1 //===-- Lint.cpp - Check for common errors in LLVM IR ---------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass statically checks for common and easily-identified constructs
11 // which produce undefined or likely unintended behavior in LLVM IR.
13 // It is not a guarantee of correctness, in two ways. First, it isn't
14 // comprehensive. There are checks which could be done statically which are
15 // not yet implemented. Some of these are indicated by TODO comments, but
16 // those aren't comprehensive either. Second, many conditions cannot be
17 // checked statically. This pass does no dynamic instrumentation, so it
18 // can't check for all possible problems.
20 // Another limitation is that it assumes all code will be executed. A store
21 // through a null pointer in a basic block which is never reached is harmless,
22 // but this pass will warn about it anyway. This is the main reason why most
23 // of these checks live here instead of in the Verifier pass.
25 // Optimization passes may make conditions that this pass checks for more or
26 // less obvious. If an optimization pass appears to be introducing a warning,
27 // it may be that the optimization pass is merely exposing an existing
28 // condition in the code.
30 // This code may be run before instcombine. In many cases, instcombine checks
31 // for the same kinds of things and turns instructions with undefined behavior
32 // into unreachable (or equivalent). Because of this, this pass makes some
33 // effort to look through bitcasts and so on.
35 //===----------------------------------------------------------------------===//
37 #include "llvm/Analysis/Lint.h"
38 #include "llvm/ADT/APInt.h"
39 #include "llvm/ADT/ArrayRef.h"
40 #include "llvm/ADT/SmallPtrSet.h"
41 #include "llvm/ADT/Twine.h"
42 #include "llvm/Analysis/AliasAnalysis.h"
43 #include "llvm/Analysis/AssumptionCache.h"
44 #include "llvm/Analysis/ConstantFolding.h"
45 #include "llvm/Analysis/InstructionSimplify.h"
46 #include "llvm/Analysis/Loads.h"
47 #include "llvm/Analysis/MemoryLocation.h"
48 #include "llvm/Analysis/Passes.h"
49 #include "llvm/Analysis/TargetLibraryInfo.h"
50 #include "llvm/Analysis/ValueTracking.h"
51 #include "llvm/IR/Argument.h"
52 #include "llvm/IR/BasicBlock.h"
53 #include "llvm/IR/CallSite.h"
54 #include "llvm/IR/Constant.h"
55 #include "llvm/IR/Constants.h"
56 #include "llvm/IR/DataLayout.h"
57 #include "llvm/IR/DerivedTypes.h"
58 #include "llvm/IR/Dominators.h"
59 #include "llvm/IR/Function.h"
60 #include "llvm/IR/GlobalVariable.h"
61 #include "llvm/IR/InstVisitor.h"
62 #include "llvm/IR/InstrTypes.h"
63 #include "llvm/IR/Instruction.h"
64 #include "llvm/IR/Instructions.h"
65 #include "llvm/IR/IntrinsicInst.h"
66 #include "llvm/IR/LegacyPassManager.h"
67 #include "llvm/IR/Module.h"
68 #include "llvm/IR/Type.h"
69 #include "llvm/IR/Value.h"
70 #include "llvm/Pass.h"
71 #include "llvm/Support/Casting.h"
72 #include "llvm/Support/Debug.h"
73 #include "llvm/Support/KnownBits.h"
74 #include "llvm/Support/MathExtras.h"
75 #include "llvm/Support/raw_ostream.h"
85 static const unsigned Read
= 1;
86 static const unsigned Write
= 2;
87 static const unsigned Callee
= 4;
88 static const unsigned Branchee
= 8;
89 } // end namespace MemRef
91 class Lint
: public FunctionPass
, public InstVisitor
<Lint
> {
92 friend class InstVisitor
<Lint
>;
94 void visitFunction(Function
&F
);
96 void visitCallSite(CallSite CS
);
97 void visitMemoryReference(Instruction
&I
, Value
*Ptr
,
98 uint64_t Size
, unsigned Align
,
99 Type
*Ty
, unsigned Flags
);
100 void visitEHBeginCatch(IntrinsicInst
*II
);
101 void visitEHEndCatch(IntrinsicInst
*II
);
103 void visitCallInst(CallInst
&I
);
104 void visitInvokeInst(InvokeInst
&I
);
105 void visitReturnInst(ReturnInst
&I
);
106 void visitLoadInst(LoadInst
&I
);
107 void visitStoreInst(StoreInst
&I
);
108 void visitXor(BinaryOperator
&I
);
109 void visitSub(BinaryOperator
&I
);
110 void visitLShr(BinaryOperator
&I
);
111 void visitAShr(BinaryOperator
&I
);
112 void visitShl(BinaryOperator
&I
);
113 void visitSDiv(BinaryOperator
&I
);
114 void visitUDiv(BinaryOperator
&I
);
115 void visitSRem(BinaryOperator
&I
);
116 void visitURem(BinaryOperator
&I
);
117 void visitAllocaInst(AllocaInst
&I
);
118 void visitVAArgInst(VAArgInst
&I
);
119 void visitIndirectBrInst(IndirectBrInst
&I
);
120 void visitExtractElementInst(ExtractElementInst
&I
);
121 void visitInsertElementInst(InsertElementInst
&I
);
122 void visitUnreachableInst(UnreachableInst
&I
);
124 Value
*findValue(Value
*V
, bool OffsetOk
) const;
125 Value
*findValueImpl(Value
*V
, bool OffsetOk
,
126 SmallPtrSetImpl
<Value
*> &Visited
) const;
130 const DataLayout
*DL
;
134 TargetLibraryInfo
*TLI
;
136 std::string Messages
;
137 raw_string_ostream MessagesStr
;
139 static char ID
; // Pass identification, replacement for typeid
140 Lint() : FunctionPass(ID
), MessagesStr(Messages
) {
141 initializeLintPass(*PassRegistry::getPassRegistry());
144 bool runOnFunction(Function
&F
) override
;
146 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
147 AU
.setPreservesAll();
148 AU
.addRequired
<AAResultsWrapperPass
>();
149 AU
.addRequired
<AssumptionCacheTracker
>();
150 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
151 AU
.addRequired
<DominatorTreeWrapperPass
>();
153 void print(raw_ostream
&O
, const Module
*M
) const override
{}
155 void WriteValues(ArrayRef
<const Value
*> Vs
) {
156 for (const Value
*V
: Vs
) {
159 if (isa
<Instruction
>(V
)) {
160 MessagesStr
<< *V
<< '\n';
162 V
->printAsOperand(MessagesStr
, true, Mod
);
168 /// A check failed, so printout out the condition and the message.
170 /// This provides a nice place to put a breakpoint if you want to see why
171 /// something is not correct.
172 void CheckFailed(const Twine
&Message
) { MessagesStr
<< Message
<< '\n'; }
174 /// A check failed (with values to print).
176 /// This calls the Message-only version so that the above is easier to set
178 template <typename T1
, typename
... Ts
>
179 void CheckFailed(const Twine
&Message
, const T1
&V1
, const Ts
&...Vs
) {
180 CheckFailed(Message
);
181 WriteValues({V1
, Vs
...});
184 } // end anonymous namespace
187 INITIALIZE_PASS_BEGIN(Lint
, "lint", "Statically lint-checks LLVM IR",
189 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker
)
190 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass
)
191 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
192 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass
)
193 INITIALIZE_PASS_END(Lint
, "lint", "Statically lint-checks LLVM IR",
196 // Assert - We know that cond should be true, if not print an error message.
197 #define Assert(C, ...) \
198 do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
200 // Lint::run - This is the main Analysis entry point for a
203 bool Lint::runOnFunction(Function
&F
) {
205 DL
= &F
.getParent()->getDataLayout();
206 AA
= &getAnalysis
<AAResultsWrapperPass
>().getAAResults();
207 AC
= &getAnalysis
<AssumptionCacheTracker
>().getAssumptionCache(F
);
208 DT
= &getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
209 TLI
= &getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI();
211 dbgs() << MessagesStr
.str();
216 void Lint::visitFunction(Function
&F
) {
217 // This isn't undefined behavior, it's just a little unusual, and it's a
218 // fairly common mistake to neglect to name a function.
219 Assert(F
.hasName() || F
.hasLocalLinkage(),
220 "Unusual: Unnamed function with non-local linkage", &F
);
222 // TODO: Check for irreducible control flow.
225 void Lint::visitCallSite(CallSite CS
) {
226 Instruction
&I
= *CS
.getInstruction();
227 Value
*Callee
= CS
.getCalledValue();
229 visitMemoryReference(I
, Callee
, MemoryLocation::UnknownSize
, 0, nullptr,
232 if (Function
*F
= dyn_cast
<Function
>(findValue(Callee
,
233 /*OffsetOk=*/false))) {
234 Assert(CS
.getCallingConv() == F
->getCallingConv(),
235 "Undefined behavior: Caller and callee calling convention differ",
238 FunctionType
*FT
= F
->getFunctionType();
239 unsigned NumActualArgs
= CS
.arg_size();
241 Assert(FT
->isVarArg() ? FT
->getNumParams() <= NumActualArgs
242 : FT
->getNumParams() == NumActualArgs
,
243 "Undefined behavior: Call argument count mismatches callee "
247 Assert(FT
->getReturnType() == I
.getType(),
248 "Undefined behavior: Call return type mismatches "
249 "callee return type",
252 // Check argument types (in case the callee was casted) and attributes.
253 // TODO: Verify that caller and callee attributes are compatible.
254 Function::arg_iterator PI
= F
->arg_begin(), PE
= F
->arg_end();
255 CallSite::arg_iterator AI
= CS
.arg_begin(), AE
= CS
.arg_end();
256 for (; AI
!= AE
; ++AI
) {
259 Argument
*Formal
= &*PI
++;
260 Assert(Formal
->getType() == Actual
->getType(),
261 "Undefined behavior: Call argument type mismatches "
262 "callee parameter type",
265 // Check that noalias arguments don't alias other arguments. This is
266 // not fully precise because we don't know the sizes of the dereferenced
268 if (Formal
->hasNoAliasAttr() && Actual
->getType()->isPointerTy()) {
269 AttributeList PAL
= CS
.getAttributes();
271 for (CallSite::arg_iterator BI
= CS
.arg_begin(); BI
!= AE
; ++BI
) {
272 // Skip ByVal arguments since they will be memcpy'd to the callee's
273 // stack so we're not really passing the pointer anyway.
274 if (PAL
.hasParamAttribute(ArgNo
++, Attribute::ByVal
))
276 if (AI
!= BI
&& (*BI
)->getType()->isPointerTy()) {
277 AliasResult Result
= AA
->alias(*AI
, *BI
);
278 Assert(Result
!= MustAlias
&& Result
!= PartialAlias
,
279 "Unusual: noalias argument aliases another argument", &I
);
284 // Check that an sret argument points to valid memory.
285 if (Formal
->hasStructRetAttr() && Actual
->getType()->isPointerTy()) {
287 cast
<PointerType
>(Formal
->getType())->getElementType();
288 visitMemoryReference(I
, Actual
, DL
->getTypeStoreSize(Ty
),
289 DL
->getABITypeAlignment(Ty
), Ty
,
290 MemRef::Read
| MemRef::Write
);
297 const CallInst
*CI
= cast
<CallInst
>(CS
.getInstruction());
298 if (CI
->isTailCall()) {
299 const AttributeList
&PAL
= CI
->getAttributes();
301 for (Value
*Arg
: CS
.args()) {
302 // Skip ByVal arguments since they will be memcpy'd to the callee's
304 if (PAL
.hasParamAttribute(ArgNo
++, Attribute::ByVal
))
306 Value
*Obj
= findValue(Arg
, /*OffsetOk=*/true);
307 Assert(!isa
<AllocaInst
>(Obj
),
308 "Undefined behavior: Call with \"tail\" keyword references "
316 if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(&I
))
317 switch (II
->getIntrinsicID()) {
320 // TODO: Check more intrinsics
322 case Intrinsic::memcpy
: {
323 MemCpyInst
*MCI
= cast
<MemCpyInst
>(&I
);
324 // TODO: If the size is known, use it.
325 visitMemoryReference(I
, MCI
->getDest(), MemoryLocation::UnknownSize
,
326 MCI
->getDestAlignment(), nullptr, MemRef::Write
);
327 visitMemoryReference(I
, MCI
->getSource(), MemoryLocation::UnknownSize
,
328 MCI
->getSourceAlignment(), nullptr, MemRef::Read
);
330 // Check that the memcpy arguments don't overlap. The AliasAnalysis API
331 // isn't expressive enough for what we really want to do. Known partial
332 // overlap is not distinguished from the case where nothing is known.
334 if (const ConstantInt
*Len
=
335 dyn_cast
<ConstantInt
>(findValue(MCI
->getLength(),
336 /*OffsetOk=*/false)))
337 if (Len
->getValue().isIntN(32))
338 Size
= Len
->getValue().getZExtValue();
339 Assert(AA
->alias(MCI
->getSource(), Size
, MCI
->getDest(), Size
) !=
341 "Undefined behavior: memcpy source and destination overlap", &I
);
344 case Intrinsic::memmove
: {
345 MemMoveInst
*MMI
= cast
<MemMoveInst
>(&I
);
346 // TODO: If the size is known, use it.
347 visitMemoryReference(I
, MMI
->getDest(), MemoryLocation::UnknownSize
,
348 MMI
->getDestAlignment(), nullptr, MemRef::Write
);
349 visitMemoryReference(I
, MMI
->getSource(), MemoryLocation::UnknownSize
,
350 MMI
->getSourceAlignment(), nullptr, MemRef::Read
);
353 case Intrinsic::memset
: {
354 MemSetInst
*MSI
= cast
<MemSetInst
>(&I
);
355 // TODO: If the size is known, use it.
356 visitMemoryReference(I
, MSI
->getDest(), MemoryLocation::UnknownSize
,
357 MSI
->getDestAlignment(), nullptr, MemRef::Write
);
361 case Intrinsic::vastart
:
362 Assert(I
.getParent()->getParent()->isVarArg(),
363 "Undefined behavior: va_start called in a non-varargs function",
366 visitMemoryReference(I
, CS
.getArgument(0), MemoryLocation::UnknownSize
, 0,
367 nullptr, MemRef::Read
| MemRef::Write
);
369 case Intrinsic::vacopy
:
370 visitMemoryReference(I
, CS
.getArgument(0), MemoryLocation::UnknownSize
, 0,
371 nullptr, MemRef::Write
);
372 visitMemoryReference(I
, CS
.getArgument(1), MemoryLocation::UnknownSize
, 0,
373 nullptr, MemRef::Read
);
375 case Intrinsic::vaend
:
376 visitMemoryReference(I
, CS
.getArgument(0), MemoryLocation::UnknownSize
, 0,
377 nullptr, MemRef::Read
| MemRef::Write
);
380 case Intrinsic::stackrestore
:
381 // Stackrestore doesn't read or write memory, but it sets the
382 // stack pointer, which the compiler may read from or write to
383 // at any time, so check it for both readability and writeability.
384 visitMemoryReference(I
, CS
.getArgument(0), MemoryLocation::UnknownSize
, 0,
385 nullptr, MemRef::Read
| MemRef::Write
);
390 void Lint::visitCallInst(CallInst
&I
) {
391 return visitCallSite(&I
);
394 void Lint::visitInvokeInst(InvokeInst
&I
) {
395 return visitCallSite(&I
);
398 void Lint::visitReturnInst(ReturnInst
&I
) {
399 Function
*F
= I
.getParent()->getParent();
400 Assert(!F
->doesNotReturn(),
401 "Unusual: Return statement in function with noreturn attribute", &I
);
403 if (Value
*V
= I
.getReturnValue()) {
404 Value
*Obj
= findValue(V
, /*OffsetOk=*/true);
405 Assert(!isa
<AllocaInst
>(Obj
), "Unusual: Returning alloca value", &I
);
409 // TODO: Check that the reference is in bounds.
410 // TODO: Check readnone/readonly function attributes.
411 void Lint::visitMemoryReference(Instruction
&I
,
412 Value
*Ptr
, uint64_t Size
, unsigned Align
,
413 Type
*Ty
, unsigned Flags
) {
414 // If no memory is being referenced, it doesn't matter if the pointer
419 Value
*UnderlyingObject
= findValue(Ptr
, /*OffsetOk=*/true);
420 Assert(!isa
<ConstantPointerNull
>(UnderlyingObject
),
421 "Undefined behavior: Null pointer dereference", &I
);
422 Assert(!isa
<UndefValue
>(UnderlyingObject
),
423 "Undefined behavior: Undef pointer dereference", &I
);
424 Assert(!isa
<ConstantInt
>(UnderlyingObject
) ||
425 !cast
<ConstantInt
>(UnderlyingObject
)->isMinusOne(),
426 "Unusual: All-ones pointer dereference", &I
);
427 Assert(!isa
<ConstantInt
>(UnderlyingObject
) ||
428 !cast
<ConstantInt
>(UnderlyingObject
)->isOne(),
429 "Unusual: Address one pointer dereference", &I
);
431 if (Flags
& MemRef::Write
) {
432 if (const GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(UnderlyingObject
))
433 Assert(!GV
->isConstant(), "Undefined behavior: Write to read-only memory",
435 Assert(!isa
<Function
>(UnderlyingObject
) &&
436 !isa
<BlockAddress
>(UnderlyingObject
),
437 "Undefined behavior: Write to text section", &I
);
439 if (Flags
& MemRef::Read
) {
440 Assert(!isa
<Function
>(UnderlyingObject
), "Unusual: Load from function body",
442 Assert(!isa
<BlockAddress
>(UnderlyingObject
),
443 "Undefined behavior: Load from block address", &I
);
445 if (Flags
& MemRef::Callee
) {
446 Assert(!isa
<BlockAddress
>(UnderlyingObject
),
447 "Undefined behavior: Call to block address", &I
);
449 if (Flags
& MemRef::Branchee
) {
450 Assert(!isa
<Constant
>(UnderlyingObject
) ||
451 isa
<BlockAddress
>(UnderlyingObject
),
452 "Undefined behavior: Branch to non-blockaddress", &I
);
455 // Check for buffer overflows and misalignment.
456 // Only handles memory references that read/write something simple like an
457 // alloca instruction or a global variable.
459 if (Value
*Base
= GetPointerBaseWithConstantOffset(Ptr
, Offset
, *DL
)) {
460 // OK, so the access is to a constant offset from Ptr. Check that Ptr is
461 // something we can handle and if so extract the size of this base object
462 // along with its alignment.
463 uint64_t BaseSize
= MemoryLocation::UnknownSize
;
464 unsigned BaseAlign
= 0;
466 if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(Base
)) {
467 Type
*ATy
= AI
->getAllocatedType();
468 if (!AI
->isArrayAllocation() && ATy
->isSized())
469 BaseSize
= DL
->getTypeAllocSize(ATy
);
470 BaseAlign
= AI
->getAlignment();
471 if (BaseAlign
== 0 && ATy
->isSized())
472 BaseAlign
= DL
->getABITypeAlignment(ATy
);
473 } else if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(Base
)) {
474 // If the global may be defined differently in another compilation unit
475 // then don't warn about funky memory accesses.
476 if (GV
->hasDefinitiveInitializer()) {
477 Type
*GTy
= GV
->getValueType();
479 BaseSize
= DL
->getTypeAllocSize(GTy
);
480 BaseAlign
= GV
->getAlignment();
481 if (BaseAlign
== 0 && GTy
->isSized())
482 BaseAlign
= DL
->getABITypeAlignment(GTy
);
486 // Accesses from before the start or after the end of the object are not
488 Assert(Size
== MemoryLocation::UnknownSize
||
489 BaseSize
== MemoryLocation::UnknownSize
||
490 (Offset
>= 0 && Offset
+ Size
<= BaseSize
),
491 "Undefined behavior: Buffer overflow", &I
);
493 // Accesses that say that the memory is more aligned than it is are not
495 if (Align
== 0 && Ty
&& Ty
->isSized())
496 Align
= DL
->getABITypeAlignment(Ty
);
497 Assert(!BaseAlign
|| Align
<= MinAlign(BaseAlign
, Offset
),
498 "Undefined behavior: Memory reference address is misaligned", &I
);
502 void Lint::visitLoadInst(LoadInst
&I
) {
503 visitMemoryReference(I
, I
.getPointerOperand(),
504 DL
->getTypeStoreSize(I
.getType()), I
.getAlignment(),
505 I
.getType(), MemRef::Read
);
508 void Lint::visitStoreInst(StoreInst
&I
) {
509 visitMemoryReference(I
, I
.getPointerOperand(),
510 DL
->getTypeStoreSize(I
.getOperand(0)->getType()),
512 I
.getOperand(0)->getType(), MemRef::Write
);
515 void Lint::visitXor(BinaryOperator
&I
) {
516 Assert(!isa
<UndefValue
>(I
.getOperand(0)) || !isa
<UndefValue
>(I
.getOperand(1)),
517 "Undefined result: xor(undef, undef)", &I
);
520 void Lint::visitSub(BinaryOperator
&I
) {
521 Assert(!isa
<UndefValue
>(I
.getOperand(0)) || !isa
<UndefValue
>(I
.getOperand(1)),
522 "Undefined result: sub(undef, undef)", &I
);
525 void Lint::visitLShr(BinaryOperator
&I
) {
526 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(findValue(I
.getOperand(1),
527 /*OffsetOk=*/false)))
528 Assert(CI
->getValue().ult(cast
<IntegerType
>(I
.getType())->getBitWidth()),
529 "Undefined result: Shift count out of range", &I
);
532 void Lint::visitAShr(BinaryOperator
&I
) {
533 if (ConstantInt
*CI
=
534 dyn_cast
<ConstantInt
>(findValue(I
.getOperand(1), /*OffsetOk=*/false)))
535 Assert(CI
->getValue().ult(cast
<IntegerType
>(I
.getType())->getBitWidth()),
536 "Undefined result: Shift count out of range", &I
);
539 void Lint::visitShl(BinaryOperator
&I
) {
540 if (ConstantInt
*CI
=
541 dyn_cast
<ConstantInt
>(findValue(I
.getOperand(1), /*OffsetOk=*/false)))
542 Assert(CI
->getValue().ult(cast
<IntegerType
>(I
.getType())->getBitWidth()),
543 "Undefined result: Shift count out of range", &I
);
546 static bool isZero(Value
*V
, const DataLayout
&DL
, DominatorTree
*DT
,
547 AssumptionCache
*AC
) {
548 // Assume undef could be zero.
549 if (isa
<UndefValue
>(V
))
552 VectorType
*VecTy
= dyn_cast
<VectorType
>(V
->getType());
554 KnownBits Known
= computeKnownBits(V
, DL
, 0, AC
, dyn_cast
<Instruction
>(V
), DT
);
555 return Known
.isZero();
558 // Per-component check doesn't work with zeroinitializer
559 Constant
*C
= dyn_cast
<Constant
>(V
);
563 if (C
->isZeroValue())
566 // For a vector, KnownZero will only be true if all values are zero, so check
567 // this per component
568 for (unsigned I
= 0, N
= VecTy
->getNumElements(); I
!= N
; ++I
) {
569 Constant
*Elem
= C
->getAggregateElement(I
);
570 if (isa
<UndefValue
>(Elem
))
573 KnownBits Known
= computeKnownBits(Elem
, DL
);
581 void Lint::visitSDiv(BinaryOperator
&I
) {
582 Assert(!isZero(I
.getOperand(1), I
.getModule()->getDataLayout(), DT
, AC
),
583 "Undefined behavior: Division by zero", &I
);
586 void Lint::visitUDiv(BinaryOperator
&I
) {
587 Assert(!isZero(I
.getOperand(1), I
.getModule()->getDataLayout(), DT
, AC
),
588 "Undefined behavior: Division by zero", &I
);
591 void Lint::visitSRem(BinaryOperator
&I
) {
592 Assert(!isZero(I
.getOperand(1), I
.getModule()->getDataLayout(), DT
, AC
),
593 "Undefined behavior: Division by zero", &I
);
596 void Lint::visitURem(BinaryOperator
&I
) {
597 Assert(!isZero(I
.getOperand(1), I
.getModule()->getDataLayout(), DT
, AC
),
598 "Undefined behavior: Division by zero", &I
);
601 void Lint::visitAllocaInst(AllocaInst
&I
) {
602 if (isa
<ConstantInt
>(I
.getArraySize()))
603 // This isn't undefined behavior, it's just an obvious pessimization.
604 Assert(&I
.getParent()->getParent()->getEntryBlock() == I
.getParent(),
605 "Pessimization: Static alloca outside of entry block", &I
);
607 // TODO: Check for an unusual size (MSB set?)
610 void Lint::visitVAArgInst(VAArgInst
&I
) {
611 visitMemoryReference(I
, I
.getOperand(0), MemoryLocation::UnknownSize
, 0,
612 nullptr, MemRef::Read
| MemRef::Write
);
615 void Lint::visitIndirectBrInst(IndirectBrInst
&I
) {
616 visitMemoryReference(I
, I
.getAddress(), MemoryLocation::UnknownSize
, 0,
617 nullptr, MemRef::Branchee
);
619 Assert(I
.getNumDestinations() != 0,
620 "Undefined behavior: indirectbr with no destinations", &I
);
623 void Lint::visitExtractElementInst(ExtractElementInst
&I
) {
624 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(findValue(I
.getIndexOperand(),
625 /*OffsetOk=*/false)))
626 Assert(CI
->getValue().ult(I
.getVectorOperandType()->getNumElements()),
627 "Undefined result: extractelement index out of range", &I
);
630 void Lint::visitInsertElementInst(InsertElementInst
&I
) {
631 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(findValue(I
.getOperand(2),
632 /*OffsetOk=*/false)))
633 Assert(CI
->getValue().ult(I
.getType()->getNumElements()),
634 "Undefined result: insertelement index out of range", &I
);
637 void Lint::visitUnreachableInst(UnreachableInst
&I
) {
638 // This isn't undefined behavior, it's merely suspicious.
639 Assert(&I
== &I
.getParent()->front() ||
640 std::prev(I
.getIterator())->mayHaveSideEffects(),
641 "Unusual: unreachable immediately preceded by instruction without "
646 /// findValue - Look through bitcasts and simple memory reference patterns
647 /// to identify an equivalent, but more informative, value. If OffsetOk
648 /// is true, look through getelementptrs with non-zero offsets too.
650 /// Most analysis passes don't require this logic, because instcombine
651 /// will simplify most of these kinds of things away. But it's a goal of
652 /// this Lint pass to be useful even on non-optimized IR.
653 Value
*Lint::findValue(Value
*V
, bool OffsetOk
) const {
654 SmallPtrSet
<Value
*, 4> Visited
;
655 return findValueImpl(V
, OffsetOk
, Visited
);
658 /// findValueImpl - Implementation helper for findValue.
659 Value
*Lint::findValueImpl(Value
*V
, bool OffsetOk
,
660 SmallPtrSetImpl
<Value
*> &Visited
) const {
661 // Detect self-referential values.
662 if (!Visited
.insert(V
).second
)
663 return UndefValue::get(V
->getType());
665 // TODO: Look through sext or zext cast, when the result is known to
666 // be interpreted as signed or unsigned, respectively.
667 // TODO: Look through eliminable cast pairs.
668 // TODO: Look through calls with unique return values.
669 // TODO: Look through vector insert/extract/shuffle.
670 V
= OffsetOk
? GetUnderlyingObject(V
, *DL
) : V
->stripPointerCasts();
671 if (LoadInst
*L
= dyn_cast
<LoadInst
>(V
)) {
672 BasicBlock::iterator BBI
= L
->getIterator();
673 BasicBlock
*BB
= L
->getParent();
674 SmallPtrSet
<BasicBlock
*, 4> VisitedBlocks
;
676 if (!VisitedBlocks
.insert(BB
).second
)
679 FindAvailableLoadedValue(L
, BB
, BBI
, DefMaxInstsToScan
, AA
))
680 return findValueImpl(U
, OffsetOk
, Visited
);
681 if (BBI
!= BB
->begin()) break;
682 BB
= BB
->getUniquePredecessor();
686 } else if (PHINode
*PN
= dyn_cast
<PHINode
>(V
)) {
687 if (Value
*W
= PN
->hasConstantValue())
689 return findValueImpl(W
, OffsetOk
, Visited
);
690 } else if (CastInst
*CI
= dyn_cast
<CastInst
>(V
)) {
691 if (CI
->isNoopCast(*DL
))
692 return findValueImpl(CI
->getOperand(0), OffsetOk
, Visited
);
693 } else if (ExtractValueInst
*Ex
= dyn_cast
<ExtractValueInst
>(V
)) {
694 if (Value
*W
= FindInsertedValue(Ex
->getAggregateOperand(),
697 return findValueImpl(W
, OffsetOk
, Visited
);
698 } else if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
)) {
699 // Same as above, but for ConstantExpr instead of Instruction.
700 if (Instruction::isCast(CE
->getOpcode())) {
701 if (CastInst::isNoopCast(Instruction::CastOps(CE
->getOpcode()),
702 CE
->getOperand(0)->getType(), CE
->getType(),
704 return findValueImpl(CE
->getOperand(0), OffsetOk
, Visited
);
705 } else if (CE
->getOpcode() == Instruction::ExtractValue
) {
706 ArrayRef
<unsigned> Indices
= CE
->getIndices();
707 if (Value
*W
= FindInsertedValue(CE
->getOperand(0), Indices
))
709 return findValueImpl(W
, OffsetOk
, Visited
);
713 // As a last resort, try SimplifyInstruction or constant folding.
714 if (Instruction
*Inst
= dyn_cast
<Instruction
>(V
)) {
715 if (Value
*W
= SimplifyInstruction(Inst
, {*DL
, TLI
, DT
, AC
}))
716 return findValueImpl(W
, OffsetOk
, Visited
);
717 } else if (auto *C
= dyn_cast
<Constant
>(V
)) {
718 if (Value
*W
= ConstantFoldConstant(C
, *DL
, TLI
))
720 return findValueImpl(W
, OffsetOk
, Visited
);
726 //===----------------------------------------------------------------------===//
727 // Implement the public interfaces to this file...
728 //===----------------------------------------------------------------------===//
730 FunctionPass
*llvm::createLintPass() {
734 /// lintFunction - Check a function for errors, printing messages on stderr.
736 void llvm::lintFunction(const Function
&f
) {
737 Function
&F
= const_cast<Function
&>(f
);
738 assert(!F
.isDeclaration() && "Cannot lint external functions");
740 legacy::FunctionPassManager
FPM(F
.getParent());
741 Lint
*V
= new Lint();
746 /// lintModule - Check a module for errors, printing messages on stderr.
748 void llvm::lintModule(const Module
&M
) {
749 legacy::PassManager PM
;
750 Lint
*V
= new Lint();
752 PM
.run(const_cast<Module
&>(M
));