1 //===- LegacyDivergenceAnalysis.cpp --------- Legacy Divergence Analysis Implementation -==//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements divergence analysis which determines whether a branch
11 // in a GPU program is divergent.It can help branch optimizations such as jump
12 // threading and loop unswitching to make better decisions.
14 // GPU programs typically use the SIMD execution model, where multiple threads
15 // in the same execution group have to execute in lock-step. Therefore, if the
16 // code contains divergent branches (i.e., threads in a group do not agree on
17 // which path of the branch to take), the group of threads has to execute all
18 // the paths from that branch with different subsets of threads enabled until
19 // they converge at the immediately post-dominating BB of the paths.
21 // Due to this execution model, some optimizations such as jump
22 // threading and loop unswitching can be unfortunately harmful when performed on
23 // divergent branches. Therefore, an analysis that computes which branches in a
24 // GPU program are divergent can help the compiler to selectively run these
27 // This file defines divergence analysis which computes a conservative but
28 // non-trivial approximation of all divergent branches in a GPU program. It
29 // partially implements the approach described in
31 // Divergence Analysis
32 // Sampaio, Souza, Collange, Pereira
35 // The divergence analysis identifies the sources of divergence (e.g., special
36 // variables that hold the thread ID), and recursively marks variables that are
37 // data or sync dependent on a source of divergence as divergent.
39 // While data dependency is a well-known concept, the notion of sync dependency
40 // is worth more explanation. Sync dependence characterizes the control flow
41 // aspect of the propagation of branch divergence. For example,
43 // %cond = icmp slt i32 %tid, 10
44 // br i1 %cond, label %then, label %else
50 // %a = phi i32 [ 0, %then ], [ 1, %else ]
52 // Suppose %tid holds the thread ID. Although %a is not data dependent on %tid
53 // because %tid is not on its use-def chains, %a is sync dependent on %tid
54 // because the branch "br i1 %cond" depends on %tid and affects which value %a
57 // The current implementation has the following limitations:
58 // 1. intra-procedural. It conservatively considers the arguments of a
59 // non-kernel-entry function and the return value of a function call as
61 // 2. memory as black box. It conservatively considers values loaded from
62 // generic or local address as divergent. This can be improved by leveraging
65 //===----------------------------------------------------------------------===//
67 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
68 #include "llvm/Analysis/Passes.h"
69 #include "llvm/Analysis/PostDominators.h"
70 #include "llvm/Analysis/TargetTransformInfo.h"
71 #include "llvm/IR/Dominators.h"
72 #include "llvm/IR/InstIterator.h"
73 #include "llvm/IR/Instructions.h"
74 #include "llvm/IR/Value.h"
75 #include "llvm/Support/Debug.h"
76 #include "llvm/Support/raw_ostream.h"
80 #define DEBUG_TYPE "divergence"
84 class DivergencePropagator
{
86 DivergencePropagator(Function
&F
, TargetTransformInfo
&TTI
, DominatorTree
&DT
,
87 PostDominatorTree
&PDT
, DenseSet
<const Value
*> &DV
)
88 : F(F
), TTI(TTI
), DT(DT
), PDT(PDT
), DV(DV
) {}
89 void populateWithSourcesOfDivergence();
93 // A helper function that explores data dependents of V.
94 void exploreDataDependency(Value
*V
);
95 // A helper function that explores sync dependents of TI.
96 void exploreSyncDependency(TerminatorInst
*TI
);
97 // Computes the influence region from Start to End. This region includes all
98 // basic blocks on any simple path from Start to End.
99 void computeInfluenceRegion(BasicBlock
*Start
, BasicBlock
*End
,
100 DenseSet
<BasicBlock
*> &InfluenceRegion
);
101 // Finds all users of I that are outside the influence region, and add these
102 // users to Worklist.
103 void findUsersOutsideInfluenceRegion(
104 Instruction
&I
, const DenseSet
<BasicBlock
*> &InfluenceRegion
);
107 TargetTransformInfo
&TTI
;
109 PostDominatorTree
&PDT
;
110 std::vector
<Value
*> Worklist
; // Stack for DFS.
111 DenseSet
<const Value
*> &DV
; // Stores all divergent values.
114 void DivergencePropagator::populateWithSourcesOfDivergence() {
117 for (auto &I
: instructions(F
)) {
118 if (TTI
.isSourceOfDivergence(&I
)) {
119 Worklist
.push_back(&I
);
123 for (auto &Arg
: F
.args()) {
124 if (TTI
.isSourceOfDivergence(&Arg
)) {
125 Worklist
.push_back(&Arg
);
131 void DivergencePropagator::exploreSyncDependency(TerminatorInst
*TI
) {
132 // Propagation rule 1: if branch TI is divergent, all PHINodes in TI's
133 // immediate post dominator are divergent. This rule handles if-then-else
134 // patterns. For example,
140 // a = phi(a1, a2); // sync dependent on (tid < 5)
141 BasicBlock
*ThisBB
= TI
->getParent();
143 // Unreachable blocks may not be in the dominator tree.
144 if (!DT
.isReachableFromEntry(ThisBB
))
147 // If the function has no exit blocks or doesn't reach any exit blocks, the
148 // post dominator may be null.
149 DomTreeNode
*ThisNode
= PDT
.getNode(ThisBB
);
153 BasicBlock
*IPostDom
= ThisNode
->getIDom()->getBlock();
154 if (IPostDom
== nullptr)
157 for (auto I
= IPostDom
->begin(); isa
<PHINode
>(I
); ++I
) {
158 // A PHINode is uniform if it returns the same value no matter which path is
160 if (!cast
<PHINode
>(I
)->hasConstantOrUndefValue() && DV
.insert(&*I
).second
)
161 Worklist
.push_back(&*I
);
164 // Propagation rule 2: if a value defined in a loop is used outside, the user
165 // is sync dependent on the condition of the loop exits that dominate the
166 // user. For example,
171 // if (foo(i)) ... // uniform
172 // } while (i < tid);
173 // if (bar(i)) ... // divergent
175 // A program may contain unstructured loops. Therefore, we cannot leverage
176 // LoopInfo, which only recognizes natural loops.
178 // The algorithm used here handles both natural and unstructured loops. Given
179 // a branch TI, we first compute its influence region, the union of all simple
180 // paths from TI to its immediate post dominator (IPostDom). Then, we search
181 // for all the values defined in the influence region but used outside. All
182 // these users are sync dependent on TI.
183 DenseSet
<BasicBlock
*> InfluenceRegion
;
184 computeInfluenceRegion(ThisBB
, IPostDom
, InfluenceRegion
);
185 // An insight that can speed up the search process is that all the in-region
186 // values that are used outside must dominate TI. Therefore, instead of
187 // searching every basic blocks in the influence region, we search all the
188 // dominators of TI until it is outside the influence region.
189 BasicBlock
*InfluencedBB
= ThisBB
;
190 while (InfluenceRegion
.count(InfluencedBB
)) {
191 for (auto &I
: *InfluencedBB
)
192 findUsersOutsideInfluenceRegion(I
, InfluenceRegion
);
193 DomTreeNode
*IDomNode
= DT
.getNode(InfluencedBB
)->getIDom();
194 if (IDomNode
== nullptr)
196 InfluencedBB
= IDomNode
->getBlock();
200 void DivergencePropagator::findUsersOutsideInfluenceRegion(
201 Instruction
&I
, const DenseSet
<BasicBlock
*> &InfluenceRegion
) {
202 for (User
*U
: I
.users()) {
203 Instruction
*UserInst
= cast
<Instruction
>(U
);
204 if (!InfluenceRegion
.count(UserInst
->getParent())) {
205 if (DV
.insert(UserInst
).second
)
206 Worklist
.push_back(UserInst
);
211 // A helper function for computeInfluenceRegion that adds successors of "ThisBB"
212 // to the influence region.
214 addSuccessorsToInfluenceRegion(BasicBlock
*ThisBB
, BasicBlock
*End
,
215 DenseSet
<BasicBlock
*> &InfluenceRegion
,
216 std::vector
<BasicBlock
*> &InfluenceStack
) {
217 for (BasicBlock
*Succ
: successors(ThisBB
)) {
218 if (Succ
!= End
&& InfluenceRegion
.insert(Succ
).second
)
219 InfluenceStack
.push_back(Succ
);
223 void DivergencePropagator::computeInfluenceRegion(
224 BasicBlock
*Start
, BasicBlock
*End
,
225 DenseSet
<BasicBlock
*> &InfluenceRegion
) {
226 assert(PDT
.properlyDominates(End
, Start
) &&
227 "End does not properly dominate Start");
229 // The influence region starts from the end of "Start" to the beginning of
230 // "End". Therefore, "Start" should not be in the region unless "Start" is in
231 // a loop that doesn't contain "End".
232 std::vector
<BasicBlock
*> InfluenceStack
;
233 addSuccessorsToInfluenceRegion(Start
, End
, InfluenceRegion
, InfluenceStack
);
234 while (!InfluenceStack
.empty()) {
235 BasicBlock
*BB
= InfluenceStack
.back();
236 InfluenceStack
.pop_back();
237 addSuccessorsToInfluenceRegion(BB
, End
, InfluenceRegion
, InfluenceStack
);
241 void DivergencePropagator::exploreDataDependency(Value
*V
) {
242 // Follow def-use chains of V.
243 for (User
*U
: V
->users()) {
244 Instruction
*UserInst
= cast
<Instruction
>(U
);
245 if (!TTI
.isAlwaysUniform(U
) && DV
.insert(UserInst
).second
)
246 Worklist
.push_back(UserInst
);
250 void DivergencePropagator::propagate() {
251 // Traverse the dependency graph using DFS.
252 while (!Worklist
.empty()) {
253 Value
*V
= Worklist
.back();
255 if (TerminatorInst
*TI
= dyn_cast
<TerminatorInst
>(V
)) {
256 // Terminators with less than two successors won't introduce sync
257 // dependency. Ignore them.
258 if (TI
->getNumSuccessors() > 1)
259 exploreSyncDependency(TI
);
261 exploreDataDependency(V
);
265 } /// end namespace anonymous
267 // Register this pass.
268 char LegacyDivergenceAnalysis::ID
= 0;
269 INITIALIZE_PASS_BEGIN(LegacyDivergenceAnalysis
, "divergence", "Legacy Divergence Analysis",
271 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
272 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass
)
273 INITIALIZE_PASS_END(LegacyDivergenceAnalysis
, "divergence", "Legacy Divergence Analysis",
276 FunctionPass
*llvm::createLegacyDivergenceAnalysisPass() {
277 return new LegacyDivergenceAnalysis();
280 void LegacyDivergenceAnalysis::getAnalysisUsage(AnalysisUsage
&AU
) const {
281 AU
.addRequired
<DominatorTreeWrapperPass
>();
282 AU
.addRequired
<PostDominatorTreeWrapperPass
>();
283 AU
.setPreservesAll();
286 bool LegacyDivergenceAnalysis::runOnFunction(Function
&F
) {
287 auto *TTIWP
= getAnalysisIfAvailable
<TargetTransformInfoWrapperPass
>();
288 if (TTIWP
== nullptr)
291 TargetTransformInfo
&TTI
= TTIWP
->getTTI(F
);
292 // Fast path: if the target does not have branch divergence, we do not mark
293 // any branch as divergent.
294 if (!TTI
.hasBranchDivergence())
297 DivergentValues
.clear();
298 auto &PDT
= getAnalysis
<PostDominatorTreeWrapperPass
>().getPostDomTree();
299 DivergencePropagator
DP(F
, TTI
,
300 getAnalysis
<DominatorTreeWrapperPass
>().getDomTree(),
301 PDT
, DivergentValues
);
302 DP
.populateWithSourcesOfDivergence();
305 dbgs() << "\nAfter divergence analysis on " << F
.getName() << ":\n";
306 print(dbgs(), F
.getParent())
311 void LegacyDivergenceAnalysis::print(raw_ostream
&OS
, const Module
*) const {
312 if (DivergentValues
.empty())
314 const Value
*FirstDivergentValue
= *DivergentValues
.begin();
316 if (const Argument
*Arg
= dyn_cast
<Argument
>(FirstDivergentValue
)) {
317 F
= Arg
->getParent();
318 } else if (const Instruction
*I
=
319 dyn_cast
<Instruction
>(FirstDivergentValue
)) {
320 F
= I
->getParent()->getParent();
322 llvm_unreachable("Only arguments and instructions can be divergent");
325 // Dumps all divergent values in F, arguments and then instructions.
326 for (auto &Arg
: F
->args()) {
327 OS
<< (DivergentValues
.count(&Arg
) ? "DIVERGENT: " : " ");
330 // Iterate instructions using instructions() to ensure a deterministic order.
331 for (auto BI
= F
->begin(), BE
= F
->end(); BI
!= BE
; ++BI
) {
333 OS
<< "\n " << BB
.getName() << ":\n";
334 for (auto &I
: BB
.instructionsWithoutDebug()) {
335 OS
<< (DivergentValues
.count(&I
) ? "DIVERGENT: " : " ");