1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // The implementation for the loop memory dependence that was originally
11 // developed for the loop vectorizer.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Analysis/LoopAccessAnalysis.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/EquivalenceClasses.h"
20 #include "llvm/ADT/PointerIntPair.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/iterator_range.h"
27 #include "llvm/Analysis/AliasAnalysis.h"
28 #include "llvm/Analysis/AliasSetTracker.h"
29 #include "llvm/Analysis/LoopAnalysisManager.h"
30 #include "llvm/Analysis/LoopInfo.h"
31 #include "llvm/Analysis/MemoryLocation.h"
32 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
33 #include "llvm/Analysis/ScalarEvolution.h"
34 #include "llvm/Analysis/ScalarEvolutionExpander.h"
35 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
36 #include "llvm/Analysis/TargetLibraryInfo.h"
37 #include "llvm/Analysis/ValueTracking.h"
38 #include "llvm/Analysis/VectorUtils.h"
39 #include "llvm/IR/BasicBlock.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/DiagnosticInfo.h"
45 #include "llvm/IR/Dominators.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/IRBuilder.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Instruction.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/Operator.h"
52 #include "llvm/IR/PassManager.h"
53 #include "llvm/IR/Type.h"
54 #include "llvm/IR/Value.h"
55 #include "llvm/IR/ValueHandle.h"
56 #include "llvm/Pass.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/CommandLine.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/raw_ostream.h"
72 #define DEBUG_TYPE "loop-accesses"
74 static cl::opt
<unsigned, true>
75 VectorizationFactor("force-vector-width", cl::Hidden
,
76 cl::desc("Sets the SIMD width. Zero is autoselect."),
77 cl::location(VectorizerParams::VectorizationFactor
));
78 unsigned VectorizerParams::VectorizationFactor
;
80 static cl::opt
<unsigned, true>
81 VectorizationInterleave("force-vector-interleave", cl::Hidden
,
82 cl::desc("Sets the vectorization interleave count. "
83 "Zero is autoselect."),
85 VectorizerParams::VectorizationInterleave
));
86 unsigned VectorizerParams::VectorizationInterleave
;
88 static cl::opt
<unsigned, true> RuntimeMemoryCheckThreshold(
89 "runtime-memory-check-threshold", cl::Hidden
,
90 cl::desc("When performing memory disambiguation checks at runtime do not "
91 "generate more than this number of comparisons (default = 8)."),
92 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold
), cl::init(8));
93 unsigned VectorizerParams::RuntimeMemoryCheckThreshold
;
95 /// The maximum iterations used to merge memory checks
96 static cl::opt
<unsigned> MemoryCheckMergeThreshold(
97 "memory-check-merge-threshold", cl::Hidden
,
98 cl::desc("Maximum number of comparisons done when trying to merge "
99 "runtime memory checks. (default = 100)"),
102 /// Maximum SIMD width.
103 const unsigned VectorizerParams::MaxVectorWidth
= 64;
105 /// We collect dependences up to this threshold.
106 static cl::opt
<unsigned>
107 MaxDependences("max-dependences", cl::Hidden
,
108 cl::desc("Maximum number of dependences collected by "
109 "loop-access analysis (default = 100)"),
112 /// This enables versioning on the strides of symbolically striding memory
113 /// accesses in code like the following.
114 /// for (i = 0; i < N; ++i)
115 /// A[i * Stride1] += B[i * Stride2] ...
117 /// Will be roughly translated to
118 /// if (Stride1 == 1 && Stride2 == 1) {
119 /// for (i = 0; i < N; i+=4)
123 static cl::opt
<bool> EnableMemAccessVersioning(
124 "enable-mem-access-versioning", cl::init(true), cl::Hidden
,
125 cl::desc("Enable symbolic stride memory access versioning"));
127 /// Enable store-to-load forwarding conflict detection. This option can
128 /// be disabled for correctness testing.
129 static cl::opt
<bool> EnableForwardingConflictDetection(
130 "store-to-load-forwarding-conflict-detection", cl::Hidden
,
131 cl::desc("Enable conflict detection in loop-access analysis"),
134 bool VectorizerParams::isInterleaveForced() {
135 return ::VectorizationInterleave
.getNumOccurrences() > 0;
138 Value
*llvm::stripIntegerCast(Value
*V
) {
139 if (auto *CI
= dyn_cast
<CastInst
>(V
))
140 if (CI
->getOperand(0)->getType()->isIntegerTy())
141 return CI
->getOperand(0);
145 const SCEV
*llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution
&PSE
,
146 const ValueToValueMap
&PtrToStride
,
147 Value
*Ptr
, Value
*OrigPtr
) {
148 const SCEV
*OrigSCEV
= PSE
.getSCEV(Ptr
);
150 // If there is an entry in the map return the SCEV of the pointer with the
151 // symbolic stride replaced by one.
152 ValueToValueMap::const_iterator SI
=
153 PtrToStride
.find(OrigPtr
? OrigPtr
: Ptr
);
154 if (SI
!= PtrToStride
.end()) {
155 Value
*StrideVal
= SI
->second
;
158 StrideVal
= stripIntegerCast(StrideVal
);
160 ScalarEvolution
*SE
= PSE
.getSE();
161 const auto *U
= cast
<SCEVUnknown
>(SE
->getSCEV(StrideVal
));
163 static_cast<const SCEVConstant
*>(SE
->getOne(StrideVal
->getType()));
165 PSE
.addPredicate(*SE
->getEqualPredicate(U
, CT
));
166 auto *Expr
= PSE
.getSCEV(Ptr
);
168 LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV
169 << " by: " << *Expr
<< "\n");
173 // Otherwise, just return the SCEV of the original pointer.
177 /// Calculate Start and End points of memory access.
178 /// Let's assume A is the first access and B is a memory access on N-th loop
179 /// iteration. Then B is calculated as:
181 /// Step value may be positive or negative.
182 /// N is a calculated back-edge taken count:
183 /// N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0
184 /// Start and End points are calculated in the following way:
185 /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt,
186 /// where SizeOfElt is the size of single memory access in bytes.
188 /// There is no conflict when the intervals are disjoint:
189 /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End)
190 void RuntimePointerChecking::insert(Loop
*Lp
, Value
*Ptr
, bool WritePtr
,
191 unsigned DepSetId
, unsigned ASId
,
192 const ValueToValueMap
&Strides
,
193 PredicatedScalarEvolution
&PSE
) {
194 // Get the stride replaced scev.
195 const SCEV
*Sc
= replaceSymbolicStrideSCEV(PSE
, Strides
, Ptr
);
196 ScalarEvolution
*SE
= PSE
.getSE();
201 if (SE
->isLoopInvariant(Sc
, Lp
))
202 ScStart
= ScEnd
= Sc
;
204 const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(Sc
);
205 assert(AR
&& "Invalid addrec expression");
206 const SCEV
*Ex
= PSE
.getBackedgeTakenCount();
208 ScStart
= AR
->getStart();
209 ScEnd
= AR
->evaluateAtIteration(Ex
, *SE
);
210 const SCEV
*Step
= AR
->getStepRecurrence(*SE
);
212 // For expressions with negative step, the upper bound is ScStart and the
213 // lower bound is ScEnd.
214 if (const auto *CStep
= dyn_cast
<SCEVConstant
>(Step
)) {
215 if (CStep
->getValue()->isNegative())
216 std::swap(ScStart
, ScEnd
);
218 // Fallback case: the step is not constant, but we can still
219 // get the upper and lower bounds of the interval by using min/max
221 ScStart
= SE
->getUMinExpr(ScStart
, ScEnd
);
222 ScEnd
= SE
->getUMaxExpr(AR
->getStart(), ScEnd
);
224 // Add the size of the pointed element to ScEnd.
226 Ptr
->getType()->getPointerElementType()->getScalarSizeInBits() / 8;
227 const SCEV
*EltSizeSCEV
= SE
->getConstant(ScEnd
->getType(), EltSize
);
228 ScEnd
= SE
->getAddExpr(ScEnd
, EltSizeSCEV
);
231 Pointers
.emplace_back(Ptr
, ScStart
, ScEnd
, WritePtr
, DepSetId
, ASId
, Sc
);
234 SmallVector
<RuntimePointerChecking::PointerCheck
, 4>
235 RuntimePointerChecking::generateChecks() const {
236 SmallVector
<PointerCheck
, 4> Checks
;
238 for (unsigned I
= 0; I
< CheckingGroups
.size(); ++I
) {
239 for (unsigned J
= I
+ 1; J
< CheckingGroups
.size(); ++J
) {
240 const RuntimePointerChecking::CheckingPtrGroup
&CGI
= CheckingGroups
[I
];
241 const RuntimePointerChecking::CheckingPtrGroup
&CGJ
= CheckingGroups
[J
];
243 if (needsChecking(CGI
, CGJ
))
244 Checks
.push_back(std::make_pair(&CGI
, &CGJ
));
250 void RuntimePointerChecking::generateChecks(
251 MemoryDepChecker::DepCandidates
&DepCands
, bool UseDependencies
) {
252 assert(Checks
.empty() && "Checks is not empty");
253 groupChecks(DepCands
, UseDependencies
);
254 Checks
= generateChecks();
257 bool RuntimePointerChecking::needsChecking(const CheckingPtrGroup
&M
,
258 const CheckingPtrGroup
&N
) const {
259 for (unsigned I
= 0, EI
= M
.Members
.size(); EI
!= I
; ++I
)
260 for (unsigned J
= 0, EJ
= N
.Members
.size(); EJ
!= J
; ++J
)
261 if (needsChecking(M
.Members
[I
], N
.Members
[J
]))
266 /// Compare \p I and \p J and return the minimum.
267 /// Return nullptr in case we couldn't find an answer.
268 static const SCEV
*getMinFromExprs(const SCEV
*I
, const SCEV
*J
,
269 ScalarEvolution
*SE
) {
270 const SCEV
*Diff
= SE
->getMinusSCEV(J
, I
);
271 const SCEVConstant
*C
= dyn_cast
<const SCEVConstant
>(Diff
);
275 if (C
->getValue()->isNegative())
280 bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index
) {
281 const SCEV
*Start
= RtCheck
.Pointers
[Index
].Start
;
282 const SCEV
*End
= RtCheck
.Pointers
[Index
].End
;
284 // Compare the starts and ends with the known minimum and maximum
285 // of this set. We need to know how we compare against the min/max
286 // of the set in order to be able to emit memchecks.
287 const SCEV
*Min0
= getMinFromExprs(Start
, Low
, RtCheck
.SE
);
291 const SCEV
*Min1
= getMinFromExprs(End
, High
, RtCheck
.SE
);
295 // Update the low bound expression if we've found a new min value.
299 // Update the high bound expression if we've found a new max value.
303 Members
.push_back(Index
);
307 void RuntimePointerChecking::groupChecks(
308 MemoryDepChecker::DepCandidates
&DepCands
, bool UseDependencies
) {
309 // We build the groups from dependency candidates equivalence classes
311 // - We know that pointers in the same equivalence class share
312 // the same underlying object and therefore there is a chance
313 // that we can compare pointers
314 // - We wouldn't be able to merge two pointers for which we need
315 // to emit a memcheck. The classes in DepCands are already
316 // conveniently built such that no two pointers in the same
317 // class need checking against each other.
319 // We use the following (greedy) algorithm to construct the groups
320 // For every pointer in the equivalence class:
321 // For each existing group:
322 // - if the difference between this pointer and the min/max bounds
323 // of the group is a constant, then make the pointer part of the
324 // group and update the min/max bounds of that group as required.
326 CheckingGroups
.clear();
328 // If we need to check two pointers to the same underlying object
329 // with a non-constant difference, we shouldn't perform any pointer
330 // grouping with those pointers. This is because we can easily get
331 // into cases where the resulting check would return false, even when
332 // the accesses are safe.
334 // The following example shows this:
335 // for (i = 0; i < 1000; ++i)
336 // a[5000 + i * m] = a[i] + a[i + 9000]
338 // Here grouping gives a check of (5000, 5000 + 1000 * m) against
339 // (0, 10000) which is always false. However, if m is 1, there is no
340 // dependence. Not grouping the checks for a[i] and a[i + 9000] allows
341 // us to perform an accurate check in this case.
343 // The above case requires that we have an UnknownDependence between
344 // accesses to the same underlying object. This cannot happen unless
345 // ShouldRetryWithRuntimeCheck is set, and therefore UseDependencies
346 // is also false. In this case we will use the fallback path and create
347 // separate checking groups for all pointers.
349 // If we don't have the dependency partitions, construct a new
350 // checking pointer group for each pointer. This is also required
351 // for correctness, because in this case we can have checking between
352 // pointers to the same underlying object.
353 if (!UseDependencies
) {
354 for (unsigned I
= 0; I
< Pointers
.size(); ++I
)
355 CheckingGroups
.push_back(CheckingPtrGroup(I
, *this));
359 unsigned TotalComparisons
= 0;
361 DenseMap
<Value
*, unsigned> PositionMap
;
362 for (unsigned Index
= 0; Index
< Pointers
.size(); ++Index
)
363 PositionMap
[Pointers
[Index
].PointerValue
] = Index
;
365 // We need to keep track of what pointers we've already seen so we
366 // don't process them twice.
367 SmallSet
<unsigned, 2> Seen
;
369 // Go through all equivalence classes, get the "pointer check groups"
370 // and add them to the overall solution. We use the order in which accesses
371 // appear in 'Pointers' to enforce determinism.
372 for (unsigned I
= 0; I
< Pointers
.size(); ++I
) {
373 // We've seen this pointer before, and therefore already processed
374 // its equivalence class.
378 MemoryDepChecker::MemAccessInfo
Access(Pointers
[I
].PointerValue
,
379 Pointers
[I
].IsWritePtr
);
381 SmallVector
<CheckingPtrGroup
, 2> Groups
;
382 auto LeaderI
= DepCands
.findValue(DepCands
.getLeaderValue(Access
));
384 // Because DepCands is constructed by visiting accesses in the order in
385 // which they appear in alias sets (which is deterministic) and the
386 // iteration order within an equivalence class member is only dependent on
387 // the order in which unions and insertions are performed on the
388 // equivalence class, the iteration order is deterministic.
389 for (auto MI
= DepCands
.member_begin(LeaderI
), ME
= DepCands
.member_end();
391 unsigned Pointer
= PositionMap
[MI
->getPointer()];
393 // Mark this pointer as seen.
394 Seen
.insert(Pointer
);
396 // Go through all the existing sets and see if we can find one
397 // which can include this pointer.
398 for (CheckingPtrGroup
&Group
: Groups
) {
399 // Don't perform more than a certain amount of comparisons.
400 // This should limit the cost of grouping the pointers to something
401 // reasonable. If we do end up hitting this threshold, the algorithm
402 // will create separate groups for all remaining pointers.
403 if (TotalComparisons
> MemoryCheckMergeThreshold
)
408 if (Group
.addPointer(Pointer
)) {
415 // We couldn't add this pointer to any existing set or the threshold
416 // for the number of comparisons has been reached. Create a new group
417 // to hold the current pointer.
418 Groups
.push_back(CheckingPtrGroup(Pointer
, *this));
421 // We've computed the grouped checks for this partition.
422 // Save the results and continue with the next one.
423 std::copy(Groups
.begin(), Groups
.end(), std::back_inserter(CheckingGroups
));
427 bool RuntimePointerChecking::arePointersInSamePartition(
428 const SmallVectorImpl
<int> &PtrToPartition
, unsigned PtrIdx1
,
430 return (PtrToPartition
[PtrIdx1
] != -1 &&
431 PtrToPartition
[PtrIdx1
] == PtrToPartition
[PtrIdx2
]);
434 bool RuntimePointerChecking::needsChecking(unsigned I
, unsigned J
) const {
435 const PointerInfo
&PointerI
= Pointers
[I
];
436 const PointerInfo
&PointerJ
= Pointers
[J
];
438 // No need to check if two readonly pointers intersect.
439 if (!PointerI
.IsWritePtr
&& !PointerJ
.IsWritePtr
)
442 // Only need to check pointers between two different dependency sets.
443 if (PointerI
.DependencySetId
== PointerJ
.DependencySetId
)
446 // Only need to check pointers in the same alias set.
447 if (PointerI
.AliasSetId
!= PointerJ
.AliasSetId
)
453 void RuntimePointerChecking::printChecks(
454 raw_ostream
&OS
, const SmallVectorImpl
<PointerCheck
> &Checks
,
455 unsigned Depth
) const {
457 for (const auto &Check
: Checks
) {
458 const auto &First
= Check
.first
->Members
, &Second
= Check
.second
->Members
;
460 OS
.indent(Depth
) << "Check " << N
++ << ":\n";
462 OS
.indent(Depth
+ 2) << "Comparing group (" << Check
.first
<< "):\n";
463 for (unsigned K
= 0; K
< First
.size(); ++K
)
464 OS
.indent(Depth
+ 2) << *Pointers
[First
[K
]].PointerValue
<< "\n";
466 OS
.indent(Depth
+ 2) << "Against group (" << Check
.second
<< "):\n";
467 for (unsigned K
= 0; K
< Second
.size(); ++K
)
468 OS
.indent(Depth
+ 2) << *Pointers
[Second
[K
]].PointerValue
<< "\n";
472 void RuntimePointerChecking::print(raw_ostream
&OS
, unsigned Depth
) const {
474 OS
.indent(Depth
) << "Run-time memory checks:\n";
475 printChecks(OS
, Checks
, Depth
);
477 OS
.indent(Depth
) << "Grouped accesses:\n";
478 for (unsigned I
= 0; I
< CheckingGroups
.size(); ++I
) {
479 const auto &CG
= CheckingGroups
[I
];
481 OS
.indent(Depth
+ 2) << "Group " << &CG
<< ":\n";
482 OS
.indent(Depth
+ 4) << "(Low: " << *CG
.Low
<< " High: " << *CG
.High
484 for (unsigned J
= 0; J
< CG
.Members
.size(); ++J
) {
485 OS
.indent(Depth
+ 6) << "Member: " << *Pointers
[CG
.Members
[J
]].Expr
493 /// Analyses memory accesses in a loop.
495 /// Checks whether run time pointer checks are needed and builds sets for data
496 /// dependence checking.
497 class AccessAnalysis
{
499 /// Read or write access location.
500 typedef PointerIntPair
<Value
*, 1, bool> MemAccessInfo
;
501 typedef SmallVector
<MemAccessInfo
, 8> MemAccessInfoList
;
503 AccessAnalysis(const DataLayout
&Dl
, Loop
*TheLoop
, AliasAnalysis
*AA
,
504 LoopInfo
*LI
, MemoryDepChecker::DepCandidates
&DA
,
505 PredicatedScalarEvolution
&PSE
)
506 : DL(Dl
), TheLoop(TheLoop
), AST(*AA
), LI(LI
), DepCands(DA
),
507 IsRTCheckAnalysisNeeded(false), PSE(PSE
) {}
509 /// Register a load and whether it is only read from.
510 void addLoad(MemoryLocation
&Loc
, bool IsReadOnly
) {
511 Value
*Ptr
= const_cast<Value
*>(Loc
.Ptr
);
512 AST
.add(Ptr
, LocationSize::unknown(), Loc
.AATags
);
513 Accesses
.insert(MemAccessInfo(Ptr
, false));
515 ReadOnlyPtr
.insert(Ptr
);
518 /// Register a store.
519 void addStore(MemoryLocation
&Loc
) {
520 Value
*Ptr
= const_cast<Value
*>(Loc
.Ptr
);
521 AST
.add(Ptr
, LocationSize::unknown(), Loc
.AATags
);
522 Accesses
.insert(MemAccessInfo(Ptr
, true));
525 /// Check if we can emit a run-time no-alias check for \p Access.
527 /// Returns true if we can emit a run-time no alias check for \p Access.
528 /// If we can check this access, this also adds it to a dependence set and
529 /// adds a run-time to check for it to \p RtCheck. If \p Assume is true,
530 /// we will attempt to use additional run-time checks in order to get
531 /// the bounds of the pointer.
532 bool createCheckForAccess(RuntimePointerChecking
&RtCheck
,
533 MemAccessInfo Access
,
534 const ValueToValueMap
&Strides
,
535 DenseMap
<Value
*, unsigned> &DepSetId
,
536 Loop
*TheLoop
, unsigned &RunningDepId
,
537 unsigned ASId
, bool ShouldCheckStride
,
540 /// Check whether we can check the pointers at runtime for
541 /// non-intersection.
543 /// Returns true if we need no check or if we do and we can generate them
544 /// (i.e. the pointers have computable bounds).
545 bool canCheckPtrAtRT(RuntimePointerChecking
&RtCheck
, ScalarEvolution
*SE
,
546 Loop
*TheLoop
, const ValueToValueMap
&Strides
,
547 bool ShouldCheckWrap
= false);
549 /// Goes over all memory accesses, checks whether a RT check is needed
550 /// and builds sets of dependent accesses.
551 void buildDependenceSets() {
552 processMemAccesses();
555 /// Initial processing of memory accesses determined that we need to
556 /// perform dependency checking.
558 /// Note that this can later be cleared if we retry memcheck analysis without
559 /// dependency checking (i.e. ShouldRetryWithRuntimeCheck).
560 bool isDependencyCheckNeeded() { return !CheckDeps
.empty(); }
562 /// We decided that no dependence analysis would be used. Reset the state.
563 void resetDepChecks(MemoryDepChecker
&DepChecker
) {
565 DepChecker
.clearDependences();
568 MemAccessInfoList
&getDependenciesToCheck() { return CheckDeps
; }
571 typedef SetVector
<MemAccessInfo
> PtrAccessSet
;
573 /// Go over all memory access and check whether runtime pointer checks
574 /// are needed and build sets of dependency check candidates.
575 void processMemAccesses();
577 /// Set of all accesses.
578 PtrAccessSet Accesses
;
580 const DataLayout
&DL
;
582 /// The loop being checked.
585 /// List of accesses that need a further dependence check.
586 MemAccessInfoList CheckDeps
;
588 /// Set of pointers that are read only.
589 SmallPtrSet
<Value
*, 16> ReadOnlyPtr
;
591 /// An alias set tracker to partition the access set by underlying object and
592 //intrinsic property (such as TBAA metadata).
597 /// Sets of potentially dependent accesses - members of one set share an
598 /// underlying pointer. The set "CheckDeps" identfies which sets really need a
599 /// dependence check.
600 MemoryDepChecker::DepCandidates
&DepCands
;
602 /// Initial processing of memory accesses determined that we may need
603 /// to add memchecks. Perform the analysis to determine the necessary checks.
605 /// Note that, this is different from isDependencyCheckNeeded. When we retry
606 /// memcheck analysis without dependency checking
607 /// (i.e. ShouldRetryWithRuntimeCheck), isDependencyCheckNeeded is cleared
608 /// while this remains set if we have potentially dependent accesses.
609 bool IsRTCheckAnalysisNeeded
;
611 /// The SCEV predicate containing all the SCEV-related assumptions.
612 PredicatedScalarEvolution
&PSE
;
615 } // end anonymous namespace
617 /// Check whether a pointer can participate in a runtime bounds check.
618 /// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr
619 /// by adding run-time checks (overflow checks) if necessary.
620 static bool hasComputableBounds(PredicatedScalarEvolution
&PSE
,
621 const ValueToValueMap
&Strides
, Value
*Ptr
,
622 Loop
*L
, bool Assume
) {
623 const SCEV
*PtrScev
= replaceSymbolicStrideSCEV(PSE
, Strides
, Ptr
);
625 // The bounds for loop-invariant pointer is trivial.
626 if (PSE
.getSE()->isLoopInvariant(PtrScev
, L
))
629 const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(PtrScev
);
632 AR
= PSE
.getAsAddRec(Ptr
);
637 return AR
->isAffine();
640 /// Check whether a pointer address cannot wrap.
641 static bool isNoWrap(PredicatedScalarEvolution
&PSE
,
642 const ValueToValueMap
&Strides
, Value
*Ptr
, Loop
*L
) {
643 const SCEV
*PtrScev
= PSE
.getSCEV(Ptr
);
644 if (PSE
.getSE()->isLoopInvariant(PtrScev
, L
))
647 int64_t Stride
= getPtrStride(PSE
, Ptr
, L
, Strides
);
648 if (Stride
== 1 || PSE
.hasNoOverflow(Ptr
, SCEVWrapPredicate::IncrementNUSW
))
654 bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking
&RtCheck
,
655 MemAccessInfo Access
,
656 const ValueToValueMap
&StridesMap
,
657 DenseMap
<Value
*, unsigned> &DepSetId
,
658 Loop
*TheLoop
, unsigned &RunningDepId
,
659 unsigned ASId
, bool ShouldCheckWrap
,
661 Value
*Ptr
= Access
.getPointer();
663 if (!hasComputableBounds(PSE
, StridesMap
, Ptr
, TheLoop
, Assume
))
666 // When we run after a failing dependency check we have to make sure
667 // we don't have wrapping pointers.
668 if (ShouldCheckWrap
&& !isNoWrap(PSE
, StridesMap
, Ptr
, TheLoop
)) {
669 auto *Expr
= PSE
.getSCEV(Ptr
);
670 if (!Assume
|| !isa
<SCEVAddRecExpr
>(Expr
))
672 PSE
.setNoOverflow(Ptr
, SCEVWrapPredicate::IncrementNUSW
);
675 // The id of the dependence set.
678 if (isDependencyCheckNeeded()) {
679 Value
*Leader
= DepCands
.getLeaderValue(Access
).getPointer();
680 unsigned &LeaderId
= DepSetId
[Leader
];
682 LeaderId
= RunningDepId
++;
685 // Each access has its own dependence set.
686 DepId
= RunningDepId
++;
688 bool IsWrite
= Access
.getInt();
689 RtCheck
.insert(TheLoop
, Ptr
, IsWrite
, DepId
, ASId
, StridesMap
, PSE
);
690 LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr
<< '\n');
695 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking
&RtCheck
,
696 ScalarEvolution
*SE
, Loop
*TheLoop
,
697 const ValueToValueMap
&StridesMap
,
698 bool ShouldCheckWrap
) {
699 // Find pointers with computable bounds. We are going to use this information
700 // to place a runtime bound check.
703 bool NeedRTCheck
= false;
704 if (!IsRTCheckAnalysisNeeded
) return true;
706 bool IsDepCheckNeeded
= isDependencyCheckNeeded();
708 // We assign a consecutive id to access from different alias sets.
709 // Accesses between different groups doesn't need to be checked.
711 for (auto &AS
: AST
) {
712 int NumReadPtrChecks
= 0;
713 int NumWritePtrChecks
= 0;
714 bool CanDoAliasSetRT
= true;
716 // We assign consecutive id to access from different dependence sets.
717 // Accesses within the same set don't need a runtime check.
718 unsigned RunningDepId
= 1;
719 DenseMap
<Value
*, unsigned> DepSetId
;
721 SmallVector
<MemAccessInfo
, 4> Retries
;
724 Value
*Ptr
= A
.getValue();
725 bool IsWrite
= Accesses
.count(MemAccessInfo(Ptr
, true));
726 MemAccessInfo
Access(Ptr
, IsWrite
);
733 if (!createCheckForAccess(RtCheck
, Access
, StridesMap
, DepSetId
, TheLoop
,
734 RunningDepId
, ASId
, ShouldCheckWrap
, false)) {
735 LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr
<< '\n');
736 Retries
.push_back(Access
);
737 CanDoAliasSetRT
= false;
741 // If we have at least two writes or one write and a read then we need to
742 // check them. But there is no need to checks if there is only one
743 // dependence set for this alias set.
745 // Note that this function computes CanDoRT and NeedRTCheck independently.
746 // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer
747 // for which we couldn't find the bounds but we don't actually need to emit
748 // any checks so it does not matter.
749 bool NeedsAliasSetRTCheck
= false;
750 if (!(IsDepCheckNeeded
&& CanDoAliasSetRT
&& RunningDepId
== 2))
751 NeedsAliasSetRTCheck
= (NumWritePtrChecks
>= 2 ||
752 (NumReadPtrChecks
>= 1 && NumWritePtrChecks
>= 1));
754 // We need to perform run-time alias checks, but some pointers had bounds
755 // that couldn't be checked.
756 if (NeedsAliasSetRTCheck
&& !CanDoAliasSetRT
) {
757 // Reset the CanDoSetRt flag and retry all accesses that have failed.
758 // We know that we need these checks, so we can now be more aggressive
759 // and add further checks if required (overflow checks).
760 CanDoAliasSetRT
= true;
761 for (auto Access
: Retries
)
762 if (!createCheckForAccess(RtCheck
, Access
, StridesMap
, DepSetId
,
763 TheLoop
, RunningDepId
, ASId
,
764 ShouldCheckWrap
, /*Assume=*/true)) {
765 CanDoAliasSetRT
= false;
770 CanDoRT
&= CanDoAliasSetRT
;
771 NeedRTCheck
|= NeedsAliasSetRTCheck
;
775 // If the pointers that we would use for the bounds comparison have different
776 // address spaces, assume the values aren't directly comparable, so we can't
777 // use them for the runtime check. We also have to assume they could
778 // overlap. In the future there should be metadata for whether address spaces
780 unsigned NumPointers
= RtCheck
.Pointers
.size();
781 for (unsigned i
= 0; i
< NumPointers
; ++i
) {
782 for (unsigned j
= i
+ 1; j
< NumPointers
; ++j
) {
783 // Only need to check pointers between two different dependency sets.
784 if (RtCheck
.Pointers
[i
].DependencySetId
==
785 RtCheck
.Pointers
[j
].DependencySetId
)
787 // Only need to check pointers in the same alias set.
788 if (RtCheck
.Pointers
[i
].AliasSetId
!= RtCheck
.Pointers
[j
].AliasSetId
)
791 Value
*PtrI
= RtCheck
.Pointers
[i
].PointerValue
;
792 Value
*PtrJ
= RtCheck
.Pointers
[j
].PointerValue
;
794 unsigned ASi
= PtrI
->getType()->getPointerAddressSpace();
795 unsigned ASj
= PtrJ
->getType()->getPointerAddressSpace();
798 dbgs() << "LAA: Runtime check would require comparison between"
799 " different address spaces\n");
805 if (NeedRTCheck
&& CanDoRT
)
806 RtCheck
.generateChecks(DepCands
, IsDepCheckNeeded
);
808 LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck
.getNumberOfChecks()
809 << " pointer comparisons.\n");
811 RtCheck
.Need
= NeedRTCheck
;
813 bool CanDoRTIfNeeded
= !NeedRTCheck
|| CanDoRT
;
814 if (!CanDoRTIfNeeded
)
816 return CanDoRTIfNeeded
;
819 void AccessAnalysis::processMemAccesses() {
820 // We process the set twice: first we process read-write pointers, last we
821 // process read-only pointers. This allows us to skip dependence tests for
822 // read-only pointers.
824 LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
825 LLVM_DEBUG(dbgs() << " AST: "; AST
.dump());
826 LLVM_DEBUG(dbgs() << "LAA: Accesses(" << Accesses
.size() << "):\n");
828 for (auto A
: Accesses
)
829 dbgs() << "\t" << *A
.getPointer() << " (" <<
830 (A
.getInt() ? "write" : (ReadOnlyPtr
.count(A
.getPointer()) ?
831 "read-only" : "read")) << ")\n";
834 // The AliasSetTracker has nicely partitioned our pointers by metadata
835 // compatibility and potential for underlying-object overlap. As a result, we
836 // only need to check for potential pointer dependencies within each alias
838 for (auto &AS
: AST
) {
839 // Note that both the alias-set tracker and the alias sets themselves used
840 // linked lists internally and so the iteration order here is deterministic
841 // (matching the original instruction order within each set).
843 bool SetHasWrite
= false;
845 // Map of pointers to last access encountered.
846 typedef DenseMap
<Value
*, MemAccessInfo
> UnderlyingObjToAccessMap
;
847 UnderlyingObjToAccessMap ObjToLastAccess
;
849 // Set of access to check after all writes have been processed.
850 PtrAccessSet DeferredAccesses
;
852 // Iterate over each alias set twice, once to process read/write pointers,
853 // and then to process read-only pointers.
854 for (int SetIteration
= 0; SetIteration
< 2; ++SetIteration
) {
855 bool UseDeferred
= SetIteration
> 0;
856 PtrAccessSet
&S
= UseDeferred
? DeferredAccesses
: Accesses
;
859 Value
*Ptr
= AV
.getValue();
861 // For a single memory access in AliasSetTracker, Accesses may contain
862 // both read and write, and they both need to be handled for CheckDeps.
864 if (AC
.getPointer() != Ptr
)
867 bool IsWrite
= AC
.getInt();
869 // If we're using the deferred access set, then it contains only
871 bool IsReadOnlyPtr
= ReadOnlyPtr
.count(Ptr
) && !IsWrite
;
872 if (UseDeferred
&& !IsReadOnlyPtr
)
874 // Otherwise, the pointer must be in the PtrAccessSet, either as a
876 assert(((IsReadOnlyPtr
&& UseDeferred
) || IsWrite
||
877 S
.count(MemAccessInfo(Ptr
, false))) &&
878 "Alias-set pointer not in the access set?");
880 MemAccessInfo
Access(Ptr
, IsWrite
);
881 DepCands
.insert(Access
);
883 // Memorize read-only pointers for later processing and skip them in
884 // the first round (they need to be checked after we have seen all
885 // write pointers). Note: we also mark pointer that are not
886 // consecutive as "read-only" pointers (so that we check
887 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
888 if (!UseDeferred
&& IsReadOnlyPtr
) {
889 DeferredAccesses
.insert(Access
);
893 // If this is a write - check other reads and writes for conflicts. If
894 // this is a read only check other writes for conflicts (but only if
895 // there is no other write to the ptr - this is an optimization to
896 // catch "a[i] = a[i] + " without having to do a dependence check).
897 if ((IsWrite
|| IsReadOnlyPtr
) && SetHasWrite
) {
898 CheckDeps
.push_back(Access
);
899 IsRTCheckAnalysisNeeded
= true;
905 // Create sets of pointers connected by a shared alias set and
906 // underlying object.
907 typedef SmallVector
<Value
*, 16> ValueVector
;
908 ValueVector TempObjects
;
910 GetUnderlyingObjects(Ptr
, TempObjects
, DL
, LI
);
912 << "Underlying objects for pointer " << *Ptr
<< "\n");
913 for (Value
*UnderlyingObj
: TempObjects
) {
914 // nullptr never alias, don't join sets for pointer that have "null"
915 // in their UnderlyingObjects list.
916 if (isa
<ConstantPointerNull
>(UnderlyingObj
) &&
917 !NullPointerIsDefined(
918 TheLoop
->getHeader()->getParent(),
919 UnderlyingObj
->getType()->getPointerAddressSpace()))
922 UnderlyingObjToAccessMap::iterator Prev
=
923 ObjToLastAccess
.find(UnderlyingObj
);
924 if (Prev
!= ObjToLastAccess
.end())
925 DepCands
.unionSets(Access
, Prev
->second
);
927 ObjToLastAccess
[UnderlyingObj
] = Access
;
928 LLVM_DEBUG(dbgs() << " " << *UnderlyingObj
<< "\n");
936 static bool isInBoundsGep(Value
*Ptr
) {
937 if (GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(Ptr
))
938 return GEP
->isInBounds();
942 /// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
943 /// i.e. monotonically increasing/decreasing.
944 static bool isNoWrapAddRec(Value
*Ptr
, const SCEVAddRecExpr
*AR
,
945 PredicatedScalarEvolution
&PSE
, const Loop
*L
) {
946 // FIXME: This should probably only return true for NUW.
947 if (AR
->getNoWrapFlags(SCEV::NoWrapMask
))
950 // Scalar evolution does not propagate the non-wrapping flags to values that
951 // are derived from a non-wrapping induction variable because non-wrapping
952 // could be flow-sensitive.
954 // Look through the potentially overflowing instruction to try to prove
955 // non-wrapping for the *specific* value of Ptr.
957 // The arithmetic implied by an inbounds GEP can't overflow.
958 auto *GEP
= dyn_cast
<GetElementPtrInst
>(Ptr
);
959 if (!GEP
|| !GEP
->isInBounds())
962 // Make sure there is only one non-const index and analyze that.
963 Value
*NonConstIndex
= nullptr;
964 for (Value
*Index
: make_range(GEP
->idx_begin(), GEP
->idx_end()))
965 if (!isa
<ConstantInt
>(Index
)) {
968 NonConstIndex
= Index
;
971 // The recurrence is on the pointer, ignore for now.
974 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW
975 // AddRec using a NSW operation.
976 if (auto *OBO
= dyn_cast
<OverflowingBinaryOperator
>(NonConstIndex
))
977 if (OBO
->hasNoSignedWrap() &&
978 // Assume constant for other the operand so that the AddRec can be
980 isa
<ConstantInt
>(OBO
->getOperand(1))) {
981 auto *OpScev
= PSE
.getSCEV(OBO
->getOperand(0));
983 if (auto *OpAR
= dyn_cast
<SCEVAddRecExpr
>(OpScev
))
984 return OpAR
->getLoop() == L
&& OpAR
->getNoWrapFlags(SCEV::FlagNSW
);
990 /// Check whether the access through \p Ptr has a constant stride.
991 int64_t llvm::getPtrStride(PredicatedScalarEvolution
&PSE
, Value
*Ptr
,
992 const Loop
*Lp
, const ValueToValueMap
&StridesMap
,
993 bool Assume
, bool ShouldCheckWrap
) {
994 Type
*Ty
= Ptr
->getType();
995 assert(Ty
->isPointerTy() && "Unexpected non-ptr");
997 // Make sure that the pointer does not point to aggregate types.
998 auto *PtrTy
= cast
<PointerType
>(Ty
);
999 if (PtrTy
->getElementType()->isAggregateType()) {
1000 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type"
1005 const SCEV
*PtrScev
= replaceSymbolicStrideSCEV(PSE
, StridesMap
, Ptr
);
1007 const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(PtrScev
);
1009 AR
= PSE
.getAsAddRec(Ptr
);
1012 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr
1013 << " SCEV: " << *PtrScev
<< "\n");
1017 // The accesss function must stride over the innermost loop.
1018 if (Lp
!= AR
->getLoop()) {
1019 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop "
1020 << *Ptr
<< " SCEV: " << *AR
<< "\n");
1024 // The address calculation must not wrap. Otherwise, a dependence could be
1026 // An inbounds getelementptr that is a AddRec with a unit stride
1027 // cannot wrap per definition. The unit stride requirement is checked later.
1028 // An getelementptr without an inbounds attribute and unit stride would have
1029 // to access the pointer value "0" which is undefined behavior in address
1030 // space 0, therefore we can also vectorize this case.
1031 bool IsInBoundsGEP
= isInBoundsGep(Ptr
);
1032 bool IsNoWrapAddRec
= !ShouldCheckWrap
||
1033 PSE
.hasNoOverflow(Ptr
, SCEVWrapPredicate::IncrementNUSW
) ||
1034 isNoWrapAddRec(Ptr
, AR
, PSE
, Lp
);
1035 if (!IsNoWrapAddRec
&& !IsInBoundsGEP
&&
1036 NullPointerIsDefined(Lp
->getHeader()->getParent(),
1037 PtrTy
->getAddressSpace())) {
1039 PSE
.setNoOverflow(Ptr
, SCEVWrapPredicate::IncrementNUSW
);
1040 IsNoWrapAddRec
= true;
1041 LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n"
1042 << "LAA: Pointer: " << *Ptr
<< "\n"
1043 << "LAA: SCEV: " << *AR
<< "\n"
1044 << "LAA: Added an overflow assumption\n");
1047 dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
1048 << *Ptr
<< " SCEV: " << *AR
<< "\n");
1053 // Check the step is constant.
1054 const SCEV
*Step
= AR
->getStepRecurrence(*PSE
.getSE());
1056 // Calculate the pointer stride and check if it is constant.
1057 const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(Step
);
1059 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr
1060 << " SCEV: " << *AR
<< "\n");
1064 auto &DL
= Lp
->getHeader()->getModule()->getDataLayout();
1065 int64_t Size
= DL
.getTypeAllocSize(PtrTy
->getElementType());
1066 const APInt
&APStepVal
= C
->getAPInt();
1068 // Huge step value - give up.
1069 if (APStepVal
.getBitWidth() > 64)
1072 int64_t StepVal
= APStepVal
.getSExtValue();
1075 int64_t Stride
= StepVal
/ Size
;
1076 int64_t Rem
= StepVal
% Size
;
1080 // If the SCEV could wrap but we have an inbounds gep with a unit stride we
1081 // know we can't "wrap around the address space". In case of address space
1082 // zero we know that this won't happen without triggering undefined behavior.
1083 if (!IsNoWrapAddRec
&& Stride
!= 1 && Stride
!= -1 &&
1084 (IsInBoundsGEP
|| !NullPointerIsDefined(Lp
->getHeader()->getParent(),
1085 PtrTy
->getAddressSpace()))) {
1087 // We can avoid this case by adding a run-time check.
1088 LLVM_DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either "
1089 << "inbouds or in address space 0 may wrap:\n"
1090 << "LAA: Pointer: " << *Ptr
<< "\n"
1091 << "LAA: SCEV: " << *AR
<< "\n"
1092 << "LAA: Added an overflow assumption\n");
1093 PSE
.setNoOverflow(Ptr
, SCEVWrapPredicate::IncrementNUSW
);
1101 bool llvm::sortPtrAccesses(ArrayRef
<Value
*> VL
, const DataLayout
&DL
,
1102 ScalarEvolution
&SE
,
1103 SmallVectorImpl
<unsigned> &SortedIndices
) {
1104 assert(llvm::all_of(
1105 VL
, [](const Value
*V
) { return V
->getType()->isPointerTy(); }) &&
1106 "Expected list of pointer operands.");
1107 SmallVector
<std::pair
<int64_t, Value
*>, 4> OffValPairs
;
1108 OffValPairs
.reserve(VL
.size());
1110 // Walk over the pointers, and map each of them to an offset relative to
1111 // first pointer in the array.
1112 Value
*Ptr0
= VL
[0];
1113 const SCEV
*Scev0
= SE
.getSCEV(Ptr0
);
1114 Value
*Obj0
= GetUnderlyingObject(Ptr0
, DL
);
1116 llvm::SmallSet
<int64_t, 4> Offsets
;
1117 for (auto *Ptr
: VL
) {
1118 // TODO: Outline this code as a special, more time consuming, version of
1119 // computeConstantDifference() function.
1120 if (Ptr
->getType()->getPointerAddressSpace() !=
1121 Ptr0
->getType()->getPointerAddressSpace())
1123 // If a pointer refers to a different underlying object, bail - the
1124 // pointers are by definition incomparable.
1125 Value
*CurrObj
= GetUnderlyingObject(Ptr
, DL
);
1126 if (CurrObj
!= Obj0
)
1129 const SCEV
*Scev
= SE
.getSCEV(Ptr
);
1130 const auto *Diff
= dyn_cast
<SCEVConstant
>(SE
.getMinusSCEV(Scev
, Scev0
));
1131 // The pointers may not have a constant offset from each other, or SCEV
1132 // may just not be smart enough to figure out they do. Regardless,
1133 // there's nothing we can do.
1137 // Check if the pointer with the same offset is found.
1138 int64_t Offset
= Diff
->getAPInt().getSExtValue();
1139 if (!Offsets
.insert(Offset
).second
)
1141 OffValPairs
.emplace_back(Offset
, Ptr
);
1143 SortedIndices
.clear();
1144 SortedIndices
.resize(VL
.size());
1145 std::iota(SortedIndices
.begin(), SortedIndices
.end(), 0);
1147 // Sort the memory accesses and keep the order of their uses in UseOrder.
1148 std::stable_sort(SortedIndices
.begin(), SortedIndices
.end(),
1149 [&OffValPairs
](unsigned Left
, unsigned Right
) {
1150 return OffValPairs
[Left
].first
< OffValPairs
[Right
].first
;
1153 // Check if the order is consecutive already.
1154 if (llvm::all_of(SortedIndices
, [&SortedIndices
](const unsigned I
) {
1155 return I
== SortedIndices
[I
];
1157 SortedIndices
.clear();
1162 /// Take the address space operand from the Load/Store instruction.
1163 /// Returns -1 if this is not a valid Load/Store instruction.
1164 static unsigned getAddressSpaceOperand(Value
*I
) {
1165 if (LoadInst
*L
= dyn_cast
<LoadInst
>(I
))
1166 return L
->getPointerAddressSpace();
1167 if (StoreInst
*S
= dyn_cast
<StoreInst
>(I
))
1168 return S
->getPointerAddressSpace();
1172 /// Returns true if the memory operations \p A and \p B are consecutive.
1173 bool llvm::isConsecutiveAccess(Value
*A
, Value
*B
, const DataLayout
&DL
,
1174 ScalarEvolution
&SE
, bool CheckType
) {
1175 Value
*PtrA
= getLoadStorePointerOperand(A
);
1176 Value
*PtrB
= getLoadStorePointerOperand(B
);
1177 unsigned ASA
= getAddressSpaceOperand(A
);
1178 unsigned ASB
= getAddressSpaceOperand(B
);
1180 // Check that the address spaces match and that the pointers are valid.
1181 if (!PtrA
|| !PtrB
|| (ASA
!= ASB
))
1184 // Make sure that A and B are different pointers.
1188 // Make sure that A and B have the same type if required.
1189 if (CheckType
&& PtrA
->getType() != PtrB
->getType())
1192 unsigned IdxWidth
= DL
.getIndexSizeInBits(ASA
);
1193 Type
*Ty
= cast
<PointerType
>(PtrA
->getType())->getElementType();
1194 APInt
Size(IdxWidth
, DL
.getTypeStoreSize(Ty
));
1196 APInt
OffsetA(IdxWidth
, 0), OffsetB(IdxWidth
, 0);
1197 PtrA
= PtrA
->stripAndAccumulateInBoundsConstantOffsets(DL
, OffsetA
);
1198 PtrB
= PtrB
->stripAndAccumulateInBoundsConstantOffsets(DL
, OffsetB
);
1200 // OffsetDelta = OffsetB - OffsetA;
1201 const SCEV
*OffsetSCEVA
= SE
.getConstant(OffsetA
);
1202 const SCEV
*OffsetSCEVB
= SE
.getConstant(OffsetB
);
1203 const SCEV
*OffsetDeltaSCEV
= SE
.getMinusSCEV(OffsetSCEVB
, OffsetSCEVA
);
1204 const SCEVConstant
*OffsetDeltaC
= dyn_cast
<SCEVConstant
>(OffsetDeltaSCEV
);
1205 const APInt
&OffsetDelta
= OffsetDeltaC
->getAPInt();
1206 // Check if they are based on the same pointer. That makes the offsets
1209 return OffsetDelta
== Size
;
1211 // Compute the necessary base pointer delta to have the necessary final delta
1212 // equal to the size.
1213 // BaseDelta = Size - OffsetDelta;
1214 const SCEV
*SizeSCEV
= SE
.getConstant(Size
);
1215 const SCEV
*BaseDelta
= SE
.getMinusSCEV(SizeSCEV
, OffsetDeltaSCEV
);
1217 // Otherwise compute the distance with SCEV between the base pointers.
1218 const SCEV
*PtrSCEVA
= SE
.getSCEV(PtrA
);
1219 const SCEV
*PtrSCEVB
= SE
.getSCEV(PtrB
);
1220 const SCEV
*X
= SE
.getAddExpr(PtrSCEVA
, BaseDelta
);
1221 return X
== PtrSCEVB
;
1224 bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type
) {
1228 case BackwardVectorizable
:
1232 case ForwardButPreventsForwarding
:
1234 case BackwardVectorizableButPreventsForwarding
:
1237 llvm_unreachable("unexpected DepType!");
1240 bool MemoryDepChecker::Dependence::isBackward() const {
1244 case ForwardButPreventsForwarding
:
1248 case BackwardVectorizable
:
1250 case BackwardVectorizableButPreventsForwarding
:
1253 llvm_unreachable("unexpected DepType!");
1256 bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
1257 return isBackward() || Type
== Unknown
;
1260 bool MemoryDepChecker::Dependence::isForward() const {
1263 case ForwardButPreventsForwarding
:
1268 case BackwardVectorizable
:
1270 case BackwardVectorizableButPreventsForwarding
:
1273 llvm_unreachable("unexpected DepType!");
1276 bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance
,
1277 uint64_t TypeByteSize
) {
1278 // If loads occur at a distance that is not a multiple of a feasible vector
1279 // factor store-load forwarding does not take place.
1280 // Positive dependences might cause troubles because vectorizing them might
1281 // prevent store-load forwarding making vectorized code run a lot slower.
1282 // a[i] = a[i-3] ^ a[i-8];
1283 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
1284 // hence on your typical architecture store-load forwarding does not take
1285 // place. Vectorizing in such cases does not make sense.
1286 // Store-load forwarding distance.
1288 // After this many iterations store-to-load forwarding conflicts should not
1289 // cause any slowdowns.
1290 const uint64_t NumItersForStoreLoadThroughMemory
= 8 * TypeByteSize
;
1291 // Maximum vector factor.
1292 uint64_t MaxVFWithoutSLForwardIssues
= std::min(
1293 VectorizerParams::MaxVectorWidth
* TypeByteSize
, MaxSafeDepDistBytes
);
1295 // Compute the smallest VF at which the store and load would be misaligned.
1296 for (uint64_t VF
= 2 * TypeByteSize
; VF
<= MaxVFWithoutSLForwardIssues
;
1298 // If the number of vector iteration between the store and the load are
1299 // small we could incur conflicts.
1300 if (Distance
% VF
&& Distance
/ VF
< NumItersForStoreLoadThroughMemory
) {
1301 MaxVFWithoutSLForwardIssues
= (VF
>>= 1);
1306 if (MaxVFWithoutSLForwardIssues
< 2 * TypeByteSize
) {
1308 dbgs() << "LAA: Distance " << Distance
1309 << " that could cause a store-load forwarding conflict\n");
1313 if (MaxVFWithoutSLForwardIssues
< MaxSafeDepDistBytes
&&
1314 MaxVFWithoutSLForwardIssues
!=
1315 VectorizerParams::MaxVectorWidth
* TypeByteSize
)
1316 MaxSafeDepDistBytes
= MaxVFWithoutSLForwardIssues
;
1320 /// Given a non-constant (unknown) dependence-distance \p Dist between two
1321 /// memory accesses, that have the same stride whose absolute value is given
1322 /// in \p Stride, and that have the same type size \p TypeByteSize,
1323 /// in a loop whose takenCount is \p BackedgeTakenCount, check if it is
1324 /// possible to prove statically that the dependence distance is larger
1325 /// than the range that the accesses will travel through the execution of
1326 /// the loop. If so, return true; false otherwise. This is useful for
1327 /// example in loops such as the following (PR31098):
1328 /// for (i = 0; i < D; ++i) {
1332 static bool isSafeDependenceDistance(const DataLayout
&DL
, ScalarEvolution
&SE
,
1333 const SCEV
&BackedgeTakenCount
,
1334 const SCEV
&Dist
, uint64_t Stride
,
1335 uint64_t TypeByteSize
) {
1337 // If we can prove that
1338 // (**) |Dist| > BackedgeTakenCount * Step
1339 // where Step is the absolute stride of the memory accesses in bytes,
1340 // then there is no dependence.
1343 // We basically want to check if the absolute distance (|Dist/Step|)
1344 // is >= the loop iteration count (or > BackedgeTakenCount).
1345 // This is equivalent to the Strong SIV Test (Practical Dependence Testing,
1346 // Section 4.2.1); Note, that for vectorization it is sufficient to prove
1347 // that the dependence distance is >= VF; This is checked elsewhere.
1348 // But in some cases we can prune unknown dependence distances early, and
1349 // even before selecting the VF, and without a runtime test, by comparing
1350 // the distance against the loop iteration count. Since the vectorized code
1351 // will be executed only if LoopCount >= VF, proving distance >= LoopCount
1352 // also guarantees that distance >= VF.
1354 const uint64_t ByteStride
= Stride
* TypeByteSize
;
1355 const SCEV
*Step
= SE
.getConstant(BackedgeTakenCount
.getType(), ByteStride
);
1356 const SCEV
*Product
= SE
.getMulExpr(&BackedgeTakenCount
, Step
);
1358 const SCEV
*CastedDist
= &Dist
;
1359 const SCEV
*CastedProduct
= Product
;
1360 uint64_t DistTypeSize
= DL
.getTypeAllocSize(Dist
.getType());
1361 uint64_t ProductTypeSize
= DL
.getTypeAllocSize(Product
->getType());
1363 // The dependence distance can be positive/negative, so we sign extend Dist;
1364 // The multiplication of the absolute stride in bytes and the
1365 // backdgeTakenCount is non-negative, so we zero extend Product.
1366 if (DistTypeSize
> ProductTypeSize
)
1367 CastedProduct
= SE
.getZeroExtendExpr(Product
, Dist
.getType());
1369 CastedDist
= SE
.getNoopOrSignExtend(&Dist
, Product
->getType());
1371 // Is Dist - (BackedgeTakenCount * Step) > 0 ?
1372 // (If so, then we have proven (**) because |Dist| >= Dist)
1373 const SCEV
*Minus
= SE
.getMinusSCEV(CastedDist
, CastedProduct
);
1374 if (SE
.isKnownPositive(Minus
))
1377 // Second try: Is -Dist - (BackedgeTakenCount * Step) > 0 ?
1378 // (If so, then we have proven (**) because |Dist| >= -1*Dist)
1379 const SCEV
*NegDist
= SE
.getNegativeSCEV(CastedDist
);
1380 Minus
= SE
.getMinusSCEV(NegDist
, CastedProduct
);
1381 if (SE
.isKnownPositive(Minus
))
1387 /// Check the dependence for two accesses with the same stride \p Stride.
1388 /// \p Distance is the positive distance and \p TypeByteSize is type size in
1391 /// \returns true if they are independent.
1392 static bool areStridedAccessesIndependent(uint64_t Distance
, uint64_t Stride
,
1393 uint64_t TypeByteSize
) {
1394 assert(Stride
> 1 && "The stride must be greater than 1");
1395 assert(TypeByteSize
> 0 && "The type size in byte must be non-zero");
1396 assert(Distance
> 0 && "The distance must be non-zero");
1398 // Skip if the distance is not multiple of type byte size.
1399 if (Distance
% TypeByteSize
)
1402 uint64_t ScaledDist
= Distance
/ TypeByteSize
;
1404 // No dependence if the scaled distance is not multiple of the stride.
1406 // for (i = 0; i < 1024 ; i += 4)
1407 // A[i+2] = A[i] + 1;
1409 // Two accesses in memory (scaled distance is 2, stride is 4):
1410 // | A[0] | | | | A[4] | | | |
1411 // | | | A[2] | | | | A[6] | |
1414 // for (i = 0; i < 1024 ; i += 3)
1415 // A[i+4] = A[i] + 1;
1417 // Two accesses in memory (scaled distance is 4, stride is 3):
1418 // | A[0] | | | A[3] | | | A[6] | | |
1419 // | | | | | A[4] | | | A[7] | |
1420 return ScaledDist
% Stride
;
1423 MemoryDepChecker::Dependence::DepType
1424 MemoryDepChecker::isDependent(const MemAccessInfo
&A
, unsigned AIdx
,
1425 const MemAccessInfo
&B
, unsigned BIdx
,
1426 const ValueToValueMap
&Strides
) {
1427 assert (AIdx
< BIdx
&& "Must pass arguments in program order");
1429 Value
*APtr
= A
.getPointer();
1430 Value
*BPtr
= B
.getPointer();
1431 bool AIsWrite
= A
.getInt();
1432 bool BIsWrite
= B
.getInt();
1434 // Two reads are independent.
1435 if (!AIsWrite
&& !BIsWrite
)
1436 return Dependence::NoDep
;
1438 // We cannot check pointers in different address spaces.
1439 if (APtr
->getType()->getPointerAddressSpace() !=
1440 BPtr
->getType()->getPointerAddressSpace())
1441 return Dependence::Unknown
;
1443 int64_t StrideAPtr
= getPtrStride(PSE
, APtr
, InnermostLoop
, Strides
, true);
1444 int64_t StrideBPtr
= getPtrStride(PSE
, BPtr
, InnermostLoop
, Strides
, true);
1446 const SCEV
*Src
= PSE
.getSCEV(APtr
);
1447 const SCEV
*Sink
= PSE
.getSCEV(BPtr
);
1449 // If the induction step is negative we have to invert source and sink of the
1451 if (StrideAPtr
< 0) {
1452 std::swap(APtr
, BPtr
);
1453 std::swap(Src
, Sink
);
1454 std::swap(AIsWrite
, BIsWrite
);
1455 std::swap(AIdx
, BIdx
);
1456 std::swap(StrideAPtr
, StrideBPtr
);
1459 const SCEV
*Dist
= PSE
.getSE()->getMinusSCEV(Sink
, Src
);
1461 LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src
<< "Sink Scev: " << *Sink
1462 << "(Induction step: " << StrideAPtr
<< ")\n");
1463 LLVM_DEBUG(dbgs() << "LAA: Distance for " << *InstMap
[AIdx
] << " to "
1464 << *InstMap
[BIdx
] << ": " << *Dist
<< "\n");
1466 // Need accesses with constant stride. We don't want to vectorize
1467 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
1468 // the address space.
1469 if (!StrideAPtr
|| !StrideBPtr
|| StrideAPtr
!= StrideBPtr
){
1470 LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n");
1471 return Dependence::Unknown
;
1474 Type
*ATy
= APtr
->getType()->getPointerElementType();
1475 Type
*BTy
= BPtr
->getType()->getPointerElementType();
1476 auto &DL
= InnermostLoop
->getHeader()->getModule()->getDataLayout();
1477 uint64_t TypeByteSize
= DL
.getTypeAllocSize(ATy
);
1478 uint64_t Stride
= std::abs(StrideAPtr
);
1479 const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(Dist
);
1481 if (TypeByteSize
== DL
.getTypeAllocSize(BTy
) &&
1482 isSafeDependenceDistance(DL
, *(PSE
.getSE()),
1483 *(PSE
.getBackedgeTakenCount()), *Dist
, Stride
,
1485 return Dependence::NoDep
;
1487 LLVM_DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n");
1488 ShouldRetryWithRuntimeCheck
= true;
1489 return Dependence::Unknown
;
1492 const APInt
&Val
= C
->getAPInt();
1493 int64_t Distance
= Val
.getSExtValue();
1495 // Attempt to prove strided accesses independent.
1496 if (std::abs(Distance
) > 0 && Stride
> 1 && ATy
== BTy
&&
1497 areStridedAccessesIndependent(std::abs(Distance
), Stride
, TypeByteSize
)) {
1498 LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
1499 return Dependence::NoDep
;
1502 // Negative distances are not plausible dependencies.
1503 if (Val
.isNegative()) {
1504 bool IsTrueDataDependence
= (AIsWrite
&& !BIsWrite
);
1505 if (IsTrueDataDependence
&& EnableForwardingConflictDetection
&&
1506 (couldPreventStoreLoadForward(Val
.abs().getZExtValue(), TypeByteSize
) ||
1508 LLVM_DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n");
1509 return Dependence::ForwardButPreventsForwarding
;
1512 LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n");
1513 return Dependence::Forward
;
1516 // Write to the same location with the same size.
1517 // Could be improved to assert type sizes are the same (i32 == float, etc).
1520 return Dependence::Forward
;
1522 dbgs() << "LAA: Zero dependence difference but different types\n");
1523 return Dependence::Unknown
;
1526 assert(Val
.isStrictlyPositive() && "Expect a positive value");
1531 << "LAA: ReadWrite-Write positive dependency with different types\n");
1532 return Dependence::Unknown
;
1535 // Bail out early if passed-in parameters make vectorization not feasible.
1536 unsigned ForcedFactor
= (VectorizerParams::VectorizationFactor
?
1537 VectorizerParams::VectorizationFactor
: 1);
1538 unsigned ForcedUnroll
= (VectorizerParams::VectorizationInterleave
?
1539 VectorizerParams::VectorizationInterleave
: 1);
1540 // The minimum number of iterations for a vectorized/unrolled version.
1541 unsigned MinNumIter
= std::max(ForcedFactor
* ForcedUnroll
, 2U);
1543 // It's not vectorizable if the distance is smaller than the minimum distance
1544 // needed for a vectroized/unrolled version. Vectorizing one iteration in
1545 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
1546 // TypeByteSize (No need to plus the last gap distance).
1548 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1550 // int *B = (int *)((char *)A + 14);
1551 // for (i = 0 ; i < 1024 ; i += 2)
1555 // Two accesses in memory (stride is 2):
1556 // | A[0] | | A[2] | | A[4] | | A[6] | |
1557 // | B[0] | | B[2] | | B[4] |
1559 // Distance needs for vectorizing iterations except the last iteration:
1560 // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4.
1561 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
1563 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
1564 // 12, which is less than distance.
1566 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
1567 // the minimum distance needed is 28, which is greater than distance. It is
1568 // not safe to do vectorization.
1569 uint64_t MinDistanceNeeded
=
1570 TypeByteSize
* Stride
* (MinNumIter
- 1) + TypeByteSize
;
1571 if (MinDistanceNeeded
> static_cast<uint64_t>(Distance
)) {
1572 LLVM_DEBUG(dbgs() << "LAA: Failure because of positive distance "
1573 << Distance
<< '\n');
1574 return Dependence::Backward
;
1577 // Unsafe if the minimum distance needed is greater than max safe distance.
1578 if (MinDistanceNeeded
> MaxSafeDepDistBytes
) {
1579 LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least "
1580 << MinDistanceNeeded
<< " size in bytes");
1581 return Dependence::Backward
;
1584 // Positive distance bigger than max vectorization factor.
1585 // FIXME: Should use max factor instead of max distance in bytes, which could
1586 // not handle different types.
1587 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1588 // void foo (int *A, char *B) {
1589 // for (unsigned i = 0; i < 1024; i++) {
1590 // A[i+2] = A[i] + 1;
1591 // B[i+2] = B[i] + 1;
1595 // This case is currently unsafe according to the max safe distance. If we
1596 // analyze the two accesses on array B, the max safe dependence distance
1597 // is 2. Then we analyze the accesses on array A, the minimum distance needed
1598 // is 8, which is less than 2 and forbidden vectorization, But actually
1599 // both A and B could be vectorized by 2 iterations.
1600 MaxSafeDepDistBytes
=
1601 std::min(static_cast<uint64_t>(Distance
), MaxSafeDepDistBytes
);
1603 bool IsTrueDataDependence
= (!AIsWrite
&& BIsWrite
);
1604 if (IsTrueDataDependence
&& EnableForwardingConflictDetection
&&
1605 couldPreventStoreLoadForward(Distance
, TypeByteSize
))
1606 return Dependence::BackwardVectorizableButPreventsForwarding
;
1608 uint64_t MaxVF
= MaxSafeDepDistBytes
/ (TypeByteSize
* Stride
);
1609 LLVM_DEBUG(dbgs() << "LAA: Positive distance " << Val
.getSExtValue()
1610 << " with max VF = " << MaxVF
<< '\n');
1611 uint64_t MaxVFInBits
= MaxVF
* TypeByteSize
* 8;
1612 MaxSafeRegisterWidth
= std::min(MaxSafeRegisterWidth
, MaxVFInBits
);
1613 return Dependence::BackwardVectorizable
;
1616 bool MemoryDepChecker::areDepsSafe(DepCandidates
&AccessSets
,
1617 MemAccessInfoList
&CheckDeps
,
1618 const ValueToValueMap
&Strides
) {
1620 MaxSafeDepDistBytes
= -1;
1621 SmallPtrSet
<MemAccessInfo
, 8> Visited
;
1622 for (MemAccessInfo CurAccess
: CheckDeps
) {
1623 if (Visited
.count(CurAccess
))
1626 // Get the relevant memory access set.
1627 EquivalenceClasses
<MemAccessInfo
>::iterator I
=
1628 AccessSets
.findValue(AccessSets
.getLeaderValue(CurAccess
));
1630 // Check accesses within this set.
1631 EquivalenceClasses
<MemAccessInfo
>::member_iterator AI
=
1632 AccessSets
.member_begin(I
);
1633 EquivalenceClasses
<MemAccessInfo
>::member_iterator AE
=
1634 AccessSets
.member_end();
1636 // Check every access pair.
1638 Visited
.insert(*AI
);
1639 EquivalenceClasses
<MemAccessInfo
>::member_iterator OI
= std::next(AI
);
1641 // Check every accessing instruction pair in program order.
1642 for (std::vector
<unsigned>::iterator I1
= Accesses
[*AI
].begin(),
1643 I1E
= Accesses
[*AI
].end(); I1
!= I1E
; ++I1
)
1644 for (std::vector
<unsigned>::iterator I2
= Accesses
[*OI
].begin(),
1645 I2E
= Accesses
[*OI
].end(); I2
!= I2E
; ++I2
) {
1646 auto A
= std::make_pair(&*AI
, *I1
);
1647 auto B
= std::make_pair(&*OI
, *I2
);
1653 Dependence::DepType Type
=
1654 isDependent(*A
.first
, A
.second
, *B
.first
, B
.second
, Strides
);
1655 SafeForVectorization
&= Dependence::isSafeForVectorization(Type
);
1657 // Gather dependences unless we accumulated MaxDependences
1658 // dependences. In that case return as soon as we find the first
1659 // unsafe dependence. This puts a limit on this quadratic
1661 if (RecordDependences
) {
1662 if (Type
!= Dependence::NoDep
)
1663 Dependences
.push_back(Dependence(A
.second
, B
.second
, Type
));
1665 if (Dependences
.size() >= MaxDependences
) {
1666 RecordDependences
= false;
1667 Dependences
.clear();
1669 << "Too many dependences, stopped recording\n");
1672 if (!RecordDependences
&& !SafeForVectorization
)
1681 LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences
.size() << "\n");
1682 return SafeForVectorization
;
1685 SmallVector
<Instruction
*, 4>
1686 MemoryDepChecker::getInstructionsForAccess(Value
*Ptr
, bool isWrite
) const {
1687 MemAccessInfo
Access(Ptr
, isWrite
);
1688 auto &IndexVector
= Accesses
.find(Access
)->second
;
1690 SmallVector
<Instruction
*, 4> Insts
;
1691 transform(IndexVector
,
1692 std::back_inserter(Insts
),
1693 [&](unsigned Idx
) { return this->InstMap
[Idx
]; });
1697 const char *MemoryDepChecker::Dependence::DepName
[] = {
1698 "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward",
1699 "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"};
1701 void MemoryDepChecker::Dependence::print(
1702 raw_ostream
&OS
, unsigned Depth
,
1703 const SmallVectorImpl
<Instruction
*> &Instrs
) const {
1704 OS
.indent(Depth
) << DepName
[Type
] << ":\n";
1705 OS
.indent(Depth
+ 2) << *Instrs
[Source
] << " -> \n";
1706 OS
.indent(Depth
+ 2) << *Instrs
[Destination
] << "\n";
1709 bool LoopAccessInfo::canAnalyzeLoop() {
1710 // We need to have a loop header.
1711 LLVM_DEBUG(dbgs() << "LAA: Found a loop in "
1712 << TheLoop
->getHeader()->getParent()->getName() << ": "
1713 << TheLoop
->getHeader()->getName() << '\n');
1715 // We can only analyze innermost loops.
1716 if (!TheLoop
->empty()) {
1717 LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
1718 recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop";
1722 // We must have a single backedge.
1723 if (TheLoop
->getNumBackEdges() != 1) {
1725 dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1726 recordAnalysis("CFGNotUnderstood")
1727 << "loop control flow is not understood by analyzer";
1731 // We must have a single exiting block.
1732 if (!TheLoop
->getExitingBlock()) {
1734 dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1735 recordAnalysis("CFGNotUnderstood")
1736 << "loop control flow is not understood by analyzer";
1740 // We only handle bottom-tested loops, i.e. loop in which the condition is
1741 // checked at the end of each iteration. With that we can assume that all
1742 // instructions in the loop are executed the same number of times.
1743 if (TheLoop
->getExitingBlock() != TheLoop
->getLoopLatch()) {
1745 dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1746 recordAnalysis("CFGNotUnderstood")
1747 << "loop control flow is not understood by analyzer";
1751 // ScalarEvolution needs to be able to find the exit count.
1752 const SCEV
*ExitCount
= PSE
->getBackedgeTakenCount();
1753 if (ExitCount
== PSE
->getSE()->getCouldNotCompute()) {
1754 recordAnalysis("CantComputeNumberOfIterations")
1755 << "could not determine number of loop iterations";
1756 LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
1763 void LoopAccessInfo::analyzeLoop(AliasAnalysis
*AA
, LoopInfo
*LI
,
1764 const TargetLibraryInfo
*TLI
,
1765 DominatorTree
*DT
) {
1766 typedef SmallPtrSet
<Value
*, 16> ValueSet
;
1768 // Holds the Load and Store instructions.
1769 SmallVector
<LoadInst
*, 16> Loads
;
1770 SmallVector
<StoreInst
*, 16> Stores
;
1772 // Holds all the different accesses in the loop.
1773 unsigned NumReads
= 0;
1774 unsigned NumReadWrites
= 0;
1776 PtrRtChecking
->Pointers
.clear();
1777 PtrRtChecking
->Need
= false;
1779 const bool IsAnnotatedParallel
= TheLoop
->isAnnotatedParallel();
1782 for (BasicBlock
*BB
: TheLoop
->blocks()) {
1783 // Scan the BB and collect legal loads and stores.
1784 for (Instruction
&I
: *BB
) {
1785 // If this is a load, save it. If this instruction can read from memory
1786 // but is not a load, then we quit. Notice that we don't handle function
1787 // calls that read or write.
1788 if (I
.mayReadFromMemory()) {
1789 // Many math library functions read the rounding mode. We will only
1790 // vectorize a loop if it contains known function calls that don't set
1791 // the flag. Therefore, it is safe to ignore this read from memory.
1792 auto *Call
= dyn_cast
<CallInst
>(&I
);
1793 if (Call
&& getVectorIntrinsicIDForCall(Call
, TLI
))
1796 // If the function has an explicit vectorized counterpart, we can safely
1797 // assume that it can be vectorized.
1798 if (Call
&& !Call
->isNoBuiltin() && Call
->getCalledFunction() &&
1799 TLI
->isFunctionVectorizable(Call
->getCalledFunction()->getName()))
1802 auto *Ld
= dyn_cast
<LoadInst
>(&I
);
1803 if (!Ld
|| (!Ld
->isSimple() && !IsAnnotatedParallel
)) {
1804 recordAnalysis("NonSimpleLoad", Ld
)
1805 << "read with atomic ordering or volatile read";
1806 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
1811 Loads
.push_back(Ld
);
1812 DepChecker
->addAccess(Ld
);
1813 if (EnableMemAccessVersioning
)
1814 collectStridedAccess(Ld
);
1818 // Save 'store' instructions. Abort if other instructions write to memory.
1819 if (I
.mayWriteToMemory()) {
1820 auto *St
= dyn_cast
<StoreInst
>(&I
);
1822 recordAnalysis("CantVectorizeInstruction", St
)
1823 << "instruction cannot be vectorized";
1827 if (!St
->isSimple() && !IsAnnotatedParallel
) {
1828 recordAnalysis("NonSimpleStore", St
)
1829 << "write with atomic ordering or volatile write";
1830 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
1835 Stores
.push_back(St
);
1836 DepChecker
->addAccess(St
);
1837 if (EnableMemAccessVersioning
)
1838 collectStridedAccess(St
);
1843 // Now we have two lists that hold the loads and the stores.
1844 // Next, we find the pointers that they use.
1846 // Check if we see any stores. If there are no stores, then we don't
1847 // care if the pointers are *restrict*.
1848 if (!Stores
.size()) {
1849 LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
1854 MemoryDepChecker::DepCandidates DependentAccesses
;
1855 AccessAnalysis
Accesses(TheLoop
->getHeader()->getModule()->getDataLayout(),
1856 TheLoop
, AA
, LI
, DependentAccesses
, *PSE
);
1858 // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
1859 // multiple times on the same object. If the ptr is accessed twice, once
1860 // for read and once for write, it will only appear once (on the write
1861 // list). This is okay, since we are going to check for conflicts between
1862 // writes and between reads and writes, but not between reads and reads.
1865 // Record uniform store addresses to identify if we have multiple stores
1866 // to the same address.
1867 ValueSet UniformStores
;
1869 for (StoreInst
*ST
: Stores
) {
1870 Value
*Ptr
= ST
->getPointerOperand();
1872 if (isUniform(Ptr
)) {
1873 // Consider multiple stores to the same uniform address as a store of a
1875 bool MultipleStoresToUniformPtr
= !UniformStores
.insert(Ptr
).second
;
1876 HasVariantStoreToLoopInvariantAddress
|=
1877 (!isUniform(ST
->getValueOperand()) || MultipleStoresToUniformPtr
);
1880 // If we did *not* see this pointer before, insert it to the read-write
1881 // list. At this phase it is only a 'write' list.
1882 if (Seen
.insert(Ptr
).second
) {
1885 MemoryLocation Loc
= MemoryLocation::get(ST
);
1886 // The TBAA metadata could have a control dependency on the predication
1887 // condition, so we cannot rely on it when determining whether or not we
1888 // need runtime pointer checks.
1889 if (blockNeedsPredication(ST
->getParent(), TheLoop
, DT
))
1890 Loc
.AATags
.TBAA
= nullptr;
1892 Accesses
.addStore(Loc
);
1896 if (IsAnnotatedParallel
) {
1898 dbgs() << "LAA: A loop annotated parallel, ignore memory dependency "
1904 for (LoadInst
*LD
: Loads
) {
1905 Value
*Ptr
= LD
->getPointerOperand();
1906 // If we did *not* see this pointer before, insert it to the
1907 // read list. If we *did* see it before, then it is already in
1908 // the read-write list. This allows us to vectorize expressions
1909 // such as A[i] += x; Because the address of A[i] is a read-write
1910 // pointer. This only works if the index of A[i] is consecutive.
1911 // If the address of i is unknown (for example A[B[i]]) then we may
1912 // read a few words, modify, and write a few words, and some of the
1913 // words may be written to the same address.
1914 bool IsReadOnlyPtr
= false;
1915 if (Seen
.insert(Ptr
).second
||
1916 !getPtrStride(*PSE
, Ptr
, TheLoop
, SymbolicStrides
)) {
1918 IsReadOnlyPtr
= true;
1921 MemoryLocation Loc
= MemoryLocation::get(LD
);
1922 // The TBAA metadata could have a control dependency on the predication
1923 // condition, so we cannot rely on it when determining whether or not we
1924 // need runtime pointer checks.
1925 if (blockNeedsPredication(LD
->getParent(), TheLoop
, DT
))
1926 Loc
.AATags
.TBAA
= nullptr;
1928 Accesses
.addLoad(Loc
, IsReadOnlyPtr
);
1931 // If we write (or read-write) to a single destination and there are no
1932 // other reads in this loop then is it safe to vectorize.
1933 if (NumReadWrites
== 1 && NumReads
== 0) {
1934 LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
1939 // Build dependence sets and check whether we need a runtime pointer bounds
1941 Accesses
.buildDependenceSets();
1943 // Find pointers with computable bounds. We are going to use this information
1944 // to place a runtime bound check.
1945 bool CanDoRTIfNeeded
= Accesses
.canCheckPtrAtRT(*PtrRtChecking
, PSE
->getSE(),
1946 TheLoop
, SymbolicStrides
);
1947 if (!CanDoRTIfNeeded
) {
1948 recordAnalysis("CantIdentifyArrayBounds") << "cannot identify array bounds";
1949 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
1950 << "the array bounds.\n");
1956 dbgs() << "LAA: We can perform a memory runtime check if needed.\n");
1959 if (Accesses
.isDependencyCheckNeeded()) {
1960 LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
1961 CanVecMem
= DepChecker
->areDepsSafe(
1962 DependentAccesses
, Accesses
.getDependenciesToCheck(), SymbolicStrides
);
1963 MaxSafeDepDistBytes
= DepChecker
->getMaxSafeDepDistBytes();
1965 if (!CanVecMem
&& DepChecker
->shouldRetryWithRuntimeCheck()) {
1966 LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
1968 // Clear the dependency checks. We assume they are not needed.
1969 Accesses
.resetDepChecks(*DepChecker
);
1971 PtrRtChecking
->reset();
1972 PtrRtChecking
->Need
= true;
1974 auto *SE
= PSE
->getSE();
1975 CanDoRTIfNeeded
= Accesses
.canCheckPtrAtRT(*PtrRtChecking
, SE
, TheLoop
,
1976 SymbolicStrides
, true);
1978 // Check that we found the bounds for the pointer.
1979 if (!CanDoRTIfNeeded
) {
1980 recordAnalysis("CantCheckMemDepsAtRunTime")
1981 << "cannot check memory dependencies at runtime";
1982 LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
1993 dbgs() << "LAA: No unsafe dependent memory operations in loop. We"
1994 << (PtrRtChecking
->Need
? "" : " don't")
1995 << " need runtime memory checks.\n");
1997 recordAnalysis("UnsafeMemDep")
1998 << "unsafe dependent memory operations in loop. Use "
1999 "#pragma loop distribute(enable) to allow loop distribution "
2000 "to attempt to isolate the offending operations into a separate "
2002 LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
2006 bool LoopAccessInfo::blockNeedsPredication(BasicBlock
*BB
, Loop
*TheLoop
,
2007 DominatorTree
*DT
) {
2008 assert(TheLoop
->contains(BB
) && "Unknown block used");
2010 // Blocks that do not dominate the latch need predication.
2011 BasicBlock
* Latch
= TheLoop
->getLoopLatch();
2012 return !DT
->dominates(BB
, Latch
);
2015 OptimizationRemarkAnalysis
&LoopAccessInfo::recordAnalysis(StringRef RemarkName
,
2017 assert(!Report
&& "Multiple reports generated");
2019 Value
*CodeRegion
= TheLoop
->getHeader();
2020 DebugLoc DL
= TheLoop
->getStartLoc();
2023 CodeRegion
= I
->getParent();
2024 // If there is no debug location attached to the instruction, revert back to
2025 // using the loop's.
2026 if (I
->getDebugLoc())
2027 DL
= I
->getDebugLoc();
2030 Report
= make_unique
<OptimizationRemarkAnalysis
>(DEBUG_TYPE
, RemarkName
, DL
,
2035 bool LoopAccessInfo::isUniform(Value
*V
) const {
2036 auto *SE
= PSE
->getSE();
2037 // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is
2038 // never considered uniform.
2039 // TODO: Is this really what we want? Even without FP SCEV, we may want some
2040 // trivially loop-invariant FP values to be considered uniform.
2041 if (!SE
->isSCEVable(V
->getType()))
2043 return (SE
->isLoopInvariant(SE
->getSCEV(V
), TheLoop
));
2046 // FIXME: this function is currently a duplicate of the one in
2047 // LoopVectorize.cpp.
2048 static Instruction
*getFirstInst(Instruction
*FirstInst
, Value
*V
,
2052 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
2053 return I
->getParent() == Loc
->getParent() ? I
: nullptr;
2059 /// IR Values for the lower and upper bounds of a pointer evolution. We
2060 /// need to use value-handles because SCEV expansion can invalidate previously
2061 /// expanded values. Thus expansion of a pointer can invalidate the bounds for
2063 struct PointerBounds
{
2064 TrackingVH
<Value
> Start
;
2065 TrackingVH
<Value
> End
;
2068 } // end anonymous namespace
2070 /// Expand code for the lower and upper bound of the pointer group \p CG
2071 /// in \p TheLoop. \return the values for the bounds.
2072 static PointerBounds
2073 expandBounds(const RuntimePointerChecking::CheckingPtrGroup
*CG
, Loop
*TheLoop
,
2074 Instruction
*Loc
, SCEVExpander
&Exp
, ScalarEvolution
*SE
,
2075 const RuntimePointerChecking
&PtrRtChecking
) {
2076 Value
*Ptr
= PtrRtChecking
.Pointers
[CG
->Members
[0]].PointerValue
;
2077 const SCEV
*Sc
= SE
->getSCEV(Ptr
);
2079 unsigned AS
= Ptr
->getType()->getPointerAddressSpace();
2080 LLVMContext
&Ctx
= Loc
->getContext();
2082 // Use this type for pointer arithmetic.
2083 Type
*PtrArithTy
= Type::getInt8PtrTy(Ctx
, AS
);
2085 if (SE
->isLoopInvariant(Sc
, TheLoop
)) {
2086 LLVM_DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:"
2088 // Ptr could be in the loop body. If so, expand a new one at the correct
2090 Instruction
*Inst
= dyn_cast
<Instruction
>(Ptr
);
2091 Value
*NewPtr
= (Inst
&& TheLoop
->contains(Inst
))
2092 ? Exp
.expandCodeFor(Sc
, PtrArithTy
, Loc
)
2094 // We must return a half-open range, which means incrementing Sc.
2095 const SCEV
*ScPlusOne
= SE
->getAddExpr(Sc
, SE
->getOne(PtrArithTy
));
2096 Value
*NewPtrPlusOne
= Exp
.expandCodeFor(ScPlusOne
, PtrArithTy
, Loc
);
2097 return {NewPtr
, NewPtrPlusOne
};
2099 Value
*Start
= nullptr, *End
= nullptr;
2100 LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
2101 Start
= Exp
.expandCodeFor(CG
->Low
, PtrArithTy
, Loc
);
2102 End
= Exp
.expandCodeFor(CG
->High
, PtrArithTy
, Loc
);
2103 LLVM_DEBUG(dbgs() << "Start: " << *CG
->Low
<< " End: " << *CG
->High
2105 return {Start
, End
};
2109 /// Turns a collection of checks into a collection of expanded upper and
2110 /// lower bounds for both pointers in the check.
2111 static SmallVector
<std::pair
<PointerBounds
, PointerBounds
>, 4> expandBounds(
2112 const SmallVectorImpl
<RuntimePointerChecking::PointerCheck
> &PointerChecks
,
2113 Loop
*L
, Instruction
*Loc
, ScalarEvolution
*SE
, SCEVExpander
&Exp
,
2114 const RuntimePointerChecking
&PtrRtChecking
) {
2115 SmallVector
<std::pair
<PointerBounds
, PointerBounds
>, 4> ChecksWithBounds
;
2117 // Here we're relying on the SCEV Expander's cache to only emit code for the
2118 // same bounds once.
2120 PointerChecks
, std::back_inserter(ChecksWithBounds
),
2121 [&](const RuntimePointerChecking::PointerCheck
&Check
) {
2123 First
= expandBounds(Check
.first
, L
, Loc
, Exp
, SE
, PtrRtChecking
),
2124 Second
= expandBounds(Check
.second
, L
, Loc
, Exp
, SE
, PtrRtChecking
);
2125 return std::make_pair(First
, Second
);
2128 return ChecksWithBounds
;
2131 std::pair
<Instruction
*, Instruction
*> LoopAccessInfo::addRuntimeChecks(
2133 const SmallVectorImpl
<RuntimePointerChecking::PointerCheck
> &PointerChecks
)
2135 const DataLayout
&DL
= TheLoop
->getHeader()->getModule()->getDataLayout();
2136 auto *SE
= PSE
->getSE();
2137 SCEVExpander
Exp(*SE
, DL
, "induction");
2138 auto ExpandedChecks
=
2139 expandBounds(PointerChecks
, TheLoop
, Loc
, SE
, Exp
, *PtrRtChecking
);
2141 LLVMContext
&Ctx
= Loc
->getContext();
2142 Instruction
*FirstInst
= nullptr;
2143 IRBuilder
<> ChkBuilder(Loc
);
2144 // Our instructions might fold to a constant.
2145 Value
*MemoryRuntimeCheck
= nullptr;
2147 for (const auto &Check
: ExpandedChecks
) {
2148 const PointerBounds
&A
= Check
.first
, &B
= Check
.second
;
2149 // Check if two pointers (A and B) conflict where conflict is computed as:
2150 // start(A) <= end(B) && start(B) <= end(A)
2151 unsigned AS0
= A
.Start
->getType()->getPointerAddressSpace();
2152 unsigned AS1
= B
.Start
->getType()->getPointerAddressSpace();
2154 assert((AS0
== B
.End
->getType()->getPointerAddressSpace()) &&
2155 (AS1
== A
.End
->getType()->getPointerAddressSpace()) &&
2156 "Trying to bounds check pointers with different address spaces");
2158 Type
*PtrArithTy0
= Type::getInt8PtrTy(Ctx
, AS0
);
2159 Type
*PtrArithTy1
= Type::getInt8PtrTy(Ctx
, AS1
);
2161 Value
*Start0
= ChkBuilder
.CreateBitCast(A
.Start
, PtrArithTy0
, "bc");
2162 Value
*Start1
= ChkBuilder
.CreateBitCast(B
.Start
, PtrArithTy1
, "bc");
2163 Value
*End0
= ChkBuilder
.CreateBitCast(A
.End
, PtrArithTy1
, "bc");
2164 Value
*End1
= ChkBuilder
.CreateBitCast(B
.End
, PtrArithTy0
, "bc");
2166 // [A|B].Start points to the first accessed byte under base [A|B].
2167 // [A|B].End points to the last accessed byte, plus one.
2168 // There is no conflict when the intervals are disjoint:
2169 // NoConflict = (B.Start >= A.End) || (A.Start >= B.End)
2171 // bound0 = (B.Start < A.End)
2172 // bound1 = (A.Start < B.End)
2173 // IsConflict = bound0 & bound1
2174 Value
*Cmp0
= ChkBuilder
.CreateICmpULT(Start0
, End1
, "bound0");
2175 FirstInst
= getFirstInst(FirstInst
, Cmp0
, Loc
);
2176 Value
*Cmp1
= ChkBuilder
.CreateICmpULT(Start1
, End0
, "bound1");
2177 FirstInst
= getFirstInst(FirstInst
, Cmp1
, Loc
);
2178 Value
*IsConflict
= ChkBuilder
.CreateAnd(Cmp0
, Cmp1
, "found.conflict");
2179 FirstInst
= getFirstInst(FirstInst
, IsConflict
, Loc
);
2180 if (MemoryRuntimeCheck
) {
2182 ChkBuilder
.CreateOr(MemoryRuntimeCheck
, IsConflict
, "conflict.rdx");
2183 FirstInst
= getFirstInst(FirstInst
, IsConflict
, Loc
);
2185 MemoryRuntimeCheck
= IsConflict
;
2188 if (!MemoryRuntimeCheck
)
2189 return std::make_pair(nullptr, nullptr);
2191 // We have to do this trickery because the IRBuilder might fold the check to a
2192 // constant expression in which case there is no Instruction anchored in a
2194 Instruction
*Check
= BinaryOperator::CreateAnd(MemoryRuntimeCheck
,
2195 ConstantInt::getTrue(Ctx
));
2196 ChkBuilder
.Insert(Check
, "memcheck.conflict");
2197 FirstInst
= getFirstInst(FirstInst
, Check
, Loc
);
2198 return std::make_pair(FirstInst
, Check
);
2201 std::pair
<Instruction
*, Instruction
*>
2202 LoopAccessInfo::addRuntimeChecks(Instruction
*Loc
) const {
2203 if (!PtrRtChecking
->Need
)
2204 return std::make_pair(nullptr, nullptr);
2206 return addRuntimeChecks(Loc
, PtrRtChecking
->getChecks());
2209 void LoopAccessInfo::collectStridedAccess(Value
*MemAccess
) {
2210 Value
*Ptr
= nullptr;
2211 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(MemAccess
))
2212 Ptr
= LI
->getPointerOperand();
2213 else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(MemAccess
))
2214 Ptr
= SI
->getPointerOperand();
2218 Value
*Stride
= getStrideFromPointer(Ptr
, PSE
->getSE(), TheLoop
);
2222 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for "
2224 LLVM_DEBUG(dbgs() << " Ptr: " << *Ptr
<< " Stride: " << *Stride
<< "\n");
2226 // Avoid adding the "Stride == 1" predicate when we know that
2227 // Stride >= Trip-Count. Such a predicate will effectively optimize a single
2228 // or zero iteration loop, as Trip-Count <= Stride == 1.
2230 // TODO: We are currently not making a very informed decision on when it is
2231 // beneficial to apply stride versioning. It might make more sense that the
2232 // users of this analysis (such as the vectorizer) will trigger it, based on
2233 // their specific cost considerations; For example, in cases where stride
2234 // versioning does not help resolving memory accesses/dependences, the
2235 // vectorizer should evaluate the cost of the runtime test, and the benefit
2236 // of various possible stride specializations, considering the alternatives
2237 // of using gather/scatters (if available).
2239 const SCEV
*StrideExpr
= PSE
->getSCEV(Stride
);
2240 const SCEV
*BETakenCount
= PSE
->getBackedgeTakenCount();
2242 // Match the types so we can compare the stride and the BETakenCount.
2243 // The Stride can be positive/negative, so we sign extend Stride;
2244 // The backdgeTakenCount is non-negative, so we zero extend BETakenCount.
2245 const DataLayout
&DL
= TheLoop
->getHeader()->getModule()->getDataLayout();
2246 uint64_t StrideTypeSize
= DL
.getTypeAllocSize(StrideExpr
->getType());
2247 uint64_t BETypeSize
= DL
.getTypeAllocSize(BETakenCount
->getType());
2248 const SCEV
*CastedStride
= StrideExpr
;
2249 const SCEV
*CastedBECount
= BETakenCount
;
2250 ScalarEvolution
*SE
= PSE
->getSE();
2251 if (BETypeSize
>= StrideTypeSize
)
2252 CastedStride
= SE
->getNoopOrSignExtend(StrideExpr
, BETakenCount
->getType());
2254 CastedBECount
= SE
->getZeroExtendExpr(BETakenCount
, StrideExpr
->getType());
2255 const SCEV
*StrideMinusBETaken
= SE
->getMinusSCEV(CastedStride
, CastedBECount
);
2256 // Since TripCount == BackEdgeTakenCount + 1, checking:
2257 // "Stride >= TripCount" is equivalent to checking:
2258 // Stride - BETakenCount > 0
2259 if (SE
->isKnownPositive(StrideMinusBETaken
)) {
2261 dbgs() << "LAA: Stride>=TripCount; No point in versioning as the "
2262 "Stride==1 predicate will imply that the loop executes "
2266 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version.");
2268 SymbolicStrides
[Ptr
] = Stride
;
2269 StrideSet
.insert(Stride
);
2272 LoopAccessInfo::LoopAccessInfo(Loop
*L
, ScalarEvolution
*SE
,
2273 const TargetLibraryInfo
*TLI
, AliasAnalysis
*AA
,
2274 DominatorTree
*DT
, LoopInfo
*LI
)
2275 : PSE(llvm::make_unique
<PredicatedScalarEvolution
>(*SE
, *L
)),
2276 PtrRtChecking(llvm::make_unique
<RuntimePointerChecking
>(SE
)),
2277 DepChecker(llvm::make_unique
<MemoryDepChecker
>(*PSE
, L
)), TheLoop(L
),
2278 NumLoads(0), NumStores(0), MaxSafeDepDistBytes(-1), CanVecMem(false),
2279 HasVariantStoreToLoopInvariantAddress(false) {
2280 if (canAnalyzeLoop())
2281 analyzeLoop(AA
, LI
, TLI
, DT
);
2284 void LoopAccessInfo::print(raw_ostream
&OS
, unsigned Depth
) const {
2286 OS
.indent(Depth
) << "Memory dependences are safe";
2287 if (MaxSafeDepDistBytes
!= -1ULL)
2288 OS
<< " with a maximum dependence distance of " << MaxSafeDepDistBytes
2290 if (PtrRtChecking
->Need
)
2291 OS
<< " with run-time checks";
2296 OS
.indent(Depth
) << "Report: " << Report
->getMsg() << "\n";
2298 if (auto *Dependences
= DepChecker
->getDependences()) {
2299 OS
.indent(Depth
) << "Dependences:\n";
2300 for (auto &Dep
: *Dependences
) {
2301 Dep
.print(OS
, Depth
+ 2, DepChecker
->getMemoryInstructions());
2305 OS
.indent(Depth
) << "Too many dependences, not recorded\n";
2307 // List the pair of accesses need run-time checks to prove independence.
2308 PtrRtChecking
->print(OS
, Depth
);
2311 OS
.indent(Depth
) << "Variant Store to invariant address was "
2312 << (HasVariantStoreToLoopInvariantAddress
? "" : "not ")
2313 << "found in loop.\n";
2315 OS
.indent(Depth
) << "SCEV assumptions:\n";
2316 PSE
->getUnionPredicate().print(OS
, Depth
);
2320 OS
.indent(Depth
) << "Expressions re-written:\n";
2321 PSE
->print(OS
, Depth
);
2324 const LoopAccessInfo
&LoopAccessLegacyAnalysis::getInfo(Loop
*L
) {
2325 auto &LAI
= LoopAccessInfoMap
[L
];
2328 LAI
= llvm::make_unique
<LoopAccessInfo
>(L
, SE
, TLI
, AA
, DT
, LI
);
2333 void LoopAccessLegacyAnalysis::print(raw_ostream
&OS
, const Module
*M
) const {
2334 LoopAccessLegacyAnalysis
&LAA
= *const_cast<LoopAccessLegacyAnalysis
*>(this);
2336 for (Loop
*TopLevelLoop
: *LI
)
2337 for (Loop
*L
: depth_first(TopLevelLoop
)) {
2338 OS
.indent(2) << L
->getHeader()->getName() << ":\n";
2339 auto &LAI
= LAA
.getInfo(L
);
2344 bool LoopAccessLegacyAnalysis::runOnFunction(Function
&F
) {
2345 SE
= &getAnalysis
<ScalarEvolutionWrapperPass
>().getSE();
2346 auto *TLIP
= getAnalysisIfAvailable
<TargetLibraryInfoWrapperPass
>();
2347 TLI
= TLIP
? &TLIP
->getTLI() : nullptr;
2348 AA
= &getAnalysis
<AAResultsWrapperPass
>().getAAResults();
2349 DT
= &getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
2350 LI
= &getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
2355 void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage
&AU
) const {
2356 AU
.addRequired
<ScalarEvolutionWrapperPass
>();
2357 AU
.addRequired
<AAResultsWrapperPass
>();
2358 AU
.addRequired
<DominatorTreeWrapperPass
>();
2359 AU
.addRequired
<LoopInfoWrapperPass
>();
2361 AU
.setPreservesAll();
2364 char LoopAccessLegacyAnalysis::ID
= 0;
2365 static const char laa_name
[] = "Loop Access Analysis";
2366 #define LAA_NAME "loop-accesses"
2368 INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis
, LAA_NAME
, laa_name
, false, true)
2369 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass
)
2370 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass
)
2371 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
2372 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass
)
2373 INITIALIZE_PASS_END(LoopAccessLegacyAnalysis
, LAA_NAME
, laa_name
, false, true)
2375 AnalysisKey
LoopAccessAnalysis::Key
;
2377 LoopAccessInfo
LoopAccessAnalysis::run(Loop
&L
, LoopAnalysisManager
&AM
,
2378 LoopStandardAnalysisResults
&AR
) {
2379 return LoopAccessInfo(&L
, &AR
.SE
, &AR
.TLI
, &AR
.AA
, &AR
.DT
, &AR
.LI
);
2384 Pass
*createLAAPass() {
2385 return new LoopAccessLegacyAnalysis();
2388 } // end namespace llvm