1 //===- LazyValueInfo.cpp - Value constraint analysis ------------*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the interface for lazy computation of value constraint
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Analysis/LazyValueInfo.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/ConstantFolding.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/TargetLibraryInfo.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/Analysis/ValueLattice.h"
24 #include "llvm/IR/AssemblyAnnotationWriter.h"
25 #include "llvm/IR/CFG.h"
26 #include "llvm/IR/ConstantRange.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/PatternMatch.h"
35 #include "llvm/IR/ValueHandle.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/FormattedStream.h"
38 #include "llvm/Support/raw_ostream.h"
41 using namespace PatternMatch
;
43 #define DEBUG_TYPE "lazy-value-info"
45 // This is the number of worklist items we will process to try to discover an
46 // answer for a given value.
47 static const unsigned MaxProcessedPerValue
= 500;
49 char LazyValueInfoWrapperPass::ID
= 0;
50 INITIALIZE_PASS_BEGIN(LazyValueInfoWrapperPass
, "lazy-value-info",
51 "Lazy Value Information Analysis", false, true)
52 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker
)
53 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass
)
54 INITIALIZE_PASS_END(LazyValueInfoWrapperPass
, "lazy-value-info",
55 "Lazy Value Information Analysis", false, true)
58 FunctionPass
*createLazyValueInfoPass() { return new LazyValueInfoWrapperPass(); }
61 AnalysisKey
LazyValueAnalysis::Key
;
63 /// Returns true if this lattice value represents at most one possible value.
64 /// This is as precise as any lattice value can get while still representing
66 static bool hasSingleValue(const ValueLatticeElement
&Val
) {
67 if (Val
.isConstantRange() &&
68 Val
.getConstantRange().isSingleElement())
69 // Integer constants are single element ranges
72 // Non integer constants
77 /// Combine two sets of facts about the same value into a single set of
78 /// facts. Note that this method is not suitable for merging facts along
79 /// different paths in a CFG; that's what the mergeIn function is for. This
80 /// is for merging facts gathered about the same value at the same location
81 /// through two independent means.
83 /// * This method does not promise to return the most precise possible lattice
84 /// value implied by A and B. It is allowed to return any lattice element
85 /// which is at least as strong as *either* A or B (unless our facts
86 /// conflict, see below).
87 /// * Due to unreachable code, the intersection of two lattice values could be
88 /// contradictory. If this happens, we return some valid lattice value so as
89 /// not confuse the rest of LVI. Ideally, we'd always return Undefined, but
90 /// we do not make this guarantee. TODO: This would be a useful enhancement.
91 static ValueLatticeElement
intersect(const ValueLatticeElement
&A
,
92 const ValueLatticeElement
&B
) {
93 // Undefined is the strongest state. It means the value is known to be along
94 // an unreachable path.
100 // If we gave up for one, but got a useable fact from the other, use it.
101 if (A
.isOverdefined())
103 if (B
.isOverdefined())
106 // Can't get any more precise than constants.
107 if (hasSingleValue(A
))
109 if (hasSingleValue(B
))
112 // Could be either constant range or not constant here.
113 if (!A
.isConstantRange() || !B
.isConstantRange()) {
114 // TODO: Arbitrary choice, could be improved
118 // Intersect two constant ranges
119 ConstantRange Range
=
120 A
.getConstantRange().intersectWith(B
.getConstantRange());
121 // Note: An empty range is implicitly converted to overdefined internally.
122 // TODO: We could instead use Undefined here since we've proven a conflict
123 // and thus know this path must be unreachable.
124 return ValueLatticeElement::getRange(std::move(Range
));
127 //===----------------------------------------------------------------------===//
128 // LazyValueInfoCache Decl
129 //===----------------------------------------------------------------------===//
132 /// A callback value handle updates the cache when values are erased.
133 class LazyValueInfoCache
;
134 struct LVIValueHandle final
: public CallbackVH
{
135 // Needs to access getValPtr(), which is protected.
136 friend struct DenseMapInfo
<LVIValueHandle
>;
138 LazyValueInfoCache
*Parent
;
140 LVIValueHandle(Value
*V
, LazyValueInfoCache
*P
)
141 : CallbackVH(V
), Parent(P
) { }
143 void deleted() override
;
144 void allUsesReplacedWith(Value
*V
) override
{
148 } // end anonymous namespace
151 /// This is the cache kept by LazyValueInfo which
152 /// maintains information about queries across the clients' queries.
153 class LazyValueInfoCache
{
154 /// This is all of the cached block information for exactly one Value*.
155 /// The entries are sorted by the BasicBlock* of the
156 /// entries, allowing us to do a lookup with a binary search.
157 /// Over-defined lattice values are recorded in OverDefinedCache to reduce
159 struct ValueCacheEntryTy
{
160 ValueCacheEntryTy(Value
*V
, LazyValueInfoCache
*P
) : Handle(V
, P
) {}
161 LVIValueHandle Handle
;
162 SmallDenseMap
<PoisoningVH
<BasicBlock
>, ValueLatticeElement
, 4> BlockVals
;
165 /// This tracks, on a per-block basis, the set of values that are
166 /// over-defined at the end of that block.
167 typedef DenseMap
<PoisoningVH
<BasicBlock
>, SmallPtrSet
<Value
*, 4>>
169 /// Keep track of all blocks that we have ever seen, so we
170 /// don't spend time removing unused blocks from our caches.
171 DenseSet
<PoisoningVH
<BasicBlock
> > SeenBlocks
;
173 /// This is all of the cached information for all values,
174 /// mapped from Value* to key information.
175 DenseMap
<Value
*, std::unique_ptr
<ValueCacheEntryTy
>> ValueCache
;
176 OverDefinedCacheTy OverDefinedCache
;
180 void insertResult(Value
*Val
, BasicBlock
*BB
,
181 const ValueLatticeElement
&Result
) {
182 SeenBlocks
.insert(BB
);
184 // Insert over-defined values into their own cache to reduce memory
186 if (Result
.isOverdefined())
187 OverDefinedCache
[BB
].insert(Val
);
189 auto It
= ValueCache
.find_as(Val
);
190 if (It
== ValueCache
.end()) {
191 ValueCache
[Val
] = make_unique
<ValueCacheEntryTy
>(Val
, this);
192 It
= ValueCache
.find_as(Val
);
193 assert(It
!= ValueCache
.end() && "Val was just added to the map!");
195 It
->second
->BlockVals
[BB
] = Result
;
199 bool isOverdefined(Value
*V
, BasicBlock
*BB
) const {
200 auto ODI
= OverDefinedCache
.find(BB
);
202 if (ODI
== OverDefinedCache
.end())
205 return ODI
->second
.count(V
);
208 bool hasCachedValueInfo(Value
*V
, BasicBlock
*BB
) const {
209 if (isOverdefined(V
, BB
))
212 auto I
= ValueCache
.find_as(V
);
213 if (I
== ValueCache
.end())
216 return I
->second
->BlockVals
.count(BB
);
219 ValueLatticeElement
getCachedValueInfo(Value
*V
, BasicBlock
*BB
) const {
220 if (isOverdefined(V
, BB
))
221 return ValueLatticeElement::getOverdefined();
223 auto I
= ValueCache
.find_as(V
);
224 if (I
== ValueCache
.end())
225 return ValueLatticeElement();
226 auto BBI
= I
->second
->BlockVals
.find(BB
);
227 if (BBI
== I
->second
->BlockVals
.end())
228 return ValueLatticeElement();
232 /// clear - Empty the cache.
236 OverDefinedCache
.clear();
239 /// Inform the cache that a given value has been deleted.
240 void eraseValue(Value
*V
);
242 /// This is part of the update interface to inform the cache
243 /// that a block has been deleted.
244 void eraseBlock(BasicBlock
*BB
);
246 /// Updates the cache to remove any influence an overdefined value in
247 /// OldSucc might have (unless also overdefined in NewSucc). This just
248 /// flushes elements from the cache and does not add any.
249 void threadEdgeImpl(BasicBlock
*OldSucc
,BasicBlock
*NewSucc
);
251 friend struct LVIValueHandle
;
255 void LazyValueInfoCache::eraseValue(Value
*V
) {
256 for (auto I
= OverDefinedCache
.begin(), E
= OverDefinedCache
.end(); I
!= E
;) {
257 // Copy and increment the iterator immediately so we can erase behind
260 SmallPtrSetImpl
<Value
*> &ValueSet
= Iter
->second
;
262 if (ValueSet
.empty())
263 OverDefinedCache
.erase(Iter
);
269 void LVIValueHandle::deleted() {
270 // This erasure deallocates *this, so it MUST happen after we're done
271 // using any and all members of *this.
272 Parent
->eraseValue(*this);
275 void LazyValueInfoCache::eraseBlock(BasicBlock
*BB
) {
276 // Shortcut if we have never seen this block.
277 DenseSet
<PoisoningVH
<BasicBlock
> >::iterator I
= SeenBlocks
.find(BB
);
278 if (I
== SeenBlocks
.end())
282 auto ODI
= OverDefinedCache
.find(BB
);
283 if (ODI
!= OverDefinedCache
.end())
284 OverDefinedCache
.erase(ODI
);
286 for (auto &I
: ValueCache
)
287 I
.second
->BlockVals
.erase(BB
);
290 void LazyValueInfoCache::threadEdgeImpl(BasicBlock
*OldSucc
,
291 BasicBlock
*NewSucc
) {
292 // When an edge in the graph has been threaded, values that we could not
293 // determine a value for before (i.e. were marked overdefined) may be
294 // possible to solve now. We do NOT try to proactively update these values.
295 // Instead, we clear their entries from the cache, and allow lazy updating to
296 // recompute them when needed.
298 // The updating process is fairly simple: we need to drop cached info
299 // for all values that were marked overdefined in OldSucc, and for those same
300 // values in any successor of OldSucc (except NewSucc) in which they were
301 // also marked overdefined.
302 std::vector
<BasicBlock
*> worklist
;
303 worklist
.push_back(OldSucc
);
305 auto I
= OverDefinedCache
.find(OldSucc
);
306 if (I
== OverDefinedCache
.end())
307 return; // Nothing to process here.
308 SmallVector
<Value
*, 4> ValsToClear(I
->second
.begin(), I
->second
.end());
310 // Use a worklist to perform a depth-first search of OldSucc's successors.
311 // NOTE: We do not need a visited list since any blocks we have already
312 // visited will have had their overdefined markers cleared already, and we
313 // thus won't loop to their successors.
314 while (!worklist
.empty()) {
315 BasicBlock
*ToUpdate
= worklist
.back();
318 // Skip blocks only accessible through NewSucc.
319 if (ToUpdate
== NewSucc
) continue;
321 // If a value was marked overdefined in OldSucc, and is here too...
322 auto OI
= OverDefinedCache
.find(ToUpdate
);
323 if (OI
== OverDefinedCache
.end())
325 SmallPtrSetImpl
<Value
*> &ValueSet
= OI
->second
;
327 bool changed
= false;
328 for (Value
*V
: ValsToClear
) {
329 if (!ValueSet
.erase(V
))
332 // If we removed anything, then we potentially need to update
333 // blocks successors too.
336 if (ValueSet
.empty()) {
337 OverDefinedCache
.erase(OI
);
342 if (!changed
) continue;
344 worklist
.insert(worklist
.end(), succ_begin(ToUpdate
), succ_end(ToUpdate
));
350 /// An assembly annotator class to print LazyValueCache information in
352 class LazyValueInfoImpl
;
353 class LazyValueInfoAnnotatedWriter
: public AssemblyAnnotationWriter
{
354 LazyValueInfoImpl
*LVIImpl
;
355 // While analyzing which blocks we can solve values for, we need the dominator
356 // information. Since this is an optional parameter in LVI, we require this
357 // DomTreeAnalysis pass in the printer pass, and pass the dominator
358 // tree to the LazyValueInfoAnnotatedWriter.
362 LazyValueInfoAnnotatedWriter(LazyValueInfoImpl
*L
, DominatorTree
&DTree
)
363 : LVIImpl(L
), DT(DTree
) {}
365 virtual void emitBasicBlockStartAnnot(const BasicBlock
*BB
,
366 formatted_raw_ostream
&OS
);
368 virtual void emitInstructionAnnot(const Instruction
*I
,
369 formatted_raw_ostream
&OS
);
373 // The actual implementation of the lazy analysis and update. Note that the
374 // inheritance from LazyValueInfoCache is intended to be temporary while
375 // splitting the code and then transitioning to a has-a relationship.
376 class LazyValueInfoImpl
{
378 /// Cached results from previous queries
379 LazyValueInfoCache TheCache
;
381 /// This stack holds the state of the value solver during a query.
382 /// It basically emulates the callstack of the naive
383 /// recursive value lookup process.
384 SmallVector
<std::pair
<BasicBlock
*, Value
*>, 8> BlockValueStack
;
386 /// Keeps track of which block-value pairs are in BlockValueStack.
387 DenseSet
<std::pair
<BasicBlock
*, Value
*> > BlockValueSet
;
389 /// Push BV onto BlockValueStack unless it's already in there.
390 /// Returns true on success.
391 bool pushBlockValue(const std::pair
<BasicBlock
*, Value
*> &BV
) {
392 if (!BlockValueSet
.insert(BV
).second
)
393 return false; // It's already in the stack.
395 LLVM_DEBUG(dbgs() << "PUSH: " << *BV
.second
<< " in "
396 << BV
.first
->getName() << "\n");
397 BlockValueStack
.push_back(BV
);
401 AssumptionCache
*AC
; ///< A pointer to the cache of @llvm.assume calls.
402 const DataLayout
&DL
; ///< A mandatory DataLayout
403 DominatorTree
*DT
; ///< An optional DT pointer.
404 DominatorTree
*DisabledDT
; ///< Stores DT if it's disabled.
406 ValueLatticeElement
getBlockValue(Value
*Val
, BasicBlock
*BB
);
407 bool getEdgeValue(Value
*V
, BasicBlock
*F
, BasicBlock
*T
,
408 ValueLatticeElement
&Result
, Instruction
*CxtI
= nullptr);
409 bool hasBlockValue(Value
*Val
, BasicBlock
*BB
);
411 // These methods process one work item and may add more. A false value
412 // returned means that the work item was not completely processed and must
413 // be revisited after going through the new items.
414 bool solveBlockValue(Value
*Val
, BasicBlock
*BB
);
415 bool solveBlockValueImpl(ValueLatticeElement
&Res
, Value
*Val
,
417 bool solveBlockValueNonLocal(ValueLatticeElement
&BBLV
, Value
*Val
,
419 bool solveBlockValuePHINode(ValueLatticeElement
&BBLV
, PHINode
*PN
,
421 bool solveBlockValueSelect(ValueLatticeElement
&BBLV
, SelectInst
*S
,
423 bool solveBlockValueBinaryOp(ValueLatticeElement
&BBLV
, BinaryOperator
*BBI
,
425 bool solveBlockValueCast(ValueLatticeElement
&BBLV
, CastInst
*CI
,
427 void intersectAssumeOrGuardBlockValueConstantRange(Value
*Val
,
428 ValueLatticeElement
&BBLV
,
434 /// This is the query interface to determine the lattice
435 /// value for the specified Value* at the end of the specified block.
436 ValueLatticeElement
getValueInBlock(Value
*V
, BasicBlock
*BB
,
437 Instruction
*CxtI
= nullptr);
439 /// This is the query interface to determine the lattice
440 /// value for the specified Value* at the specified instruction (generally
441 /// from an assume intrinsic).
442 ValueLatticeElement
getValueAt(Value
*V
, Instruction
*CxtI
);
444 /// This is the query interface to determine the lattice
445 /// value for the specified Value* that is true on the specified edge.
446 ValueLatticeElement
getValueOnEdge(Value
*V
, BasicBlock
*FromBB
,
448 Instruction
*CxtI
= nullptr);
450 /// Complete flush all previously computed values
455 /// Printing the LazyValueInfo Analysis.
456 void printLVI(Function
&F
, DominatorTree
&DTree
, raw_ostream
&OS
) {
457 LazyValueInfoAnnotatedWriter
Writer(this, DTree
);
458 F
.print(OS
, &Writer
);
461 /// This is part of the update interface to inform the cache
462 /// that a block has been deleted.
463 void eraseBlock(BasicBlock
*BB
) {
464 TheCache
.eraseBlock(BB
);
467 /// Disables use of the DominatorTree within LVI.
470 assert(!DisabledDT
&& "Both DT and DisabledDT are not nullptr!");
471 std::swap(DT
, DisabledDT
);
475 /// Enables use of the DominatorTree within LVI. Does nothing if the class
476 /// instance was initialized without a DT pointer.
479 assert(!DT
&& "Both DT and DisabledDT are not nullptr!");
480 std::swap(DT
, DisabledDT
);
484 /// This is the update interface to inform the cache that an edge from
485 /// PredBB to OldSucc has been threaded to be from PredBB to NewSucc.
486 void threadEdge(BasicBlock
*PredBB
,BasicBlock
*OldSucc
,BasicBlock
*NewSucc
);
488 LazyValueInfoImpl(AssumptionCache
*AC
, const DataLayout
&DL
,
489 DominatorTree
*DT
= nullptr)
490 : AC(AC
), DL(DL
), DT(DT
), DisabledDT(nullptr) {}
492 } // end anonymous namespace
495 void LazyValueInfoImpl::solve() {
496 SmallVector
<std::pair
<BasicBlock
*, Value
*>, 8> StartingStack(
497 BlockValueStack
.begin(), BlockValueStack
.end());
499 unsigned processedCount
= 0;
500 while (!BlockValueStack
.empty()) {
502 // Abort if we have to process too many values to get a result for this one.
503 // Because of the design of the overdefined cache currently being per-block
504 // to avoid naming-related issues (IE it wants to try to give different
505 // results for the same name in different blocks), overdefined results don't
506 // get cached globally, which in turn means we will often try to rediscover
507 // the same overdefined result again and again. Once something like
508 // PredicateInfo is used in LVI or CVP, we should be able to make the
509 // overdefined cache global, and remove this throttle.
510 if (processedCount
> MaxProcessedPerValue
) {
512 dbgs() << "Giving up on stack because we are getting too deep\n");
513 // Fill in the original values
514 while (!StartingStack
.empty()) {
515 std::pair
<BasicBlock
*, Value
*> &e
= StartingStack
.back();
516 TheCache
.insertResult(e
.second
, e
.first
,
517 ValueLatticeElement::getOverdefined());
518 StartingStack
.pop_back();
520 BlockValueSet
.clear();
521 BlockValueStack
.clear();
524 std::pair
<BasicBlock
*, Value
*> e
= BlockValueStack
.back();
525 assert(BlockValueSet
.count(e
) && "Stack value should be in BlockValueSet!");
527 if (solveBlockValue(e
.second
, e
.first
)) {
528 // The work item was completely processed.
529 assert(BlockValueStack
.back() == e
&& "Nothing should have been pushed!");
530 assert(TheCache
.hasCachedValueInfo(e
.second
, e
.first
) &&
531 "Result should be in cache!");
534 dbgs() << "POP " << *e
.second
<< " in " << e
.first
->getName() << " = "
535 << TheCache
.getCachedValueInfo(e
.second
, e
.first
) << "\n");
537 BlockValueStack
.pop_back();
538 BlockValueSet
.erase(e
);
540 // More work needs to be done before revisiting.
541 assert(BlockValueStack
.back() != e
&& "Stack should have been pushed!");
546 bool LazyValueInfoImpl::hasBlockValue(Value
*Val
, BasicBlock
*BB
) {
547 // If already a constant, there is nothing to compute.
548 if (isa
<Constant
>(Val
))
551 return TheCache
.hasCachedValueInfo(Val
, BB
);
554 ValueLatticeElement
LazyValueInfoImpl::getBlockValue(Value
*Val
,
556 // If already a constant, there is nothing to compute.
557 if (Constant
*VC
= dyn_cast
<Constant
>(Val
))
558 return ValueLatticeElement::get(VC
);
560 return TheCache
.getCachedValueInfo(Val
, BB
);
563 static ValueLatticeElement
getFromRangeMetadata(Instruction
*BBI
) {
564 switch (BBI
->getOpcode()) {
566 case Instruction::Load
:
567 case Instruction::Call
:
568 case Instruction::Invoke
:
569 if (MDNode
*Ranges
= BBI
->getMetadata(LLVMContext::MD_range
))
570 if (isa
<IntegerType
>(BBI
->getType())) {
571 return ValueLatticeElement::getRange(
572 getConstantRangeFromMetadata(*Ranges
));
576 // Nothing known - will be intersected with other facts
577 return ValueLatticeElement::getOverdefined();
580 bool LazyValueInfoImpl::solveBlockValue(Value
*Val
, BasicBlock
*BB
) {
581 if (isa
<Constant
>(Val
))
584 if (TheCache
.hasCachedValueInfo(Val
, BB
)) {
585 // If we have a cached value, use that.
586 LLVM_DEBUG(dbgs() << " reuse BB '" << BB
->getName() << "' val="
587 << TheCache
.getCachedValueInfo(Val
, BB
) << '\n');
589 // Since we're reusing a cached value, we don't need to update the
590 // OverDefinedCache. The cache will have been properly updated whenever the
591 // cached value was inserted.
595 // Hold off inserting this value into the Cache in case we have to return
596 // false and come back later.
597 ValueLatticeElement Res
;
598 if (!solveBlockValueImpl(Res
, Val
, BB
))
599 // Work pushed, will revisit
602 TheCache
.insertResult(Val
, BB
, Res
);
606 bool LazyValueInfoImpl::solveBlockValueImpl(ValueLatticeElement
&Res
,
607 Value
*Val
, BasicBlock
*BB
) {
609 Instruction
*BBI
= dyn_cast
<Instruction
>(Val
);
610 if (!BBI
|| BBI
->getParent() != BB
)
611 return solveBlockValueNonLocal(Res
, Val
, BB
);
613 if (PHINode
*PN
= dyn_cast
<PHINode
>(BBI
))
614 return solveBlockValuePHINode(Res
, PN
, BB
);
616 if (auto *SI
= dyn_cast
<SelectInst
>(BBI
))
617 return solveBlockValueSelect(Res
, SI
, BB
);
619 // If this value is a nonnull pointer, record it's range and bailout. Note
620 // that for all other pointer typed values, we terminate the search at the
621 // definition. We could easily extend this to look through geps, bitcasts,
622 // and the like to prove non-nullness, but it's not clear that's worth it
623 // compile time wise. The context-insensitive value walk done inside
624 // isKnownNonZero gets most of the profitable cases at much less expense.
625 // This does mean that we have a sensativity to where the defining
626 // instruction is placed, even if it could legally be hoisted much higher.
627 // That is unfortunate.
628 PointerType
*PT
= dyn_cast
<PointerType
>(BBI
->getType());
629 if (PT
&& isKnownNonZero(BBI
, DL
)) {
630 Res
= ValueLatticeElement::getNot(ConstantPointerNull::get(PT
));
633 if (BBI
->getType()->isIntegerTy()) {
634 if (auto *CI
= dyn_cast
<CastInst
>(BBI
))
635 return solveBlockValueCast(Res
, CI
, BB
);
637 BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(BBI
);
638 if (BO
&& isa
<ConstantInt
>(BO
->getOperand(1)))
639 return solveBlockValueBinaryOp(Res
, BO
, BB
);
642 LLVM_DEBUG(dbgs() << " compute BB '" << BB
->getName()
643 << "' - unknown inst def found.\n");
644 Res
= getFromRangeMetadata(BBI
);
648 static bool InstructionDereferencesPointer(Instruction
*I
, Value
*Ptr
) {
649 if (LoadInst
*L
= dyn_cast
<LoadInst
>(I
)) {
650 return L
->getPointerAddressSpace() == 0 &&
651 GetUnderlyingObject(L
->getPointerOperand(),
652 L
->getModule()->getDataLayout()) == Ptr
;
654 if (StoreInst
*S
= dyn_cast
<StoreInst
>(I
)) {
655 return S
->getPointerAddressSpace() == 0 &&
656 GetUnderlyingObject(S
->getPointerOperand(),
657 S
->getModule()->getDataLayout()) == Ptr
;
659 if (MemIntrinsic
*MI
= dyn_cast
<MemIntrinsic
>(I
)) {
660 if (MI
->isVolatile()) return false;
662 // FIXME: check whether it has a valuerange that excludes zero?
663 ConstantInt
*Len
= dyn_cast
<ConstantInt
>(MI
->getLength());
664 if (!Len
|| Len
->isZero()) return false;
666 if (MI
->getDestAddressSpace() == 0)
667 if (GetUnderlyingObject(MI
->getRawDest(),
668 MI
->getModule()->getDataLayout()) == Ptr
)
670 if (MemTransferInst
*MTI
= dyn_cast
<MemTransferInst
>(MI
))
671 if (MTI
->getSourceAddressSpace() == 0)
672 if (GetUnderlyingObject(MTI
->getRawSource(),
673 MTI
->getModule()->getDataLayout()) == Ptr
)
679 /// Return true if the allocation associated with Val is ever dereferenced
680 /// within the given basic block. This establishes the fact Val is not null,
681 /// but does not imply that the memory at Val is dereferenceable. (Val may
682 /// point off the end of the dereferenceable part of the object.)
683 static bool isObjectDereferencedInBlock(Value
*Val
, BasicBlock
*BB
) {
684 assert(Val
->getType()->isPointerTy());
686 const DataLayout
&DL
= BB
->getModule()->getDataLayout();
687 Value
*UnderlyingVal
= GetUnderlyingObject(Val
, DL
);
688 // If 'GetUnderlyingObject' didn't converge, skip it. It won't converge
689 // inside InstructionDereferencesPointer either.
690 if (UnderlyingVal
== GetUnderlyingObject(UnderlyingVal
, DL
, 1))
691 for (Instruction
&I
: *BB
)
692 if (InstructionDereferencesPointer(&I
, UnderlyingVal
))
697 bool LazyValueInfoImpl::solveBlockValueNonLocal(ValueLatticeElement
&BBLV
,
698 Value
*Val
, BasicBlock
*BB
) {
699 ValueLatticeElement Result
; // Start Undefined.
701 // If this is the entry block, we must be asking about an argument. The
702 // value is overdefined.
703 if (BB
== &BB
->getParent()->getEntryBlock()) {
704 assert(isa
<Argument
>(Val
) && "Unknown live-in to the entry block");
705 // Before giving up, see if we can prove the pointer non-null local to
706 // this particular block.
707 PointerType
*PTy
= dyn_cast
<PointerType
>(Val
->getType());
709 (isKnownNonZero(Val
, DL
) ||
710 (isObjectDereferencedInBlock(Val
, BB
) &&
711 !NullPointerIsDefined(BB
->getParent(), PTy
->getAddressSpace())))) {
712 Result
= ValueLatticeElement::getNot(ConstantPointerNull::get(PTy
));
714 Result
= ValueLatticeElement::getOverdefined();
720 // Loop over all of our predecessors, merging what we know from them into
721 // result. If we encounter an unexplored predecessor, we eagerly explore it
722 // in a depth first manner. In practice, this has the effect of discovering
723 // paths we can't analyze eagerly without spending compile times analyzing
724 // other paths. This heuristic benefits from the fact that predecessors are
725 // frequently arranged such that dominating ones come first and we quickly
726 // find a path to function entry. TODO: We should consider explicitly
727 // canonicalizing to make this true rather than relying on this happy
729 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
) {
730 ValueLatticeElement EdgeResult
;
731 if (!getEdgeValue(Val
, *PI
, BB
, EdgeResult
))
732 // Explore that input, then return here
735 Result
.mergeIn(EdgeResult
, DL
);
737 // If we hit overdefined, exit early. The BlockVals entry is already set
739 if (Result
.isOverdefined()) {
740 LLVM_DEBUG(dbgs() << " compute BB '" << BB
->getName()
741 << "' - overdefined because of pred (non local).\n");
742 // Before giving up, see if we can prove the pointer non-null local to
743 // this particular block.
744 PointerType
*PTy
= dyn_cast
<PointerType
>(Val
->getType());
745 if (PTy
&& isObjectDereferencedInBlock(Val
, BB
) &&
746 !NullPointerIsDefined(BB
->getParent(), PTy
->getAddressSpace())) {
747 Result
= ValueLatticeElement::getNot(ConstantPointerNull::get(PTy
));
755 // Return the merged value, which is more precise than 'overdefined'.
756 assert(!Result
.isOverdefined());
761 bool LazyValueInfoImpl::solveBlockValuePHINode(ValueLatticeElement
&BBLV
,
762 PHINode
*PN
, BasicBlock
*BB
) {
763 ValueLatticeElement Result
; // Start Undefined.
765 // Loop over all of our predecessors, merging what we know from them into
766 // result. See the comment about the chosen traversal order in
767 // solveBlockValueNonLocal; the same reasoning applies here.
768 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
769 BasicBlock
*PhiBB
= PN
->getIncomingBlock(i
);
770 Value
*PhiVal
= PN
->getIncomingValue(i
);
771 ValueLatticeElement EdgeResult
;
772 // Note that we can provide PN as the context value to getEdgeValue, even
773 // though the results will be cached, because PN is the value being used as
774 // the cache key in the caller.
775 if (!getEdgeValue(PhiVal
, PhiBB
, BB
, EdgeResult
, PN
))
776 // Explore that input, then return here
779 Result
.mergeIn(EdgeResult
, DL
);
781 // If we hit overdefined, exit early. The BlockVals entry is already set
783 if (Result
.isOverdefined()) {
784 LLVM_DEBUG(dbgs() << " compute BB '" << BB
->getName()
785 << "' - overdefined because of pred (local).\n");
792 // Return the merged value, which is more precise than 'overdefined'.
793 assert(!Result
.isOverdefined() && "Possible PHI in entry block?");
798 static ValueLatticeElement
getValueFromCondition(Value
*Val
, Value
*Cond
,
799 bool isTrueDest
= true);
801 // If we can determine a constraint on the value given conditions assumed by
802 // the program, intersect those constraints with BBLV
803 void LazyValueInfoImpl::intersectAssumeOrGuardBlockValueConstantRange(
804 Value
*Val
, ValueLatticeElement
&BBLV
, Instruction
*BBI
) {
805 BBI
= BBI
? BBI
: dyn_cast
<Instruction
>(Val
);
809 for (auto &AssumeVH
: AC
->assumptionsFor(Val
)) {
812 auto *I
= cast
<CallInst
>(AssumeVH
);
813 if (!isValidAssumeForContext(I
, BBI
, DT
))
816 BBLV
= intersect(BBLV
, getValueFromCondition(Val
, I
->getArgOperand(0)));
819 // If guards are not used in the module, don't spend time looking for them
820 auto *GuardDecl
= BBI
->getModule()->getFunction(
821 Intrinsic::getName(Intrinsic::experimental_guard
));
822 if (!GuardDecl
|| GuardDecl
->use_empty())
825 for (Instruction
&I
: make_range(BBI
->getIterator().getReverse(),
826 BBI
->getParent()->rend())) {
827 Value
*Cond
= nullptr;
828 if (match(&I
, m_Intrinsic
<Intrinsic::experimental_guard
>(m_Value(Cond
))))
829 BBLV
= intersect(BBLV
, getValueFromCondition(Val
, Cond
));
833 bool LazyValueInfoImpl::solveBlockValueSelect(ValueLatticeElement
&BBLV
,
834 SelectInst
*SI
, BasicBlock
*BB
) {
836 // Recurse on our inputs if needed
837 if (!hasBlockValue(SI
->getTrueValue(), BB
)) {
838 if (pushBlockValue(std::make_pair(BB
, SI
->getTrueValue())))
840 BBLV
= ValueLatticeElement::getOverdefined();
843 ValueLatticeElement TrueVal
= getBlockValue(SI
->getTrueValue(), BB
);
844 // If we hit overdefined, don't ask more queries. We want to avoid poisoning
845 // extra slots in the table if we can.
846 if (TrueVal
.isOverdefined()) {
847 BBLV
= ValueLatticeElement::getOverdefined();
851 if (!hasBlockValue(SI
->getFalseValue(), BB
)) {
852 if (pushBlockValue(std::make_pair(BB
, SI
->getFalseValue())))
854 BBLV
= ValueLatticeElement::getOverdefined();
857 ValueLatticeElement FalseVal
= getBlockValue(SI
->getFalseValue(), BB
);
858 // If we hit overdefined, don't ask more queries. We want to avoid poisoning
859 // extra slots in the table if we can.
860 if (FalseVal
.isOverdefined()) {
861 BBLV
= ValueLatticeElement::getOverdefined();
865 if (TrueVal
.isConstantRange() && FalseVal
.isConstantRange()) {
866 const ConstantRange
&TrueCR
= TrueVal
.getConstantRange();
867 const ConstantRange
&FalseCR
= FalseVal
.getConstantRange();
868 Value
*LHS
= nullptr;
869 Value
*RHS
= nullptr;
870 SelectPatternResult SPR
= matchSelectPattern(SI
, LHS
, RHS
);
871 // Is this a min specifically of our two inputs? (Avoid the risk of
872 // ValueTracking getting smarter looking back past our immediate inputs.)
873 if (SelectPatternResult::isMinOrMax(SPR
.Flavor
) &&
874 LHS
== SI
->getTrueValue() && RHS
== SI
->getFalseValue()) {
875 ConstantRange ResultCR
= [&]() {
876 switch (SPR
.Flavor
) {
878 llvm_unreachable("unexpected minmax type!");
879 case SPF_SMIN
: /// Signed minimum
880 return TrueCR
.smin(FalseCR
);
881 case SPF_UMIN
: /// Unsigned minimum
882 return TrueCR
.umin(FalseCR
);
883 case SPF_SMAX
: /// Signed maximum
884 return TrueCR
.smax(FalseCR
);
885 case SPF_UMAX
: /// Unsigned maximum
886 return TrueCR
.umax(FalseCR
);
889 BBLV
= ValueLatticeElement::getRange(ResultCR
);
893 // TODO: ABS, NABS from the SelectPatternResult
896 // Can we constrain the facts about the true and false values by using the
897 // condition itself? This shows up with idioms like e.g. select(a > 5, a, 5).
898 // TODO: We could potentially refine an overdefined true value above.
899 Value
*Cond
= SI
->getCondition();
900 TrueVal
= intersect(TrueVal
,
901 getValueFromCondition(SI
->getTrueValue(), Cond
, true));
902 FalseVal
= intersect(FalseVal
,
903 getValueFromCondition(SI
->getFalseValue(), Cond
, false));
905 // Handle clamp idioms such as:
906 // %24 = constantrange<0, 17>
907 // %39 = icmp eq i32 %24, 0
908 // %40 = add i32 %24, -1
909 // %siv.next = select i1 %39, i32 16, i32 %40
910 // %siv.next = constantrange<0, 17> not <-1, 17>
911 // In general, this can handle any clamp idiom which tests the edge
912 // condition via an equality or inequality.
913 if (auto *ICI
= dyn_cast
<ICmpInst
>(Cond
)) {
914 ICmpInst::Predicate Pred
= ICI
->getPredicate();
915 Value
*A
= ICI
->getOperand(0);
916 if (ConstantInt
*CIBase
= dyn_cast
<ConstantInt
>(ICI
->getOperand(1))) {
917 auto addConstants
= [](ConstantInt
*A
, ConstantInt
*B
) {
918 assert(A
->getType() == B
->getType());
919 return ConstantInt::get(A
->getType(), A
->getValue() + B
->getValue());
921 // See if either input is A + C2, subject to the constraint from the
922 // condition that A != C when that input is used. We can assume that
923 // that input doesn't include C + C2.
924 ConstantInt
*CIAdded
;
927 case ICmpInst::ICMP_EQ
:
928 if (match(SI
->getFalseValue(), m_Add(m_Specific(A
),
929 m_ConstantInt(CIAdded
)))) {
930 auto ResNot
= addConstants(CIBase
, CIAdded
);
931 FalseVal
= intersect(FalseVal
,
932 ValueLatticeElement::getNot(ResNot
));
935 case ICmpInst::ICMP_NE
:
936 if (match(SI
->getTrueValue(), m_Add(m_Specific(A
),
937 m_ConstantInt(CIAdded
)))) {
938 auto ResNot
= addConstants(CIBase
, CIAdded
);
939 TrueVal
= intersect(TrueVal
,
940 ValueLatticeElement::getNot(ResNot
));
947 ValueLatticeElement Result
; // Start Undefined.
948 Result
.mergeIn(TrueVal
, DL
);
949 Result
.mergeIn(FalseVal
, DL
);
954 bool LazyValueInfoImpl::solveBlockValueCast(ValueLatticeElement
&BBLV
,
957 if (!CI
->getOperand(0)->getType()->isSized()) {
958 // Without knowing how wide the input is, we can't analyze it in any useful
960 BBLV
= ValueLatticeElement::getOverdefined();
964 // Filter out casts we don't know how to reason about before attempting to
965 // recurse on our operand. This can cut a long search short if we know we're
966 // not going to be able to get any useful information anways.
967 switch (CI
->getOpcode()) {
968 case Instruction::Trunc
:
969 case Instruction::SExt
:
970 case Instruction::ZExt
:
971 case Instruction::BitCast
:
974 // Unhandled instructions are overdefined.
975 LLVM_DEBUG(dbgs() << " compute BB '" << BB
->getName()
976 << "' - overdefined (unknown cast).\n");
977 BBLV
= ValueLatticeElement::getOverdefined();
981 // Figure out the range of the LHS. If that fails, we still apply the
982 // transfer rule on the full set since we may be able to locally infer
983 // interesting facts.
984 if (!hasBlockValue(CI
->getOperand(0), BB
))
985 if (pushBlockValue(std::make_pair(BB
, CI
->getOperand(0))))
986 // More work to do before applying this transfer rule.
989 const unsigned OperandBitWidth
=
990 DL
.getTypeSizeInBits(CI
->getOperand(0)->getType());
991 ConstantRange LHSRange
= ConstantRange(OperandBitWidth
);
992 if (hasBlockValue(CI
->getOperand(0), BB
)) {
993 ValueLatticeElement LHSVal
= getBlockValue(CI
->getOperand(0), BB
);
994 intersectAssumeOrGuardBlockValueConstantRange(CI
->getOperand(0), LHSVal
,
996 if (LHSVal
.isConstantRange())
997 LHSRange
= LHSVal
.getConstantRange();
1000 const unsigned ResultBitWidth
= CI
->getType()->getIntegerBitWidth();
1002 // NOTE: We're currently limited by the set of operations that ConstantRange
1003 // can evaluate symbolically. Enhancing that set will allows us to analyze
1004 // more definitions.
1005 BBLV
= ValueLatticeElement::getRange(LHSRange
.castOp(CI
->getOpcode(),
1010 bool LazyValueInfoImpl::solveBlockValueBinaryOp(ValueLatticeElement
&BBLV
,
1014 assert(BO
->getOperand(0)->getType()->isSized() &&
1015 "all operands to binary operators are sized");
1017 // Filter out operators we don't know how to reason about before attempting to
1018 // recurse on our operand(s). This can cut a long search short if we know
1019 // we're not going to be able to get any useful information anyways.
1020 switch (BO
->getOpcode()) {
1021 case Instruction::Add
:
1022 case Instruction::Sub
:
1023 case Instruction::Mul
:
1024 case Instruction::UDiv
:
1025 case Instruction::Shl
:
1026 case Instruction::LShr
:
1027 case Instruction::AShr
:
1028 case Instruction::And
:
1029 case Instruction::Or
:
1030 // continue into the code below
1033 // Unhandled instructions are overdefined.
1034 LLVM_DEBUG(dbgs() << " compute BB '" << BB
->getName()
1035 << "' - overdefined (unknown binary operator).\n");
1036 BBLV
= ValueLatticeElement::getOverdefined();
1040 // Figure out the range of the LHS. If that fails, use a conservative range,
1041 // but apply the transfer rule anyways. This lets us pick up facts from
1042 // expressions like "and i32 (call i32 @foo()), 32"
1043 if (!hasBlockValue(BO
->getOperand(0), BB
))
1044 if (pushBlockValue(std::make_pair(BB
, BO
->getOperand(0))))
1045 // More work to do before applying this transfer rule.
1048 const unsigned OperandBitWidth
=
1049 DL
.getTypeSizeInBits(BO
->getOperand(0)->getType());
1050 ConstantRange LHSRange
= ConstantRange(OperandBitWidth
);
1051 if (hasBlockValue(BO
->getOperand(0), BB
)) {
1052 ValueLatticeElement LHSVal
= getBlockValue(BO
->getOperand(0), BB
);
1053 intersectAssumeOrGuardBlockValueConstantRange(BO
->getOperand(0), LHSVal
,
1055 if (LHSVal
.isConstantRange())
1056 LHSRange
= LHSVal
.getConstantRange();
1059 ConstantInt
*RHS
= cast
<ConstantInt
>(BO
->getOperand(1));
1060 ConstantRange RHSRange
= ConstantRange(RHS
->getValue());
1062 // NOTE: We're currently limited by the set of operations that ConstantRange
1063 // can evaluate symbolically. Enhancing that set will allows us to analyze
1064 // more definitions.
1065 Instruction::BinaryOps BinOp
= BO
->getOpcode();
1066 BBLV
= ValueLatticeElement::getRange(LHSRange
.binaryOp(BinOp
, RHSRange
));
1070 static ValueLatticeElement
getValueFromICmpCondition(Value
*Val
, ICmpInst
*ICI
,
1072 Value
*LHS
= ICI
->getOperand(0);
1073 Value
*RHS
= ICI
->getOperand(1);
1074 CmpInst::Predicate Predicate
= ICI
->getPredicate();
1076 if (isa
<Constant
>(RHS
)) {
1077 if (ICI
->isEquality() && LHS
== Val
) {
1078 // We know that V has the RHS constant if this is a true SETEQ or
1080 if (isTrueDest
== (Predicate
== ICmpInst::ICMP_EQ
))
1081 return ValueLatticeElement::get(cast
<Constant
>(RHS
));
1083 return ValueLatticeElement::getNot(cast
<Constant
>(RHS
));
1087 if (!Val
->getType()->isIntegerTy())
1088 return ValueLatticeElement::getOverdefined();
1090 // Use ConstantRange::makeAllowedICmpRegion in order to determine the possible
1091 // range of Val guaranteed by the condition. Recognize comparisons in the from
1093 // icmp <pred> Val, ...
1094 // icmp <pred> (add Val, Offset), ...
1095 // The latter is the range checking idiom that InstCombine produces. Subtract
1096 // the offset from the allowed range for RHS in this case.
1098 // Val or (add Val, Offset) can be on either hand of the comparison
1099 if (LHS
!= Val
&& !match(LHS
, m_Add(m_Specific(Val
), m_ConstantInt()))) {
1100 std::swap(LHS
, RHS
);
1101 Predicate
= CmpInst::getSwappedPredicate(Predicate
);
1104 ConstantInt
*Offset
= nullptr;
1106 match(LHS
, m_Add(m_Specific(Val
), m_ConstantInt(Offset
)));
1108 if (LHS
== Val
|| Offset
) {
1109 // Calculate the range of values that are allowed by the comparison
1110 ConstantRange
RHSRange(RHS
->getType()->getIntegerBitWidth(),
1111 /*isFullSet=*/true);
1112 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(RHS
))
1113 RHSRange
= ConstantRange(CI
->getValue());
1114 else if (Instruction
*I
= dyn_cast
<Instruction
>(RHS
))
1115 if (auto *Ranges
= I
->getMetadata(LLVMContext::MD_range
))
1116 RHSRange
= getConstantRangeFromMetadata(*Ranges
);
1118 // If we're interested in the false dest, invert the condition
1119 CmpInst::Predicate Pred
=
1120 isTrueDest
? Predicate
: CmpInst::getInversePredicate(Predicate
);
1121 ConstantRange TrueValues
=
1122 ConstantRange::makeAllowedICmpRegion(Pred
, RHSRange
);
1124 if (Offset
) // Apply the offset from above.
1125 TrueValues
= TrueValues
.subtract(Offset
->getValue());
1127 return ValueLatticeElement::getRange(std::move(TrueValues
));
1130 return ValueLatticeElement::getOverdefined();
1133 static ValueLatticeElement
1134 getValueFromCondition(Value
*Val
, Value
*Cond
, bool isTrueDest
,
1135 DenseMap
<Value
*, ValueLatticeElement
> &Visited
);
1137 static ValueLatticeElement
1138 getValueFromConditionImpl(Value
*Val
, Value
*Cond
, bool isTrueDest
,
1139 DenseMap
<Value
*, ValueLatticeElement
> &Visited
) {
1140 if (ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(Cond
))
1141 return getValueFromICmpCondition(Val
, ICI
, isTrueDest
);
1143 // Handle conditions in the form of (cond1 && cond2), we know that on the
1144 // true dest path both of the conditions hold. Similarly for conditions of
1145 // the form (cond1 || cond2), we know that on the false dest path neither
1147 BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(Cond
);
1148 if (!BO
|| (isTrueDest
&& BO
->getOpcode() != BinaryOperator::And
) ||
1149 (!isTrueDest
&& BO
->getOpcode() != BinaryOperator::Or
))
1150 return ValueLatticeElement::getOverdefined();
1152 // Prevent infinite recursion if Cond references itself as in this example:
1153 // Cond: "%tmp4 = and i1 %tmp4, undef"
1154 // BL: "%tmp4 = and i1 %tmp4, undef"
1156 Value
*BL
= BO
->getOperand(0);
1157 Value
*BR
= BO
->getOperand(1);
1158 if (BL
== Cond
|| BR
== Cond
)
1159 return ValueLatticeElement::getOverdefined();
1161 return intersect(getValueFromCondition(Val
, BL
, isTrueDest
, Visited
),
1162 getValueFromCondition(Val
, BR
, isTrueDest
, Visited
));
1165 static ValueLatticeElement
1166 getValueFromCondition(Value
*Val
, Value
*Cond
, bool isTrueDest
,
1167 DenseMap
<Value
*, ValueLatticeElement
> &Visited
) {
1168 auto I
= Visited
.find(Cond
);
1169 if (I
!= Visited
.end())
1172 auto Result
= getValueFromConditionImpl(Val
, Cond
, isTrueDest
, Visited
);
1173 Visited
[Cond
] = Result
;
1177 ValueLatticeElement
getValueFromCondition(Value
*Val
, Value
*Cond
,
1179 assert(Cond
&& "precondition");
1180 DenseMap
<Value
*, ValueLatticeElement
> Visited
;
1181 return getValueFromCondition(Val
, Cond
, isTrueDest
, Visited
);
1184 // Return true if Usr has Op as an operand, otherwise false.
1185 static bool usesOperand(User
*Usr
, Value
*Op
) {
1186 return find(Usr
->operands(), Op
) != Usr
->op_end();
1189 // Return true if the instruction type of Val is supported by
1190 // constantFoldUser(). Currently CastInst and BinaryOperator only. Call this
1191 // before calling constantFoldUser() to find out if it's even worth attempting
1193 static bool isOperationFoldable(User
*Usr
) {
1194 return isa
<CastInst
>(Usr
) || isa
<BinaryOperator
>(Usr
);
1197 // Check if Usr can be simplified to an integer constant when the value of one
1198 // of its operands Op is an integer constant OpConstVal. If so, return it as an
1199 // lattice value range with a single element or otherwise return an overdefined
1201 static ValueLatticeElement
constantFoldUser(User
*Usr
, Value
*Op
,
1202 const APInt
&OpConstVal
,
1203 const DataLayout
&DL
) {
1204 assert(isOperationFoldable(Usr
) && "Precondition");
1205 Constant
* OpConst
= Constant::getIntegerValue(Op
->getType(), OpConstVal
);
1206 // Check if Usr can be simplified to a constant.
1207 if (auto *CI
= dyn_cast
<CastInst
>(Usr
)) {
1208 assert(CI
->getOperand(0) == Op
&& "Operand 0 isn't Op");
1209 if (auto *C
= dyn_cast_or_null
<ConstantInt
>(
1210 SimplifyCastInst(CI
->getOpcode(), OpConst
,
1211 CI
->getDestTy(), DL
))) {
1212 return ValueLatticeElement::getRange(ConstantRange(C
->getValue()));
1214 } else if (auto *BO
= dyn_cast
<BinaryOperator
>(Usr
)) {
1215 bool Op0Match
= BO
->getOperand(0) == Op
;
1216 bool Op1Match
= BO
->getOperand(1) == Op
;
1217 assert((Op0Match
|| Op1Match
) &&
1218 "Operand 0 nor Operand 1 isn't a match");
1219 Value
*LHS
= Op0Match
? OpConst
: BO
->getOperand(0);
1220 Value
*RHS
= Op1Match
? OpConst
: BO
->getOperand(1);
1221 if (auto *C
= dyn_cast_or_null
<ConstantInt
>(
1222 SimplifyBinOp(BO
->getOpcode(), LHS
, RHS
, DL
))) {
1223 return ValueLatticeElement::getRange(ConstantRange(C
->getValue()));
1226 return ValueLatticeElement::getOverdefined();
1229 /// Compute the value of Val on the edge BBFrom -> BBTo. Returns false if
1230 /// Val is not constrained on the edge. Result is unspecified if return value
1232 static bool getEdgeValueLocal(Value
*Val
, BasicBlock
*BBFrom
,
1233 BasicBlock
*BBTo
, ValueLatticeElement
&Result
) {
1234 // TODO: Handle more complex conditionals. If (v == 0 || v2 < 1) is false, we
1235 // know that v != 0.
1236 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(BBFrom
->getTerminator())) {
1237 // If this is a conditional branch and only one successor goes to BBTo, then
1238 // we may be able to infer something from the condition.
1239 if (BI
->isConditional() &&
1240 BI
->getSuccessor(0) != BI
->getSuccessor(1)) {
1241 bool isTrueDest
= BI
->getSuccessor(0) == BBTo
;
1242 assert(BI
->getSuccessor(!isTrueDest
) == BBTo
&&
1243 "BBTo isn't a successor of BBFrom");
1244 Value
*Condition
= BI
->getCondition();
1246 // If V is the condition of the branch itself, then we know exactly what
1248 if (Condition
== Val
) {
1249 Result
= ValueLatticeElement::get(ConstantInt::get(
1250 Type::getInt1Ty(Val
->getContext()), isTrueDest
));
1254 // If the condition of the branch is an equality comparison, we may be
1255 // able to infer the value.
1256 Result
= getValueFromCondition(Val
, Condition
, isTrueDest
);
1257 if (!Result
.isOverdefined())
1260 if (User
*Usr
= dyn_cast
<User
>(Val
)) {
1261 assert(Result
.isOverdefined() && "Result isn't overdefined");
1262 // Check with isOperationFoldable() first to avoid linearly iterating
1263 // over the operands unnecessarily which can be expensive for
1264 // instructions with many operands.
1265 if (isa
<IntegerType
>(Usr
->getType()) && isOperationFoldable(Usr
)) {
1266 const DataLayout
&DL
= BBTo
->getModule()->getDataLayout();
1267 if (usesOperand(Usr
, Condition
)) {
1268 // If Val has Condition as an operand and Val can be folded into a
1269 // constant with either Condition == true or Condition == false,
1270 // propagate the constant.
1272 // ; %Val is true on the edge to %then.
1273 // %Val = and i1 %Condition, true.
1274 // br %Condition, label %then, label %else
1275 APInt
ConditionVal(1, isTrueDest
? 1 : 0);
1276 Result
= constantFoldUser(Usr
, Condition
, ConditionVal
, DL
);
1278 // If one of Val's operand has an inferred value, we may be able to
1279 // infer the value of Val.
1281 // ; %Val is 94 on the edge to %then.
1282 // %Val = add i8 %Op, 1
1283 // %Condition = icmp eq i8 %Op, 93
1284 // br i1 %Condition, label %then, label %else
1285 for (unsigned i
= 0; i
< Usr
->getNumOperands(); ++i
) {
1286 Value
*Op
= Usr
->getOperand(i
);
1287 ValueLatticeElement OpLatticeVal
=
1288 getValueFromCondition(Op
, Condition
, isTrueDest
);
1289 if (Optional
<APInt
> OpConst
= OpLatticeVal
.asConstantInteger()) {
1290 Result
= constantFoldUser(Usr
, Op
, OpConst
.getValue(), DL
);
1297 if (!Result
.isOverdefined())
1302 // If the edge was formed by a switch on the value, then we may know exactly
1304 if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(BBFrom
->getTerminator())) {
1305 Value
*Condition
= SI
->getCondition();
1306 if (!isa
<IntegerType
>(Val
->getType()))
1308 bool ValUsesConditionAndMayBeFoldable
= false;
1309 if (Condition
!= Val
) {
1310 // Check if Val has Condition as an operand.
1311 if (User
*Usr
= dyn_cast
<User
>(Val
))
1312 ValUsesConditionAndMayBeFoldable
= isOperationFoldable(Usr
) &&
1313 usesOperand(Usr
, Condition
);
1314 if (!ValUsesConditionAndMayBeFoldable
)
1317 assert((Condition
== Val
|| ValUsesConditionAndMayBeFoldable
) &&
1318 "Condition != Val nor Val doesn't use Condition");
1320 bool DefaultCase
= SI
->getDefaultDest() == BBTo
;
1321 unsigned BitWidth
= Val
->getType()->getIntegerBitWidth();
1322 ConstantRange
EdgesVals(BitWidth
, DefaultCase
/*isFullSet*/);
1324 for (auto Case
: SI
->cases()) {
1325 APInt CaseValue
= Case
.getCaseValue()->getValue();
1326 ConstantRange
EdgeVal(CaseValue
);
1327 if (ValUsesConditionAndMayBeFoldable
) {
1328 User
*Usr
= cast
<User
>(Val
);
1329 const DataLayout
&DL
= BBTo
->getModule()->getDataLayout();
1330 ValueLatticeElement EdgeLatticeVal
=
1331 constantFoldUser(Usr
, Condition
, CaseValue
, DL
);
1332 if (EdgeLatticeVal
.isOverdefined())
1334 EdgeVal
= EdgeLatticeVal
.getConstantRange();
1337 // It is possible that the default destination is the destination of
1338 // some cases. We cannot perform difference for those cases.
1339 // We know Condition != CaseValue in BBTo. In some cases we can use
1340 // this to infer Val == f(Condition) is != f(CaseValue). For now, we
1341 // only do this when f is identity (i.e. Val == Condition), but we
1342 // should be able to do this for any injective f.
1343 if (Case
.getCaseSuccessor() != BBTo
&& Condition
== Val
)
1344 EdgesVals
= EdgesVals
.difference(EdgeVal
);
1345 } else if (Case
.getCaseSuccessor() == BBTo
)
1346 EdgesVals
= EdgesVals
.unionWith(EdgeVal
);
1348 Result
= ValueLatticeElement::getRange(std::move(EdgesVals
));
1354 /// Compute the value of Val on the edge BBFrom -> BBTo or the value at
1355 /// the basic block if the edge does not constrain Val.
1356 bool LazyValueInfoImpl::getEdgeValue(Value
*Val
, BasicBlock
*BBFrom
,
1358 ValueLatticeElement
&Result
,
1359 Instruction
*CxtI
) {
1360 // If already a constant, there is nothing to compute.
1361 if (Constant
*VC
= dyn_cast
<Constant
>(Val
)) {
1362 Result
= ValueLatticeElement::get(VC
);
1366 ValueLatticeElement LocalResult
;
1367 if (!getEdgeValueLocal(Val
, BBFrom
, BBTo
, LocalResult
))
1368 // If we couldn't constrain the value on the edge, LocalResult doesn't
1369 // provide any information.
1370 LocalResult
= ValueLatticeElement::getOverdefined();
1372 if (hasSingleValue(LocalResult
)) {
1373 // Can't get any more precise here
1374 Result
= LocalResult
;
1378 if (!hasBlockValue(Val
, BBFrom
)) {
1379 if (pushBlockValue(std::make_pair(BBFrom
, Val
)))
1381 // No new information.
1382 Result
= LocalResult
;
1386 // Try to intersect ranges of the BB and the constraint on the edge.
1387 ValueLatticeElement InBlock
= getBlockValue(Val
, BBFrom
);
1388 intersectAssumeOrGuardBlockValueConstantRange(Val
, InBlock
,
1389 BBFrom
->getTerminator());
1390 // We can use the context instruction (generically the ultimate instruction
1391 // the calling pass is trying to simplify) here, even though the result of
1392 // this function is generally cached when called from the solve* functions
1393 // (and that cached result might be used with queries using a different
1394 // context instruction), because when this function is called from the solve*
1395 // functions, the context instruction is not provided. When called from
1396 // LazyValueInfoImpl::getValueOnEdge, the context instruction is provided,
1397 // but then the result is not cached.
1398 intersectAssumeOrGuardBlockValueConstantRange(Val
, InBlock
, CxtI
);
1400 Result
= intersect(LocalResult
, InBlock
);
1404 ValueLatticeElement
LazyValueInfoImpl::getValueInBlock(Value
*V
, BasicBlock
*BB
,
1405 Instruction
*CxtI
) {
1406 LLVM_DEBUG(dbgs() << "LVI Getting block end value " << *V
<< " at '"
1407 << BB
->getName() << "'\n");
1409 assert(BlockValueStack
.empty() && BlockValueSet
.empty());
1410 if (!hasBlockValue(V
, BB
)) {
1411 pushBlockValue(std::make_pair(BB
, V
));
1414 ValueLatticeElement Result
= getBlockValue(V
, BB
);
1415 intersectAssumeOrGuardBlockValueConstantRange(V
, Result
, CxtI
);
1417 LLVM_DEBUG(dbgs() << " Result = " << Result
<< "\n");
1421 ValueLatticeElement
LazyValueInfoImpl::getValueAt(Value
*V
, Instruction
*CxtI
) {
1422 LLVM_DEBUG(dbgs() << "LVI Getting value " << *V
<< " at '" << CxtI
->getName()
1425 if (auto *C
= dyn_cast
<Constant
>(V
))
1426 return ValueLatticeElement::get(C
);
1428 ValueLatticeElement Result
= ValueLatticeElement::getOverdefined();
1429 if (auto *I
= dyn_cast
<Instruction
>(V
))
1430 Result
= getFromRangeMetadata(I
);
1431 intersectAssumeOrGuardBlockValueConstantRange(V
, Result
, CxtI
);
1433 LLVM_DEBUG(dbgs() << " Result = " << Result
<< "\n");
1437 ValueLatticeElement
LazyValueInfoImpl::
1438 getValueOnEdge(Value
*V
, BasicBlock
*FromBB
, BasicBlock
*ToBB
,
1439 Instruction
*CxtI
) {
1440 LLVM_DEBUG(dbgs() << "LVI Getting edge value " << *V
<< " from '"
1441 << FromBB
->getName() << "' to '" << ToBB
->getName()
1444 ValueLatticeElement Result
;
1445 if (!getEdgeValue(V
, FromBB
, ToBB
, Result
, CxtI
)) {
1447 bool WasFastQuery
= getEdgeValue(V
, FromBB
, ToBB
, Result
, CxtI
);
1449 assert(WasFastQuery
&& "More work to do after problem solved?");
1452 LLVM_DEBUG(dbgs() << " Result = " << Result
<< "\n");
1456 void LazyValueInfoImpl::threadEdge(BasicBlock
*PredBB
, BasicBlock
*OldSucc
,
1457 BasicBlock
*NewSucc
) {
1458 TheCache
.threadEdgeImpl(OldSucc
, NewSucc
);
1461 //===----------------------------------------------------------------------===//
1462 // LazyValueInfo Impl
1463 //===----------------------------------------------------------------------===//
1465 /// This lazily constructs the LazyValueInfoImpl.
1466 static LazyValueInfoImpl
&getImpl(void *&PImpl
, AssumptionCache
*AC
,
1467 const DataLayout
*DL
,
1468 DominatorTree
*DT
= nullptr) {
1470 assert(DL
&& "getCache() called with a null DataLayout");
1471 PImpl
= new LazyValueInfoImpl(AC
, *DL
, DT
);
1473 return *static_cast<LazyValueInfoImpl
*>(PImpl
);
1476 bool LazyValueInfoWrapperPass::runOnFunction(Function
&F
) {
1477 Info
.AC
= &getAnalysis
<AssumptionCacheTracker
>().getAssumptionCache(F
);
1478 const DataLayout
&DL
= F
.getParent()->getDataLayout();
1480 DominatorTreeWrapperPass
*DTWP
=
1481 getAnalysisIfAvailable
<DominatorTreeWrapperPass
>();
1482 Info
.DT
= DTWP
? &DTWP
->getDomTree() : nullptr;
1483 Info
.TLI
= &getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI();
1486 getImpl(Info
.PImpl
, Info
.AC
, &DL
, Info
.DT
).clear();
1492 void LazyValueInfoWrapperPass::getAnalysisUsage(AnalysisUsage
&AU
) const {
1493 AU
.setPreservesAll();
1494 AU
.addRequired
<AssumptionCacheTracker
>();
1495 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
1498 LazyValueInfo
&LazyValueInfoWrapperPass::getLVI() { return Info
; }
1500 LazyValueInfo::~LazyValueInfo() { releaseMemory(); }
1502 void LazyValueInfo::releaseMemory() {
1503 // If the cache was allocated, free it.
1505 delete &getImpl(PImpl
, AC
, nullptr);
1510 bool LazyValueInfo::invalidate(Function
&F
, const PreservedAnalyses
&PA
,
1511 FunctionAnalysisManager::Invalidator
&Inv
) {
1512 // We need to invalidate if we have either failed to preserve this analyses
1513 // result directly or if any of its dependencies have been invalidated.
1514 auto PAC
= PA
.getChecker
<LazyValueAnalysis
>();
1515 if (!(PAC
.preserved() || PAC
.preservedSet
<AllAnalysesOn
<Function
>>()) ||
1516 (DT
&& Inv
.invalidate
<DominatorTreeAnalysis
>(F
, PA
)))
1522 void LazyValueInfoWrapperPass::releaseMemory() { Info
.releaseMemory(); }
1524 LazyValueInfo
LazyValueAnalysis::run(Function
&F
,
1525 FunctionAnalysisManager
&FAM
) {
1526 auto &AC
= FAM
.getResult
<AssumptionAnalysis
>(F
);
1527 auto &TLI
= FAM
.getResult
<TargetLibraryAnalysis
>(F
);
1528 auto *DT
= FAM
.getCachedResult
<DominatorTreeAnalysis
>(F
);
1530 return LazyValueInfo(&AC
, &F
.getParent()->getDataLayout(), &TLI
, DT
);
1533 /// Returns true if we can statically tell that this value will never be a
1534 /// "useful" constant. In practice, this means we've got something like an
1535 /// alloca or a malloc call for which a comparison against a constant can
1536 /// only be guarding dead code. Note that we are potentially giving up some
1537 /// precision in dead code (a constant result) in favour of avoiding a
1538 /// expensive search for a easily answered common query.
1539 static bool isKnownNonConstant(Value
*V
) {
1540 V
= V
->stripPointerCasts();
1541 // The return val of alloc cannot be a Constant.
1542 if (isa
<AllocaInst
>(V
))
1547 Constant
*LazyValueInfo::getConstant(Value
*V
, BasicBlock
*BB
,
1548 Instruction
*CxtI
) {
1549 // Bail out early if V is known not to be a Constant.
1550 if (isKnownNonConstant(V
))
1553 const DataLayout
&DL
= BB
->getModule()->getDataLayout();
1554 ValueLatticeElement Result
=
1555 getImpl(PImpl
, AC
, &DL
, DT
).getValueInBlock(V
, BB
, CxtI
);
1557 if (Result
.isConstant())
1558 return Result
.getConstant();
1559 if (Result
.isConstantRange()) {
1560 const ConstantRange
&CR
= Result
.getConstantRange();
1561 if (const APInt
*SingleVal
= CR
.getSingleElement())
1562 return ConstantInt::get(V
->getContext(), *SingleVal
);
1567 ConstantRange
LazyValueInfo::getConstantRange(Value
*V
, BasicBlock
*BB
,
1568 Instruction
*CxtI
) {
1569 assert(V
->getType()->isIntegerTy());
1570 unsigned Width
= V
->getType()->getIntegerBitWidth();
1571 const DataLayout
&DL
= BB
->getModule()->getDataLayout();
1572 ValueLatticeElement Result
=
1573 getImpl(PImpl
, AC
, &DL
, DT
).getValueInBlock(V
, BB
, CxtI
);
1574 if (Result
.isUndefined())
1575 return ConstantRange(Width
, /*isFullSet=*/false);
1576 if (Result
.isConstantRange())
1577 return Result
.getConstantRange();
1578 // We represent ConstantInt constants as constant ranges but other kinds
1579 // of integer constants, i.e. ConstantExpr will be tagged as constants
1580 assert(!(Result
.isConstant() && isa
<ConstantInt
>(Result
.getConstant())) &&
1581 "ConstantInt value must be represented as constantrange");
1582 return ConstantRange(Width
, /*isFullSet=*/true);
1585 /// Determine whether the specified value is known to be a
1586 /// constant on the specified edge. Return null if not.
1587 Constant
*LazyValueInfo::getConstantOnEdge(Value
*V
, BasicBlock
*FromBB
,
1589 Instruction
*CxtI
) {
1590 const DataLayout
&DL
= FromBB
->getModule()->getDataLayout();
1591 ValueLatticeElement Result
=
1592 getImpl(PImpl
, AC
, &DL
, DT
).getValueOnEdge(V
, FromBB
, ToBB
, CxtI
);
1594 if (Result
.isConstant())
1595 return Result
.getConstant();
1596 if (Result
.isConstantRange()) {
1597 const ConstantRange
&CR
= Result
.getConstantRange();
1598 if (const APInt
*SingleVal
= CR
.getSingleElement())
1599 return ConstantInt::get(V
->getContext(), *SingleVal
);
1604 ConstantRange
LazyValueInfo::getConstantRangeOnEdge(Value
*V
,
1607 Instruction
*CxtI
) {
1608 unsigned Width
= V
->getType()->getIntegerBitWidth();
1609 const DataLayout
&DL
= FromBB
->getModule()->getDataLayout();
1610 ValueLatticeElement Result
=
1611 getImpl(PImpl
, AC
, &DL
, DT
).getValueOnEdge(V
, FromBB
, ToBB
, CxtI
);
1613 if (Result
.isUndefined())
1614 return ConstantRange(Width
, /*isFullSet=*/false);
1615 if (Result
.isConstantRange())
1616 return Result
.getConstantRange();
1617 // We represent ConstantInt constants as constant ranges but other kinds
1618 // of integer constants, i.e. ConstantExpr will be tagged as constants
1619 assert(!(Result
.isConstant() && isa
<ConstantInt
>(Result
.getConstant())) &&
1620 "ConstantInt value must be represented as constantrange");
1621 return ConstantRange(Width
, /*isFullSet=*/true);
1624 static LazyValueInfo::Tristate
1625 getPredicateResult(unsigned Pred
, Constant
*C
, const ValueLatticeElement
&Val
,
1626 const DataLayout
&DL
, TargetLibraryInfo
*TLI
) {
1627 // If we know the value is a constant, evaluate the conditional.
1628 Constant
*Res
= nullptr;
1629 if (Val
.isConstant()) {
1630 Res
= ConstantFoldCompareInstOperands(Pred
, Val
.getConstant(), C
, DL
, TLI
);
1631 if (ConstantInt
*ResCI
= dyn_cast
<ConstantInt
>(Res
))
1632 return ResCI
->isZero() ? LazyValueInfo::False
: LazyValueInfo::True
;
1633 return LazyValueInfo::Unknown
;
1636 if (Val
.isConstantRange()) {
1637 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(C
);
1638 if (!CI
) return LazyValueInfo::Unknown
;
1640 const ConstantRange
&CR
= Val
.getConstantRange();
1641 if (Pred
== ICmpInst::ICMP_EQ
) {
1642 if (!CR
.contains(CI
->getValue()))
1643 return LazyValueInfo::False
;
1645 if (CR
.isSingleElement())
1646 return LazyValueInfo::True
;
1647 } else if (Pred
== ICmpInst::ICMP_NE
) {
1648 if (!CR
.contains(CI
->getValue()))
1649 return LazyValueInfo::True
;
1651 if (CR
.isSingleElement())
1652 return LazyValueInfo::False
;
1654 // Handle more complex predicates.
1655 ConstantRange TrueValues
= ConstantRange::makeExactICmpRegion(
1656 (ICmpInst::Predicate
)Pred
, CI
->getValue());
1657 if (TrueValues
.contains(CR
))
1658 return LazyValueInfo::True
;
1659 if (TrueValues
.inverse().contains(CR
))
1660 return LazyValueInfo::False
;
1662 return LazyValueInfo::Unknown
;
1665 if (Val
.isNotConstant()) {
1666 // If this is an equality comparison, we can try to fold it knowing that
1668 if (Pred
== ICmpInst::ICMP_EQ
) {
1669 // !C1 == C -> false iff C1 == C.
1670 Res
= ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE
,
1671 Val
.getNotConstant(), C
, DL
,
1673 if (Res
->isNullValue())
1674 return LazyValueInfo::False
;
1675 } else if (Pred
== ICmpInst::ICMP_NE
) {
1676 // !C1 != C -> true iff C1 == C.
1677 Res
= ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE
,
1678 Val
.getNotConstant(), C
, DL
,
1680 if (Res
->isNullValue())
1681 return LazyValueInfo::True
;
1683 return LazyValueInfo::Unknown
;
1686 return LazyValueInfo::Unknown
;
1689 /// Determine whether the specified value comparison with a constant is known to
1690 /// be true or false on the specified CFG edge. Pred is a CmpInst predicate.
1691 LazyValueInfo::Tristate
1692 LazyValueInfo::getPredicateOnEdge(unsigned Pred
, Value
*V
, Constant
*C
,
1693 BasicBlock
*FromBB
, BasicBlock
*ToBB
,
1694 Instruction
*CxtI
) {
1695 const DataLayout
&DL
= FromBB
->getModule()->getDataLayout();
1696 ValueLatticeElement Result
=
1697 getImpl(PImpl
, AC
, &DL
, DT
).getValueOnEdge(V
, FromBB
, ToBB
, CxtI
);
1699 return getPredicateResult(Pred
, C
, Result
, DL
, TLI
);
1702 LazyValueInfo::Tristate
1703 LazyValueInfo::getPredicateAt(unsigned Pred
, Value
*V
, Constant
*C
,
1704 Instruction
*CxtI
) {
1705 // Is or is not NonNull are common predicates being queried. If
1706 // isKnownNonZero can tell us the result of the predicate, we can
1707 // return it quickly. But this is only a fastpath, and falling
1708 // through would still be correct.
1709 const DataLayout
&DL
= CxtI
->getModule()->getDataLayout();
1710 if (V
->getType()->isPointerTy() && C
->isNullValue() &&
1711 isKnownNonZero(V
->stripPointerCasts(), DL
)) {
1712 if (Pred
== ICmpInst::ICMP_EQ
)
1713 return LazyValueInfo::False
;
1714 else if (Pred
== ICmpInst::ICMP_NE
)
1715 return LazyValueInfo::True
;
1717 ValueLatticeElement Result
= getImpl(PImpl
, AC
, &DL
, DT
).getValueAt(V
, CxtI
);
1718 Tristate Ret
= getPredicateResult(Pred
, C
, Result
, DL
, TLI
);
1722 // Note: The following bit of code is somewhat distinct from the rest of LVI;
1723 // LVI as a whole tries to compute a lattice value which is conservatively
1724 // correct at a given location. In this case, we have a predicate which we
1725 // weren't able to prove about the merged result, and we're pushing that
1726 // predicate back along each incoming edge to see if we can prove it
1727 // separately for each input. As a motivating example, consider:
1729 // %v1 = ... ; constantrange<1, 5>
1732 // %v2 = ... ; constantrange<10, 20>
1735 // %phi = phi [%v1, %v2] ; constantrange<1,20>
1736 // %pred = icmp eq i32 %phi, 8
1737 // We can't tell from the lattice value for '%phi' that '%pred' is false
1738 // along each path, but by checking the predicate over each input separately,
1740 // We limit the search to one step backwards from the current BB and value.
1741 // We could consider extending this to search further backwards through the
1742 // CFG and/or value graph, but there are non-obvious compile time vs quality
1745 BasicBlock
*BB
= CxtI
->getParent();
1747 // Function entry or an unreachable block. Bail to avoid confusing
1749 pred_iterator PI
= pred_begin(BB
), PE
= pred_end(BB
);
1753 // If V is a PHI node in the same block as the context, we need to ask
1754 // questions about the predicate as applied to the incoming value along
1755 // each edge. This is useful for eliminating cases where the predicate is
1756 // known along all incoming edges.
1757 if (auto *PHI
= dyn_cast
<PHINode
>(V
))
1758 if (PHI
->getParent() == BB
) {
1759 Tristate Baseline
= Unknown
;
1760 for (unsigned i
= 0, e
= PHI
->getNumIncomingValues(); i
< e
; i
++) {
1761 Value
*Incoming
= PHI
->getIncomingValue(i
);
1762 BasicBlock
*PredBB
= PHI
->getIncomingBlock(i
);
1763 // Note that PredBB may be BB itself.
1764 Tristate Result
= getPredicateOnEdge(Pred
, Incoming
, C
, PredBB
, BB
,
1767 // Keep going as long as we've seen a consistent known result for
1769 Baseline
= (i
== 0) ? Result
/* First iteration */
1770 : (Baseline
== Result
? Baseline
: Unknown
); /* All others */
1771 if (Baseline
== Unknown
)
1774 if (Baseline
!= Unknown
)
1778 // For a comparison where the V is outside this block, it's possible
1779 // that we've branched on it before. Look to see if the value is known
1780 // on all incoming edges.
1781 if (!isa
<Instruction
>(V
) ||
1782 cast
<Instruction
>(V
)->getParent() != BB
) {
1783 // For predecessor edge, determine if the comparison is true or false
1784 // on that edge. If they're all true or all false, we can conclude
1785 // the value of the comparison in this block.
1786 Tristate Baseline
= getPredicateOnEdge(Pred
, V
, C
, *PI
, BB
, CxtI
);
1787 if (Baseline
!= Unknown
) {
1788 // Check that all remaining incoming values match the first one.
1789 while (++PI
!= PE
) {
1790 Tristate Ret
= getPredicateOnEdge(Pred
, V
, C
, *PI
, BB
, CxtI
);
1791 if (Ret
!= Baseline
) break;
1793 // If we terminated early, then one of the values didn't match.
1803 void LazyValueInfo::threadEdge(BasicBlock
*PredBB
, BasicBlock
*OldSucc
,
1804 BasicBlock
*NewSucc
) {
1806 const DataLayout
&DL
= PredBB
->getModule()->getDataLayout();
1807 getImpl(PImpl
, AC
, &DL
, DT
).threadEdge(PredBB
, OldSucc
, NewSucc
);
1811 void LazyValueInfo::eraseBlock(BasicBlock
*BB
) {
1813 const DataLayout
&DL
= BB
->getModule()->getDataLayout();
1814 getImpl(PImpl
, AC
, &DL
, DT
).eraseBlock(BB
);
1819 void LazyValueInfo::printLVI(Function
&F
, DominatorTree
&DTree
, raw_ostream
&OS
) {
1821 getImpl(PImpl
, AC
, DL
, DT
).printLVI(F
, DTree
, OS
);
1825 void LazyValueInfo::disableDT() {
1827 getImpl(PImpl
, AC
, DL
, DT
).disableDT();
1830 void LazyValueInfo::enableDT() {
1832 getImpl(PImpl
, AC
, DL
, DT
).enableDT();
1835 // Print the LVI for the function arguments at the start of each basic block.
1836 void LazyValueInfoAnnotatedWriter::emitBasicBlockStartAnnot(
1837 const BasicBlock
*BB
, formatted_raw_ostream
&OS
) {
1838 // Find if there are latticevalues defined for arguments of the function.
1839 auto *F
= BB
->getParent();
1840 for (auto &Arg
: F
->args()) {
1841 ValueLatticeElement Result
= LVIImpl
->getValueInBlock(
1842 const_cast<Argument
*>(&Arg
), const_cast<BasicBlock
*>(BB
));
1843 if (Result
.isUndefined())
1845 OS
<< "; LatticeVal for: '" << Arg
<< "' is: " << Result
<< "\n";
1849 // This function prints the LVI analysis for the instruction I at the beginning
1850 // of various basic blocks. It relies on calculated values that are stored in
1851 // the LazyValueInfoCache, and in the absence of cached values, recalculate the
1852 // LazyValueInfo for `I`, and print that info.
1853 void LazyValueInfoAnnotatedWriter::emitInstructionAnnot(
1854 const Instruction
*I
, formatted_raw_ostream
&OS
) {
1856 auto *ParentBB
= I
->getParent();
1857 SmallPtrSet
<const BasicBlock
*, 16> BlocksContainingLVI
;
1858 // We can generate (solve) LVI values only for blocks that are dominated by
1859 // the I's parent. However, to avoid generating LVI for all dominating blocks,
1860 // that contain redundant/uninteresting information, we print LVI for
1861 // blocks that may use this LVI information (such as immediate successor
1862 // blocks, and blocks that contain uses of `I`).
1863 auto printResult
= [&](const BasicBlock
*BB
) {
1864 if (!BlocksContainingLVI
.insert(BB
).second
)
1866 ValueLatticeElement Result
= LVIImpl
->getValueInBlock(
1867 const_cast<Instruction
*>(I
), const_cast<BasicBlock
*>(BB
));
1868 OS
<< "; LatticeVal for: '" << *I
<< "' in BB: '";
1869 BB
->printAsOperand(OS
, false);
1870 OS
<< "' is: " << Result
<< "\n";
1873 printResult(ParentBB
);
1874 // Print the LVI analysis results for the immediate successor blocks, that
1875 // are dominated by `ParentBB`.
1876 for (auto *BBSucc
: successors(ParentBB
))
1877 if (DT
.dominates(ParentBB
, BBSucc
))
1878 printResult(BBSucc
);
1880 // Print LVI in blocks where `I` is used.
1881 for (auto *U
: I
->users())
1882 if (auto *UseI
= dyn_cast
<Instruction
>(U
))
1883 if (!isa
<PHINode
>(UseI
) || DT
.dominates(ParentBB
, UseI
->getParent()))
1884 printResult(UseI
->getParent());
1889 // Printer class for LazyValueInfo results.
1890 class LazyValueInfoPrinter
: public FunctionPass
{
1892 static char ID
; // Pass identification, replacement for typeid
1893 LazyValueInfoPrinter() : FunctionPass(ID
) {
1894 initializeLazyValueInfoPrinterPass(*PassRegistry::getPassRegistry());
1897 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
1898 AU
.setPreservesAll();
1899 AU
.addRequired
<LazyValueInfoWrapperPass
>();
1900 AU
.addRequired
<DominatorTreeWrapperPass
>();
1903 // Get the mandatory dominator tree analysis and pass this in to the
1904 // LVIPrinter. We cannot rely on the LVI's DT, since it's optional.
1905 bool runOnFunction(Function
&F
) override
{
1906 dbgs() << "LVI for function '" << F
.getName() << "':\n";
1907 auto &LVI
= getAnalysis
<LazyValueInfoWrapperPass
>().getLVI();
1908 auto &DTree
= getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
1909 LVI
.printLVI(F
, DTree
, dbgs());
1915 char LazyValueInfoPrinter::ID
= 0;
1916 INITIALIZE_PASS_BEGIN(LazyValueInfoPrinter
, "print-lazy-value-info",
1917 "Lazy Value Info Printer Pass", false, false)
1918 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass
)
1919 INITIALIZE_PASS_END(LazyValueInfoPrinter
, "print-lazy-value-info",
1920 "Lazy Value Info Printer Pass", false, false)