[llvm-exegesis] Fix missing std::move.
[llvm-complete.git] / lib / Analysis / LazyCallGraph.cpp
blobb1d585bfc683fdf4cc15beb8a9fa2c886aac8975
1 //===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
10 #include "llvm/Analysis/LazyCallGraph.h"
11 #include "llvm/ADT/ArrayRef.h"
12 #include "llvm/ADT/STLExtras.h"
13 #include "llvm/ADT/ScopeExit.h"
14 #include "llvm/ADT/Sequence.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/iterator_range.h"
18 #include "llvm/Analysis/TargetLibraryInfo.h"
19 #include "llvm/Config/llvm-config.h"
20 #include "llvm/IR/CallSite.h"
21 #include "llvm/IR/Function.h"
22 #include "llvm/IR/GlobalVariable.h"
23 #include "llvm/IR/Instruction.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/IR/PassManager.h"
26 #include "llvm/Support/Casting.h"
27 #include "llvm/Support/Compiler.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/GraphWriter.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include <algorithm>
32 #include <cassert>
33 #include <cstddef>
34 #include <iterator>
35 #include <string>
36 #include <tuple>
37 #include <utility>
39 using namespace llvm;
41 #define DEBUG_TYPE "lcg"
43 void LazyCallGraph::EdgeSequence::insertEdgeInternal(Node &TargetN,
44 Edge::Kind EK) {
45 EdgeIndexMap.insert({&TargetN, Edges.size()});
46 Edges.emplace_back(TargetN, EK);
49 void LazyCallGraph::EdgeSequence::setEdgeKind(Node &TargetN, Edge::Kind EK) {
50 Edges[EdgeIndexMap.find(&TargetN)->second].setKind(EK);
53 bool LazyCallGraph::EdgeSequence::removeEdgeInternal(Node &TargetN) {
54 auto IndexMapI = EdgeIndexMap.find(&TargetN);
55 if (IndexMapI == EdgeIndexMap.end())
56 return false;
58 Edges[IndexMapI->second] = Edge();
59 EdgeIndexMap.erase(IndexMapI);
60 return true;
63 static void addEdge(SmallVectorImpl<LazyCallGraph::Edge> &Edges,
64 DenseMap<LazyCallGraph::Node *, int> &EdgeIndexMap,
65 LazyCallGraph::Node &N, LazyCallGraph::Edge::Kind EK) {
66 if (!EdgeIndexMap.insert({&N, Edges.size()}).second)
67 return;
69 LLVM_DEBUG(dbgs() << " Added callable function: " << N.getName() << "\n");
70 Edges.emplace_back(LazyCallGraph::Edge(N, EK));
73 LazyCallGraph::EdgeSequence &LazyCallGraph::Node::populateSlow() {
74 assert(!Edges && "Must not have already populated the edges for this node!");
76 LLVM_DEBUG(dbgs() << " Adding functions called by '" << getName()
77 << "' to the graph.\n");
79 Edges = EdgeSequence();
81 SmallVector<Constant *, 16> Worklist;
82 SmallPtrSet<Function *, 4> Callees;
83 SmallPtrSet<Constant *, 16> Visited;
85 // Find all the potential call graph edges in this function. We track both
86 // actual call edges and indirect references to functions. The direct calls
87 // are trivially added, but to accumulate the latter we walk the instructions
88 // and add every operand which is a constant to the worklist to process
89 // afterward.
91 // Note that we consider *any* function with a definition to be a viable
92 // edge. Even if the function's definition is subject to replacement by
93 // some other module (say, a weak definition) there may still be
94 // optimizations which essentially speculate based on the definition and
95 // a way to check that the specific definition is in fact the one being
96 // used. For example, this could be done by moving the weak definition to
97 // a strong (internal) definition and making the weak definition be an
98 // alias. Then a test of the address of the weak function against the new
99 // strong definition's address would be an effective way to determine the
100 // safety of optimizing a direct call edge.
101 for (BasicBlock &BB : *F)
102 for (Instruction &I : BB) {
103 if (auto CS = CallSite(&I))
104 if (Function *Callee = CS.getCalledFunction())
105 if (!Callee->isDeclaration())
106 if (Callees.insert(Callee).second) {
107 Visited.insert(Callee);
108 addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(*Callee),
109 LazyCallGraph::Edge::Call);
112 for (Value *Op : I.operand_values())
113 if (Constant *C = dyn_cast<Constant>(Op))
114 if (Visited.insert(C).second)
115 Worklist.push_back(C);
118 // We've collected all the constant (and thus potentially function or
119 // function containing) operands to all of the instructions in the function.
120 // Process them (recursively) collecting every function found.
121 visitReferences(Worklist, Visited, [&](Function &F) {
122 addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(F),
123 LazyCallGraph::Edge::Ref);
126 // Add implicit reference edges to any defined libcall functions (if we
127 // haven't found an explicit edge).
128 for (auto *F : G->LibFunctions)
129 if (!Visited.count(F))
130 addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(*F),
131 LazyCallGraph::Edge::Ref);
133 return *Edges;
136 void LazyCallGraph::Node::replaceFunction(Function &NewF) {
137 assert(F != &NewF && "Must not replace a function with itself!");
138 F = &NewF;
141 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
142 LLVM_DUMP_METHOD void LazyCallGraph::Node::dump() const {
143 dbgs() << *this << '\n';
145 #endif
147 static bool isKnownLibFunction(Function &F, TargetLibraryInfo &TLI) {
148 LibFunc LF;
150 // Either this is a normal library function or a "vectorizable" function.
151 return TLI.getLibFunc(F, LF) || TLI.isFunctionVectorizable(F.getName());
154 LazyCallGraph::LazyCallGraph(Module &M, TargetLibraryInfo &TLI) {
155 LLVM_DEBUG(dbgs() << "Building CG for module: " << M.getModuleIdentifier()
156 << "\n");
157 for (Function &F : M) {
158 if (F.isDeclaration())
159 continue;
160 // If this function is a known lib function to LLVM then we want to
161 // synthesize reference edges to it to model the fact that LLVM can turn
162 // arbitrary code into a library function call.
163 if (isKnownLibFunction(F, TLI))
164 LibFunctions.insert(&F);
166 if (F.hasLocalLinkage())
167 continue;
169 // External linkage defined functions have edges to them from other
170 // modules.
171 LLVM_DEBUG(dbgs() << " Adding '" << F.getName()
172 << "' to entry set of the graph.\n");
173 addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(F), Edge::Ref);
176 // Now add entry nodes for functions reachable via initializers to globals.
177 SmallVector<Constant *, 16> Worklist;
178 SmallPtrSet<Constant *, 16> Visited;
179 for (GlobalVariable &GV : M.globals())
180 if (GV.hasInitializer())
181 if (Visited.insert(GV.getInitializer()).second)
182 Worklist.push_back(GV.getInitializer());
184 LLVM_DEBUG(
185 dbgs() << " Adding functions referenced by global initializers to the "
186 "entry set.\n");
187 visitReferences(Worklist, Visited, [&](Function &F) {
188 addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(F),
189 LazyCallGraph::Edge::Ref);
193 LazyCallGraph::LazyCallGraph(LazyCallGraph &&G)
194 : BPA(std::move(G.BPA)), NodeMap(std::move(G.NodeMap)),
195 EntryEdges(std::move(G.EntryEdges)), SCCBPA(std::move(G.SCCBPA)),
196 SCCMap(std::move(G.SCCMap)),
197 LibFunctions(std::move(G.LibFunctions)) {
198 updateGraphPtrs();
201 LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) {
202 BPA = std::move(G.BPA);
203 NodeMap = std::move(G.NodeMap);
204 EntryEdges = std::move(G.EntryEdges);
205 SCCBPA = std::move(G.SCCBPA);
206 SCCMap = std::move(G.SCCMap);
207 LibFunctions = std::move(G.LibFunctions);
208 updateGraphPtrs();
209 return *this;
212 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
213 LLVM_DUMP_METHOD void LazyCallGraph::SCC::dump() const {
214 dbgs() << *this << '\n';
216 #endif
218 #ifndef NDEBUG
219 void LazyCallGraph::SCC::verify() {
220 assert(OuterRefSCC && "Can't have a null RefSCC!");
221 assert(!Nodes.empty() && "Can't have an empty SCC!");
223 for (Node *N : Nodes) {
224 assert(N && "Can't have a null node!");
225 assert(OuterRefSCC->G->lookupSCC(*N) == this &&
226 "Node does not map to this SCC!");
227 assert(N->DFSNumber == -1 &&
228 "Must set DFS numbers to -1 when adding a node to an SCC!");
229 assert(N->LowLink == -1 &&
230 "Must set low link to -1 when adding a node to an SCC!");
231 for (Edge &E : **N)
232 assert(E.getNode().isPopulated() && "Can't have an unpopulated node!");
235 #endif
237 bool LazyCallGraph::SCC::isParentOf(const SCC &C) const {
238 if (this == &C)
239 return false;
241 for (Node &N : *this)
242 for (Edge &E : N->calls())
243 if (OuterRefSCC->G->lookupSCC(E.getNode()) == &C)
244 return true;
246 // No edges found.
247 return false;
250 bool LazyCallGraph::SCC::isAncestorOf(const SCC &TargetC) const {
251 if (this == &TargetC)
252 return false;
254 LazyCallGraph &G = *OuterRefSCC->G;
256 // Start with this SCC.
257 SmallPtrSet<const SCC *, 16> Visited = {this};
258 SmallVector<const SCC *, 16> Worklist = {this};
260 // Walk down the graph until we run out of edges or find a path to TargetC.
261 do {
262 const SCC &C = *Worklist.pop_back_val();
263 for (Node &N : C)
264 for (Edge &E : N->calls()) {
265 SCC *CalleeC = G.lookupSCC(E.getNode());
266 if (!CalleeC)
267 continue;
269 // If the callee's SCC is the TargetC, we're done.
270 if (CalleeC == &TargetC)
271 return true;
273 // If this is the first time we've reached this SCC, put it on the
274 // worklist to recurse through.
275 if (Visited.insert(CalleeC).second)
276 Worklist.push_back(CalleeC);
278 } while (!Worklist.empty());
280 // No paths found.
281 return false;
284 LazyCallGraph::RefSCC::RefSCC(LazyCallGraph &G) : G(&G) {}
286 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
287 LLVM_DUMP_METHOD void LazyCallGraph::RefSCC::dump() const {
288 dbgs() << *this << '\n';
290 #endif
292 #ifndef NDEBUG
293 void LazyCallGraph::RefSCC::verify() {
294 assert(G && "Can't have a null graph!");
295 assert(!SCCs.empty() && "Can't have an empty SCC!");
297 // Verify basic properties of the SCCs.
298 SmallPtrSet<SCC *, 4> SCCSet;
299 for (SCC *C : SCCs) {
300 assert(C && "Can't have a null SCC!");
301 C->verify();
302 assert(&C->getOuterRefSCC() == this &&
303 "SCC doesn't think it is inside this RefSCC!");
304 bool Inserted = SCCSet.insert(C).second;
305 assert(Inserted && "Found a duplicate SCC!");
306 auto IndexIt = SCCIndices.find(C);
307 assert(IndexIt != SCCIndices.end() &&
308 "Found an SCC that doesn't have an index!");
311 // Check that our indices map correctly.
312 for (auto &SCCIndexPair : SCCIndices) {
313 SCC *C = SCCIndexPair.first;
314 int i = SCCIndexPair.second;
315 assert(C && "Can't have a null SCC in the indices!");
316 assert(SCCSet.count(C) && "Found an index for an SCC not in the RefSCC!");
317 assert(SCCs[i] == C && "Index doesn't point to SCC!");
320 // Check that the SCCs are in fact in post-order.
321 for (int i = 0, Size = SCCs.size(); i < Size; ++i) {
322 SCC &SourceSCC = *SCCs[i];
323 for (Node &N : SourceSCC)
324 for (Edge &E : *N) {
325 if (!E.isCall())
326 continue;
327 SCC &TargetSCC = *G->lookupSCC(E.getNode());
328 if (&TargetSCC.getOuterRefSCC() == this) {
329 assert(SCCIndices.find(&TargetSCC)->second <= i &&
330 "Edge between SCCs violates post-order relationship.");
331 continue;
336 #endif
338 bool LazyCallGraph::RefSCC::isParentOf(const RefSCC &RC) const {
339 if (&RC == this)
340 return false;
342 // Search all edges to see if this is a parent.
343 for (SCC &C : *this)
344 for (Node &N : C)
345 for (Edge &E : *N)
346 if (G->lookupRefSCC(E.getNode()) == &RC)
347 return true;
349 return false;
352 bool LazyCallGraph::RefSCC::isAncestorOf(const RefSCC &RC) const {
353 if (&RC == this)
354 return false;
356 // For each descendant of this RefSCC, see if one of its children is the
357 // argument. If not, add that descendant to the worklist and continue
358 // searching.
359 SmallVector<const RefSCC *, 4> Worklist;
360 SmallPtrSet<const RefSCC *, 4> Visited;
361 Worklist.push_back(this);
362 Visited.insert(this);
363 do {
364 const RefSCC &DescendantRC = *Worklist.pop_back_val();
365 for (SCC &C : DescendantRC)
366 for (Node &N : C)
367 for (Edge &E : *N) {
368 auto *ChildRC = G->lookupRefSCC(E.getNode());
369 if (ChildRC == &RC)
370 return true;
371 if (!ChildRC || !Visited.insert(ChildRC).second)
372 continue;
373 Worklist.push_back(ChildRC);
375 } while (!Worklist.empty());
377 return false;
380 /// Generic helper that updates a postorder sequence of SCCs for a potentially
381 /// cycle-introducing edge insertion.
383 /// A postorder sequence of SCCs of a directed graph has one fundamental
384 /// property: all deges in the DAG of SCCs point "up" the sequence. That is,
385 /// all edges in the SCC DAG point to prior SCCs in the sequence.
387 /// This routine both updates a postorder sequence and uses that sequence to
388 /// compute the set of SCCs connected into a cycle. It should only be called to
389 /// insert a "downward" edge which will require changing the sequence to
390 /// restore it to a postorder.
392 /// When inserting an edge from an earlier SCC to a later SCC in some postorder
393 /// sequence, all of the SCCs which may be impacted are in the closed range of
394 /// those two within the postorder sequence. The algorithm used here to restore
395 /// the state is as follows:
397 /// 1) Starting from the source SCC, construct a set of SCCs which reach the
398 /// source SCC consisting of just the source SCC. Then scan toward the
399 /// target SCC in postorder and for each SCC, if it has an edge to an SCC
400 /// in the set, add it to the set. Otherwise, the source SCC is not
401 /// a successor, move it in the postorder sequence to immediately before
402 /// the source SCC, shifting the source SCC and all SCCs in the set one
403 /// position toward the target SCC. Stop scanning after processing the
404 /// target SCC.
405 /// 2) If the source SCC is now past the target SCC in the postorder sequence,
406 /// and thus the new edge will flow toward the start, we are done.
407 /// 3) Otherwise, starting from the target SCC, walk all edges which reach an
408 /// SCC between the source and the target, and add them to the set of
409 /// connected SCCs, then recurse through them. Once a complete set of the
410 /// SCCs the target connects to is known, hoist the remaining SCCs between
411 /// the source and the target to be above the target. Note that there is no
412 /// need to process the source SCC, it is already known to connect.
413 /// 4) At this point, all of the SCCs in the closed range between the source
414 /// SCC and the target SCC in the postorder sequence are connected,
415 /// including the target SCC and the source SCC. Inserting the edge from
416 /// the source SCC to the target SCC will form a cycle out of precisely
417 /// these SCCs. Thus we can merge all of the SCCs in this closed range into
418 /// a single SCC.
420 /// This process has various important properties:
421 /// - Only mutates the SCCs when adding the edge actually changes the SCC
422 /// structure.
423 /// - Never mutates SCCs which are unaffected by the change.
424 /// - Updates the postorder sequence to correctly satisfy the postorder
425 /// constraint after the edge is inserted.
426 /// - Only reorders SCCs in the closed postorder sequence from the source to
427 /// the target, so easy to bound how much has changed even in the ordering.
428 /// - Big-O is the number of edges in the closed postorder range of SCCs from
429 /// source to target.
431 /// This helper routine, in addition to updating the postorder sequence itself
432 /// will also update a map from SCCs to indices within that sequence.
434 /// The sequence and the map must operate on pointers to the SCC type.
436 /// Two callbacks must be provided. The first computes the subset of SCCs in
437 /// the postorder closed range from the source to the target which connect to
438 /// the source SCC via some (transitive) set of edges. The second computes the
439 /// subset of the same range which the target SCC connects to via some
440 /// (transitive) set of edges. Both callbacks should populate the set argument
441 /// provided.
442 template <typename SCCT, typename PostorderSequenceT, typename SCCIndexMapT,
443 typename ComputeSourceConnectedSetCallableT,
444 typename ComputeTargetConnectedSetCallableT>
445 static iterator_range<typename PostorderSequenceT::iterator>
446 updatePostorderSequenceForEdgeInsertion(
447 SCCT &SourceSCC, SCCT &TargetSCC, PostorderSequenceT &SCCs,
448 SCCIndexMapT &SCCIndices,
449 ComputeSourceConnectedSetCallableT ComputeSourceConnectedSet,
450 ComputeTargetConnectedSetCallableT ComputeTargetConnectedSet) {
451 int SourceIdx = SCCIndices[&SourceSCC];
452 int TargetIdx = SCCIndices[&TargetSCC];
453 assert(SourceIdx < TargetIdx && "Cannot have equal indices here!");
455 SmallPtrSet<SCCT *, 4> ConnectedSet;
457 // Compute the SCCs which (transitively) reach the source.
458 ComputeSourceConnectedSet(ConnectedSet);
460 // Partition the SCCs in this part of the port-order sequence so only SCCs
461 // connecting to the source remain between it and the target. This is
462 // a benign partition as it preserves postorder.
463 auto SourceI = std::stable_partition(
464 SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx + 1,
465 [&ConnectedSet](SCCT *C) { return !ConnectedSet.count(C); });
466 for (int i = SourceIdx, e = TargetIdx + 1; i < e; ++i)
467 SCCIndices.find(SCCs[i])->second = i;
469 // If the target doesn't connect to the source, then we've corrected the
470 // post-order and there are no cycles formed.
471 if (!ConnectedSet.count(&TargetSCC)) {
472 assert(SourceI > (SCCs.begin() + SourceIdx) &&
473 "Must have moved the source to fix the post-order.");
474 assert(*std::prev(SourceI) == &TargetSCC &&
475 "Last SCC to move should have bene the target.");
477 // Return an empty range at the target SCC indicating there is nothing to
478 // merge.
479 return make_range(std::prev(SourceI), std::prev(SourceI));
482 assert(SCCs[TargetIdx] == &TargetSCC &&
483 "Should not have moved target if connected!");
484 SourceIdx = SourceI - SCCs.begin();
485 assert(SCCs[SourceIdx] == &SourceSCC &&
486 "Bad updated index computation for the source SCC!");
489 // See whether there are any remaining intervening SCCs between the source
490 // and target. If so we need to make sure they all are reachable form the
491 // target.
492 if (SourceIdx + 1 < TargetIdx) {
493 ConnectedSet.clear();
494 ComputeTargetConnectedSet(ConnectedSet);
496 // Partition SCCs so that only SCCs reached from the target remain between
497 // the source and the target. This preserves postorder.
498 auto TargetI = std::stable_partition(
499 SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1,
500 [&ConnectedSet](SCCT *C) { return ConnectedSet.count(C); });
501 for (int i = SourceIdx + 1, e = TargetIdx + 1; i < e; ++i)
502 SCCIndices.find(SCCs[i])->second = i;
503 TargetIdx = std::prev(TargetI) - SCCs.begin();
504 assert(SCCs[TargetIdx] == &TargetSCC &&
505 "Should always end with the target!");
508 // At this point, we know that connecting source to target forms a cycle
509 // because target connects back to source, and we know that all of the SCCs
510 // between the source and target in the postorder sequence participate in that
511 // cycle.
512 return make_range(SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx);
515 bool
516 LazyCallGraph::RefSCC::switchInternalEdgeToCall(
517 Node &SourceN, Node &TargetN,
518 function_ref<void(ArrayRef<SCC *> MergeSCCs)> MergeCB) {
519 assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!");
520 SmallVector<SCC *, 1> DeletedSCCs;
522 #ifndef NDEBUG
523 // In a debug build, verify the RefSCC is valid to start with and when this
524 // routine finishes.
525 verify();
526 auto VerifyOnExit = make_scope_exit([&]() { verify(); });
527 #endif
529 SCC &SourceSCC = *G->lookupSCC(SourceN);
530 SCC &TargetSCC = *G->lookupSCC(TargetN);
532 // If the two nodes are already part of the same SCC, we're also done as
533 // we've just added more connectivity.
534 if (&SourceSCC == &TargetSCC) {
535 SourceN->setEdgeKind(TargetN, Edge::Call);
536 return false; // No new cycle.
539 // At this point we leverage the postorder list of SCCs to detect when the
540 // insertion of an edge changes the SCC structure in any way.
542 // First and foremost, we can eliminate the need for any changes when the
543 // edge is toward the beginning of the postorder sequence because all edges
544 // flow in that direction already. Thus adding a new one cannot form a cycle.
545 int SourceIdx = SCCIndices[&SourceSCC];
546 int TargetIdx = SCCIndices[&TargetSCC];
547 if (TargetIdx < SourceIdx) {
548 SourceN->setEdgeKind(TargetN, Edge::Call);
549 return false; // No new cycle.
552 // Compute the SCCs which (transitively) reach the source.
553 auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) {
554 #ifndef NDEBUG
555 // Check that the RefSCC is still valid before computing this as the
556 // results will be nonsensical of we've broken its invariants.
557 verify();
558 #endif
559 ConnectedSet.insert(&SourceSCC);
560 auto IsConnected = [&](SCC &C) {
561 for (Node &N : C)
562 for (Edge &E : N->calls())
563 if (ConnectedSet.count(G->lookupSCC(E.getNode())))
564 return true;
566 return false;
569 for (SCC *C :
570 make_range(SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1))
571 if (IsConnected(*C))
572 ConnectedSet.insert(C);
575 // Use a normal worklist to find which SCCs the target connects to. We still
576 // bound the search based on the range in the postorder list we care about,
577 // but because this is forward connectivity we just "recurse" through the
578 // edges.
579 auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) {
580 #ifndef NDEBUG
581 // Check that the RefSCC is still valid before computing this as the
582 // results will be nonsensical of we've broken its invariants.
583 verify();
584 #endif
585 ConnectedSet.insert(&TargetSCC);
586 SmallVector<SCC *, 4> Worklist;
587 Worklist.push_back(&TargetSCC);
588 do {
589 SCC &C = *Worklist.pop_back_val();
590 for (Node &N : C)
591 for (Edge &E : *N) {
592 if (!E.isCall())
593 continue;
594 SCC &EdgeC = *G->lookupSCC(E.getNode());
595 if (&EdgeC.getOuterRefSCC() != this)
596 // Not in this RefSCC...
597 continue;
598 if (SCCIndices.find(&EdgeC)->second <= SourceIdx)
599 // Not in the postorder sequence between source and target.
600 continue;
602 if (ConnectedSet.insert(&EdgeC).second)
603 Worklist.push_back(&EdgeC);
605 } while (!Worklist.empty());
608 // Use a generic helper to update the postorder sequence of SCCs and return
609 // a range of any SCCs connected into a cycle by inserting this edge. This
610 // routine will also take care of updating the indices into the postorder
611 // sequence.
612 auto MergeRange = updatePostorderSequenceForEdgeInsertion(
613 SourceSCC, TargetSCC, SCCs, SCCIndices, ComputeSourceConnectedSet,
614 ComputeTargetConnectedSet);
616 // Run the user's callback on the merged SCCs before we actually merge them.
617 if (MergeCB)
618 MergeCB(makeArrayRef(MergeRange.begin(), MergeRange.end()));
620 // If the merge range is empty, then adding the edge didn't actually form any
621 // new cycles. We're done.
622 if (MergeRange.begin() == MergeRange.end()) {
623 // Now that the SCC structure is finalized, flip the kind to call.
624 SourceN->setEdgeKind(TargetN, Edge::Call);
625 return false; // No new cycle.
628 #ifndef NDEBUG
629 // Before merging, check that the RefSCC remains valid after all the
630 // postorder updates.
631 verify();
632 #endif
634 // Otherwise we need to merge all of the SCCs in the cycle into a single
635 // result SCC.
637 // NB: We merge into the target because all of these functions were already
638 // reachable from the target, meaning any SCC-wide properties deduced about it
639 // other than the set of functions within it will not have changed.
640 for (SCC *C : MergeRange) {
641 assert(C != &TargetSCC &&
642 "We merge *into* the target and shouldn't process it here!");
643 SCCIndices.erase(C);
644 TargetSCC.Nodes.append(C->Nodes.begin(), C->Nodes.end());
645 for (Node *N : C->Nodes)
646 G->SCCMap[N] = &TargetSCC;
647 C->clear();
648 DeletedSCCs.push_back(C);
651 // Erase the merged SCCs from the list and update the indices of the
652 // remaining SCCs.
653 int IndexOffset = MergeRange.end() - MergeRange.begin();
654 auto EraseEnd = SCCs.erase(MergeRange.begin(), MergeRange.end());
655 for (SCC *C : make_range(EraseEnd, SCCs.end()))
656 SCCIndices[C] -= IndexOffset;
658 // Now that the SCC structure is finalized, flip the kind to call.
659 SourceN->setEdgeKind(TargetN, Edge::Call);
661 // And we're done, but we did form a new cycle.
662 return true;
665 void LazyCallGraph::RefSCC::switchTrivialInternalEdgeToRef(Node &SourceN,
666 Node &TargetN) {
667 assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");
669 #ifndef NDEBUG
670 // In a debug build, verify the RefSCC is valid to start with and when this
671 // routine finishes.
672 verify();
673 auto VerifyOnExit = make_scope_exit([&]() { verify(); });
674 #endif
676 assert(G->lookupRefSCC(SourceN) == this &&
677 "Source must be in this RefSCC.");
678 assert(G->lookupRefSCC(TargetN) == this &&
679 "Target must be in this RefSCC.");
680 assert(G->lookupSCC(SourceN) != G->lookupSCC(TargetN) &&
681 "Source and Target must be in separate SCCs for this to be trivial!");
683 // Set the edge kind.
684 SourceN->setEdgeKind(TargetN, Edge::Ref);
687 iterator_range<LazyCallGraph::RefSCC::iterator>
688 LazyCallGraph::RefSCC::switchInternalEdgeToRef(Node &SourceN, Node &TargetN) {
689 assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");
691 #ifndef NDEBUG
692 // In a debug build, verify the RefSCC is valid to start with and when this
693 // routine finishes.
694 verify();
695 auto VerifyOnExit = make_scope_exit([&]() { verify(); });
696 #endif
698 assert(G->lookupRefSCC(SourceN) == this &&
699 "Source must be in this RefSCC.");
700 assert(G->lookupRefSCC(TargetN) == this &&
701 "Target must be in this RefSCC.");
703 SCC &TargetSCC = *G->lookupSCC(TargetN);
704 assert(G->lookupSCC(SourceN) == &TargetSCC && "Source and Target must be in "
705 "the same SCC to require the "
706 "full CG update.");
708 // Set the edge kind.
709 SourceN->setEdgeKind(TargetN, Edge::Ref);
711 // Otherwise we are removing a call edge from a single SCC. This may break
712 // the cycle. In order to compute the new set of SCCs, we need to do a small
713 // DFS over the nodes within the SCC to form any sub-cycles that remain as
714 // distinct SCCs and compute a postorder over the resulting SCCs.
716 // However, we specially handle the target node. The target node is known to
717 // reach all other nodes in the original SCC by definition. This means that
718 // we want the old SCC to be replaced with an SCC containing that node as it
719 // will be the root of whatever SCC DAG results from the DFS. Assumptions
720 // about an SCC such as the set of functions called will continue to hold,
721 // etc.
723 SCC &OldSCC = TargetSCC;
724 SmallVector<std::pair<Node *, EdgeSequence::call_iterator>, 16> DFSStack;
725 SmallVector<Node *, 16> PendingSCCStack;
726 SmallVector<SCC *, 4> NewSCCs;
728 // Prepare the nodes for a fresh DFS.
729 SmallVector<Node *, 16> Worklist;
730 Worklist.swap(OldSCC.Nodes);
731 for (Node *N : Worklist) {
732 N->DFSNumber = N->LowLink = 0;
733 G->SCCMap.erase(N);
736 // Force the target node to be in the old SCC. This also enables us to take
737 // a very significant short-cut in the standard Tarjan walk to re-form SCCs
738 // below: whenever we build an edge that reaches the target node, we know
739 // that the target node eventually connects back to all other nodes in our
740 // walk. As a consequence, we can detect and handle participants in that
741 // cycle without walking all the edges that form this connection, and instead
742 // by relying on the fundamental guarantee coming into this operation (all
743 // nodes are reachable from the target due to previously forming an SCC).
744 TargetN.DFSNumber = TargetN.LowLink = -1;
745 OldSCC.Nodes.push_back(&TargetN);
746 G->SCCMap[&TargetN] = &OldSCC;
748 // Scan down the stack and DFS across the call edges.
749 for (Node *RootN : Worklist) {
750 assert(DFSStack.empty() &&
751 "Cannot begin a new root with a non-empty DFS stack!");
752 assert(PendingSCCStack.empty() &&
753 "Cannot begin a new root with pending nodes for an SCC!");
755 // Skip any nodes we've already reached in the DFS.
756 if (RootN->DFSNumber != 0) {
757 assert(RootN->DFSNumber == -1 &&
758 "Shouldn't have any mid-DFS root nodes!");
759 continue;
762 RootN->DFSNumber = RootN->LowLink = 1;
763 int NextDFSNumber = 2;
765 DFSStack.push_back({RootN, (*RootN)->call_begin()});
766 do {
767 Node *N;
768 EdgeSequence::call_iterator I;
769 std::tie(N, I) = DFSStack.pop_back_val();
770 auto E = (*N)->call_end();
771 while (I != E) {
772 Node &ChildN = I->getNode();
773 if (ChildN.DFSNumber == 0) {
774 // We haven't yet visited this child, so descend, pushing the current
775 // node onto the stack.
776 DFSStack.push_back({N, I});
778 assert(!G->SCCMap.count(&ChildN) &&
779 "Found a node with 0 DFS number but already in an SCC!");
780 ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
781 N = &ChildN;
782 I = (*N)->call_begin();
783 E = (*N)->call_end();
784 continue;
787 // Check for the child already being part of some component.
788 if (ChildN.DFSNumber == -1) {
789 if (G->lookupSCC(ChildN) == &OldSCC) {
790 // If the child is part of the old SCC, we know that it can reach
791 // every other node, so we have formed a cycle. Pull the entire DFS
792 // and pending stacks into it. See the comment above about setting
793 // up the old SCC for why we do this.
794 int OldSize = OldSCC.size();
795 OldSCC.Nodes.push_back(N);
796 OldSCC.Nodes.append(PendingSCCStack.begin(), PendingSCCStack.end());
797 PendingSCCStack.clear();
798 while (!DFSStack.empty())
799 OldSCC.Nodes.push_back(DFSStack.pop_back_val().first);
800 for (Node &N : make_range(OldSCC.begin() + OldSize, OldSCC.end())) {
801 N.DFSNumber = N.LowLink = -1;
802 G->SCCMap[&N] = &OldSCC;
804 N = nullptr;
805 break;
808 // If the child has already been added to some child component, it
809 // couldn't impact the low-link of this parent because it isn't
810 // connected, and thus its low-link isn't relevant so skip it.
811 ++I;
812 continue;
815 // Track the lowest linked child as the lowest link for this node.
816 assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
817 if (ChildN.LowLink < N->LowLink)
818 N->LowLink = ChildN.LowLink;
820 // Move to the next edge.
821 ++I;
823 if (!N)
824 // Cleared the DFS early, start another round.
825 break;
827 // We've finished processing N and its descendants, put it on our pending
828 // SCC stack to eventually get merged into an SCC of nodes.
829 PendingSCCStack.push_back(N);
831 // If this node is linked to some lower entry, continue walking up the
832 // stack.
833 if (N->LowLink != N->DFSNumber)
834 continue;
836 // Otherwise, we've completed an SCC. Append it to our post order list of
837 // SCCs.
838 int RootDFSNumber = N->DFSNumber;
839 // Find the range of the node stack by walking down until we pass the
840 // root DFS number.
841 auto SCCNodes = make_range(
842 PendingSCCStack.rbegin(),
843 find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) {
844 return N->DFSNumber < RootDFSNumber;
845 }));
847 // Form a new SCC out of these nodes and then clear them off our pending
848 // stack.
849 NewSCCs.push_back(G->createSCC(*this, SCCNodes));
850 for (Node &N : *NewSCCs.back()) {
851 N.DFSNumber = N.LowLink = -1;
852 G->SCCMap[&N] = NewSCCs.back();
854 PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
855 } while (!DFSStack.empty());
858 // Insert the remaining SCCs before the old one. The old SCC can reach all
859 // other SCCs we form because it contains the target node of the removed edge
860 // of the old SCC. This means that we will have edges into all of the new
861 // SCCs, which means the old one must come last for postorder.
862 int OldIdx = SCCIndices[&OldSCC];
863 SCCs.insert(SCCs.begin() + OldIdx, NewSCCs.begin(), NewSCCs.end());
865 // Update the mapping from SCC* to index to use the new SCC*s, and remove the
866 // old SCC from the mapping.
867 for (int Idx = OldIdx, Size = SCCs.size(); Idx < Size; ++Idx)
868 SCCIndices[SCCs[Idx]] = Idx;
870 return make_range(SCCs.begin() + OldIdx,
871 SCCs.begin() + OldIdx + NewSCCs.size());
874 void LazyCallGraph::RefSCC::switchOutgoingEdgeToCall(Node &SourceN,
875 Node &TargetN) {
876 assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!");
878 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
879 assert(G->lookupRefSCC(TargetN) != this &&
880 "Target must not be in this RefSCC.");
881 #ifdef EXPENSIVE_CHECKS
882 assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
883 "Target must be a descendant of the Source.");
884 #endif
886 // Edges between RefSCCs are the same regardless of call or ref, so we can
887 // just flip the edge here.
888 SourceN->setEdgeKind(TargetN, Edge::Call);
890 #ifndef NDEBUG
891 // Check that the RefSCC is still valid.
892 verify();
893 #endif
896 void LazyCallGraph::RefSCC::switchOutgoingEdgeToRef(Node &SourceN,
897 Node &TargetN) {
898 assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");
900 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
901 assert(G->lookupRefSCC(TargetN) != this &&
902 "Target must not be in this RefSCC.");
903 #ifdef EXPENSIVE_CHECKS
904 assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
905 "Target must be a descendant of the Source.");
906 #endif
908 // Edges between RefSCCs are the same regardless of call or ref, so we can
909 // just flip the edge here.
910 SourceN->setEdgeKind(TargetN, Edge::Ref);
912 #ifndef NDEBUG
913 // Check that the RefSCC is still valid.
914 verify();
915 #endif
918 void LazyCallGraph::RefSCC::insertInternalRefEdge(Node &SourceN,
919 Node &TargetN) {
920 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
921 assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
923 SourceN->insertEdgeInternal(TargetN, Edge::Ref);
925 #ifndef NDEBUG
926 // Check that the RefSCC is still valid.
927 verify();
928 #endif
931 void LazyCallGraph::RefSCC::insertOutgoingEdge(Node &SourceN, Node &TargetN,
932 Edge::Kind EK) {
933 // First insert it into the caller.
934 SourceN->insertEdgeInternal(TargetN, EK);
936 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
938 assert(G->lookupRefSCC(TargetN) != this &&
939 "Target must not be in this RefSCC.");
940 #ifdef EXPENSIVE_CHECKS
941 assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
942 "Target must be a descendant of the Source.");
943 #endif
945 #ifndef NDEBUG
946 // Check that the RefSCC is still valid.
947 verify();
948 #endif
951 SmallVector<LazyCallGraph::RefSCC *, 1>
952 LazyCallGraph::RefSCC::insertIncomingRefEdge(Node &SourceN, Node &TargetN) {
953 assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
954 RefSCC &SourceC = *G->lookupRefSCC(SourceN);
955 assert(&SourceC != this && "Source must not be in this RefSCC.");
956 #ifdef EXPENSIVE_CHECKS
957 assert(SourceC.isDescendantOf(*this) &&
958 "Source must be a descendant of the Target.");
959 #endif
961 SmallVector<RefSCC *, 1> DeletedRefSCCs;
963 #ifndef NDEBUG
964 // In a debug build, verify the RefSCC is valid to start with and when this
965 // routine finishes.
966 verify();
967 auto VerifyOnExit = make_scope_exit([&]() { verify(); });
968 #endif
970 int SourceIdx = G->RefSCCIndices[&SourceC];
971 int TargetIdx = G->RefSCCIndices[this];
972 assert(SourceIdx < TargetIdx &&
973 "Postorder list doesn't see edge as incoming!");
975 // Compute the RefSCCs which (transitively) reach the source. We do this by
976 // working backwards from the source using the parent set in each RefSCC,
977 // skipping any RefSCCs that don't fall in the postorder range. This has the
978 // advantage of walking the sparser parent edge (in high fan-out graphs) but
979 // more importantly this removes examining all forward edges in all RefSCCs
980 // within the postorder range which aren't in fact connected. Only connected
981 // RefSCCs (and their edges) are visited here.
982 auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) {
983 Set.insert(&SourceC);
984 auto IsConnected = [&](RefSCC &RC) {
985 for (SCC &C : RC)
986 for (Node &N : C)
987 for (Edge &E : *N)
988 if (Set.count(G->lookupRefSCC(E.getNode())))
989 return true;
991 return false;
994 for (RefSCC *C : make_range(G->PostOrderRefSCCs.begin() + SourceIdx + 1,
995 G->PostOrderRefSCCs.begin() + TargetIdx + 1))
996 if (IsConnected(*C))
997 Set.insert(C);
1000 // Use a normal worklist to find which SCCs the target connects to. We still
1001 // bound the search based on the range in the postorder list we care about,
1002 // but because this is forward connectivity we just "recurse" through the
1003 // edges.
1004 auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) {
1005 Set.insert(this);
1006 SmallVector<RefSCC *, 4> Worklist;
1007 Worklist.push_back(this);
1008 do {
1009 RefSCC &RC = *Worklist.pop_back_val();
1010 for (SCC &C : RC)
1011 for (Node &N : C)
1012 for (Edge &E : *N) {
1013 RefSCC &EdgeRC = *G->lookupRefSCC(E.getNode());
1014 if (G->getRefSCCIndex(EdgeRC) <= SourceIdx)
1015 // Not in the postorder sequence between source and target.
1016 continue;
1018 if (Set.insert(&EdgeRC).second)
1019 Worklist.push_back(&EdgeRC);
1021 } while (!Worklist.empty());
1024 // Use a generic helper to update the postorder sequence of RefSCCs and return
1025 // a range of any RefSCCs connected into a cycle by inserting this edge. This
1026 // routine will also take care of updating the indices into the postorder
1027 // sequence.
1028 iterator_range<SmallVectorImpl<RefSCC *>::iterator> MergeRange =
1029 updatePostorderSequenceForEdgeInsertion(
1030 SourceC, *this, G->PostOrderRefSCCs, G->RefSCCIndices,
1031 ComputeSourceConnectedSet, ComputeTargetConnectedSet);
1033 // Build a set so we can do fast tests for whether a RefSCC will end up as
1034 // part of the merged RefSCC.
1035 SmallPtrSet<RefSCC *, 16> MergeSet(MergeRange.begin(), MergeRange.end());
1037 // This RefSCC will always be part of that set, so just insert it here.
1038 MergeSet.insert(this);
1040 // Now that we have identified all of the SCCs which need to be merged into
1041 // a connected set with the inserted edge, merge all of them into this SCC.
1042 SmallVector<SCC *, 16> MergedSCCs;
1043 int SCCIndex = 0;
1044 for (RefSCC *RC : MergeRange) {
1045 assert(RC != this && "We're merging into the target RefSCC, so it "
1046 "shouldn't be in the range.");
1048 // Walk the inner SCCs to update their up-pointer and walk all the edges to
1049 // update any parent sets.
1050 // FIXME: We should try to find a way to avoid this (rather expensive) edge
1051 // walk by updating the parent sets in some other manner.
1052 for (SCC &InnerC : *RC) {
1053 InnerC.OuterRefSCC = this;
1054 SCCIndices[&InnerC] = SCCIndex++;
1055 for (Node &N : InnerC)
1056 G->SCCMap[&N] = &InnerC;
1059 // Now merge in the SCCs. We can actually move here so try to reuse storage
1060 // the first time through.
1061 if (MergedSCCs.empty())
1062 MergedSCCs = std::move(RC->SCCs);
1063 else
1064 MergedSCCs.append(RC->SCCs.begin(), RC->SCCs.end());
1065 RC->SCCs.clear();
1066 DeletedRefSCCs.push_back(RC);
1069 // Append our original SCCs to the merged list and move it into place.
1070 for (SCC &InnerC : *this)
1071 SCCIndices[&InnerC] = SCCIndex++;
1072 MergedSCCs.append(SCCs.begin(), SCCs.end());
1073 SCCs = std::move(MergedSCCs);
1075 // Remove the merged away RefSCCs from the post order sequence.
1076 for (RefSCC *RC : MergeRange)
1077 G->RefSCCIndices.erase(RC);
1078 int IndexOffset = MergeRange.end() - MergeRange.begin();
1079 auto EraseEnd =
1080 G->PostOrderRefSCCs.erase(MergeRange.begin(), MergeRange.end());
1081 for (RefSCC *RC : make_range(EraseEnd, G->PostOrderRefSCCs.end()))
1082 G->RefSCCIndices[RC] -= IndexOffset;
1084 // At this point we have a merged RefSCC with a post-order SCCs list, just
1085 // connect the nodes to form the new edge.
1086 SourceN->insertEdgeInternal(TargetN, Edge::Ref);
1088 // We return the list of SCCs which were merged so that callers can
1089 // invalidate any data they have associated with those SCCs. Note that these
1090 // SCCs are no longer in an interesting state (they are totally empty) but
1091 // the pointers will remain stable for the life of the graph itself.
1092 return DeletedRefSCCs;
1095 void LazyCallGraph::RefSCC::removeOutgoingEdge(Node &SourceN, Node &TargetN) {
1096 assert(G->lookupRefSCC(SourceN) == this &&
1097 "The source must be a member of this RefSCC.");
1098 assert(G->lookupRefSCC(TargetN) != this &&
1099 "The target must not be a member of this RefSCC");
1101 #ifndef NDEBUG
1102 // In a debug build, verify the RefSCC is valid to start with and when this
1103 // routine finishes.
1104 verify();
1105 auto VerifyOnExit = make_scope_exit([&]() { verify(); });
1106 #endif
1108 // First remove it from the node.
1109 bool Removed = SourceN->removeEdgeInternal(TargetN);
1110 (void)Removed;
1111 assert(Removed && "Target not in the edge set for this caller?");
1114 SmallVector<LazyCallGraph::RefSCC *, 1>
1115 LazyCallGraph::RefSCC::removeInternalRefEdge(Node &SourceN,
1116 ArrayRef<Node *> TargetNs) {
1117 // We return a list of the resulting *new* RefSCCs in post-order.
1118 SmallVector<RefSCC *, 1> Result;
1120 #ifndef NDEBUG
1121 // In a debug build, verify the RefSCC is valid to start with and that either
1122 // we return an empty list of result RefSCCs and this RefSCC remains valid,
1123 // or we return new RefSCCs and this RefSCC is dead.
1124 verify();
1125 auto VerifyOnExit = make_scope_exit([&]() {
1126 // If we didn't replace our RefSCC with new ones, check that this one
1127 // remains valid.
1128 if (G)
1129 verify();
1131 #endif
1133 // First remove the actual edges.
1134 for (Node *TargetN : TargetNs) {
1135 assert(!(*SourceN)[*TargetN].isCall() &&
1136 "Cannot remove a call edge, it must first be made a ref edge");
1138 bool Removed = SourceN->removeEdgeInternal(*TargetN);
1139 (void)Removed;
1140 assert(Removed && "Target not in the edge set for this caller?");
1143 // Direct self references don't impact the ref graph at all.
1144 if (llvm::all_of(TargetNs,
1145 [&](Node *TargetN) { return &SourceN == TargetN; }))
1146 return Result;
1148 // If all targets are in the same SCC as the source, because no call edges
1149 // were removed there is no RefSCC structure change.
1150 SCC &SourceC = *G->lookupSCC(SourceN);
1151 if (llvm::all_of(TargetNs, [&](Node *TargetN) {
1152 return G->lookupSCC(*TargetN) == &SourceC;
1154 return Result;
1156 // We build somewhat synthetic new RefSCCs by providing a postorder mapping
1157 // for each inner SCC. We store these inside the low-link field of the nodes
1158 // rather than associated with SCCs because this saves a round-trip through
1159 // the node->SCC map and in the common case, SCCs are small. We will verify
1160 // that we always give the same number to every node in the SCC such that
1161 // these are equivalent.
1162 int PostOrderNumber = 0;
1164 // Reset all the other nodes to prepare for a DFS over them, and add them to
1165 // our worklist.
1166 SmallVector<Node *, 8> Worklist;
1167 for (SCC *C : SCCs) {
1168 for (Node &N : *C)
1169 N.DFSNumber = N.LowLink = 0;
1171 Worklist.append(C->Nodes.begin(), C->Nodes.end());
1174 // Track the number of nodes in this RefSCC so that we can quickly recognize
1175 // an important special case of the edge removal not breaking the cycle of
1176 // this RefSCC.
1177 const int NumRefSCCNodes = Worklist.size();
1179 SmallVector<std::pair<Node *, EdgeSequence::iterator>, 4> DFSStack;
1180 SmallVector<Node *, 4> PendingRefSCCStack;
1181 do {
1182 assert(DFSStack.empty() &&
1183 "Cannot begin a new root with a non-empty DFS stack!");
1184 assert(PendingRefSCCStack.empty() &&
1185 "Cannot begin a new root with pending nodes for an SCC!");
1187 Node *RootN = Worklist.pop_back_val();
1188 // Skip any nodes we've already reached in the DFS.
1189 if (RootN->DFSNumber != 0) {
1190 assert(RootN->DFSNumber == -1 &&
1191 "Shouldn't have any mid-DFS root nodes!");
1192 continue;
1195 RootN->DFSNumber = RootN->LowLink = 1;
1196 int NextDFSNumber = 2;
1198 DFSStack.push_back({RootN, (*RootN)->begin()});
1199 do {
1200 Node *N;
1201 EdgeSequence::iterator I;
1202 std::tie(N, I) = DFSStack.pop_back_val();
1203 auto E = (*N)->end();
1205 assert(N->DFSNumber != 0 && "We should always assign a DFS number "
1206 "before processing a node.");
1208 while (I != E) {
1209 Node &ChildN = I->getNode();
1210 if (ChildN.DFSNumber == 0) {
1211 // Mark that we should start at this child when next this node is the
1212 // top of the stack. We don't start at the next child to ensure this
1213 // child's lowlink is reflected.
1214 DFSStack.push_back({N, I});
1216 // Continue, resetting to the child node.
1217 ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++;
1218 N = &ChildN;
1219 I = ChildN->begin();
1220 E = ChildN->end();
1221 continue;
1223 if (ChildN.DFSNumber == -1) {
1224 // If this child isn't currently in this RefSCC, no need to process
1225 // it.
1226 ++I;
1227 continue;
1230 // Track the lowest link of the children, if any are still in the stack.
1231 // Any child not on the stack will have a LowLink of -1.
1232 assert(ChildN.LowLink != 0 &&
1233 "Low-link must not be zero with a non-zero DFS number.");
1234 if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink)
1235 N->LowLink = ChildN.LowLink;
1236 ++I;
1239 // We've finished processing N and its descendants, put it on our pending
1240 // stack to eventually get merged into a RefSCC.
1241 PendingRefSCCStack.push_back(N);
1243 // If this node is linked to some lower entry, continue walking up the
1244 // stack.
1245 if (N->LowLink != N->DFSNumber) {
1246 assert(!DFSStack.empty() &&
1247 "We never found a viable root for a RefSCC to pop off!");
1248 continue;
1251 // Otherwise, form a new RefSCC from the top of the pending node stack.
1252 int RefSCCNumber = PostOrderNumber++;
1253 int RootDFSNumber = N->DFSNumber;
1255 // Find the range of the node stack by walking down until we pass the
1256 // root DFS number. Update the DFS numbers and low link numbers in the
1257 // process to avoid re-walking this list where possible.
1258 auto StackRI = find_if(reverse(PendingRefSCCStack), [&](Node *N) {
1259 if (N->DFSNumber < RootDFSNumber)
1260 // We've found the bottom.
1261 return true;
1263 // Update this node and keep scanning.
1264 N->DFSNumber = -1;
1265 // Save the post-order number in the lowlink field so that we can use
1266 // it to map SCCs into new RefSCCs after we finish the DFS.
1267 N->LowLink = RefSCCNumber;
1268 return false;
1270 auto RefSCCNodes = make_range(StackRI.base(), PendingRefSCCStack.end());
1272 // If we find a cycle containing all nodes originally in this RefSCC then
1273 // the removal hasn't changed the structure at all. This is an important
1274 // special case and we can directly exit the entire routine more
1275 // efficiently as soon as we discover it.
1276 if (llvm::size(RefSCCNodes) == NumRefSCCNodes) {
1277 // Clear out the low link field as we won't need it.
1278 for (Node *N : RefSCCNodes)
1279 N->LowLink = -1;
1280 // Return the empty result immediately.
1281 return Result;
1284 // We've already marked the nodes internally with the RefSCC number so
1285 // just clear them off the stack and continue.
1286 PendingRefSCCStack.erase(RefSCCNodes.begin(), PendingRefSCCStack.end());
1287 } while (!DFSStack.empty());
1289 assert(DFSStack.empty() && "Didn't flush the entire DFS stack!");
1290 assert(PendingRefSCCStack.empty() && "Didn't flush all pending nodes!");
1291 } while (!Worklist.empty());
1293 assert(PostOrderNumber > 1 &&
1294 "Should never finish the DFS when the existing RefSCC remains valid!");
1296 // Otherwise we create a collection of new RefSCC nodes and build
1297 // a radix-sort style map from postorder number to these new RefSCCs. We then
1298 // append SCCs to each of these RefSCCs in the order they occurred in the
1299 // original SCCs container.
1300 for (int i = 0; i < PostOrderNumber; ++i)
1301 Result.push_back(G->createRefSCC(*G));
1303 // Insert the resulting postorder sequence into the global graph postorder
1304 // sequence before the current RefSCC in that sequence, and then remove the
1305 // current one.
1307 // FIXME: It'd be nice to change the APIs so that we returned an iterator
1308 // range over the global postorder sequence and generally use that sequence
1309 // rather than building a separate result vector here.
1310 int Idx = G->getRefSCCIndex(*this);
1311 G->PostOrderRefSCCs.erase(G->PostOrderRefSCCs.begin() + Idx);
1312 G->PostOrderRefSCCs.insert(G->PostOrderRefSCCs.begin() + Idx, Result.begin(),
1313 Result.end());
1314 for (int i : seq<int>(Idx, G->PostOrderRefSCCs.size()))
1315 G->RefSCCIndices[G->PostOrderRefSCCs[i]] = i;
1317 for (SCC *C : SCCs) {
1318 // We store the SCC number in the node's low-link field above.
1319 int SCCNumber = C->begin()->LowLink;
1320 // Clear out all of the SCC's node's low-link fields now that we're done
1321 // using them as side-storage.
1322 for (Node &N : *C) {
1323 assert(N.LowLink == SCCNumber &&
1324 "Cannot have different numbers for nodes in the same SCC!");
1325 N.LowLink = -1;
1328 RefSCC &RC = *Result[SCCNumber];
1329 int SCCIndex = RC.SCCs.size();
1330 RC.SCCs.push_back(C);
1331 RC.SCCIndices[C] = SCCIndex;
1332 C->OuterRefSCC = &RC;
1335 // Now that we've moved things into the new RefSCCs, clear out our current
1336 // one.
1337 G = nullptr;
1338 SCCs.clear();
1339 SCCIndices.clear();
1341 #ifndef NDEBUG
1342 // Verify the new RefSCCs we've built.
1343 for (RefSCC *RC : Result)
1344 RC->verify();
1345 #endif
1347 // Return the new list of SCCs.
1348 return Result;
1351 void LazyCallGraph::RefSCC::handleTrivialEdgeInsertion(Node &SourceN,
1352 Node &TargetN) {
1353 // The only trivial case that requires any graph updates is when we add new
1354 // ref edge and may connect different RefSCCs along that path. This is only
1355 // because of the parents set. Every other part of the graph remains constant
1356 // after this edge insertion.
1357 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
1358 RefSCC &TargetRC = *G->lookupRefSCC(TargetN);
1359 if (&TargetRC == this)
1360 return;
1362 #ifdef EXPENSIVE_CHECKS
1363 assert(TargetRC.isDescendantOf(*this) &&
1364 "Target must be a descendant of the Source.");
1365 #endif
1368 void LazyCallGraph::RefSCC::insertTrivialCallEdge(Node &SourceN,
1369 Node &TargetN) {
1370 #ifndef NDEBUG
1371 // Check that the RefSCC is still valid when we finish.
1372 auto ExitVerifier = make_scope_exit([this] { verify(); });
1374 #ifdef EXPENSIVE_CHECKS
1375 // Check that we aren't breaking some invariants of the SCC graph. Note that
1376 // this is quadratic in the number of edges in the call graph!
1377 SCC &SourceC = *G->lookupSCC(SourceN);
1378 SCC &TargetC = *G->lookupSCC(TargetN);
1379 if (&SourceC != &TargetC)
1380 assert(SourceC.isAncestorOf(TargetC) &&
1381 "Call edge is not trivial in the SCC graph!");
1382 #endif // EXPENSIVE_CHECKS
1383 #endif // NDEBUG
1385 // First insert it into the source or find the existing edge.
1386 auto InsertResult =
1387 SourceN->EdgeIndexMap.insert({&TargetN, SourceN->Edges.size()});
1388 if (!InsertResult.second) {
1389 // Already an edge, just update it.
1390 Edge &E = SourceN->Edges[InsertResult.first->second];
1391 if (E.isCall())
1392 return; // Nothing to do!
1393 E.setKind(Edge::Call);
1394 } else {
1395 // Create the new edge.
1396 SourceN->Edges.emplace_back(TargetN, Edge::Call);
1399 // Now that we have the edge, handle the graph fallout.
1400 handleTrivialEdgeInsertion(SourceN, TargetN);
1403 void LazyCallGraph::RefSCC::insertTrivialRefEdge(Node &SourceN, Node &TargetN) {
1404 #ifndef NDEBUG
1405 // Check that the RefSCC is still valid when we finish.
1406 auto ExitVerifier = make_scope_exit([this] { verify(); });
1408 #ifdef EXPENSIVE_CHECKS
1409 // Check that we aren't breaking some invariants of the RefSCC graph.
1410 RefSCC &SourceRC = *G->lookupRefSCC(SourceN);
1411 RefSCC &TargetRC = *G->lookupRefSCC(TargetN);
1412 if (&SourceRC != &TargetRC)
1413 assert(SourceRC.isAncestorOf(TargetRC) &&
1414 "Ref edge is not trivial in the RefSCC graph!");
1415 #endif // EXPENSIVE_CHECKS
1416 #endif // NDEBUG
1418 // First insert it into the source or find the existing edge.
1419 auto InsertResult =
1420 SourceN->EdgeIndexMap.insert({&TargetN, SourceN->Edges.size()});
1421 if (!InsertResult.second)
1422 // Already an edge, we're done.
1423 return;
1425 // Create the new edge.
1426 SourceN->Edges.emplace_back(TargetN, Edge::Ref);
1428 // Now that we have the edge, handle the graph fallout.
1429 handleTrivialEdgeInsertion(SourceN, TargetN);
1432 void LazyCallGraph::RefSCC::replaceNodeFunction(Node &N, Function &NewF) {
1433 Function &OldF = N.getFunction();
1435 #ifndef NDEBUG
1436 // Check that the RefSCC is still valid when we finish.
1437 auto ExitVerifier = make_scope_exit([this] { verify(); });
1439 assert(G->lookupRefSCC(N) == this &&
1440 "Cannot replace the function of a node outside this RefSCC.");
1442 assert(G->NodeMap.find(&NewF) == G->NodeMap.end() &&
1443 "Must not have already walked the new function!'");
1445 // It is important that this replacement not introduce graph changes so we
1446 // insist that the caller has already removed every use of the original
1447 // function and that all uses of the new function correspond to existing
1448 // edges in the graph. The common and expected way to use this is when
1449 // replacing the function itself in the IR without changing the call graph
1450 // shape and just updating the analysis based on that.
1451 assert(&OldF != &NewF && "Cannot replace a function with itself!");
1452 assert(OldF.use_empty() &&
1453 "Must have moved all uses from the old function to the new!");
1454 #endif
1456 N.replaceFunction(NewF);
1458 // Update various call graph maps.
1459 G->NodeMap.erase(&OldF);
1460 G->NodeMap[&NewF] = &N;
1463 void LazyCallGraph::insertEdge(Node &SourceN, Node &TargetN, Edge::Kind EK) {
1464 assert(SCCMap.empty() &&
1465 "This method cannot be called after SCCs have been formed!");
1467 return SourceN->insertEdgeInternal(TargetN, EK);
1470 void LazyCallGraph::removeEdge(Node &SourceN, Node &TargetN) {
1471 assert(SCCMap.empty() &&
1472 "This method cannot be called after SCCs have been formed!");
1474 bool Removed = SourceN->removeEdgeInternal(TargetN);
1475 (void)Removed;
1476 assert(Removed && "Target not in the edge set for this caller?");
1479 void LazyCallGraph::removeDeadFunction(Function &F) {
1480 // FIXME: This is unnecessarily restrictive. We should be able to remove
1481 // functions which recursively call themselves.
1482 assert(F.use_empty() &&
1483 "This routine should only be called on trivially dead functions!");
1485 // We shouldn't remove library functions as they are never really dead while
1486 // the call graph is in use -- every function definition refers to them.
1487 assert(!isLibFunction(F) &&
1488 "Must not remove lib functions from the call graph!");
1490 auto NI = NodeMap.find(&F);
1491 if (NI == NodeMap.end())
1492 // Not in the graph at all!
1493 return;
1495 Node &N = *NI->second;
1496 NodeMap.erase(NI);
1498 // Remove this from the entry edges if present.
1499 EntryEdges.removeEdgeInternal(N);
1501 if (SCCMap.empty()) {
1502 // No SCCs have been formed, so removing this is fine and there is nothing
1503 // else necessary at this point but clearing out the node.
1504 N.clear();
1505 return;
1508 // Cannot remove a function which has yet to be visited in the DFS walk, so
1509 // if we have a node at all then we must have an SCC and RefSCC.
1510 auto CI = SCCMap.find(&N);
1511 assert(CI != SCCMap.end() &&
1512 "Tried to remove a node without an SCC after DFS walk started!");
1513 SCC &C = *CI->second;
1514 SCCMap.erase(CI);
1515 RefSCC &RC = C.getOuterRefSCC();
1517 // This node must be the only member of its SCC as it has no callers, and
1518 // that SCC must be the only member of a RefSCC as it has no references.
1519 // Validate these properties first.
1520 assert(C.size() == 1 && "Dead functions must be in a singular SCC");
1521 assert(RC.size() == 1 && "Dead functions must be in a singular RefSCC");
1523 auto RCIndexI = RefSCCIndices.find(&RC);
1524 int RCIndex = RCIndexI->second;
1525 PostOrderRefSCCs.erase(PostOrderRefSCCs.begin() + RCIndex);
1526 RefSCCIndices.erase(RCIndexI);
1527 for (int i = RCIndex, Size = PostOrderRefSCCs.size(); i < Size; ++i)
1528 RefSCCIndices[PostOrderRefSCCs[i]] = i;
1530 // Finally clear out all the data structures from the node down through the
1531 // components.
1532 N.clear();
1533 N.G = nullptr;
1534 N.F = nullptr;
1535 C.clear();
1536 RC.clear();
1537 RC.G = nullptr;
1539 // Nothing to delete as all the objects are allocated in stable bump pointer
1540 // allocators.
1543 LazyCallGraph::Node &LazyCallGraph::insertInto(Function &F, Node *&MappedN) {
1544 return *new (MappedN = BPA.Allocate()) Node(*this, F);
1547 void LazyCallGraph::updateGraphPtrs() {
1548 // Walk the node map to update their graph pointers. While this iterates in
1549 // an unstable order, the order has no effect so it remains correct.
1550 for (auto &FunctionNodePair : NodeMap)
1551 FunctionNodePair.second->G = this;
1553 for (auto *RC : PostOrderRefSCCs)
1554 RC->G = this;
1557 template <typename RootsT, typename GetBeginT, typename GetEndT,
1558 typename GetNodeT, typename FormSCCCallbackT>
1559 void LazyCallGraph::buildGenericSCCs(RootsT &&Roots, GetBeginT &&GetBegin,
1560 GetEndT &&GetEnd, GetNodeT &&GetNode,
1561 FormSCCCallbackT &&FormSCC) {
1562 using EdgeItT = decltype(GetBegin(std::declval<Node &>()));
1564 SmallVector<std::pair<Node *, EdgeItT>, 16> DFSStack;
1565 SmallVector<Node *, 16> PendingSCCStack;
1567 // Scan down the stack and DFS across the call edges.
1568 for (Node *RootN : Roots) {
1569 assert(DFSStack.empty() &&
1570 "Cannot begin a new root with a non-empty DFS stack!");
1571 assert(PendingSCCStack.empty() &&
1572 "Cannot begin a new root with pending nodes for an SCC!");
1574 // Skip any nodes we've already reached in the DFS.
1575 if (RootN->DFSNumber != 0) {
1576 assert(RootN->DFSNumber == -1 &&
1577 "Shouldn't have any mid-DFS root nodes!");
1578 continue;
1581 RootN->DFSNumber = RootN->LowLink = 1;
1582 int NextDFSNumber = 2;
1584 DFSStack.push_back({RootN, GetBegin(*RootN)});
1585 do {
1586 Node *N;
1587 EdgeItT I;
1588 std::tie(N, I) = DFSStack.pop_back_val();
1589 auto E = GetEnd(*N);
1590 while (I != E) {
1591 Node &ChildN = GetNode(I);
1592 if (ChildN.DFSNumber == 0) {
1593 // We haven't yet visited this child, so descend, pushing the current
1594 // node onto the stack.
1595 DFSStack.push_back({N, I});
1597 ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
1598 N = &ChildN;
1599 I = GetBegin(*N);
1600 E = GetEnd(*N);
1601 continue;
1604 // If the child has already been added to some child component, it
1605 // couldn't impact the low-link of this parent because it isn't
1606 // connected, and thus its low-link isn't relevant so skip it.
1607 if (ChildN.DFSNumber == -1) {
1608 ++I;
1609 continue;
1612 // Track the lowest linked child as the lowest link for this node.
1613 assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
1614 if (ChildN.LowLink < N->LowLink)
1615 N->LowLink = ChildN.LowLink;
1617 // Move to the next edge.
1618 ++I;
1621 // We've finished processing N and its descendants, put it on our pending
1622 // SCC stack to eventually get merged into an SCC of nodes.
1623 PendingSCCStack.push_back(N);
1625 // If this node is linked to some lower entry, continue walking up the
1626 // stack.
1627 if (N->LowLink != N->DFSNumber)
1628 continue;
1630 // Otherwise, we've completed an SCC. Append it to our post order list of
1631 // SCCs.
1632 int RootDFSNumber = N->DFSNumber;
1633 // Find the range of the node stack by walking down until we pass the
1634 // root DFS number.
1635 auto SCCNodes = make_range(
1636 PendingSCCStack.rbegin(),
1637 find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) {
1638 return N->DFSNumber < RootDFSNumber;
1639 }));
1640 // Form a new SCC out of these nodes and then clear them off our pending
1641 // stack.
1642 FormSCC(SCCNodes);
1643 PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
1644 } while (!DFSStack.empty());
1648 /// Build the internal SCCs for a RefSCC from a sequence of nodes.
1650 /// Appends the SCCs to the provided vector and updates the map with their
1651 /// indices. Both the vector and map must be empty when passed into this
1652 /// routine.
1653 void LazyCallGraph::buildSCCs(RefSCC &RC, node_stack_range Nodes) {
1654 assert(RC.SCCs.empty() && "Already built SCCs!");
1655 assert(RC.SCCIndices.empty() && "Already mapped SCC indices!");
1657 for (Node *N : Nodes) {
1658 assert(N->LowLink >= (*Nodes.begin())->LowLink &&
1659 "We cannot have a low link in an SCC lower than its root on the "
1660 "stack!");
1662 // This node will go into the next RefSCC, clear out its DFS and low link
1663 // as we scan.
1664 N->DFSNumber = N->LowLink = 0;
1667 // Each RefSCC contains a DAG of the call SCCs. To build these, we do
1668 // a direct walk of the call edges using Tarjan's algorithm. We reuse the
1669 // internal storage as we won't need it for the outer graph's DFS any longer.
1670 buildGenericSCCs(
1671 Nodes, [](Node &N) { return N->call_begin(); },
1672 [](Node &N) { return N->call_end(); },
1673 [](EdgeSequence::call_iterator I) -> Node & { return I->getNode(); },
1674 [this, &RC](node_stack_range Nodes) {
1675 RC.SCCs.push_back(createSCC(RC, Nodes));
1676 for (Node &N : *RC.SCCs.back()) {
1677 N.DFSNumber = N.LowLink = -1;
1678 SCCMap[&N] = RC.SCCs.back();
1682 // Wire up the SCC indices.
1683 for (int i = 0, Size = RC.SCCs.size(); i < Size; ++i)
1684 RC.SCCIndices[RC.SCCs[i]] = i;
1687 void LazyCallGraph::buildRefSCCs() {
1688 if (EntryEdges.empty() || !PostOrderRefSCCs.empty())
1689 // RefSCCs are either non-existent or already built!
1690 return;
1692 assert(RefSCCIndices.empty() && "Already mapped RefSCC indices!");
1694 SmallVector<Node *, 16> Roots;
1695 for (Edge &E : *this)
1696 Roots.push_back(&E.getNode());
1698 // The roots will be popped of a stack, so use reverse to get a less
1699 // surprising order. This doesn't change any of the semantics anywhere.
1700 std::reverse(Roots.begin(), Roots.end());
1702 buildGenericSCCs(
1703 Roots,
1704 [](Node &N) {
1705 // We need to populate each node as we begin to walk its edges.
1706 N.populate();
1707 return N->begin();
1709 [](Node &N) { return N->end(); },
1710 [](EdgeSequence::iterator I) -> Node & { return I->getNode(); },
1711 [this](node_stack_range Nodes) {
1712 RefSCC *NewRC = createRefSCC(*this);
1713 buildSCCs(*NewRC, Nodes);
1715 // Push the new node into the postorder list and remember its position
1716 // in the index map.
1717 bool Inserted =
1718 RefSCCIndices.insert({NewRC, PostOrderRefSCCs.size()}).second;
1719 (void)Inserted;
1720 assert(Inserted && "Cannot already have this RefSCC in the index map!");
1721 PostOrderRefSCCs.push_back(NewRC);
1722 #ifndef NDEBUG
1723 NewRC->verify();
1724 #endif
1728 AnalysisKey LazyCallGraphAnalysis::Key;
1730 LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {}
1732 static void printNode(raw_ostream &OS, LazyCallGraph::Node &N) {
1733 OS << " Edges in function: " << N.getFunction().getName() << "\n";
1734 for (LazyCallGraph::Edge &E : N.populate())
1735 OS << " " << (E.isCall() ? "call" : "ref ") << " -> "
1736 << E.getFunction().getName() << "\n";
1738 OS << "\n";
1741 static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &C) {
1742 ptrdiff_t Size = size(C);
1743 OS << " SCC with " << Size << " functions:\n";
1745 for (LazyCallGraph::Node &N : C)
1746 OS << " " << N.getFunction().getName() << "\n";
1749 static void printRefSCC(raw_ostream &OS, LazyCallGraph::RefSCC &C) {
1750 ptrdiff_t Size = size(C);
1751 OS << " RefSCC with " << Size << " call SCCs:\n";
1753 for (LazyCallGraph::SCC &InnerC : C)
1754 printSCC(OS, InnerC);
1756 OS << "\n";
1759 PreservedAnalyses LazyCallGraphPrinterPass::run(Module &M,
1760 ModuleAnalysisManager &AM) {
1761 LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M);
1763 OS << "Printing the call graph for module: " << M.getModuleIdentifier()
1764 << "\n\n";
1766 for (Function &F : M)
1767 printNode(OS, G.get(F));
1769 G.buildRefSCCs();
1770 for (LazyCallGraph::RefSCC &C : G.postorder_ref_sccs())
1771 printRefSCC(OS, C);
1773 return PreservedAnalyses::all();
1776 LazyCallGraphDOTPrinterPass::LazyCallGraphDOTPrinterPass(raw_ostream &OS)
1777 : OS(OS) {}
1779 static void printNodeDOT(raw_ostream &OS, LazyCallGraph::Node &N) {
1780 std::string Name = "\"" + DOT::EscapeString(N.getFunction().getName()) + "\"";
1782 for (LazyCallGraph::Edge &E : N.populate()) {
1783 OS << " " << Name << " -> \""
1784 << DOT::EscapeString(E.getFunction().getName()) << "\"";
1785 if (!E.isCall()) // It is a ref edge.
1786 OS << " [style=dashed,label=\"ref\"]";
1787 OS << ";\n";
1790 OS << "\n";
1793 PreservedAnalyses LazyCallGraphDOTPrinterPass::run(Module &M,
1794 ModuleAnalysisManager &AM) {
1795 LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M);
1797 OS << "digraph \"" << DOT::EscapeString(M.getModuleIdentifier()) << "\" {\n";
1799 for (Function &F : M)
1800 printNodeDOT(OS, G.get(F));
1802 OS << "}\n";
1804 return PreservedAnalyses::all();