ZIV independence");
83 STATISTIC(StrongSIVapplications, "Strong SIV applications");
84 STATISTIC(StrongSIVsuccesses, "Strong SIV successes");
85 STATISTIC(StrongSIVindependence, "Strong SIV independence");
86 STATISTIC(WeakCrossingSIVapplications, "Weak-Crossing SIV applications");
87 STATISTIC(WeakCrossingSIVsuccesses, "Weak-Crossing SIV successes");
88 STATISTIC(WeakCrossingSIVindependence, "Weak-Crossing SIV independence");
89 STATISTIC(ExactSIVapplications, "Exact SIV applications");
90 STATISTIC(ExactSIVsuccesses, "Exact SIV successes");
91 STATISTIC(ExactSIVindependence, "Exact SIV independence");
92 STATISTIC(WeakZeroSIVapplications, "Weak-Zero SIV applications");
93 STATISTIC(WeakZeroSIVsuccesses, "Weak-Zero SIV successes");
94 STATISTIC(WeakZeroSIVindependence, "Weak-Zero SIV independence");
95 STATISTIC(ExactRDIVapplications, "Exact RDIV applications");
96 STATISTIC(ExactRDIVindependence, "Exact RDIV independence");
97 STATISTIC(SymbolicRDIVapplications, "Symbolic RDIV applications");
98 STATISTIC(SymbolicRDIVindependence, "Symbolic RDIV independence");
99 STATISTIC(DeltaApplications, "Delta applications");
100 STATISTIC(DeltaSuccesses, "Delta successes");
101 STATISTIC(DeltaIndependence, "Delta independence");
102 STATISTIC(DeltaPropagations, "Delta propagations");
103 STATISTIC(GCDapplications, "GCD applications");
104 STATISTIC(GCDsuccesses, "GCD successes");
105 STATISTIC(GCDindependence, "GCD independence");
106 STATISTIC(BanerjeeApplications, "Banerjee applications");
107 STATISTIC(BanerjeeIndependence, "Banerjee independence");
108 STATISTIC(BanerjeeSuccesses, "Banerjee successes");
110 static cl::opt<bool>
111 Delinearize("da-delinearize", cl::init(true), cl::Hidden, cl::ZeroOrMore,
112 cl::desc("Try to delinearize array references."));
114 //===----------------------------------------------------------------------===//
115 // basics
117 DependenceAnalysis::Result
118 DependenceAnalysis::run(Function &F, FunctionAnalysisManager &FAM) {
119 auto &AA = FAM.getResult<AAManager>(F);
120 auto &SE = FAM.getResult<ScalarEvolutionAnalysis>(F);
121 auto &LI = FAM.getResult<LoopAnalysis>(F);
122 return DependenceInfo(&F, &AA, &SE, &LI);
125 AnalysisKey DependenceAnalysis::Key;
127 INITIALIZE_PASS_BEGIN(DependenceAnalysisWrapperPass, "da",
128 "Dependence Analysis", true, true)
129 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
130 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
131 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
132 INITIALIZE_PASS_END(DependenceAnalysisWrapperPass, "da", "Dependence Analysis",
133 true, true)
135 char DependenceAnalysisWrapperPass::ID = 0;
137 FunctionPass *llvm::createDependenceAnalysisWrapperPass() {
138 return new DependenceAnalysisWrapperPass();
141 bool DependenceAnalysisWrapperPass::runOnFunction(Function &F) {
142 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
143 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
144 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
145 info.reset(new DependenceInfo(&F, &AA, &SE, &LI));
146 return false;
149 DependenceInfo &DependenceAnalysisWrapperPass::getDI() const { return *info; }
151 void DependenceAnalysisWrapperPass::releaseMemory() { info.reset(); }
153 void DependenceAnalysisWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
154 AU.setPreservesAll();
155 AU.addRequiredTransitive<AAResultsWrapperPass>();
156 AU.addRequiredTransitive<ScalarEvolutionWrapperPass>();
157 AU.addRequiredTransitive<LoopInfoWrapperPass>();
161 // Used to test the dependence analyzer.
162 // Looks through the function, noting loads and stores.
163 // Calls depends() on every possible pair and prints out the result.
164 // Ignores all other instructions.
165 static void dumpExampleDependence(raw_ostream &OS, DependenceInfo *DA) {
166 auto *F = DA->getFunction();
167 for (inst_iterator SrcI = inst_begin(F), SrcE = inst_end(F); SrcI != SrcE;
168 ++SrcI) {
169 if (isa<StoreInst>(*SrcI) || isa<LoadInst>(*SrcI)) {
170 for (inst_iterator DstI = SrcI, DstE = inst_end(F);
171 DstI != DstE; ++DstI) {
172 if (isa<StoreInst>(*DstI) || isa<LoadInst>(*DstI)) {
173 OS << "da analyze - ";
174 if (auto D = DA->depends(&*SrcI, &*DstI, true)) {
175 D->dump(OS);
176 for (unsigned Level = 1; Level <= D->getLevels(); Level++) {
177 if (D->isSplitable(Level)) {
178 OS << "da analyze - split level = " << Level;
179 OS << ", iteration = " << *DA->getSplitIteration(*D, Level);
180 OS << "!\n";
184 else
185 OS << "none!\n";
192 void DependenceAnalysisWrapperPass::print(raw_ostream &OS,
193 const Module *) const {
194 dumpExampleDependence(OS, info.get());
197 //===----------------------------------------------------------------------===//
198 // Dependence methods
200 // Returns true if this is an input dependence.
201 bool Dependence::isInput() const {
202 return Src->mayReadFromMemory() && Dst->mayReadFromMemory();
206 // Returns true if this is an output dependence.
207 bool Dependence::isOutput() const {
208 return Src->mayWriteToMemory() && Dst->mayWriteToMemory();
212 // Returns true if this is an flow (aka true) dependence.
213 bool Dependence::isFlow() const {
214 return Src->mayWriteToMemory() && Dst->mayReadFromMemory();
218 // Returns true if this is an anti dependence.
219 bool Dependence::isAnti() const {
220 return Src->mayReadFromMemory() && Dst->mayWriteToMemory();
224 // Returns true if a particular level is scalar; that is,
225 // if no subscript in the source or destination mention the induction
226 // variable associated with the loop at this level.
227 // Leave this out of line, so it will serve as a virtual method anchor
228 bool Dependence::isScalar(unsigned level) const {
229 return false;
233 //===----------------------------------------------------------------------===//
234 // FullDependence methods
236 FullDependence::FullDependence(Instruction *Source, Instruction *Destination,
237 bool PossiblyLoopIndependent,
238 unsigned CommonLevels)
239 : Dependence(Source, Destination), Levels(CommonLevels),
240 LoopIndependent(PossiblyLoopIndependent) {
241 Consistent = true;
242 if (CommonLevels)
243 DV = make_unique<DVEntry[]>(CommonLevels);
246 // The rest are simple getters that hide the implementation.
248 // getDirection - Returns the direction associated with a particular level.
249 unsigned FullDependence::getDirection(unsigned Level) const {
250 assert(0 < Level && Level <= Levels && "Level out of range");
251 return DV[Level - 1].Direction;
255 // Returns the distance (or NULL) associated with a particular level.
256 const SCEV *FullDependence::getDistance(unsigned Level) const {
257 assert(0 < Level && Level <= Levels && "Level out of range");
258 return DV[Level - 1].Distance;
262 // Returns true if a particular level is scalar; that is,
263 // if no subscript in the source or destination mention the induction
264 // variable associated with the loop at this level.
265 bool FullDependence::isScalar(unsigned Level) const {
266 assert(0 < Level && Level <= Levels && "Level out of range");
267 return DV[Level - 1].Scalar;
271 // Returns true if peeling the first iteration from this loop
272 // will break this dependence.
273 bool FullDependence::isPeelFirst(unsigned Level) const {
274 assert(0 < Level && Level <= Levels && "Level out of range");
275 return DV[Level - 1].PeelFirst;
279 // Returns true if peeling the last iteration from this loop
280 // will break this dependence.
281 bool FullDependence::isPeelLast(unsigned Level) const {
282 assert(0 < Level && Level <= Levels && "Level out of range");
283 return DV[Level - 1].PeelLast;
287 // Returns true if splitting this loop will break the dependence.
288 bool FullDependence::isSplitable(unsigned Level) const {
289 assert(0 < Level && Level <= Levels && "Level out of range");
290 return DV[Level - 1].Splitable;
294 //===----------------------------------------------------------------------===//
295 // DependenceInfo::Constraint methods
297 // If constraint is a point <X, Y>, returns X.
298 // Otherwise assert.
299 const SCEV *DependenceInfo::Constraint::getX() const {
300 assert(Kind == Point && "Kind should be Point");
301 return A;
305 // If constraint is a point <X, Y>, returns Y.
306 // Otherwise assert.
307 const SCEV *DependenceInfo::Constraint::getY() const {
308 assert(Kind == Point && "Kind should be Point");
309 return B;
313 // If constraint is a line AX + BY = C, returns A.
314 // Otherwise assert.
315 const SCEV *DependenceInfo::Constraint::getA() const {
316 assert((Kind == Line || Kind == Distance) &&
317 "Kind should be Line (or Distance)");
318 return A;
322 // If constraint is a line AX + BY = C, returns B.
323 // Otherwise assert.
324 const SCEV *DependenceInfo::Constraint::getB() const {
325 assert((Kind == Line || Kind == Distance) &&
326 "Kind should be Line (or Distance)");
327 return B;
331 // If constraint is a line AX + BY = C, returns C.
332 // Otherwise assert.
333 const SCEV *DependenceInfo::Constraint::getC() const {
334 assert((Kind == Line || Kind == Distance) &&
335 "Kind should be Line (or Distance)");
336 return C;
340 // If constraint is a distance, returns D.
341 // Otherwise assert.
342 const SCEV *DependenceInfo::Constraint::getD() const {
343 assert(Kind == Distance && "Kind should be Distance");
344 return SE->getNegativeSCEV(C);
348 // Returns the loop associated with this constraint.
349 const Loop *DependenceInfo::Constraint::getAssociatedLoop() const {
350 assert((Kind == Distance || Kind == Line || Kind == Point) &&
351 "Kind should be Distance, Line, or Point");
352 return AssociatedLoop;
355 void DependenceInfo::Constraint::setPoint(const SCEV *X, const SCEV *Y,
356 const Loop *CurLoop) {
357 Kind = Point;
358 A = X;
359 B = Y;
360 AssociatedLoop = CurLoop;
363 void DependenceInfo::Constraint::setLine(const SCEV *AA, const SCEV *BB,
364 const SCEV *CC, const Loop *CurLoop) {
365 Kind = Line;
366 A = AA;
367 B = BB;
368 C = CC;
369 AssociatedLoop = CurLoop;
372 void DependenceInfo::Constraint::setDistance(const SCEV *D,
373 const Loop *CurLoop) {
374 Kind = Distance;
375 A = SE->getOne(D->getType());
376 B = SE->getNegativeSCEV(A);
377 C = SE->getNegativeSCEV(D);
378 AssociatedLoop = CurLoop;
381 void DependenceInfo::Constraint::setEmpty() { Kind = Empty; }
383 void DependenceInfo::Constraint::setAny(ScalarEvolution *NewSE) {
384 SE = NewSE;
385 Kind = Any;
388 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
389 // For debugging purposes. Dumps the constraint out to OS.
390 LLVM_DUMP_METHOD void DependenceInfo::Constraint::dump(raw_ostream &OS) const {
391 if (isEmpty())
392 OS << " Empty\n";
393 else if (isAny())
394 OS << " Any\n";
395 else if (isPoint())
396 OS << " Point is <" << *getX() << ", " << *getY() << ">\n";
397 else if (isDistance())
398 OS << " Distance is " << *getD() <<
399 " (" << *getA() << "*X + " << *getB() << "*Y = " << *getC() << ")\n";
400 else if (isLine())
401 OS << " Line is " << *getA() << "*X + " <<
402 *getB() << "*Y = " << *getC() << "\n";
403 else
404 llvm_unreachable("unknown constraint type in Constraint::dump");
406 #endif
409 // Updates X with the intersection
410 // of the Constraints X and Y. Returns true if X has changed.
411 // Corresponds to Figure 4 from the paper
413 // Practical Dependence Testing
414 // Goff, Kennedy, Tseng
415 // PLDI 1991
416 bool DependenceInfo::intersectConstraints(Constraint *X, const Constraint *Y) {
417 ++DeltaApplications;
418 LLVM_DEBUG(dbgs() << "\tintersect constraints\n");
419 LLVM_DEBUG(dbgs() << "\t X ="; X->dump(dbgs()));
420 LLVM_DEBUG(dbgs() << "\t Y ="; Y->dump(dbgs()));
421 assert(!Y->isPoint() && "Y must not be a Point");
422 if (X->isAny()) {
423 if (Y->isAny())
424 return false;
425 *X = *Y;
426 return true;
428 if (X->isEmpty())
429 return false;
430 if (Y->isEmpty()) {
431 X->setEmpty();
432 return true;
435 if (X->isDistance() && Y->isDistance()) {
436 LLVM_DEBUG(dbgs() << "\t intersect 2 distances\n");
437 if (isKnownPredicate(CmpInst::ICMP_EQ, X->getD(), Y->getD()))
438 return false;
439 if (isKnownPredicate(CmpInst::ICMP_NE, X->getD(), Y->getD())) {
440 X->setEmpty();
441 ++DeltaSuccesses;
442 return true;
444 // Hmmm, interesting situation.
445 // I guess if either is constant, keep it and ignore the other.
446 if (isa<SCEVConstant>(Y->getD())) {
447 *X = *Y;
448 return true;
450 return false;
453 // At this point, the pseudo-code in Figure 4 of the paper
454 // checks if (X->isPoint() && Y->isPoint()).
455 // This case can't occur in our implementation,
456 // since a Point can only arise as the result of intersecting
457 // two Line constraints, and the right-hand value, Y, is never
458 // the result of an intersection.
459 assert(!(X->isPoint() && Y->isPoint()) &&
460 "We shouldn't ever see X->isPoint() && Y->isPoint()");
462 if (X->isLine() && Y->isLine()) {
463 LLVM_DEBUG(dbgs() << "\t intersect 2 lines\n");
464 const SCEV *Prod1 = SE->getMulExpr(X->getA(), Y->getB());
465 const SCEV *Prod2 = SE->getMulExpr(X->getB(), Y->getA());
466 if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2)) {
467 // slopes are equal, so lines are parallel
468 LLVM_DEBUG(dbgs() << "\t\tsame slope\n");
469 Prod1 = SE->getMulExpr(X->getC(), Y->getB());
470 Prod2 = SE->getMulExpr(X->getB(), Y->getC());
471 if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2))
472 return false;
473 if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
474 X->setEmpty();
475 ++DeltaSuccesses;
476 return true;
478 return false;
480 if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
481 // slopes differ, so lines intersect
482 LLVM_DEBUG(dbgs() << "\t\tdifferent slopes\n");
483 const SCEV *C1B2 = SE->getMulExpr(X->getC(), Y->getB());
484 const SCEV *C1A2 = SE->getMulExpr(X->getC(), Y->getA());
485 const SCEV *C2B1 = SE->getMulExpr(Y->getC(), X->getB());
486 const SCEV *C2A1 = SE->getMulExpr(Y->getC(), X->getA());
487 const SCEV *A1B2 = SE->getMulExpr(X->getA(), Y->getB());
488 const SCEV *A2B1 = SE->getMulExpr(Y->getA(), X->getB());
489 const SCEVConstant *C1A2_C2A1 =
490 dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1A2, C2A1));
491 const SCEVConstant *C1B2_C2B1 =
492 dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1B2, C2B1));
493 const SCEVConstant *A1B2_A2B1 =
494 dyn_cast<SCEVConstant>(SE->getMinusSCEV(A1B2, A2B1));
495 const SCEVConstant *A2B1_A1B2 =
496 dyn_cast<SCEVConstant>(SE->getMinusSCEV(A2B1, A1B2));
497 if (!C1B2_C2B1 || !C1A2_C2A1 ||
498 !A1B2_A2B1 || !A2B1_A1B2)
499 return false;
500 APInt Xtop = C1B2_C2B1->getAPInt();
501 APInt Xbot = A1B2_A2B1->getAPInt();
502 APInt Ytop = C1A2_C2A1->getAPInt();
503 APInt Ybot = A2B1_A1B2->getAPInt();
504 LLVM_DEBUG(dbgs() << "\t\tXtop = " << Xtop << "\n");
505 LLVM_DEBUG(dbgs() << "\t\tXbot = " << Xbot << "\n");
506 LLVM_DEBUG(dbgs() << "\t\tYtop = " << Ytop << "\n");
507 LLVM_DEBUG(dbgs() << "\t\tYbot = " << Ybot << "\n");
508 APInt Xq = Xtop; // these need to be initialized, even
509 APInt Xr = Xtop; // though they're just going to be overwritten
510 APInt::sdivrem(Xtop, Xbot, Xq, Xr);
511 APInt Yq = Ytop;
512 APInt Yr = Ytop;
513 APInt::sdivrem(Ytop, Ybot, Yq, Yr);
514 if (Xr != 0 || Yr != 0) {
515 X->setEmpty();
516 ++DeltaSuccesses;
517 return true;
519 LLVM_DEBUG(dbgs() << "\t\tX = " << Xq << ", Y = " << Yq << "\n");
520 if (Xq.slt(0) || Yq.slt(0)) {
521 X->setEmpty();
522 ++DeltaSuccesses;
523 return true;
525 if (const SCEVConstant *CUB =
526 collectConstantUpperBound(X->getAssociatedLoop(), Prod1->getType())) {
527 const APInt &UpperBound = CUB->getAPInt();
528 LLVM_DEBUG(dbgs() << "\t\tupper bound = " << UpperBound << "\n");
529 if (Xq.sgt(UpperBound) || Yq.sgt(UpperBound)) {
530 X->setEmpty();
531 ++DeltaSuccesses;
532 return true;
535 X->setPoint(SE->getConstant(Xq),
536 SE->getConstant(Yq),
537 X->getAssociatedLoop());
538 ++DeltaSuccesses;
539 return true;
541 return false;
544 // if (X->isLine() && Y->isPoint()) This case can't occur.
545 assert(!(X->isLine() && Y->isPoint()) && "This case should never occur");
547 if (X->isPoint() && Y->isLine()) {
548 LLVM_DEBUG(dbgs() << "\t intersect Point and Line\n");
549 const SCEV *A1X1 = SE->getMulExpr(Y->getA(), X->getX());
550 const SCEV *B1Y1 = SE->getMulExpr(Y->getB(), X->getY());
551 const SCEV *Sum = SE->getAddExpr(A1X1, B1Y1);
552 if (isKnownPredicate(CmpInst::ICMP_EQ, Sum, Y->getC()))
553 return false;
554 if (isKnownPredicate(CmpInst::ICMP_NE, Sum, Y->getC())) {
555 X->setEmpty();
556 ++DeltaSuccesses;
557 return true;
559 return false;
562 llvm_unreachable("shouldn't reach the end of Constraint intersection");
563 return false;
567 //===----------------------------------------------------------------------===//
568 // DependenceInfo methods
570 // For debugging purposes. Dumps a dependence to OS.
571 void Dependence::dump(raw_ostream &OS) const {
572 bool Splitable = false;
573 if (isConfused())
574 OS << "confused";
575 else {
576 if (isConsistent())
577 OS << "consistent ";
578 if (isFlow())
579 OS << "flow";
580 else if (isOutput())
581 OS << "output";
582 else if (isAnti())
583 OS << "anti";
584 else if (isInput())
585 OS << "input";
586 unsigned Levels = getLevels();
587 OS << " [";
588 for (unsigned II = 1; II <= Levels; ++II) {
589 if (isSplitable(II))
590 Splitable = true;
591 if (isPeelFirst(II))
592 OS << 'p';
593 const SCEV *Distance = getDistance(II);
594 if (Distance)
595 OS << *Distance;
596 else if (isScalar(II))
597 OS << "S";
598 else {
599 unsigned Direction = getDirection(II);
600 if (Direction == DVEntry::ALL)
601 OS << "*";
602 else {
603 if (Direction & DVEntry::LT)
604 OS << "<";
605 if (Direction & DVEntry::EQ)
606 OS << "=";
607 if (Direction & DVEntry::GT)
608 OS << ">";
611 if (isPeelLast(II))
612 OS << 'p';
613 if (II < Levels)
614 OS << " ";
616 if (isLoopIndependent())
617 OS << "|<";
618 OS << "]";
619 if (Splitable)
620 OS << " splitable";
622 OS << "!\n";
625 // Returns NoAlias/MayAliass/MustAlias for two memory locations based upon their
626 // underlaying objects. If LocA and LocB are known to not alias (for any reason:
627 // tbaa, non-overlapping regions etc), then it is known there is no dependecy.
628 // Otherwise the underlying objects are checked to see if they point to
629 // different identifiable objects.
630 static AliasResult underlyingObjectsAlias(AliasAnalysis *AA,
631 const DataLayout &DL,
632 const MemoryLocation &LocA,
633 const MemoryLocation &LocB) {
634 // Check the original locations (minus size) for noalias, which can happen for
635 // tbaa, incompatible underlying object locations, etc.
636 MemoryLocation LocAS(LocA.Ptr, LocationSize::unknown(), LocA.AATags);
637 MemoryLocation LocBS(LocB.Ptr, LocationSize::unknown(), LocB.AATags);
638 if (AA->alias(LocAS, LocBS) == NoAlias)
639 return NoAlias;
641 // Check the underlying objects are the same
642 const Value *AObj = GetUnderlyingObject(LocA.Ptr, DL);
643 const Value *BObj = GetUnderlyingObject(LocB.Ptr, DL);
645 // If the underlying objects are the same, they must alias
646 if (AObj == BObj)
647 return MustAlias;
649 // We may have hit the recursion limit for underlying objects, or have
650 // underlying objects where we don't know they will alias.
651 if (!isIdentifiedObject(AObj) || !isIdentifiedObject(BObj))
652 return MayAlias;
654 // Otherwise we know the objects are different and both identified objects so
655 // must not alias.
656 return NoAlias;
660 // Returns true if the load or store can be analyzed. Atomic and volatile
661 // operations have properties which this analysis does not understand.
662 static
663 bool isLoadOrStore(const Instruction *I) {
664 if (const LoadInst *LI = dyn_cast<LoadInst>(I))
665 return LI->isUnordered();
666 else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
667 return SI->isUnordered();
668 return false;
672 // Examines the loop nesting of the Src and Dst
673 // instructions and establishes their shared loops. Sets the variables
674 // CommonLevels, SrcLevels, and MaxLevels.
675 // The source and destination instructions needn't be contained in the same
676 // loop. The routine establishNestingLevels finds the level of most deeply
677 // nested loop that contains them both, CommonLevels. An instruction that's
678 // not contained in a loop is at level = 0. MaxLevels is equal to the level
679 // of the source plus the level of the destination, minus CommonLevels.
680 // This lets us allocate vectors MaxLevels in length, with room for every
681 // distinct loop referenced in both the source and destination subscripts.
682 // The variable SrcLevels is the nesting depth of the source instruction.
683 // It's used to help calculate distinct loops referenced by the destination.
684 // Here's the map from loops to levels:
685 // 0 - unused
686 // 1 - outermost common loop
687 // ... - other common loops
688 // CommonLevels - innermost common loop
689 // ... - loops containing Src but not Dst
690 // SrcLevels - innermost loop containing Src but not Dst
691 // ... - loops containing Dst but not Src
692 // MaxLevels - innermost loops containing Dst but not Src
693 // Consider the follow code fragment:
694 // for (a = ...) {
695 // for (b = ...) {
696 // for (c = ...) {
697 // for (d = ...) {
698 // A[] = ...;
699 // }
700 // }
701 // for (e = ...) {
702 // for (f = ...) {
703 // for (g = ...) {
704 // ... = A[];
705 // }
706 // }
707 // }
708 // }
709 // }
710 // If we're looking at the possibility of a dependence between the store
711 // to A (the Src) and the load from A (the Dst), we'll note that they
712 // have 2 loops in common, so CommonLevels will equal 2 and the direction
713 // vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7.
714 // A map from loop names to loop numbers would look like
715 // a - 1
716 // b - 2 = CommonLevels
717 // c - 3
718 // d - 4 = SrcLevels
719 // e - 5
720 // f - 6
721 // g - 7 = MaxLevels
722 void DependenceInfo::establishNestingLevels(const Instruction *Src,
723 const Instruction *Dst) {
724 const BasicBlock *SrcBlock = Src->getParent();
725 const BasicBlock *DstBlock = Dst->getParent();
726 unsigned SrcLevel = LI->getLoopDepth(SrcBlock);
727 unsigned DstLevel = LI->getLoopDepth(DstBlock);
728 const Loop *SrcLoop = LI->getLoopFor(SrcBlock);
729 const Loop *DstLoop = LI->getLoopFor(DstBlock);
730 SrcLevels = SrcLevel;
731 MaxLevels = SrcLevel + DstLevel;
732 while (SrcLevel > DstLevel) {
733 SrcLoop = SrcLoop->getParentLoop();
734 SrcLevel--;
736 while (DstLevel > SrcLevel) {
737 DstLoop = DstLoop->getParentLoop();
738 DstLevel--;
740 while (SrcLoop != DstLoop) {
741 SrcLoop = SrcLoop->getParentLoop();
742 DstLoop = DstLoop->getParentLoop();
743 SrcLevel--;
745 CommonLevels = SrcLevel;
746 MaxLevels -= CommonLevels;
750 // Given one of the loops containing the source, return
751 // its level index in our numbering scheme.
752 unsigned DependenceInfo::mapSrcLoop(const Loop *SrcLoop) const {
753 return SrcLoop->getLoopDepth();
757 // Given one of the loops containing the destination,
758 // return its level index in our numbering scheme.
759 unsigned DependenceInfo::mapDstLoop(const Loop *DstLoop) const {
760 unsigned D = DstLoop->getLoopDepth();
761 if (D > CommonLevels)
762 return D - CommonLevels + SrcLevels;
763 else
764 return D;
768 // Returns true if Expression is loop invariant in LoopNest.
769 bool DependenceInfo::isLoopInvariant(const SCEV *Expression,
770 const Loop *LoopNest) const {
771 if (!LoopNest)
772 return true;
773 return SE->isLoopInvariant(Expression, LoopNest) &&
774 isLoopInvariant(Expression, LoopNest->getParentLoop());
779 // Finds the set of loops from the LoopNest that
780 // have a level <= CommonLevels and are referred to by the SCEV Expression.
781 void DependenceInfo::collectCommonLoops(const SCEV *Expression,
782 const Loop *LoopNest,
783 SmallBitVector &Loops) const {
784 while (LoopNest) {
785 unsigned Level = LoopNest->getLoopDepth();
786 if (Level <= CommonLevels && !SE->isLoopInvariant(Expression, LoopNest))
787 Loops.set(Level);
788 LoopNest = LoopNest->getParentLoop();
792 void DependenceInfo::unifySubscriptType(ArrayRef<Subscript *> Pairs) {
794 unsigned widestWidthSeen = 0;
795 Type *widestType;
797 // Go through each pair and find the widest bit to which we need
798 // to extend all of them.
799 for (Subscript *Pair : Pairs) {
800 const SCEV *Src = Pair->Src;
801 const SCEV *Dst = Pair->Dst;
802 IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType());
803 IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType());
804 if (SrcTy == nullptr || DstTy == nullptr) {
805 assert(SrcTy == DstTy && "This function only unify integer types and "
806 "expect Src and Dst share the same type "
807 "otherwise.");
808 continue;
810 if (SrcTy->getBitWidth() > widestWidthSeen) {
811 widestWidthSeen = SrcTy->getBitWidth();
812 widestType = SrcTy;
814 if (DstTy->getBitWidth() > widestWidthSeen) {
815 widestWidthSeen = DstTy->getBitWidth();
816 widestType = DstTy;
821 assert(widestWidthSeen > 0);
823 // Now extend each pair to the widest seen.
824 for (Subscript *Pair : Pairs) {
825 const SCEV *Src = Pair->Src;
826 const SCEV *Dst = Pair->Dst;
827 IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType());
828 IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType());
829 if (SrcTy == nullptr || DstTy == nullptr) {
830 assert(SrcTy == DstTy && "This function only unify integer types and "
831 "expect Src and Dst share the same type "
832 "otherwise.");
833 continue;
835 if (SrcTy->getBitWidth() < widestWidthSeen)
836 // Sign-extend Src to widestType
837 Pair->Src = SE->getSignExtendExpr(Src, widestType);
838 if (DstTy->getBitWidth() < widestWidthSeen) {
839 // Sign-extend Dst to widestType
840 Pair->Dst = SE->getSignExtendExpr(Dst, widestType);
845 // removeMatchingExtensions - Examines a subscript pair.
846 // If the source and destination are identically sign (or zero)
847 // extended, it strips off the extension in an effect to simplify
848 // the actual analysis.
849 void DependenceInfo::removeMatchingExtensions(Subscript *Pair) {
850 const SCEV *Src = Pair->Src;
851 const SCEV *Dst = Pair->Dst;
852 if ((isa<SCEVZeroExtendExpr>(Src) && isa<SCEVZeroExtendExpr>(Dst)) ||
853 (isa<SCEVSignExtendExpr>(Src) && isa<SCEVSignExtendExpr>(Dst))) {
854 const SCEVCastExpr *SrcCast = cast<SCEVCastExpr>(Src);
855 const SCEVCastExpr *DstCast = cast<SCEVCastExpr>(Dst);
856 const SCEV *SrcCastOp = SrcCast->getOperand();
857 const SCEV *DstCastOp = DstCast->getOperand();
858 if (SrcCastOp->getType() == DstCastOp->getType()) {
859 Pair->Src = SrcCastOp;
860 Pair->Dst = DstCastOp;
866 // Examine the scev and return true iff it's linear.
867 // Collect any loops mentioned in the set of "Loops".
868 bool DependenceInfo::checkSrcSubscript(const SCEV *Src, const Loop *LoopNest,
869 SmallBitVector &Loops) {
870 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Src);
871 if (!AddRec)
872 return isLoopInvariant(Src, LoopNest);
873 const SCEV *Start = AddRec->getStart();
874 const SCEV *Step = AddRec->getStepRecurrence(*SE);
875 const SCEV *UB = SE->getBackedgeTakenCount(AddRec->getLoop());
876 if (!isa<SCEVCouldNotCompute>(UB)) {
877 if (SE->getTypeSizeInBits(Start->getType()) <
878 SE->getTypeSizeInBits(UB->getType())) {
879 if (!AddRec->getNoWrapFlags())
880 return false;
883 if (!isLoopInvariant(Step, LoopNest))
884 return false;
885 Loops.set(mapSrcLoop(AddRec->getLoop()));
886 return checkSrcSubscript(Start, LoopNest, Loops);
891 // Examine the scev and return true iff it's linear.
892 // Collect any loops mentioned in the set of "Loops".
893 bool DependenceInfo::checkDstSubscript(const SCEV *Dst, const Loop *LoopNest,
894 SmallBitVector &Loops) {
895 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Dst);
896 if (!AddRec)
897 return isLoopInvariant(Dst, LoopNest);
898 const SCEV *Start = AddRec->getStart();
899 const SCEV *Step = AddRec->getStepRecurrence(*SE);
900 const SCEV *UB = SE->getBackedgeTakenCount(AddRec->getLoop());
901 if (!isa<SCEVCouldNotCompute>(UB)) {
902 if (SE->getTypeSizeInBits(Start->getType()) <
903 SE->getTypeSizeInBits(UB->getType())) {
904 if (!AddRec->getNoWrapFlags())
905 return false;
908 if (!isLoopInvariant(Step, LoopNest))
909 return false;
910 Loops.set(mapDstLoop(AddRec->getLoop()));
911 return checkDstSubscript(Start, LoopNest, Loops);
915 // Examines the subscript pair (the Src and Dst SCEVs)
916 // and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear.
917 // Collects the associated loops in a set.
918 DependenceInfo::Subscript::ClassificationKind
919 DependenceInfo::classifyPair(const SCEV *Src, const Loop *SrcLoopNest,
920 const SCEV *Dst, const Loop *DstLoopNest,
921 SmallBitVector &Loops) {
922 SmallBitVector SrcLoops(MaxLevels + 1);
923 SmallBitVector DstLoops(MaxLevels + 1);
924 if (!checkSrcSubscript(Src, SrcLoopNest, SrcLoops))
925 return Subscript::NonLinear;
926 if (!checkDstSubscript(Dst, DstLoopNest, DstLoops))
927 return Subscript::NonLinear;
928 Loops = SrcLoops;
929 Loops |= DstLoops;
930 unsigned N = Loops.count();
931 if (N == 0)
932 return Subscript::ZIV;
933 if (N == 1)
934 return Subscript::SIV;
935 if (N == 2 && (SrcLoops.count() == 0 ||
936 DstLoops.count() == 0 ||
937 (SrcLoops.count() == 1 && DstLoops.count() == 1)))
938 return Subscript::RDIV;
939 return Subscript::MIV;
943 // A wrapper around SCEV::isKnownPredicate.
944 // Looks for cases where we're interested in comparing for equality.
945 // If both X and Y have been identically sign or zero extended,
946 // it strips off the (confusing) extensions before invoking
947 // SCEV::isKnownPredicate. Perhaps, someday, the ScalarEvolution package
948 // will be similarly updated.
950 // If SCEV::isKnownPredicate can't prove the predicate,
951 // we try simple subtraction, which seems to help in some cases
952 // involving symbolics.
953 bool DependenceInfo::isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *X,
954 const SCEV *Y) const {
955 if (Pred == CmpInst::ICMP_EQ ||
956 Pred == CmpInst::ICMP_NE) {
957 if ((isa<SCEVSignExtendExpr>(X) &&
958 isa<SCEVSignExtendExpr>(Y)) ||
959 (isa<SCEVZeroExtendExpr>(X) &&
960 isa<SCEVZeroExtendExpr>(Y))) {
961 const SCEVCastExpr *CX = cast<SCEVCastExpr>(X);
962 const SCEVCastExpr *CY = cast<SCEVCastExpr>(Y);
963 const SCEV *Xop = CX->getOperand();
964 const SCEV *Yop = CY->getOperand();
965 if (Xop->getType() == Yop->getType()) {
966 X = Xop;
967 Y = Yop;
971 if (SE->isKnownPredicate(Pred, X, Y))
972 return true;
973 // If SE->isKnownPredicate can't prove the condition,
974 // we try the brute-force approach of subtracting
975 // and testing the difference.
976 // By testing with SE->isKnownPredicate first, we avoid
977 // the possibility of overflow when the arguments are constants.
978 const SCEV *Delta = SE->getMinusSCEV(X, Y);
979 switch (Pred) {
980 case CmpInst::ICMP_EQ:
981 return Delta->isZero();
982 case CmpInst::ICMP_NE:
983 return SE->isKnownNonZero(Delta);
984 case CmpInst::ICMP_SGE:
985 return SE->isKnownNonNegative(Delta);
986 case CmpInst::ICMP_SLE:
987 return SE->isKnownNonPositive(Delta);
988 case CmpInst::ICMP_SGT:
989 return SE->isKnownPositive(Delta);
990 case CmpInst::ICMP_SLT:
991 return SE->isKnownNegative(Delta);
992 default:
993 llvm_unreachable("unexpected predicate in isKnownPredicate");
997 /// Compare to see if S is less than Size, using isKnownNegative(S - max(Size, 1))
998 /// with some extra checking if S is an AddRec and we can prove less-than using
999 /// the loop bounds.
1000 bool DependenceInfo::isKnownLessThan(const SCEV *S, const SCEV *Size) const {
1001 // First unify to the same type
1002 auto *SType = dyn_cast<IntegerType>(S->getType());
1003 auto *SizeType = dyn_cast<IntegerType>(Size->getType());
1004 if (!SType || !SizeType)
1005 return false;
1006 Type *MaxType =
1007 (SType->getBitWidth() >= SizeType->getBitWidth()) ? SType : SizeType;
1008 S = SE->getTruncateOrZeroExtend(S, MaxType);
1009 Size = SE->getTruncateOrZeroExtend(Size, MaxType);
1011 // Special check for addrecs using BE taken count
1012 const SCEV *Bound = SE->getMinusSCEV(S, Size);
1013 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Bound)) {
1014 if (AddRec->isAffine()) {
1015 const SCEV *BECount = SE->getBackedgeTakenCount(AddRec->getLoop());
1016 if (!isa<SCEVCouldNotCompute>(BECount)) {
1017 const SCEV *Limit = AddRec->evaluateAtIteration(BECount, *SE);
1018 if (SE->isKnownNegative(Limit))
1019 return true;
1024 // Check using normal isKnownNegative
1025 const SCEV *LimitedBound =
1026 SE->getMinusSCEV(S, SE->getSMaxExpr(Size, SE->getOne(Size->getType())));
1027 return SE->isKnownNegative(LimitedBound);
1030 bool DependenceInfo::isKnownNonNegative(const SCEV *S, const Value *Ptr) const {
1031 bool Inbounds = false;
1032 if (auto *SrcGEP = dyn_cast<GetElementPtrInst>(Ptr))
1033 Inbounds = SrcGEP->isInBounds();
1034 if (Inbounds) {
1035 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
1036 if (AddRec->isAffine()) {
1037 // We know S is for Ptr, the operand on a load/store, so doesn't wrap.
1038 // If both parts are NonNegative, the end result will be NonNegative
1039 if (SE->isKnownNonNegative(AddRec->getStart()) &&
1040 SE->isKnownNonNegative(AddRec->getOperand(1)))
1041 return true;
1046 return SE->isKnownNonNegative(S);
1049 // All subscripts are all the same type.
1050 // Loop bound may be smaller (e.g., a char).
1051 // Should zero extend loop bound, since it's always >= 0.
1052 // This routine collects upper bound and extends or truncates if needed.
1053 // Truncating is safe when subscripts are known not to wrap. Cases without
1054 // nowrap flags should have been rejected earlier.
1055 // Return null if no bound available.
1056 const SCEV *DependenceInfo::collectUpperBound(const Loop *L, Type *T) const {
1057 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
1058 const SCEV *UB = SE->getBackedgeTakenCount(L);
1059 return SE->getTruncateOrZeroExtend(UB, T);
1061 return nullptr;
1065 // Calls collectUpperBound(), then attempts to cast it to SCEVConstant.
1066 // If the cast fails, returns NULL.
1067 const SCEVConstant *DependenceInfo::collectConstantUpperBound(const Loop *L,
1068 Type *T) const {
1069 if (const SCEV *UB = collectUpperBound(L, T))
1070 return dyn_cast<SCEVConstant>(UB);
1071 return nullptr;
1075 // testZIV -
1076 // When we have a pair of subscripts of the form [c1] and [c2],
1077 // where c1 and c2 are both loop invariant, we attack it using
1078 // the ZIV test. Basically, we test by comparing the two values,
1079 // but there are actually three possible results:
1080 // 1) the values are equal, so there's a dependence
1081 // 2) the values are different, so there's no dependence
1082 // 3) the values might be equal, so we have to assume a dependence.
1084 // Return true if dependence disproved.
1085 bool DependenceInfo::testZIV(const SCEV *Src, const SCEV *Dst,
1086 FullDependence &Result) const {
1087 LLVM_DEBUG(dbgs() << " src = " << *Src << "\n");
1088 LLVM_DEBUG(dbgs() << " dst = " << *Dst << "\n");
1089 ++ZIVapplications;
1090 if (isKnownPredicate(CmpInst::ICMP_EQ, Src, Dst)) {
1091 LLVM_DEBUG(dbgs() << " provably dependent\n");
1092 return false; // provably dependent
1094 if (isKnownPredicate(CmpInst::ICMP_NE, Src, Dst)) {
1095 LLVM_DEBUG(dbgs() << " provably independent\n");
1096 ++ZIVindependence;
1097 return true; // provably independent
1099 LLVM_DEBUG(dbgs() << " possibly dependent\n");
1100 Result.Consistent = false;
1101 return false; // possibly dependent
1105 // strongSIVtest -
1106 // From the paper, Practical Dependence Testing, Section 4.2.1
1108 // When we have a pair of subscripts of the form [c1 + a*i] and [c2 + a*i],
1109 // where i is an induction variable, c1 and c2 are loop invariant,
1110 // and a is a constant, we can solve it exactly using the Strong SIV test.
1112 // Can prove independence. Failing that, can compute distance (and direction).
1113 // In the presence of symbolic terms, we can sometimes make progress.
1115 // If there's a dependence,
1117 // c1 + a*i = c2 + a*i'
1119 // The dependence distance is
1121 // d = i' - i = (c1 - c2)/a
1123 // A dependence only exists if d is an integer and abs(d) <= U, where U is the
1124 // loop's upper bound. If a dependence exists, the dependence direction is
1125 // defined as
1127 // { < if d > 0
1128 // direction = { = if d = 0
1129 // { > if d < 0
1131 // Return true if dependence disproved.
1132 bool DependenceInfo::strongSIVtest(const SCEV *Coeff, const SCEV *SrcConst,
1133 const SCEV *DstConst, const Loop *CurLoop,
1134 unsigned Level, FullDependence &Result,
1135 Constraint &NewConstraint) const {
1136 LLVM_DEBUG(dbgs() << "\tStrong SIV test\n");
1137 LLVM_DEBUG(dbgs() << "\t Coeff = " << *Coeff);
1138 LLVM_DEBUG(dbgs() << ", " << *Coeff->getType() << "\n");
1139 LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst);
1140 LLVM_DEBUG(dbgs() << ", " << *SrcConst->getType() << "\n");
1141 LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst);
1142 LLVM_DEBUG(dbgs() << ", " << *DstConst->getType() << "\n");
1143 ++StrongSIVapplications;
1144 assert(0 < Level && Level <= CommonLevels && "level out of range");
1145 Level--;
1147 const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
1148 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta);
1149 LLVM_DEBUG(dbgs() << ", " << *Delta->getType() << "\n");
1151 // check that |Delta| < iteration count
1152 if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1153 LLVM_DEBUG(dbgs() << "\t UpperBound = " << *UpperBound);
1154 LLVM_DEBUG(dbgs() << ", " << *UpperBound->getType() << "\n");
1155 const SCEV *AbsDelta =
1156 SE->isKnownNonNegative(Delta) ? Delta : SE->getNegativeSCEV(Delta);
1157 const SCEV *AbsCoeff =
1158 SE->isKnownNonNegative(Coeff) ? Coeff : SE->getNegativeSCEV(Coeff);
1159 const SCEV *Product = SE->getMulExpr(UpperBound, AbsCoeff);
1160 if (isKnownPredicate(CmpInst::ICMP_SGT, AbsDelta, Product)) {
1161 // Distance greater than trip count - no dependence
1162 ++StrongSIVindependence;
1163 ++StrongSIVsuccesses;
1164 return true;
1168 // Can we compute distance?
1169 if (isa<SCEVConstant>(Delta) && isa<SCEVConstant>(Coeff)) {
1170 APInt ConstDelta = cast<SCEVConstant>(Delta)->getAPInt();
1171 APInt ConstCoeff = cast<SCEVConstant>(Coeff)->getAPInt();
1172 APInt Distance = ConstDelta; // these need to be initialized
1173 APInt Remainder = ConstDelta;
1174 APInt::sdivrem(ConstDelta, ConstCoeff, Distance, Remainder);
1175 LLVM_DEBUG(dbgs() << "\t Distance = " << Distance << "\n");
1176 LLVM_DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n");
1177 // Make sure Coeff divides Delta exactly
1178 if (Remainder != 0) {
1179 // Coeff doesn't divide Distance, no dependence
1180 ++StrongSIVindependence;
1181 ++StrongSIVsuccesses;
1182 return true;
1184 Result.DV[Level].Distance = SE->getConstant(Distance);
1185 NewConstraint.setDistance(SE->getConstant(Distance), CurLoop);
1186 if (Distance.sgt(0))
1187 Result.DV[Level].Direction &= Dependence::DVEntry::LT;
1188 else if (Distance.slt(0))
1189 Result.DV[Level].Direction &= Dependence::DVEntry::GT;
1190 else
1191 Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
1192 ++StrongSIVsuccesses;
1194 else if (Delta->isZero()) {
1195 // since 0/X == 0
1196 Result.DV[Level].Distance = Delta;
1197 NewConstraint.setDistance(Delta, CurLoop);
1198 Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
1199 ++StrongSIVsuccesses;
1201 else {
1202 if (Coeff->isOne()) {
1203 LLVM_DEBUG(dbgs() << "\t Distance = " << *Delta << "\n");
1204 Result.DV[Level].Distance = Delta; // since X/1 == X
1205 NewConstraint.setDistance(Delta, CurLoop);
1207 else {
1208 Result.Consistent = false;
1209 NewConstraint.setLine(Coeff,
1210 SE->getNegativeSCEV(Coeff),
1211 SE->getNegativeSCEV(Delta), CurLoop);
1214 // maybe we can get a useful direction
1215 bool DeltaMaybeZero = !SE->isKnownNonZero(Delta);
1216 bool DeltaMaybePositive = !SE->isKnownNonPositive(Delta);
1217 bool DeltaMaybeNegative = !SE->isKnownNonNegative(Delta);
1218 bool CoeffMaybePositive = !SE->isKnownNonPositive(Coeff);
1219 bool CoeffMaybeNegative = !SE->isKnownNonNegative(Coeff);
1220 // The double negatives above are confusing.
1221 // It helps to read !SE->isKnownNonZero(Delta)
1222 // as "Delta might be Zero"
1223 unsigned NewDirection = Dependence::DVEntry::NONE;
1224 if ((DeltaMaybePositive && CoeffMaybePositive) ||
1225 (DeltaMaybeNegative && CoeffMaybeNegative))
1226 NewDirection = Dependence::DVEntry::LT;
1227 if (DeltaMaybeZero)
1228 NewDirection |= Dependence::DVEntry::EQ;
1229 if ((DeltaMaybeNegative && CoeffMaybePositive) ||
1230 (DeltaMaybePositive && CoeffMaybeNegative))
1231 NewDirection |= Dependence::DVEntry::GT;
1232 if (NewDirection < Result.DV[Level].Direction)
1233 ++StrongSIVsuccesses;
1234 Result.DV[Level].Direction &= NewDirection;
1236 return false;
1240 // weakCrossingSIVtest -
1241 // From the paper, Practical Dependence Testing, Section 4.2.2
1243 // When we have a pair of subscripts of the form [c1 + a*i] and [c2 - a*i],
1244 // where i is an induction variable, c1 and c2 are loop invariant,
1245 // and a is a constant, we can solve it exactly using the
1246 // Weak-Crossing SIV test.
1248 // Given c1 + a*i = c2 - a*i', we can look for the intersection of
1249 // the two lines, where i = i', yielding
1251 // c1 + a*i = c2 - a*i
1252 // 2a*i = c2 - c1
1253 // i = (c2 - c1)/2a
1255 // If i < 0, there is no dependence.
1256 // If i > upperbound, there is no dependence.
1257 // If i = 0 (i.e., if c1 = c2), there's a dependence with distance = 0.
1258 // If i = upperbound, there's a dependence with distance = 0.
1259 // If i is integral, there's a dependence (all directions).
1260 // If the non-integer part = 1/2, there's a dependence (<> directions).
1261 // Otherwise, there's no dependence.
1263 // Can prove independence. Failing that,
1264 // can sometimes refine the directions.
1265 // Can determine iteration for splitting.
1267 // Return true if dependence disproved.
1268 bool DependenceInfo::weakCrossingSIVtest(
1269 const SCEV *Coeff, const SCEV *SrcConst, const SCEV *DstConst,
1270 const Loop *CurLoop, unsigned Level, FullDependence &Result,
1271 Constraint &NewConstraint, const SCEV *&SplitIter) const {
1272 LLVM_DEBUG(dbgs() << "\tWeak-Crossing SIV test\n");
1273 LLVM_DEBUG(dbgs() << "\t Coeff = " << *Coeff << "\n");
1274 LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1275 LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1276 ++WeakCrossingSIVapplications;
1277 assert(0 < Level && Level <= CommonLevels && "Level out of range");
1278 Level--;
1279 Result.Consistent = false;
1280 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1281 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1282 NewConstraint.setLine(Coeff, Coeff, Delta, CurLoop);
1283 if (Delta->isZero()) {
1284 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT);
1285 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT);
1286 ++WeakCrossingSIVsuccesses;
1287 if (!Result.DV[Level].Direction) {
1288 ++WeakCrossingSIVindependence;
1289 return true;
1291 Result.DV[Level].Distance = Delta; // = 0
1292 return false;
1294 const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(Coeff);
1295 if (!ConstCoeff)
1296 return false;
1298 Result.DV[Level].Splitable = true;
1299 if (SE->isKnownNegative(ConstCoeff)) {
1300 ConstCoeff = dyn_cast<SCEVConstant>(SE->getNegativeSCEV(ConstCoeff));
1301 assert(ConstCoeff &&
1302 "dynamic cast of negative of ConstCoeff should yield constant");
1303 Delta = SE->getNegativeSCEV(Delta);
1305 assert(SE->isKnownPositive(ConstCoeff) && "ConstCoeff should be positive");
1307 // compute SplitIter for use by DependenceInfo::getSplitIteration()
1308 SplitIter = SE->getUDivExpr(
1309 SE->getSMaxExpr(SE->getZero(Delta->getType()), Delta),
1310 SE->getMulExpr(SE->getConstant(Delta->getType(), 2), ConstCoeff));
1311 LLVM_DEBUG(dbgs() << "\t Split iter = " << *SplitIter << "\n");
1313 const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1314 if (!ConstDelta)
1315 return false;
1317 // We're certain that ConstCoeff > 0; therefore,
1318 // if Delta < 0, then no dependence.
1319 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1320 LLVM_DEBUG(dbgs() << "\t ConstCoeff = " << *ConstCoeff << "\n");
1321 if (SE->isKnownNegative(Delta)) {
1322 // No dependence, Delta < 0
1323 ++WeakCrossingSIVindependence;
1324 ++WeakCrossingSIVsuccesses;
1325 return true;
1328 // We're certain that Delta > 0 and ConstCoeff > 0.
1329 // Check Delta/(2*ConstCoeff) against upper loop bound
1330 if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1331 LLVM_DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n");
1332 const SCEV *ConstantTwo = SE->getConstant(UpperBound->getType(), 2);
1333 const SCEV *ML = SE->getMulExpr(SE->getMulExpr(ConstCoeff, UpperBound),
1334 ConstantTwo);
1335 LLVM_DEBUG(dbgs() << "\t ML = " << *ML << "\n");
1336 if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, ML)) {
1337 // Delta too big, no dependence
1338 ++WeakCrossingSIVindependence;
1339 ++WeakCrossingSIVsuccesses;
1340 return true;
1342 if (isKnownPredicate(CmpInst::ICMP_EQ, Delta, ML)) {
1343 // i = i' = UB
1344 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT);
1345 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT);
1346 ++WeakCrossingSIVsuccesses;
1347 if (!Result.DV[Level].Direction) {
1348 ++WeakCrossingSIVindependence;
1349 return true;
1351 Result.DV[Level].Splitable = false;
1352 Result.DV[Level].Distance = SE->getZero(Delta->getType());
1353 return false;
1357 // check that Coeff divides Delta
1358 APInt APDelta = ConstDelta->getAPInt();
1359 APInt APCoeff = ConstCoeff->getAPInt();
1360 APInt Distance = APDelta; // these need to be initialzed
1361 APInt Remainder = APDelta;
1362 APInt::sdivrem(APDelta, APCoeff, Distance, Remainder);
1363 LLVM_DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n");
1364 if (Remainder != 0) {
1365 // Coeff doesn't divide Delta, no dependence
1366 ++WeakCrossingSIVindependence;
1367 ++WeakCrossingSIVsuccesses;
1368 return true;
1370 LLVM_DEBUG(dbgs() << "\t Distance = " << Distance << "\n");
1372 // if 2*Coeff doesn't divide Delta, then the equal direction isn't possible
1373 APInt Two = APInt(Distance.getBitWidth(), 2, true);
1374 Remainder = Distance.srem(Two);
1375 LLVM_DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n");
1376 if (Remainder != 0) {
1377 // Equal direction isn't possible
1378 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::EQ);
1379 ++WeakCrossingSIVsuccesses;
1381 return false;
1385 // Kirch's algorithm, from
1387 // Optimizing Supercompilers for Supercomputers
1388 // Michael Wolfe
1389 // MIT Press, 1989
1391 // Program 2.1, page 29.
1392 // Computes the GCD of AM and BM.
1393 // Also finds a solution to the equation ax - by = gcd(a, b).
1394 // Returns true if dependence disproved; i.e., gcd does not divide Delta.
1395 static bool findGCD(unsigned Bits, const APInt &AM, const APInt &BM,
1396 const APInt &Delta, APInt &G, APInt &X, APInt &Y) {
1397 APInt A0(Bits, 1, true), A1(Bits, 0, true);
1398 APInt B0(Bits, 0, true), B1(Bits, 1, true);
1399 APInt G0 = AM.abs();
1400 APInt G1 = BM.abs();
1401 APInt Q = G0; // these need to be initialized
1402 APInt R = G0;
1403 APInt::sdivrem(G0, G1, Q, R);
1404 while (R != 0) {
1405 APInt A2 = A0 - Q*A1; A0 = A1; A1 = A2;
1406 APInt B2 = B0 - Q*B1; B0 = B1; B1 = B2;
1407 G0 = G1; G1 = R;
1408 APInt::sdivrem(G0, G1, Q, R);
1410 G = G1;
1411 LLVM_DEBUG(dbgs() << "\t GCD = " << G << "\n");
1412 X = AM.slt(0) ? -A1 : A1;
1413 Y = BM.slt(0) ? B1 : -B1;
1415 // make sure gcd divides Delta
1416 R = Delta.srem(G);
1417 if (R != 0)
1418 return true; // gcd doesn't divide Delta, no dependence
1419 Q = Delta.sdiv(G);
1420 X *= Q;
1421 Y *= Q;
1422 return false;
1425 static APInt floorOfQuotient(const APInt &A, const APInt &B) {
1426 APInt Q = A; // these need to be initialized
1427 APInt R = A;
1428 APInt::sdivrem(A, B, Q, R);
1429 if (R == 0)
1430 return Q;
1431 if ((A.sgt(0) && B.sgt(0)) ||
1432 (A.slt(0) && B.slt(0)))
1433 return Q;
1434 else
1435 return Q - 1;
1438 static APInt ceilingOfQuotient(const APInt &A, const APInt &B) {
1439 APInt Q = A; // these need to be initialized
1440 APInt R = A;
1441 APInt::sdivrem(A, B, Q, R);
1442 if (R == 0)
1443 return Q;
1444 if ((A.sgt(0) && B.sgt(0)) ||
1445 (A.slt(0) && B.slt(0)))
1446 return Q + 1;
1447 else
1448 return Q;
1452 static
1453 APInt maxAPInt(APInt A, APInt B) {
1454 return A.sgt(B) ? A : B;
1458 static
1459 APInt minAPInt(APInt A, APInt B) {
1460 return A.slt(B) ? A : B;
1464 // exactSIVtest -
1465 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*i],
1466 // where i is an induction variable, c1 and c2 are loop invariant, and a1
1467 // and a2 are constant, we can solve it exactly using an algorithm developed
1468 // by Banerjee and Wolfe. See Section 2.5.3 in
1470 // Optimizing Supercompilers for Supercomputers
1471 // Michael Wolfe
1472 // MIT Press, 1989
1474 // It's slower than the specialized tests (strong SIV, weak-zero SIV, etc),
1475 // so use them if possible. They're also a bit better with symbolics and,
1476 // in the case of the strong SIV test, can compute Distances.
1478 // Return true if dependence disproved.
1479 bool DependenceInfo::exactSIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
1480 const SCEV *SrcConst, const SCEV *DstConst,
1481 const Loop *CurLoop, unsigned Level,
1482 FullDependence &Result,
1483 Constraint &NewConstraint) const {
1484 LLVM_DEBUG(dbgs() << "\tExact SIV test\n");
1485 LLVM_DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << " = AM\n");
1486 LLVM_DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << " = BM\n");
1487 LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1488 LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1489 ++ExactSIVapplications;
1490 assert(0 < Level && Level <= CommonLevels && "Level out of range");
1491 Level--;
1492 Result.Consistent = false;
1493 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1494 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1495 NewConstraint.setLine(SrcCoeff, SE->getNegativeSCEV(DstCoeff),
1496 Delta, CurLoop);
1497 const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1498 const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1499 const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1500 if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
1501 return false;
1503 // find gcd
1504 APInt G, X, Y;
1505 APInt AM = ConstSrcCoeff->getAPInt();
1506 APInt BM = ConstDstCoeff->getAPInt();
1507 unsigned Bits = AM.getBitWidth();
1508 if (findGCD(Bits, AM, BM, ConstDelta->getAPInt(), G, X, Y)) {
1509 // gcd doesn't divide Delta, no dependence
1510 ++ExactSIVindependence;
1511 ++ExactSIVsuccesses;
1512 return true;
1515 LLVM_DEBUG(dbgs() << "\t X = " << X << ", Y = " << Y << "\n");
1517 // since SCEV construction normalizes, LM = 0
1518 APInt UM(Bits, 1, true);
1519 bool UMvalid = false;
1520 // UM is perhaps unavailable, let's check
1521 if (const SCEVConstant *CUB =
1522 collectConstantUpperBound(CurLoop, Delta->getType())) {
1523 UM = CUB->getAPInt();
1524 LLVM_DEBUG(dbgs() << "\t UM = " << UM << "\n");
1525 UMvalid = true;
1528 APInt TU(APInt::getSignedMaxValue(Bits));
1529 APInt TL(APInt::getSignedMinValue(Bits));
1531 // test(BM/G, LM-X) and test(-BM/G, X-UM)
1532 APInt TMUL = BM.sdiv(G);
1533 if (TMUL.sgt(0)) {
1534 TL = maxAPInt(TL, ceilingOfQuotient(-X, TMUL));
1535 LLVM_DEBUG(dbgs() << "\t TL = " << TL << "\n");
1536 if (UMvalid) {
1537 TU = minAPInt(TU, floorOfQuotient(UM - X, TMUL));
1538 LLVM_DEBUG(dbgs() << "\t TU = " << TU << "\n");
1541 else {
1542 TU = minAPInt(TU, floorOfQuotient(-X, TMUL));
1543 LLVM_DEBUG(dbgs() << "\t TU = " << TU << "\n");
1544 if (UMvalid) {
1545 TL = maxAPInt(TL, ceilingOfQuotient(UM - X, TMUL));
1546 LLVM_DEBUG(dbgs() << "\t TL = " << TL << "\n");
1550 // test(AM/G, LM-Y) and test(-AM/G, Y-UM)
1551 TMUL = AM.sdiv(G);
1552 if (TMUL.sgt(0)) {
1553 TL = maxAPInt(TL, ceilingOfQuotient(-Y, TMUL));
1554 LLVM_DEBUG(dbgs() << "\t TL = " << TL << "\n");
1555 if (UMvalid) {
1556 TU = minAPInt(TU, floorOfQuotient(UM - Y, TMUL));
1557 LLVM_DEBUG(dbgs() << "\t TU = " << TU << "\n");
1560 else {
1561 TU = minAPInt(TU, floorOfQuotient(-Y, TMUL));
1562 LLVM_DEBUG(dbgs() << "\t TU = " << TU << "\n");
1563 if (UMvalid) {
1564 TL = maxAPInt(TL, ceilingOfQuotient(UM - Y, TMUL));
1565 LLVM_DEBUG(dbgs() << "\t TL = " << TL << "\n");
1568 if (TL.sgt(TU)) {
1569 ++ExactSIVindependence;
1570 ++ExactSIVsuccesses;
1571 return true;
1574 // explore directions
1575 unsigned NewDirection = Dependence::DVEntry::NONE;
1577 // less than
1578 APInt SaveTU(TU); // save these
1579 APInt SaveTL(TL);
1580 LLVM_DEBUG(dbgs() << "\t exploring LT direction\n");
1581 TMUL = AM - BM;
1582 if (TMUL.sgt(0)) {
1583 TL = maxAPInt(TL, ceilingOfQuotient(X - Y + 1, TMUL));
1584 LLVM_DEBUG(dbgs() << "\t\t TL = " << TL << "\n");
1586 else {
1587 TU = minAPInt(TU, floorOfQuotient(X - Y + 1, TMUL));
1588 LLVM_DEBUG(dbgs() << "\t\t TU = " << TU << "\n");
1590 if (TL.sle(TU)) {
1591 NewDirection |= Dependence::DVEntry::LT;
1592 ++ExactSIVsuccesses;
1595 // equal
1596 TU = SaveTU; // restore
1597 TL = SaveTL;
1598 LLVM_DEBUG(dbgs() << "\t exploring EQ direction\n");
1599 if (TMUL.sgt(0)) {
1600 TL = maxAPInt(TL, ceilingOfQuotient(X - Y, TMUL));
1601 LLVM_DEBUG(dbgs() << "\t\t TL = " << TL << "\n");
1603 else {
1604 TU = minAPInt(TU, floorOfQuotient(X - Y, TMUL));
1605 LLVM_DEBUG(dbgs() << "\t\t TU = " << TU << "\n");
1607 TMUL = BM - AM;
1608 if (TMUL.sgt(0)) {
1609 TL = maxAPInt(TL, ceilingOfQuotient(Y - X, TMUL));
1610 LLVM_DEBUG(dbgs() << "\t\t TL = " << TL << "\n");
1612 else {
1613 TU = minAPInt(TU, floorOfQuotient(Y - X, TMUL));
1614 LLVM_DEBUG(dbgs() << "\t\t TU = " << TU << "\n");
1616 if (TL.sle(TU)) {
1617 NewDirection |= Dependence::DVEntry::EQ;
1618 ++ExactSIVsuccesses;
1621 // greater than
1622 TU = SaveTU; // restore
1623 TL = SaveTL;
1624 LLVM_DEBUG(dbgs() << "\t exploring GT direction\n");
1625 if (TMUL.sgt(0)) {
1626 TL = maxAPInt(TL, ceilingOfQuotient(Y - X + 1, TMUL));
1627 LLVM_DEBUG(dbgs() << "\t\t TL = " << TL << "\n");
1629 else {
1630 TU = minAPInt(TU, floorOfQuotient(Y - X + 1, TMUL));
1631 LLVM_DEBUG(dbgs() << "\t\t TU = " << TU << "\n");
1633 if (TL.sle(TU)) {
1634 NewDirection |= Dependence::DVEntry::GT;
1635 ++ExactSIVsuccesses;
1638 // finished
1639 Result.DV[Level].Direction &= NewDirection;
1640 if (Result.DV[Level].Direction == Dependence::DVEntry::NONE)
1641 ++ExactSIVindependence;
1642 return Result.DV[Level].Direction == Dependence::DVEntry::NONE;
1647 // Return true if the divisor evenly divides the dividend.
1648 static
1649 bool isRemainderZero(const SCEVConstant *Dividend,
1650 const SCEVConstant *Divisor) {
1651 const APInt &ConstDividend = Dividend->getAPInt();
1652 const APInt &ConstDivisor = Divisor->getAPInt();
1653 return ConstDividend.srem(ConstDivisor) == 0;
1657 // weakZeroSrcSIVtest -
1658 // From the paper, Practical Dependence Testing, Section 4.2.2
1660 // When we have a pair of subscripts of the form [c1] and [c2 + a*i],
1661 // where i is an induction variable, c1 and c2 are loop invariant,
1662 // and a is a constant, we can solve it exactly using the
1663 // Weak-Zero SIV test.
1665 // Given
1667 // c1 = c2 + a*i
1669 // we get
1671 // (c1 - c2)/a = i
1673 // If i is not an integer, there's no dependence.
1674 // If i < 0 or > UB, there's no dependence.
1675 // If i = 0, the direction is >= and peeling the
1676 // 1st iteration will break the dependence.
1677 // If i = UB, the direction is <= and peeling the
1678 // last iteration will break the dependence.
1679 // Otherwise, the direction is *.
1681 // Can prove independence. Failing that, we can sometimes refine
1682 // the directions. Can sometimes show that first or last
1683 // iteration carries all the dependences (so worth peeling).
1685 // (see also weakZeroDstSIVtest)
1687 // Return true if dependence disproved.
1688 bool DependenceInfo::weakZeroSrcSIVtest(const SCEV *DstCoeff,
1689 const SCEV *SrcConst,
1690 const SCEV *DstConst,
1691 const Loop *CurLoop, unsigned Level,
1692 FullDependence &Result,
1693 Constraint &NewConstraint) const {
1694 // For the WeakSIV test, it's possible the loop isn't common to
1695 // the Src and Dst loops. If it isn't, then there's no need to
1696 // record a direction.
1697 LLVM_DEBUG(dbgs() << "\tWeak-Zero (src) SIV test\n");
1698 LLVM_DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << "\n");
1699 LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1700 LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1701 ++WeakZeroSIVapplications;
1702 assert(0 < Level && Level <= MaxLevels && "Level out of range");
1703 Level--;
1704 Result.Consistent = false;
1705 const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
1706 NewConstraint.setLine(SE->getZero(Delta->getType()), DstCoeff, Delta,
1707 CurLoop);
1708 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1709 if (isKnownPredicate(CmpInst::ICMP_EQ, SrcConst, DstConst)) {
1710 if (Level < CommonLevels) {
1711 Result.DV[Level].Direction &= Dependence::DVEntry::GE;
1712 Result.DV[Level].PeelFirst = true;
1713 ++WeakZeroSIVsuccesses;
1715 return false; // dependences caused by first iteration
1717 const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1718 if (!ConstCoeff)
1719 return false;
1720 const SCEV *AbsCoeff =
1721 SE->isKnownNegative(ConstCoeff) ?
1722 SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
1723 const SCEV *NewDelta =
1724 SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
1726 // check that Delta/SrcCoeff < iteration count
1727 // really check NewDelta < count*AbsCoeff
1728 if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1729 LLVM_DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n");
1730 const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
1731 if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
1732 ++WeakZeroSIVindependence;
1733 ++WeakZeroSIVsuccesses;
1734 return true;
1736 if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
1737 // dependences caused by last iteration
1738 if (Level < CommonLevels) {
1739 Result.DV[Level].Direction &= Dependence::DVEntry::LE;
1740 Result.DV[Level].PeelLast = true;
1741 ++WeakZeroSIVsuccesses;
1743 return false;
1747 // check that Delta/SrcCoeff >= 0
1748 // really check that NewDelta >= 0
1749 if (SE->isKnownNegative(NewDelta)) {
1750 // No dependence, newDelta < 0
1751 ++WeakZeroSIVindependence;
1752 ++WeakZeroSIVsuccesses;
1753 return true;
1756 // if SrcCoeff doesn't divide Delta, then no dependence
1757 if (isa<SCEVConstant>(Delta) &&
1758 !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
1759 ++WeakZeroSIVindependence;
1760 ++WeakZeroSIVsuccesses;
1761 return true;
1763 return false;
1767 // weakZeroDstSIVtest -
1768 // From the paper, Practical Dependence Testing, Section 4.2.2
1770 // When we have a pair of subscripts of the form [c1 + a*i] and [c2],
1771 // where i is an induction variable, c1 and c2 are loop invariant,
1772 // and a is a constant, we can solve it exactly using the
1773 // Weak-Zero SIV test.
1775 // Given
1777 // c1 + a*i = c2
1779 // we get
1781 // i = (c2 - c1)/a
1783 // If i is not an integer, there's no dependence.
1784 // If i < 0 or > UB, there's no dependence.
1785 // If i = 0, the direction is <= and peeling the
1786 // 1st iteration will break the dependence.
1787 // If i = UB, the direction is >= and peeling the
1788 // last iteration will break the dependence.
1789 // Otherwise, the direction is *.
1791 // Can prove independence. Failing that, we can sometimes refine
1792 // the directions. Can sometimes show that first or last
1793 // iteration carries all the dependences (so worth peeling).
1795 // (see also weakZeroSrcSIVtest)
1797 // Return true if dependence disproved.
1798 bool DependenceInfo::weakZeroDstSIVtest(const SCEV *SrcCoeff,
1799 const SCEV *SrcConst,
1800 const SCEV *DstConst,
1801 const Loop *CurLoop, unsigned Level,
1802 FullDependence &Result,
1803 Constraint &NewConstraint) const {
1804 // For the WeakSIV test, it's possible the loop isn't common to the
1805 // Src and Dst loops. If it isn't, then there's no need to record a direction.
1806 LLVM_DEBUG(dbgs() << "\tWeak-Zero (dst) SIV test\n");
1807 LLVM_DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << "\n");
1808 LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1809 LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1810 ++WeakZeroSIVapplications;
1811 assert(0 < Level && Level <= SrcLevels && "Level out of range");
1812 Level--;
1813 Result.Consistent = false;
1814 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1815 NewConstraint.setLine(SrcCoeff, SE->getZero(Delta->getType()), Delta,
1816 CurLoop);
1817 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1818 if (isKnownPredicate(CmpInst::ICMP_EQ, DstConst, SrcConst)) {
1819 if (Level < CommonLevels) {
1820 Result.DV[Level].Direction &= Dependence::DVEntry::LE;
1821 Result.DV[Level].PeelFirst = true;
1822 ++WeakZeroSIVsuccesses;
1824 return false; // dependences caused by first iteration
1826 const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1827 if (!ConstCoeff)
1828 return false;
1829 const SCEV *AbsCoeff =
1830 SE->isKnownNegative(ConstCoeff) ?
1831 SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
1832 const SCEV *NewDelta =
1833 SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
1835 // check that Delta/SrcCoeff < iteration count
1836 // really check NewDelta < count*AbsCoeff
1837 if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1838 LLVM_DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n");
1839 const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
1840 if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
1841 ++WeakZeroSIVindependence;
1842 ++WeakZeroSIVsuccesses;
1843 return true;
1845 if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
1846 // dependences caused by last iteration
1847 if (Level < CommonLevels) {
1848 Result.DV[Level].Direction &= Dependence::DVEntry::GE;
1849 Result.DV[Level].PeelLast = true;
1850 ++WeakZeroSIVsuccesses;
1852 return false;
1856 // check that Delta/SrcCoeff >= 0
1857 // really check that NewDelta >= 0
1858 if (SE->isKnownNegative(NewDelta)) {
1859 // No dependence, newDelta < 0
1860 ++WeakZeroSIVindependence;
1861 ++WeakZeroSIVsuccesses;
1862 return true;
1865 // if SrcCoeff doesn't divide Delta, then no dependence
1866 if (isa<SCEVConstant>(Delta) &&
1867 !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
1868 ++WeakZeroSIVindependence;
1869 ++WeakZeroSIVsuccesses;
1870 return true;
1872 return false;
1876 // exactRDIVtest - Tests the RDIV subscript pair for dependence.
1877 // Things of the form [c1 + a*i] and [c2 + b*j],
1878 // where i and j are induction variable, c1 and c2 are loop invariant,
1879 // and a and b are constants.
1880 // Returns true if any possible dependence is disproved.
1881 // Marks the result as inconsistent.
1882 // Works in some cases that symbolicRDIVtest doesn't, and vice versa.
1883 bool DependenceInfo::exactRDIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
1884 const SCEV *SrcConst, const SCEV *DstConst,
1885 const Loop *SrcLoop, const Loop *DstLoop,
1886 FullDependence &Result) const {
1887 LLVM_DEBUG(dbgs() << "\tExact RDIV test\n");
1888 LLVM_DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << " = AM\n");
1889 LLVM_DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << " = BM\n");
1890 LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1891 LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1892 ++ExactRDIVapplications;
1893 Result.Consistent = false;
1894 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1895 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1896 const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1897 const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1898 const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1899 if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
1900 return false;
1902 // find gcd
1903 APInt G, X, Y;
1904 APInt AM = ConstSrcCoeff->getAPInt();
1905 APInt BM = ConstDstCoeff->getAPInt();
1906 unsigned Bits = AM.getBitWidth();
1907 if (findGCD(Bits, AM, BM, ConstDelta->getAPInt(), G, X, Y)) {
1908 // gcd doesn't divide Delta, no dependence
1909 ++ExactRDIVindependence;
1910 return true;
1913 LLVM_DEBUG(dbgs() << "\t X = " << X << ", Y = " << Y << "\n");
1915 // since SCEV construction seems to normalize, LM = 0
1916 APInt SrcUM(Bits, 1, true);
1917 bool SrcUMvalid = false;
1918 // SrcUM is perhaps unavailable, let's check
1919 if (const SCEVConstant *UpperBound =
1920 collectConstantUpperBound(SrcLoop, Delta->getType())) {
1921 SrcUM = UpperBound->getAPInt();
1922 LLVM_DEBUG(dbgs() << "\t SrcUM = " << SrcUM << "\n");
1923 SrcUMvalid = true;
1926 APInt DstUM(Bits, 1, true);
1927 bool DstUMvalid = false;
1928 // UM is perhaps unavailable, let's check
1929 if (const SCEVConstant *UpperBound =
1930 collectConstantUpperBound(DstLoop, Delta->getType())) {
1931 DstUM = UpperBound->getAPInt();
1932 LLVM_DEBUG(dbgs() << "\t DstUM = " << DstUM << "\n");
1933 DstUMvalid = true;
1936 APInt TU(APInt::getSignedMaxValue(Bits));
1937 APInt TL(APInt::getSignedMinValue(Bits));
1939 // test(BM/G, LM-X) and test(-BM/G, X-UM)
1940 APInt TMUL = BM.sdiv(G);
1941 if (TMUL.sgt(0)) {
1942 TL = maxAPInt(TL, ceilingOfQuotient(-X, TMUL));
1943 LLVM_DEBUG(dbgs() << "\t TL = " << TL << "\n");
1944 if (SrcUMvalid) {
1945 TU = minAPInt(TU, floorOfQuotient(SrcUM - X, TMUL));
1946 LLVM_DEBUG(dbgs() << "\t TU = " << TU << "\n");
1949 else {
1950 TU = minAPInt(TU, floorOfQuotient(-X, TMUL));
1951 LLVM_DEBUG(dbgs() << "\t TU = " << TU << "\n");
1952 if (SrcUMvalid) {
1953 TL = maxAPInt(TL, ceilingOfQuotient(SrcUM - X, TMUL));
1954 LLVM_DEBUG(dbgs() << "\t TL = " << TL << "\n");
1958 // test(AM/G, LM-Y) and test(-AM/G, Y-UM)
1959 TMUL = AM.sdiv(G);
1960 if (TMUL.sgt(0)) {
1961 TL = maxAPInt(TL, ceilingOfQuotient(-Y, TMUL));
1962 LLVM_DEBUG(dbgs() << "\t TL = " << TL << "\n");
1963 if (DstUMvalid) {
1964 TU = minAPInt(TU, floorOfQuotient(DstUM - Y, TMUL));
1965 LLVM_DEBUG(dbgs() << "\t TU = " << TU << "\n");
1968 else {
1969 TU = minAPInt(TU, floorOfQuotient(-Y, TMUL));
1970 LLVM_DEBUG(dbgs() << "\t TU = " << TU << "\n");
1971 if (DstUMvalid) {
1972 TL = maxAPInt(TL, ceilingOfQuotient(DstUM - Y, TMUL));
1973 LLVM_DEBUG(dbgs() << "\t TL = " << TL << "\n");
1976 if (TL.sgt(TU))
1977 ++ExactRDIVindependence;
1978 return TL.sgt(TU);
1982 // symbolicRDIVtest -
1983 // In Section 4.5 of the Practical Dependence Testing paper,the authors
1984 // introduce a special case of Banerjee's Inequalities (also called the
1985 // Extreme-Value Test) that can handle some of the SIV and RDIV cases,
1986 // particularly cases with symbolics. Since it's only able to disprove
1987 // dependence (not compute distances or directions), we'll use it as a
1988 // fall back for the other tests.
1990 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
1991 // where i and j are induction variables and c1 and c2 are loop invariants,
1992 // we can use the symbolic tests to disprove some dependences, serving as a
1993 // backup for the RDIV test. Note that i and j can be the same variable,
1994 // letting this test serve as a backup for the various SIV tests.
1996 // For a dependence to exist, c1 + a1*i must equal c2 + a2*j for some
1997 // 0 <= i <= N1 and some 0 <= j <= N2, where N1 and N2 are the (normalized)
1998 // loop bounds for the i and j loops, respectively. So, ...
2000 // c1 + a1*i = c2 + a2*j
2001 // a1*i - a2*j = c2 - c1
2003 // To test for a dependence, we compute c2 - c1 and make sure it's in the
2004 // range of the maximum and minimum possible values of a1*i - a2*j.
2005 // Considering the signs of a1 and a2, we have 4 possible cases:
2007 // 1) If a1 >= 0 and a2 >= 0, then
2008 // a1*0 - a2*N2 <= c2 - c1 <= a1*N1 - a2*0
2009 // -a2*N2 <= c2 - c1 <= a1*N1
2011 // 2) If a1 >= 0 and a2 <= 0, then
2012 // a1*0 - a2*0 <= c2 - c1 <= a1*N1 - a2*N2
2013 // 0 <= c2 - c1 <= a1*N1 - a2*N2
2015 // 3) If a1 <= 0 and a2 >= 0, then
2016 // a1*N1 - a2*N2 <= c2 - c1 <= a1*0 - a2*0
2017 // a1*N1 - a2*N2 <= c2 - c1 <= 0
2019 // 4) If a1 <= 0 and a2 <= 0, then
2020 // a1*N1 - a2*0 <= c2 - c1 <= a1*0 - a2*N2
2021 // a1*N1 <= c2 - c1 <= -a2*N2
2023 // return true if dependence disproved
2024 bool DependenceInfo::symbolicRDIVtest(const SCEV *A1, const SCEV *A2,
2025 const SCEV *C1, const SCEV *C2,
2026 const Loop *Loop1,
2027 const Loop *Loop2) const {
2028 ++SymbolicRDIVapplications;
2029 LLVM_DEBUG(dbgs() << "\ttry symbolic RDIV test\n");
2030 LLVM_DEBUG(dbgs() << "\t A1 = " << *A1);
2031 LLVM_DEBUG(dbgs() << ", type = " << *A1->getType() << "\n");
2032 LLVM_DEBUG(dbgs() << "\t A2 = " << *A2 << "\n");
2033 LLVM_DEBUG(dbgs() << "\t C1 = " << *C1 << "\n");
2034 LLVM_DEBUG(dbgs() << "\t C2 = " << *C2 << "\n");
2035 const SCEV *N1 = collectUpperBound(Loop1, A1->getType());
2036 const SCEV *N2 = collectUpperBound(Loop2, A1->getType());
2037 LLVM_DEBUG(if (N1) dbgs() << "\t N1 = " << *N1 << "\n");
2038 LLVM_DEBUG(if (N2) dbgs() << "\t N2 = " << *N2 << "\n");
2039 const SCEV *C2_C1 = SE->getMinusSCEV(C2, C1);
2040 const SCEV *C1_C2 = SE->getMinusSCEV(C1, C2);
2041 LLVM_DEBUG(dbgs() << "\t C2 - C1 = " << *C2_C1 << "\n");
2042 LLVM_DEBUG(dbgs() << "\t C1 - C2 = " << *C1_C2 << "\n");
2043 if (SE->isKnownNonNegative(A1)) {
2044 if (SE->isKnownNonNegative(A2)) {
2045 // A1 >= 0 && A2 >= 0
2046 if (N1) {
2047 // make sure that c2 - c1 <= a1*N1
2048 const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2049 LLVM_DEBUG(dbgs() << "\t A1*N1 = " << *A1N1 << "\n");
2050 if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1)) {
2051 ++SymbolicRDIVindependence;
2052 return true;
2055 if (N2) {
2056 // make sure that -a2*N2 <= c2 - c1, or a2*N2 >= c1 - c2
2057 const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2058 LLVM_DEBUG(dbgs() << "\t A2*N2 = " << *A2N2 << "\n");
2059 if (isKnownPredicate(CmpInst::ICMP_SLT, A2N2, C1_C2)) {
2060 ++SymbolicRDIVindependence;
2061 return true;
2065 else if (SE->isKnownNonPositive(A2)) {
2066 // a1 >= 0 && a2 <= 0
2067 if (N1 && N2) {
2068 // make sure that c2 - c1 <= a1*N1 - a2*N2
2069 const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2070 const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2071 const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
2072 LLVM_DEBUG(dbgs() << "\t A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
2073 if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1_A2N2)) {
2074 ++SymbolicRDIVindependence;
2075 return true;
2078 // make sure that 0 <= c2 - c1
2079 if (SE->isKnownNegative(C2_C1)) {
2080 ++SymbolicRDIVindependence;
2081 return true;
2085 else if (SE->isKnownNonPositive(A1)) {
2086 if (SE->isKnownNonNegative(A2)) {
2087 // a1 <= 0 && a2 >= 0
2088 if (N1 && N2) {
2089 // make sure that a1*N1 - a2*N2 <= c2 - c1
2090 const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2091 const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2092 const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
2093 LLVM_DEBUG(dbgs() << "\t A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
2094 if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1_A2N2, C2_C1)) {
2095 ++SymbolicRDIVindependence;
2096 return true;
2099 // make sure that c2 - c1 <= 0
2100 if (SE->isKnownPositive(C2_C1)) {
2101 ++SymbolicRDIVindependence;
2102 return true;
2105 else if (SE->isKnownNonPositive(A2)) {
2106 // a1 <= 0 && a2 <= 0
2107 if (N1) {
2108 // make sure that a1*N1 <= c2 - c1
2109 const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2110 LLVM_DEBUG(dbgs() << "\t A1*N1 = " << *A1N1 << "\n");
2111 if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1, C2_C1)) {
2112 ++SymbolicRDIVindependence;
2113 return true;
2116 if (N2) {
2117 // make sure that c2 - c1 <= -a2*N2, or c1 - c2 >= a2*N2
2118 const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2119 LLVM_DEBUG(dbgs() << "\t A2*N2 = " << *A2N2 << "\n");
2120 if (isKnownPredicate(CmpInst::ICMP_SLT, C1_C2, A2N2)) {
2121 ++SymbolicRDIVindependence;
2122 return true;
2127 return false;
2131 // testSIV -
2132 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 - a2*i]
2133 // where i is an induction variable, c1 and c2 are loop invariant, and a1 and
2134 // a2 are constant, we attack it with an SIV test. While they can all be
2135 // solved with the Exact SIV test, it's worthwhile to use simpler tests when
2136 // they apply; they're cheaper and sometimes more precise.
2138 // Return true if dependence disproved.
2139 bool DependenceInfo::testSIV(const SCEV *Src, const SCEV *Dst, unsigned &Level,
2140 FullDependence &Result, Constraint &NewConstraint,
2141 const SCEV *&SplitIter) const {
2142 LLVM_DEBUG(dbgs() << " src = " << *Src << "\n");
2143 LLVM_DEBUG(dbgs() << " dst = " << *Dst << "\n");
2144 const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
2145 const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
2146 if (SrcAddRec && DstAddRec) {
2147 const SCEV *SrcConst = SrcAddRec->getStart();
2148 const SCEV *DstConst = DstAddRec->getStart();
2149 const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2150 const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
2151 const Loop *CurLoop = SrcAddRec->getLoop();
2152 assert(CurLoop == DstAddRec->getLoop() &&
2153 "both loops in SIV should be same");
2154 Level = mapSrcLoop(CurLoop);
2155 bool disproven;
2156 if (SrcCoeff == DstCoeff)
2157 disproven = strongSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2158 Level, Result, NewConstraint);
2159 else if (SrcCoeff == SE->getNegativeSCEV(DstCoeff))
2160 disproven = weakCrossingSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2161 Level, Result, NewConstraint, SplitIter);
2162 else
2163 disproven = exactSIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop,
2164 Level, Result, NewConstraint);
2165 return disproven ||
2166 gcdMIVtest(Src, Dst, Result) ||
2167 symbolicRDIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop, CurLoop);
2169 if (SrcAddRec) {
2170 const SCEV *SrcConst = SrcAddRec->getStart();
2171 const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2172 const SCEV *DstConst = Dst;
2173 const Loop *CurLoop = SrcAddRec->getLoop();
2174 Level = mapSrcLoop(CurLoop);
2175 return weakZeroDstSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2176 Level, Result, NewConstraint) ||
2177 gcdMIVtest(Src, Dst, Result);
2179 if (DstAddRec) {
2180 const SCEV *DstConst = DstAddRec->getStart();
2181 const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
2182 const SCEV *SrcConst = Src;
2183 const Loop *CurLoop = DstAddRec->getLoop();
2184 Level = mapDstLoop(CurLoop);
2185 return weakZeroSrcSIVtest(DstCoeff, SrcConst, DstConst,
2186 CurLoop, Level, Result, NewConstraint) ||
2187 gcdMIVtest(Src, Dst, Result);
2189 llvm_unreachable("SIV test expected at least one AddRec");
2190 return false;
2194 // testRDIV -
2195 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
2196 // where i and j are induction variables, c1 and c2 are loop invariant,
2197 // and a1 and a2 are constant, we can solve it exactly with an easy adaptation
2198 // of the Exact SIV test, the Restricted Double Index Variable (RDIV) test.
2199 // It doesn't make sense to talk about distance or direction in this case,
2200 // so there's no point in making special versions of the Strong SIV test or
2201 // the Weak-crossing SIV test.
2203 // With minor algebra, this test can also be used for things like
2204 // [c1 + a1*i + a2*j][c2].
2206 // Return true if dependence disproved.
2207 bool DependenceInfo::testRDIV(const SCEV *Src, const SCEV *Dst,
2208 FullDependence &Result) const {
2209 // we have 3 possible situations here:
2210 // 1) [a*i + b] and [c*j + d]
2211 // 2) [a*i + c*j + b] and [d]
2212 // 3) [b] and [a*i + c*j + d]
2213 // We need to find what we've got and get organized
2215 const SCEV *SrcConst, *DstConst;
2216 const SCEV *SrcCoeff, *DstCoeff;
2217 const Loop *SrcLoop, *DstLoop;
2219 LLVM_DEBUG(dbgs() << " src = " << *Src << "\n");
2220 LLVM_DEBUG(dbgs() << " dst = " << *Dst << "\n");
2221 const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
2222 const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
2223 if (SrcAddRec && DstAddRec) {
2224 SrcConst = SrcAddRec->getStart();
2225 SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2226 SrcLoop = SrcAddRec->getLoop();
2227 DstConst = DstAddRec->getStart();
2228 DstCoeff = DstAddRec->getStepRecurrence(*SE);
2229 DstLoop = DstAddRec->getLoop();
2231 else if (SrcAddRec) {
2232 if (const SCEVAddRecExpr *tmpAddRec =
2233 dyn_cast<SCEVAddRecExpr>(SrcAddRec->getStart())) {
2234 SrcConst = tmpAddRec->getStart();
2235 SrcCoeff = tmpAddRec->getStepRecurrence(*SE);
2236 SrcLoop = tmpAddRec->getLoop();
2237 DstConst = Dst;
2238 DstCoeff = SE->getNegativeSCEV(SrcAddRec->getStepRecurrence(*SE));
2239 DstLoop = SrcAddRec->getLoop();
2241 else
2242 llvm_unreachable("RDIV reached by surprising SCEVs");
2244 else if (DstAddRec) {
2245 if (const SCEVAddRecExpr *tmpAddRec =
2246 dyn_cast<SCEVAddRecExpr>(DstAddRec->getStart())) {
2247 DstConst = tmpAddRec->getStart();
2248 DstCoeff = tmpAddRec->getStepRecurrence(*SE);
2249 DstLoop = tmpAddRec->getLoop();
2250 SrcConst = Src;
2251 SrcCoeff = SE->getNegativeSCEV(DstAddRec->getStepRecurrence(*SE));
2252 SrcLoop = DstAddRec->getLoop();
2254 else
2255 llvm_unreachable("RDIV reached by surprising SCEVs");
2257 else
2258 llvm_unreachable("RDIV expected at least one AddRec");
2259 return exactRDIVtest(SrcCoeff, DstCoeff,
2260 SrcConst, DstConst,
2261 SrcLoop, DstLoop,
2262 Result) ||
2263 gcdMIVtest(Src, Dst, Result) ||
2264 symbolicRDIVtest(SrcCoeff, DstCoeff,
2265 SrcConst, DstConst,
2266 SrcLoop, DstLoop);
2270 // Tests the single-subscript MIV pair (Src and Dst) for dependence.
2271 // Return true if dependence disproved.
2272 // Can sometimes refine direction vectors.
2273 bool DependenceInfo::testMIV(const SCEV *Src, const SCEV *Dst,
2274 const SmallBitVector &Loops,
2275 FullDependence &Result) const {
2276 LLVM_DEBUG(dbgs() << " src = " << *Src << "\n");
2277 LLVM_DEBUG(dbgs() << " dst = " << *Dst << "\n");
2278 Result.Consistent = false;
2279 return gcdMIVtest(Src, Dst, Result) ||
2280 banerjeeMIVtest(Src, Dst, Loops, Result);
2284 // Given a product, e.g., 10*X*Y, returns the first constant operand,
2285 // in this case 10. If there is no constant part, returns NULL.
2286 static
2287 const SCEVConstant *getConstantPart(const SCEV *Expr) {
2288 if (const auto *Constant = dyn_cast<SCEVConstant>(Expr))
2289 return Constant;
2290 else if (const auto *Product = dyn_cast<SCEVMulExpr>(Expr))
2291 if (const auto *Constant = dyn_cast<SCEVConstant>(Product->getOperand(0)))
2292 return Constant;
2293 return nullptr;
2297 //===----------------------------------------------------------------------===//
2298 // gcdMIVtest -
2299 // Tests an MIV subscript pair for dependence.
2300 // Returns true if any possible dependence is disproved.
2301 // Marks the result as inconsistent.
2302 // Can sometimes disprove the equal direction for 1 or more loops,
2303 // as discussed in Michael Wolfe's book,
2304 // High Performance Compilers for Parallel Computing, page 235.
2306 // We spend some effort (code!) to handle cases like
2307 // [10*i + 5*N*j + 15*M + 6], where i and j are induction variables,
2308 // but M and N are just loop-invariant variables.
2309 // This should help us handle linearized subscripts;
2310 // also makes this test a useful backup to the various SIV tests.
2312 // It occurs to me that the presence of loop-invariant variables
2313 // changes the nature of the test from "greatest common divisor"
2314 // to "a common divisor".
2315 bool DependenceInfo::gcdMIVtest(const SCEV *Src, const SCEV *Dst,
2316 FullDependence &Result) const {
2317 LLVM_DEBUG(dbgs() << "starting gcd\n");
2318 ++GCDapplications;
2319 unsigned BitWidth = SE->getTypeSizeInBits(Src->getType());
2320 APInt RunningGCD = APInt::getNullValue(BitWidth);
2322 // Examine Src coefficients.
2323 // Compute running GCD and record source constant.
2324 // Because we're looking for the constant at the end of the chain,
2325 // we can't quit the loop just because the GCD == 1.
2326 const SCEV *Coefficients = Src;
2327 while (const SCEVAddRecExpr *AddRec =
2328 dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2329 const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2330 // If the coefficient is the product of a constant and other stuff,
2331 // we can use the constant in the GCD computation.
2332 const auto *Constant = getConstantPart(Coeff);
2333 if (!Constant)
2334 return false;
2335 APInt ConstCoeff = Constant->getAPInt();
2336 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2337 Coefficients = AddRec->getStart();
2339 const SCEV *SrcConst = Coefficients;
2341 // Examine Dst coefficients.
2342 // Compute running GCD and record destination constant.
2343 // Because we're looking for the constant at the end of the chain,
2344 // we can't quit the loop just because the GCD == 1.
2345 Coefficients = Dst;
2346 while (const SCEVAddRecExpr *AddRec =
2347 dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2348 const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2349 // If the coefficient is the product of a constant and other stuff,
2350 // we can use the constant in the GCD computation.
2351 const auto *Constant = getConstantPart(Coeff);
2352 if (!Constant)
2353 return false;
2354 APInt ConstCoeff = Constant->getAPInt();
2355 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2356 Coefficients = AddRec->getStart();
2358 const SCEV *DstConst = Coefficients;
2360 APInt ExtraGCD = APInt::getNullValue(BitWidth);
2361 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
2362 LLVM_DEBUG(dbgs() << " Delta = " << *Delta << "\n");
2363 const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Delta);
2364 if (const SCEVAddExpr *Sum = dyn_cast<SCEVAddExpr>(Delta)) {
2365 // If Delta is a sum of products, we may be able to make further progress.
2366 for (unsigned Op = 0, Ops = Sum->getNumOperands(); Op < Ops; Op++) {
2367 const SCEV *Operand = Sum->getOperand(Op);
2368 if (isa<SCEVConstant>(Operand)) {
2369 assert(!Constant && "Surprised to find multiple constants");
2370 Constant = cast<SCEVConstant>(Operand);
2372 else if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Operand)) {
2373 // Search for constant operand to participate in GCD;
2374 // If none found; return false.
2375 const SCEVConstant *ConstOp = getConstantPart(Product);
2376 if (!ConstOp)
2377 return false;
2378 APInt ConstOpValue = ConstOp->getAPInt();
2379 ExtraGCD = APIntOps::GreatestCommonDivisor(ExtraGCD,
2380 ConstOpValue.abs());
2382 else
2383 return false;
2386 if (!Constant)
2387 return false;
2388 APInt ConstDelta = cast<SCEVConstant>(Constant)->getAPInt();
2389 LLVM_DEBUG(dbgs() << " ConstDelta = " << ConstDelta << "\n");
2390 if (ConstDelta == 0)
2391 return false;
2392 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ExtraGCD);
2393 LLVM_DEBUG(dbgs() << " RunningGCD = " << RunningGCD << "\n");
2394 APInt Remainder = ConstDelta.srem(RunningGCD);
2395 if (Remainder != 0) {
2396 ++GCDindependence;
2397 return true;
2400 // Try to disprove equal directions.
2401 // For example, given a subscript pair [3*i + 2*j] and [i' + 2*j' - 1],
2402 // the code above can't disprove the dependence because the GCD = 1.
2403 // So we consider what happen if i = i' and what happens if j = j'.
2404 // If i = i', we can simplify the subscript to [2*i + 2*j] and [2*j' - 1],
2405 // which is infeasible, so we can disallow the = direction for the i level.
2406 // Setting j = j' doesn't help matters, so we end up with a direction vector
2407 // of [<>, *]
2409 // Given A[5*i + 10*j*M + 9*M*N] and A[15*i + 20*j*M - 21*N*M + 5],
2410 // we need to remember that the constant part is 5 and the RunningGCD should
2411 // be initialized to ExtraGCD = 30.
2412 LLVM_DEBUG(dbgs() << " ExtraGCD = " << ExtraGCD << '\n');
2414 bool Improved = false;
2415 Coefficients = Src;
2416 while (const SCEVAddRecExpr *AddRec =
2417 dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2418 Coefficients = AddRec->getStart();
2419 const Loop *CurLoop = AddRec->getLoop();
2420 RunningGCD = ExtraGCD;
2421 const SCEV *SrcCoeff = AddRec->getStepRecurrence(*SE);
2422 const SCEV *DstCoeff = SE->getMinusSCEV(SrcCoeff, SrcCoeff);
2423 const SCEV *Inner = Src;
2424 while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
2425 AddRec = cast<SCEVAddRecExpr>(Inner);
2426 const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2427 if (CurLoop == AddRec->getLoop())
2428 ; // SrcCoeff == Coeff
2429 else {
2430 // If the coefficient is the product of a constant and other stuff,
2431 // we can use the constant in the GCD computation.
2432 Constant = getConstantPart(Coeff);
2433 if (!Constant)
2434 return false;
2435 APInt ConstCoeff = Constant->getAPInt();
2436 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2438 Inner = AddRec->getStart();
2440 Inner = Dst;
2441 while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
2442 AddRec = cast<SCEVAddRecExpr>(Inner);
2443 const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2444 if (CurLoop == AddRec->getLoop())
2445 DstCoeff = Coeff;
2446 else {
2447 // If the coefficient is the product of a constant and other stuff,
2448 // we can use the constant in the GCD computation.
2449 Constant = getConstantPart(Coeff);
2450 if (!Constant)
2451 return false;
2452 APInt ConstCoeff = Constant->getAPInt();
2453 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2455 Inner = AddRec->getStart();
2457 Delta = SE->getMinusSCEV(SrcCoeff, DstCoeff);
2458 // If the coefficient is the product of a constant and other stuff,
2459 // we can use the constant in the GCD computation.
2460 Constant = getConstantPart(Delta);
2461 if (!Constant)
2462 // The difference of the two coefficients might not be a product
2463 // or constant, in which case we give up on this direction.
2464 continue;
2465 APInt ConstCoeff = Constant->getAPInt();
2466 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2467 LLVM_DEBUG(dbgs() << "\tRunningGCD = " << RunningGCD << "\n");
2468 if (RunningGCD != 0) {
2469 Remainder = ConstDelta.srem(RunningGCD);
2470 LLVM_DEBUG(dbgs() << "\tRemainder = " << Remainder << "\n");
2471 if (Remainder != 0) {
2472 unsigned Level = mapSrcLoop(CurLoop);
2473 Result.DV[Level - 1].Direction &= unsigned(~Dependence::DVEntry::EQ);
2474 Improved = true;
2478 if (Improved)
2479 ++GCDsuccesses;
2480 LLVM_DEBUG(dbgs() << "all done\n");
2481 return false;
2485 //===----------------------------------------------------------------------===//
2486 // banerjeeMIVtest -
2487 // Use Banerjee's Inequalities to test an MIV subscript pair.
2488 // (Wolfe, in the race-car book, calls this the Extreme Value Test.)
2489 // Generally follows the discussion in Section 2.5.2 of
2491 // Optimizing Supercompilers for Supercomputers
2492 // Michael Wolfe
2494 // The inequalities given on page 25 are simplified in that loops are
2495 // normalized so that the lower bound is always 0 and the stride is always 1.
2496 // For example, Wolfe gives
2498 // LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2500 // where A_k is the coefficient of the kth index in the source subscript,
2501 // B_k is the coefficient of the kth index in the destination subscript,
2502 // U_k is the upper bound of the kth index, L_k is the lower bound of the Kth
2503 // index, and N_k is the stride of the kth index. Since all loops are normalized
2504 // by the SCEV package, N_k = 1 and L_k = 0, allowing us to simplify the
2505 // equation to
2507 // LB^<_k = (A^-_k - B_k)^- (U_k - 0 - 1) + (A_k - B_k)0 - B_k 1
2508 // = (A^-_k - B_k)^- (U_k - 1) - B_k
2510 // Similar simplifications are possible for the other equations.
2512 // When we can't determine the number of iterations for a loop,
2513 // we use NULL as an indicator for the worst case, infinity.
2514 // When computing the upper bound, NULL denotes +inf;
2515 // for the lower bound, NULL denotes -inf.
2517 // Return true if dependence disproved.
2518 bool DependenceInfo::banerjeeMIVtest(const SCEV *Src, const SCEV *Dst,
2519 const SmallBitVector &Loops,
2520 FullDependence &Result) const {
2521 LLVM_DEBUG(dbgs() << "starting Banerjee\n");
2522 ++BanerjeeApplications;
2523 LLVM_DEBUG(dbgs() << " Src = " << *Src << '\n');
2524 const SCEV *A0;
2525 CoefficientInfo *A = collectCoeffInfo(Src, true, A0);
2526 LLVM_DEBUG(dbgs() << " Dst = " << *Dst << '\n');
2527 const SCEV *B0;
2528 CoefficientInfo *B = collectCoeffInfo(Dst, false, B0);
2529 BoundInfo *Bound = new BoundInfo[MaxLevels + 1];
2530 const SCEV *Delta = SE->getMinusSCEV(B0, A0);
2531 LLVM_DEBUG(dbgs() << "\tDelta = " << *Delta << '\n');
2533 // Compute bounds for all the * directions.
2534 LLVM_DEBUG(dbgs() << "\tBounds[*]\n");
2535 for (unsigned K = 1; K <= MaxLevels; ++K) {
2536 Bound[K].Iterations = A[K].Iterations ? A[K].Iterations : B[K].Iterations;
2537 Bound[K].Direction = Dependence::DVEntry::ALL;
2538 Bound[K].DirSet = Dependence::DVEntry::NONE;
2539 findBoundsALL(A, B, Bound, K);
2540 #ifndef NDEBUG
2541 LLVM_DEBUG(dbgs() << "\t " << K << '\t');
2542 if (Bound[K].Lower[Dependence::DVEntry::ALL])
2543 LLVM_DEBUG(dbgs() << *Bound[K].Lower[Dependence::DVEntry::ALL] << '\t');
2544 else
2545 LLVM_DEBUG(dbgs() << "-inf\t");
2546 if (Bound[K].Upper[Dependence::DVEntry::ALL])
2547 LLVM_DEBUG(dbgs() << *Bound[K].Upper[Dependence::DVEntry::ALL] << '\n');
2548 else
2549 LLVM_DEBUG(dbgs() << "+inf\n");
2550 #endif
2553 // Test the *, *, *, ... case.
2554 bool Disproved = false;
2555 if (testBounds(Dependence::DVEntry::ALL, 0, Bound, Delta)) {
2556 // Explore the direction vector hierarchy.
2557 unsigned DepthExpanded = 0;
2558 unsigned NewDeps = exploreDirections(1, A, B, Bound,
2559 Loops, DepthExpanded, Delta);
2560 if (NewDeps > 0) {
2561 bool Improved = false;
2562 for (unsigned K = 1; K <= CommonLevels; ++K) {
2563 if (Loops[K]) {
2564 unsigned Old = Result.DV[K - 1].Direction;
2565 Result.DV[K - 1].Direction = Old & Bound[K].DirSet;
2566 Improved |= Old != Result.DV[K - 1].Direction;
2567 if (!Result.DV[K - 1].Direction) {
2568 Improved = false;
2569 Disproved = true;
2570 break;
2574 if (Improved)
2575 ++BanerjeeSuccesses;
2577 else {
2578 ++BanerjeeIndependence;
2579 Disproved = true;
2582 else {
2583 ++BanerjeeIndependence;
2584 Disproved = true;
2586 delete [] Bound;
2587 delete [] A;
2588 delete [] B;
2589 return Disproved;
2593 // Hierarchically expands the direction vector
2594 // search space, combining the directions of discovered dependences
2595 // in the DirSet field of Bound. Returns the number of distinct
2596 // dependences discovered. If the dependence is disproved,
2597 // it will return 0.
2598 unsigned DependenceInfo::exploreDirections(unsigned Level, CoefficientInfo *A,
2599 CoefficientInfo *B, BoundInfo *Bound,
2600 const SmallBitVector &Loops,
2601 unsigned &DepthExpanded,
2602 const SCEV *Delta) const {
2603 if (Level > CommonLevels) {
2604 // record result
2605 LLVM_DEBUG(dbgs() << "\t[");
2606 for (unsigned K = 1; K <= CommonLevels; ++K) {
2607 if (Loops[K]) {
2608 Bound[K].DirSet |= Bound[K].Direction;
2609 #ifndef NDEBUG
2610 switch (Bound[K].Direction) {
2611 case Dependence::DVEntry::LT:
2612 LLVM_DEBUG(dbgs() << " <");
2613 break;
2614 case Dependence::DVEntry::EQ:
2615 LLVM_DEBUG(dbgs() << " =");
2616 break;
2617 case Dependence::DVEntry::GT:
2618 LLVM_DEBUG(dbgs() << " >");
2619 break;
2620 case Dependence::DVEntry::ALL:
2621 LLVM_DEBUG(dbgs() << " *");
2622 break;
2623 default:
2624 llvm_unreachable("unexpected Bound[K].Direction");
2626 #endif
2629 LLVM_DEBUG(dbgs() << " ]\n");
2630 return 1;
2632 if (Loops[Level]) {
2633 if (Level > DepthExpanded) {
2634 DepthExpanded = Level;
2635 // compute bounds for <, =, > at current level
2636 findBoundsLT(A, B, Bound, Level);
2637 findBoundsGT(A, B, Bound, Level);
2638 findBoundsEQ(A, B, Bound, Level);
2639 #ifndef NDEBUG
2640 LLVM_DEBUG(dbgs() << "\tBound for level = " << Level << '\n');
2641 LLVM_DEBUG(dbgs() << "\t <\t");
2642 if (Bound[Level].Lower[Dependence::DVEntry::LT])
2643 LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::LT]
2644 << '\t');
2645 else
2646 LLVM_DEBUG(dbgs() << "-inf\t");
2647 if (Bound[Level].Upper[Dependence::DVEntry::LT])
2648 LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::LT]
2649 << '\n');
2650 else
2651 LLVM_DEBUG(dbgs() << "+inf\n");
2652 LLVM_DEBUG(dbgs() << "\t =\t");
2653 if (Bound[Level].Lower[Dependence::DVEntry::EQ])
2654 LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::EQ]
2655 << '\t');
2656 else
2657 LLVM_DEBUG(dbgs() << "-inf\t");
2658 if (Bound[Level].Upper[Dependence::DVEntry::EQ])
2659 LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::EQ]
2660 << '\n');
2661 else
2662 LLVM_DEBUG(dbgs() << "+inf\n");
2663 LLVM_DEBUG(dbgs() << "\t >\t");
2664 if (Bound[Level].Lower[Dependence::DVEntry::GT])
2665 LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::GT]
2666 << '\t');
2667 else
2668 LLVM_DEBUG(dbgs() << "-inf\t");
2669 if (Bound[Level].Upper[Dependence::DVEntry::GT])
2670 LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::GT]
2671 << '\n');
2672 else
2673 LLVM_DEBUG(dbgs() << "+inf\n");
2674 #endif
2677 unsigned NewDeps = 0;
2679 // test bounds for <, *, *, ...
2680 if (testBounds(Dependence::DVEntry::LT, Level, Bound, Delta))
2681 NewDeps += exploreDirections(Level + 1, A, B, Bound,
2682 Loops, DepthExpanded, Delta);
2684 // Test bounds for =, *, *, ...
2685 if (testBounds(Dependence::DVEntry::EQ, Level, Bound, Delta))
2686 NewDeps += exploreDirections(Level + 1, A, B, Bound,
2687 Loops, DepthExpanded, Delta);
2689 // test bounds for >, *, *, ...
2690 if (testBounds(Dependence::DVEntry::GT, Level, Bound, Delta))
2691 NewDeps += exploreDirections(Level + 1, A, B, Bound,
2692 Loops, DepthExpanded, Delta);
2694 Bound[Level].Direction = Dependence::DVEntry::ALL;
2695 return NewDeps;
2697 else
2698 return exploreDirections(Level + 1, A, B, Bound, Loops, DepthExpanded, Delta);
2702 // Returns true iff the current bounds are plausible.
2703 bool DependenceInfo::testBounds(unsigned char DirKind, unsigned Level,
2704 BoundInfo *Bound, const SCEV *Delta) const {
2705 Bound[Level].Direction = DirKind;
2706 if (const SCEV *LowerBound = getLowerBound(Bound))
2707 if (isKnownPredicate(CmpInst::ICMP_SGT, LowerBound, Delta))
2708 return false;
2709 if (const SCEV *UpperBound = getUpperBound(Bound))
2710 if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, UpperBound))
2711 return false;
2712 return true;
2716 // Computes the upper and lower bounds for level K
2717 // using the * direction. Records them in Bound.
2718 // Wolfe gives the equations
2720 // LB^*_k = (A^-_k - B^+_k)(U_k - L_k) + (A_k - B_k)L_k
2721 // UB^*_k = (A^+_k - B^-_k)(U_k - L_k) + (A_k - B_k)L_k
2723 // Since we normalize loops, we can simplify these equations to
2725 // LB^*_k = (A^-_k - B^+_k)U_k
2726 // UB^*_k = (A^+_k - B^-_k)U_k
2728 // We must be careful to handle the case where the upper bound is unknown.
2729 // Note that the lower bound is always <= 0
2730 // and the upper bound is always >= 0.
2731 void DependenceInfo::findBoundsALL(CoefficientInfo *A, CoefficientInfo *B,
2732 BoundInfo *Bound, unsigned K) const {
2733 Bound[K].Lower[Dependence::DVEntry::ALL] = nullptr; // Default value = -infinity.
2734 Bound[K].Upper[Dependence::DVEntry::ALL] = nullptr; // Default value = +infinity.
2735 if (Bound[K].Iterations) {
2736 Bound[K].Lower[Dependence::DVEntry::ALL] =
2737 SE->getMulExpr(SE->getMinusSCEV(A[K].NegPart, B[K].PosPart),
2738 Bound[K].Iterations);
2739 Bound[K].Upper[Dependence::DVEntry::ALL] =
2740 SE->getMulExpr(SE->getMinusSCEV(A[K].PosPart, B[K].NegPart),
2741 Bound[K].Iterations);
2743 else {
2744 // If the difference is 0, we won't need to know the number of iterations.
2745 if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].NegPart, B[K].PosPart))
2746 Bound[K].Lower[Dependence::DVEntry::ALL] =
2747 SE->getZero(A[K].Coeff->getType());
2748 if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].PosPart, B[K].NegPart))
2749 Bound[K].Upper[Dependence::DVEntry::ALL] =
2750 SE->getZero(A[K].Coeff->getType());
2755 // Computes the upper and lower bounds for level K
2756 // using the = direction. Records them in Bound.
2757 // Wolfe gives the equations
2759 // LB^=_k = (A_k - B_k)^- (U_k - L_k) + (A_k - B_k)L_k
2760 // UB^=_k = (A_k - B_k)^+ (U_k - L_k) + (A_k - B_k)L_k
2762 // Since we normalize loops, we can simplify these equations to
2764 // LB^=_k = (A_k - B_k)^- U_k
2765 // UB^=_k = (A_k - B_k)^+ U_k
2767 // We must be careful to handle the case where the upper bound is unknown.
2768 // Note that the lower bound is always <= 0
2769 // and the upper bound is always >= 0.
2770 void DependenceInfo::findBoundsEQ(CoefficientInfo *A, CoefficientInfo *B,
2771 BoundInfo *Bound, unsigned K) const {
2772 Bound[K].Lower[Dependence::DVEntry::EQ] = nullptr; // Default value = -infinity.
2773 Bound[K].Upper[Dependence::DVEntry::EQ] = nullptr; // Default value = +infinity.
2774 if (Bound[K].Iterations) {
2775 const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
2776 const SCEV *NegativePart = getNegativePart(Delta);
2777 Bound[K].Lower[Dependence::DVEntry::EQ] =
2778 SE->getMulExpr(NegativePart, Bound[K].Iterations);
2779 const SCEV *PositivePart = getPositivePart(Delta);
2780 Bound[K].Upper[Dependence::DVEntry::EQ] =
2781 SE->getMulExpr(PositivePart, Bound[K].Iterations);
2783 else {
2784 // If the positive/negative part of the difference is 0,
2785 // we won't need to know the number of iterations.
2786 const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
2787 const SCEV *NegativePart = getNegativePart(Delta);
2788 if (NegativePart->isZero())
2789 Bound[K].Lower[Dependence::DVEntry::EQ] = NegativePart; // Zero
2790 const SCEV *PositivePart = getPositivePart(Delta);
2791 if (PositivePart->isZero())
2792 Bound[K].Upper[Dependence::DVEntry::EQ] = PositivePart; // Zero
2797 // Computes the upper and lower bounds for level K
2798 // using the < direction. Records them in Bound.
2799 // Wolfe gives the equations
2801 // LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2802 // UB^<_k = (A^+_k - B_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2804 // Since we normalize loops, we can simplify these equations to
2806 // LB^<_k = (A^-_k - B_k)^- (U_k - 1) - B_k
2807 // UB^<_k = (A^+_k - B_k)^+ (U_k - 1) - B_k
2809 // We must be careful to handle the case where the upper bound is unknown.
2810 void DependenceInfo::findBoundsLT(CoefficientInfo *A, CoefficientInfo *B,
2811 BoundInfo *Bound, unsigned K) const {
2812 Bound[K].Lower[Dependence::DVEntry::LT] = nullptr; // Default value = -infinity.
2813 Bound[K].Upper[Dependence::DVEntry::LT] = nullptr; // Default value = +infinity.
2814 if (Bound[K].Iterations) {
2815 const SCEV *Iter_1 = SE->getMinusSCEV(
2816 Bound[K].Iterations, SE->getOne(Bound[K].Iterations->getType()));
2817 const SCEV *NegPart =
2818 getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
2819 Bound[K].Lower[Dependence::DVEntry::LT] =
2820 SE->getMinusSCEV(SE->getMulExpr(NegPart, Iter_1), B[K].Coeff);
2821 const SCEV *PosPart =
2822 getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
2823 Bound[K].Upper[Dependence::DVEntry::LT] =
2824 SE->getMinusSCEV(SE->getMulExpr(PosPart, Iter_1), B[K].Coeff);
2826 else {
2827 // If the positive/negative part of the difference is 0,
2828 // we won't need to know the number of iterations.
2829 const SCEV *NegPart =
2830 getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
2831 if (NegPart->isZero())
2832 Bound[K].Lower[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
2833 const SCEV *PosPart =
2834 getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
2835 if (PosPart->isZero())
2836 Bound[K].Upper[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
2841 // Computes the upper and lower bounds for level K
2842 // using the > direction. Records them in Bound.
2843 // Wolfe gives the equations
2845 // LB^>_k = (A_k - B^+_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
2846 // UB^>_k = (A_k - B^-_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
2848 // Since we normalize loops, we can simplify these equations to
2850 // LB^>_k = (A_k - B^+_k)^- (U_k - 1) + A_k
2851 // UB^>_k = (A_k - B^-_k)^+ (U_k - 1) + A_k
2853 // We must be careful to handle the case where the upper bound is unknown.
2854 void DependenceInfo::findBoundsGT(CoefficientInfo *A, CoefficientInfo *B,
2855 BoundInfo *Bound, unsigned K) const {
2856 Bound[K].Lower[Dependence::DVEntry::GT] = nullptr; // Default value = -infinity.
2857 Bound[K].Upper[Dependence::DVEntry::GT] = nullptr; // Default value = +infinity.
2858 if (Bound[K].Iterations) {
2859 const SCEV *Iter_1 = SE->getMinusSCEV(
2860 Bound[K].Iterations, SE->getOne(Bound[K].Iterations->getType()));
2861 const SCEV *NegPart =
2862 getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
2863 Bound[K].Lower[Dependence::DVEntry::GT] =
2864 SE->getAddExpr(SE->getMulExpr(NegPart, Iter_1), A[K].Coeff);
2865 const SCEV *PosPart =
2866 getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
2867 Bound[K].Upper[Dependence::DVEntry::GT] =
2868 SE->getAddExpr(SE->getMulExpr(PosPart, Iter_1), A[K].Coeff);
2870 else {
2871 // If the positive/negative part of the difference is 0,
2872 // we won't need to know the number of iterations.
2873 const SCEV *NegPart = getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
2874 if (NegPart->isZero())
2875 Bound[K].Lower[Dependence::DVEntry::GT] = A[K].Coeff;
2876 const SCEV *PosPart = getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
2877 if (PosPart->isZero())
2878 Bound[K].Upper[Dependence::DVEntry::GT] = A[K].Coeff;
2883 // X^+ = max(X, 0)
2884 const SCEV *DependenceInfo::getPositivePart(const SCEV *X) const {
2885 return SE->getSMaxExpr(X, SE->getZero(X->getType()));
2889 // X^- = min(X, 0)
2890 const SCEV *DependenceInfo::getNegativePart(const SCEV *X) const {
2891 return SE->getSMinExpr(X, SE->getZero(X->getType()));
2895 // Walks through the subscript,
2896 // collecting each coefficient, the associated loop bounds,
2897 // and recording its positive and negative parts for later use.
2898 DependenceInfo::CoefficientInfo *
2899 DependenceInfo::collectCoeffInfo(const SCEV *Subscript, bool SrcFlag,
2900 const SCEV *&Constant) const {
2901 const SCEV *Zero = SE->getZero(Subscript->getType());
2902 CoefficientInfo *CI = new CoefficientInfo[MaxLevels + 1];
2903 for (unsigned K = 1; K <= MaxLevels; ++K) {
2904 CI[K].Coeff = Zero;
2905 CI[K].PosPart = Zero;
2906 CI[K].NegPart = Zero;
2907 CI[K].Iterations = nullptr;
2909 while (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Subscript)) {
2910 const Loop *L = AddRec->getLoop();
2911 unsigned K = SrcFlag ? mapSrcLoop(L) : mapDstLoop(L);
2912 CI[K].Coeff = AddRec->getStepRecurrence(*SE);
2913 CI[K].PosPart = getPositivePart(CI[K].Coeff);
2914 CI[K].NegPart = getNegativePart(CI[K].Coeff);
2915 CI[K].Iterations = collectUpperBound(L, Subscript->getType());
2916 Subscript = AddRec->getStart();
2918 Constant = Subscript;
2919 #ifndef NDEBUG
2920 LLVM_DEBUG(dbgs() << "\tCoefficient Info\n");
2921 for (unsigned K = 1; K <= MaxLevels; ++K) {
2922 LLVM_DEBUG(dbgs() << "\t " << K << "\t" << *CI[K].Coeff);
2923 LLVM_DEBUG(dbgs() << "\tPos Part = ");
2924 LLVM_DEBUG(dbgs() << *CI[K].PosPart);
2925 LLVM_DEBUG(dbgs() << "\tNeg Part = ");
2926 LLVM_DEBUG(dbgs() << *CI[K].NegPart);
2927 LLVM_DEBUG(dbgs() << "\tUpper Bound = ");
2928 if (CI[K].Iterations)
2929 LLVM_DEBUG(dbgs() << *CI[K].Iterations);
2930 else
2931 LLVM_DEBUG(dbgs() << "+inf");
2932 LLVM_DEBUG(dbgs() << '\n');
2934 LLVM_DEBUG(dbgs() << "\t Constant = " << *Subscript << '\n');
2935 #endif
2936 return CI;
2940 // Looks through all the bounds info and
2941 // computes the lower bound given the current direction settings
2942 // at each level. If the lower bound for any level is -inf,
2943 // the result is -inf.
2944 const SCEV *DependenceInfo::getLowerBound(BoundInfo *Bound) const {
2945 const SCEV *Sum = Bound[1].Lower[Bound[1].Direction];
2946 for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
2947 if (Bound[K].Lower[Bound[K].Direction])
2948 Sum = SE->getAddExpr(Sum, Bound[K].Lower[Bound[K].Direction]);
2949 else
2950 Sum = nullptr;
2952 return Sum;
2956 // Looks through all the bounds info and
2957 // computes the upper bound given the current direction settings
2958 // at each level. If the upper bound at any level is +inf,
2959 // the result is +inf.
2960 const SCEV *DependenceInfo::getUpperBound(BoundInfo *Bound) const {
2961 const SCEV *Sum = Bound[1].Upper[Bound[1].Direction];
2962 for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
2963 if (Bound[K].Upper[Bound[K].Direction])
2964 Sum = SE->getAddExpr(Sum, Bound[K].Upper[Bound[K].Direction]);
2965 else
2966 Sum = nullptr;
2968 return Sum;
2972 //===----------------------------------------------------------------------===//
2973 // Constraint manipulation for Delta test.
2975 // Given a linear SCEV,
2976 // return the coefficient (the step)
2977 // corresponding to the specified loop.
2978 // If there isn't one, return 0.
2979 // For example, given a*i + b*j + c*k, finding the coefficient
2980 // corresponding to the j loop would yield b.
2981 const SCEV *DependenceInfo::findCoefficient(const SCEV *Expr,
2982 const Loop *TargetLoop) const {
2983 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
2984 if (!AddRec)
2985 return SE->getZero(Expr->getType());
2986 if (AddRec->getLoop() == TargetLoop)
2987 return AddRec->getStepRecurrence(*SE);
2988 return findCoefficient(AddRec->getStart(), TargetLoop);
2992 // Given a linear SCEV,
2993 // return the SCEV given by zeroing out the coefficient
2994 // corresponding to the specified loop.
2995 // For example, given a*i + b*j + c*k, zeroing the coefficient
2996 // corresponding to the j loop would yield a*i + c*k.
2997 const SCEV *DependenceInfo::zeroCoefficient(const SCEV *Expr,
2998 const Loop *TargetLoop) const {
2999 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
3000 if (!AddRec)
3001 return Expr; // ignore
3002 if (AddRec->getLoop() == TargetLoop)
3003 return AddRec->getStart();
3004 return SE->getAddRecExpr(zeroCoefficient(AddRec->getStart(), TargetLoop),
3005 AddRec->getStepRecurrence(*SE),
3006 AddRec->getLoop(),
3007 AddRec->getNoWrapFlags());
3011 // Given a linear SCEV Expr,
3012 // return the SCEV given by adding some Value to the
3013 // coefficient corresponding to the specified TargetLoop.
3014 // For example, given a*i + b*j + c*k, adding 1 to the coefficient
3015 // corresponding to the j loop would yield a*i + (b+1)*j + c*k.
3016 const SCEV *DependenceInfo::addToCoefficient(const SCEV *Expr,
3017 const Loop *TargetLoop,
3018 const SCEV *Value) const {
3019 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
3020 if (!AddRec) // create a new addRec
3021 return SE->getAddRecExpr(Expr,
3022 Value,
3023 TargetLoop,
3024 SCEV::FlagAnyWrap); // Worst case, with no info.
3025 if (AddRec->getLoop() == TargetLoop) {
3026 const SCEV *Sum = SE->getAddExpr(AddRec->getStepRecurrence(*SE), Value);
3027 if (Sum->isZero())
3028 return AddRec->getStart();
3029 return SE->getAddRecExpr(AddRec->getStart(),
3030 Sum,
3031 AddRec->getLoop(),
3032 AddRec->getNoWrapFlags());
3034 if (SE->isLoopInvariant(AddRec, TargetLoop))
3035 return SE->getAddRecExpr(AddRec, Value, TargetLoop, SCEV::FlagAnyWrap);
3036 return SE->getAddRecExpr(
3037 addToCoefficient(AddRec->getStart(), TargetLoop, Value),
3038 AddRec->getStepRecurrence(*SE), AddRec->getLoop(),
3039 AddRec->getNoWrapFlags());
3043 // Review the constraints, looking for opportunities
3044 // to simplify a subscript pair (Src and Dst).
3045 // Return true if some simplification occurs.
3046 // If the simplification isn't exact (that is, if it is conservative
3047 // in terms of dependence), set consistent to false.
3048 // Corresponds to Figure 5 from the paper
3050 // Practical Dependence Testing
3051 // Goff, Kennedy, Tseng
3052 // PLDI 1991
3053 bool DependenceInfo::propagate(const SCEV *&Src, const SCEV *&Dst,
3054 SmallBitVector &Loops,
3055 SmallVectorImpl<Constraint> &Constraints,
3056 bool &Consistent) {
3057 bool Result = false;
3058 for (unsigned LI : Loops.set_bits()) {
3059 LLVM_DEBUG(dbgs() << "\t Constraint[" << LI << "] is");
3060 LLVM_DEBUG(Constraints[LI].dump(dbgs()));
3061 if (Constraints[LI].isDistance())
3062 Result |= propagateDistance(Src, Dst, Constraints[LI], Consistent);
3063 else if (Constraints[LI].isLine())
3064 Result |= propagateLine(Src, Dst, Constraints[LI], Consistent);
3065 else if (Constraints[LI].isPoint())
3066 Result |= propagatePoint(Src, Dst, Constraints[LI]);
3068 return Result;
3072 // Attempt to propagate a distance
3073 // constraint into a subscript pair (Src and Dst).
3074 // Return true if some simplification occurs.
3075 // If the simplification isn't exact (that is, if it is conservative
3076 // in terms of dependence), set consistent to false.
3077 bool DependenceInfo::propagateDistance(const SCEV *&Src, const SCEV *&Dst,
3078 Constraint &CurConstraint,
3079 bool &Consistent) {
3080 const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3081 LLVM_DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
3082 const SCEV *A_K = findCoefficient(Src, CurLoop);
3083 if (A_K->isZero())
3084 return false;
3085 const SCEV *DA_K = SE->getMulExpr(A_K, CurConstraint.getD());
3086 Src = SE->getMinusSCEV(Src, DA_K);
3087 Src = zeroCoefficient(Src, CurLoop);
3088 LLVM_DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
3089 LLVM_DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
3090 Dst = addToCoefficient(Dst, CurLoop, SE->getNegativeSCEV(A_K));
3091 LLVM_DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
3092 if (!findCoefficient(Dst, CurLoop)->isZero())
3093 Consistent = false;
3094 return true;
3098 // Attempt to propagate a line
3099 // constraint into a subscript pair (Src and Dst).
3100 // Return true if some simplification occurs.
3101 // If the simplification isn't exact (that is, if it is conservative
3102 // in terms of dependence), set consistent to false.
3103 bool DependenceInfo::propagateLine(const SCEV *&Src, const SCEV *&Dst,
3104 Constraint &CurConstraint,
3105 bool &Consistent) {
3106 const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3107 const SCEV *A = CurConstraint.getA();
3108 const SCEV *B = CurConstraint.getB();
3109 const SCEV *C = CurConstraint.getC();
3110 LLVM_DEBUG(dbgs() << "\t\tA = " << *A << ", B = " << *B << ", C = " << *C
3111 << "\n");
3112 LLVM_DEBUG(dbgs() << "\t\tSrc = " << *Src << "\n");
3113 LLVM_DEBUG(dbgs() << "\t\tDst = " << *Dst << "\n");
3114 if (A->isZero()) {
3115 const SCEVConstant *Bconst = dyn_cast<SCEVConstant>(B);
3116 const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3117 if (!Bconst || !Cconst) return false;
3118 APInt Beta = Bconst->getAPInt();
3119 APInt Charlie = Cconst->getAPInt();
3120 APInt CdivB = Charlie.sdiv(Beta);
3121 assert(Charlie.srem(Beta) == 0 && "C should be evenly divisible by B");
3122 const SCEV *AP_K = findCoefficient(Dst, CurLoop);
3123 // Src = SE->getAddExpr(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
3124 Src = SE->getMinusSCEV(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
3125 Dst = zeroCoefficient(Dst, CurLoop);
3126 if (!findCoefficient(Src, CurLoop)->isZero())
3127 Consistent = false;
3129 else if (B->isZero()) {
3130 const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
3131 const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3132 if (!Aconst || !Cconst) return false;
3133 APInt Alpha = Aconst->getAPInt();
3134 APInt Charlie = Cconst->getAPInt();
3135 APInt CdivA = Charlie.sdiv(Alpha);
3136 assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
3137 const SCEV *A_K = findCoefficient(Src, CurLoop);
3138 Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
3139 Src = zeroCoefficient(Src, CurLoop);
3140 if (!findCoefficient(Dst, CurLoop)->isZero())
3141 Consistent = false;
3143 else if (isKnownPredicate(CmpInst::ICMP_EQ, A, B)) {
3144 const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
3145 const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3146 if (!Aconst || !Cconst) return false;
3147 APInt Alpha = Aconst->getAPInt();
3148 APInt Charlie = Cconst->getAPInt();
3149 APInt CdivA = Charlie.sdiv(Alpha);
3150 assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
3151 const SCEV *A_K = findCoefficient(Src, CurLoop);
3152 Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
3153 Src = zeroCoefficient(Src, CurLoop);
3154 Dst = addToCoefficient(Dst, CurLoop, A_K);
3155 if (!findCoefficient(Dst, CurLoop)->isZero())
3156 Consistent = false;
3158 else {
3159 // paper is incorrect here, or perhaps just misleading
3160 const SCEV *A_K = findCoefficient(Src, CurLoop);
3161 Src = SE->getMulExpr(Src, A);
3162 Dst = SE->getMulExpr(Dst, A);
3163 Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, C));
3164 Src = zeroCoefficient(Src, CurLoop);
3165 Dst = addToCoefficient(Dst, CurLoop, SE->getMulExpr(A_K, B));
3166 if (!findCoefficient(Dst, CurLoop)->isZero())
3167 Consistent = false;
3169 LLVM_DEBUG(dbgs() << "\t\tnew Src = " << *Src << "\n");
3170 LLVM_DEBUG(dbgs() << "\t\tnew Dst = " << *Dst << "\n");
3171 return true;
3175 // Attempt to propagate a point
3176 // constraint into a subscript pair (Src and Dst).
3177 // Return true if some simplification occurs.
3178 bool DependenceInfo::propagatePoint(const SCEV *&Src, const SCEV *&Dst,
3179 Constraint &CurConstraint) {
3180 const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3181 const SCEV *A_K = findCoefficient(Src, CurLoop);
3182 const SCEV *AP_K = findCoefficient(Dst, CurLoop);
3183 const SCEV *XA_K = SE->getMulExpr(A_K, CurConstraint.getX());
3184 const SCEV *YAP_K = SE->getMulExpr(AP_K, CurConstraint.getY());
3185 LLVM_DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
3186 Src = SE->getAddExpr(Src, SE->getMinusSCEV(XA_K, YAP_K));
3187 Src = zeroCoefficient(Src, CurLoop);
3188 LLVM_DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
3189 LLVM_DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
3190 Dst = zeroCoefficient(Dst, CurLoop);
3191 LLVM_DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
3192 return true;
3196 // Update direction vector entry based on the current constraint.
3197 void DependenceInfo::updateDirection(Dependence::DVEntry &Level,
3198 const Constraint &CurConstraint) const {
3199 LLVM_DEBUG(dbgs() << "\tUpdate direction, constraint =");
3200 LLVM_DEBUG(CurConstraint.dump(dbgs()));
3201 if (CurConstraint.isAny())
3202 ; // use defaults
3203 else if (CurConstraint.isDistance()) {
3204 // this one is consistent, the others aren't
3205 Level.Scalar = false;
3206 Level.Distance = CurConstraint.getD();
3207 unsigned NewDirection = Dependence::DVEntry::NONE;
3208 if (!SE->isKnownNonZero(Level.Distance)) // if may be zero
3209 NewDirection = Dependence::DVEntry::EQ;
3210 if (!SE->isKnownNonPositive(Level.Distance)) // if may be positive
3211 NewDirection |= Dependence::DVEntry::LT;
3212 if (!SE->isKnownNonNegative(Level.Distance)) // if may be negative
3213 NewDirection |= Dependence::DVEntry::GT;
3214 Level.Direction &= NewDirection;
3216 else if (CurConstraint.isLine()) {
3217 Level.Scalar = false;
3218 Level.Distance = nullptr;
3219 // direction should be accurate
3221 else if (CurConstraint.isPoint()) {
3222 Level.Scalar = false;
3223 Level.Distance = nullptr;
3224 unsigned NewDirection = Dependence::DVEntry::NONE;
3225 if (!isKnownPredicate(CmpInst::ICMP_NE,
3226 CurConstraint.getY(),
3227 CurConstraint.getX()))
3228 // if X may be = Y
3229 NewDirection |= Dependence::DVEntry::EQ;
3230 if (!isKnownPredicate(CmpInst::ICMP_SLE,
3231 CurConstraint.getY(),
3232 CurConstraint.getX()))
3233 // if Y may be > X
3234 NewDirection |= Dependence::DVEntry::LT;
3235 if (!isKnownPredicate(CmpInst::ICMP_SGE,
3236 CurConstraint.getY(),
3237 CurConstraint.getX()))
3238 // if Y may be < X
3239 NewDirection |= Dependence::DVEntry::GT;
3240 Level.Direction &= NewDirection;
3242 else
3243 llvm_unreachable("constraint has unexpected kind");
3246 /// Check if we can delinearize the subscripts. If the SCEVs representing the
3247 /// source and destination array references are recurrences on a nested loop,
3248 /// this function flattens the nested recurrences into separate recurrences
3249 /// for each loop level.
3250 bool DependenceInfo::tryDelinearize(Instruction *Src, Instruction *Dst,
3251 SmallVectorImpl<Subscript> &Pair) {
3252 assert(isLoadOrStore(Src) && "instruction is not load or store");
3253 assert(isLoadOrStore(Dst) && "instruction is not load or store");
3254 Value *SrcPtr = getLoadStorePointerOperand(Src);
3255 Value *DstPtr = getLoadStorePointerOperand(Dst);
3257 Loop *SrcLoop = LI->getLoopFor(Src->getParent());
3258 Loop *DstLoop = LI->getLoopFor(Dst->getParent());
3260 // Below code mimics the code in Delinearization.cpp
3261 const SCEV *SrcAccessFn =
3262 SE->getSCEVAtScope(SrcPtr, SrcLoop);
3263 const SCEV *DstAccessFn =
3264 SE->getSCEVAtScope(DstPtr, DstLoop);
3266 const SCEVUnknown *SrcBase =
3267 dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn));
3268 const SCEVUnknown *DstBase =
3269 dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn));
3271 if (!SrcBase || !DstBase || SrcBase != DstBase)
3272 return false;
3274 const SCEV *ElementSize = SE->getElementSize(Src);
3275 if (ElementSize != SE->getElementSize(Dst))
3276 return false;
3278 const SCEV *SrcSCEV = SE->getMinusSCEV(SrcAccessFn, SrcBase);
3279 const SCEV *DstSCEV = SE->getMinusSCEV(DstAccessFn, DstBase);
3281 const SCEVAddRecExpr *SrcAR = dyn_cast<SCEVAddRecExpr>(SrcSCEV);
3282 const SCEVAddRecExpr *DstAR = dyn_cast<SCEVAddRecExpr>(DstSCEV);
3283 if (!SrcAR || !DstAR || !SrcAR->isAffine() || !DstAR->isAffine())
3284 return false;
3286 // First step: collect parametric terms in both array references.
3287 SmallVector<const SCEV *, 4> Terms;
3288 SE->collectParametricTerms(SrcAR, Terms);
3289 SE->collectParametricTerms(DstAR, Terms);
3291 // Second step: find subscript sizes.
3292 SmallVector<const SCEV *, 4> Sizes;
3293 SE->findArrayDimensions(Terms, Sizes, ElementSize);
3295 // Third step: compute the access functions for each subscript.
3296 SmallVector<const SCEV *, 4> SrcSubscripts, DstSubscripts;
3297 SE->computeAccessFunctions(SrcAR, SrcSubscripts, Sizes);
3298 SE->computeAccessFunctions(DstAR, DstSubscripts, Sizes);
3300 // Fail when there is only a subscript: that's a linearized access function.
3301 if (SrcSubscripts.size() < 2 || DstSubscripts.size() < 2 ||
3302 SrcSubscripts.size() != DstSubscripts.size())
3303 return false;
3305 int size = SrcSubscripts.size();
3307 // Statically check that the array bounds are in-range. The first subscript we
3308 // don't have a size for and it cannot overflow into another subscript, so is
3309 // always safe. The others need to be 0 <= subscript[i] < bound, for both src
3310 // and dst.
3311 // FIXME: It may be better to record these sizes and add them as constraints
3312 // to the dependency checks.
3313 for (int i = 1; i < size; ++i) {
3314 if (!isKnownNonNegative(SrcSubscripts[i], SrcPtr))
3315 return false;
3317 if (!isKnownLessThan(SrcSubscripts[i], Sizes[i - 1]))
3318 return false;
3320 if (!isKnownNonNegative(DstSubscripts[i], DstPtr))
3321 return false;
3323 if (!isKnownLessThan(DstSubscripts[i], Sizes[i - 1]))
3324 return false;
3327 LLVM_DEBUG({
3328 dbgs() << "\nSrcSubscripts: ";
3329 for (int i = 0; i < size; i++)
3330 dbgs() << *SrcSubscripts[i];
3331 dbgs() << "\nDstSubscripts: ";
3332 for (int i = 0; i < size; i++)
3333 dbgs() << *DstSubscripts[i];
3336 // The delinearization transforms a single-subscript MIV dependence test into
3337 // a multi-subscript SIV dependence test that is easier to compute. So we
3338 // resize Pair to contain as many pairs of subscripts as the delinearization
3339 // has found, and then initialize the pairs following the delinearization.
3340 Pair.resize(size);
3341 for (int i = 0; i < size; ++i) {
3342 Pair[i].Src = SrcSubscripts[i];
3343 Pair[i].Dst = DstSubscripts[i];
3344 unifySubscriptType(&Pair[i]);
3347 return true;
3350 //===----------------------------------------------------------------------===//
3352 #ifndef NDEBUG
3353 // For debugging purposes, dump a small bit vector to dbgs().
3354 static void dumpSmallBitVector(SmallBitVector &BV) {
3355 dbgs() << "{";
3356 for (unsigned VI : BV.set_bits()) {
3357 dbgs() << VI;
3358 if (BV.find_next(VI) >= 0)
3359 dbgs() << ' ';
3361 dbgs() << "}\n";
3363 #endif
3365 // depends -
3366 // Returns NULL if there is no dependence.
3367 // Otherwise, return a Dependence with as many details as possible.
3368 // Corresponds to Section 3.1 in the paper
3370 // Practical Dependence Testing
3371 // Goff, Kennedy, Tseng
3372 // PLDI 1991
3374 // Care is required to keep the routine below, getSplitIteration(),
3375 // up to date with respect to this routine.
3376 std::unique_ptr<Dependence>
3377 DependenceInfo::depends(Instruction *Src, Instruction *Dst,
3378 bool PossiblyLoopIndependent) {
3379 if (Src == Dst)
3380 PossiblyLoopIndependent = false;
3382 if ((!Src->mayReadFromMemory() && !Src->mayWriteToMemory()) ||
3383 (!Dst->mayReadFromMemory() && !Dst->mayWriteToMemory()))
3384 // if both instructions don't reference memory, there's no dependence
3385 return nullptr;
3387 if (!isLoadOrStore(Src) || !isLoadOrStore(Dst)) {
3388 // can only analyze simple loads and stores, i.e., no calls, invokes, etc.
3389 LLVM_DEBUG(dbgs() << "can only handle simple loads and stores\n");
3390 return make_unique<Dependence>(Src, Dst);
3393 assert(isLoadOrStore(Src) && "instruction is not load or store");
3394 assert(isLoadOrStore(Dst) && "instruction is not load or store");
3395 Value *SrcPtr = getLoadStorePointerOperand(Src);
3396 Value *DstPtr = getLoadStorePointerOperand(Dst);
3398 switch (underlyingObjectsAlias(AA, F->getParent()->getDataLayout(),
3399 MemoryLocation::get(Dst),
3400 MemoryLocation::get(Src))) {
3401 case MayAlias:
3402 case PartialAlias:
3403 // cannot analyse objects if we don't understand their aliasing.
3404 LLVM_DEBUG(dbgs() << "can't analyze may or partial alias\n");
3405 return make_unique<Dependence>(Src, Dst);
3406 case NoAlias:
3407 // If the objects noalias, they are distinct, accesses are independent.
3408 LLVM_DEBUG(dbgs() << "no alias\n");
3409 return nullptr;
3410 case MustAlias:
3411 break; // The underlying objects alias; test accesses for dependence.
3414 // establish loop nesting levels
3415 establishNestingLevels(Src, Dst);
3416 LLVM_DEBUG(dbgs() << " common nesting levels = " << CommonLevels << "\n");
3417 LLVM_DEBUG(dbgs() << " maximum nesting levels = " << MaxLevels << "\n");
3419 FullDependence Result(Src, Dst, PossiblyLoopIndependent, CommonLevels);
3420 ++TotalArrayPairs;
3422 unsigned Pairs = 1;
3423 SmallVector<Subscript, 2> Pair(Pairs);
3424 const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
3425 const SCEV *DstSCEV = SE->getSCEV(DstPtr);
3426 LLVM_DEBUG(dbgs() << " SrcSCEV = " << *SrcSCEV << "\n");
3427 LLVM_DEBUG(dbgs() << " DstSCEV = " << *DstSCEV << "\n");
3428 Pair[0].Src = SrcSCEV;
3429 Pair[0].Dst = DstSCEV;
3431 if (Delinearize) {
3432 if (tryDelinearize(Src, Dst, Pair)) {
3433 LLVM_DEBUG(dbgs() << " delinearized\n");
3434 Pairs = Pair.size();
3438 for (unsigned P = 0; P < Pairs; ++P) {
3439 Pair[P].Loops.resize(MaxLevels + 1);
3440 Pair[P].GroupLoops.resize(MaxLevels + 1);
3441 Pair[P].Group.resize(Pairs);
3442 removeMatchingExtensions(&Pair[P]);
3443 Pair[P].Classification =
3444 classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
3445 Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
3446 Pair[P].Loops);
3447 Pair[P].GroupLoops = Pair[P].Loops;
3448 Pair[P].Group.set(P);
3449 LLVM_DEBUG(dbgs() << " subscript " << P << "\n");
3450 LLVM_DEBUG(dbgs() << "\tsrc = " << *Pair[P].Src << "\n");
3451 LLVM_DEBUG(dbgs() << "\tdst = " << *Pair[P].Dst << "\n");
3452 LLVM_DEBUG(dbgs() << "\tclass = " << Pair[P].Classification << "\n");
3453 LLVM_DEBUG(dbgs() << "\tloops = ");
3454 LLVM_DEBUG(dumpSmallBitVector(Pair[P].Loops));
3457 SmallBitVector Separable(Pairs);
3458 SmallBitVector Coupled(Pairs);
3460 // Partition subscripts into separable and minimally-coupled groups
3461 // Algorithm in paper is algorithmically better;
3462 // this may be faster in practice. Check someday.
3464 // Here's an example of how it works. Consider this code:
3466 // for (i = ...) {
3467 // for (j = ...) {
3468 // for (k = ...) {
3469 // for (l = ...) {
3470 // for (m = ...) {
3471 // A[i][j][k][m] = ...;
3472 // ... = A[0][j][l][i + j];
3473 // }
3474 // }
3475 // }
3476 // }
3477 // }
3479 // There are 4 subscripts here:
3480 // 0 [i] and [0]
3481 // 1 [j] and [j]
3482 // 2 [k] and [l]
3483 // 3 [m] and [i + j]
3485 // We've already classified each subscript pair as ZIV, SIV, etc.,
3486 // and collected all the loops mentioned by pair P in Pair[P].Loops.
3487 // In addition, we've initialized Pair[P].GroupLoops to Pair[P].Loops
3488 // and set Pair[P].Group = {P}.
3490 // Src Dst Classification Loops GroupLoops Group
3491 // 0 [i] [0] SIV {1} {1} {0}
3492 // 1 [j] [j] SIV {2} {2} {1}
3493 // 2 [k] [l] RDIV {3,4} {3,4} {2}
3494 // 3 [m] [i + j] MIV {1,2,5} {1,2,5} {3}
3496 // For each subscript SI 0 .. 3, we consider each remaining subscript, SJ.
3497 // So, 0 is compared against 1, 2, and 3; 1 is compared against 2 and 3, etc.
3499 // We begin by comparing 0 and 1. The intersection of the GroupLoops is empty.
3500 // Next, 0 and 2. Again, the intersection of their GroupLoops is empty.
3501 // Next 0 and 3. The intersection of their GroupLoop = {1}, not empty,
3502 // so Pair[3].Group = {0,3} and Done = false (that is, 0 will not be added
3503 // to either Separable or Coupled).
3505 // Next, we consider 1 and 2. The intersection of the GroupLoops is empty.
3506 // Next, 1 and 3. The intersectionof their GroupLoops = {2}, not empty,
3507 // so Pair[3].Group = {0, 1, 3} and Done = false.
3509 // Next, we compare 2 against 3. The intersection of the GroupLoops is empty.
3510 // Since Done remains true, we add 2 to the set of Separable pairs.
3512 // Finally, we consider 3. There's nothing to compare it with,
3513 // so Done remains true and we add it to the Coupled set.
3514 // Pair[3].Group = {0, 1, 3} and GroupLoops = {1, 2, 5}.
3516 // In the end, we've got 1 separable subscript and 1 coupled group.
3517 for (unsigned SI = 0; SI < Pairs; ++SI) {
3518 if (Pair[SI].Classification == Subscript::NonLinear) {
3519 // ignore these, but collect loops for later
3520 ++NonlinearSubscriptPairs;
3521 collectCommonLoops(Pair[SI].Src,
3522 LI->getLoopFor(Src->getParent()),
3523 Pair[SI].Loops);
3524 collectCommonLoops(Pair[SI].Dst,
3525 LI->getLoopFor(Dst->getParent()),
3526 Pair[SI].Loops);
3527 Result.Consistent = false;
3528 } else if (Pair[SI].Classification == Subscript::ZIV) {
3529 // always separable
3530 Separable.set(SI);
3532 else {
3533 // SIV, RDIV, or MIV, so check for coupled group
3534 bool Done = true;
3535 for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
3536 SmallBitVector Intersection = Pair[SI].GroupLoops;
3537 Intersection &= Pair[SJ].GroupLoops;
3538 if (Intersection.any()) {
3539 // accumulate set of all the loops in group
3540 Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
3541 // accumulate set of all subscripts in group
3542 Pair[SJ].Group |= Pair[SI].Group;
3543 Done = false;
3546 if (Done) {
3547 if (Pair[SI].Group.count() == 1) {
3548 Separable.set(SI);
3549 ++SeparableSubscriptPairs;
3551 else {
3552 Coupled.set(SI);
3553 ++CoupledSubscriptPairs;
3559 LLVM_DEBUG(dbgs() << " Separable = ");
3560 LLVM_DEBUG(dumpSmallBitVector(Separable));
3561 LLVM_DEBUG(dbgs() << " Coupled = ");
3562 LLVM_DEBUG(dumpSmallBitVector(Coupled));
3564 Constraint NewConstraint;
3565 NewConstraint.setAny(SE);
3567 // test separable subscripts
3568 for (unsigned SI : Separable.set_bits()) {
3569 LLVM_DEBUG(dbgs() << "testing subscript " << SI);
3570 switch (Pair[SI].Classification) {
3571 case Subscript::ZIV:
3572 LLVM_DEBUG(dbgs() << ", ZIV\n");
3573 if (testZIV(Pair[SI].Src, Pair[SI].Dst, Result))
3574 return nullptr;
3575 break;
3576 case Subscript::SIV: {
3577 LLVM_DEBUG(dbgs() << ", SIV\n");
3578 unsigned Level;
3579 const SCEV *SplitIter = nullptr;
3580 if (testSIV(Pair[SI].Src, Pair[SI].Dst, Level, Result, NewConstraint,
3581 SplitIter))
3582 return nullptr;
3583 break;
3585 case Subscript::RDIV:
3586 LLVM_DEBUG(dbgs() << ", RDIV\n");
3587 if (testRDIV(Pair[SI].Src, Pair[SI].Dst, Result))
3588 return nullptr;
3589 break;
3590 case Subscript::MIV:
3591 LLVM_DEBUG(dbgs() << ", MIV\n");
3592 if (testMIV(Pair[SI].Src, Pair[SI].Dst, Pair[SI].Loops, Result))
3593 return nullptr;
3594 break;
3595 default:
3596 llvm_unreachable("subscript has unexpected classification");
3600 if (Coupled.count()) {
3601 // test coupled subscript groups
3602 LLVM_DEBUG(dbgs() << "starting on coupled subscripts\n");
3603 LLVM_DEBUG(dbgs() << "MaxLevels + 1 = " << MaxLevels + 1 << "\n");
3604 SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
3605 for (unsigned II = 0; II <= MaxLevels; ++II)
3606 Constraints[II].setAny(SE);
3607 for (unsigned SI : Coupled.set_bits()) {
3608 LLVM_DEBUG(dbgs() << "testing subscript group " << SI << " { ");
3609 SmallBitVector Group(Pair[SI].Group);
3610 SmallBitVector Sivs(Pairs);
3611 SmallBitVector Mivs(Pairs);
3612 SmallBitVector ConstrainedLevels(MaxLevels + 1);
3613 SmallVector<Subscript *, 4> PairsInGroup;
3614 for (unsigned SJ : Group.set_bits()) {
3615 LLVM_DEBUG(dbgs() << SJ << " ");
3616 if (Pair[SJ].Classification == Subscript::SIV)
3617 Sivs.set(SJ);
3618 else
3619 Mivs.set(SJ);
3620 PairsInGroup.push_back(&Pair[SJ]);
3622 unifySubscriptType(PairsInGroup);
3623 LLVM_DEBUG(dbgs() << "}\n");
3624 while (Sivs.any()) {
3625 bool Changed = false;
3626 for (unsigned SJ : Sivs.set_bits()) {
3627 LLVM_DEBUG(dbgs() << "testing subscript " << SJ << ", SIV\n");
3628 // SJ is an SIV subscript that's part of the current coupled group
3629 unsigned Level;
3630 const SCEV *SplitIter = nullptr;
3631 LLVM_DEBUG(dbgs() << "SIV\n");
3632 if (testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level, Result, NewConstraint,
3633 SplitIter))
3634 return nullptr;
3635 ConstrainedLevels.set(Level);
3636 if (intersectConstraints(&Constraints[Level], &NewConstraint)) {
3637 if (Constraints[Level].isEmpty()) {
3638 ++DeltaIndependence;
3639 return nullptr;
3641 Changed = true;
3643 Sivs.reset(SJ);
3645 if (Changed) {
3646 // propagate, possibly creating new SIVs and ZIVs
3647 LLVM_DEBUG(dbgs() << " propagating\n");
3648 LLVM_DEBUG(dbgs() << "\tMivs = ");
3649 LLVM_DEBUG(dumpSmallBitVector(Mivs));
3650 for (unsigned SJ : Mivs.set_bits()) {
3651 // SJ is an MIV subscript that's part of the current coupled group
3652 LLVM_DEBUG(dbgs() << "\tSJ = " << SJ << "\n");
3653 if (propagate(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops,
3654 Constraints, Result.Consistent)) {
3655 LLVM_DEBUG(dbgs() << "\t Changed\n");
3656 ++DeltaPropagations;
3657 Pair[SJ].Classification =
3658 classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
3659 Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
3660 Pair[SJ].Loops);
3661 switch (Pair[SJ].Classification) {
3662 case Subscript::ZIV:
3663 LLVM_DEBUG(dbgs() << "ZIV\n");
3664 if (testZIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
3665 return nullptr;
3666 Mivs.reset(SJ);
3667 break;
3668 case Subscript::SIV:
3669 Sivs.set(SJ);
3670 Mivs.reset(SJ);
3671 break;
3672 case Subscript::RDIV:
3673 case Subscript::MIV:
3674 break;
3675 default:
3676 llvm_unreachable("bad subscript classification");
3683 // test & propagate remaining RDIVs
3684 for (unsigned SJ : Mivs.set_bits()) {
3685 if (Pair[SJ].Classification == Subscript::RDIV) {
3686 LLVM_DEBUG(dbgs() << "RDIV test\n");
3687 if (testRDIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
3688 return nullptr;
3689 // I don't yet understand how to propagate RDIV results
3690 Mivs.reset(SJ);
3694 // test remaining MIVs
3695 // This code is temporary.
3696 // Better to somehow test all remaining subscripts simultaneously.
3697 for (unsigned SJ : Mivs.set_bits()) {
3698 if (Pair[SJ].Classification == Subscript::MIV) {
3699 LLVM_DEBUG(dbgs() << "MIV test\n");
3700 if (testMIV(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops, Result))
3701 return nullptr;
3703 else
3704 llvm_unreachable("expected only MIV subscripts at this point");
3707 // update Result.DV from constraint vector
3708 LLVM_DEBUG(dbgs() << " updating\n");
3709 for (unsigned SJ : ConstrainedLevels.set_bits()) {
3710 if (SJ > CommonLevels)
3711 break;
3712 updateDirection(Result.DV[SJ - 1], Constraints[SJ]);
3713 if (Result.DV[SJ - 1].Direction == Dependence::DVEntry::NONE)
3714 return nullptr;
3719 // Make sure the Scalar flags are set correctly.
3720 SmallBitVector CompleteLoops(MaxLevels + 1);
3721 for (unsigned SI = 0; SI < Pairs; ++SI)
3722 CompleteLoops |= Pair[SI].Loops;
3723 for (unsigned II = 1; II <= CommonLevels; ++II)
3724 if (CompleteLoops[II])
3725 Result.DV[II - 1].Scalar = false;
3727 if (PossiblyLoopIndependent) {
3728 // Make sure the LoopIndependent flag is set correctly.
3729 // All directions must include equal, otherwise no
3730 // loop-independent dependence is possible.
3731 for (unsigned II = 1; II <= CommonLevels; ++II) {
3732 if (!(Result.getDirection(II) & Dependence::DVEntry::EQ)) {
3733 Result.LoopIndependent = false;
3734 break;
3738 else {
3739 // On the other hand, if all directions are equal and there's no
3740 // loop-independent dependence possible, then no dependence exists.
3741 bool AllEqual = true;
3742 for (unsigned II = 1; II <= CommonLevels; ++II) {
3743 if (Result.getDirection(II) != Dependence::DVEntry::EQ) {
3744 AllEqual = false;
3745 break;
3748 if (AllEqual)
3749 return nullptr;
3752 return make_unique<FullDependence>(std::move(Result));
3757 //===----------------------------------------------------------------------===//
3758 // getSplitIteration -
3759 // Rather than spend rarely-used space recording the splitting iteration
3760 // during the Weak-Crossing SIV test, we re-compute it on demand.
3761 // The re-computation is basically a repeat of the entire dependence test,
3762 // though simplified since we know that the dependence exists.
3763 // It's tedious, since we must go through all propagations, etc.
3765 // Care is required to keep this code up to date with respect to the routine
3766 // above, depends().
3768 // Generally, the dependence analyzer will be used to build
3769 // a dependence graph for a function (basically a map from instructions
3770 // to dependences). Looking for cycles in the graph shows us loops
3771 // that cannot be trivially vectorized/parallelized.
3773 // We can try to improve the situation by examining all the dependences
3774 // that make up the cycle, looking for ones we can break.
3775 // Sometimes, peeling the first or last iteration of a loop will break
3776 // dependences, and we've got flags for those possibilities.
3777 // Sometimes, splitting a loop at some other iteration will do the trick,
3778 // and we've got a flag for that case. Rather than waste the space to
3779 // record the exact iteration (since we rarely know), we provide
3780 // a method that calculates the iteration. It's a drag that it must work
3781 // from scratch, but wonderful in that it's possible.
3783 // Here's an example:
3785 // for (i = 0; i < 10; i++)
3786 // A[i] = ...
3787 // ... = A[11 - i]
3789 // There's a loop-carried flow dependence from the store to the load,
3790 // found by the weak-crossing SIV test. The dependence will have a flag,
3791 // indicating that the dependence can be broken by splitting the loop.
3792 // Calling getSplitIteration will return 5.
3793 // Splitting the loop breaks the dependence, like so:
3795 // for (i = 0; i <= 5; i++)
3796 // A[i] = ...
3797 // ... = A[11 - i]
3798 // for (i = 6; i < 10; i++)
3799 // A[i] = ...
3800 // ... = A[11 - i]
3802 // breaks the dependence and allows us to vectorize/parallelize
3803 // both loops.
3804 const SCEV *DependenceInfo::getSplitIteration(const Dependence &Dep,
3805 unsigned SplitLevel) {
3806 assert(Dep.isSplitable(SplitLevel) &&
3807 "Dep should be splitable at SplitLevel");
3808 Instruction *Src = Dep.getSrc();
3809 Instruction *Dst = Dep.getDst();
3810 assert(Src->mayReadFromMemory() || Src->mayWriteToMemory());
3811 assert(Dst->mayReadFromMemory() || Dst->mayWriteToMemory());
3812 assert(isLoadOrStore(Src));
3813 assert(isLoadOrStore(Dst));
3814 Value *SrcPtr = getLoadStorePointerOperand(Src);
3815 Value *DstPtr = getLoadStorePointerOperand(Dst);
3816 assert(underlyingObjectsAlias(AA, F->getParent()->getDataLayout(),
3817 MemoryLocation::get(Dst),
3818 MemoryLocation::get(Src)) == MustAlias);
3820 // establish loop nesting levels
3821 establishNestingLevels(Src, Dst);
3823 FullDependence Result(Src, Dst, false, CommonLevels);
3825 unsigned Pairs = 1;
3826 SmallVector<Subscript, 2> Pair(Pairs);
3827 const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
3828 const SCEV *DstSCEV = SE->getSCEV(DstPtr);
3829 Pair[0].Src = SrcSCEV;
3830 Pair[0].Dst = DstSCEV;
3832 if (Delinearize) {
3833 if (tryDelinearize(Src, Dst, Pair)) {
3834 LLVM_DEBUG(dbgs() << " delinearized\n");
3835 Pairs = Pair.size();
3839 for (unsigned P = 0; P < Pairs; ++P) {
3840 Pair[P].Loops.resize(MaxLevels + 1);
3841 Pair[P].GroupLoops.resize(MaxLevels + 1);
3842 Pair[P].Group.resize(Pairs);
3843 removeMatchingExtensions(&Pair[P]);
3844 Pair[P].Classification =
3845 classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
3846 Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
3847 Pair[P].Loops);
3848 Pair[P].GroupLoops = Pair[P].Loops;
3849 Pair[P].Group.set(P);
3852 SmallBitVector Separable(Pairs);
3853 SmallBitVector Coupled(Pairs);
3855 // partition subscripts into separable and minimally-coupled groups
3856 for (unsigned SI = 0; SI < Pairs; ++SI) {
3857 if (Pair[SI].Classification == Subscript::NonLinear) {
3858 // ignore these, but collect loops for later
3859 collectCommonLoops(Pair[SI].Src,
3860 LI->getLoopFor(Src->getParent()),
3861 Pair[SI].Loops);
3862 collectCommonLoops(Pair[SI].Dst,
3863 LI->getLoopFor(Dst->getParent()),
3864 Pair[SI].Loops);
3865 Result.Consistent = false;
3867 else if (Pair[SI].Classification == Subscript::ZIV)
3868 Separable.set(SI);
3869 else {
3870 // SIV, RDIV, or MIV, so check for coupled group
3871 bool Done = true;
3872 for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
3873 SmallBitVector Intersection = Pair[SI].GroupLoops;
3874 Intersection &= Pair[SJ].GroupLoops;
3875 if (Intersection.any()) {
3876 // accumulate set of all the loops in group
3877 Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
3878 // accumulate set of all subscripts in group
3879 Pair[SJ].Group |= Pair[SI].Group;
3880 Done = false;
3883 if (Done) {
3884 if (Pair[SI].Group.count() == 1)
3885 Separable.set(SI);
3886 else
3887 Coupled.set(SI);
3892 Constraint NewConstraint;
3893 NewConstraint.setAny(SE);
3895 // test separable subscripts
3896 for (unsigned SI : Separable.set_bits()) {
3897 switch (Pair[SI].Classification) {
3898 case Subscript::SIV: {
3899 unsigned Level;
3900 const SCEV *SplitIter = nullptr;
3901 (void) testSIV(Pair[SI].Src, Pair[SI].Dst, Level,
3902 Result, NewConstraint, SplitIter);
3903 if (Level == SplitLevel) {
3904 assert(SplitIter != nullptr);
3905 return SplitIter;
3907 break;
3909 case Subscript::ZIV:
3910 case Subscript::RDIV:
3911 case Subscript::MIV:
3912 break;
3913 default:
3914 llvm_unreachable("subscript has unexpected classification");
3918 if (Coupled.count()) {
3919 // test coupled subscript groups
3920 SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
3921 for (unsigned II = 0; II <= MaxLevels; ++II)
3922 Constraints[II].setAny(SE);
3923 for (unsigned SI : Coupled.set_bits()) {
3924 SmallBitVector Group(Pair[SI].Group);
3925 SmallBitVector Sivs(Pairs);
3926 SmallBitVector Mivs(Pairs);
3927 SmallBitVector ConstrainedLevels(MaxLevels + 1);
3928 for (unsigned SJ : Group.set_bits()) {
3929 if (Pair[SJ].Classification == Subscript::SIV)
3930 Sivs.set(SJ);
3931 else
3932 Mivs.set(SJ);
3934 while (Sivs.any()) {
3935 bool Changed = false;
3936 for (unsigned SJ : Sivs.set_bits()) {
3937 // SJ is an SIV subscript that's part of the current coupled group
3938 unsigned Level;
3939 const SCEV *SplitIter = nullptr;
3940 (void) testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level,
3941 Result, NewConstraint, SplitIter);
3942 if (Level == SplitLevel && SplitIter)
3943 return SplitIter;
3944 ConstrainedLevels.set(Level);
3945 if (intersectConstraints(&Constraints[Level], &NewConstraint))
3946 Changed = true;
3947 Sivs.reset(SJ);
3949 if (Changed) {
3950 // propagate, possibly creating new SIVs and ZIVs
3951 for (unsigned SJ : Mivs.set_bits()) {
3952 // SJ is an MIV subscript that's part of the current coupled group
3953 if (propagate(Pair[SJ].Src, Pair[SJ].Dst,
3954 Pair[SJ].Loops, Constraints, Result.Consistent)) {
3955 Pair[SJ].Classification =
3956 classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
3957 Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
3958 Pair[SJ].Loops);
3959 switch (Pair[SJ].Classification) {
3960 case Subscript::ZIV:
3961 Mivs.reset(SJ);
3962 break;
3963 case Subscript::SIV:
3964 Sivs.set(SJ);
3965 Mivs.reset(SJ);
3966 break;
3967 case Subscript::RDIV:
3968 case Subscript::MIV:
3969 break;
3970 default:
3971 llvm_unreachable("bad subscript classification");
3979 llvm_unreachable("somehow reached end of routine");
3980 return nullptr;