1 //===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 #include "llvm/Analysis/LazyCallGraph.h"
11 #include "llvm/ADT/ArrayRef.h"
12 #include "llvm/ADT/STLExtras.h"
13 #include "llvm/ADT/ScopeExit.h"
14 #include "llvm/ADT/Sequence.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/iterator_range.h"
18 #include "llvm/Analysis/TargetLibraryInfo.h"
19 #include "llvm/Config/llvm-config.h"
20 #include "llvm/IR/CallSite.h"
21 #include "llvm/IR/Function.h"
22 #include "llvm/IR/GlobalVariable.h"
23 #include "llvm/IR/Instruction.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/IR/PassManager.h"
26 #include "llvm/Support/Casting.h"
27 #include "llvm/Support/Compiler.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/GraphWriter.h"
30 #include "llvm/Support/raw_ostream.h"
41 #define DEBUG_TYPE "lcg"
43 void LazyCallGraph::EdgeSequence::insertEdgeInternal(Node
&TargetN
,
45 EdgeIndexMap
.insert({&TargetN
, Edges
.size()});
46 Edges
.emplace_back(TargetN
, EK
);
49 void LazyCallGraph::EdgeSequence::setEdgeKind(Node
&TargetN
, Edge::Kind EK
) {
50 Edges
[EdgeIndexMap
.find(&TargetN
)->second
].setKind(EK
);
53 bool LazyCallGraph::EdgeSequence::removeEdgeInternal(Node
&TargetN
) {
54 auto IndexMapI
= EdgeIndexMap
.find(&TargetN
);
55 if (IndexMapI
== EdgeIndexMap
.end())
58 Edges
[IndexMapI
->second
] = Edge();
59 EdgeIndexMap
.erase(IndexMapI
);
63 static void addEdge(SmallVectorImpl
<LazyCallGraph::Edge
> &Edges
,
64 DenseMap
<LazyCallGraph::Node
*, int> &EdgeIndexMap
,
65 LazyCallGraph::Node
&N
, LazyCallGraph::Edge::Kind EK
) {
66 if (!EdgeIndexMap
.insert({&N
, Edges
.size()}).second
)
69 LLVM_DEBUG(dbgs() << " Added callable function: " << N
.getName() << "\n");
70 Edges
.emplace_back(LazyCallGraph::Edge(N
, EK
));
73 LazyCallGraph::EdgeSequence
&LazyCallGraph::Node::populateSlow() {
74 assert(!Edges
&& "Must not have already populated the edges for this node!");
76 LLVM_DEBUG(dbgs() << " Adding functions called by '" << getName()
77 << "' to the graph.\n");
79 Edges
= EdgeSequence();
81 SmallVector
<Constant
*, 16> Worklist
;
82 SmallPtrSet
<Function
*, 4> Callees
;
83 SmallPtrSet
<Constant
*, 16> Visited
;
85 // Find all the potential call graph edges in this function. We track both
86 // actual call edges and indirect references to functions. The direct calls
87 // are trivially added, but to accumulate the latter we walk the instructions
88 // and add every operand which is a constant to the worklist to process
91 // Note that we consider *any* function with a definition to be a viable
92 // edge. Even if the function's definition is subject to replacement by
93 // some other module (say, a weak definition) there may still be
94 // optimizations which essentially speculate based on the definition and
95 // a way to check that the specific definition is in fact the one being
96 // used. For example, this could be done by moving the weak definition to
97 // a strong (internal) definition and making the weak definition be an
98 // alias. Then a test of the address of the weak function against the new
99 // strong definition's address would be an effective way to determine the
100 // safety of optimizing a direct call edge.
101 for (BasicBlock
&BB
: *F
)
102 for (Instruction
&I
: BB
) {
103 if (auto CS
= CallSite(&I
))
104 if (Function
*Callee
= CS
.getCalledFunction())
105 if (!Callee
->isDeclaration())
106 if (Callees
.insert(Callee
).second
) {
107 Visited
.insert(Callee
);
108 addEdge(Edges
->Edges
, Edges
->EdgeIndexMap
, G
->get(*Callee
),
109 LazyCallGraph::Edge::Call
);
112 for (Value
*Op
: I
.operand_values())
113 if (Constant
*C
= dyn_cast
<Constant
>(Op
))
114 if (Visited
.insert(C
).second
)
115 Worklist
.push_back(C
);
118 // We've collected all the constant (and thus potentially function or
119 // function containing) operands to all of the instructions in the function.
120 // Process them (recursively) collecting every function found.
121 visitReferences(Worklist
, Visited
, [&](Function
&F
) {
122 addEdge(Edges
->Edges
, Edges
->EdgeIndexMap
, G
->get(F
),
123 LazyCallGraph::Edge::Ref
);
126 // Add implicit reference edges to any defined libcall functions (if we
127 // haven't found an explicit edge).
128 for (auto *F
: G
->LibFunctions
)
129 if (!Visited
.count(F
))
130 addEdge(Edges
->Edges
, Edges
->EdgeIndexMap
, G
->get(*F
),
131 LazyCallGraph::Edge::Ref
);
136 void LazyCallGraph::Node::replaceFunction(Function
&NewF
) {
137 assert(F
!= &NewF
&& "Must not replace a function with itself!");
141 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
142 LLVM_DUMP_METHOD
void LazyCallGraph::Node::dump() const {
143 dbgs() << *this << '\n';
147 static bool isKnownLibFunction(Function
&F
, TargetLibraryInfo
&TLI
) {
150 // Either this is a normal library function or a "vectorizable" function.
151 return TLI
.getLibFunc(F
, LF
) || TLI
.isFunctionVectorizable(F
.getName());
154 LazyCallGraph::LazyCallGraph(Module
&M
, TargetLibraryInfo
&TLI
) {
155 LLVM_DEBUG(dbgs() << "Building CG for module: " << M
.getModuleIdentifier()
157 for (Function
&F
: M
) {
158 if (F
.isDeclaration())
160 // If this function is a known lib function to LLVM then we want to
161 // synthesize reference edges to it to model the fact that LLVM can turn
162 // arbitrary code into a library function call.
163 if (isKnownLibFunction(F
, TLI
))
164 LibFunctions
.insert(&F
);
166 if (F
.hasLocalLinkage())
169 // External linkage defined functions have edges to them from other
171 LLVM_DEBUG(dbgs() << " Adding '" << F
.getName()
172 << "' to entry set of the graph.\n");
173 addEdge(EntryEdges
.Edges
, EntryEdges
.EdgeIndexMap
, get(F
), Edge::Ref
);
176 // Now add entry nodes for functions reachable via initializers to globals.
177 SmallVector
<Constant
*, 16> Worklist
;
178 SmallPtrSet
<Constant
*, 16> Visited
;
179 for (GlobalVariable
&GV
: M
.globals())
180 if (GV
.hasInitializer())
181 if (Visited
.insert(GV
.getInitializer()).second
)
182 Worklist
.push_back(GV
.getInitializer());
185 dbgs() << " Adding functions referenced by global initializers to the "
187 visitReferences(Worklist
, Visited
, [&](Function
&F
) {
188 addEdge(EntryEdges
.Edges
, EntryEdges
.EdgeIndexMap
, get(F
),
189 LazyCallGraph::Edge::Ref
);
193 LazyCallGraph::LazyCallGraph(LazyCallGraph
&&G
)
194 : BPA(std::move(G
.BPA
)), NodeMap(std::move(G
.NodeMap
)),
195 EntryEdges(std::move(G
.EntryEdges
)), SCCBPA(std::move(G
.SCCBPA
)),
196 SCCMap(std::move(G
.SCCMap
)),
197 LibFunctions(std::move(G
.LibFunctions
)) {
201 LazyCallGraph
&LazyCallGraph::operator=(LazyCallGraph
&&G
) {
202 BPA
= std::move(G
.BPA
);
203 NodeMap
= std::move(G
.NodeMap
);
204 EntryEdges
= std::move(G
.EntryEdges
);
205 SCCBPA
= std::move(G
.SCCBPA
);
206 SCCMap
= std::move(G
.SCCMap
);
207 LibFunctions
= std::move(G
.LibFunctions
);
212 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
213 LLVM_DUMP_METHOD
void LazyCallGraph::SCC::dump() const {
214 dbgs() << *this << '\n';
219 void LazyCallGraph::SCC::verify() {
220 assert(OuterRefSCC
&& "Can't have a null RefSCC!");
221 assert(!Nodes
.empty() && "Can't have an empty SCC!");
223 for (Node
*N
: Nodes
) {
224 assert(N
&& "Can't have a null node!");
225 assert(OuterRefSCC
->G
->lookupSCC(*N
) == this &&
226 "Node does not map to this SCC!");
227 assert(N
->DFSNumber
== -1 &&
228 "Must set DFS numbers to -1 when adding a node to an SCC!");
229 assert(N
->LowLink
== -1 &&
230 "Must set low link to -1 when adding a node to an SCC!");
232 assert(E
.getNode().isPopulated() && "Can't have an unpopulated node!");
237 bool LazyCallGraph::SCC::isParentOf(const SCC
&C
) const {
241 for (Node
&N
: *this)
242 for (Edge
&E
: N
->calls())
243 if (OuterRefSCC
->G
->lookupSCC(E
.getNode()) == &C
)
250 bool LazyCallGraph::SCC::isAncestorOf(const SCC
&TargetC
) const {
251 if (this == &TargetC
)
254 LazyCallGraph
&G
= *OuterRefSCC
->G
;
256 // Start with this SCC.
257 SmallPtrSet
<const SCC
*, 16> Visited
= {this};
258 SmallVector
<const SCC
*, 16> Worklist
= {this};
260 // Walk down the graph until we run out of edges or find a path to TargetC.
262 const SCC
&C
= *Worklist
.pop_back_val();
264 for (Edge
&E
: N
->calls()) {
265 SCC
*CalleeC
= G
.lookupSCC(E
.getNode());
269 // If the callee's SCC is the TargetC, we're done.
270 if (CalleeC
== &TargetC
)
273 // If this is the first time we've reached this SCC, put it on the
274 // worklist to recurse through.
275 if (Visited
.insert(CalleeC
).second
)
276 Worklist
.push_back(CalleeC
);
278 } while (!Worklist
.empty());
284 LazyCallGraph::RefSCC::RefSCC(LazyCallGraph
&G
) : G(&G
) {}
286 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
287 LLVM_DUMP_METHOD
void LazyCallGraph::RefSCC::dump() const {
288 dbgs() << *this << '\n';
293 void LazyCallGraph::RefSCC::verify() {
294 assert(G
&& "Can't have a null graph!");
295 assert(!SCCs
.empty() && "Can't have an empty SCC!");
297 // Verify basic properties of the SCCs.
298 SmallPtrSet
<SCC
*, 4> SCCSet
;
299 for (SCC
*C
: SCCs
) {
300 assert(C
&& "Can't have a null SCC!");
302 assert(&C
->getOuterRefSCC() == this &&
303 "SCC doesn't think it is inside this RefSCC!");
304 bool Inserted
= SCCSet
.insert(C
).second
;
305 assert(Inserted
&& "Found a duplicate SCC!");
306 auto IndexIt
= SCCIndices
.find(C
);
307 assert(IndexIt
!= SCCIndices
.end() &&
308 "Found an SCC that doesn't have an index!");
311 // Check that our indices map correctly.
312 for (auto &SCCIndexPair
: SCCIndices
) {
313 SCC
*C
= SCCIndexPair
.first
;
314 int i
= SCCIndexPair
.second
;
315 assert(C
&& "Can't have a null SCC in the indices!");
316 assert(SCCSet
.count(C
) && "Found an index for an SCC not in the RefSCC!");
317 assert(SCCs
[i
] == C
&& "Index doesn't point to SCC!");
320 // Check that the SCCs are in fact in post-order.
321 for (int i
= 0, Size
= SCCs
.size(); i
< Size
; ++i
) {
322 SCC
&SourceSCC
= *SCCs
[i
];
323 for (Node
&N
: SourceSCC
)
327 SCC
&TargetSCC
= *G
->lookupSCC(E
.getNode());
328 if (&TargetSCC
.getOuterRefSCC() == this) {
329 assert(SCCIndices
.find(&TargetSCC
)->second
<= i
&&
330 "Edge between SCCs violates post-order relationship.");
338 bool LazyCallGraph::RefSCC::isParentOf(const RefSCC
&RC
) const {
342 // Search all edges to see if this is a parent.
346 if (G
->lookupRefSCC(E
.getNode()) == &RC
)
352 bool LazyCallGraph::RefSCC::isAncestorOf(const RefSCC
&RC
) const {
356 // For each descendant of this RefSCC, see if one of its children is the
357 // argument. If not, add that descendant to the worklist and continue
359 SmallVector
<const RefSCC
*, 4> Worklist
;
360 SmallPtrSet
<const RefSCC
*, 4> Visited
;
361 Worklist
.push_back(this);
362 Visited
.insert(this);
364 const RefSCC
&DescendantRC
= *Worklist
.pop_back_val();
365 for (SCC
&C
: DescendantRC
)
368 auto *ChildRC
= G
->lookupRefSCC(E
.getNode());
371 if (!ChildRC
|| !Visited
.insert(ChildRC
).second
)
373 Worklist
.push_back(ChildRC
);
375 } while (!Worklist
.empty());
380 /// Generic helper that updates a postorder sequence of SCCs for a potentially
381 /// cycle-introducing edge insertion.
383 /// A postorder sequence of SCCs of a directed graph has one fundamental
384 /// property: all deges in the DAG of SCCs point "up" the sequence. That is,
385 /// all edges in the SCC DAG point to prior SCCs in the sequence.
387 /// This routine both updates a postorder sequence and uses that sequence to
388 /// compute the set of SCCs connected into a cycle. It should only be called to
389 /// insert a "downward" edge which will require changing the sequence to
390 /// restore it to a postorder.
392 /// When inserting an edge from an earlier SCC to a later SCC in some postorder
393 /// sequence, all of the SCCs which may be impacted are in the closed range of
394 /// those two within the postorder sequence. The algorithm used here to restore
395 /// the state is as follows:
397 /// 1) Starting from the source SCC, construct a set of SCCs which reach the
398 /// source SCC consisting of just the source SCC. Then scan toward the
399 /// target SCC in postorder and for each SCC, if it has an edge to an SCC
400 /// in the set, add it to the set. Otherwise, the source SCC is not
401 /// a successor, move it in the postorder sequence to immediately before
402 /// the source SCC, shifting the source SCC and all SCCs in the set one
403 /// position toward the target SCC. Stop scanning after processing the
405 /// 2) If the source SCC is now past the target SCC in the postorder sequence,
406 /// and thus the new edge will flow toward the start, we are done.
407 /// 3) Otherwise, starting from the target SCC, walk all edges which reach an
408 /// SCC between the source and the target, and add them to the set of
409 /// connected SCCs, then recurse through them. Once a complete set of the
410 /// SCCs the target connects to is known, hoist the remaining SCCs between
411 /// the source and the target to be above the target. Note that there is no
412 /// need to process the source SCC, it is already known to connect.
413 /// 4) At this point, all of the SCCs in the closed range between the source
414 /// SCC and the target SCC in the postorder sequence are connected,
415 /// including the target SCC and the source SCC. Inserting the edge from
416 /// the source SCC to the target SCC will form a cycle out of precisely
417 /// these SCCs. Thus we can merge all of the SCCs in this closed range into
420 /// This process has various important properties:
421 /// - Only mutates the SCCs when adding the edge actually changes the SCC
423 /// - Never mutates SCCs which are unaffected by the change.
424 /// - Updates the postorder sequence to correctly satisfy the postorder
425 /// constraint after the edge is inserted.
426 /// - Only reorders SCCs in the closed postorder sequence from the source to
427 /// the target, so easy to bound how much has changed even in the ordering.
428 /// - Big-O is the number of edges in the closed postorder range of SCCs from
429 /// source to target.
431 /// This helper routine, in addition to updating the postorder sequence itself
432 /// will also update a map from SCCs to indices within that sequence.
434 /// The sequence and the map must operate on pointers to the SCC type.
436 /// Two callbacks must be provided. The first computes the subset of SCCs in
437 /// the postorder closed range from the source to the target which connect to
438 /// the source SCC via some (transitive) set of edges. The second computes the
439 /// subset of the same range which the target SCC connects to via some
440 /// (transitive) set of edges. Both callbacks should populate the set argument
442 template <typename SCCT
, typename PostorderSequenceT
, typename SCCIndexMapT
,
443 typename ComputeSourceConnectedSetCallableT
,
444 typename ComputeTargetConnectedSetCallableT
>
445 static iterator_range
<typename
PostorderSequenceT::iterator
>
446 updatePostorderSequenceForEdgeInsertion(
447 SCCT
&SourceSCC
, SCCT
&TargetSCC
, PostorderSequenceT
&SCCs
,
448 SCCIndexMapT
&SCCIndices
,
449 ComputeSourceConnectedSetCallableT ComputeSourceConnectedSet
,
450 ComputeTargetConnectedSetCallableT ComputeTargetConnectedSet
) {
451 int SourceIdx
= SCCIndices
[&SourceSCC
];
452 int TargetIdx
= SCCIndices
[&TargetSCC
];
453 assert(SourceIdx
< TargetIdx
&& "Cannot have equal indices here!");
455 SmallPtrSet
<SCCT
*, 4> ConnectedSet
;
457 // Compute the SCCs which (transitively) reach the source.
458 ComputeSourceConnectedSet(ConnectedSet
);
460 // Partition the SCCs in this part of the port-order sequence so only SCCs
461 // connecting to the source remain between it and the target. This is
462 // a benign partition as it preserves postorder.
463 auto SourceI
= std::stable_partition(
464 SCCs
.begin() + SourceIdx
, SCCs
.begin() + TargetIdx
+ 1,
465 [&ConnectedSet
](SCCT
*C
) { return !ConnectedSet
.count(C
); });
466 for (int i
= SourceIdx
, e
= TargetIdx
+ 1; i
< e
; ++i
)
467 SCCIndices
.find(SCCs
[i
])->second
= i
;
469 // If the target doesn't connect to the source, then we've corrected the
470 // post-order and there are no cycles formed.
471 if (!ConnectedSet
.count(&TargetSCC
)) {
472 assert(SourceI
> (SCCs
.begin() + SourceIdx
) &&
473 "Must have moved the source to fix the post-order.");
474 assert(*std::prev(SourceI
) == &TargetSCC
&&
475 "Last SCC to move should have bene the target.");
477 // Return an empty range at the target SCC indicating there is nothing to
479 return make_range(std::prev(SourceI
), std::prev(SourceI
));
482 assert(SCCs
[TargetIdx
] == &TargetSCC
&&
483 "Should not have moved target if connected!");
484 SourceIdx
= SourceI
- SCCs
.begin();
485 assert(SCCs
[SourceIdx
] == &SourceSCC
&&
486 "Bad updated index computation for the source SCC!");
489 // See whether there are any remaining intervening SCCs between the source
490 // and target. If so we need to make sure they all are reachable form the
492 if (SourceIdx
+ 1 < TargetIdx
) {
493 ConnectedSet
.clear();
494 ComputeTargetConnectedSet(ConnectedSet
);
496 // Partition SCCs so that only SCCs reached from the target remain between
497 // the source and the target. This preserves postorder.
498 auto TargetI
= std::stable_partition(
499 SCCs
.begin() + SourceIdx
+ 1, SCCs
.begin() + TargetIdx
+ 1,
500 [&ConnectedSet
](SCCT
*C
) { return ConnectedSet
.count(C
); });
501 for (int i
= SourceIdx
+ 1, e
= TargetIdx
+ 1; i
< e
; ++i
)
502 SCCIndices
.find(SCCs
[i
])->second
= i
;
503 TargetIdx
= std::prev(TargetI
) - SCCs
.begin();
504 assert(SCCs
[TargetIdx
] == &TargetSCC
&&
505 "Should always end with the target!");
508 // At this point, we know that connecting source to target forms a cycle
509 // because target connects back to source, and we know that all of the SCCs
510 // between the source and target in the postorder sequence participate in that
512 return make_range(SCCs
.begin() + SourceIdx
, SCCs
.begin() + TargetIdx
);
516 LazyCallGraph::RefSCC::switchInternalEdgeToCall(
517 Node
&SourceN
, Node
&TargetN
,
518 function_ref
<void(ArrayRef
<SCC
*> MergeSCCs
)> MergeCB
) {
519 assert(!(*SourceN
)[TargetN
].isCall() && "Must start with a ref edge!");
520 SmallVector
<SCC
*, 1> DeletedSCCs
;
523 // In a debug build, verify the RefSCC is valid to start with and when this
526 auto VerifyOnExit
= make_scope_exit([&]() { verify(); });
529 SCC
&SourceSCC
= *G
->lookupSCC(SourceN
);
530 SCC
&TargetSCC
= *G
->lookupSCC(TargetN
);
532 // If the two nodes are already part of the same SCC, we're also done as
533 // we've just added more connectivity.
534 if (&SourceSCC
== &TargetSCC
) {
535 SourceN
->setEdgeKind(TargetN
, Edge::Call
);
536 return false; // No new cycle.
539 // At this point we leverage the postorder list of SCCs to detect when the
540 // insertion of an edge changes the SCC structure in any way.
542 // First and foremost, we can eliminate the need for any changes when the
543 // edge is toward the beginning of the postorder sequence because all edges
544 // flow in that direction already. Thus adding a new one cannot form a cycle.
545 int SourceIdx
= SCCIndices
[&SourceSCC
];
546 int TargetIdx
= SCCIndices
[&TargetSCC
];
547 if (TargetIdx
< SourceIdx
) {
548 SourceN
->setEdgeKind(TargetN
, Edge::Call
);
549 return false; // No new cycle.
552 // Compute the SCCs which (transitively) reach the source.
553 auto ComputeSourceConnectedSet
= [&](SmallPtrSetImpl
<SCC
*> &ConnectedSet
) {
555 // Check that the RefSCC is still valid before computing this as the
556 // results will be nonsensical of we've broken its invariants.
559 ConnectedSet
.insert(&SourceSCC
);
560 auto IsConnected
= [&](SCC
&C
) {
562 for (Edge
&E
: N
->calls())
563 if (ConnectedSet
.count(G
->lookupSCC(E
.getNode())))
570 make_range(SCCs
.begin() + SourceIdx
+ 1, SCCs
.begin() + TargetIdx
+ 1))
572 ConnectedSet
.insert(C
);
575 // Use a normal worklist to find which SCCs the target connects to. We still
576 // bound the search based on the range in the postorder list we care about,
577 // but because this is forward connectivity we just "recurse" through the
579 auto ComputeTargetConnectedSet
= [&](SmallPtrSetImpl
<SCC
*> &ConnectedSet
) {
581 // Check that the RefSCC is still valid before computing this as the
582 // results will be nonsensical of we've broken its invariants.
585 ConnectedSet
.insert(&TargetSCC
);
586 SmallVector
<SCC
*, 4> Worklist
;
587 Worklist
.push_back(&TargetSCC
);
589 SCC
&C
= *Worklist
.pop_back_val();
594 SCC
&EdgeC
= *G
->lookupSCC(E
.getNode());
595 if (&EdgeC
.getOuterRefSCC() != this)
596 // Not in this RefSCC...
598 if (SCCIndices
.find(&EdgeC
)->second
<= SourceIdx
)
599 // Not in the postorder sequence between source and target.
602 if (ConnectedSet
.insert(&EdgeC
).second
)
603 Worklist
.push_back(&EdgeC
);
605 } while (!Worklist
.empty());
608 // Use a generic helper to update the postorder sequence of SCCs and return
609 // a range of any SCCs connected into a cycle by inserting this edge. This
610 // routine will also take care of updating the indices into the postorder
612 auto MergeRange
= updatePostorderSequenceForEdgeInsertion(
613 SourceSCC
, TargetSCC
, SCCs
, SCCIndices
, ComputeSourceConnectedSet
,
614 ComputeTargetConnectedSet
);
616 // Run the user's callback on the merged SCCs before we actually merge them.
618 MergeCB(makeArrayRef(MergeRange
.begin(), MergeRange
.end()));
620 // If the merge range is empty, then adding the edge didn't actually form any
621 // new cycles. We're done.
622 if (MergeRange
.begin() == MergeRange
.end()) {
623 // Now that the SCC structure is finalized, flip the kind to call.
624 SourceN
->setEdgeKind(TargetN
, Edge::Call
);
625 return false; // No new cycle.
629 // Before merging, check that the RefSCC remains valid after all the
630 // postorder updates.
634 // Otherwise we need to merge all of the SCCs in the cycle into a single
637 // NB: We merge into the target because all of these functions were already
638 // reachable from the target, meaning any SCC-wide properties deduced about it
639 // other than the set of functions within it will not have changed.
640 for (SCC
*C
: MergeRange
) {
641 assert(C
!= &TargetSCC
&&
642 "We merge *into* the target and shouldn't process it here!");
644 TargetSCC
.Nodes
.append(C
->Nodes
.begin(), C
->Nodes
.end());
645 for (Node
*N
: C
->Nodes
)
646 G
->SCCMap
[N
] = &TargetSCC
;
648 DeletedSCCs
.push_back(C
);
651 // Erase the merged SCCs from the list and update the indices of the
653 int IndexOffset
= MergeRange
.end() - MergeRange
.begin();
654 auto EraseEnd
= SCCs
.erase(MergeRange
.begin(), MergeRange
.end());
655 for (SCC
*C
: make_range(EraseEnd
, SCCs
.end()))
656 SCCIndices
[C
] -= IndexOffset
;
658 // Now that the SCC structure is finalized, flip the kind to call.
659 SourceN
->setEdgeKind(TargetN
, Edge::Call
);
661 // And we're done, but we did form a new cycle.
665 void LazyCallGraph::RefSCC::switchTrivialInternalEdgeToRef(Node
&SourceN
,
667 assert((*SourceN
)[TargetN
].isCall() && "Must start with a call edge!");
670 // In a debug build, verify the RefSCC is valid to start with and when this
673 auto VerifyOnExit
= make_scope_exit([&]() { verify(); });
676 assert(G
->lookupRefSCC(SourceN
) == this &&
677 "Source must be in this RefSCC.");
678 assert(G
->lookupRefSCC(TargetN
) == this &&
679 "Target must be in this RefSCC.");
680 assert(G
->lookupSCC(SourceN
) != G
->lookupSCC(TargetN
) &&
681 "Source and Target must be in separate SCCs for this to be trivial!");
683 // Set the edge kind.
684 SourceN
->setEdgeKind(TargetN
, Edge::Ref
);
687 iterator_range
<LazyCallGraph::RefSCC::iterator
>
688 LazyCallGraph::RefSCC::switchInternalEdgeToRef(Node
&SourceN
, Node
&TargetN
) {
689 assert((*SourceN
)[TargetN
].isCall() && "Must start with a call edge!");
692 // In a debug build, verify the RefSCC is valid to start with and when this
695 auto VerifyOnExit
= make_scope_exit([&]() { verify(); });
698 assert(G
->lookupRefSCC(SourceN
) == this &&
699 "Source must be in this RefSCC.");
700 assert(G
->lookupRefSCC(TargetN
) == this &&
701 "Target must be in this RefSCC.");
703 SCC
&TargetSCC
= *G
->lookupSCC(TargetN
);
704 assert(G
->lookupSCC(SourceN
) == &TargetSCC
&& "Source and Target must be in "
705 "the same SCC to require the "
708 // Set the edge kind.
709 SourceN
->setEdgeKind(TargetN
, Edge::Ref
);
711 // Otherwise we are removing a call edge from a single SCC. This may break
712 // the cycle. In order to compute the new set of SCCs, we need to do a small
713 // DFS over the nodes within the SCC to form any sub-cycles that remain as
714 // distinct SCCs and compute a postorder over the resulting SCCs.
716 // However, we specially handle the target node. The target node is known to
717 // reach all other nodes in the original SCC by definition. This means that
718 // we want the old SCC to be replaced with an SCC containing that node as it
719 // will be the root of whatever SCC DAG results from the DFS. Assumptions
720 // about an SCC such as the set of functions called will continue to hold,
723 SCC
&OldSCC
= TargetSCC
;
724 SmallVector
<std::pair
<Node
*, EdgeSequence::call_iterator
>, 16> DFSStack
;
725 SmallVector
<Node
*, 16> PendingSCCStack
;
726 SmallVector
<SCC
*, 4> NewSCCs
;
728 // Prepare the nodes for a fresh DFS.
729 SmallVector
<Node
*, 16> Worklist
;
730 Worklist
.swap(OldSCC
.Nodes
);
731 for (Node
*N
: Worklist
) {
732 N
->DFSNumber
= N
->LowLink
= 0;
736 // Force the target node to be in the old SCC. This also enables us to take
737 // a very significant short-cut in the standard Tarjan walk to re-form SCCs
738 // below: whenever we build an edge that reaches the target node, we know
739 // that the target node eventually connects back to all other nodes in our
740 // walk. As a consequence, we can detect and handle participants in that
741 // cycle without walking all the edges that form this connection, and instead
742 // by relying on the fundamental guarantee coming into this operation (all
743 // nodes are reachable from the target due to previously forming an SCC).
744 TargetN
.DFSNumber
= TargetN
.LowLink
= -1;
745 OldSCC
.Nodes
.push_back(&TargetN
);
746 G
->SCCMap
[&TargetN
] = &OldSCC
;
748 // Scan down the stack and DFS across the call edges.
749 for (Node
*RootN
: Worklist
) {
750 assert(DFSStack
.empty() &&
751 "Cannot begin a new root with a non-empty DFS stack!");
752 assert(PendingSCCStack
.empty() &&
753 "Cannot begin a new root with pending nodes for an SCC!");
755 // Skip any nodes we've already reached in the DFS.
756 if (RootN
->DFSNumber
!= 0) {
757 assert(RootN
->DFSNumber
== -1 &&
758 "Shouldn't have any mid-DFS root nodes!");
762 RootN
->DFSNumber
= RootN
->LowLink
= 1;
763 int NextDFSNumber
= 2;
765 DFSStack
.push_back({RootN
, (*RootN
)->call_begin()});
768 EdgeSequence::call_iterator I
;
769 std::tie(N
, I
) = DFSStack
.pop_back_val();
770 auto E
= (*N
)->call_end();
772 Node
&ChildN
= I
->getNode();
773 if (ChildN
.DFSNumber
== 0) {
774 // We haven't yet visited this child, so descend, pushing the current
775 // node onto the stack.
776 DFSStack
.push_back({N
, I
});
778 assert(!G
->SCCMap
.count(&ChildN
) &&
779 "Found a node with 0 DFS number but already in an SCC!");
780 ChildN
.DFSNumber
= ChildN
.LowLink
= NextDFSNumber
++;
782 I
= (*N
)->call_begin();
783 E
= (*N
)->call_end();
787 // Check for the child already being part of some component.
788 if (ChildN
.DFSNumber
== -1) {
789 if (G
->lookupSCC(ChildN
) == &OldSCC
) {
790 // If the child is part of the old SCC, we know that it can reach
791 // every other node, so we have formed a cycle. Pull the entire DFS
792 // and pending stacks into it. See the comment above about setting
793 // up the old SCC for why we do this.
794 int OldSize
= OldSCC
.size();
795 OldSCC
.Nodes
.push_back(N
);
796 OldSCC
.Nodes
.append(PendingSCCStack
.begin(), PendingSCCStack
.end());
797 PendingSCCStack
.clear();
798 while (!DFSStack
.empty())
799 OldSCC
.Nodes
.push_back(DFSStack
.pop_back_val().first
);
800 for (Node
&N
: make_range(OldSCC
.begin() + OldSize
, OldSCC
.end())) {
801 N
.DFSNumber
= N
.LowLink
= -1;
802 G
->SCCMap
[&N
] = &OldSCC
;
808 // If the child has already been added to some child component, it
809 // couldn't impact the low-link of this parent because it isn't
810 // connected, and thus its low-link isn't relevant so skip it.
815 // Track the lowest linked child as the lowest link for this node.
816 assert(ChildN
.LowLink
> 0 && "Must have a positive low-link number!");
817 if (ChildN
.LowLink
< N
->LowLink
)
818 N
->LowLink
= ChildN
.LowLink
;
820 // Move to the next edge.
824 // Cleared the DFS early, start another round.
827 // We've finished processing N and its descendants, put it on our pending
828 // SCC stack to eventually get merged into an SCC of nodes.
829 PendingSCCStack
.push_back(N
);
831 // If this node is linked to some lower entry, continue walking up the
833 if (N
->LowLink
!= N
->DFSNumber
)
836 // Otherwise, we've completed an SCC. Append it to our post order list of
838 int RootDFSNumber
= N
->DFSNumber
;
839 // Find the range of the node stack by walking down until we pass the
841 auto SCCNodes
= make_range(
842 PendingSCCStack
.rbegin(),
843 find_if(reverse(PendingSCCStack
), [RootDFSNumber
](const Node
*N
) {
844 return N
->DFSNumber
< RootDFSNumber
;
847 // Form a new SCC out of these nodes and then clear them off our pending
849 NewSCCs
.push_back(G
->createSCC(*this, SCCNodes
));
850 for (Node
&N
: *NewSCCs
.back()) {
851 N
.DFSNumber
= N
.LowLink
= -1;
852 G
->SCCMap
[&N
] = NewSCCs
.back();
854 PendingSCCStack
.erase(SCCNodes
.end().base(), PendingSCCStack
.end());
855 } while (!DFSStack
.empty());
858 // Insert the remaining SCCs before the old one. The old SCC can reach all
859 // other SCCs we form because it contains the target node of the removed edge
860 // of the old SCC. This means that we will have edges into all of the new
861 // SCCs, which means the old one must come last for postorder.
862 int OldIdx
= SCCIndices
[&OldSCC
];
863 SCCs
.insert(SCCs
.begin() + OldIdx
, NewSCCs
.begin(), NewSCCs
.end());
865 // Update the mapping from SCC* to index to use the new SCC*s, and remove the
866 // old SCC from the mapping.
867 for (int Idx
= OldIdx
, Size
= SCCs
.size(); Idx
< Size
; ++Idx
)
868 SCCIndices
[SCCs
[Idx
]] = Idx
;
870 return make_range(SCCs
.begin() + OldIdx
,
871 SCCs
.begin() + OldIdx
+ NewSCCs
.size());
874 void LazyCallGraph::RefSCC::switchOutgoingEdgeToCall(Node
&SourceN
,
876 assert(!(*SourceN
)[TargetN
].isCall() && "Must start with a ref edge!");
878 assert(G
->lookupRefSCC(SourceN
) == this && "Source must be in this RefSCC.");
879 assert(G
->lookupRefSCC(TargetN
) != this &&
880 "Target must not be in this RefSCC.");
881 #ifdef EXPENSIVE_CHECKS
882 assert(G
->lookupRefSCC(TargetN
)->isDescendantOf(*this) &&
883 "Target must be a descendant of the Source.");
886 // Edges between RefSCCs are the same regardless of call or ref, so we can
887 // just flip the edge here.
888 SourceN
->setEdgeKind(TargetN
, Edge::Call
);
891 // Check that the RefSCC is still valid.
896 void LazyCallGraph::RefSCC::switchOutgoingEdgeToRef(Node
&SourceN
,
898 assert((*SourceN
)[TargetN
].isCall() && "Must start with a call edge!");
900 assert(G
->lookupRefSCC(SourceN
) == this && "Source must be in this RefSCC.");
901 assert(G
->lookupRefSCC(TargetN
) != this &&
902 "Target must not be in this RefSCC.");
903 #ifdef EXPENSIVE_CHECKS
904 assert(G
->lookupRefSCC(TargetN
)->isDescendantOf(*this) &&
905 "Target must be a descendant of the Source.");
908 // Edges between RefSCCs are the same regardless of call or ref, so we can
909 // just flip the edge here.
910 SourceN
->setEdgeKind(TargetN
, Edge::Ref
);
913 // Check that the RefSCC is still valid.
918 void LazyCallGraph::RefSCC::insertInternalRefEdge(Node
&SourceN
,
920 assert(G
->lookupRefSCC(SourceN
) == this && "Source must be in this RefSCC.");
921 assert(G
->lookupRefSCC(TargetN
) == this && "Target must be in this RefSCC.");
923 SourceN
->insertEdgeInternal(TargetN
, Edge::Ref
);
926 // Check that the RefSCC is still valid.
931 void LazyCallGraph::RefSCC::insertOutgoingEdge(Node
&SourceN
, Node
&TargetN
,
933 // First insert it into the caller.
934 SourceN
->insertEdgeInternal(TargetN
, EK
);
936 assert(G
->lookupRefSCC(SourceN
) == this && "Source must be in this RefSCC.");
938 assert(G
->lookupRefSCC(TargetN
) != this &&
939 "Target must not be in this RefSCC.");
940 #ifdef EXPENSIVE_CHECKS
941 assert(G
->lookupRefSCC(TargetN
)->isDescendantOf(*this) &&
942 "Target must be a descendant of the Source.");
946 // Check that the RefSCC is still valid.
951 SmallVector
<LazyCallGraph::RefSCC
*, 1>
952 LazyCallGraph::RefSCC::insertIncomingRefEdge(Node
&SourceN
, Node
&TargetN
) {
953 assert(G
->lookupRefSCC(TargetN
) == this && "Target must be in this RefSCC.");
954 RefSCC
&SourceC
= *G
->lookupRefSCC(SourceN
);
955 assert(&SourceC
!= this && "Source must not be in this RefSCC.");
956 #ifdef EXPENSIVE_CHECKS
957 assert(SourceC
.isDescendantOf(*this) &&
958 "Source must be a descendant of the Target.");
961 SmallVector
<RefSCC
*, 1> DeletedRefSCCs
;
964 // In a debug build, verify the RefSCC is valid to start with and when this
967 auto VerifyOnExit
= make_scope_exit([&]() { verify(); });
970 int SourceIdx
= G
->RefSCCIndices
[&SourceC
];
971 int TargetIdx
= G
->RefSCCIndices
[this];
972 assert(SourceIdx
< TargetIdx
&&
973 "Postorder list doesn't see edge as incoming!");
975 // Compute the RefSCCs which (transitively) reach the source. We do this by
976 // working backwards from the source using the parent set in each RefSCC,
977 // skipping any RefSCCs that don't fall in the postorder range. This has the
978 // advantage of walking the sparser parent edge (in high fan-out graphs) but
979 // more importantly this removes examining all forward edges in all RefSCCs
980 // within the postorder range which aren't in fact connected. Only connected
981 // RefSCCs (and their edges) are visited here.
982 auto ComputeSourceConnectedSet
= [&](SmallPtrSetImpl
<RefSCC
*> &Set
) {
983 Set
.insert(&SourceC
);
984 auto IsConnected
= [&](RefSCC
&RC
) {
988 if (Set
.count(G
->lookupRefSCC(E
.getNode())))
994 for (RefSCC
*C
: make_range(G
->PostOrderRefSCCs
.begin() + SourceIdx
+ 1,
995 G
->PostOrderRefSCCs
.begin() + TargetIdx
+ 1))
1000 // Use a normal worklist to find which SCCs the target connects to. We still
1001 // bound the search based on the range in the postorder list we care about,
1002 // but because this is forward connectivity we just "recurse" through the
1004 auto ComputeTargetConnectedSet
= [&](SmallPtrSetImpl
<RefSCC
*> &Set
) {
1006 SmallVector
<RefSCC
*, 4> Worklist
;
1007 Worklist
.push_back(this);
1009 RefSCC
&RC
= *Worklist
.pop_back_val();
1012 for (Edge
&E
: *N
) {
1013 RefSCC
&EdgeRC
= *G
->lookupRefSCC(E
.getNode());
1014 if (G
->getRefSCCIndex(EdgeRC
) <= SourceIdx
)
1015 // Not in the postorder sequence between source and target.
1018 if (Set
.insert(&EdgeRC
).second
)
1019 Worklist
.push_back(&EdgeRC
);
1021 } while (!Worklist
.empty());
1024 // Use a generic helper to update the postorder sequence of RefSCCs and return
1025 // a range of any RefSCCs connected into a cycle by inserting this edge. This
1026 // routine will also take care of updating the indices into the postorder
1028 iterator_range
<SmallVectorImpl
<RefSCC
*>::iterator
> MergeRange
=
1029 updatePostorderSequenceForEdgeInsertion(
1030 SourceC
, *this, G
->PostOrderRefSCCs
, G
->RefSCCIndices
,
1031 ComputeSourceConnectedSet
, ComputeTargetConnectedSet
);
1033 // Build a set so we can do fast tests for whether a RefSCC will end up as
1034 // part of the merged RefSCC.
1035 SmallPtrSet
<RefSCC
*, 16> MergeSet(MergeRange
.begin(), MergeRange
.end());
1037 // This RefSCC will always be part of that set, so just insert it here.
1038 MergeSet
.insert(this);
1040 // Now that we have identified all of the SCCs which need to be merged into
1041 // a connected set with the inserted edge, merge all of them into this SCC.
1042 SmallVector
<SCC
*, 16> MergedSCCs
;
1044 for (RefSCC
*RC
: MergeRange
) {
1045 assert(RC
!= this && "We're merging into the target RefSCC, so it "
1046 "shouldn't be in the range.");
1048 // Walk the inner SCCs to update their up-pointer and walk all the edges to
1049 // update any parent sets.
1050 // FIXME: We should try to find a way to avoid this (rather expensive) edge
1051 // walk by updating the parent sets in some other manner.
1052 for (SCC
&InnerC
: *RC
) {
1053 InnerC
.OuterRefSCC
= this;
1054 SCCIndices
[&InnerC
] = SCCIndex
++;
1055 for (Node
&N
: InnerC
)
1056 G
->SCCMap
[&N
] = &InnerC
;
1059 // Now merge in the SCCs. We can actually move here so try to reuse storage
1060 // the first time through.
1061 if (MergedSCCs
.empty())
1062 MergedSCCs
= std::move(RC
->SCCs
);
1064 MergedSCCs
.append(RC
->SCCs
.begin(), RC
->SCCs
.end());
1066 DeletedRefSCCs
.push_back(RC
);
1069 // Append our original SCCs to the merged list and move it into place.
1070 for (SCC
&InnerC
: *this)
1071 SCCIndices
[&InnerC
] = SCCIndex
++;
1072 MergedSCCs
.append(SCCs
.begin(), SCCs
.end());
1073 SCCs
= std::move(MergedSCCs
);
1075 // Remove the merged away RefSCCs from the post order sequence.
1076 for (RefSCC
*RC
: MergeRange
)
1077 G
->RefSCCIndices
.erase(RC
);
1078 int IndexOffset
= MergeRange
.end() - MergeRange
.begin();
1080 G
->PostOrderRefSCCs
.erase(MergeRange
.begin(), MergeRange
.end());
1081 for (RefSCC
*RC
: make_range(EraseEnd
, G
->PostOrderRefSCCs
.end()))
1082 G
->RefSCCIndices
[RC
] -= IndexOffset
;
1084 // At this point we have a merged RefSCC with a post-order SCCs list, just
1085 // connect the nodes to form the new edge.
1086 SourceN
->insertEdgeInternal(TargetN
, Edge::Ref
);
1088 // We return the list of SCCs which were merged so that callers can
1089 // invalidate any data they have associated with those SCCs. Note that these
1090 // SCCs are no longer in an interesting state (they are totally empty) but
1091 // the pointers will remain stable for the life of the graph itself.
1092 return DeletedRefSCCs
;
1095 void LazyCallGraph::RefSCC::removeOutgoingEdge(Node
&SourceN
, Node
&TargetN
) {
1096 assert(G
->lookupRefSCC(SourceN
) == this &&
1097 "The source must be a member of this RefSCC.");
1098 assert(G
->lookupRefSCC(TargetN
) != this &&
1099 "The target must not be a member of this RefSCC");
1102 // In a debug build, verify the RefSCC is valid to start with and when this
1103 // routine finishes.
1105 auto VerifyOnExit
= make_scope_exit([&]() { verify(); });
1108 // First remove it from the node.
1109 bool Removed
= SourceN
->removeEdgeInternal(TargetN
);
1111 assert(Removed
&& "Target not in the edge set for this caller?");
1114 SmallVector
<LazyCallGraph::RefSCC
*, 1>
1115 LazyCallGraph::RefSCC::removeInternalRefEdge(Node
&SourceN
,
1116 ArrayRef
<Node
*> TargetNs
) {
1117 // We return a list of the resulting *new* RefSCCs in post-order.
1118 SmallVector
<RefSCC
*, 1> Result
;
1121 // In a debug build, verify the RefSCC is valid to start with and that either
1122 // we return an empty list of result RefSCCs and this RefSCC remains valid,
1123 // or we return new RefSCCs and this RefSCC is dead.
1125 auto VerifyOnExit
= make_scope_exit([&]() {
1126 // If we didn't replace our RefSCC with new ones, check that this one
1133 // First remove the actual edges.
1134 for (Node
*TargetN
: TargetNs
) {
1135 assert(!(*SourceN
)[*TargetN
].isCall() &&
1136 "Cannot remove a call edge, it must first be made a ref edge");
1138 bool Removed
= SourceN
->removeEdgeInternal(*TargetN
);
1140 assert(Removed
&& "Target not in the edge set for this caller?");
1143 // Direct self references don't impact the ref graph at all.
1144 if (llvm::all_of(TargetNs
,
1145 [&](Node
*TargetN
) { return &SourceN
== TargetN
; }))
1148 // If all targets are in the same SCC as the source, because no call edges
1149 // were removed there is no RefSCC structure change.
1150 SCC
&SourceC
= *G
->lookupSCC(SourceN
);
1151 if (llvm::all_of(TargetNs
, [&](Node
*TargetN
) {
1152 return G
->lookupSCC(*TargetN
) == &SourceC
;
1156 // We build somewhat synthetic new RefSCCs by providing a postorder mapping
1157 // for each inner SCC. We store these inside the low-link field of the nodes
1158 // rather than associated with SCCs because this saves a round-trip through
1159 // the node->SCC map and in the common case, SCCs are small. We will verify
1160 // that we always give the same number to every node in the SCC such that
1161 // these are equivalent.
1162 int PostOrderNumber
= 0;
1164 // Reset all the other nodes to prepare for a DFS over them, and add them to
1166 SmallVector
<Node
*, 8> Worklist
;
1167 for (SCC
*C
: SCCs
) {
1169 N
.DFSNumber
= N
.LowLink
= 0;
1171 Worklist
.append(C
->Nodes
.begin(), C
->Nodes
.end());
1174 // Track the number of nodes in this RefSCC so that we can quickly recognize
1175 // an important special case of the edge removal not breaking the cycle of
1177 const int NumRefSCCNodes
= Worklist
.size();
1179 SmallVector
<std::pair
<Node
*, EdgeSequence::iterator
>, 4> DFSStack
;
1180 SmallVector
<Node
*, 4> PendingRefSCCStack
;
1182 assert(DFSStack
.empty() &&
1183 "Cannot begin a new root with a non-empty DFS stack!");
1184 assert(PendingRefSCCStack
.empty() &&
1185 "Cannot begin a new root with pending nodes for an SCC!");
1187 Node
*RootN
= Worklist
.pop_back_val();
1188 // Skip any nodes we've already reached in the DFS.
1189 if (RootN
->DFSNumber
!= 0) {
1190 assert(RootN
->DFSNumber
== -1 &&
1191 "Shouldn't have any mid-DFS root nodes!");
1195 RootN
->DFSNumber
= RootN
->LowLink
= 1;
1196 int NextDFSNumber
= 2;
1198 DFSStack
.push_back({RootN
, (*RootN
)->begin()});
1201 EdgeSequence::iterator I
;
1202 std::tie(N
, I
) = DFSStack
.pop_back_val();
1203 auto E
= (*N
)->end();
1205 assert(N
->DFSNumber
!= 0 && "We should always assign a DFS number "
1206 "before processing a node.");
1209 Node
&ChildN
= I
->getNode();
1210 if (ChildN
.DFSNumber
== 0) {
1211 // Mark that we should start at this child when next this node is the
1212 // top of the stack. We don't start at the next child to ensure this
1213 // child's lowlink is reflected.
1214 DFSStack
.push_back({N
, I
});
1216 // Continue, resetting to the child node.
1217 ChildN
.LowLink
= ChildN
.DFSNumber
= NextDFSNumber
++;
1219 I
= ChildN
->begin();
1223 if (ChildN
.DFSNumber
== -1) {
1224 // If this child isn't currently in this RefSCC, no need to process
1230 // Track the lowest link of the children, if any are still in the stack.
1231 // Any child not on the stack will have a LowLink of -1.
1232 assert(ChildN
.LowLink
!= 0 &&
1233 "Low-link must not be zero with a non-zero DFS number.");
1234 if (ChildN
.LowLink
>= 0 && ChildN
.LowLink
< N
->LowLink
)
1235 N
->LowLink
= ChildN
.LowLink
;
1239 // We've finished processing N and its descendants, put it on our pending
1240 // stack to eventually get merged into a RefSCC.
1241 PendingRefSCCStack
.push_back(N
);
1243 // If this node is linked to some lower entry, continue walking up the
1245 if (N
->LowLink
!= N
->DFSNumber
) {
1246 assert(!DFSStack
.empty() &&
1247 "We never found a viable root for a RefSCC to pop off!");
1251 // Otherwise, form a new RefSCC from the top of the pending node stack.
1252 int RefSCCNumber
= PostOrderNumber
++;
1253 int RootDFSNumber
= N
->DFSNumber
;
1255 // Find the range of the node stack by walking down until we pass the
1256 // root DFS number. Update the DFS numbers and low link numbers in the
1257 // process to avoid re-walking this list where possible.
1258 auto StackRI
= find_if(reverse(PendingRefSCCStack
), [&](Node
*N
) {
1259 if (N
->DFSNumber
< RootDFSNumber
)
1260 // We've found the bottom.
1263 // Update this node and keep scanning.
1265 // Save the post-order number in the lowlink field so that we can use
1266 // it to map SCCs into new RefSCCs after we finish the DFS.
1267 N
->LowLink
= RefSCCNumber
;
1270 auto RefSCCNodes
= make_range(StackRI
.base(), PendingRefSCCStack
.end());
1272 // If we find a cycle containing all nodes originally in this RefSCC then
1273 // the removal hasn't changed the structure at all. This is an important
1274 // special case and we can directly exit the entire routine more
1275 // efficiently as soon as we discover it.
1276 if (llvm::size(RefSCCNodes
) == NumRefSCCNodes
) {
1277 // Clear out the low link field as we won't need it.
1278 for (Node
*N
: RefSCCNodes
)
1280 // Return the empty result immediately.
1284 // We've already marked the nodes internally with the RefSCC number so
1285 // just clear them off the stack and continue.
1286 PendingRefSCCStack
.erase(RefSCCNodes
.begin(), PendingRefSCCStack
.end());
1287 } while (!DFSStack
.empty());
1289 assert(DFSStack
.empty() && "Didn't flush the entire DFS stack!");
1290 assert(PendingRefSCCStack
.empty() && "Didn't flush all pending nodes!");
1291 } while (!Worklist
.empty());
1293 assert(PostOrderNumber
> 1 &&
1294 "Should never finish the DFS when the existing RefSCC remains valid!");
1296 // Otherwise we create a collection of new RefSCC nodes and build
1297 // a radix-sort style map from postorder number to these new RefSCCs. We then
1298 // append SCCs to each of these RefSCCs in the order they occurred in the
1299 // original SCCs container.
1300 for (int i
= 0; i
< PostOrderNumber
; ++i
)
1301 Result
.push_back(G
->createRefSCC(*G
));
1303 // Insert the resulting postorder sequence into the global graph postorder
1304 // sequence before the current RefSCC in that sequence, and then remove the
1307 // FIXME: It'd be nice to change the APIs so that we returned an iterator
1308 // range over the global postorder sequence and generally use that sequence
1309 // rather than building a separate result vector here.
1310 int Idx
= G
->getRefSCCIndex(*this);
1311 G
->PostOrderRefSCCs
.erase(G
->PostOrderRefSCCs
.begin() + Idx
);
1312 G
->PostOrderRefSCCs
.insert(G
->PostOrderRefSCCs
.begin() + Idx
, Result
.begin(),
1314 for (int i
: seq
<int>(Idx
, G
->PostOrderRefSCCs
.size()))
1315 G
->RefSCCIndices
[G
->PostOrderRefSCCs
[i
]] = i
;
1317 for (SCC
*C
: SCCs
) {
1318 // We store the SCC number in the node's low-link field above.
1319 int SCCNumber
= C
->begin()->LowLink
;
1320 // Clear out all of the SCC's node's low-link fields now that we're done
1321 // using them as side-storage.
1322 for (Node
&N
: *C
) {
1323 assert(N
.LowLink
== SCCNumber
&&
1324 "Cannot have different numbers for nodes in the same SCC!");
1328 RefSCC
&RC
= *Result
[SCCNumber
];
1329 int SCCIndex
= RC
.SCCs
.size();
1330 RC
.SCCs
.push_back(C
);
1331 RC
.SCCIndices
[C
] = SCCIndex
;
1332 C
->OuterRefSCC
= &RC
;
1335 // Now that we've moved things into the new RefSCCs, clear out our current
1342 // Verify the new RefSCCs we've built.
1343 for (RefSCC
*RC
: Result
)
1347 // Return the new list of SCCs.
1351 void LazyCallGraph::RefSCC::handleTrivialEdgeInsertion(Node
&SourceN
,
1353 // The only trivial case that requires any graph updates is when we add new
1354 // ref edge and may connect different RefSCCs along that path. This is only
1355 // because of the parents set. Every other part of the graph remains constant
1356 // after this edge insertion.
1357 assert(G
->lookupRefSCC(SourceN
) == this && "Source must be in this RefSCC.");
1358 RefSCC
&TargetRC
= *G
->lookupRefSCC(TargetN
);
1359 if (&TargetRC
== this)
1362 #ifdef EXPENSIVE_CHECKS
1363 assert(TargetRC
.isDescendantOf(*this) &&
1364 "Target must be a descendant of the Source.");
1368 void LazyCallGraph::RefSCC::insertTrivialCallEdge(Node
&SourceN
,
1371 // Check that the RefSCC is still valid when we finish.
1372 auto ExitVerifier
= make_scope_exit([this] { verify(); });
1374 #ifdef EXPENSIVE_CHECKS
1375 // Check that we aren't breaking some invariants of the SCC graph. Note that
1376 // this is quadratic in the number of edges in the call graph!
1377 SCC
&SourceC
= *G
->lookupSCC(SourceN
);
1378 SCC
&TargetC
= *G
->lookupSCC(TargetN
);
1379 if (&SourceC
!= &TargetC
)
1380 assert(SourceC
.isAncestorOf(TargetC
) &&
1381 "Call edge is not trivial in the SCC graph!");
1382 #endif // EXPENSIVE_CHECKS
1385 // First insert it into the source or find the existing edge.
1387 SourceN
->EdgeIndexMap
.insert({&TargetN
, SourceN
->Edges
.size()});
1388 if (!InsertResult
.second
) {
1389 // Already an edge, just update it.
1390 Edge
&E
= SourceN
->Edges
[InsertResult
.first
->second
];
1392 return; // Nothing to do!
1393 E
.setKind(Edge::Call
);
1395 // Create the new edge.
1396 SourceN
->Edges
.emplace_back(TargetN
, Edge::Call
);
1399 // Now that we have the edge, handle the graph fallout.
1400 handleTrivialEdgeInsertion(SourceN
, TargetN
);
1403 void LazyCallGraph::RefSCC::insertTrivialRefEdge(Node
&SourceN
, Node
&TargetN
) {
1405 // Check that the RefSCC is still valid when we finish.
1406 auto ExitVerifier
= make_scope_exit([this] { verify(); });
1408 #ifdef EXPENSIVE_CHECKS
1409 // Check that we aren't breaking some invariants of the RefSCC graph.
1410 RefSCC
&SourceRC
= *G
->lookupRefSCC(SourceN
);
1411 RefSCC
&TargetRC
= *G
->lookupRefSCC(TargetN
);
1412 if (&SourceRC
!= &TargetRC
)
1413 assert(SourceRC
.isAncestorOf(TargetRC
) &&
1414 "Ref edge is not trivial in the RefSCC graph!");
1415 #endif // EXPENSIVE_CHECKS
1418 // First insert it into the source or find the existing edge.
1420 SourceN
->EdgeIndexMap
.insert({&TargetN
, SourceN
->Edges
.size()});
1421 if (!InsertResult
.second
)
1422 // Already an edge, we're done.
1425 // Create the new edge.
1426 SourceN
->Edges
.emplace_back(TargetN
, Edge::Ref
);
1428 // Now that we have the edge, handle the graph fallout.
1429 handleTrivialEdgeInsertion(SourceN
, TargetN
);
1432 void LazyCallGraph::RefSCC::replaceNodeFunction(Node
&N
, Function
&NewF
) {
1433 Function
&OldF
= N
.getFunction();
1436 // Check that the RefSCC is still valid when we finish.
1437 auto ExitVerifier
= make_scope_exit([this] { verify(); });
1439 assert(G
->lookupRefSCC(N
) == this &&
1440 "Cannot replace the function of a node outside this RefSCC.");
1442 assert(G
->NodeMap
.find(&NewF
) == G
->NodeMap
.end() &&
1443 "Must not have already walked the new function!'");
1445 // It is important that this replacement not introduce graph changes so we
1446 // insist that the caller has already removed every use of the original
1447 // function and that all uses of the new function correspond to existing
1448 // edges in the graph. The common and expected way to use this is when
1449 // replacing the function itself in the IR without changing the call graph
1450 // shape and just updating the analysis based on that.
1451 assert(&OldF
!= &NewF
&& "Cannot replace a function with itself!");
1452 assert(OldF
.use_empty() &&
1453 "Must have moved all uses from the old function to the new!");
1456 N
.replaceFunction(NewF
);
1458 // Update various call graph maps.
1459 G
->NodeMap
.erase(&OldF
);
1460 G
->NodeMap
[&NewF
] = &N
;
1463 void LazyCallGraph::insertEdge(Node
&SourceN
, Node
&TargetN
, Edge::Kind EK
) {
1464 assert(SCCMap
.empty() &&
1465 "This method cannot be called after SCCs have been formed!");
1467 return SourceN
->insertEdgeInternal(TargetN
, EK
);
1470 void LazyCallGraph::removeEdge(Node
&SourceN
, Node
&TargetN
) {
1471 assert(SCCMap
.empty() &&
1472 "This method cannot be called after SCCs have been formed!");
1474 bool Removed
= SourceN
->removeEdgeInternal(TargetN
);
1476 assert(Removed
&& "Target not in the edge set for this caller?");
1479 void LazyCallGraph::removeDeadFunction(Function
&F
) {
1480 // FIXME: This is unnecessarily restrictive. We should be able to remove
1481 // functions which recursively call themselves.
1482 assert(F
.use_empty() &&
1483 "This routine should only be called on trivially dead functions!");
1485 // We shouldn't remove library functions as they are never really dead while
1486 // the call graph is in use -- every function definition refers to them.
1487 assert(!isLibFunction(F
) &&
1488 "Must not remove lib functions from the call graph!");
1490 auto NI
= NodeMap
.find(&F
);
1491 if (NI
== NodeMap
.end())
1492 // Not in the graph at all!
1495 Node
&N
= *NI
->second
;
1498 // Remove this from the entry edges if present.
1499 EntryEdges
.removeEdgeInternal(N
);
1501 if (SCCMap
.empty()) {
1502 // No SCCs have been formed, so removing this is fine and there is nothing
1503 // else necessary at this point but clearing out the node.
1508 // Cannot remove a function which has yet to be visited in the DFS walk, so
1509 // if we have a node at all then we must have an SCC and RefSCC.
1510 auto CI
= SCCMap
.find(&N
);
1511 assert(CI
!= SCCMap
.end() &&
1512 "Tried to remove a node without an SCC after DFS walk started!");
1513 SCC
&C
= *CI
->second
;
1515 RefSCC
&RC
= C
.getOuterRefSCC();
1517 // This node must be the only member of its SCC as it has no callers, and
1518 // that SCC must be the only member of a RefSCC as it has no references.
1519 // Validate these properties first.
1520 assert(C
.size() == 1 && "Dead functions must be in a singular SCC");
1521 assert(RC
.size() == 1 && "Dead functions must be in a singular RefSCC");
1523 auto RCIndexI
= RefSCCIndices
.find(&RC
);
1524 int RCIndex
= RCIndexI
->second
;
1525 PostOrderRefSCCs
.erase(PostOrderRefSCCs
.begin() + RCIndex
);
1526 RefSCCIndices
.erase(RCIndexI
);
1527 for (int i
= RCIndex
, Size
= PostOrderRefSCCs
.size(); i
< Size
; ++i
)
1528 RefSCCIndices
[PostOrderRefSCCs
[i
]] = i
;
1530 // Finally clear out all the data structures from the node down through the
1539 // Nothing to delete as all the objects are allocated in stable bump pointer
1543 LazyCallGraph::Node
&LazyCallGraph::insertInto(Function
&F
, Node
*&MappedN
) {
1544 return *new (MappedN
= BPA
.Allocate()) Node(*this, F
);
1547 void LazyCallGraph::updateGraphPtrs() {
1548 // Walk the node map to update their graph pointers. While this iterates in
1549 // an unstable order, the order has no effect so it remains correct.
1550 for (auto &FunctionNodePair
: NodeMap
)
1551 FunctionNodePair
.second
->G
= this;
1553 for (auto *RC
: PostOrderRefSCCs
)
1557 template <typename RootsT
, typename GetBeginT
, typename GetEndT
,
1558 typename GetNodeT
, typename FormSCCCallbackT
>
1559 void LazyCallGraph::buildGenericSCCs(RootsT
&&Roots
, GetBeginT
&&GetBegin
,
1560 GetEndT
&&GetEnd
, GetNodeT
&&GetNode
,
1561 FormSCCCallbackT
&&FormSCC
) {
1562 using EdgeItT
= decltype(GetBegin(std::declval
<Node
&>()));
1564 SmallVector
<std::pair
<Node
*, EdgeItT
>, 16> DFSStack
;
1565 SmallVector
<Node
*, 16> PendingSCCStack
;
1567 // Scan down the stack and DFS across the call edges.
1568 for (Node
*RootN
: Roots
) {
1569 assert(DFSStack
.empty() &&
1570 "Cannot begin a new root with a non-empty DFS stack!");
1571 assert(PendingSCCStack
.empty() &&
1572 "Cannot begin a new root with pending nodes for an SCC!");
1574 // Skip any nodes we've already reached in the DFS.
1575 if (RootN
->DFSNumber
!= 0) {
1576 assert(RootN
->DFSNumber
== -1 &&
1577 "Shouldn't have any mid-DFS root nodes!");
1581 RootN
->DFSNumber
= RootN
->LowLink
= 1;
1582 int NextDFSNumber
= 2;
1584 DFSStack
.push_back({RootN
, GetBegin(*RootN
)});
1588 std::tie(N
, I
) = DFSStack
.pop_back_val();
1589 auto E
= GetEnd(*N
);
1591 Node
&ChildN
= GetNode(I
);
1592 if (ChildN
.DFSNumber
== 0) {
1593 // We haven't yet visited this child, so descend, pushing the current
1594 // node onto the stack.
1595 DFSStack
.push_back({N
, I
});
1597 ChildN
.DFSNumber
= ChildN
.LowLink
= NextDFSNumber
++;
1604 // If the child has already been added to some child component, it
1605 // couldn't impact the low-link of this parent because it isn't
1606 // connected, and thus its low-link isn't relevant so skip it.
1607 if (ChildN
.DFSNumber
== -1) {
1612 // Track the lowest linked child as the lowest link for this node.
1613 assert(ChildN
.LowLink
> 0 && "Must have a positive low-link number!");
1614 if (ChildN
.LowLink
< N
->LowLink
)
1615 N
->LowLink
= ChildN
.LowLink
;
1617 // Move to the next edge.
1621 // We've finished processing N and its descendants, put it on our pending
1622 // SCC stack to eventually get merged into an SCC of nodes.
1623 PendingSCCStack
.push_back(N
);
1625 // If this node is linked to some lower entry, continue walking up the
1627 if (N
->LowLink
!= N
->DFSNumber
)
1630 // Otherwise, we've completed an SCC. Append it to our post order list of
1632 int RootDFSNumber
= N
->DFSNumber
;
1633 // Find the range of the node stack by walking down until we pass the
1635 auto SCCNodes
= make_range(
1636 PendingSCCStack
.rbegin(),
1637 find_if(reverse(PendingSCCStack
), [RootDFSNumber
](const Node
*N
) {
1638 return N
->DFSNumber
< RootDFSNumber
;
1640 // Form a new SCC out of these nodes and then clear them off our pending
1643 PendingSCCStack
.erase(SCCNodes
.end().base(), PendingSCCStack
.end());
1644 } while (!DFSStack
.empty());
1648 /// Build the internal SCCs for a RefSCC from a sequence of nodes.
1650 /// Appends the SCCs to the provided vector and updates the map with their
1651 /// indices. Both the vector and map must be empty when passed into this
1653 void LazyCallGraph::buildSCCs(RefSCC
&RC
, node_stack_range Nodes
) {
1654 assert(RC
.SCCs
.empty() && "Already built SCCs!");
1655 assert(RC
.SCCIndices
.empty() && "Already mapped SCC indices!");
1657 for (Node
*N
: Nodes
) {
1658 assert(N
->LowLink
>= (*Nodes
.begin())->LowLink
&&
1659 "We cannot have a low link in an SCC lower than its root on the "
1662 // This node will go into the next RefSCC, clear out its DFS and low link
1664 N
->DFSNumber
= N
->LowLink
= 0;
1667 // Each RefSCC contains a DAG of the call SCCs. To build these, we do
1668 // a direct walk of the call edges using Tarjan's algorithm. We reuse the
1669 // internal storage as we won't need it for the outer graph's DFS any longer.
1671 Nodes
, [](Node
&N
) { return N
->call_begin(); },
1672 [](Node
&N
) { return N
->call_end(); },
1673 [](EdgeSequence::call_iterator I
) -> Node
& { return I
->getNode(); },
1674 [this, &RC
](node_stack_range Nodes
) {
1675 RC
.SCCs
.push_back(createSCC(RC
, Nodes
));
1676 for (Node
&N
: *RC
.SCCs
.back()) {
1677 N
.DFSNumber
= N
.LowLink
= -1;
1678 SCCMap
[&N
] = RC
.SCCs
.back();
1682 // Wire up the SCC indices.
1683 for (int i
= 0, Size
= RC
.SCCs
.size(); i
< Size
; ++i
)
1684 RC
.SCCIndices
[RC
.SCCs
[i
]] = i
;
1687 void LazyCallGraph::buildRefSCCs() {
1688 if (EntryEdges
.empty() || !PostOrderRefSCCs
.empty())
1689 // RefSCCs are either non-existent or already built!
1692 assert(RefSCCIndices
.empty() && "Already mapped RefSCC indices!");
1694 SmallVector
<Node
*, 16> Roots
;
1695 for (Edge
&E
: *this)
1696 Roots
.push_back(&E
.getNode());
1698 // The roots will be popped of a stack, so use reverse to get a less
1699 // surprising order. This doesn't change any of the semantics anywhere.
1700 std::reverse(Roots
.begin(), Roots
.end());
1705 // We need to populate each node as we begin to walk its edges.
1709 [](Node
&N
) { return N
->end(); },
1710 [](EdgeSequence::iterator I
) -> Node
& { return I
->getNode(); },
1711 [this](node_stack_range Nodes
) {
1712 RefSCC
*NewRC
= createRefSCC(*this);
1713 buildSCCs(*NewRC
, Nodes
);
1715 // Push the new node into the postorder list and remember its position
1716 // in the index map.
1718 RefSCCIndices
.insert({NewRC
, PostOrderRefSCCs
.size()}).second
;
1720 assert(Inserted
&& "Cannot already have this RefSCC in the index map!");
1721 PostOrderRefSCCs
.push_back(NewRC
);
1728 AnalysisKey
LazyCallGraphAnalysis::Key
;
1730 LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream
&OS
) : OS(OS
) {}
1732 static void printNode(raw_ostream
&OS
, LazyCallGraph::Node
&N
) {
1733 OS
<< " Edges in function: " << N
.getFunction().getName() << "\n";
1734 for (LazyCallGraph::Edge
&E
: N
.populate())
1735 OS
<< " " << (E
.isCall() ? "call" : "ref ") << " -> "
1736 << E
.getFunction().getName() << "\n";
1741 static void printSCC(raw_ostream
&OS
, LazyCallGraph::SCC
&C
) {
1742 ptrdiff_t Size
= size(C
);
1743 OS
<< " SCC with " << Size
<< " functions:\n";
1745 for (LazyCallGraph::Node
&N
: C
)
1746 OS
<< " " << N
.getFunction().getName() << "\n";
1749 static void printRefSCC(raw_ostream
&OS
, LazyCallGraph::RefSCC
&C
) {
1750 ptrdiff_t Size
= size(C
);
1751 OS
<< " RefSCC with " << Size
<< " call SCCs:\n";
1753 for (LazyCallGraph::SCC
&InnerC
: C
)
1754 printSCC(OS
, InnerC
);
1759 PreservedAnalyses
LazyCallGraphPrinterPass::run(Module
&M
,
1760 ModuleAnalysisManager
&AM
) {
1761 LazyCallGraph
&G
= AM
.getResult
<LazyCallGraphAnalysis
>(M
);
1763 OS
<< "Printing the call graph for module: " << M
.getModuleIdentifier()
1766 for (Function
&F
: M
)
1767 printNode(OS
, G
.get(F
));
1770 for (LazyCallGraph::RefSCC
&C
: G
.postorder_ref_sccs())
1773 return PreservedAnalyses::all();
1776 LazyCallGraphDOTPrinterPass::LazyCallGraphDOTPrinterPass(raw_ostream
&OS
)
1779 static void printNodeDOT(raw_ostream
&OS
, LazyCallGraph::Node
&N
) {
1780 std::string Name
= "\"" + DOT::EscapeString(N
.getFunction().getName()) + "\"";
1782 for (LazyCallGraph::Edge
&E
: N
.populate()) {
1783 OS
<< " " << Name
<< " -> \""
1784 << DOT::EscapeString(E
.getFunction().getName()) << "\"";
1785 if (!E
.isCall()) // It is a ref edge.
1786 OS
<< " [style=dashed,label=\"ref\"]";
1793 PreservedAnalyses
LazyCallGraphDOTPrinterPass::run(Module
&M
,
1794 ModuleAnalysisManager
&AM
) {
1795 LazyCallGraph
&G
= AM
.getResult
<LazyCallGraphAnalysis
>(M
);
1797 OS
<< "digraph \"" << DOT::EscapeString(M
.getModuleIdentifier()) << "\" {\n";
1799 for (Function
&F
: M
)
1800 printNodeDOT(OS
, G
.get(F
));
1804 return PreservedAnalyses::all();