1 //===- IVUsers.cpp - Induction Variable Users -------------------*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements bookkeeping for "interesting" users of expressions
11 // computed from induction variables.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Analysis/IVUsers.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/Analysis/AssumptionCache.h"
18 #include "llvm/Analysis/CodeMetrics.h"
19 #include "llvm/Analysis/LoopAnalysisManager.h"
20 #include "llvm/Analysis/LoopPass.h"
21 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/Config/llvm-config.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/Dominators.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/IR/Type.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/raw_ostream.h"
36 #define DEBUG_TYPE "iv-users"
38 AnalysisKey
IVUsersAnalysis::Key
;
40 IVUsers
IVUsersAnalysis::run(Loop
&L
, LoopAnalysisManager
&AM
,
41 LoopStandardAnalysisResults
&AR
) {
42 return IVUsers(&L
, &AR
.AC
, &AR
.LI
, &AR
.DT
, &AR
.SE
);
45 char IVUsersWrapperPass::ID
= 0;
46 INITIALIZE_PASS_BEGIN(IVUsersWrapperPass
, "iv-users",
47 "Induction Variable Users", false, true)
48 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker
)
49 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass
)
50 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
51 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass
)
52 INITIALIZE_PASS_END(IVUsersWrapperPass
, "iv-users", "Induction Variable Users",
55 Pass
*llvm::createIVUsersPass() { return new IVUsersWrapperPass(); }
57 /// isInteresting - Test whether the given expression is "interesting" when
58 /// used by the given expression, within the context of analyzing the
60 static bool isInteresting(const SCEV
*S
, const Instruction
*I
, const Loop
*L
,
61 ScalarEvolution
*SE
, LoopInfo
*LI
) {
62 // An addrec is interesting if it's affine or if it has an interesting start.
63 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(S
)) {
64 // Keep things simple. Don't touch loop-variant strides unless they're
65 // only used outside the loop and we can simplify them.
66 if (AR
->getLoop() == L
)
67 return AR
->isAffine() ||
69 SE
->getSCEVAtScope(AR
, LI
->getLoopFor(I
->getParent())) != AR
);
70 // Otherwise recurse to see if the start value is interesting, and that
71 // the step value is not interesting, since we don't yet know how to
72 // do effective SCEV expansions for addrecs with interesting steps.
73 return isInteresting(AR
->getStart(), I
, L
, SE
, LI
) &&
74 !isInteresting(AR
->getStepRecurrence(*SE
), I
, L
, SE
, LI
);
77 // An add is interesting if exactly one of its operands is interesting.
78 if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(S
)) {
79 bool AnyInterestingYet
= false;
80 for (const auto *Op
: Add
->operands())
81 if (isInteresting(Op
, I
, L
, SE
, LI
)) {
82 if (AnyInterestingYet
)
84 AnyInterestingYet
= true;
86 return AnyInterestingYet
;
89 // Nothing else is interesting here.
93 /// Return true if all loop headers that dominate this block are in simplified
95 static bool isSimplifiedLoopNest(BasicBlock
*BB
, const DominatorTree
*DT
,
97 SmallPtrSetImpl
<Loop
*> &SimpleLoopNests
) {
98 Loop
*NearestLoop
= nullptr;
99 for (DomTreeNode
*Rung
= DT
->getNode(BB
);
100 Rung
; Rung
= Rung
->getIDom()) {
101 BasicBlock
*DomBB
= Rung
->getBlock();
102 Loop
*DomLoop
= LI
->getLoopFor(DomBB
);
103 if (DomLoop
&& DomLoop
->getHeader() == DomBB
) {
104 // If the domtree walk reaches a loop with no preheader, return false.
105 if (!DomLoop
->isLoopSimplifyForm())
107 // If we have already checked this loop nest, stop checking.
108 if (SimpleLoopNests
.count(DomLoop
))
110 // If we have not already checked this loop nest, remember the loop
111 // header nearest to BB. The nearest loop may not contain BB.
113 NearestLoop
= DomLoop
;
117 SimpleLoopNests
.insert(NearestLoop
);
121 /// IVUseShouldUsePostIncValue - We have discovered a "User" of an IV expression
122 /// and now we need to decide whether the user should use the preinc or post-inc
123 /// value. If this user should use the post-inc version of the IV, return true.
125 /// Choosing wrong here can break dominance properties (if we choose to use the
126 /// post-inc value when we cannot) or it can end up adding extra live-ranges to
127 /// the loop, resulting in reg-reg copies (if we use the pre-inc value when we
128 /// should use the post-inc value).
129 static bool IVUseShouldUsePostIncValue(Instruction
*User
, Value
*Operand
,
130 const Loop
*L
, DominatorTree
*DT
) {
131 // If the user is in the loop, use the preinc value.
132 if (L
->contains(User
))
135 BasicBlock
*LatchBlock
= L
->getLoopLatch();
139 // Ok, the user is outside of the loop. If it is dominated by the latch
140 // block, use the post-inc value.
141 if (DT
->dominates(LatchBlock
, User
->getParent()))
144 // There is one case we have to be careful of: PHI nodes. These little guys
145 // can live in blocks that are not dominated by the latch block, but (since
146 // their uses occur in the predecessor block, not the block the PHI lives in)
147 // should still use the post-inc value. Check for this case now.
148 PHINode
*PN
= dyn_cast
<PHINode
>(User
);
150 return false; // not a phi, not dominated by latch block.
152 // Look at all of the uses of Operand by the PHI node. If any use corresponds
153 // to a block that is not dominated by the latch block, give up and use the
154 // preincremented value.
155 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
156 if (PN
->getIncomingValue(i
) == Operand
&&
157 !DT
->dominates(LatchBlock
, PN
->getIncomingBlock(i
)))
160 // Okay, all uses of Operand by PN are in predecessor blocks that really are
161 // dominated by the latch block. Use the post-incremented value.
165 /// AddUsersImpl - Inspect the specified instruction. If it is a
166 /// reducible SCEV, recursively add its users to the IVUsesByStride set and
167 /// return true. Otherwise, return false.
168 bool IVUsers::AddUsersImpl(Instruction
*I
,
169 SmallPtrSetImpl
<Loop
*> &SimpleLoopNests
) {
170 const DataLayout
&DL
= I
->getModule()->getDataLayout();
172 // Add this IV user to the Processed set before returning false to ensure that
173 // all IV users are members of the set. See IVUsers::isIVUserOrOperand.
174 if (!Processed
.insert(I
).second
)
175 return true; // Instruction already handled.
177 if (!SE
->isSCEVable(I
->getType()))
178 return false; // Void and FP expressions cannot be reduced.
180 // IVUsers is used by LSR which assumes that all SCEV expressions are safe to
181 // pass to SCEVExpander. Expressions are not safe to expand if they represent
182 // operations that are not safe to speculate, namely integer division.
183 if (!isa
<PHINode
>(I
) && !isSafeToSpeculativelyExecute(I
))
186 // LSR is not APInt clean, do not touch integers bigger than 64-bits.
187 // Also avoid creating IVs of non-native types. For example, we don't want a
188 // 64-bit IV in 32-bit code just because the loop has one 64-bit cast.
189 uint64_t Width
= SE
->getTypeSizeInBits(I
->getType());
190 if (Width
> 64 || !DL
.isLegalInteger(Width
))
193 // Don't attempt to promote ephemeral values to indvars. They will be removed
195 if (EphValues
.count(I
))
198 // Get the symbolic expression for this instruction.
199 const SCEV
*ISE
= SE
->getSCEV(I
);
201 // If we've come to an uninteresting expression, stop the traversal and
203 if (!isInteresting(ISE
, I
, L
, SE
, LI
))
206 SmallPtrSet
<Instruction
*, 4> UniqueUsers
;
207 for (Use
&U
: I
->uses()) {
208 Instruction
*User
= cast
<Instruction
>(U
.getUser());
209 if (!UniqueUsers
.insert(User
).second
)
212 // Do not infinitely recurse on PHI nodes.
213 if (isa
<PHINode
>(User
) && Processed
.count(User
))
216 // Only consider IVUsers that are dominated by simplified loop
217 // headers. Otherwise, SCEVExpander will crash.
218 BasicBlock
*UseBB
= User
->getParent();
219 // A phi's use is live out of its predecessor block.
220 if (PHINode
*PHI
= dyn_cast
<PHINode
>(User
)) {
221 unsigned OperandNo
= U
.getOperandNo();
222 unsigned ValNo
= PHINode::getIncomingValueNumForOperand(OperandNo
);
223 UseBB
= PHI
->getIncomingBlock(ValNo
);
225 if (!isSimplifiedLoopNest(UseBB
, DT
, LI
, SimpleLoopNests
))
228 // Descend recursively, but not into PHI nodes outside the current loop.
229 // It's important to see the entire expression outside the loop to get
230 // choices that depend on addressing mode use right, although we won't
231 // consider references outside the loop in all cases.
232 // If User is already in Processed, we don't want to recurse into it again,
233 // but do want to record a second reference in the same instruction.
234 bool AddUserToIVUsers
= false;
235 if (LI
->getLoopFor(User
->getParent()) != L
) {
236 if (isa
<PHINode
>(User
) || Processed
.count(User
) ||
237 !AddUsersImpl(User
, SimpleLoopNests
)) {
238 LLVM_DEBUG(dbgs() << "FOUND USER in other loop: " << *User
<< '\n'
239 << " OF SCEV: " << *ISE
<< '\n');
240 AddUserToIVUsers
= true;
242 } else if (Processed
.count(User
) || !AddUsersImpl(User
, SimpleLoopNests
)) {
243 LLVM_DEBUG(dbgs() << "FOUND USER: " << *User
<< '\n'
244 << " OF SCEV: " << *ISE
<< '\n');
245 AddUserToIVUsers
= true;
248 if (AddUserToIVUsers
) {
249 // Okay, we found a user that we cannot reduce.
250 IVStrideUse
&NewUse
= AddUser(User
, I
);
251 // Autodetect the post-inc loop set, populating NewUse.PostIncLoops.
252 // The regular return value here is discarded; instead of recording
253 // it, we just recompute it when we need it.
254 const SCEV
*OriginalISE
= ISE
;
256 auto NormalizePred
= [&](const SCEVAddRecExpr
*AR
) {
257 auto *L
= AR
->getLoop();
258 bool Result
= IVUseShouldUsePostIncValue(User
, I
, L
, DT
);
260 NewUse
.PostIncLoops
.insert(L
);
264 ISE
= normalizeForPostIncUseIf(ISE
, NormalizePred
, *SE
);
266 // PostIncNormalization effectively simplifies the expression under
267 // pre-increment assumptions. Those assumptions (no wrapping) might not
268 // hold for the post-inc value. Catch such cases by making sure the
269 // transformation is invertible.
270 if (OriginalISE
!= ISE
) {
271 const SCEV
*DenormalizedISE
=
272 denormalizeForPostIncUse(ISE
, NewUse
.PostIncLoops
, *SE
);
274 // If we normalized the expression, but denormalization doesn't give the
275 // original one, discard this user.
276 if (OriginalISE
!= DenormalizedISE
) {
278 << " DISCARDING (NORMALIZATION ISN'T INVERTIBLE): "
284 LLVM_DEBUG(if (SE
->getSCEV(I
) != ISE
) dbgs()
285 << " NORMALIZED TO: " << *ISE
<< '\n');
291 bool IVUsers::AddUsersIfInteresting(Instruction
*I
) {
292 // SCEVExpander can only handle users that are dominated by simplified loop
293 // entries. Keep track of all loops that are only dominated by other simple
294 // loops so we don't traverse the domtree for each user.
295 SmallPtrSet
<Loop
*,16> SimpleLoopNests
;
297 return AddUsersImpl(I
, SimpleLoopNests
);
300 IVStrideUse
&IVUsers::AddUser(Instruction
*User
, Value
*Operand
) {
301 IVUses
.push_back(new IVStrideUse(this, User
, Operand
));
302 return IVUses
.back();
305 IVUsers::IVUsers(Loop
*L
, AssumptionCache
*AC
, LoopInfo
*LI
, DominatorTree
*DT
,
307 : L(L
), AC(AC
), LI(LI
), DT(DT
), SE(SE
), IVUses() {
308 // Collect ephemeral values so that AddUsersIfInteresting skips them.
310 CodeMetrics::collectEphemeralValues(L
, AC
, EphValues
);
312 // Find all uses of induction variables in this loop, and categorize
313 // them by stride. Start by finding all of the PHI nodes in the header for
314 // this loop. If they are induction variables, inspect their uses.
315 for (BasicBlock::iterator I
= L
->getHeader()->begin(); isa
<PHINode
>(I
); ++I
)
316 (void)AddUsersIfInteresting(&*I
);
319 void IVUsers::print(raw_ostream
&OS
, const Module
*M
) const {
320 OS
<< "IV Users for loop ";
321 L
->getHeader()->printAsOperand(OS
, false);
322 if (SE
->hasLoopInvariantBackedgeTakenCount(L
)) {
323 OS
<< " with backedge-taken count " << *SE
->getBackedgeTakenCount(L
);
327 for (const IVStrideUse
&IVUse
: IVUses
) {
329 IVUse
.getOperandValToReplace()->printAsOperand(OS
, false);
330 OS
<< " = " << *getReplacementExpr(IVUse
);
331 for (auto PostIncLoop
: IVUse
.PostIncLoops
) {
332 OS
<< " (post-inc with loop ";
333 PostIncLoop
->getHeader()->printAsOperand(OS
, false);
338 IVUse
.getUser()->print(OS
);
340 OS
<< "Printing <null> User";
345 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
346 LLVM_DUMP_METHOD
void IVUsers::dump() const { print(dbgs()); }
349 void IVUsers::releaseMemory() {
354 IVUsersWrapperPass::IVUsersWrapperPass() : LoopPass(ID
) {
355 initializeIVUsersWrapperPassPass(*PassRegistry::getPassRegistry());
358 void IVUsersWrapperPass::getAnalysisUsage(AnalysisUsage
&AU
) const {
359 AU
.addRequired
<AssumptionCacheTracker
>();
360 AU
.addRequired
<LoopInfoWrapperPass
>();
361 AU
.addRequired
<DominatorTreeWrapperPass
>();
362 AU
.addRequired
<ScalarEvolutionWrapperPass
>();
363 AU
.setPreservesAll();
366 bool IVUsersWrapperPass::runOnLoop(Loop
*L
, LPPassManager
&LPM
) {
367 auto *AC
= &getAnalysis
<AssumptionCacheTracker
>().getAssumptionCache(
368 *L
->getHeader()->getParent());
369 auto *LI
= &getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
370 auto *DT
= &getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
371 auto *SE
= &getAnalysis
<ScalarEvolutionWrapperPass
>().getSE();
373 IU
.reset(new IVUsers(L
, AC
, LI
, DT
, SE
));
377 void IVUsersWrapperPass::print(raw_ostream
&OS
, const Module
*M
) const {
381 void IVUsersWrapperPass::releaseMemory() { IU
->releaseMemory(); }
383 /// getReplacementExpr - Return a SCEV expression which computes the
384 /// value of the OperandValToReplace.
385 const SCEV
*IVUsers::getReplacementExpr(const IVStrideUse
&IU
) const {
386 return SE
->getSCEV(IU
.getOperandValToReplace());
389 /// getExpr - Return the expression for the use.
390 const SCEV
*IVUsers::getExpr(const IVStrideUse
&IU
) const {
391 return normalizeForPostIncUse(getReplacementExpr(IU
), IU
.getPostIncLoops(),
395 static const SCEVAddRecExpr
*findAddRecForLoop(const SCEV
*S
, const Loop
*L
) {
396 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(S
)) {
397 if (AR
->getLoop() == L
)
399 return findAddRecForLoop(AR
->getStart(), L
);
402 if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(S
)) {
403 for (const auto *Op
: Add
->operands())
404 if (const SCEVAddRecExpr
*AR
= findAddRecForLoop(Op
, L
))
412 const SCEV
*IVUsers::getStride(const IVStrideUse
&IU
, const Loop
*L
) const {
413 if (const SCEVAddRecExpr
*AR
= findAddRecForLoop(getExpr(IU
), L
))
414 return AR
->getStepRecurrence(*SE
);
418 void IVStrideUse::transformToPostInc(const Loop
*L
) {
419 PostIncLoops
.insert(L
);
422 void IVStrideUse::deleted() {
423 // Remove this user from the list.
424 Parent
->Processed
.erase(this->getUser());
425 Parent
->IVUses
.erase(this);