[llvm-exegesis] Fix missing std::move.
[llvm-complete.git] / lib / Analysis / MemoryDependenceAnalysis.cpp
blob2fe012d3865bcf6194441e234ae7d74a6c3254d2
1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements an analysis that determines, for a given memory
11 // operation, what preceding memory operations it depends on. It builds on
12 // alias analysis information, and tries to provide a lazy, caching interface to
13 // a common kind of alias information query.
15 //===----------------------------------------------------------------------===//
17 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/MemoryBuiltins.h"
26 #include "llvm/Analysis/MemoryLocation.h"
27 #include "llvm/Analysis/OrderedBasicBlock.h"
28 #include "llvm/Analysis/PHITransAddr.h"
29 #include "llvm/Analysis/PhiValues.h"
30 #include "llvm/Analysis/TargetLibraryInfo.h"
31 #include "llvm/Analysis/ValueTracking.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/CallSite.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Dominators.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/InstrTypes.h"
41 #include "llvm/IR/Instruction.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/LLVMContext.h"
45 #include "llvm/IR/Metadata.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/IR/PredIteratorCache.h"
48 #include "llvm/IR/Type.h"
49 #include "llvm/IR/Use.h"
50 #include "llvm/IR/User.h"
51 #include "llvm/IR/Value.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/AtomicOrdering.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Compiler.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/MathExtras.h"
59 #include <algorithm>
60 #include <cassert>
61 #include <cstdint>
62 #include <iterator>
63 #include <utility>
65 using namespace llvm;
67 #define DEBUG_TYPE "memdep"
69 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
70 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
71 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
73 STATISTIC(NumCacheNonLocalPtr,
74 "Number of fully cached non-local ptr responses");
75 STATISTIC(NumCacheDirtyNonLocalPtr,
76 "Number of cached, but dirty, non-local ptr responses");
77 STATISTIC(NumUncacheNonLocalPtr, "Number of uncached non-local ptr responses");
78 STATISTIC(NumCacheCompleteNonLocalPtr,
79 "Number of block queries that were completely cached");
81 // Limit for the number of instructions to scan in a block.
83 static cl::opt<unsigned> BlockScanLimit(
84 "memdep-block-scan-limit", cl::Hidden, cl::init(100),
85 cl::desc("The number of instructions to scan in a block in memory "
86 "dependency analysis (default = 100)"));
88 static cl::opt<unsigned>
89 BlockNumberLimit("memdep-block-number-limit", cl::Hidden, cl::init(1000),
90 cl::desc("The number of blocks to scan during memory "
91 "dependency analysis (default = 1000)"));
93 // Limit on the number of memdep results to process.
94 static const unsigned int NumResultsLimit = 100;
96 /// This is a helper function that removes Val from 'Inst's set in ReverseMap.
97 ///
98 /// If the set becomes empty, remove Inst's entry.
99 template <typename KeyTy>
100 static void
101 RemoveFromReverseMap(DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>> &ReverseMap,
102 Instruction *Inst, KeyTy Val) {
103 typename DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>>::iterator InstIt =
104 ReverseMap.find(Inst);
105 assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
106 bool Found = InstIt->second.erase(Val);
107 assert(Found && "Invalid reverse map!");
108 (void)Found;
109 if (InstIt->second.empty())
110 ReverseMap.erase(InstIt);
113 /// If the given instruction references a specific memory location, fill in Loc
114 /// with the details, otherwise set Loc.Ptr to null.
116 /// Returns a ModRefInfo value describing the general behavior of the
117 /// instruction.
118 static ModRefInfo GetLocation(const Instruction *Inst, MemoryLocation &Loc,
119 const TargetLibraryInfo &TLI) {
120 if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
121 if (LI->isUnordered()) {
122 Loc = MemoryLocation::get(LI);
123 return ModRefInfo::Ref;
125 if (LI->getOrdering() == AtomicOrdering::Monotonic) {
126 Loc = MemoryLocation::get(LI);
127 return ModRefInfo::ModRef;
129 Loc = MemoryLocation();
130 return ModRefInfo::ModRef;
133 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
134 if (SI->isUnordered()) {
135 Loc = MemoryLocation::get(SI);
136 return ModRefInfo::Mod;
138 if (SI->getOrdering() == AtomicOrdering::Monotonic) {
139 Loc = MemoryLocation::get(SI);
140 return ModRefInfo::ModRef;
142 Loc = MemoryLocation();
143 return ModRefInfo::ModRef;
146 if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
147 Loc = MemoryLocation::get(V);
148 return ModRefInfo::ModRef;
151 if (const CallInst *CI = isFreeCall(Inst, &TLI)) {
152 // calls to free() deallocate the entire structure
153 Loc = MemoryLocation(CI->getArgOperand(0));
154 return ModRefInfo::Mod;
157 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
158 switch (II->getIntrinsicID()) {
159 case Intrinsic::lifetime_start:
160 case Intrinsic::lifetime_end:
161 case Intrinsic::invariant_start:
162 Loc = MemoryLocation::getForArgument(II, 1, TLI);
163 // These intrinsics don't really modify the memory, but returning Mod
164 // will allow them to be handled conservatively.
165 return ModRefInfo::Mod;
166 case Intrinsic::invariant_end:
167 Loc = MemoryLocation::getForArgument(II, 2, TLI);
168 // These intrinsics don't really modify the memory, but returning Mod
169 // will allow them to be handled conservatively.
170 return ModRefInfo::Mod;
171 default:
172 break;
176 // Otherwise, just do the coarse-grained thing that always works.
177 if (Inst->mayWriteToMemory())
178 return ModRefInfo::ModRef;
179 if (Inst->mayReadFromMemory())
180 return ModRefInfo::Ref;
181 return ModRefInfo::NoModRef;
184 /// Private helper for finding the local dependencies of a call site.
185 MemDepResult MemoryDependenceResults::getCallSiteDependencyFrom(
186 CallSite CS, bool isReadOnlyCall, BasicBlock::iterator ScanIt,
187 BasicBlock *BB) {
188 unsigned Limit = BlockScanLimit;
190 // Walk backwards through the block, looking for dependencies.
191 while (ScanIt != BB->begin()) {
192 Instruction *Inst = &*--ScanIt;
193 // Debug intrinsics don't cause dependences and should not affect Limit
194 if (isa<DbgInfoIntrinsic>(Inst))
195 continue;
197 // Limit the amount of scanning we do so we don't end up with quadratic
198 // running time on extreme testcases.
199 --Limit;
200 if (!Limit)
201 return MemDepResult::getUnknown();
203 // If this inst is a memory op, get the pointer it accessed
204 MemoryLocation Loc;
205 ModRefInfo MR = GetLocation(Inst, Loc, TLI);
206 if (Loc.Ptr) {
207 // A simple instruction.
208 if (isModOrRefSet(AA.getModRefInfo(CS, Loc)))
209 return MemDepResult::getClobber(Inst);
210 continue;
213 if (auto InstCS = CallSite(Inst)) {
214 // If these two calls do not interfere, look past it.
215 if (isNoModRef(AA.getModRefInfo(CS, InstCS))) {
216 // If the two calls are the same, return InstCS as a Def, so that
217 // CS can be found redundant and eliminated.
218 if (isReadOnlyCall && !isModSet(MR) &&
219 CS.getInstruction()->isIdenticalToWhenDefined(Inst))
220 return MemDepResult::getDef(Inst);
222 // Otherwise if the two calls don't interact (e.g. InstCS is readnone)
223 // keep scanning.
224 continue;
225 } else
226 return MemDepResult::getClobber(Inst);
229 // If we could not obtain a pointer for the instruction and the instruction
230 // touches memory then assume that this is a dependency.
231 if (isModOrRefSet(MR))
232 return MemDepResult::getClobber(Inst);
235 // No dependence found. If this is the entry block of the function, it is
236 // unknown, otherwise it is non-local.
237 if (BB != &BB->getParent()->getEntryBlock())
238 return MemDepResult::getNonLocal();
239 return MemDepResult::getNonFuncLocal();
242 unsigned MemoryDependenceResults::getLoadLoadClobberFullWidthSize(
243 const Value *MemLocBase, int64_t MemLocOffs, unsigned MemLocSize,
244 const LoadInst *LI) {
245 // We can only extend simple integer loads.
246 if (!isa<IntegerType>(LI->getType()) || !LI->isSimple())
247 return 0;
249 // Load widening is hostile to ThreadSanitizer: it may cause false positives
250 // or make the reports more cryptic (access sizes are wrong).
251 if (LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread))
252 return 0;
254 const DataLayout &DL = LI->getModule()->getDataLayout();
256 // Get the base of this load.
257 int64_t LIOffs = 0;
258 const Value *LIBase =
259 GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, DL);
261 // If the two pointers are not based on the same pointer, we can't tell that
262 // they are related.
263 if (LIBase != MemLocBase)
264 return 0;
266 // Okay, the two values are based on the same pointer, but returned as
267 // no-alias. This happens when we have things like two byte loads at "P+1"
268 // and "P+3". Check to see if increasing the size of the "LI" load up to its
269 // alignment (or the largest native integer type) will allow us to load all
270 // the bits required by MemLoc.
272 // If MemLoc is before LI, then no widening of LI will help us out.
273 if (MemLocOffs < LIOffs)
274 return 0;
276 // Get the alignment of the load in bytes. We assume that it is safe to load
277 // any legal integer up to this size without a problem. For example, if we're
278 // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can
279 // widen it up to an i32 load. If it is known 2-byte aligned, we can widen it
280 // to i16.
281 unsigned LoadAlign = LI->getAlignment();
283 int64_t MemLocEnd = MemLocOffs + MemLocSize;
285 // If no amount of rounding up will let MemLoc fit into LI, then bail out.
286 if (LIOffs + LoadAlign < MemLocEnd)
287 return 0;
289 // This is the size of the load to try. Start with the next larger power of
290 // two.
291 unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits() / 8U;
292 NewLoadByteSize = NextPowerOf2(NewLoadByteSize);
294 while (true) {
295 // If this load size is bigger than our known alignment or would not fit
296 // into a native integer register, then we fail.
297 if (NewLoadByteSize > LoadAlign ||
298 !DL.fitsInLegalInteger(NewLoadByteSize * 8))
299 return 0;
301 if (LIOffs + NewLoadByteSize > MemLocEnd &&
302 (LI->getParent()->getParent()->hasFnAttribute(
303 Attribute::SanitizeAddress) ||
304 LI->getParent()->getParent()->hasFnAttribute(
305 Attribute::SanitizeHWAddress)))
306 // We will be reading past the location accessed by the original program.
307 // While this is safe in a regular build, Address Safety analysis tools
308 // may start reporting false warnings. So, don't do widening.
309 return 0;
311 // If a load of this width would include all of MemLoc, then we succeed.
312 if (LIOffs + NewLoadByteSize >= MemLocEnd)
313 return NewLoadByteSize;
315 NewLoadByteSize <<= 1;
319 static bool isVolatile(Instruction *Inst) {
320 if (auto *LI = dyn_cast<LoadInst>(Inst))
321 return LI->isVolatile();
322 if (auto *SI = dyn_cast<StoreInst>(Inst))
323 return SI->isVolatile();
324 if (auto *AI = dyn_cast<AtomicCmpXchgInst>(Inst))
325 return AI->isVolatile();
326 return false;
329 MemDepResult MemoryDependenceResults::getPointerDependencyFrom(
330 const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
331 BasicBlock *BB, Instruction *QueryInst, unsigned *Limit) {
332 MemDepResult InvariantGroupDependency = MemDepResult::getUnknown();
333 if (QueryInst != nullptr) {
334 if (auto *LI = dyn_cast<LoadInst>(QueryInst)) {
335 InvariantGroupDependency = getInvariantGroupPointerDependency(LI, BB);
337 if (InvariantGroupDependency.isDef())
338 return InvariantGroupDependency;
341 MemDepResult SimpleDep = getSimplePointerDependencyFrom(
342 MemLoc, isLoad, ScanIt, BB, QueryInst, Limit);
343 if (SimpleDep.isDef())
344 return SimpleDep;
345 // Non-local invariant group dependency indicates there is non local Def
346 // (it only returns nonLocal if it finds nonLocal def), which is better than
347 // local clobber and everything else.
348 if (InvariantGroupDependency.isNonLocal())
349 return InvariantGroupDependency;
351 assert(InvariantGroupDependency.isUnknown() &&
352 "InvariantGroupDependency should be only unknown at this point");
353 return SimpleDep;
356 MemDepResult
357 MemoryDependenceResults::getInvariantGroupPointerDependency(LoadInst *LI,
358 BasicBlock *BB) {
360 if (!LI->getMetadata(LLVMContext::MD_invariant_group))
361 return MemDepResult::getUnknown();
363 // Take the ptr operand after all casts and geps 0. This way we can search
364 // cast graph down only.
365 Value *LoadOperand = LI->getPointerOperand()->stripPointerCasts();
367 // It's is not safe to walk the use list of global value, because function
368 // passes aren't allowed to look outside their functions.
369 // FIXME: this could be fixed by filtering instructions from outside
370 // of current function.
371 if (isa<GlobalValue>(LoadOperand))
372 return MemDepResult::getUnknown();
374 // Queue to process all pointers that are equivalent to load operand.
375 SmallVector<const Value *, 8> LoadOperandsQueue;
376 LoadOperandsQueue.push_back(LoadOperand);
378 Instruction *ClosestDependency = nullptr;
379 // Order of instructions in uses list is unpredictible. In order to always
380 // get the same result, we will look for the closest dominance.
381 auto GetClosestDependency = [this](Instruction *Best, Instruction *Other) {
382 assert(Other && "Must call it with not null instruction");
383 if (Best == nullptr || DT.dominates(Best, Other))
384 return Other;
385 return Best;
388 // FIXME: This loop is O(N^2) because dominates can be O(n) and in worst case
389 // we will see all the instructions. This should be fixed in MSSA.
390 while (!LoadOperandsQueue.empty()) {
391 const Value *Ptr = LoadOperandsQueue.pop_back_val();
392 assert(Ptr && !isa<GlobalValue>(Ptr) &&
393 "Null or GlobalValue should not be inserted");
395 for (const Use &Us : Ptr->uses()) {
396 auto *U = dyn_cast<Instruction>(Us.getUser());
397 if (!U || U == LI || !DT.dominates(U, LI))
398 continue;
400 // Bitcast or gep with zeros are using Ptr. Add to queue to check it's
401 // users. U = bitcast Ptr
402 if (isa<BitCastInst>(U)) {
403 LoadOperandsQueue.push_back(U);
404 continue;
406 // Gep with zeros is equivalent to bitcast.
407 // FIXME: we are not sure if some bitcast should be canonicalized to gep 0
408 // or gep 0 to bitcast because of SROA, so there are 2 forms. When
409 // typeless pointers will be ready then both cases will be gone
410 // (and this BFS also won't be needed).
411 if (auto *GEP = dyn_cast<GetElementPtrInst>(U))
412 if (GEP->hasAllZeroIndices()) {
413 LoadOperandsQueue.push_back(U);
414 continue;
417 // If we hit load/store with the same invariant.group metadata (and the
418 // same pointer operand) we can assume that value pointed by pointer
419 // operand didn't change.
420 if ((isa<LoadInst>(U) || isa<StoreInst>(U)) &&
421 U->getMetadata(LLVMContext::MD_invariant_group) != nullptr)
422 ClosestDependency = GetClosestDependency(ClosestDependency, U);
426 if (!ClosestDependency)
427 return MemDepResult::getUnknown();
428 if (ClosestDependency->getParent() == BB)
429 return MemDepResult::getDef(ClosestDependency);
430 // Def(U) can't be returned here because it is non-local. If local
431 // dependency won't be found then return nonLocal counting that the
432 // user will call getNonLocalPointerDependency, which will return cached
433 // result.
434 NonLocalDefsCache.try_emplace(
435 LI, NonLocalDepResult(ClosestDependency->getParent(),
436 MemDepResult::getDef(ClosestDependency), nullptr));
437 ReverseNonLocalDefsCache[ClosestDependency].insert(LI);
438 return MemDepResult::getNonLocal();
441 MemDepResult MemoryDependenceResults::getSimplePointerDependencyFrom(
442 const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
443 BasicBlock *BB, Instruction *QueryInst, unsigned *Limit) {
444 bool isInvariantLoad = false;
446 if (!Limit) {
447 unsigned DefaultLimit = BlockScanLimit;
448 return getSimplePointerDependencyFrom(MemLoc, isLoad, ScanIt, BB, QueryInst,
449 &DefaultLimit);
452 // We must be careful with atomic accesses, as they may allow another thread
453 // to touch this location, clobbering it. We are conservative: if the
454 // QueryInst is not a simple (non-atomic) memory access, we automatically
455 // return getClobber.
456 // If it is simple, we know based on the results of
457 // "Compiler testing via a theory of sound optimisations in the C11/C++11
458 // memory model" in PLDI 2013, that a non-atomic location can only be
459 // clobbered between a pair of a release and an acquire action, with no
460 // access to the location in between.
461 // Here is an example for giving the general intuition behind this rule.
462 // In the following code:
463 // store x 0;
464 // release action; [1]
465 // acquire action; [4]
466 // %val = load x;
467 // It is unsafe to replace %val by 0 because another thread may be running:
468 // acquire action; [2]
469 // store x 42;
470 // release action; [3]
471 // with synchronization from 1 to 2 and from 3 to 4, resulting in %val
472 // being 42. A key property of this program however is that if either
473 // 1 or 4 were missing, there would be a race between the store of 42
474 // either the store of 0 or the load (making the whole program racy).
475 // The paper mentioned above shows that the same property is respected
476 // by every program that can detect any optimization of that kind: either
477 // it is racy (undefined) or there is a release followed by an acquire
478 // between the pair of accesses under consideration.
480 // If the load is invariant, we "know" that it doesn't alias *any* write. We
481 // do want to respect mustalias results since defs are useful for value
482 // forwarding, but any mayalias write can be assumed to be noalias.
483 // Arguably, this logic should be pushed inside AliasAnalysis itself.
484 if (isLoad && QueryInst) {
485 LoadInst *LI = dyn_cast<LoadInst>(QueryInst);
486 if (LI && LI->getMetadata(LLVMContext::MD_invariant_load) != nullptr)
487 isInvariantLoad = true;
490 const DataLayout &DL = BB->getModule()->getDataLayout();
492 // Create a numbered basic block to lazily compute and cache instruction
493 // positions inside a BB. This is used to provide fast queries for relative
494 // position between two instructions in a BB and can be used by
495 // AliasAnalysis::callCapturesBefore.
496 OrderedBasicBlock OBB(BB);
498 // Return "true" if and only if the instruction I is either a non-simple
499 // load or a non-simple store.
500 auto isNonSimpleLoadOrStore = [](Instruction *I) -> bool {
501 if (auto *LI = dyn_cast<LoadInst>(I))
502 return !LI->isSimple();
503 if (auto *SI = dyn_cast<StoreInst>(I))
504 return !SI->isSimple();
505 return false;
508 // Return "true" if I is not a load and not a store, but it does access
509 // memory.
510 auto isOtherMemAccess = [](Instruction *I) -> bool {
511 return !isa<LoadInst>(I) && !isa<StoreInst>(I) && I->mayReadOrWriteMemory();
514 // Walk backwards through the basic block, looking for dependencies.
515 while (ScanIt != BB->begin()) {
516 Instruction *Inst = &*--ScanIt;
518 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
519 // Debug intrinsics don't (and can't) cause dependencies.
520 if (isa<DbgInfoIntrinsic>(II))
521 continue;
523 // Limit the amount of scanning we do so we don't end up with quadratic
524 // running time on extreme testcases.
525 --*Limit;
526 if (!*Limit)
527 return MemDepResult::getUnknown();
529 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
530 // If we reach a lifetime begin or end marker, then the query ends here
531 // because the value is undefined.
532 if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
533 // FIXME: This only considers queries directly on the invariant-tagged
534 // pointer, not on query pointers that are indexed off of them. It'd
535 // be nice to handle that at some point (the right approach is to use
536 // GetPointerBaseWithConstantOffset).
537 if (AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), MemLoc))
538 return MemDepResult::getDef(II);
539 continue;
543 // Values depend on loads if the pointers are must aliased. This means
544 // that a load depends on another must aliased load from the same value.
545 // One exception is atomic loads: a value can depend on an atomic load that
546 // it does not alias with when this atomic load indicates that another
547 // thread may be accessing the location.
548 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
549 // While volatile access cannot be eliminated, they do not have to clobber
550 // non-aliasing locations, as normal accesses, for example, can be safely
551 // reordered with volatile accesses.
552 if (LI->isVolatile()) {
553 if (!QueryInst)
554 // Original QueryInst *may* be volatile
555 return MemDepResult::getClobber(LI);
556 if (isVolatile(QueryInst))
557 // Ordering required if QueryInst is itself volatile
558 return MemDepResult::getClobber(LI);
559 // Otherwise, volatile doesn't imply any special ordering
562 // Atomic loads have complications involved.
563 // A Monotonic (or higher) load is OK if the query inst is itself not
564 // atomic.
565 // FIXME: This is overly conservative.
566 if (LI->isAtomic() && isStrongerThanUnordered(LI->getOrdering())) {
567 if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) ||
568 isOtherMemAccess(QueryInst))
569 return MemDepResult::getClobber(LI);
570 if (LI->getOrdering() != AtomicOrdering::Monotonic)
571 return MemDepResult::getClobber(LI);
574 MemoryLocation LoadLoc = MemoryLocation::get(LI);
576 // If we found a pointer, check if it could be the same as our pointer.
577 AliasResult R = AA.alias(LoadLoc, MemLoc);
579 if (isLoad) {
580 if (R == NoAlias)
581 continue;
583 // Must aliased loads are defs of each other.
584 if (R == MustAlias)
585 return MemDepResult::getDef(Inst);
587 #if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads
588 // in terms of clobbering loads, but since it does this by looking
589 // at the clobbering load directly, it doesn't know about any
590 // phi translation that may have happened along the way.
592 // If we have a partial alias, then return this as a clobber for the
593 // client to handle.
594 if (R == PartialAlias)
595 return MemDepResult::getClobber(Inst);
596 #endif
598 // Random may-alias loads don't depend on each other without a
599 // dependence.
600 continue;
603 // Stores don't depend on other no-aliased accesses.
604 if (R == NoAlias)
605 continue;
607 // Stores don't alias loads from read-only memory.
608 if (AA.pointsToConstantMemory(LoadLoc))
609 continue;
611 // Stores depend on may/must aliased loads.
612 return MemDepResult::getDef(Inst);
615 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
616 // Atomic stores have complications involved.
617 // A Monotonic store is OK if the query inst is itself not atomic.
618 // FIXME: This is overly conservative.
619 if (!SI->isUnordered() && SI->isAtomic()) {
620 if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) ||
621 isOtherMemAccess(QueryInst))
622 return MemDepResult::getClobber(SI);
623 if (SI->getOrdering() != AtomicOrdering::Monotonic)
624 return MemDepResult::getClobber(SI);
627 // FIXME: this is overly conservative.
628 // While volatile access cannot be eliminated, they do not have to clobber
629 // non-aliasing locations, as normal accesses can for example be reordered
630 // with volatile accesses.
631 if (SI->isVolatile())
632 if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) ||
633 isOtherMemAccess(QueryInst))
634 return MemDepResult::getClobber(SI);
636 // If alias analysis can tell that this store is guaranteed to not modify
637 // the query pointer, ignore it. Use getModRefInfo to handle cases where
638 // the query pointer points to constant memory etc.
639 if (!isModOrRefSet(AA.getModRefInfo(SI, MemLoc)))
640 continue;
642 // Ok, this store might clobber the query pointer. Check to see if it is
643 // a must alias: in this case, we want to return this as a def.
644 // FIXME: Use ModRefInfo::Must bit from getModRefInfo call above.
645 MemoryLocation StoreLoc = MemoryLocation::get(SI);
647 // If we found a pointer, check if it could be the same as our pointer.
648 AliasResult R = AA.alias(StoreLoc, MemLoc);
650 if (R == NoAlias)
651 continue;
652 if (R == MustAlias)
653 return MemDepResult::getDef(Inst);
654 if (isInvariantLoad)
655 continue;
656 return MemDepResult::getClobber(Inst);
659 // If this is an allocation, and if we know that the accessed pointer is to
660 // the allocation, return Def. This means that there is no dependence and
661 // the access can be optimized based on that. For example, a load could
662 // turn into undef. Note that we can bypass the allocation itself when
663 // looking for a clobber in many cases; that's an alias property and is
664 // handled by BasicAA.
665 if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, &TLI)) {
666 const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, DL);
667 if (AccessPtr == Inst || AA.isMustAlias(Inst, AccessPtr))
668 return MemDepResult::getDef(Inst);
671 if (isInvariantLoad)
672 continue;
674 // A release fence requires that all stores complete before it, but does
675 // not prevent the reordering of following loads or stores 'before' the
676 // fence. As a result, we look past it when finding a dependency for
677 // loads. DSE uses this to find preceeding stores to delete and thus we
678 // can't bypass the fence if the query instruction is a store.
679 if (FenceInst *FI = dyn_cast<FenceInst>(Inst))
680 if (isLoad && FI->getOrdering() == AtomicOrdering::Release)
681 continue;
683 // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
684 ModRefInfo MR = AA.getModRefInfo(Inst, MemLoc);
685 // If necessary, perform additional analysis.
686 if (isModAndRefSet(MR))
687 MR = AA.callCapturesBefore(Inst, MemLoc, &DT, &OBB);
688 switch (clearMust(MR)) {
689 case ModRefInfo::NoModRef:
690 // If the call has no effect on the queried pointer, just ignore it.
691 continue;
692 case ModRefInfo::Mod:
693 return MemDepResult::getClobber(Inst);
694 case ModRefInfo::Ref:
695 // If the call is known to never store to the pointer, and if this is a
696 // load query, we can safely ignore it (scan past it).
697 if (isLoad)
698 continue;
699 LLVM_FALLTHROUGH;
700 default:
701 // Otherwise, there is a potential dependence. Return a clobber.
702 return MemDepResult::getClobber(Inst);
706 // No dependence found. If this is the entry block of the function, it is
707 // unknown, otherwise it is non-local.
708 if (BB != &BB->getParent()->getEntryBlock())
709 return MemDepResult::getNonLocal();
710 return MemDepResult::getNonFuncLocal();
713 MemDepResult MemoryDependenceResults::getDependency(Instruction *QueryInst) {
714 Instruction *ScanPos = QueryInst;
716 // Check for a cached result
717 MemDepResult &LocalCache = LocalDeps[QueryInst];
719 // If the cached entry is non-dirty, just return it. Note that this depends
720 // on MemDepResult's default constructing to 'dirty'.
721 if (!LocalCache.isDirty())
722 return LocalCache;
724 // Otherwise, if we have a dirty entry, we know we can start the scan at that
725 // instruction, which may save us some work.
726 if (Instruction *Inst = LocalCache.getInst()) {
727 ScanPos = Inst;
729 RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
732 BasicBlock *QueryParent = QueryInst->getParent();
734 // Do the scan.
735 if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
736 // No dependence found. If this is the entry block of the function, it is
737 // unknown, otherwise it is non-local.
738 if (QueryParent != &QueryParent->getParent()->getEntryBlock())
739 LocalCache = MemDepResult::getNonLocal();
740 else
741 LocalCache = MemDepResult::getNonFuncLocal();
742 } else {
743 MemoryLocation MemLoc;
744 ModRefInfo MR = GetLocation(QueryInst, MemLoc, TLI);
745 if (MemLoc.Ptr) {
746 // If we can do a pointer scan, make it happen.
747 bool isLoad = !isModSet(MR);
748 if (auto *II = dyn_cast<IntrinsicInst>(QueryInst))
749 isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start;
751 LocalCache = getPointerDependencyFrom(
752 MemLoc, isLoad, ScanPos->getIterator(), QueryParent, QueryInst);
753 } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) {
754 CallSite QueryCS(QueryInst);
755 bool isReadOnly = AA.onlyReadsMemory(QueryCS);
756 LocalCache = getCallSiteDependencyFrom(
757 QueryCS, isReadOnly, ScanPos->getIterator(), QueryParent);
758 } else
759 // Non-memory instruction.
760 LocalCache = MemDepResult::getUnknown();
763 // Remember the result!
764 if (Instruction *I = LocalCache.getInst())
765 ReverseLocalDeps[I].insert(QueryInst);
767 return LocalCache;
770 #ifndef NDEBUG
771 /// This method is used when -debug is specified to verify that cache arrays
772 /// are properly kept sorted.
773 static void AssertSorted(MemoryDependenceResults::NonLocalDepInfo &Cache,
774 int Count = -1) {
775 if (Count == -1)
776 Count = Cache.size();
777 assert(std::is_sorted(Cache.begin(), Cache.begin() + Count) &&
778 "Cache isn't sorted!");
780 #endif
782 const MemoryDependenceResults::NonLocalDepInfo &
783 MemoryDependenceResults::getNonLocalCallDependency(CallSite QueryCS) {
784 assert(getDependency(QueryCS.getInstruction()).isNonLocal() &&
785 "getNonLocalCallDependency should only be used on calls with "
786 "non-local deps!");
787 PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()];
788 NonLocalDepInfo &Cache = CacheP.first;
790 // This is the set of blocks that need to be recomputed. In the cached case,
791 // this can happen due to instructions being deleted etc. In the uncached
792 // case, this starts out as the set of predecessors we care about.
793 SmallVector<BasicBlock *, 32> DirtyBlocks;
795 if (!Cache.empty()) {
796 // Okay, we have a cache entry. If we know it is not dirty, just return it
797 // with no computation.
798 if (!CacheP.second) {
799 ++NumCacheNonLocal;
800 return Cache;
803 // If we already have a partially computed set of results, scan them to
804 // determine what is dirty, seeding our initial DirtyBlocks worklist.
805 for (auto &Entry : Cache)
806 if (Entry.getResult().isDirty())
807 DirtyBlocks.push_back(Entry.getBB());
809 // Sort the cache so that we can do fast binary search lookups below.
810 llvm::sort(Cache);
812 ++NumCacheDirtyNonLocal;
813 // cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
814 // << Cache.size() << " cached: " << *QueryInst;
815 } else {
816 // Seed DirtyBlocks with each of the preds of QueryInst's block.
817 BasicBlock *QueryBB = QueryCS.getInstruction()->getParent();
818 for (BasicBlock *Pred : PredCache.get(QueryBB))
819 DirtyBlocks.push_back(Pred);
820 ++NumUncacheNonLocal;
823 // isReadonlyCall - If this is a read-only call, we can be more aggressive.
824 bool isReadonlyCall = AA.onlyReadsMemory(QueryCS);
826 SmallPtrSet<BasicBlock *, 32> Visited;
828 unsigned NumSortedEntries = Cache.size();
829 LLVM_DEBUG(AssertSorted(Cache));
831 // Iterate while we still have blocks to update.
832 while (!DirtyBlocks.empty()) {
833 BasicBlock *DirtyBB = DirtyBlocks.back();
834 DirtyBlocks.pop_back();
836 // Already processed this block?
837 if (!Visited.insert(DirtyBB).second)
838 continue;
840 // Do a binary search to see if we already have an entry for this block in
841 // the cache set. If so, find it.
842 LLVM_DEBUG(AssertSorted(Cache, NumSortedEntries));
843 NonLocalDepInfo::iterator Entry =
844 std::upper_bound(Cache.begin(), Cache.begin() + NumSortedEntries,
845 NonLocalDepEntry(DirtyBB));
846 if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB)
847 --Entry;
849 NonLocalDepEntry *ExistingResult = nullptr;
850 if (Entry != Cache.begin() + NumSortedEntries &&
851 Entry->getBB() == DirtyBB) {
852 // If we already have an entry, and if it isn't already dirty, the block
853 // is done.
854 if (!Entry->getResult().isDirty())
855 continue;
857 // Otherwise, remember this slot so we can update the value.
858 ExistingResult = &*Entry;
861 // If the dirty entry has a pointer, start scanning from it so we don't have
862 // to rescan the entire block.
863 BasicBlock::iterator ScanPos = DirtyBB->end();
864 if (ExistingResult) {
865 if (Instruction *Inst = ExistingResult->getResult().getInst()) {
866 ScanPos = Inst->getIterator();
867 // We're removing QueryInst's use of Inst.
868 RemoveFromReverseMap(ReverseNonLocalDeps, Inst,
869 QueryCS.getInstruction());
873 // Find out if this block has a local dependency for QueryInst.
874 MemDepResult Dep;
876 if (ScanPos != DirtyBB->begin()) {
877 Dep =
878 getCallSiteDependencyFrom(QueryCS, isReadonlyCall, ScanPos, DirtyBB);
879 } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
880 // No dependence found. If this is the entry block of the function, it is
881 // a clobber, otherwise it is unknown.
882 Dep = MemDepResult::getNonLocal();
883 } else {
884 Dep = MemDepResult::getNonFuncLocal();
887 // If we had a dirty entry for the block, update it. Otherwise, just add
888 // a new entry.
889 if (ExistingResult)
890 ExistingResult->setResult(Dep);
891 else
892 Cache.push_back(NonLocalDepEntry(DirtyBB, Dep));
894 // If the block has a dependency (i.e. it isn't completely transparent to
895 // the value), remember the association!
896 if (!Dep.isNonLocal()) {
897 // Keep the ReverseNonLocalDeps map up to date so we can efficiently
898 // update this when we remove instructions.
899 if (Instruction *Inst = Dep.getInst())
900 ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction());
901 } else {
903 // If the block *is* completely transparent to the load, we need to check
904 // the predecessors of this block. Add them to our worklist.
905 for (BasicBlock *Pred : PredCache.get(DirtyBB))
906 DirtyBlocks.push_back(Pred);
910 return Cache;
913 void MemoryDependenceResults::getNonLocalPointerDependency(
914 Instruction *QueryInst, SmallVectorImpl<NonLocalDepResult> &Result) {
915 const MemoryLocation Loc = MemoryLocation::get(QueryInst);
916 bool isLoad = isa<LoadInst>(QueryInst);
917 BasicBlock *FromBB = QueryInst->getParent();
918 assert(FromBB);
920 assert(Loc.Ptr->getType()->isPointerTy() &&
921 "Can't get pointer deps of a non-pointer!");
922 Result.clear();
924 // Check if there is cached Def with invariant.group.
925 auto NonLocalDefIt = NonLocalDefsCache.find(QueryInst);
926 if (NonLocalDefIt != NonLocalDefsCache.end()) {
927 Result.push_back(NonLocalDefIt->second);
928 ReverseNonLocalDefsCache[NonLocalDefIt->second.getResult().getInst()]
929 .erase(QueryInst);
930 NonLocalDefsCache.erase(NonLocalDefIt);
931 return;
934 // This routine does not expect to deal with volatile instructions.
935 // Doing so would require piping through the QueryInst all the way through.
936 // TODO: volatiles can't be elided, but they can be reordered with other
937 // non-volatile accesses.
939 // We currently give up on any instruction which is ordered, but we do handle
940 // atomic instructions which are unordered.
941 // TODO: Handle ordered instructions
942 auto isOrdered = [](Instruction *Inst) {
943 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
944 return !LI->isUnordered();
945 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
946 return !SI->isUnordered();
948 return false;
950 if (isVolatile(QueryInst) || isOrdered(QueryInst)) {
951 Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(),
952 const_cast<Value *>(Loc.Ptr)));
953 return;
955 const DataLayout &DL = FromBB->getModule()->getDataLayout();
956 PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL, &AC);
958 // This is the set of blocks we've inspected, and the pointer we consider in
959 // each block. Because of critical edges, we currently bail out if querying
960 // a block with multiple different pointers. This can happen during PHI
961 // translation.
962 DenseMap<BasicBlock *, Value *> Visited;
963 if (getNonLocalPointerDepFromBB(QueryInst, Address, Loc, isLoad, FromBB,
964 Result, Visited, true))
965 return;
966 Result.clear();
967 Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(),
968 const_cast<Value *>(Loc.Ptr)));
971 /// Compute the memdep value for BB with Pointer/PointeeSize using either
972 /// cached information in Cache or by doing a lookup (which may use dirty cache
973 /// info if available).
975 /// If we do a lookup, add the result to the cache.
976 MemDepResult MemoryDependenceResults::GetNonLocalInfoForBlock(
977 Instruction *QueryInst, const MemoryLocation &Loc, bool isLoad,
978 BasicBlock *BB, NonLocalDepInfo *Cache, unsigned NumSortedEntries) {
980 // Do a binary search to see if we already have an entry for this block in
981 // the cache set. If so, find it.
982 NonLocalDepInfo::iterator Entry = std::upper_bound(
983 Cache->begin(), Cache->begin() + NumSortedEntries, NonLocalDepEntry(BB));
984 if (Entry != Cache->begin() && (Entry - 1)->getBB() == BB)
985 --Entry;
987 NonLocalDepEntry *ExistingResult = nullptr;
988 if (Entry != Cache->begin() + NumSortedEntries && Entry->getBB() == BB)
989 ExistingResult = &*Entry;
991 // If we have a cached entry, and it is non-dirty, use it as the value for
992 // this dependency.
993 if (ExistingResult && !ExistingResult->getResult().isDirty()) {
994 ++NumCacheNonLocalPtr;
995 return ExistingResult->getResult();
998 // Otherwise, we have to scan for the value. If we have a dirty cache
999 // entry, start scanning from its position, otherwise we scan from the end
1000 // of the block.
1001 BasicBlock::iterator ScanPos = BB->end();
1002 if (ExistingResult && ExistingResult->getResult().getInst()) {
1003 assert(ExistingResult->getResult().getInst()->getParent() == BB &&
1004 "Instruction invalidated?");
1005 ++NumCacheDirtyNonLocalPtr;
1006 ScanPos = ExistingResult->getResult().getInst()->getIterator();
1008 // Eliminating the dirty entry from 'Cache', so update the reverse info.
1009 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
1010 RemoveFromReverseMap(ReverseNonLocalPtrDeps, &*ScanPos, CacheKey);
1011 } else {
1012 ++NumUncacheNonLocalPtr;
1015 // Scan the block for the dependency.
1016 MemDepResult Dep =
1017 getPointerDependencyFrom(Loc, isLoad, ScanPos, BB, QueryInst);
1019 // If we had a dirty entry for the block, update it. Otherwise, just add
1020 // a new entry.
1021 if (ExistingResult)
1022 ExistingResult->setResult(Dep);
1023 else
1024 Cache->push_back(NonLocalDepEntry(BB, Dep));
1026 // If the block has a dependency (i.e. it isn't completely transparent to
1027 // the value), remember the reverse association because we just added it
1028 // to Cache!
1029 if (!Dep.isDef() && !Dep.isClobber())
1030 return Dep;
1032 // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
1033 // update MemDep when we remove instructions.
1034 Instruction *Inst = Dep.getInst();
1035 assert(Inst && "Didn't depend on anything?");
1036 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
1037 ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
1038 return Dep;
1041 /// Sort the NonLocalDepInfo cache, given a certain number of elements in the
1042 /// array that are already properly ordered.
1044 /// This is optimized for the case when only a few entries are added.
1045 static void
1046 SortNonLocalDepInfoCache(MemoryDependenceResults::NonLocalDepInfo &Cache,
1047 unsigned NumSortedEntries) {
1048 switch (Cache.size() - NumSortedEntries) {
1049 case 0:
1050 // done, no new entries.
1051 break;
1052 case 2: {
1053 // Two new entries, insert the last one into place.
1054 NonLocalDepEntry Val = Cache.back();
1055 Cache.pop_back();
1056 MemoryDependenceResults::NonLocalDepInfo::iterator Entry =
1057 std::upper_bound(Cache.begin(), Cache.end() - 1, Val);
1058 Cache.insert(Entry, Val);
1059 LLVM_FALLTHROUGH;
1061 case 1:
1062 // One new entry, Just insert the new value at the appropriate position.
1063 if (Cache.size() != 1) {
1064 NonLocalDepEntry Val = Cache.back();
1065 Cache.pop_back();
1066 MemoryDependenceResults::NonLocalDepInfo::iterator Entry =
1067 std::upper_bound(Cache.begin(), Cache.end(), Val);
1068 Cache.insert(Entry, Val);
1070 break;
1071 default:
1072 // Added many values, do a full scale sort.
1073 llvm::sort(Cache);
1074 break;
1078 /// Perform a dependency query based on pointer/pointeesize starting at the end
1079 /// of StartBB.
1081 /// Add any clobber/def results to the results vector and keep track of which
1082 /// blocks are visited in 'Visited'.
1084 /// This has special behavior for the first block queries (when SkipFirstBlock
1085 /// is true). In this special case, it ignores the contents of the specified
1086 /// block and starts returning dependence info for its predecessors.
1088 /// This function returns true on success, or false to indicate that it could
1089 /// not compute dependence information for some reason. This should be treated
1090 /// as a clobber dependence on the first instruction in the predecessor block.
1091 bool MemoryDependenceResults::getNonLocalPointerDepFromBB(
1092 Instruction *QueryInst, const PHITransAddr &Pointer,
1093 const MemoryLocation &Loc, bool isLoad, BasicBlock *StartBB,
1094 SmallVectorImpl<NonLocalDepResult> &Result,
1095 DenseMap<BasicBlock *, Value *> &Visited, bool SkipFirstBlock) {
1096 // Look up the cached info for Pointer.
1097 ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad);
1099 // Set up a temporary NLPI value. If the map doesn't yet have an entry for
1100 // CacheKey, this value will be inserted as the associated value. Otherwise,
1101 // it'll be ignored, and we'll have to check to see if the cached size and
1102 // aa tags are consistent with the current query.
1103 NonLocalPointerInfo InitialNLPI;
1104 InitialNLPI.Size = Loc.Size;
1105 InitialNLPI.AATags = Loc.AATags;
1107 // Get the NLPI for CacheKey, inserting one into the map if it doesn't
1108 // already have one.
1109 std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair =
1110 NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI));
1111 NonLocalPointerInfo *CacheInfo = &Pair.first->second;
1113 // If we already have a cache entry for this CacheKey, we may need to do some
1114 // work to reconcile the cache entry and the current query.
1115 if (!Pair.second) {
1116 if (CacheInfo->Size != Loc.Size) {
1117 bool ThrowOutEverything;
1118 if (CacheInfo->Size.hasValue() && Loc.Size.hasValue()) {
1119 // FIXME: We may be able to do better in the face of results with mixed
1120 // precision. We don't appear to get them in practice, though, so just
1121 // be conservative.
1122 ThrowOutEverything =
1123 CacheInfo->Size.isPrecise() != Loc.Size.isPrecise() ||
1124 CacheInfo->Size.getValue() < Loc.Size.getValue();
1125 } else {
1126 // For our purposes, unknown size > all others.
1127 ThrowOutEverything = !Loc.Size.hasValue();
1130 if (ThrowOutEverything) {
1131 // The query's Size is greater than the cached one. Throw out the
1132 // cached data and proceed with the query at the greater size.
1133 CacheInfo->Pair = BBSkipFirstBlockPair();
1134 CacheInfo->Size = Loc.Size;
1135 for (auto &Entry : CacheInfo->NonLocalDeps)
1136 if (Instruction *Inst = Entry.getResult().getInst())
1137 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
1138 CacheInfo->NonLocalDeps.clear();
1139 } else {
1140 // This query's Size is less than the cached one. Conservatively restart
1141 // the query using the greater size.
1142 return getNonLocalPointerDepFromBB(
1143 QueryInst, Pointer, Loc.getWithNewSize(CacheInfo->Size), isLoad,
1144 StartBB, Result, Visited, SkipFirstBlock);
1148 // If the query's AATags are inconsistent with the cached one,
1149 // conservatively throw out the cached data and restart the query with
1150 // no tag if needed.
1151 if (CacheInfo->AATags != Loc.AATags) {
1152 if (CacheInfo->AATags) {
1153 CacheInfo->Pair = BBSkipFirstBlockPair();
1154 CacheInfo->AATags = AAMDNodes();
1155 for (auto &Entry : CacheInfo->NonLocalDeps)
1156 if (Instruction *Inst = Entry.getResult().getInst())
1157 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
1158 CacheInfo->NonLocalDeps.clear();
1160 if (Loc.AATags)
1161 return getNonLocalPointerDepFromBB(
1162 QueryInst, Pointer, Loc.getWithoutAATags(), isLoad, StartBB, Result,
1163 Visited, SkipFirstBlock);
1167 NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps;
1169 // If we have valid cached information for exactly the block we are
1170 // investigating, just return it with no recomputation.
1171 if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
1172 // We have a fully cached result for this query then we can just return the
1173 // cached results and populate the visited set. However, we have to verify
1174 // that we don't already have conflicting results for these blocks. Check
1175 // to ensure that if a block in the results set is in the visited set that
1176 // it was for the same pointer query.
1177 if (!Visited.empty()) {
1178 for (auto &Entry : *Cache) {
1179 DenseMap<BasicBlock *, Value *>::iterator VI =
1180 Visited.find(Entry.getBB());
1181 if (VI == Visited.end() || VI->second == Pointer.getAddr())
1182 continue;
1184 // We have a pointer mismatch in a block. Just return false, saying
1185 // that something was clobbered in this result. We could also do a
1186 // non-fully cached query, but there is little point in doing this.
1187 return false;
1191 Value *Addr = Pointer.getAddr();
1192 for (auto &Entry : *Cache) {
1193 Visited.insert(std::make_pair(Entry.getBB(), Addr));
1194 if (Entry.getResult().isNonLocal()) {
1195 continue;
1198 if (DT.isReachableFromEntry(Entry.getBB())) {
1199 Result.push_back(
1200 NonLocalDepResult(Entry.getBB(), Entry.getResult(), Addr));
1203 ++NumCacheCompleteNonLocalPtr;
1204 return true;
1207 // Otherwise, either this is a new block, a block with an invalid cache
1208 // pointer or one that we're about to invalidate by putting more info into it
1209 // than its valid cache info. If empty, the result will be valid cache info,
1210 // otherwise it isn't.
1211 if (Cache->empty())
1212 CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
1213 else
1214 CacheInfo->Pair = BBSkipFirstBlockPair();
1216 SmallVector<BasicBlock *, 32> Worklist;
1217 Worklist.push_back(StartBB);
1219 // PredList used inside loop.
1220 SmallVector<std::pair<BasicBlock *, PHITransAddr>, 16> PredList;
1222 // Keep track of the entries that we know are sorted. Previously cached
1223 // entries will all be sorted. The entries we add we only sort on demand (we
1224 // don't insert every element into its sorted position). We know that we
1225 // won't get any reuse from currently inserted values, because we don't
1226 // revisit blocks after we insert info for them.
1227 unsigned NumSortedEntries = Cache->size();
1228 unsigned WorklistEntries = BlockNumberLimit;
1229 bool GotWorklistLimit = false;
1230 LLVM_DEBUG(AssertSorted(*Cache));
1232 while (!Worklist.empty()) {
1233 BasicBlock *BB = Worklist.pop_back_val();
1235 // If we do process a large number of blocks it becomes very expensive and
1236 // likely it isn't worth worrying about
1237 if (Result.size() > NumResultsLimit) {
1238 Worklist.clear();
1239 // Sort it now (if needed) so that recursive invocations of
1240 // getNonLocalPointerDepFromBB and other routines that could reuse the
1241 // cache value will only see properly sorted cache arrays.
1242 if (Cache && NumSortedEntries != Cache->size()) {
1243 SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1245 // Since we bail out, the "Cache" set won't contain all of the
1246 // results for the query. This is ok (we can still use it to accelerate
1247 // specific block queries) but we can't do the fastpath "return all
1248 // results from the set". Clear out the indicator for this.
1249 CacheInfo->Pair = BBSkipFirstBlockPair();
1250 return false;
1253 // Skip the first block if we have it.
1254 if (!SkipFirstBlock) {
1255 // Analyze the dependency of *Pointer in FromBB. See if we already have
1256 // been here.
1257 assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
1259 // Get the dependency info for Pointer in BB. If we have cached
1260 // information, we will use it, otherwise we compute it.
1261 LLVM_DEBUG(AssertSorted(*Cache, NumSortedEntries));
1262 MemDepResult Dep = GetNonLocalInfoForBlock(QueryInst, Loc, isLoad, BB,
1263 Cache, NumSortedEntries);
1265 // If we got a Def or Clobber, add this to the list of results.
1266 if (!Dep.isNonLocal()) {
1267 if (DT.isReachableFromEntry(BB)) {
1268 Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr()));
1269 continue;
1274 // If 'Pointer' is an instruction defined in this block, then we need to do
1275 // phi translation to change it into a value live in the predecessor block.
1276 // If not, we just add the predecessors to the worklist and scan them with
1277 // the same Pointer.
1278 if (!Pointer.NeedsPHITranslationFromBlock(BB)) {
1279 SkipFirstBlock = false;
1280 SmallVector<BasicBlock *, 16> NewBlocks;
1281 for (BasicBlock *Pred : PredCache.get(BB)) {
1282 // Verify that we haven't looked at this block yet.
1283 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes =
1284 Visited.insert(std::make_pair(Pred, Pointer.getAddr()));
1285 if (InsertRes.second) {
1286 // First time we've looked at *PI.
1287 NewBlocks.push_back(Pred);
1288 continue;
1291 // If we have seen this block before, but it was with a different
1292 // pointer then we have a phi translation failure and we have to treat
1293 // this as a clobber.
1294 if (InsertRes.first->second != Pointer.getAddr()) {
1295 // Make sure to clean up the Visited map before continuing on to
1296 // PredTranslationFailure.
1297 for (unsigned i = 0; i < NewBlocks.size(); i++)
1298 Visited.erase(NewBlocks[i]);
1299 goto PredTranslationFailure;
1302 if (NewBlocks.size() > WorklistEntries) {
1303 // Make sure to clean up the Visited map before continuing on to
1304 // PredTranslationFailure.
1305 for (unsigned i = 0; i < NewBlocks.size(); i++)
1306 Visited.erase(NewBlocks[i]);
1307 GotWorklistLimit = true;
1308 goto PredTranslationFailure;
1310 WorklistEntries -= NewBlocks.size();
1311 Worklist.append(NewBlocks.begin(), NewBlocks.end());
1312 continue;
1315 // We do need to do phi translation, if we know ahead of time we can't phi
1316 // translate this value, don't even try.
1317 if (!Pointer.IsPotentiallyPHITranslatable())
1318 goto PredTranslationFailure;
1320 // We may have added values to the cache list before this PHI translation.
1321 // If so, we haven't done anything to ensure that the cache remains sorted.
1322 // Sort it now (if needed) so that recursive invocations of
1323 // getNonLocalPointerDepFromBB and other routines that could reuse the cache
1324 // value will only see properly sorted cache arrays.
1325 if (Cache && NumSortedEntries != Cache->size()) {
1326 SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1327 NumSortedEntries = Cache->size();
1329 Cache = nullptr;
1331 PredList.clear();
1332 for (BasicBlock *Pred : PredCache.get(BB)) {
1333 PredList.push_back(std::make_pair(Pred, Pointer));
1335 // Get the PHI translated pointer in this predecessor. This can fail if
1336 // not translatable, in which case the getAddr() returns null.
1337 PHITransAddr &PredPointer = PredList.back().second;
1338 PredPointer.PHITranslateValue(BB, Pred, &DT, /*MustDominate=*/false);
1339 Value *PredPtrVal = PredPointer.getAddr();
1341 // Check to see if we have already visited this pred block with another
1342 // pointer. If so, we can't do this lookup. This failure can occur
1343 // with PHI translation when a critical edge exists and the PHI node in
1344 // the successor translates to a pointer value different than the
1345 // pointer the block was first analyzed with.
1346 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes =
1347 Visited.insert(std::make_pair(Pred, PredPtrVal));
1349 if (!InsertRes.second) {
1350 // We found the pred; take it off the list of preds to visit.
1351 PredList.pop_back();
1353 // If the predecessor was visited with PredPtr, then we already did
1354 // the analysis and can ignore it.
1355 if (InsertRes.first->second == PredPtrVal)
1356 continue;
1358 // Otherwise, the block was previously analyzed with a different
1359 // pointer. We can't represent the result of this case, so we just
1360 // treat this as a phi translation failure.
1362 // Make sure to clean up the Visited map before continuing on to
1363 // PredTranslationFailure.
1364 for (unsigned i = 0, n = PredList.size(); i < n; ++i)
1365 Visited.erase(PredList[i].first);
1367 goto PredTranslationFailure;
1371 // Actually process results here; this need to be a separate loop to avoid
1372 // calling getNonLocalPointerDepFromBB for blocks we don't want to return
1373 // any results for. (getNonLocalPointerDepFromBB will modify our
1374 // datastructures in ways the code after the PredTranslationFailure label
1375 // doesn't expect.)
1376 for (unsigned i = 0, n = PredList.size(); i < n; ++i) {
1377 BasicBlock *Pred = PredList[i].first;
1378 PHITransAddr &PredPointer = PredList[i].second;
1379 Value *PredPtrVal = PredPointer.getAddr();
1381 bool CanTranslate = true;
1382 // If PHI translation was unable to find an available pointer in this
1383 // predecessor, then we have to assume that the pointer is clobbered in
1384 // that predecessor. We can still do PRE of the load, which would insert
1385 // a computation of the pointer in this predecessor.
1386 if (!PredPtrVal)
1387 CanTranslate = false;
1389 // FIXME: it is entirely possible that PHI translating will end up with
1390 // the same value. Consider PHI translating something like:
1391 // X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need*
1392 // to recurse here, pedantically speaking.
1394 // If getNonLocalPointerDepFromBB fails here, that means the cached
1395 // result conflicted with the Visited list; we have to conservatively
1396 // assume it is unknown, but this also does not block PRE of the load.
1397 if (!CanTranslate ||
1398 !getNonLocalPointerDepFromBB(QueryInst, PredPointer,
1399 Loc.getWithNewPtr(PredPtrVal), isLoad,
1400 Pred, Result, Visited)) {
1401 // Add the entry to the Result list.
1402 NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal);
1403 Result.push_back(Entry);
1405 // Since we had a phi translation failure, the cache for CacheKey won't
1406 // include all of the entries that we need to immediately satisfy future
1407 // queries. Mark this in NonLocalPointerDeps by setting the
1408 // BBSkipFirstBlockPair pointer to null. This requires reuse of the
1409 // cached value to do more work but not miss the phi trans failure.
1410 NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey];
1411 NLPI.Pair = BBSkipFirstBlockPair();
1412 continue;
1416 // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
1417 CacheInfo = &NonLocalPointerDeps[CacheKey];
1418 Cache = &CacheInfo->NonLocalDeps;
1419 NumSortedEntries = Cache->size();
1421 // Since we did phi translation, the "Cache" set won't contain all of the
1422 // results for the query. This is ok (we can still use it to accelerate
1423 // specific block queries) but we can't do the fastpath "return all
1424 // results from the set" Clear out the indicator for this.
1425 CacheInfo->Pair = BBSkipFirstBlockPair();
1426 SkipFirstBlock = false;
1427 continue;
1429 PredTranslationFailure:
1430 // The following code is "failure"; we can't produce a sane translation
1431 // for the given block. It assumes that we haven't modified any of
1432 // our datastructures while processing the current block.
1434 if (!Cache) {
1435 // Refresh the CacheInfo/Cache pointer if it got invalidated.
1436 CacheInfo = &NonLocalPointerDeps[CacheKey];
1437 Cache = &CacheInfo->NonLocalDeps;
1438 NumSortedEntries = Cache->size();
1441 // Since we failed phi translation, the "Cache" set won't contain all of the
1442 // results for the query. This is ok (we can still use it to accelerate
1443 // specific block queries) but we can't do the fastpath "return all
1444 // results from the set". Clear out the indicator for this.
1445 CacheInfo->Pair = BBSkipFirstBlockPair();
1447 // If *nothing* works, mark the pointer as unknown.
1449 // If this is the magic first block, return this as a clobber of the whole
1450 // incoming value. Since we can't phi translate to one of the predecessors,
1451 // we have to bail out.
1452 if (SkipFirstBlock)
1453 return false;
1455 bool foundBlock = false;
1456 for (NonLocalDepEntry &I : llvm::reverse(*Cache)) {
1457 if (I.getBB() != BB)
1458 continue;
1460 assert((GotWorklistLimit || I.getResult().isNonLocal() ||
1461 !DT.isReachableFromEntry(BB)) &&
1462 "Should only be here with transparent block");
1463 foundBlock = true;
1464 I.setResult(MemDepResult::getUnknown());
1465 Result.push_back(
1466 NonLocalDepResult(I.getBB(), I.getResult(), Pointer.getAddr()));
1467 break;
1469 (void)foundBlock; (void)GotWorklistLimit;
1470 assert((foundBlock || GotWorklistLimit) && "Current block not in cache?");
1473 // Okay, we're done now. If we added new values to the cache, re-sort it.
1474 SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1475 LLVM_DEBUG(AssertSorted(*Cache));
1476 return true;
1479 /// If P exists in CachedNonLocalPointerInfo or NonLocalDefsCache, remove it.
1480 void MemoryDependenceResults::RemoveCachedNonLocalPointerDependencies(
1481 ValueIsLoadPair P) {
1483 // Most of the time this cache is empty.
1484 if (!NonLocalDefsCache.empty()) {
1485 auto it = NonLocalDefsCache.find(P.getPointer());
1486 if (it != NonLocalDefsCache.end()) {
1487 RemoveFromReverseMap(ReverseNonLocalDefsCache,
1488 it->second.getResult().getInst(), P.getPointer());
1489 NonLocalDefsCache.erase(it);
1492 if (auto *I = dyn_cast<Instruction>(P.getPointer())) {
1493 auto toRemoveIt = ReverseNonLocalDefsCache.find(I);
1494 if (toRemoveIt != ReverseNonLocalDefsCache.end()) {
1495 for (const auto &entry : toRemoveIt->second)
1496 NonLocalDefsCache.erase(entry);
1497 ReverseNonLocalDefsCache.erase(toRemoveIt);
1502 CachedNonLocalPointerInfo::iterator It = NonLocalPointerDeps.find(P);
1503 if (It == NonLocalPointerDeps.end())
1504 return;
1506 // Remove all of the entries in the BB->val map. This involves removing
1507 // instructions from the reverse map.
1508 NonLocalDepInfo &PInfo = It->second.NonLocalDeps;
1510 for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
1511 Instruction *Target = PInfo[i].getResult().getInst();
1512 if (!Target)
1513 continue; // Ignore non-local dep results.
1514 assert(Target->getParent() == PInfo[i].getBB());
1516 // Eliminating the dirty entry from 'Cache', so update the reverse info.
1517 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
1520 // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
1521 NonLocalPointerDeps.erase(It);
1524 void MemoryDependenceResults::invalidateCachedPointerInfo(Value *Ptr) {
1525 // If Ptr isn't really a pointer, just ignore it.
1526 if (!Ptr->getType()->isPointerTy())
1527 return;
1528 // Flush store info for the pointer.
1529 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
1530 // Flush load info for the pointer.
1531 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
1532 // Invalidate phis that use the pointer.
1533 PV.invalidateValue(Ptr);
1536 void MemoryDependenceResults::invalidateCachedPredecessors() {
1537 PredCache.clear();
1540 void MemoryDependenceResults::removeInstruction(Instruction *RemInst) {
1541 // Walk through the Non-local dependencies, removing this one as the value
1542 // for any cached queries.
1543 NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
1544 if (NLDI != NonLocalDeps.end()) {
1545 NonLocalDepInfo &BlockMap = NLDI->second.first;
1546 for (auto &Entry : BlockMap)
1547 if (Instruction *Inst = Entry.getResult().getInst())
1548 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
1549 NonLocalDeps.erase(NLDI);
1552 // If we have a cached local dependence query for this instruction, remove it.
1553 LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
1554 if (LocalDepEntry != LocalDeps.end()) {
1555 // Remove us from DepInst's reverse set now that the local dep info is gone.
1556 if (Instruction *Inst = LocalDepEntry->second.getInst())
1557 RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
1559 // Remove this local dependency info.
1560 LocalDeps.erase(LocalDepEntry);
1563 // If we have any cached pointer dependencies on this instruction, remove
1564 // them. If the instruction has non-pointer type, then it can't be a pointer
1565 // base.
1567 // Remove it from both the load info and the store info. The instruction
1568 // can't be in either of these maps if it is non-pointer.
1569 if (RemInst->getType()->isPointerTy()) {
1570 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
1571 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
1574 // Loop over all of the things that depend on the instruction we're removing.
1575 SmallVector<std::pair<Instruction *, Instruction *>, 8> ReverseDepsToAdd;
1577 // If we find RemInst as a clobber or Def in any of the maps for other values,
1578 // we need to replace its entry with a dirty version of the instruction after
1579 // it. If RemInst is a terminator, we use a null dirty value.
1581 // Using a dirty version of the instruction after RemInst saves having to scan
1582 // the entire block to get to this point.
1583 MemDepResult NewDirtyVal;
1584 if (!RemInst->isTerminator())
1585 NewDirtyVal = MemDepResult::getDirty(&*++RemInst->getIterator());
1587 ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
1588 if (ReverseDepIt != ReverseLocalDeps.end()) {
1589 // RemInst can't be the terminator if it has local stuff depending on it.
1590 assert(!ReverseDepIt->second.empty() && !RemInst->isTerminator() &&
1591 "Nothing can locally depend on a terminator");
1593 for (Instruction *InstDependingOnRemInst : ReverseDepIt->second) {
1594 assert(InstDependingOnRemInst != RemInst &&
1595 "Already removed our local dep info");
1597 LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
1599 // Make sure to remember that new things depend on NewDepInst.
1600 assert(NewDirtyVal.getInst() &&
1601 "There is no way something else can have "
1602 "a local dep on this if it is a terminator!");
1603 ReverseDepsToAdd.push_back(
1604 std::make_pair(NewDirtyVal.getInst(), InstDependingOnRemInst));
1607 ReverseLocalDeps.erase(ReverseDepIt);
1609 // Add new reverse deps after scanning the set, to avoid invalidating the
1610 // 'ReverseDeps' reference.
1611 while (!ReverseDepsToAdd.empty()) {
1612 ReverseLocalDeps[ReverseDepsToAdd.back().first].insert(
1613 ReverseDepsToAdd.back().second);
1614 ReverseDepsToAdd.pop_back();
1618 ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
1619 if (ReverseDepIt != ReverseNonLocalDeps.end()) {
1620 for (Instruction *I : ReverseDepIt->second) {
1621 assert(I != RemInst && "Already removed NonLocalDep info for RemInst");
1623 PerInstNLInfo &INLD = NonLocalDeps[I];
1624 // The information is now dirty!
1625 INLD.second = true;
1627 for (auto &Entry : INLD.first) {
1628 if (Entry.getResult().getInst() != RemInst)
1629 continue;
1631 // Convert to a dirty entry for the subsequent instruction.
1632 Entry.setResult(NewDirtyVal);
1634 if (Instruction *NextI = NewDirtyVal.getInst())
1635 ReverseDepsToAdd.push_back(std::make_pair(NextI, I));
1639 ReverseNonLocalDeps.erase(ReverseDepIt);
1641 // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
1642 while (!ReverseDepsToAdd.empty()) {
1643 ReverseNonLocalDeps[ReverseDepsToAdd.back().first].insert(
1644 ReverseDepsToAdd.back().second);
1645 ReverseDepsToAdd.pop_back();
1649 // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
1650 // value in the NonLocalPointerDeps info.
1651 ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
1652 ReverseNonLocalPtrDeps.find(RemInst);
1653 if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
1654 SmallVector<std::pair<Instruction *, ValueIsLoadPair>, 8>
1655 ReversePtrDepsToAdd;
1657 for (ValueIsLoadPair P : ReversePtrDepIt->second) {
1658 assert(P.getPointer() != RemInst &&
1659 "Already removed NonLocalPointerDeps info for RemInst");
1661 NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps;
1663 // The cache is not valid for any specific block anymore.
1664 NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair();
1666 // Update any entries for RemInst to use the instruction after it.
1667 for (auto &Entry : NLPDI) {
1668 if (Entry.getResult().getInst() != RemInst)
1669 continue;
1671 // Convert to a dirty entry for the subsequent instruction.
1672 Entry.setResult(NewDirtyVal);
1674 if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
1675 ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
1678 // Re-sort the NonLocalDepInfo. Changing the dirty entry to its
1679 // subsequent value may invalidate the sortedness.
1680 llvm::sort(NLPDI);
1683 ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
1685 while (!ReversePtrDepsToAdd.empty()) {
1686 ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first].insert(
1687 ReversePtrDepsToAdd.back().second);
1688 ReversePtrDepsToAdd.pop_back();
1692 // Invalidate phis that use the removed instruction.
1693 PV.invalidateValue(RemInst);
1695 assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
1696 LLVM_DEBUG(verifyRemoved(RemInst));
1699 /// Verify that the specified instruction does not occur in our internal data
1700 /// structures.
1702 /// This function verifies by asserting in debug builds.
1703 void MemoryDependenceResults::verifyRemoved(Instruction *D) const {
1704 #ifndef NDEBUG
1705 for (const auto &DepKV : LocalDeps) {
1706 assert(DepKV.first != D && "Inst occurs in data structures");
1707 assert(DepKV.second.getInst() != D && "Inst occurs in data structures");
1710 for (const auto &DepKV : NonLocalPointerDeps) {
1711 assert(DepKV.first.getPointer() != D && "Inst occurs in NLPD map key");
1712 for (const auto &Entry : DepKV.second.NonLocalDeps)
1713 assert(Entry.getResult().getInst() != D && "Inst occurs as NLPD value");
1716 for (const auto &DepKV : NonLocalDeps) {
1717 assert(DepKV.first != D && "Inst occurs in data structures");
1718 const PerInstNLInfo &INLD = DepKV.second;
1719 for (const auto &Entry : INLD.first)
1720 assert(Entry.getResult().getInst() != D &&
1721 "Inst occurs in data structures");
1724 for (const auto &DepKV : ReverseLocalDeps) {
1725 assert(DepKV.first != D && "Inst occurs in data structures");
1726 for (Instruction *Inst : DepKV.second)
1727 assert(Inst != D && "Inst occurs in data structures");
1730 for (const auto &DepKV : ReverseNonLocalDeps) {
1731 assert(DepKV.first != D && "Inst occurs in data structures");
1732 for (Instruction *Inst : DepKV.second)
1733 assert(Inst != D && "Inst occurs in data structures");
1736 for (const auto &DepKV : ReverseNonLocalPtrDeps) {
1737 assert(DepKV.first != D && "Inst occurs in rev NLPD map");
1739 for (ValueIsLoadPair P : DepKV.second)
1740 assert(P != ValueIsLoadPair(D, false) && P != ValueIsLoadPair(D, true) &&
1741 "Inst occurs in ReverseNonLocalPtrDeps map");
1743 #endif
1746 AnalysisKey MemoryDependenceAnalysis::Key;
1748 MemoryDependenceResults
1749 MemoryDependenceAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
1750 auto &AA = AM.getResult<AAManager>(F);
1751 auto &AC = AM.getResult<AssumptionAnalysis>(F);
1752 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1753 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1754 auto &PV = AM.getResult<PhiValuesAnalysis>(F);
1755 return MemoryDependenceResults(AA, AC, TLI, DT, PV);
1758 char MemoryDependenceWrapperPass::ID = 0;
1760 INITIALIZE_PASS_BEGIN(MemoryDependenceWrapperPass, "memdep",
1761 "Memory Dependence Analysis", false, true)
1762 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1763 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1764 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1765 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1766 INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass)
1767 INITIALIZE_PASS_END(MemoryDependenceWrapperPass, "memdep",
1768 "Memory Dependence Analysis", false, true)
1770 MemoryDependenceWrapperPass::MemoryDependenceWrapperPass() : FunctionPass(ID) {
1771 initializeMemoryDependenceWrapperPassPass(*PassRegistry::getPassRegistry());
1774 MemoryDependenceWrapperPass::~MemoryDependenceWrapperPass() = default;
1776 void MemoryDependenceWrapperPass::releaseMemory() {
1777 MemDep.reset();
1780 void MemoryDependenceWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1781 AU.setPreservesAll();
1782 AU.addRequired<AssumptionCacheTracker>();
1783 AU.addRequired<DominatorTreeWrapperPass>();
1784 AU.addRequired<PhiValuesWrapperPass>();
1785 AU.addRequiredTransitive<AAResultsWrapperPass>();
1786 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
1789 bool MemoryDependenceResults::invalidate(Function &F, const PreservedAnalyses &PA,
1790 FunctionAnalysisManager::Invalidator &Inv) {
1791 // Check whether our analysis is preserved.
1792 auto PAC = PA.getChecker<MemoryDependenceAnalysis>();
1793 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>())
1794 // If not, give up now.
1795 return true;
1797 // Check whether the analyses we depend on became invalid for any reason.
1798 if (Inv.invalidate<AAManager>(F, PA) ||
1799 Inv.invalidate<AssumptionAnalysis>(F, PA) ||
1800 Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
1801 Inv.invalidate<PhiValuesAnalysis>(F, PA))
1802 return true;
1804 // Otherwise this analysis result remains valid.
1805 return false;
1808 unsigned MemoryDependenceResults::getDefaultBlockScanLimit() const {
1809 return BlockScanLimit;
1812 bool MemoryDependenceWrapperPass::runOnFunction(Function &F) {
1813 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
1814 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1815 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
1816 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1817 auto &PV = getAnalysis<PhiValuesWrapperPass>().getResult();
1818 MemDep.emplace(AA, AC, TLI, DT, PV);
1819 return false;