[llvm-exegesis] Fix missing std::move.
[llvm-complete.git] / lib / Analysis / ScalarEvolution.cpp
blob193020ed92fc2e0ff0274ac182c74073ee99c1da
1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the scalar evolution analysis
11 // engine, which is used primarily to analyze expressions involving induction
12 // variables in loops.
14 // There are several aspects to this library. First is the representation of
15 // scalar expressions, which are represented as subclasses of the SCEV class.
16 // These classes are used to represent certain types of subexpressions that we
17 // can handle. We only create one SCEV of a particular shape, so
18 // pointer-comparisons for equality are legal.
20 // One important aspect of the SCEV objects is that they are never cyclic, even
21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
23 // recurrence) then we represent it directly as a recurrence node, otherwise we
24 // represent it as a SCEVUnknown node.
26 // In addition to being able to represent expressions of various types, we also
27 // have folders that are used to build the *canonical* representation for a
28 // particular expression. These folders are capable of using a variety of
29 // rewrite rules to simplify the expressions.
31 // Once the folders are defined, we can implement the more interesting
32 // higher-level code, such as the code that recognizes PHI nodes of various
33 // types, computes the execution count of a loop, etc.
35 // TODO: We should use these routines and value representations to implement
36 // dependence analysis!
38 //===----------------------------------------------------------------------===//
40 // There are several good references for the techniques used in this analysis.
42 // Chains of recurrences -- a method to expedite the evaluation
43 // of closed-form functions
44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima
46 // On computational properties of chains of recurrences
47 // Eugene V. Zima
49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50 // Robert A. van Engelen
52 // Efficient Symbolic Analysis for Optimizing Compilers
53 // Robert A. van Engelen
55 // Using the chains of recurrences algebra for data dependence testing and
56 // induction variable substitution
57 // MS Thesis, Johnie Birch
59 //===----------------------------------------------------------------------===//
61 #include "llvm/Analysis/ScalarEvolution.h"
62 #include "llvm/ADT/APInt.h"
63 #include "llvm/ADT/ArrayRef.h"
64 #include "llvm/ADT/DenseMap.h"
65 #include "llvm/ADT/DepthFirstIterator.h"
66 #include "llvm/ADT/EquivalenceClasses.h"
67 #include "llvm/ADT/FoldingSet.h"
68 #include "llvm/ADT/None.h"
69 #include "llvm/ADT/Optional.h"
70 #include "llvm/ADT/STLExtras.h"
71 #include "llvm/ADT/ScopeExit.h"
72 #include "llvm/ADT/Sequence.h"
73 #include "llvm/ADT/SetVector.h"
74 #include "llvm/ADT/SmallPtrSet.h"
75 #include "llvm/ADT/SmallSet.h"
76 #include "llvm/ADT/SmallVector.h"
77 #include "llvm/ADT/Statistic.h"
78 #include "llvm/ADT/StringRef.h"
79 #include "llvm/Analysis/AssumptionCache.h"
80 #include "llvm/Analysis/ConstantFolding.h"
81 #include "llvm/Analysis/InstructionSimplify.h"
82 #include "llvm/Analysis/LoopInfo.h"
83 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
84 #include "llvm/Analysis/TargetLibraryInfo.h"
85 #include "llvm/Analysis/ValueTracking.h"
86 #include "llvm/Config/llvm-config.h"
87 #include "llvm/IR/Argument.h"
88 #include "llvm/IR/BasicBlock.h"
89 #include "llvm/IR/CFG.h"
90 #include "llvm/IR/CallSite.h"
91 #include "llvm/IR/Constant.h"
92 #include "llvm/IR/ConstantRange.h"
93 #include "llvm/IR/Constants.h"
94 #include "llvm/IR/DataLayout.h"
95 #include "llvm/IR/DerivedTypes.h"
96 #include "llvm/IR/Dominators.h"
97 #include "llvm/IR/Function.h"
98 #include "llvm/IR/GlobalAlias.h"
99 #include "llvm/IR/GlobalValue.h"
100 #include "llvm/IR/GlobalVariable.h"
101 #include "llvm/IR/InstIterator.h"
102 #include "llvm/IR/InstrTypes.h"
103 #include "llvm/IR/Instruction.h"
104 #include "llvm/IR/Instructions.h"
105 #include "llvm/IR/IntrinsicInst.h"
106 #include "llvm/IR/Intrinsics.h"
107 #include "llvm/IR/LLVMContext.h"
108 #include "llvm/IR/Metadata.h"
109 #include "llvm/IR/Operator.h"
110 #include "llvm/IR/PatternMatch.h"
111 #include "llvm/IR/Type.h"
112 #include "llvm/IR/Use.h"
113 #include "llvm/IR/User.h"
114 #include "llvm/IR/Value.h"
115 #include "llvm/Pass.h"
116 #include "llvm/Support/Casting.h"
117 #include "llvm/Support/CommandLine.h"
118 #include "llvm/Support/Compiler.h"
119 #include "llvm/Support/Debug.h"
120 #include "llvm/Support/ErrorHandling.h"
121 #include "llvm/Support/KnownBits.h"
122 #include "llvm/Support/SaveAndRestore.h"
123 #include "llvm/Support/raw_ostream.h"
124 #include <algorithm>
125 #include <cassert>
126 #include <climits>
127 #include <cstddef>
128 #include <cstdint>
129 #include <cstdlib>
130 #include <map>
131 #include <memory>
132 #include <tuple>
133 #include <utility>
134 #include <vector>
136 using namespace llvm;
138 #define DEBUG_TYPE "scalar-evolution"
140 STATISTIC(NumArrayLenItCounts,
141 "Number of trip counts computed with array length");
142 STATISTIC(NumTripCountsComputed,
143 "Number of loops with predictable loop counts");
144 STATISTIC(NumTripCountsNotComputed,
145 "Number of loops without predictable loop counts");
146 STATISTIC(NumBruteForceTripCountsComputed,
147 "Number of loops with trip counts computed by force");
149 static cl::opt<unsigned>
150 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
151 cl::desc("Maximum number of iterations SCEV will "
152 "symbolically execute a constant "
153 "derived loop"),
154 cl::init(100));
156 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
157 static cl::opt<bool> VerifySCEV(
158 "verify-scev", cl::Hidden,
159 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
160 static cl::opt<bool>
161 VerifySCEVMap("verify-scev-maps", cl::Hidden,
162 cl::desc("Verify no dangling value in ScalarEvolution's "
163 "ExprValueMap (slow)"));
165 static cl::opt<unsigned> MulOpsInlineThreshold(
166 "scev-mulops-inline-threshold", cl::Hidden,
167 cl::desc("Threshold for inlining multiplication operands into a SCEV"),
168 cl::init(32));
170 static cl::opt<unsigned> AddOpsInlineThreshold(
171 "scev-addops-inline-threshold", cl::Hidden,
172 cl::desc("Threshold for inlining addition operands into a SCEV"),
173 cl::init(500));
175 static cl::opt<unsigned> MaxSCEVCompareDepth(
176 "scalar-evolution-max-scev-compare-depth", cl::Hidden,
177 cl::desc("Maximum depth of recursive SCEV complexity comparisons"),
178 cl::init(32));
180 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth(
181 "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden,
182 cl::desc("Maximum depth of recursive SCEV operations implication analysis"),
183 cl::init(2));
185 static cl::opt<unsigned> MaxValueCompareDepth(
186 "scalar-evolution-max-value-compare-depth", cl::Hidden,
187 cl::desc("Maximum depth of recursive value complexity comparisons"),
188 cl::init(2));
190 static cl::opt<unsigned>
191 MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden,
192 cl::desc("Maximum depth of recursive arithmetics"),
193 cl::init(32));
195 static cl::opt<unsigned> MaxConstantEvolvingDepth(
196 "scalar-evolution-max-constant-evolving-depth", cl::Hidden,
197 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32));
199 static cl::opt<unsigned>
200 MaxExtDepth("scalar-evolution-max-ext-depth", cl::Hidden,
201 cl::desc("Maximum depth of recursive SExt/ZExt"),
202 cl::init(8));
204 static cl::opt<unsigned>
205 MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden,
206 cl::desc("Max coefficients in AddRec during evolving"),
207 cl::init(16));
209 //===----------------------------------------------------------------------===//
210 // SCEV class definitions
211 //===----------------------------------------------------------------------===//
213 //===----------------------------------------------------------------------===//
214 // Implementation of the SCEV class.
217 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
218 LLVM_DUMP_METHOD void SCEV::dump() const {
219 print(dbgs());
220 dbgs() << '\n';
222 #endif
224 void SCEV::print(raw_ostream &OS) const {
225 switch (static_cast<SCEVTypes>(getSCEVType())) {
226 case scConstant:
227 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
228 return;
229 case scTruncate: {
230 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
231 const SCEV *Op = Trunc->getOperand();
232 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
233 << *Trunc->getType() << ")";
234 return;
236 case scZeroExtend: {
237 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
238 const SCEV *Op = ZExt->getOperand();
239 OS << "(zext " << *Op->getType() << " " << *Op << " to "
240 << *ZExt->getType() << ")";
241 return;
243 case scSignExtend: {
244 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
245 const SCEV *Op = SExt->getOperand();
246 OS << "(sext " << *Op->getType() << " " << *Op << " to "
247 << *SExt->getType() << ")";
248 return;
250 case scAddRecExpr: {
251 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
252 OS << "{" << *AR->getOperand(0);
253 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
254 OS << ",+," << *AR->getOperand(i);
255 OS << "}<";
256 if (AR->hasNoUnsignedWrap())
257 OS << "nuw><";
258 if (AR->hasNoSignedWrap())
259 OS << "nsw><";
260 if (AR->hasNoSelfWrap() &&
261 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
262 OS << "nw><";
263 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
264 OS << ">";
265 return;
267 case scAddExpr:
268 case scMulExpr:
269 case scUMaxExpr:
270 case scSMaxExpr: {
271 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
272 const char *OpStr = nullptr;
273 switch (NAry->getSCEVType()) {
274 case scAddExpr: OpStr = " + "; break;
275 case scMulExpr: OpStr = " * "; break;
276 case scUMaxExpr: OpStr = " umax "; break;
277 case scSMaxExpr: OpStr = " smax "; break;
279 OS << "(";
280 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
281 I != E; ++I) {
282 OS << **I;
283 if (std::next(I) != E)
284 OS << OpStr;
286 OS << ")";
287 switch (NAry->getSCEVType()) {
288 case scAddExpr:
289 case scMulExpr:
290 if (NAry->hasNoUnsignedWrap())
291 OS << "<nuw>";
292 if (NAry->hasNoSignedWrap())
293 OS << "<nsw>";
295 return;
297 case scUDivExpr: {
298 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
299 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
300 return;
302 case scUnknown: {
303 const SCEVUnknown *U = cast<SCEVUnknown>(this);
304 Type *AllocTy;
305 if (U->isSizeOf(AllocTy)) {
306 OS << "sizeof(" << *AllocTy << ")";
307 return;
309 if (U->isAlignOf(AllocTy)) {
310 OS << "alignof(" << *AllocTy << ")";
311 return;
314 Type *CTy;
315 Constant *FieldNo;
316 if (U->isOffsetOf(CTy, FieldNo)) {
317 OS << "offsetof(" << *CTy << ", ";
318 FieldNo->printAsOperand(OS, false);
319 OS << ")";
320 return;
323 // Otherwise just print it normally.
324 U->getValue()->printAsOperand(OS, false);
325 return;
327 case scCouldNotCompute:
328 OS << "***COULDNOTCOMPUTE***";
329 return;
331 llvm_unreachable("Unknown SCEV kind!");
334 Type *SCEV::getType() const {
335 switch (static_cast<SCEVTypes>(getSCEVType())) {
336 case scConstant:
337 return cast<SCEVConstant>(this)->getType();
338 case scTruncate:
339 case scZeroExtend:
340 case scSignExtend:
341 return cast<SCEVCastExpr>(this)->getType();
342 case scAddRecExpr:
343 case scMulExpr:
344 case scUMaxExpr:
345 case scSMaxExpr:
346 return cast<SCEVNAryExpr>(this)->getType();
347 case scAddExpr:
348 return cast<SCEVAddExpr>(this)->getType();
349 case scUDivExpr:
350 return cast<SCEVUDivExpr>(this)->getType();
351 case scUnknown:
352 return cast<SCEVUnknown>(this)->getType();
353 case scCouldNotCompute:
354 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
356 llvm_unreachable("Unknown SCEV kind!");
359 bool SCEV::isZero() const {
360 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
361 return SC->getValue()->isZero();
362 return false;
365 bool SCEV::isOne() const {
366 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
367 return SC->getValue()->isOne();
368 return false;
371 bool SCEV::isAllOnesValue() const {
372 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
373 return SC->getValue()->isMinusOne();
374 return false;
377 bool SCEV::isNonConstantNegative() const {
378 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
379 if (!Mul) return false;
381 // If there is a constant factor, it will be first.
382 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
383 if (!SC) return false;
385 // Return true if the value is negative, this matches things like (-42 * V).
386 return SC->getAPInt().isNegative();
389 SCEVCouldNotCompute::SCEVCouldNotCompute() :
390 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
392 bool SCEVCouldNotCompute::classof(const SCEV *S) {
393 return S->getSCEVType() == scCouldNotCompute;
396 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
397 FoldingSetNodeID ID;
398 ID.AddInteger(scConstant);
399 ID.AddPointer(V);
400 void *IP = nullptr;
401 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
402 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
403 UniqueSCEVs.InsertNode(S, IP);
404 return S;
407 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
408 return getConstant(ConstantInt::get(getContext(), Val));
411 const SCEV *
412 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
413 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
414 return getConstant(ConstantInt::get(ITy, V, isSigned));
417 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
418 unsigned SCEVTy, const SCEV *op, Type *ty)
419 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
421 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
422 const SCEV *op, Type *ty)
423 : SCEVCastExpr(ID, scTruncate, op, ty) {
424 assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
425 "Cannot truncate non-integer value!");
428 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
429 const SCEV *op, Type *ty)
430 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
431 assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
432 "Cannot zero extend non-integer value!");
435 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
436 const SCEV *op, Type *ty)
437 : SCEVCastExpr(ID, scSignExtend, op, ty) {
438 assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
439 "Cannot sign extend non-integer value!");
442 void SCEVUnknown::deleted() {
443 // Clear this SCEVUnknown from various maps.
444 SE->forgetMemoizedResults(this);
446 // Remove this SCEVUnknown from the uniquing map.
447 SE->UniqueSCEVs.RemoveNode(this);
449 // Release the value.
450 setValPtr(nullptr);
453 void SCEVUnknown::allUsesReplacedWith(Value *New) {
454 // Remove this SCEVUnknown from the uniquing map.
455 SE->UniqueSCEVs.RemoveNode(this);
457 // Update this SCEVUnknown to point to the new value. This is needed
458 // because there may still be outstanding SCEVs which still point to
459 // this SCEVUnknown.
460 setValPtr(New);
463 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
464 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
465 if (VCE->getOpcode() == Instruction::PtrToInt)
466 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
467 if (CE->getOpcode() == Instruction::GetElementPtr &&
468 CE->getOperand(0)->isNullValue() &&
469 CE->getNumOperands() == 2)
470 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
471 if (CI->isOne()) {
472 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
473 ->getElementType();
474 return true;
477 return false;
480 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
481 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
482 if (VCE->getOpcode() == Instruction::PtrToInt)
483 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
484 if (CE->getOpcode() == Instruction::GetElementPtr &&
485 CE->getOperand(0)->isNullValue()) {
486 Type *Ty =
487 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
488 if (StructType *STy = dyn_cast<StructType>(Ty))
489 if (!STy->isPacked() &&
490 CE->getNumOperands() == 3 &&
491 CE->getOperand(1)->isNullValue()) {
492 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
493 if (CI->isOne() &&
494 STy->getNumElements() == 2 &&
495 STy->getElementType(0)->isIntegerTy(1)) {
496 AllocTy = STy->getElementType(1);
497 return true;
502 return false;
505 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
506 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
507 if (VCE->getOpcode() == Instruction::PtrToInt)
508 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
509 if (CE->getOpcode() == Instruction::GetElementPtr &&
510 CE->getNumOperands() == 3 &&
511 CE->getOperand(0)->isNullValue() &&
512 CE->getOperand(1)->isNullValue()) {
513 Type *Ty =
514 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
515 // Ignore vector types here so that ScalarEvolutionExpander doesn't
516 // emit getelementptrs that index into vectors.
517 if (Ty->isStructTy() || Ty->isArrayTy()) {
518 CTy = Ty;
519 FieldNo = CE->getOperand(2);
520 return true;
524 return false;
527 //===----------------------------------------------------------------------===//
528 // SCEV Utilities
529 //===----------------------------------------------------------------------===//
531 /// Compare the two values \p LV and \p RV in terms of their "complexity" where
532 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order
533 /// operands in SCEV expressions. \p EqCache is a set of pairs of values that
534 /// have been previously deemed to be "equally complex" by this routine. It is
535 /// intended to avoid exponential time complexity in cases like:
537 /// %a = f(%x, %y)
538 /// %b = f(%a, %a)
539 /// %c = f(%b, %b)
541 /// %d = f(%x, %y)
542 /// %e = f(%d, %d)
543 /// %f = f(%e, %e)
545 /// CompareValueComplexity(%f, %c)
547 /// Since we do not continue running this routine on expression trees once we
548 /// have seen unequal values, there is no need to track them in the cache.
549 static int
550 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue,
551 const LoopInfo *const LI, Value *LV, Value *RV,
552 unsigned Depth) {
553 if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV))
554 return 0;
556 // Order pointer values after integer values. This helps SCEVExpander form
557 // GEPs.
558 bool LIsPointer = LV->getType()->isPointerTy(),
559 RIsPointer = RV->getType()->isPointerTy();
560 if (LIsPointer != RIsPointer)
561 return (int)LIsPointer - (int)RIsPointer;
563 // Compare getValueID values.
564 unsigned LID = LV->getValueID(), RID = RV->getValueID();
565 if (LID != RID)
566 return (int)LID - (int)RID;
568 // Sort arguments by their position.
569 if (const auto *LA = dyn_cast<Argument>(LV)) {
570 const auto *RA = cast<Argument>(RV);
571 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
572 return (int)LArgNo - (int)RArgNo;
575 if (const auto *LGV = dyn_cast<GlobalValue>(LV)) {
576 const auto *RGV = cast<GlobalValue>(RV);
578 const auto IsGVNameSemantic = [&](const GlobalValue *GV) {
579 auto LT = GV->getLinkage();
580 return !(GlobalValue::isPrivateLinkage(LT) ||
581 GlobalValue::isInternalLinkage(LT));
584 // Use the names to distinguish the two values, but only if the
585 // names are semantically important.
586 if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV))
587 return LGV->getName().compare(RGV->getName());
590 // For instructions, compare their loop depth, and their operand count. This
591 // is pretty loose.
592 if (const auto *LInst = dyn_cast<Instruction>(LV)) {
593 const auto *RInst = cast<Instruction>(RV);
595 // Compare loop depths.
596 const BasicBlock *LParent = LInst->getParent(),
597 *RParent = RInst->getParent();
598 if (LParent != RParent) {
599 unsigned LDepth = LI->getLoopDepth(LParent),
600 RDepth = LI->getLoopDepth(RParent);
601 if (LDepth != RDepth)
602 return (int)LDepth - (int)RDepth;
605 // Compare the number of operands.
606 unsigned LNumOps = LInst->getNumOperands(),
607 RNumOps = RInst->getNumOperands();
608 if (LNumOps != RNumOps)
609 return (int)LNumOps - (int)RNumOps;
611 for (unsigned Idx : seq(0u, LNumOps)) {
612 int Result =
613 CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx),
614 RInst->getOperand(Idx), Depth + 1);
615 if (Result != 0)
616 return Result;
620 EqCacheValue.unionSets(LV, RV);
621 return 0;
624 // Return negative, zero, or positive, if LHS is less than, equal to, or greater
625 // than RHS, respectively. A three-way result allows recursive comparisons to be
626 // more efficient.
627 static int CompareSCEVComplexity(
628 EquivalenceClasses<const SCEV *> &EqCacheSCEV,
629 EquivalenceClasses<const Value *> &EqCacheValue,
630 const LoopInfo *const LI, const SCEV *LHS, const SCEV *RHS,
631 DominatorTree &DT, unsigned Depth = 0) {
632 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
633 if (LHS == RHS)
634 return 0;
636 // Primarily, sort the SCEVs by their getSCEVType().
637 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
638 if (LType != RType)
639 return (int)LType - (int)RType;
641 if (Depth > MaxSCEVCompareDepth || EqCacheSCEV.isEquivalent(LHS, RHS))
642 return 0;
643 // Aside from the getSCEVType() ordering, the particular ordering
644 // isn't very important except that it's beneficial to be consistent,
645 // so that (a + b) and (b + a) don't end up as different expressions.
646 switch (static_cast<SCEVTypes>(LType)) {
647 case scUnknown: {
648 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
649 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
651 int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(),
652 RU->getValue(), Depth + 1);
653 if (X == 0)
654 EqCacheSCEV.unionSets(LHS, RHS);
655 return X;
658 case scConstant: {
659 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
660 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
662 // Compare constant values.
663 const APInt &LA = LC->getAPInt();
664 const APInt &RA = RC->getAPInt();
665 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
666 if (LBitWidth != RBitWidth)
667 return (int)LBitWidth - (int)RBitWidth;
668 return LA.ult(RA) ? -1 : 1;
671 case scAddRecExpr: {
672 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
673 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
675 // There is always a dominance between two recs that are used by one SCEV,
676 // so we can safely sort recs by loop header dominance. We require such
677 // order in getAddExpr.
678 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
679 if (LLoop != RLoop) {
680 const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader();
681 assert(LHead != RHead && "Two loops share the same header?");
682 if (DT.dominates(LHead, RHead))
683 return 1;
684 else
685 assert(DT.dominates(RHead, LHead) &&
686 "No dominance between recurrences used by one SCEV?");
687 return -1;
690 // Addrec complexity grows with operand count.
691 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
692 if (LNumOps != RNumOps)
693 return (int)LNumOps - (int)RNumOps;
695 // Lexicographically compare.
696 for (unsigned i = 0; i != LNumOps; ++i) {
697 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
698 LA->getOperand(i), RA->getOperand(i), DT,
699 Depth + 1);
700 if (X != 0)
701 return X;
703 EqCacheSCEV.unionSets(LHS, RHS);
704 return 0;
707 case scAddExpr:
708 case scMulExpr:
709 case scSMaxExpr:
710 case scUMaxExpr: {
711 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
712 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
714 // Lexicographically compare n-ary expressions.
715 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
716 if (LNumOps != RNumOps)
717 return (int)LNumOps - (int)RNumOps;
719 for (unsigned i = 0; i != LNumOps; ++i) {
720 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
721 LC->getOperand(i), RC->getOperand(i), DT,
722 Depth + 1);
723 if (X != 0)
724 return X;
726 EqCacheSCEV.unionSets(LHS, RHS);
727 return 0;
730 case scUDivExpr: {
731 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
732 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
734 // Lexicographically compare udiv expressions.
735 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(),
736 RC->getLHS(), DT, Depth + 1);
737 if (X != 0)
738 return X;
739 X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(),
740 RC->getRHS(), DT, Depth + 1);
741 if (X == 0)
742 EqCacheSCEV.unionSets(LHS, RHS);
743 return X;
746 case scTruncate:
747 case scZeroExtend:
748 case scSignExtend: {
749 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
750 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
752 // Compare cast expressions by operand.
753 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
754 LC->getOperand(), RC->getOperand(), DT,
755 Depth + 1);
756 if (X == 0)
757 EqCacheSCEV.unionSets(LHS, RHS);
758 return X;
761 case scCouldNotCompute:
762 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
764 llvm_unreachable("Unknown SCEV kind!");
767 /// Given a list of SCEV objects, order them by their complexity, and group
768 /// objects of the same complexity together by value. When this routine is
769 /// finished, we know that any duplicates in the vector are consecutive and that
770 /// complexity is monotonically increasing.
772 /// Note that we go take special precautions to ensure that we get deterministic
773 /// results from this routine. In other words, we don't want the results of
774 /// this to depend on where the addresses of various SCEV objects happened to
775 /// land in memory.
776 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
777 LoopInfo *LI, DominatorTree &DT) {
778 if (Ops.size() < 2) return; // Noop
780 EquivalenceClasses<const SCEV *> EqCacheSCEV;
781 EquivalenceClasses<const Value *> EqCacheValue;
782 if (Ops.size() == 2) {
783 // This is the common case, which also happens to be trivially simple.
784 // Special case it.
785 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
786 if (CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, RHS, LHS, DT) < 0)
787 std::swap(LHS, RHS);
788 return;
791 // Do the rough sort by complexity.
792 std::stable_sort(Ops.begin(), Ops.end(),
793 [&](const SCEV *LHS, const SCEV *RHS) {
794 return CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
795 LHS, RHS, DT) < 0;
798 // Now that we are sorted by complexity, group elements of the same
799 // complexity. Note that this is, at worst, N^2, but the vector is likely to
800 // be extremely short in practice. Note that we take this approach because we
801 // do not want to depend on the addresses of the objects we are grouping.
802 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
803 const SCEV *S = Ops[i];
804 unsigned Complexity = S->getSCEVType();
806 // If there are any objects of the same complexity and same value as this
807 // one, group them.
808 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
809 if (Ops[j] == S) { // Found a duplicate.
810 // Move it to immediately after i'th element.
811 std::swap(Ops[i+1], Ops[j]);
812 ++i; // no need to rescan it.
813 if (i == e-2) return; // Done!
819 // Returns the size of the SCEV S.
820 static inline int sizeOfSCEV(const SCEV *S) {
821 struct FindSCEVSize {
822 int Size = 0;
824 FindSCEVSize() = default;
826 bool follow(const SCEV *S) {
827 ++Size;
828 // Keep looking at all operands of S.
829 return true;
832 bool isDone() const {
833 return false;
837 FindSCEVSize F;
838 SCEVTraversal<FindSCEVSize> ST(F);
839 ST.visitAll(S);
840 return F.Size;
843 namespace {
845 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
846 public:
847 // Computes the Quotient and Remainder of the division of Numerator by
848 // Denominator.
849 static void divide(ScalarEvolution &SE, const SCEV *Numerator,
850 const SCEV *Denominator, const SCEV **Quotient,
851 const SCEV **Remainder) {
852 assert(Numerator && Denominator && "Uninitialized SCEV");
854 SCEVDivision D(SE, Numerator, Denominator);
856 // Check for the trivial case here to avoid having to check for it in the
857 // rest of the code.
858 if (Numerator == Denominator) {
859 *Quotient = D.One;
860 *Remainder = D.Zero;
861 return;
864 if (Numerator->isZero()) {
865 *Quotient = D.Zero;
866 *Remainder = D.Zero;
867 return;
870 // A simple case when N/1. The quotient is N.
871 if (Denominator->isOne()) {
872 *Quotient = Numerator;
873 *Remainder = D.Zero;
874 return;
877 // Split the Denominator when it is a product.
878 if (const SCEVMulExpr *T = dyn_cast<SCEVMulExpr>(Denominator)) {
879 const SCEV *Q, *R;
880 *Quotient = Numerator;
881 for (const SCEV *Op : T->operands()) {
882 divide(SE, *Quotient, Op, &Q, &R);
883 *Quotient = Q;
885 // Bail out when the Numerator is not divisible by one of the terms of
886 // the Denominator.
887 if (!R->isZero()) {
888 *Quotient = D.Zero;
889 *Remainder = Numerator;
890 return;
893 *Remainder = D.Zero;
894 return;
897 D.visit(Numerator);
898 *Quotient = D.Quotient;
899 *Remainder = D.Remainder;
902 // Except in the trivial case described above, we do not know how to divide
903 // Expr by Denominator for the following functions with empty implementation.
904 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
905 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
906 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
907 void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
908 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
909 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
910 void visitUnknown(const SCEVUnknown *Numerator) {}
911 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
913 void visitConstant(const SCEVConstant *Numerator) {
914 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
915 APInt NumeratorVal = Numerator->getAPInt();
916 APInt DenominatorVal = D->getAPInt();
917 uint32_t NumeratorBW = NumeratorVal.getBitWidth();
918 uint32_t DenominatorBW = DenominatorVal.getBitWidth();
920 if (NumeratorBW > DenominatorBW)
921 DenominatorVal = DenominatorVal.sext(NumeratorBW);
922 else if (NumeratorBW < DenominatorBW)
923 NumeratorVal = NumeratorVal.sext(DenominatorBW);
925 APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
926 APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
927 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
928 Quotient = SE.getConstant(QuotientVal);
929 Remainder = SE.getConstant(RemainderVal);
930 return;
934 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
935 const SCEV *StartQ, *StartR, *StepQ, *StepR;
936 if (!Numerator->isAffine())
937 return cannotDivide(Numerator);
938 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
939 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
940 // Bail out if the types do not match.
941 Type *Ty = Denominator->getType();
942 if (Ty != StartQ->getType() || Ty != StartR->getType() ||
943 Ty != StepQ->getType() || Ty != StepR->getType())
944 return cannotDivide(Numerator);
945 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
946 Numerator->getNoWrapFlags());
947 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
948 Numerator->getNoWrapFlags());
951 void visitAddExpr(const SCEVAddExpr *Numerator) {
952 SmallVector<const SCEV *, 2> Qs, Rs;
953 Type *Ty = Denominator->getType();
955 for (const SCEV *Op : Numerator->operands()) {
956 const SCEV *Q, *R;
957 divide(SE, Op, Denominator, &Q, &R);
959 // Bail out if types do not match.
960 if (Ty != Q->getType() || Ty != R->getType())
961 return cannotDivide(Numerator);
963 Qs.push_back(Q);
964 Rs.push_back(R);
967 if (Qs.size() == 1) {
968 Quotient = Qs[0];
969 Remainder = Rs[0];
970 return;
973 Quotient = SE.getAddExpr(Qs);
974 Remainder = SE.getAddExpr(Rs);
977 void visitMulExpr(const SCEVMulExpr *Numerator) {
978 SmallVector<const SCEV *, 2> Qs;
979 Type *Ty = Denominator->getType();
981 bool FoundDenominatorTerm = false;
982 for (const SCEV *Op : Numerator->operands()) {
983 // Bail out if types do not match.
984 if (Ty != Op->getType())
985 return cannotDivide(Numerator);
987 if (FoundDenominatorTerm) {
988 Qs.push_back(Op);
989 continue;
992 // Check whether Denominator divides one of the product operands.
993 const SCEV *Q, *R;
994 divide(SE, Op, Denominator, &Q, &R);
995 if (!R->isZero()) {
996 Qs.push_back(Op);
997 continue;
1000 // Bail out if types do not match.
1001 if (Ty != Q->getType())
1002 return cannotDivide(Numerator);
1004 FoundDenominatorTerm = true;
1005 Qs.push_back(Q);
1008 if (FoundDenominatorTerm) {
1009 Remainder = Zero;
1010 if (Qs.size() == 1)
1011 Quotient = Qs[0];
1012 else
1013 Quotient = SE.getMulExpr(Qs);
1014 return;
1017 if (!isa<SCEVUnknown>(Denominator))
1018 return cannotDivide(Numerator);
1020 // The Remainder is obtained by replacing Denominator by 0 in Numerator.
1021 ValueToValueMap RewriteMap;
1022 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
1023 cast<SCEVConstant>(Zero)->getValue();
1024 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
1026 if (Remainder->isZero()) {
1027 // The Quotient is obtained by replacing Denominator by 1 in Numerator.
1028 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
1029 cast<SCEVConstant>(One)->getValue();
1030 Quotient =
1031 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
1032 return;
1035 // Quotient is (Numerator - Remainder) divided by Denominator.
1036 const SCEV *Q, *R;
1037 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
1038 // This SCEV does not seem to simplify: fail the division here.
1039 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator))
1040 return cannotDivide(Numerator);
1041 divide(SE, Diff, Denominator, &Q, &R);
1042 if (R != Zero)
1043 return cannotDivide(Numerator);
1044 Quotient = Q;
1047 private:
1048 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
1049 const SCEV *Denominator)
1050 : SE(S), Denominator(Denominator) {
1051 Zero = SE.getZero(Denominator->getType());
1052 One = SE.getOne(Denominator->getType());
1054 // We generally do not know how to divide Expr by Denominator. We
1055 // initialize the division to a "cannot divide" state to simplify the rest
1056 // of the code.
1057 cannotDivide(Numerator);
1060 // Convenience function for giving up on the division. We set the quotient to
1061 // be equal to zero and the remainder to be equal to the numerator.
1062 void cannotDivide(const SCEV *Numerator) {
1063 Quotient = Zero;
1064 Remainder = Numerator;
1067 ScalarEvolution &SE;
1068 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
1071 } // end anonymous namespace
1073 //===----------------------------------------------------------------------===//
1074 // Simple SCEV method implementations
1075 //===----------------------------------------------------------------------===//
1077 /// Compute BC(It, K). The result has width W. Assume, K > 0.
1078 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
1079 ScalarEvolution &SE,
1080 Type *ResultTy) {
1081 // Handle the simplest case efficiently.
1082 if (K == 1)
1083 return SE.getTruncateOrZeroExtend(It, ResultTy);
1085 // We are using the following formula for BC(It, K):
1087 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
1089 // Suppose, W is the bitwidth of the return value. We must be prepared for
1090 // overflow. Hence, we must assure that the result of our computation is
1091 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
1092 // safe in modular arithmetic.
1094 // However, this code doesn't use exactly that formula; the formula it uses
1095 // is something like the following, where T is the number of factors of 2 in
1096 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
1097 // exponentiation:
1099 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
1101 // This formula is trivially equivalent to the previous formula. However,
1102 // this formula can be implemented much more efficiently. The trick is that
1103 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
1104 // arithmetic. To do exact division in modular arithmetic, all we have
1105 // to do is multiply by the inverse. Therefore, this step can be done at
1106 // width W.
1108 // The next issue is how to safely do the division by 2^T. The way this
1109 // is done is by doing the multiplication step at a width of at least W + T
1110 // bits. This way, the bottom W+T bits of the product are accurate. Then,
1111 // when we perform the division by 2^T (which is equivalent to a right shift
1112 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
1113 // truncated out after the division by 2^T.
1115 // In comparison to just directly using the first formula, this technique
1116 // is much more efficient; using the first formula requires W * K bits,
1117 // but this formula less than W + K bits. Also, the first formula requires
1118 // a division step, whereas this formula only requires multiplies and shifts.
1120 // It doesn't matter whether the subtraction step is done in the calculation
1121 // width or the input iteration count's width; if the subtraction overflows,
1122 // the result must be zero anyway. We prefer here to do it in the width of
1123 // the induction variable because it helps a lot for certain cases; CodeGen
1124 // isn't smart enough to ignore the overflow, which leads to much less
1125 // efficient code if the width of the subtraction is wider than the native
1126 // register width.
1128 // (It's possible to not widen at all by pulling out factors of 2 before
1129 // the multiplication; for example, K=2 can be calculated as
1130 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
1131 // extra arithmetic, so it's not an obvious win, and it gets
1132 // much more complicated for K > 3.)
1134 // Protection from insane SCEVs; this bound is conservative,
1135 // but it probably doesn't matter.
1136 if (K > 1000)
1137 return SE.getCouldNotCompute();
1139 unsigned W = SE.getTypeSizeInBits(ResultTy);
1141 // Calculate K! / 2^T and T; we divide out the factors of two before
1142 // multiplying for calculating K! / 2^T to avoid overflow.
1143 // Other overflow doesn't matter because we only care about the bottom
1144 // W bits of the result.
1145 APInt OddFactorial(W, 1);
1146 unsigned T = 1;
1147 for (unsigned i = 3; i <= K; ++i) {
1148 APInt Mult(W, i);
1149 unsigned TwoFactors = Mult.countTrailingZeros();
1150 T += TwoFactors;
1151 Mult.lshrInPlace(TwoFactors);
1152 OddFactorial *= Mult;
1155 // We need at least W + T bits for the multiplication step
1156 unsigned CalculationBits = W + T;
1158 // Calculate 2^T, at width T+W.
1159 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
1161 // Calculate the multiplicative inverse of K! / 2^T;
1162 // this multiplication factor will perform the exact division by
1163 // K! / 2^T.
1164 APInt Mod = APInt::getSignedMinValue(W+1);
1165 APInt MultiplyFactor = OddFactorial.zext(W+1);
1166 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1167 MultiplyFactor = MultiplyFactor.trunc(W);
1169 // Calculate the product, at width T+W
1170 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
1171 CalculationBits);
1172 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
1173 for (unsigned i = 1; i != K; ++i) {
1174 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
1175 Dividend = SE.getMulExpr(Dividend,
1176 SE.getTruncateOrZeroExtend(S, CalculationTy));
1179 // Divide by 2^T
1180 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
1182 // Truncate the result, and divide by K! / 2^T.
1184 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1185 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
1188 /// Return the value of this chain of recurrences at the specified iteration
1189 /// number. We can evaluate this recurrence by multiplying each element in the
1190 /// chain by the binomial coefficient corresponding to it. In other words, we
1191 /// can evaluate {A,+,B,+,C,+,D} as:
1193 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1195 /// where BC(It, k) stands for binomial coefficient.
1196 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
1197 ScalarEvolution &SE) const {
1198 const SCEV *Result = getStart();
1199 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1200 // The computation is correct in the face of overflow provided that the
1201 // multiplication is performed _after_ the evaluation of the binomial
1202 // coefficient.
1203 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
1204 if (isa<SCEVCouldNotCompute>(Coeff))
1205 return Coeff;
1207 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
1209 return Result;
1212 //===----------------------------------------------------------------------===//
1213 // SCEV Expression folder implementations
1214 //===----------------------------------------------------------------------===//
1216 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
1217 Type *Ty) {
1218 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1219 "This is not a truncating conversion!");
1220 assert(isSCEVable(Ty) &&
1221 "This is not a conversion to a SCEVable type!");
1222 Ty = getEffectiveSCEVType(Ty);
1224 FoldingSetNodeID ID;
1225 ID.AddInteger(scTruncate);
1226 ID.AddPointer(Op);
1227 ID.AddPointer(Ty);
1228 void *IP = nullptr;
1229 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1231 // Fold if the operand is constant.
1232 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1233 return getConstant(
1234 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1236 // trunc(trunc(x)) --> trunc(x)
1237 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1238 return getTruncateExpr(ST->getOperand(), Ty);
1240 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1241 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1242 return getTruncateOrSignExtend(SS->getOperand(), Ty);
1244 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1245 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1246 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
1248 // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and
1249 // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN),
1250 // if after transforming we have at most one truncate, not counting truncates
1251 // that replace other casts.
1252 if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) {
1253 auto *CommOp = cast<SCEVCommutativeExpr>(Op);
1254 SmallVector<const SCEV *, 4> Operands;
1255 unsigned numTruncs = 0;
1256 for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2;
1257 ++i) {
1258 const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty);
1259 if (!isa<SCEVCastExpr>(CommOp->getOperand(i)) && isa<SCEVTruncateExpr>(S))
1260 numTruncs++;
1261 Operands.push_back(S);
1263 if (numTruncs < 2) {
1264 if (isa<SCEVAddExpr>(Op))
1265 return getAddExpr(Operands);
1266 else if (isa<SCEVMulExpr>(Op))
1267 return getMulExpr(Operands);
1268 else
1269 llvm_unreachable("Unexpected SCEV type for Op.");
1271 // Although we checked in the beginning that ID is not in the cache, it is
1272 // possible that during recursion and different modification ID was inserted
1273 // into the cache. So if we find it, just return it.
1274 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1275 return S;
1278 // If the input value is a chrec scev, truncate the chrec's operands.
1279 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1280 SmallVector<const SCEV *, 4> Operands;
1281 for (const SCEV *Op : AddRec->operands())
1282 Operands.push_back(getTruncateExpr(Op, Ty));
1283 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1286 // The cast wasn't folded; create an explicit cast node. We can reuse
1287 // the existing insert position since if we get here, we won't have
1288 // made any changes which would invalidate it.
1289 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1290 Op, Ty);
1291 UniqueSCEVs.InsertNode(S, IP);
1292 addToLoopUseLists(S);
1293 return S;
1296 // Get the limit of a recurrence such that incrementing by Step cannot cause
1297 // signed overflow as long as the value of the recurrence within the
1298 // loop does not exceed this limit before incrementing.
1299 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1300 ICmpInst::Predicate *Pred,
1301 ScalarEvolution *SE) {
1302 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1303 if (SE->isKnownPositive(Step)) {
1304 *Pred = ICmpInst::ICMP_SLT;
1305 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1306 SE->getSignedRangeMax(Step));
1308 if (SE->isKnownNegative(Step)) {
1309 *Pred = ICmpInst::ICMP_SGT;
1310 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1311 SE->getSignedRangeMin(Step));
1313 return nullptr;
1316 // Get the limit of a recurrence such that incrementing by Step cannot cause
1317 // unsigned overflow as long as the value of the recurrence within the loop does
1318 // not exceed this limit before incrementing.
1319 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1320 ICmpInst::Predicate *Pred,
1321 ScalarEvolution *SE) {
1322 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1323 *Pred = ICmpInst::ICMP_ULT;
1325 return SE->getConstant(APInt::getMinValue(BitWidth) -
1326 SE->getUnsignedRangeMax(Step));
1329 namespace {
1331 struct ExtendOpTraitsBase {
1332 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *,
1333 unsigned);
1336 // Used to make code generic over signed and unsigned overflow.
1337 template <typename ExtendOp> struct ExtendOpTraits {
1338 // Members present:
1340 // static const SCEV::NoWrapFlags WrapType;
1342 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1344 // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1345 // ICmpInst::Predicate *Pred,
1346 // ScalarEvolution *SE);
1349 template <>
1350 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1351 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1353 static const GetExtendExprTy GetExtendExpr;
1355 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1356 ICmpInst::Predicate *Pred,
1357 ScalarEvolution *SE) {
1358 return getSignedOverflowLimitForStep(Step, Pred, SE);
1362 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1363 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1365 template <>
1366 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1367 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1369 static const GetExtendExprTy GetExtendExpr;
1371 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1372 ICmpInst::Predicate *Pred,
1373 ScalarEvolution *SE) {
1374 return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1378 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1379 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1381 } // end anonymous namespace
1383 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1384 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1385 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1386 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1387 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1388 // expression "Step + sext/zext(PreIncAR)" is congruent with
1389 // "sext/zext(PostIncAR)"
1390 template <typename ExtendOpTy>
1391 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1392 ScalarEvolution *SE, unsigned Depth) {
1393 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1394 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1396 const Loop *L = AR->getLoop();
1397 const SCEV *Start = AR->getStart();
1398 const SCEV *Step = AR->getStepRecurrence(*SE);
1400 // Check for a simple looking step prior to loop entry.
1401 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1402 if (!SA)
1403 return nullptr;
1405 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1406 // subtraction is expensive. For this purpose, perform a quick and dirty
1407 // difference, by checking for Step in the operand list.
1408 SmallVector<const SCEV *, 4> DiffOps;
1409 for (const SCEV *Op : SA->operands())
1410 if (Op != Step)
1411 DiffOps.push_back(Op);
1413 if (DiffOps.size() == SA->getNumOperands())
1414 return nullptr;
1416 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1417 // `Step`:
1419 // 1. NSW/NUW flags on the step increment.
1420 auto PreStartFlags =
1421 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1422 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1423 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1424 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1426 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1427 // "S+X does not sign/unsign-overflow".
1430 const SCEV *BECount = SE->getBackedgeTakenCount(L);
1431 if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1432 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1433 return PreStart;
1435 // 2. Direct overflow check on the step operation's expression.
1436 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1437 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1438 const SCEV *OperandExtendedStart =
1439 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth),
1440 (SE->*GetExtendExpr)(Step, WideTy, Depth));
1441 if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) {
1442 if (PreAR && AR->getNoWrapFlags(WrapType)) {
1443 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1444 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1445 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact.
1446 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
1448 return PreStart;
1451 // 3. Loop precondition.
1452 ICmpInst::Predicate Pred;
1453 const SCEV *OverflowLimit =
1454 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1456 if (OverflowLimit &&
1457 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1458 return PreStart;
1460 return nullptr;
1463 // Get the normalized zero or sign extended expression for this AddRec's Start.
1464 template <typename ExtendOpTy>
1465 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1466 ScalarEvolution *SE,
1467 unsigned Depth) {
1468 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1470 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth);
1471 if (!PreStart)
1472 return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth);
1474 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty,
1475 Depth),
1476 (SE->*GetExtendExpr)(PreStart, Ty, Depth));
1479 // Try to prove away overflow by looking at "nearby" add recurrences. A
1480 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1481 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1483 // Formally:
1485 // {S,+,X} == {S-T,+,X} + T
1486 // => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1488 // If ({S-T,+,X} + T) does not overflow ... (1)
1490 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1492 // If {S-T,+,X} does not overflow ... (2)
1494 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1495 // == {Ext(S-T)+Ext(T),+,Ext(X)}
1497 // If (S-T)+T does not overflow ... (3)
1499 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1500 // == {Ext(S),+,Ext(X)} == LHS
1502 // Thus, if (1), (2) and (3) are true for some T, then
1503 // Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1505 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1506 // does not overflow" restricted to the 0th iteration. Therefore we only need
1507 // to check for (1) and (2).
1509 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1510 // is `Delta` (defined below).
1511 template <typename ExtendOpTy>
1512 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1513 const SCEV *Step,
1514 const Loop *L) {
1515 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1517 // We restrict `Start` to a constant to prevent SCEV from spending too much
1518 // time here. It is correct (but more expensive) to continue with a
1519 // non-constant `Start` and do a general SCEV subtraction to compute
1520 // `PreStart` below.
1521 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1522 if (!StartC)
1523 return false;
1525 APInt StartAI = StartC->getAPInt();
1527 for (unsigned Delta : {-2, -1, 1, 2}) {
1528 const SCEV *PreStart = getConstant(StartAI - Delta);
1530 FoldingSetNodeID ID;
1531 ID.AddInteger(scAddRecExpr);
1532 ID.AddPointer(PreStart);
1533 ID.AddPointer(Step);
1534 ID.AddPointer(L);
1535 void *IP = nullptr;
1536 const auto *PreAR =
1537 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1539 // Give up if we don't already have the add recurrence we need because
1540 // actually constructing an add recurrence is relatively expensive.
1541 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2)
1542 const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1543 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1544 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1545 DeltaS, &Pred, this);
1546 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1)
1547 return true;
1551 return false;
1554 // Finds an integer D for an expression (C + x + y + ...) such that the top
1555 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or
1556 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is
1557 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and
1558 // the (C + x + y + ...) expression is \p WholeAddExpr.
1559 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1560 const SCEVConstant *ConstantTerm,
1561 const SCEVAddExpr *WholeAddExpr) {
1562 const APInt C = ConstantTerm->getAPInt();
1563 const unsigned BitWidth = C.getBitWidth();
1564 // Find number of trailing zeros of (x + y + ...) w/o the C first:
1565 uint32_t TZ = BitWidth;
1566 for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I)
1567 TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I)));
1568 if (TZ) {
1569 // Set D to be as many least significant bits of C as possible while still
1570 // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap:
1571 return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C;
1573 return APInt(BitWidth, 0);
1576 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top
1577 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the
1578 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p
1579 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count.
1580 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1581 const APInt &ConstantStart,
1582 const SCEV *Step) {
1583 const unsigned BitWidth = ConstantStart.getBitWidth();
1584 const uint32_t TZ = SE.GetMinTrailingZeros(Step);
1585 if (TZ)
1586 return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth)
1587 : ConstantStart;
1588 return APInt(BitWidth, 0);
1591 const SCEV *
1592 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1593 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1594 "This is not an extending conversion!");
1595 assert(isSCEVable(Ty) &&
1596 "This is not a conversion to a SCEVable type!");
1597 Ty = getEffectiveSCEVType(Ty);
1599 // Fold if the operand is constant.
1600 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1601 return getConstant(
1602 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1604 // zext(zext(x)) --> zext(x)
1605 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1606 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1608 // Before doing any expensive analysis, check to see if we've already
1609 // computed a SCEV for this Op and Ty.
1610 FoldingSetNodeID ID;
1611 ID.AddInteger(scZeroExtend);
1612 ID.AddPointer(Op);
1613 ID.AddPointer(Ty);
1614 void *IP = nullptr;
1615 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1616 if (Depth > MaxExtDepth) {
1617 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1618 Op, Ty);
1619 UniqueSCEVs.InsertNode(S, IP);
1620 addToLoopUseLists(S);
1621 return S;
1624 // zext(trunc(x)) --> zext(x) or x or trunc(x)
1625 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1626 // It's possible the bits taken off by the truncate were all zero bits. If
1627 // so, we should be able to simplify this further.
1628 const SCEV *X = ST->getOperand();
1629 ConstantRange CR = getUnsignedRange(X);
1630 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1631 unsigned NewBits = getTypeSizeInBits(Ty);
1632 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1633 CR.zextOrTrunc(NewBits)))
1634 return getTruncateOrZeroExtend(X, Ty);
1637 // If the input value is a chrec scev, and we can prove that the value
1638 // did not overflow the old, smaller, value, we can zero extend all of the
1639 // operands (often constants). This allows analysis of something like
1640 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1641 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1642 if (AR->isAffine()) {
1643 const SCEV *Start = AR->getStart();
1644 const SCEV *Step = AR->getStepRecurrence(*this);
1645 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1646 const Loop *L = AR->getLoop();
1648 if (!AR->hasNoUnsignedWrap()) {
1649 auto NewFlags = proveNoWrapViaConstantRanges(AR);
1650 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
1653 // If we have special knowledge that this addrec won't overflow,
1654 // we don't need to do any further analysis.
1655 if (AR->hasNoUnsignedWrap())
1656 return getAddRecExpr(
1657 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1658 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1660 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1661 // Note that this serves two purposes: It filters out loops that are
1662 // simply not analyzable, and it covers the case where this code is
1663 // being called from within backedge-taken count analysis, such that
1664 // attempting to ask for the backedge-taken count would likely result
1665 // in infinite recursion. In the later case, the analysis code will
1666 // cope with a conservative value, and it will take care to purge
1667 // that value once it has finished.
1668 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1669 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1670 // Manually compute the final value for AR, checking for
1671 // overflow.
1673 // Check whether the backedge-taken count can be losslessly casted to
1674 // the addrec's type. The count is always unsigned.
1675 const SCEV *CastedMaxBECount =
1676 getTruncateOrZeroExtend(MaxBECount, Start->getType());
1677 const SCEV *RecastedMaxBECount =
1678 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1679 if (MaxBECount == RecastedMaxBECount) {
1680 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1681 // Check whether Start+Step*MaxBECount has no unsigned overflow.
1682 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step,
1683 SCEV::FlagAnyWrap, Depth + 1);
1684 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul,
1685 SCEV::FlagAnyWrap,
1686 Depth + 1),
1687 WideTy, Depth + 1);
1688 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1);
1689 const SCEV *WideMaxBECount =
1690 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1691 const SCEV *OperandExtendedAdd =
1692 getAddExpr(WideStart,
1693 getMulExpr(WideMaxBECount,
1694 getZeroExtendExpr(Step, WideTy, Depth + 1),
1695 SCEV::FlagAnyWrap, Depth + 1),
1696 SCEV::FlagAnyWrap, Depth + 1);
1697 if (ZAdd == OperandExtendedAdd) {
1698 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1699 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1700 // Return the expression with the addrec on the outside.
1701 return getAddRecExpr(
1702 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1703 Depth + 1),
1704 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1705 AR->getNoWrapFlags());
1707 // Similar to above, only this time treat the step value as signed.
1708 // This covers loops that count down.
1709 OperandExtendedAdd =
1710 getAddExpr(WideStart,
1711 getMulExpr(WideMaxBECount,
1712 getSignExtendExpr(Step, WideTy, Depth + 1),
1713 SCEV::FlagAnyWrap, Depth + 1),
1714 SCEV::FlagAnyWrap, Depth + 1);
1715 if (ZAdd == OperandExtendedAdd) {
1716 // Cache knowledge of AR NW, which is propagated to this AddRec.
1717 // Negative step causes unsigned wrap, but it still can't self-wrap.
1718 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1719 // Return the expression with the addrec on the outside.
1720 return getAddRecExpr(
1721 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1722 Depth + 1),
1723 getSignExtendExpr(Step, Ty, Depth + 1), L,
1724 AR->getNoWrapFlags());
1729 // Normally, in the cases we can prove no-overflow via a
1730 // backedge guarding condition, we can also compute a backedge
1731 // taken count for the loop. The exceptions are assumptions and
1732 // guards present in the loop -- SCEV is not great at exploiting
1733 // these to compute max backedge taken counts, but can still use
1734 // these to prove lack of overflow. Use this fact to avoid
1735 // doing extra work that may not pay off.
1736 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1737 !AC.assumptions().empty()) {
1738 // If the backedge is guarded by a comparison with the pre-inc
1739 // value the addrec is safe. Also, if the entry is guarded by
1740 // a comparison with the start value and the backedge is
1741 // guarded by a comparison with the post-inc value, the addrec
1742 // is safe.
1743 if (isKnownPositive(Step)) {
1744 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1745 getUnsignedRangeMax(Step));
1746 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1747 isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) {
1748 // Cache knowledge of AR NUW, which is propagated to this
1749 // AddRec.
1750 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1751 // Return the expression with the addrec on the outside.
1752 return getAddRecExpr(
1753 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1754 Depth + 1),
1755 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1756 AR->getNoWrapFlags());
1758 } else if (isKnownNegative(Step)) {
1759 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1760 getSignedRangeMin(Step));
1761 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1762 isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) {
1763 // Cache knowledge of AR NW, which is propagated to this
1764 // AddRec. Negative step causes unsigned wrap, but it
1765 // still can't self-wrap.
1766 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1767 // Return the expression with the addrec on the outside.
1768 return getAddRecExpr(
1769 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1770 Depth + 1),
1771 getSignExtendExpr(Step, Ty, Depth + 1), L,
1772 AR->getNoWrapFlags());
1777 // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw>
1778 // if D + (C - D + Step * n) could be proven to not unsigned wrap
1779 // where D maximizes the number of trailing zeros of (C - D + Step * n)
1780 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
1781 const APInt &C = SC->getAPInt();
1782 const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
1783 if (D != 0) {
1784 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1785 const SCEV *SResidual =
1786 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
1787 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1788 return getAddExpr(SZExtD, SZExtR,
1789 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1790 Depth + 1);
1794 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1795 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1796 return getAddRecExpr(
1797 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1798 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1802 // zext(A % B) --> zext(A) % zext(B)
1804 const SCEV *LHS;
1805 const SCEV *RHS;
1806 if (matchURem(Op, LHS, RHS))
1807 return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1),
1808 getZeroExtendExpr(RHS, Ty, Depth + 1));
1811 // zext(A / B) --> zext(A) / zext(B).
1812 if (auto *Div = dyn_cast<SCEVUDivExpr>(Op))
1813 return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1),
1814 getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1));
1816 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1817 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1818 if (SA->hasNoUnsignedWrap()) {
1819 // If the addition does not unsign overflow then we can, by definition,
1820 // commute the zero extension with the addition operation.
1821 SmallVector<const SCEV *, 4> Ops;
1822 for (const auto *Op : SA->operands())
1823 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1824 return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1);
1827 // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...))
1828 // if D + (C - D + x + y + ...) could be proven to not unsigned wrap
1829 // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1831 // Often address arithmetics contain expressions like
1832 // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))).
1833 // This transformation is useful while proving that such expressions are
1834 // equal or differ by a small constant amount, see LoadStoreVectorizer pass.
1835 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1836 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1837 if (D != 0) {
1838 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1839 const SCEV *SResidual =
1840 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1841 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1842 return getAddExpr(SZExtD, SZExtR,
1843 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1844 Depth + 1);
1849 if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) {
1850 // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw>
1851 if (SM->hasNoUnsignedWrap()) {
1852 // If the multiply does not unsign overflow then we can, by definition,
1853 // commute the zero extension with the multiply operation.
1854 SmallVector<const SCEV *, 4> Ops;
1855 for (const auto *Op : SM->operands())
1856 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1857 return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1);
1860 // zext(2^K * (trunc X to iN)) to iM ->
1861 // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw>
1863 // Proof:
1865 // zext(2^K * (trunc X to iN)) to iM
1866 // = zext((trunc X to iN) << K) to iM
1867 // = zext((trunc X to i{N-K}) << K)<nuw> to iM
1868 // (because shl removes the top K bits)
1869 // = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM
1870 // = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>.
1872 if (SM->getNumOperands() == 2)
1873 if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0)))
1874 if (MulLHS->getAPInt().isPowerOf2())
1875 if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) {
1876 int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) -
1877 MulLHS->getAPInt().logBase2();
1878 Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits);
1879 return getMulExpr(
1880 getZeroExtendExpr(MulLHS, Ty),
1881 getZeroExtendExpr(
1882 getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty),
1883 SCEV::FlagNUW, Depth + 1);
1887 // The cast wasn't folded; create an explicit cast node.
1888 // Recompute the insert position, as it may have been invalidated.
1889 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1890 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1891 Op, Ty);
1892 UniqueSCEVs.InsertNode(S, IP);
1893 addToLoopUseLists(S);
1894 return S;
1897 const SCEV *
1898 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1899 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1900 "This is not an extending conversion!");
1901 assert(isSCEVable(Ty) &&
1902 "This is not a conversion to a SCEVable type!");
1903 Ty = getEffectiveSCEVType(Ty);
1905 // Fold if the operand is constant.
1906 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1907 return getConstant(
1908 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1910 // sext(sext(x)) --> sext(x)
1911 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1912 return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1);
1914 // sext(zext(x)) --> zext(x)
1915 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1916 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1918 // Before doing any expensive analysis, check to see if we've already
1919 // computed a SCEV for this Op and Ty.
1920 FoldingSetNodeID ID;
1921 ID.AddInteger(scSignExtend);
1922 ID.AddPointer(Op);
1923 ID.AddPointer(Ty);
1924 void *IP = nullptr;
1925 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1926 // Limit recursion depth.
1927 if (Depth > MaxExtDepth) {
1928 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1929 Op, Ty);
1930 UniqueSCEVs.InsertNode(S, IP);
1931 addToLoopUseLists(S);
1932 return S;
1935 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1936 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1937 // It's possible the bits taken off by the truncate were all sign bits. If
1938 // so, we should be able to simplify this further.
1939 const SCEV *X = ST->getOperand();
1940 ConstantRange CR = getSignedRange(X);
1941 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1942 unsigned NewBits = getTypeSizeInBits(Ty);
1943 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1944 CR.sextOrTrunc(NewBits)))
1945 return getTruncateOrSignExtend(X, Ty);
1948 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1949 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1950 if (SA->hasNoSignedWrap()) {
1951 // If the addition does not sign overflow then we can, by definition,
1952 // commute the sign extension with the addition operation.
1953 SmallVector<const SCEV *, 4> Ops;
1954 for (const auto *Op : SA->operands())
1955 Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1));
1956 return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1);
1959 // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...))
1960 // if D + (C - D + x + y + ...) could be proven to not signed wrap
1961 // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1963 // For instance, this will bring two seemingly different expressions:
1964 // 1 + sext(5 + 20 * %x + 24 * %y) and
1965 // sext(6 + 20 * %x + 24 * %y)
1966 // to the same form:
1967 // 2 + sext(4 + 20 * %x + 24 * %y)
1968 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1969 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1970 if (D != 0) {
1971 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
1972 const SCEV *SResidual =
1973 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1974 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
1975 return getAddExpr(SSExtD, SSExtR,
1976 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1977 Depth + 1);
1981 // If the input value is a chrec scev, and we can prove that the value
1982 // did not overflow the old, smaller, value, we can sign extend all of the
1983 // operands (often constants). This allows analysis of something like
1984 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
1985 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1986 if (AR->isAffine()) {
1987 const SCEV *Start = AR->getStart();
1988 const SCEV *Step = AR->getStepRecurrence(*this);
1989 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1990 const Loop *L = AR->getLoop();
1992 if (!AR->hasNoSignedWrap()) {
1993 auto NewFlags = proveNoWrapViaConstantRanges(AR);
1994 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
1997 // If we have special knowledge that this addrec won't overflow,
1998 // we don't need to do any further analysis.
1999 if (AR->hasNoSignedWrap())
2000 return getAddRecExpr(
2001 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2002 getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW);
2004 // Check whether the backedge-taken count is SCEVCouldNotCompute.
2005 // Note that this serves two purposes: It filters out loops that are
2006 // simply not analyzable, and it covers the case where this code is
2007 // being called from within backedge-taken count analysis, such that
2008 // attempting to ask for the backedge-taken count would likely result
2009 // in infinite recursion. In the later case, the analysis code will
2010 // cope with a conservative value, and it will take care to purge
2011 // that value once it has finished.
2012 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
2013 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
2014 // Manually compute the final value for AR, checking for
2015 // overflow.
2017 // Check whether the backedge-taken count can be losslessly casted to
2018 // the addrec's type. The count is always unsigned.
2019 const SCEV *CastedMaxBECount =
2020 getTruncateOrZeroExtend(MaxBECount, Start->getType());
2021 const SCEV *RecastedMaxBECount =
2022 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
2023 if (MaxBECount == RecastedMaxBECount) {
2024 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
2025 // Check whether Start+Step*MaxBECount has no signed overflow.
2026 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step,
2027 SCEV::FlagAnyWrap, Depth + 1);
2028 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul,
2029 SCEV::FlagAnyWrap,
2030 Depth + 1),
2031 WideTy, Depth + 1);
2032 const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1);
2033 const SCEV *WideMaxBECount =
2034 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
2035 const SCEV *OperandExtendedAdd =
2036 getAddExpr(WideStart,
2037 getMulExpr(WideMaxBECount,
2038 getSignExtendExpr(Step, WideTy, Depth + 1),
2039 SCEV::FlagAnyWrap, Depth + 1),
2040 SCEV::FlagAnyWrap, Depth + 1);
2041 if (SAdd == OperandExtendedAdd) {
2042 // Cache knowledge of AR NSW, which is propagated to this AddRec.
2043 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
2044 // Return the expression with the addrec on the outside.
2045 return getAddRecExpr(
2046 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2047 Depth + 1),
2048 getSignExtendExpr(Step, Ty, Depth + 1), L,
2049 AR->getNoWrapFlags());
2051 // Similar to above, only this time treat the step value as unsigned.
2052 // This covers loops that count up with an unsigned step.
2053 OperandExtendedAdd =
2054 getAddExpr(WideStart,
2055 getMulExpr(WideMaxBECount,
2056 getZeroExtendExpr(Step, WideTy, Depth + 1),
2057 SCEV::FlagAnyWrap, Depth + 1),
2058 SCEV::FlagAnyWrap, Depth + 1);
2059 if (SAdd == OperandExtendedAdd) {
2060 // If AR wraps around then
2062 // abs(Step) * MaxBECount > unsigned-max(AR->getType())
2063 // => SAdd != OperandExtendedAdd
2065 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
2066 // (SAdd == OperandExtendedAdd => AR is NW)
2068 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
2070 // Return the expression with the addrec on the outside.
2071 return getAddRecExpr(
2072 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2073 Depth + 1),
2074 getZeroExtendExpr(Step, Ty, Depth + 1), L,
2075 AR->getNoWrapFlags());
2080 // Normally, in the cases we can prove no-overflow via a
2081 // backedge guarding condition, we can also compute a backedge
2082 // taken count for the loop. The exceptions are assumptions and
2083 // guards present in the loop -- SCEV is not great at exploiting
2084 // these to compute max backedge taken counts, but can still use
2085 // these to prove lack of overflow. Use this fact to avoid
2086 // doing extra work that may not pay off.
2088 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
2089 !AC.assumptions().empty()) {
2090 // If the backedge is guarded by a comparison with the pre-inc
2091 // value the addrec is safe. Also, if the entry is guarded by
2092 // a comparison with the start value and the backedge is
2093 // guarded by a comparison with the post-inc value, the addrec
2094 // is safe.
2095 ICmpInst::Predicate Pred;
2096 const SCEV *OverflowLimit =
2097 getSignedOverflowLimitForStep(Step, &Pred, this);
2098 if (OverflowLimit &&
2099 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
2100 isKnownOnEveryIteration(Pred, AR, OverflowLimit))) {
2101 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
2102 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
2103 return getAddRecExpr(
2104 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2105 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2109 // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw>
2110 // if D + (C - D + Step * n) could be proven to not signed wrap
2111 // where D maximizes the number of trailing zeros of (C - D + Step * n)
2112 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
2113 const APInt &C = SC->getAPInt();
2114 const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
2115 if (D != 0) {
2116 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
2117 const SCEV *SResidual =
2118 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
2119 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
2120 return getAddExpr(SSExtD, SSExtR,
2121 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
2122 Depth + 1);
2126 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
2127 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
2128 return getAddRecExpr(
2129 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2130 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2134 // If the input value is provably positive and we could not simplify
2135 // away the sext build a zext instead.
2136 if (isKnownNonNegative(Op))
2137 return getZeroExtendExpr(Op, Ty, Depth + 1);
2139 // The cast wasn't folded; create an explicit cast node.
2140 // Recompute the insert position, as it may have been invalidated.
2141 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2142 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
2143 Op, Ty);
2144 UniqueSCEVs.InsertNode(S, IP);
2145 addToLoopUseLists(S);
2146 return S;
2149 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
2150 /// unspecified bits out to the given type.
2151 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
2152 Type *Ty) {
2153 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
2154 "This is not an extending conversion!");
2155 assert(isSCEVable(Ty) &&
2156 "This is not a conversion to a SCEVable type!");
2157 Ty = getEffectiveSCEVType(Ty);
2159 // Sign-extend negative constants.
2160 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
2161 if (SC->getAPInt().isNegative())
2162 return getSignExtendExpr(Op, Ty);
2164 // Peel off a truncate cast.
2165 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
2166 const SCEV *NewOp = T->getOperand();
2167 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
2168 return getAnyExtendExpr(NewOp, Ty);
2169 return getTruncateOrNoop(NewOp, Ty);
2172 // Next try a zext cast. If the cast is folded, use it.
2173 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
2174 if (!isa<SCEVZeroExtendExpr>(ZExt))
2175 return ZExt;
2177 // Next try a sext cast. If the cast is folded, use it.
2178 const SCEV *SExt = getSignExtendExpr(Op, Ty);
2179 if (!isa<SCEVSignExtendExpr>(SExt))
2180 return SExt;
2182 // Force the cast to be folded into the operands of an addrec.
2183 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
2184 SmallVector<const SCEV *, 4> Ops;
2185 for (const SCEV *Op : AR->operands())
2186 Ops.push_back(getAnyExtendExpr(Op, Ty));
2187 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
2190 // If the expression is obviously signed, use the sext cast value.
2191 if (isa<SCEVSMaxExpr>(Op))
2192 return SExt;
2194 // Absent any other information, use the zext cast value.
2195 return ZExt;
2198 /// Process the given Ops list, which is a list of operands to be added under
2199 /// the given scale, update the given map. This is a helper function for
2200 /// getAddRecExpr. As an example of what it does, given a sequence of operands
2201 /// that would form an add expression like this:
2203 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
2205 /// where A and B are constants, update the map with these values:
2207 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
2209 /// and add 13 + A*B*29 to AccumulatedConstant.
2210 /// This will allow getAddRecExpr to produce this:
2212 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
2214 /// This form often exposes folding opportunities that are hidden in
2215 /// the original operand list.
2217 /// Return true iff it appears that any interesting folding opportunities
2218 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
2219 /// the common case where no interesting opportunities are present, and
2220 /// is also used as a check to avoid infinite recursion.
2221 static bool
2222 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
2223 SmallVectorImpl<const SCEV *> &NewOps,
2224 APInt &AccumulatedConstant,
2225 const SCEV *const *Ops, size_t NumOperands,
2226 const APInt &Scale,
2227 ScalarEvolution &SE) {
2228 bool Interesting = false;
2230 // Iterate over the add operands. They are sorted, with constants first.
2231 unsigned i = 0;
2232 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2233 ++i;
2234 // Pull a buried constant out to the outside.
2235 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
2236 Interesting = true;
2237 AccumulatedConstant += Scale * C->getAPInt();
2240 // Next comes everything else. We're especially interested in multiplies
2241 // here, but they're in the middle, so just visit the rest with one loop.
2242 for (; i != NumOperands; ++i) {
2243 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
2244 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
2245 APInt NewScale =
2246 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
2247 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
2248 // A multiplication of a constant with another add; recurse.
2249 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
2250 Interesting |=
2251 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2252 Add->op_begin(), Add->getNumOperands(),
2253 NewScale, SE);
2254 } else {
2255 // A multiplication of a constant with some other value. Update
2256 // the map.
2257 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
2258 const SCEV *Key = SE.getMulExpr(MulOps);
2259 auto Pair = M.insert({Key, NewScale});
2260 if (Pair.second) {
2261 NewOps.push_back(Pair.first->first);
2262 } else {
2263 Pair.first->second += NewScale;
2264 // The map already had an entry for this value, which may indicate
2265 // a folding opportunity.
2266 Interesting = true;
2269 } else {
2270 // An ordinary operand. Update the map.
2271 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
2272 M.insert({Ops[i], Scale});
2273 if (Pair.second) {
2274 NewOps.push_back(Pair.first->first);
2275 } else {
2276 Pair.first->second += Scale;
2277 // The map already had an entry for this value, which may indicate
2278 // a folding opportunity.
2279 Interesting = true;
2284 return Interesting;
2287 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
2288 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of
2289 // can't-overflow flags for the operation if possible.
2290 static SCEV::NoWrapFlags
2291 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
2292 const SmallVectorImpl<const SCEV *> &Ops,
2293 SCEV::NoWrapFlags Flags) {
2294 using namespace std::placeholders;
2296 using OBO = OverflowingBinaryOperator;
2298 bool CanAnalyze =
2299 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
2300 (void)CanAnalyze;
2301 assert(CanAnalyze && "don't call from other places!");
2303 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2304 SCEV::NoWrapFlags SignOrUnsignWrap =
2305 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2307 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2308 auto IsKnownNonNegative = [&](const SCEV *S) {
2309 return SE->isKnownNonNegative(S);
2312 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
2313 Flags =
2314 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2316 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2318 if (SignOrUnsignWrap != SignOrUnsignMask &&
2319 (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 &&
2320 isa<SCEVConstant>(Ops[0])) {
2322 auto Opcode = [&] {
2323 switch (Type) {
2324 case scAddExpr:
2325 return Instruction::Add;
2326 case scMulExpr:
2327 return Instruction::Mul;
2328 default:
2329 llvm_unreachable("Unexpected SCEV op.");
2331 }();
2333 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
2335 // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow.
2336 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
2337 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2338 Opcode, C, OBO::NoSignedWrap);
2339 if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
2340 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2343 // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow.
2344 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
2345 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2346 Opcode, C, OBO::NoUnsignedWrap);
2347 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2348 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2352 return Flags;
2355 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) {
2356 return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader());
2359 /// Get a canonical add expression, or something simpler if possible.
2360 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2361 SCEV::NoWrapFlags Flags,
2362 unsigned Depth) {
2363 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2364 "only nuw or nsw allowed");
2365 assert(!Ops.empty() && "Cannot get empty add!");
2366 if (Ops.size() == 1) return Ops[0];
2367 #ifndef NDEBUG
2368 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2369 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2370 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2371 "SCEVAddExpr operand types don't match!");
2372 #endif
2374 // Sort by complexity, this groups all similar expression types together.
2375 GroupByComplexity(Ops, &LI, DT);
2377 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
2379 // If there are any constants, fold them together.
2380 unsigned Idx = 0;
2381 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2382 ++Idx;
2383 assert(Idx < Ops.size());
2384 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2385 // We found two constants, fold them together!
2386 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2387 if (Ops.size() == 2) return Ops[0];
2388 Ops.erase(Ops.begin()+1); // Erase the folded element
2389 LHSC = cast<SCEVConstant>(Ops[0]);
2392 // If we are left with a constant zero being added, strip it off.
2393 if (LHSC->getValue()->isZero()) {
2394 Ops.erase(Ops.begin());
2395 --Idx;
2398 if (Ops.size() == 1) return Ops[0];
2401 // Limit recursion calls depth.
2402 if (Depth > MaxArithDepth)
2403 return getOrCreateAddExpr(Ops, Flags);
2405 // Okay, check to see if the same value occurs in the operand list more than
2406 // once. If so, merge them together into an multiply expression. Since we
2407 // sorted the list, these values are required to be adjacent.
2408 Type *Ty = Ops[0]->getType();
2409 bool FoundMatch = false;
2410 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2411 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
2412 // Scan ahead to count how many equal operands there are.
2413 unsigned Count = 2;
2414 while (i+Count != e && Ops[i+Count] == Ops[i])
2415 ++Count;
2416 // Merge the values into a multiply.
2417 const SCEV *Scale = getConstant(Ty, Count);
2418 const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1);
2419 if (Ops.size() == Count)
2420 return Mul;
2421 Ops[i] = Mul;
2422 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2423 --i; e -= Count - 1;
2424 FoundMatch = true;
2426 if (FoundMatch)
2427 return getAddExpr(Ops, Flags, Depth + 1);
2429 // Check for truncates. If all the operands are truncated from the same
2430 // type, see if factoring out the truncate would permit the result to be
2431 // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y)
2432 // if the contents of the resulting outer trunc fold to something simple.
2433 auto FindTruncSrcType = [&]() -> Type * {
2434 // We're ultimately looking to fold an addrec of truncs and muls of only
2435 // constants and truncs, so if we find any other types of SCEV
2436 // as operands of the addrec then we bail and return nullptr here.
2437 // Otherwise, we return the type of the operand of a trunc that we find.
2438 if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx]))
2439 return T->getOperand()->getType();
2440 if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2441 const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1);
2442 if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp))
2443 return T->getOperand()->getType();
2445 return nullptr;
2447 if (auto *SrcType = FindTruncSrcType()) {
2448 SmallVector<const SCEV *, 8> LargeOps;
2449 bool Ok = true;
2450 // Check all the operands to see if they can be represented in the
2451 // source type of the truncate.
2452 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2453 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2454 if (T->getOperand()->getType() != SrcType) {
2455 Ok = false;
2456 break;
2458 LargeOps.push_back(T->getOperand());
2459 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2460 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2461 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2462 SmallVector<const SCEV *, 8> LargeMulOps;
2463 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2464 if (const SCEVTruncateExpr *T =
2465 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2466 if (T->getOperand()->getType() != SrcType) {
2467 Ok = false;
2468 break;
2470 LargeMulOps.push_back(T->getOperand());
2471 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2472 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2473 } else {
2474 Ok = false;
2475 break;
2478 if (Ok)
2479 LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1));
2480 } else {
2481 Ok = false;
2482 break;
2485 if (Ok) {
2486 // Evaluate the expression in the larger type.
2487 const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1);
2488 // If it folds to something simple, use it. Otherwise, don't.
2489 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2490 return getTruncateExpr(Fold, Ty);
2494 // Skip past any other cast SCEVs.
2495 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2496 ++Idx;
2498 // If there are add operands they would be next.
2499 if (Idx < Ops.size()) {
2500 bool DeletedAdd = false;
2501 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2502 if (Ops.size() > AddOpsInlineThreshold ||
2503 Add->getNumOperands() > AddOpsInlineThreshold)
2504 break;
2505 // If we have an add, expand the add operands onto the end of the operands
2506 // list.
2507 Ops.erase(Ops.begin()+Idx);
2508 Ops.append(Add->op_begin(), Add->op_end());
2509 DeletedAdd = true;
2512 // If we deleted at least one add, we added operands to the end of the list,
2513 // and they are not necessarily sorted. Recurse to resort and resimplify
2514 // any operands we just acquired.
2515 if (DeletedAdd)
2516 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2519 // Skip over the add expression until we get to a multiply.
2520 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2521 ++Idx;
2523 // Check to see if there are any folding opportunities present with
2524 // operands multiplied by constant values.
2525 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2526 uint64_t BitWidth = getTypeSizeInBits(Ty);
2527 DenseMap<const SCEV *, APInt> M;
2528 SmallVector<const SCEV *, 8> NewOps;
2529 APInt AccumulatedConstant(BitWidth, 0);
2530 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2531 Ops.data(), Ops.size(),
2532 APInt(BitWidth, 1), *this)) {
2533 struct APIntCompare {
2534 bool operator()(const APInt &LHS, const APInt &RHS) const {
2535 return LHS.ult(RHS);
2539 // Some interesting folding opportunity is present, so its worthwhile to
2540 // re-generate the operands list. Group the operands by constant scale,
2541 // to avoid multiplying by the same constant scale multiple times.
2542 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2543 for (const SCEV *NewOp : NewOps)
2544 MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2545 // Re-generate the operands list.
2546 Ops.clear();
2547 if (AccumulatedConstant != 0)
2548 Ops.push_back(getConstant(AccumulatedConstant));
2549 for (auto &MulOp : MulOpLists)
2550 if (MulOp.first != 0)
2551 Ops.push_back(getMulExpr(
2552 getConstant(MulOp.first),
2553 getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1),
2554 SCEV::FlagAnyWrap, Depth + 1));
2555 if (Ops.empty())
2556 return getZero(Ty);
2557 if (Ops.size() == 1)
2558 return Ops[0];
2559 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2563 // If we are adding something to a multiply expression, make sure the
2564 // something is not already an operand of the multiply. If so, merge it into
2565 // the multiply.
2566 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2567 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2568 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2569 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2570 if (isa<SCEVConstant>(MulOpSCEV))
2571 continue;
2572 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2573 if (MulOpSCEV == Ops[AddOp]) {
2574 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
2575 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2576 if (Mul->getNumOperands() != 2) {
2577 // If the multiply has more than two operands, we must get the
2578 // Y*Z term.
2579 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2580 Mul->op_begin()+MulOp);
2581 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2582 InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2584 SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul};
2585 const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2586 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV,
2587 SCEV::FlagAnyWrap, Depth + 1);
2588 if (Ops.size() == 2) return OuterMul;
2589 if (AddOp < Idx) {
2590 Ops.erase(Ops.begin()+AddOp);
2591 Ops.erase(Ops.begin()+Idx-1);
2592 } else {
2593 Ops.erase(Ops.begin()+Idx);
2594 Ops.erase(Ops.begin()+AddOp-1);
2596 Ops.push_back(OuterMul);
2597 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2600 // Check this multiply against other multiplies being added together.
2601 for (unsigned OtherMulIdx = Idx+1;
2602 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2603 ++OtherMulIdx) {
2604 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2605 // If MulOp occurs in OtherMul, we can fold the two multiplies
2606 // together.
2607 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2608 OMulOp != e; ++OMulOp)
2609 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2610 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2611 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2612 if (Mul->getNumOperands() != 2) {
2613 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2614 Mul->op_begin()+MulOp);
2615 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2616 InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2618 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2619 if (OtherMul->getNumOperands() != 2) {
2620 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2621 OtherMul->op_begin()+OMulOp);
2622 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2623 InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2625 SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2};
2626 const SCEV *InnerMulSum =
2627 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2628 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum,
2629 SCEV::FlagAnyWrap, Depth + 1);
2630 if (Ops.size() == 2) return OuterMul;
2631 Ops.erase(Ops.begin()+Idx);
2632 Ops.erase(Ops.begin()+OtherMulIdx-1);
2633 Ops.push_back(OuterMul);
2634 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2640 // If there are any add recurrences in the operands list, see if any other
2641 // added values are loop invariant. If so, we can fold them into the
2642 // recurrence.
2643 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2644 ++Idx;
2646 // Scan over all recurrences, trying to fold loop invariants into them.
2647 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2648 // Scan all of the other operands to this add and add them to the vector if
2649 // they are loop invariant w.r.t. the recurrence.
2650 SmallVector<const SCEV *, 8> LIOps;
2651 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2652 const Loop *AddRecLoop = AddRec->getLoop();
2653 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2654 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2655 LIOps.push_back(Ops[i]);
2656 Ops.erase(Ops.begin()+i);
2657 --i; --e;
2660 // If we found some loop invariants, fold them into the recurrence.
2661 if (!LIOps.empty()) {
2662 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
2663 LIOps.push_back(AddRec->getStart());
2665 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2666 AddRec->op_end());
2667 // This follows from the fact that the no-wrap flags on the outer add
2668 // expression are applicable on the 0th iteration, when the add recurrence
2669 // will be equal to its start value.
2670 AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1);
2672 // Build the new addrec. Propagate the NUW and NSW flags if both the
2673 // outer add and the inner addrec are guaranteed to have no overflow.
2674 // Always propagate NW.
2675 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2676 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2678 // If all of the other operands were loop invariant, we are done.
2679 if (Ops.size() == 1) return NewRec;
2681 // Otherwise, add the folded AddRec by the non-invariant parts.
2682 for (unsigned i = 0;; ++i)
2683 if (Ops[i] == AddRec) {
2684 Ops[i] = NewRec;
2685 break;
2687 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2690 // Okay, if there weren't any loop invariants to be folded, check to see if
2691 // there are multiple AddRec's with the same loop induction variable being
2692 // added together. If so, we can fold them.
2693 for (unsigned OtherIdx = Idx+1;
2694 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2695 ++OtherIdx) {
2696 // We expect the AddRecExpr's to be sorted in reverse dominance order,
2697 // so that the 1st found AddRecExpr is dominated by all others.
2698 assert(DT.dominates(
2699 cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(),
2700 AddRec->getLoop()->getHeader()) &&
2701 "AddRecExprs are not sorted in reverse dominance order?");
2702 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2703 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
2704 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2705 AddRec->op_end());
2706 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2707 ++OtherIdx) {
2708 const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2709 if (OtherAddRec->getLoop() == AddRecLoop) {
2710 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2711 i != e; ++i) {
2712 if (i >= AddRecOps.size()) {
2713 AddRecOps.append(OtherAddRec->op_begin()+i,
2714 OtherAddRec->op_end());
2715 break;
2717 SmallVector<const SCEV *, 2> TwoOps = {
2718 AddRecOps[i], OtherAddRec->getOperand(i)};
2719 AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2721 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2724 // Step size has changed, so we cannot guarantee no self-wraparound.
2725 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2726 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2730 // Otherwise couldn't fold anything into this recurrence. Move onto the
2731 // next one.
2734 // Okay, it looks like we really DO need an add expr. Check to see if we
2735 // already have one, otherwise create a new one.
2736 return getOrCreateAddExpr(Ops, Flags);
2739 const SCEV *
2740 ScalarEvolution::getOrCreateAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2741 SCEV::NoWrapFlags Flags) {
2742 FoldingSetNodeID ID;
2743 ID.AddInteger(scAddExpr);
2744 for (const SCEV *Op : Ops)
2745 ID.AddPointer(Op);
2746 void *IP = nullptr;
2747 SCEVAddExpr *S =
2748 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2749 if (!S) {
2750 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2751 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2752 S = new (SCEVAllocator)
2753 SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size());
2754 UniqueSCEVs.InsertNode(S, IP);
2755 addToLoopUseLists(S);
2757 S->setNoWrapFlags(Flags);
2758 return S;
2761 const SCEV *
2762 ScalarEvolution::getOrCreateAddRecExpr(SmallVectorImpl<const SCEV *> &Ops,
2763 const Loop *L, SCEV::NoWrapFlags Flags) {
2764 FoldingSetNodeID ID;
2765 ID.AddInteger(scAddRecExpr);
2766 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2767 ID.AddPointer(Ops[i]);
2768 ID.AddPointer(L);
2769 void *IP = nullptr;
2770 SCEVAddRecExpr *S =
2771 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2772 if (!S) {
2773 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2774 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2775 S = new (SCEVAllocator)
2776 SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L);
2777 UniqueSCEVs.InsertNode(S, IP);
2778 addToLoopUseLists(S);
2780 S->setNoWrapFlags(Flags);
2781 return S;
2784 const SCEV *
2785 ScalarEvolution::getOrCreateMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2786 SCEV::NoWrapFlags Flags) {
2787 FoldingSetNodeID ID;
2788 ID.AddInteger(scMulExpr);
2789 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2790 ID.AddPointer(Ops[i]);
2791 void *IP = nullptr;
2792 SCEVMulExpr *S =
2793 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2794 if (!S) {
2795 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2796 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2797 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2798 O, Ops.size());
2799 UniqueSCEVs.InsertNode(S, IP);
2800 addToLoopUseLists(S);
2802 S->setNoWrapFlags(Flags);
2803 return S;
2806 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2807 uint64_t k = i*j;
2808 if (j > 1 && k / j != i) Overflow = true;
2809 return k;
2812 /// Compute the result of "n choose k", the binomial coefficient. If an
2813 /// intermediate computation overflows, Overflow will be set and the return will
2814 /// be garbage. Overflow is not cleared on absence of overflow.
2815 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2816 // We use the multiplicative formula:
2817 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2818 // At each iteration, we take the n-th term of the numeral and divide by the
2819 // (k-n)th term of the denominator. This division will always produce an
2820 // integral result, and helps reduce the chance of overflow in the
2821 // intermediate computations. However, we can still overflow even when the
2822 // final result would fit.
2824 if (n == 0 || n == k) return 1;
2825 if (k > n) return 0;
2827 if (k > n/2)
2828 k = n-k;
2830 uint64_t r = 1;
2831 for (uint64_t i = 1; i <= k; ++i) {
2832 r = umul_ov(r, n-(i-1), Overflow);
2833 r /= i;
2835 return r;
2838 /// Determine if any of the operands in this SCEV are a constant or if
2839 /// any of the add or multiply expressions in this SCEV contain a constant.
2840 static bool containsConstantInAddMulChain(const SCEV *StartExpr) {
2841 struct FindConstantInAddMulChain {
2842 bool FoundConstant = false;
2844 bool follow(const SCEV *S) {
2845 FoundConstant |= isa<SCEVConstant>(S);
2846 return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S);
2849 bool isDone() const {
2850 return FoundConstant;
2854 FindConstantInAddMulChain F;
2855 SCEVTraversal<FindConstantInAddMulChain> ST(F);
2856 ST.visitAll(StartExpr);
2857 return F.FoundConstant;
2860 /// Get a canonical multiply expression, or something simpler if possible.
2861 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2862 SCEV::NoWrapFlags Flags,
2863 unsigned Depth) {
2864 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2865 "only nuw or nsw allowed");
2866 assert(!Ops.empty() && "Cannot get empty mul!");
2867 if (Ops.size() == 1) return Ops[0];
2868 #ifndef NDEBUG
2869 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2870 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2871 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2872 "SCEVMulExpr operand types don't match!");
2873 #endif
2875 // Sort by complexity, this groups all similar expression types together.
2876 GroupByComplexity(Ops, &LI, DT);
2878 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
2880 // Limit recursion calls depth.
2881 if (Depth > MaxArithDepth)
2882 return getOrCreateMulExpr(Ops, Flags);
2884 // If there are any constants, fold them together.
2885 unsigned Idx = 0;
2886 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2888 if (Ops.size() == 2)
2889 // C1*(C2+V) -> C1*C2 + C1*V
2890 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2891 // If any of Add's ops are Adds or Muls with a constant, apply this
2892 // transformation as well.
2894 // TODO: There are some cases where this transformation is not
2895 // profitable; for example, Add = (C0 + X) * Y + Z. Maybe the scope of
2896 // this transformation should be narrowed down.
2897 if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add))
2898 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0),
2899 SCEV::FlagAnyWrap, Depth + 1),
2900 getMulExpr(LHSC, Add->getOperand(1),
2901 SCEV::FlagAnyWrap, Depth + 1),
2902 SCEV::FlagAnyWrap, Depth + 1);
2904 ++Idx;
2905 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2906 // We found two constants, fold them together!
2907 ConstantInt *Fold =
2908 ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt());
2909 Ops[0] = getConstant(Fold);
2910 Ops.erase(Ops.begin()+1); // Erase the folded element
2911 if (Ops.size() == 1) return Ops[0];
2912 LHSC = cast<SCEVConstant>(Ops[0]);
2915 // If we are left with a constant one being multiplied, strip it off.
2916 if (cast<SCEVConstant>(Ops[0])->getValue()->isOne()) {
2917 Ops.erase(Ops.begin());
2918 --Idx;
2919 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
2920 // If we have a multiply of zero, it will always be zero.
2921 return Ops[0];
2922 } else if (Ops[0]->isAllOnesValue()) {
2923 // If we have a mul by -1 of an add, try distributing the -1 among the
2924 // add operands.
2925 if (Ops.size() == 2) {
2926 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2927 SmallVector<const SCEV *, 4> NewOps;
2928 bool AnyFolded = false;
2929 for (const SCEV *AddOp : Add->operands()) {
2930 const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap,
2931 Depth + 1);
2932 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2933 NewOps.push_back(Mul);
2935 if (AnyFolded)
2936 return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1);
2937 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2938 // Negation preserves a recurrence's no self-wrap property.
2939 SmallVector<const SCEV *, 4> Operands;
2940 for (const SCEV *AddRecOp : AddRec->operands())
2941 Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap,
2942 Depth + 1));
2944 return getAddRecExpr(Operands, AddRec->getLoop(),
2945 AddRec->getNoWrapFlags(SCEV::FlagNW));
2950 if (Ops.size() == 1)
2951 return Ops[0];
2954 // Skip over the add expression until we get to a multiply.
2955 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2956 ++Idx;
2958 // If there are mul operands inline them all into this expression.
2959 if (Idx < Ops.size()) {
2960 bool DeletedMul = false;
2961 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2962 if (Ops.size() > MulOpsInlineThreshold)
2963 break;
2964 // If we have an mul, expand the mul operands onto the end of the
2965 // operands list.
2966 Ops.erase(Ops.begin()+Idx);
2967 Ops.append(Mul->op_begin(), Mul->op_end());
2968 DeletedMul = true;
2971 // If we deleted at least one mul, we added operands to the end of the
2972 // list, and they are not necessarily sorted. Recurse to resort and
2973 // resimplify any operands we just acquired.
2974 if (DeletedMul)
2975 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2978 // If there are any add recurrences in the operands list, see if any other
2979 // added values are loop invariant. If so, we can fold them into the
2980 // recurrence.
2981 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2982 ++Idx;
2984 // Scan over all recurrences, trying to fold loop invariants into them.
2985 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2986 // Scan all of the other operands to this mul and add them to the vector
2987 // if they are loop invariant w.r.t. the recurrence.
2988 SmallVector<const SCEV *, 8> LIOps;
2989 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2990 const Loop *AddRecLoop = AddRec->getLoop();
2991 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2992 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2993 LIOps.push_back(Ops[i]);
2994 Ops.erase(Ops.begin()+i);
2995 --i; --e;
2998 // If we found some loop invariants, fold them into the recurrence.
2999 if (!LIOps.empty()) {
3000 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
3001 SmallVector<const SCEV *, 4> NewOps;
3002 NewOps.reserve(AddRec->getNumOperands());
3003 const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1);
3004 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
3005 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i),
3006 SCEV::FlagAnyWrap, Depth + 1));
3008 // Build the new addrec. Propagate the NUW and NSW flags if both the
3009 // outer mul and the inner addrec are guaranteed to have no overflow.
3011 // No self-wrap cannot be guaranteed after changing the step size, but
3012 // will be inferred if either NUW or NSW is true.
3013 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
3014 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
3016 // If all of the other operands were loop invariant, we are done.
3017 if (Ops.size() == 1) return NewRec;
3019 // Otherwise, multiply the folded AddRec by the non-invariant parts.
3020 for (unsigned i = 0;; ++i)
3021 if (Ops[i] == AddRec) {
3022 Ops[i] = NewRec;
3023 break;
3025 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3028 // Okay, if there weren't any loop invariants to be folded, check to see
3029 // if there are multiple AddRec's with the same loop induction variable
3030 // being multiplied together. If so, we can fold them.
3032 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
3033 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
3034 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
3035 // ]]],+,...up to x=2n}.
3036 // Note that the arguments to choose() are always integers with values
3037 // known at compile time, never SCEV objects.
3039 // The implementation avoids pointless extra computations when the two
3040 // addrec's are of different length (mathematically, it's equivalent to
3041 // an infinite stream of zeros on the right).
3042 bool OpsModified = false;
3043 for (unsigned OtherIdx = Idx+1;
3044 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
3045 ++OtherIdx) {
3046 const SCEVAddRecExpr *OtherAddRec =
3047 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
3048 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
3049 continue;
3051 // Limit max number of arguments to avoid creation of unreasonably big
3052 // SCEVAddRecs with very complex operands.
3053 if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 >
3054 MaxAddRecSize)
3055 continue;
3057 bool Overflow = false;
3058 Type *Ty = AddRec->getType();
3059 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
3060 SmallVector<const SCEV*, 7> AddRecOps;
3061 for (int x = 0, xe = AddRec->getNumOperands() +
3062 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
3063 const SCEV *Term = getZero(Ty);
3064 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
3065 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
3066 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
3067 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
3068 z < ze && !Overflow; ++z) {
3069 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
3070 uint64_t Coeff;
3071 if (LargerThan64Bits)
3072 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
3073 else
3074 Coeff = Coeff1*Coeff2;
3075 const SCEV *CoeffTerm = getConstant(Ty, Coeff);
3076 const SCEV *Term1 = AddRec->getOperand(y-z);
3077 const SCEV *Term2 = OtherAddRec->getOperand(z);
3078 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1, Term2,
3079 SCEV::FlagAnyWrap, Depth + 1),
3080 SCEV::FlagAnyWrap, Depth + 1);
3083 AddRecOps.push_back(Term);
3085 if (!Overflow) {
3086 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
3087 SCEV::FlagAnyWrap);
3088 if (Ops.size() == 2) return NewAddRec;
3089 Ops[Idx] = NewAddRec;
3090 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
3091 OpsModified = true;
3092 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
3093 if (!AddRec)
3094 break;
3097 if (OpsModified)
3098 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3100 // Otherwise couldn't fold anything into this recurrence. Move onto the
3101 // next one.
3104 // Okay, it looks like we really DO need an mul expr. Check to see if we
3105 // already have one, otherwise create a new one.
3106 return getOrCreateMulExpr(Ops, Flags);
3109 /// Represents an unsigned remainder expression based on unsigned division.
3110 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS,
3111 const SCEV *RHS) {
3112 assert(getEffectiveSCEVType(LHS->getType()) ==
3113 getEffectiveSCEVType(RHS->getType()) &&
3114 "SCEVURemExpr operand types don't match!");
3116 // Short-circuit easy cases
3117 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3118 // If constant is one, the result is trivial
3119 if (RHSC->getValue()->isOne())
3120 return getZero(LHS->getType()); // X urem 1 --> 0
3122 // If constant is a power of two, fold into a zext(trunc(LHS)).
3123 if (RHSC->getAPInt().isPowerOf2()) {
3124 Type *FullTy = LHS->getType();
3125 Type *TruncTy =
3126 IntegerType::get(getContext(), RHSC->getAPInt().logBase2());
3127 return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy);
3131 // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y)
3132 const SCEV *UDiv = getUDivExpr(LHS, RHS);
3133 const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW);
3134 return getMinusSCEV(LHS, Mult, SCEV::FlagNUW);
3137 /// Get a canonical unsigned division expression, or something simpler if
3138 /// possible.
3139 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
3140 const SCEV *RHS) {
3141 assert(getEffectiveSCEVType(LHS->getType()) ==
3142 getEffectiveSCEVType(RHS->getType()) &&
3143 "SCEVUDivExpr operand types don't match!");
3145 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3146 if (RHSC->getValue()->isOne())
3147 return LHS; // X udiv 1 --> x
3148 // If the denominator is zero, the result of the udiv is undefined. Don't
3149 // try to analyze it, because the resolution chosen here may differ from
3150 // the resolution chosen in other parts of the compiler.
3151 if (!RHSC->getValue()->isZero()) {
3152 // Determine if the division can be folded into the operands of
3153 // its operands.
3154 // TODO: Generalize this to non-constants by using known-bits information.
3155 Type *Ty = LHS->getType();
3156 unsigned LZ = RHSC->getAPInt().countLeadingZeros();
3157 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
3158 // For non-power-of-two values, effectively round the value up to the
3159 // nearest power of two.
3160 if (!RHSC->getAPInt().isPowerOf2())
3161 ++MaxShiftAmt;
3162 IntegerType *ExtTy =
3163 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
3164 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
3165 if (const SCEVConstant *Step =
3166 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
3167 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
3168 const APInt &StepInt = Step->getAPInt();
3169 const APInt &DivInt = RHSC->getAPInt();
3170 if (!StepInt.urem(DivInt) &&
3171 getZeroExtendExpr(AR, ExtTy) ==
3172 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3173 getZeroExtendExpr(Step, ExtTy),
3174 AR->getLoop(), SCEV::FlagAnyWrap)) {
3175 SmallVector<const SCEV *, 4> Operands;
3176 for (const SCEV *Op : AR->operands())
3177 Operands.push_back(getUDivExpr(Op, RHS));
3178 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
3180 /// Get a canonical UDivExpr for a recurrence.
3181 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
3182 // We can currently only fold X%N if X is constant.
3183 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
3184 if (StartC && !DivInt.urem(StepInt) &&
3185 getZeroExtendExpr(AR, ExtTy) ==
3186 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3187 getZeroExtendExpr(Step, ExtTy),
3188 AR->getLoop(), SCEV::FlagAnyWrap)) {
3189 const APInt &StartInt = StartC->getAPInt();
3190 const APInt &StartRem = StartInt.urem(StepInt);
3191 if (StartRem != 0)
3192 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
3193 AR->getLoop(), SCEV::FlagNW);
3196 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
3197 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
3198 SmallVector<const SCEV *, 4> Operands;
3199 for (const SCEV *Op : M->operands())
3200 Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3201 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
3202 // Find an operand that's safely divisible.
3203 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
3204 const SCEV *Op = M->getOperand(i);
3205 const SCEV *Div = getUDivExpr(Op, RHSC);
3206 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
3207 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
3208 M->op_end());
3209 Operands[i] = Div;
3210 return getMulExpr(Operands);
3215 // (A/B)/C --> A/(B*C) if safe and B*C can be folded.
3216 if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) {
3217 if (auto *DivisorConstant =
3218 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) {
3219 bool Overflow = false;
3220 APInt NewRHS =
3221 DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow);
3222 if (Overflow) {
3223 return getConstant(RHSC->getType(), 0, false);
3225 return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS));
3229 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
3230 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
3231 SmallVector<const SCEV *, 4> Operands;
3232 for (const SCEV *Op : A->operands())
3233 Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3234 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
3235 Operands.clear();
3236 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
3237 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
3238 if (isa<SCEVUDivExpr>(Op) ||
3239 getMulExpr(Op, RHS) != A->getOperand(i))
3240 break;
3241 Operands.push_back(Op);
3243 if (Operands.size() == A->getNumOperands())
3244 return getAddExpr(Operands);
3248 // Fold if both operands are constant.
3249 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
3250 Constant *LHSCV = LHSC->getValue();
3251 Constant *RHSCV = RHSC->getValue();
3252 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
3253 RHSCV)));
3258 FoldingSetNodeID ID;
3259 ID.AddInteger(scUDivExpr);
3260 ID.AddPointer(LHS);
3261 ID.AddPointer(RHS);
3262 void *IP = nullptr;
3263 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3264 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
3265 LHS, RHS);
3266 UniqueSCEVs.InsertNode(S, IP);
3267 addToLoopUseLists(S);
3268 return S;
3271 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
3272 APInt A = C1->getAPInt().abs();
3273 APInt B = C2->getAPInt().abs();
3274 uint32_t ABW = A.getBitWidth();
3275 uint32_t BBW = B.getBitWidth();
3277 if (ABW > BBW)
3278 B = B.zext(ABW);
3279 else if (ABW < BBW)
3280 A = A.zext(BBW);
3282 return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B));
3285 /// Get a canonical unsigned division expression, or something simpler if
3286 /// possible. There is no representation for an exact udiv in SCEV IR, but we
3287 /// can attempt to remove factors from the LHS and RHS. We can't do this when
3288 /// it's not exact because the udiv may be clearing bits.
3289 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
3290 const SCEV *RHS) {
3291 // TODO: we could try to find factors in all sorts of things, but for now we
3292 // just deal with u/exact (multiply, constant). See SCEVDivision towards the
3293 // end of this file for inspiration.
3295 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
3296 if (!Mul || !Mul->hasNoUnsignedWrap())
3297 return getUDivExpr(LHS, RHS);
3299 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
3300 // If the mulexpr multiplies by a constant, then that constant must be the
3301 // first element of the mulexpr.
3302 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3303 if (LHSCst == RHSCst) {
3304 SmallVector<const SCEV *, 2> Operands;
3305 Operands.append(Mul->op_begin() + 1, Mul->op_end());
3306 return getMulExpr(Operands);
3309 // We can't just assume that LHSCst divides RHSCst cleanly, it could be
3310 // that there's a factor provided by one of the other terms. We need to
3311 // check.
3312 APInt Factor = gcd(LHSCst, RHSCst);
3313 if (!Factor.isIntN(1)) {
3314 LHSCst =
3315 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
3316 RHSCst =
3317 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
3318 SmallVector<const SCEV *, 2> Operands;
3319 Operands.push_back(LHSCst);
3320 Operands.append(Mul->op_begin() + 1, Mul->op_end());
3321 LHS = getMulExpr(Operands);
3322 RHS = RHSCst;
3323 Mul = dyn_cast<SCEVMulExpr>(LHS);
3324 if (!Mul)
3325 return getUDivExactExpr(LHS, RHS);
3330 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
3331 if (Mul->getOperand(i) == RHS) {
3332 SmallVector<const SCEV *, 2> Operands;
3333 Operands.append(Mul->op_begin(), Mul->op_begin() + i);
3334 Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
3335 return getMulExpr(Operands);
3339 return getUDivExpr(LHS, RHS);
3342 /// Get an add recurrence expression for the specified loop. Simplify the
3343 /// expression as much as possible.
3344 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
3345 const Loop *L,
3346 SCEV::NoWrapFlags Flags) {
3347 SmallVector<const SCEV *, 4> Operands;
3348 Operands.push_back(Start);
3349 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
3350 if (StepChrec->getLoop() == L) {
3351 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
3352 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
3355 Operands.push_back(Step);
3356 return getAddRecExpr(Operands, L, Flags);
3359 /// Get an add recurrence expression for the specified loop. Simplify the
3360 /// expression as much as possible.
3361 const SCEV *
3362 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
3363 const Loop *L, SCEV::NoWrapFlags Flags) {
3364 if (Operands.size() == 1) return Operands[0];
3365 #ifndef NDEBUG
3366 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
3367 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
3368 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
3369 "SCEVAddRecExpr operand types don't match!");
3370 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
3371 assert(isLoopInvariant(Operands[i], L) &&
3372 "SCEVAddRecExpr operand is not loop-invariant!");
3373 #endif
3375 if (Operands.back()->isZero()) {
3376 Operands.pop_back();
3377 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
3380 // It's tempting to want to call getMaxBackedgeTakenCount count here and
3381 // use that information to infer NUW and NSW flags. However, computing a
3382 // BE count requires calling getAddRecExpr, so we may not yet have a
3383 // meaningful BE count at this point (and if we don't, we'd be stuck
3384 // with a SCEVCouldNotCompute as the cached BE count).
3386 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
3388 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
3389 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
3390 const Loop *NestedLoop = NestedAR->getLoop();
3391 if (L->contains(NestedLoop)
3392 ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
3393 : (!NestedLoop->contains(L) &&
3394 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
3395 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
3396 NestedAR->op_end());
3397 Operands[0] = NestedAR->getStart();
3398 // AddRecs require their operands be loop-invariant with respect to their
3399 // loops. Don't perform this transformation if it would break this
3400 // requirement.
3401 bool AllInvariant = all_of(
3402 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
3404 if (AllInvariant) {
3405 // Create a recurrence for the outer loop with the same step size.
3407 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
3408 // inner recurrence has the same property.
3409 SCEV::NoWrapFlags OuterFlags =
3410 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
3412 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
3413 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
3414 return isLoopInvariant(Op, NestedLoop);
3417 if (AllInvariant) {
3418 // Ok, both add recurrences are valid after the transformation.
3420 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
3421 // the outer recurrence has the same property.
3422 SCEV::NoWrapFlags InnerFlags =
3423 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
3424 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
3427 // Reset Operands to its original state.
3428 Operands[0] = NestedAR;
3432 // Okay, it looks like we really DO need an addrec expr. Check to see if we
3433 // already have one, otherwise create a new one.
3434 return getOrCreateAddRecExpr(Operands, L, Flags);
3437 const SCEV *
3438 ScalarEvolution::getGEPExpr(GEPOperator *GEP,
3439 const SmallVectorImpl<const SCEV *> &IndexExprs) {
3440 const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand());
3441 // getSCEV(Base)->getType() has the same address space as Base->getType()
3442 // because SCEV::getType() preserves the address space.
3443 Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType());
3444 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
3445 // instruction to its SCEV, because the Instruction may be guarded by control
3446 // flow and the no-overflow bits may not be valid for the expression in any
3447 // context. This can be fixed similarly to how these flags are handled for
3448 // adds.
3449 SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW
3450 : SCEV::FlagAnyWrap;
3452 const SCEV *TotalOffset = getZero(IntPtrTy);
3453 // The array size is unimportant. The first thing we do on CurTy is getting
3454 // its element type.
3455 Type *CurTy = ArrayType::get(GEP->getSourceElementType(), 0);
3456 for (const SCEV *IndexExpr : IndexExprs) {
3457 // Compute the (potentially symbolic) offset in bytes for this index.
3458 if (StructType *STy = dyn_cast<StructType>(CurTy)) {
3459 // For a struct, add the member offset.
3460 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
3461 unsigned FieldNo = Index->getZExtValue();
3462 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
3464 // Add the field offset to the running total offset.
3465 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
3467 // Update CurTy to the type of the field at Index.
3468 CurTy = STy->getTypeAtIndex(Index);
3469 } else {
3470 // Update CurTy to its element type.
3471 CurTy = cast<SequentialType>(CurTy)->getElementType();
3472 // For an array, add the element offset, explicitly scaled.
3473 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy);
3474 // Getelementptr indices are signed.
3475 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy);
3477 // Multiply the index by the element size to compute the element offset.
3478 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap);
3480 // Add the element offset to the running total offset.
3481 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
3485 // Add the total offset from all the GEP indices to the base.
3486 return getAddExpr(BaseExpr, TotalOffset, Wrap);
3489 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
3490 const SCEV *RHS) {
3491 SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3492 return getSMaxExpr(Ops);
3495 const SCEV *
3496 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3497 assert(!Ops.empty() && "Cannot get empty smax!");
3498 if (Ops.size() == 1) return Ops[0];
3499 #ifndef NDEBUG
3500 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3501 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3502 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3503 "SCEVSMaxExpr operand types don't match!");
3504 #endif
3506 // Sort by complexity, this groups all similar expression types together.
3507 GroupByComplexity(Ops, &LI, DT);
3509 // If there are any constants, fold them together.
3510 unsigned Idx = 0;
3511 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3512 ++Idx;
3513 assert(Idx < Ops.size());
3514 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3515 // We found two constants, fold them together!
3516 ConstantInt *Fold = ConstantInt::get(
3517 getContext(), APIntOps::smax(LHSC->getAPInt(), RHSC->getAPInt()));
3518 Ops[0] = getConstant(Fold);
3519 Ops.erase(Ops.begin()+1); // Erase the folded element
3520 if (Ops.size() == 1) return Ops[0];
3521 LHSC = cast<SCEVConstant>(Ops[0]);
3524 // If we are left with a constant minimum-int, strip it off.
3525 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
3526 Ops.erase(Ops.begin());
3527 --Idx;
3528 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
3529 // If we have an smax with a constant maximum-int, it will always be
3530 // maximum-int.
3531 return Ops[0];
3534 if (Ops.size() == 1) return Ops[0];
3537 // Find the first SMax
3538 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
3539 ++Idx;
3541 // Check to see if one of the operands is an SMax. If so, expand its operands
3542 // onto our operand list, and recurse to simplify.
3543 if (Idx < Ops.size()) {
3544 bool DeletedSMax = false;
3545 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
3546 Ops.erase(Ops.begin()+Idx);
3547 Ops.append(SMax->op_begin(), SMax->op_end());
3548 DeletedSMax = true;
3551 if (DeletedSMax)
3552 return getSMaxExpr(Ops);
3555 // Okay, check to see if the same value occurs in the operand list twice. If
3556 // so, delete one. Since we sorted the list, these values are required to
3557 // be adjacent.
3558 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
3559 // X smax Y smax Y --> X smax Y
3560 // X smax Y --> X, if X is always greater than Y
3561 if (Ops[i] == Ops[i+1] ||
3562 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
3563 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3564 --i; --e;
3565 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
3566 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3567 --i; --e;
3570 if (Ops.size() == 1) return Ops[0];
3572 assert(!Ops.empty() && "Reduced smax down to nothing!");
3574 // Okay, it looks like we really DO need an smax expr. Check to see if we
3575 // already have one, otherwise create a new one.
3576 FoldingSetNodeID ID;
3577 ID.AddInteger(scSMaxExpr);
3578 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3579 ID.AddPointer(Ops[i]);
3580 void *IP = nullptr;
3581 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3582 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3583 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3584 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
3585 O, Ops.size());
3586 UniqueSCEVs.InsertNode(S, IP);
3587 addToLoopUseLists(S);
3588 return S;
3591 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
3592 const SCEV *RHS) {
3593 SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3594 return getUMaxExpr(Ops);
3597 const SCEV *
3598 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3599 assert(!Ops.empty() && "Cannot get empty umax!");
3600 if (Ops.size() == 1) return Ops[0];
3601 #ifndef NDEBUG
3602 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3603 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3604 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3605 "SCEVUMaxExpr operand types don't match!");
3606 #endif
3608 // Sort by complexity, this groups all similar expression types together.
3609 GroupByComplexity(Ops, &LI, DT);
3611 // If there are any constants, fold them together.
3612 unsigned Idx = 0;
3613 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3614 ++Idx;
3615 assert(Idx < Ops.size());
3616 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3617 // We found two constants, fold them together!
3618 ConstantInt *Fold = ConstantInt::get(
3619 getContext(), APIntOps::umax(LHSC->getAPInt(), RHSC->getAPInt()));
3620 Ops[0] = getConstant(Fold);
3621 Ops.erase(Ops.begin()+1); // Erase the folded element
3622 if (Ops.size() == 1) return Ops[0];
3623 LHSC = cast<SCEVConstant>(Ops[0]);
3626 // If we are left with a constant minimum-int, strip it off.
3627 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
3628 Ops.erase(Ops.begin());
3629 --Idx;
3630 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
3631 // If we have an umax with a constant maximum-int, it will always be
3632 // maximum-int.
3633 return Ops[0];
3636 if (Ops.size() == 1) return Ops[0];
3639 // Find the first UMax
3640 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
3641 ++Idx;
3643 // Check to see if one of the operands is a UMax. If so, expand its operands
3644 // onto our operand list, and recurse to simplify.
3645 if (Idx < Ops.size()) {
3646 bool DeletedUMax = false;
3647 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
3648 Ops.erase(Ops.begin()+Idx);
3649 Ops.append(UMax->op_begin(), UMax->op_end());
3650 DeletedUMax = true;
3653 if (DeletedUMax)
3654 return getUMaxExpr(Ops);
3657 // Okay, check to see if the same value occurs in the operand list twice. If
3658 // so, delete one. Since we sorted the list, these values are required to
3659 // be adjacent.
3660 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
3661 // X umax Y umax Y --> X umax Y
3662 // X umax Y --> X, if X is always greater than Y
3663 if (Ops[i] == Ops[i + 1] || isKnownViaNonRecursiveReasoning(
3664 ICmpInst::ICMP_UGE, Ops[i], Ops[i + 1])) {
3665 Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2);
3666 --i; --e;
3667 } else if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, Ops[i],
3668 Ops[i + 1])) {
3669 Ops.erase(Ops.begin() + i, Ops.begin() + i + 1);
3670 --i; --e;
3673 if (Ops.size() == 1) return Ops[0];
3675 assert(!Ops.empty() && "Reduced umax down to nothing!");
3677 // Okay, it looks like we really DO need a umax expr. Check to see if we
3678 // already have one, otherwise create a new one.
3679 FoldingSetNodeID ID;
3680 ID.AddInteger(scUMaxExpr);
3681 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3682 ID.AddPointer(Ops[i]);
3683 void *IP = nullptr;
3684 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3685 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3686 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3687 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
3688 O, Ops.size());
3689 UniqueSCEVs.InsertNode(S, IP);
3690 addToLoopUseLists(S);
3691 return S;
3694 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3695 const SCEV *RHS) {
3696 SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3697 return getSMinExpr(Ops);
3700 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3701 // ~smax(~x, ~y, ~z) == smin(x, y, z).
3702 SmallVector<const SCEV *, 2> NotOps;
3703 for (auto *S : Ops)
3704 NotOps.push_back(getNotSCEV(S));
3705 return getNotSCEV(getSMaxExpr(NotOps));
3708 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3709 const SCEV *RHS) {
3710 SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3711 return getUMinExpr(Ops);
3714 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3715 assert(!Ops.empty() && "At least one operand must be!");
3716 // Trivial case.
3717 if (Ops.size() == 1)
3718 return Ops[0];
3720 // ~umax(~x, ~y, ~z) == umin(x, y, z).
3721 SmallVector<const SCEV *, 2> NotOps;
3722 for (auto *S : Ops)
3723 NotOps.push_back(getNotSCEV(S));
3724 return getNotSCEV(getUMaxExpr(NotOps));
3727 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
3728 // We can bypass creating a target-independent
3729 // constant expression and then folding it back into a ConstantInt.
3730 // This is just a compile-time optimization.
3731 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
3734 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3735 StructType *STy,
3736 unsigned FieldNo) {
3737 // We can bypass creating a target-independent
3738 // constant expression and then folding it back into a ConstantInt.
3739 // This is just a compile-time optimization.
3740 return getConstant(
3741 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
3744 const SCEV *ScalarEvolution::getUnknown(Value *V) {
3745 // Don't attempt to do anything other than create a SCEVUnknown object
3746 // here. createSCEV only calls getUnknown after checking for all other
3747 // interesting possibilities, and any other code that calls getUnknown
3748 // is doing so in order to hide a value from SCEV canonicalization.
3750 FoldingSetNodeID ID;
3751 ID.AddInteger(scUnknown);
3752 ID.AddPointer(V);
3753 void *IP = nullptr;
3754 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3755 assert(cast<SCEVUnknown>(S)->getValue() == V &&
3756 "Stale SCEVUnknown in uniquing map!");
3757 return S;
3759 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3760 FirstUnknown);
3761 FirstUnknown = cast<SCEVUnknown>(S);
3762 UniqueSCEVs.InsertNode(S, IP);
3763 return S;
3766 //===----------------------------------------------------------------------===//
3767 // Basic SCEV Analysis and PHI Idiom Recognition Code
3770 /// Test if values of the given type are analyzable within the SCEV
3771 /// framework. This primarily includes integer types, and it can optionally
3772 /// include pointer types if the ScalarEvolution class has access to
3773 /// target-specific information.
3774 bool ScalarEvolution::isSCEVable(Type *Ty) const {
3775 // Integers and pointers are always SCEVable.
3776 return Ty->isIntOrPtrTy();
3779 /// Return the size in bits of the specified type, for which isSCEVable must
3780 /// return true.
3781 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
3782 assert(isSCEVable(Ty) && "Type is not SCEVable!");
3783 if (Ty->isPointerTy())
3784 return getDataLayout().getIndexTypeSizeInBits(Ty);
3785 return getDataLayout().getTypeSizeInBits(Ty);
3788 /// Return a type with the same bitwidth as the given type and which represents
3789 /// how SCEV will treat the given type, for which isSCEVable must return
3790 /// true. For pointer types, this is the pointer-sized integer type.
3791 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
3792 assert(isSCEVable(Ty) && "Type is not SCEVable!");
3794 if (Ty->isIntegerTy())
3795 return Ty;
3797 // The only other support type is pointer.
3798 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
3799 return getDataLayout().getIntPtrType(Ty);
3802 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const {
3803 return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2;
3806 const SCEV *ScalarEvolution::getCouldNotCompute() {
3807 return CouldNotCompute.get();
3810 bool ScalarEvolution::checkValidity(const SCEV *S) const {
3811 bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) {
3812 auto *SU = dyn_cast<SCEVUnknown>(S);
3813 return SU && SU->getValue() == nullptr;
3816 return !ContainsNulls;
3819 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
3820 HasRecMapType::iterator I = HasRecMap.find(S);
3821 if (I != HasRecMap.end())
3822 return I->second;
3824 bool FoundAddRec = SCEVExprContains(S, isa<SCEVAddRecExpr, const SCEV *>);
3825 HasRecMap.insert({S, FoundAddRec});
3826 return FoundAddRec;
3829 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}.
3830 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an
3831 /// offset I, then return {S', I}, else return {\p S, nullptr}.
3832 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) {
3833 const auto *Add = dyn_cast<SCEVAddExpr>(S);
3834 if (!Add)
3835 return {S, nullptr};
3837 if (Add->getNumOperands() != 2)
3838 return {S, nullptr};
3840 auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0));
3841 if (!ConstOp)
3842 return {S, nullptr};
3844 return {Add->getOperand(1), ConstOp->getValue()};
3847 /// Return the ValueOffsetPair set for \p S. \p S can be represented
3848 /// by the value and offset from any ValueOffsetPair in the set.
3849 SetVector<ScalarEvolution::ValueOffsetPair> *
3850 ScalarEvolution::getSCEVValues(const SCEV *S) {
3851 ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
3852 if (SI == ExprValueMap.end())
3853 return nullptr;
3854 #ifndef NDEBUG
3855 if (VerifySCEVMap) {
3856 // Check there is no dangling Value in the set returned.
3857 for (const auto &VE : SI->second)
3858 assert(ValueExprMap.count(VE.first));
3860 #endif
3861 return &SI->second;
3864 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
3865 /// cannot be used separately. eraseValueFromMap should be used to remove
3866 /// V from ValueExprMap and ExprValueMap at the same time.
3867 void ScalarEvolution::eraseValueFromMap(Value *V) {
3868 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3869 if (I != ValueExprMap.end()) {
3870 const SCEV *S = I->second;
3871 // Remove {V, 0} from the set of ExprValueMap[S]
3872 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S))
3873 SV->remove({V, nullptr});
3875 // Remove {V, Offset} from the set of ExprValueMap[Stripped]
3876 const SCEV *Stripped;
3877 ConstantInt *Offset;
3878 std::tie(Stripped, Offset) = splitAddExpr(S);
3879 if (Offset != nullptr) {
3880 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped))
3881 SV->remove({V, Offset});
3883 ValueExprMap.erase(V);
3887 /// Check whether value has nuw/nsw/exact set but SCEV does not.
3888 /// TODO: In reality it is better to check the poison recursevely
3889 /// but this is better than nothing.
3890 static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) {
3891 if (auto *I = dyn_cast<Instruction>(V)) {
3892 if (isa<OverflowingBinaryOperator>(I)) {
3893 if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) {
3894 if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap())
3895 return true;
3896 if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap())
3897 return true;
3899 } else if (isa<PossiblyExactOperator>(I) && I->isExact())
3900 return true;
3902 return false;
3905 /// Return an existing SCEV if it exists, otherwise analyze the expression and
3906 /// create a new one.
3907 const SCEV *ScalarEvolution::getSCEV(Value *V) {
3908 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3910 const SCEV *S = getExistingSCEV(V);
3911 if (S == nullptr) {
3912 S = createSCEV(V);
3913 // During PHI resolution, it is possible to create two SCEVs for the same
3914 // V, so it is needed to double check whether V->S is inserted into
3915 // ValueExprMap before insert S->{V, 0} into ExprValueMap.
3916 std::pair<ValueExprMapType::iterator, bool> Pair =
3917 ValueExprMap.insert({SCEVCallbackVH(V, this), S});
3918 if (Pair.second && !SCEVLostPoisonFlags(S, V)) {
3919 ExprValueMap[S].insert({V, nullptr});
3921 // If S == Stripped + Offset, add Stripped -> {V, Offset} into
3922 // ExprValueMap.
3923 const SCEV *Stripped = S;
3924 ConstantInt *Offset = nullptr;
3925 std::tie(Stripped, Offset) = splitAddExpr(S);
3926 // If stripped is SCEVUnknown, don't bother to save
3927 // Stripped -> {V, offset}. It doesn't simplify and sometimes even
3928 // increase the complexity of the expansion code.
3929 // If V is GetElementPtrInst, don't save Stripped -> {V, offset}
3930 // because it may generate add/sub instead of GEP in SCEV expansion.
3931 if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) &&
3932 !isa<GetElementPtrInst>(V))
3933 ExprValueMap[Stripped].insert({V, Offset});
3936 return S;
3939 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
3940 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3942 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3943 if (I != ValueExprMap.end()) {
3944 const SCEV *S = I->second;
3945 if (checkValidity(S))
3946 return S;
3947 eraseValueFromMap(V);
3948 forgetMemoizedResults(S);
3950 return nullptr;
3953 /// Return a SCEV corresponding to -V = -1*V
3954 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
3955 SCEV::NoWrapFlags Flags) {
3956 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3957 return getConstant(
3958 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
3960 Type *Ty = V->getType();
3961 Ty = getEffectiveSCEVType(Ty);
3962 return getMulExpr(
3963 V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags);
3966 /// Return a SCEV corresponding to ~V = -1-V
3967 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
3968 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3969 return getConstant(
3970 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
3972 Type *Ty = V->getType();
3973 Ty = getEffectiveSCEVType(Ty);
3974 const SCEV *AllOnes =
3975 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
3976 return getMinusSCEV(AllOnes, V);
3979 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
3980 SCEV::NoWrapFlags Flags,
3981 unsigned Depth) {
3982 // Fast path: X - X --> 0.
3983 if (LHS == RHS)
3984 return getZero(LHS->getType());
3986 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
3987 // makes it so that we cannot make much use of NUW.
3988 auto AddFlags = SCEV::FlagAnyWrap;
3989 const bool RHSIsNotMinSigned =
3990 !getSignedRangeMin(RHS).isMinSignedValue();
3991 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
3992 // Let M be the minimum representable signed value. Then (-1)*RHS
3993 // signed-wraps if and only if RHS is M. That can happen even for
3994 // a NSW subtraction because e.g. (-1)*M signed-wraps even though
3995 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
3996 // (-1)*RHS, we need to prove that RHS != M.
3998 // If LHS is non-negative and we know that LHS - RHS does not
3999 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
4000 // either by proving that RHS > M or that LHS >= 0.
4001 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
4002 AddFlags = SCEV::FlagNSW;
4006 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
4007 // RHS is NSW and LHS >= 0.
4009 // The difficulty here is that the NSW flag may have been proven
4010 // relative to a loop that is to be found in a recurrence in LHS and
4011 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
4012 // larger scope than intended.
4013 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
4015 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth);
4018 const SCEV *
4019 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
4020 Type *SrcTy = V->getType();
4021 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4022 "Cannot truncate or zero extend with non-integer arguments!");
4023 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4024 return V; // No conversion
4025 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4026 return getTruncateExpr(V, Ty);
4027 return getZeroExtendExpr(V, Ty);
4030 const SCEV *
4031 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
4032 Type *Ty) {
4033 Type *SrcTy = V->getType();
4034 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4035 "Cannot truncate or zero extend with non-integer arguments!");
4036 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4037 return V; // No conversion
4038 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4039 return getTruncateExpr(V, Ty);
4040 return getSignExtendExpr(V, Ty);
4043 const SCEV *
4044 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
4045 Type *SrcTy = V->getType();
4046 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4047 "Cannot noop or zero extend with non-integer arguments!");
4048 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4049 "getNoopOrZeroExtend cannot truncate!");
4050 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4051 return V; // No conversion
4052 return getZeroExtendExpr(V, Ty);
4055 const SCEV *
4056 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
4057 Type *SrcTy = V->getType();
4058 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4059 "Cannot noop or sign extend with non-integer arguments!");
4060 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4061 "getNoopOrSignExtend cannot truncate!");
4062 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4063 return V; // No conversion
4064 return getSignExtendExpr(V, Ty);
4067 const SCEV *
4068 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
4069 Type *SrcTy = V->getType();
4070 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4071 "Cannot noop or any extend with non-integer arguments!");
4072 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4073 "getNoopOrAnyExtend cannot truncate!");
4074 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4075 return V; // No conversion
4076 return getAnyExtendExpr(V, Ty);
4079 const SCEV *
4080 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
4081 Type *SrcTy = V->getType();
4082 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4083 "Cannot truncate or noop with non-integer arguments!");
4084 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
4085 "getTruncateOrNoop cannot extend!");
4086 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4087 return V; // No conversion
4088 return getTruncateExpr(V, Ty);
4091 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
4092 const SCEV *RHS) {
4093 const SCEV *PromotedLHS = LHS;
4094 const SCEV *PromotedRHS = RHS;
4096 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
4097 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
4098 else
4099 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
4101 return getUMaxExpr(PromotedLHS, PromotedRHS);
4104 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
4105 const SCEV *RHS) {
4106 SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4107 return getUMinFromMismatchedTypes(Ops);
4110 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(
4111 SmallVectorImpl<const SCEV *> &Ops) {
4112 assert(!Ops.empty() && "At least one operand must be!");
4113 // Trivial case.
4114 if (Ops.size() == 1)
4115 return Ops[0];
4117 // Find the max type first.
4118 Type *MaxType = nullptr;
4119 for (auto *S : Ops)
4120 if (MaxType)
4121 MaxType = getWiderType(MaxType, S->getType());
4122 else
4123 MaxType = S->getType();
4125 // Extend all ops to max type.
4126 SmallVector<const SCEV *, 2> PromotedOps;
4127 for (auto *S : Ops)
4128 PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType));
4130 // Generate umin.
4131 return getUMinExpr(PromotedOps);
4134 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
4135 // A pointer operand may evaluate to a nonpointer expression, such as null.
4136 if (!V->getType()->isPointerTy())
4137 return V;
4139 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
4140 return getPointerBase(Cast->getOperand());
4141 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
4142 const SCEV *PtrOp = nullptr;
4143 for (const SCEV *NAryOp : NAry->operands()) {
4144 if (NAryOp->getType()->isPointerTy()) {
4145 // Cannot find the base of an expression with multiple pointer operands.
4146 if (PtrOp)
4147 return V;
4148 PtrOp = NAryOp;
4151 if (!PtrOp)
4152 return V;
4153 return getPointerBase(PtrOp);
4155 return V;
4158 /// Push users of the given Instruction onto the given Worklist.
4159 static void
4160 PushDefUseChildren(Instruction *I,
4161 SmallVectorImpl<Instruction *> &Worklist) {
4162 // Push the def-use children onto the Worklist stack.
4163 for (User *U : I->users())
4164 Worklist.push_back(cast<Instruction>(U));
4167 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) {
4168 SmallVector<Instruction *, 16> Worklist;
4169 PushDefUseChildren(PN, Worklist);
4171 SmallPtrSet<Instruction *, 8> Visited;
4172 Visited.insert(PN);
4173 while (!Worklist.empty()) {
4174 Instruction *I = Worklist.pop_back_val();
4175 if (!Visited.insert(I).second)
4176 continue;
4178 auto It = ValueExprMap.find_as(static_cast<Value *>(I));
4179 if (It != ValueExprMap.end()) {
4180 const SCEV *Old = It->second;
4182 // Short-circuit the def-use traversal if the symbolic name
4183 // ceases to appear in expressions.
4184 if (Old != SymName && !hasOperand(Old, SymName))
4185 continue;
4187 // SCEVUnknown for a PHI either means that it has an unrecognized
4188 // structure, it's a PHI that's in the progress of being computed
4189 // by createNodeForPHI, or it's a single-value PHI. In the first case,
4190 // additional loop trip count information isn't going to change anything.
4191 // In the second case, createNodeForPHI will perform the necessary
4192 // updates on its own when it gets to that point. In the third, we do
4193 // want to forget the SCEVUnknown.
4194 if (!isa<PHINode>(I) ||
4195 !isa<SCEVUnknown>(Old) ||
4196 (I != PN && Old == SymName)) {
4197 eraseValueFromMap(It->first);
4198 forgetMemoizedResults(Old);
4202 PushDefUseChildren(I, Worklist);
4206 namespace {
4208 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start
4209 /// expression in case its Loop is L. If it is not L then
4210 /// if IgnoreOtherLoops is true then use AddRec itself
4211 /// otherwise rewrite cannot be done.
4212 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4213 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
4214 public:
4215 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
4216 bool IgnoreOtherLoops = true) {
4217 SCEVInitRewriter Rewriter(L, SE);
4218 const SCEV *Result = Rewriter.visit(S);
4219 if (Rewriter.hasSeenLoopVariantSCEVUnknown())
4220 return SE.getCouldNotCompute();
4221 return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops
4222 ? SE.getCouldNotCompute()
4223 : Result;
4226 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4227 if (!SE.isLoopInvariant(Expr, L))
4228 SeenLoopVariantSCEVUnknown = true;
4229 return Expr;
4232 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4233 // Only re-write AddRecExprs for this loop.
4234 if (Expr->getLoop() == L)
4235 return Expr->getStart();
4236 SeenOtherLoops = true;
4237 return Expr;
4240 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4242 bool hasSeenOtherLoops() { return SeenOtherLoops; }
4244 private:
4245 explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
4246 : SCEVRewriteVisitor(SE), L(L) {}
4248 const Loop *L;
4249 bool SeenLoopVariantSCEVUnknown = false;
4250 bool SeenOtherLoops = false;
4253 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post
4254 /// increment expression in case its Loop is L. If it is not L then
4255 /// use AddRec itself.
4256 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4257 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> {
4258 public:
4259 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) {
4260 SCEVPostIncRewriter Rewriter(L, SE);
4261 const SCEV *Result = Rewriter.visit(S);
4262 return Rewriter.hasSeenLoopVariantSCEVUnknown()
4263 ? SE.getCouldNotCompute()
4264 : Result;
4267 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4268 if (!SE.isLoopInvariant(Expr, L))
4269 SeenLoopVariantSCEVUnknown = true;
4270 return Expr;
4273 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4274 // Only re-write AddRecExprs for this loop.
4275 if (Expr->getLoop() == L)
4276 return Expr->getPostIncExpr(SE);
4277 SeenOtherLoops = true;
4278 return Expr;
4281 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4283 bool hasSeenOtherLoops() { return SeenOtherLoops; }
4285 private:
4286 explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE)
4287 : SCEVRewriteVisitor(SE), L(L) {}
4289 const Loop *L;
4290 bool SeenLoopVariantSCEVUnknown = false;
4291 bool SeenOtherLoops = false;
4294 /// This class evaluates the compare condition by matching it against the
4295 /// condition of loop latch. If there is a match we assume a true value
4296 /// for the condition while building SCEV nodes.
4297 class SCEVBackedgeConditionFolder
4298 : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> {
4299 public:
4300 static const SCEV *rewrite(const SCEV *S, const Loop *L,
4301 ScalarEvolution &SE) {
4302 bool IsPosBECond = false;
4303 Value *BECond = nullptr;
4304 if (BasicBlock *Latch = L->getLoopLatch()) {
4305 BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
4306 if (BI && BI->isConditional()) {
4307 assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4308 "Both outgoing branches should not target same header!");
4309 BECond = BI->getCondition();
4310 IsPosBECond = BI->getSuccessor(0) == L->getHeader();
4311 } else {
4312 return S;
4315 SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE);
4316 return Rewriter.visit(S);
4319 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4320 const SCEV *Result = Expr;
4321 bool InvariantF = SE.isLoopInvariant(Expr, L);
4323 if (!InvariantF) {
4324 Instruction *I = cast<Instruction>(Expr->getValue());
4325 switch (I->getOpcode()) {
4326 case Instruction::Select: {
4327 SelectInst *SI = cast<SelectInst>(I);
4328 Optional<const SCEV *> Res =
4329 compareWithBackedgeCondition(SI->getCondition());
4330 if (Res.hasValue()) {
4331 bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne();
4332 Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue());
4334 break;
4336 default: {
4337 Optional<const SCEV *> Res = compareWithBackedgeCondition(I);
4338 if (Res.hasValue())
4339 Result = Res.getValue();
4340 break;
4344 return Result;
4347 private:
4348 explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond,
4349 bool IsPosBECond, ScalarEvolution &SE)
4350 : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond),
4351 IsPositiveBECond(IsPosBECond) {}
4353 Optional<const SCEV *> compareWithBackedgeCondition(Value *IC);
4355 const Loop *L;
4356 /// Loop back condition.
4357 Value *BackedgeCond = nullptr;
4358 /// Set to true if loop back is on positive branch condition.
4359 bool IsPositiveBECond;
4362 Optional<const SCEV *>
4363 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) {
4365 // If value matches the backedge condition for loop latch,
4366 // then return a constant evolution node based on loopback
4367 // branch taken.
4368 if (BackedgeCond == IC)
4369 return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext()))
4370 : SE.getZero(Type::getInt1Ty(SE.getContext()));
4371 return None;
4374 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
4375 public:
4376 static const SCEV *rewrite(const SCEV *S, const Loop *L,
4377 ScalarEvolution &SE) {
4378 SCEVShiftRewriter Rewriter(L, SE);
4379 const SCEV *Result = Rewriter.visit(S);
4380 return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
4383 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4384 // Only allow AddRecExprs for this loop.
4385 if (!SE.isLoopInvariant(Expr, L))
4386 Valid = false;
4387 return Expr;
4390 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4391 if (Expr->getLoop() == L && Expr->isAffine())
4392 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
4393 Valid = false;
4394 return Expr;
4397 bool isValid() { return Valid; }
4399 private:
4400 explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
4401 : SCEVRewriteVisitor(SE), L(L) {}
4403 const Loop *L;
4404 bool Valid = true;
4407 } // end anonymous namespace
4409 SCEV::NoWrapFlags
4410 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
4411 if (!AR->isAffine())
4412 return SCEV::FlagAnyWrap;
4414 using OBO = OverflowingBinaryOperator;
4416 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
4418 if (!AR->hasNoSignedWrap()) {
4419 ConstantRange AddRecRange = getSignedRange(AR);
4420 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
4422 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4423 Instruction::Add, IncRange, OBO::NoSignedWrap);
4424 if (NSWRegion.contains(AddRecRange))
4425 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
4428 if (!AR->hasNoUnsignedWrap()) {
4429 ConstantRange AddRecRange = getUnsignedRange(AR);
4430 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
4432 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4433 Instruction::Add, IncRange, OBO::NoUnsignedWrap);
4434 if (NUWRegion.contains(AddRecRange))
4435 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
4438 return Result;
4441 namespace {
4443 /// Represents an abstract binary operation. This may exist as a
4444 /// normal instruction or constant expression, or may have been
4445 /// derived from an expression tree.
4446 struct BinaryOp {
4447 unsigned Opcode;
4448 Value *LHS;
4449 Value *RHS;
4450 bool IsNSW = false;
4451 bool IsNUW = false;
4453 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
4454 /// constant expression.
4455 Operator *Op = nullptr;
4457 explicit BinaryOp(Operator *Op)
4458 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
4459 Op(Op) {
4460 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
4461 IsNSW = OBO->hasNoSignedWrap();
4462 IsNUW = OBO->hasNoUnsignedWrap();
4466 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
4467 bool IsNUW = false)
4468 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {}
4471 } // end anonymous namespace
4473 /// Try to map \p V into a BinaryOp, and return \c None on failure.
4474 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) {
4475 auto *Op = dyn_cast<Operator>(V);
4476 if (!Op)
4477 return None;
4479 // Implementation detail: all the cleverness here should happen without
4480 // creating new SCEV expressions -- our caller knowns tricks to avoid creating
4481 // SCEV expressions when possible, and we should not break that.
4483 switch (Op->getOpcode()) {
4484 case Instruction::Add:
4485 case Instruction::Sub:
4486 case Instruction::Mul:
4487 case Instruction::UDiv:
4488 case Instruction::URem:
4489 case Instruction::And:
4490 case Instruction::Or:
4491 case Instruction::AShr:
4492 case Instruction::Shl:
4493 return BinaryOp(Op);
4495 case Instruction::Xor:
4496 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
4497 // If the RHS of the xor is a signmask, then this is just an add.
4498 // Instcombine turns add of signmask into xor as a strength reduction step.
4499 if (RHSC->getValue().isSignMask())
4500 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
4501 return BinaryOp(Op);
4503 case Instruction::LShr:
4504 // Turn logical shift right of a constant into a unsigned divide.
4505 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
4506 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
4508 // If the shift count is not less than the bitwidth, the result of
4509 // the shift is undefined. Don't try to analyze it, because the
4510 // resolution chosen here may differ from the resolution chosen in
4511 // other parts of the compiler.
4512 if (SA->getValue().ult(BitWidth)) {
4513 Constant *X =
4514 ConstantInt::get(SA->getContext(),
4515 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
4516 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
4519 return BinaryOp(Op);
4521 case Instruction::ExtractValue: {
4522 auto *EVI = cast<ExtractValueInst>(Op);
4523 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
4524 break;
4526 auto *CI = dyn_cast<CallInst>(EVI->getAggregateOperand());
4527 if (!CI)
4528 break;
4530 if (auto *F = CI->getCalledFunction())
4531 switch (F->getIntrinsicID()) {
4532 case Intrinsic::sadd_with_overflow:
4533 case Intrinsic::uadd_with_overflow:
4534 if (!isOverflowIntrinsicNoWrap(cast<IntrinsicInst>(CI), DT))
4535 return BinaryOp(Instruction::Add, CI->getArgOperand(0),
4536 CI->getArgOperand(1));
4538 // Now that we know that all uses of the arithmetic-result component of
4539 // CI are guarded by the overflow check, we can go ahead and pretend
4540 // that the arithmetic is non-overflowing.
4541 if (F->getIntrinsicID() == Intrinsic::sadd_with_overflow)
4542 return BinaryOp(Instruction::Add, CI->getArgOperand(0),
4543 CI->getArgOperand(1), /* IsNSW = */ true,
4544 /* IsNUW = */ false);
4545 else
4546 return BinaryOp(Instruction::Add, CI->getArgOperand(0),
4547 CI->getArgOperand(1), /* IsNSW = */ false,
4548 /* IsNUW*/ true);
4549 case Intrinsic::ssub_with_overflow:
4550 case Intrinsic::usub_with_overflow:
4551 if (!isOverflowIntrinsicNoWrap(cast<IntrinsicInst>(CI), DT))
4552 return BinaryOp(Instruction::Sub, CI->getArgOperand(0),
4553 CI->getArgOperand(1));
4555 // The same reasoning as sadd/uadd above.
4556 if (F->getIntrinsicID() == Intrinsic::ssub_with_overflow)
4557 return BinaryOp(Instruction::Sub, CI->getArgOperand(0),
4558 CI->getArgOperand(1), /* IsNSW = */ true,
4559 /* IsNUW = */ false);
4560 else
4561 return BinaryOp(Instruction::Sub, CI->getArgOperand(0),
4562 CI->getArgOperand(1), /* IsNSW = */ false,
4563 /* IsNUW = */ true);
4564 case Intrinsic::smul_with_overflow:
4565 case Intrinsic::umul_with_overflow:
4566 return BinaryOp(Instruction::Mul, CI->getArgOperand(0),
4567 CI->getArgOperand(1));
4568 default:
4569 break;
4571 break;
4574 default:
4575 break;
4578 return None;
4581 /// Helper function to createAddRecFromPHIWithCasts. We have a phi
4582 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via
4583 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the
4584 /// way. This function checks if \p Op, an operand of this SCEVAddExpr,
4585 /// follows one of the following patterns:
4586 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4587 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4588 /// If the SCEV expression of \p Op conforms with one of the expected patterns
4589 /// we return the type of the truncation operation, and indicate whether the
4590 /// truncated type should be treated as signed/unsigned by setting
4591 /// \p Signed to true/false, respectively.
4592 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI,
4593 bool &Signed, ScalarEvolution &SE) {
4594 // The case where Op == SymbolicPHI (that is, with no type conversions on
4595 // the way) is handled by the regular add recurrence creating logic and
4596 // would have already been triggered in createAddRecForPHI. Reaching it here
4597 // means that createAddRecFromPHI had failed for this PHI before (e.g.,
4598 // because one of the other operands of the SCEVAddExpr updating this PHI is
4599 // not invariant).
4601 // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in
4602 // this case predicates that allow us to prove that Op == SymbolicPHI will
4603 // be added.
4604 if (Op == SymbolicPHI)
4605 return nullptr;
4607 unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType());
4608 unsigned NewBits = SE.getTypeSizeInBits(Op->getType());
4609 if (SourceBits != NewBits)
4610 return nullptr;
4612 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op);
4613 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op);
4614 if (!SExt && !ZExt)
4615 return nullptr;
4616 const SCEVTruncateExpr *Trunc =
4617 SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand())
4618 : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand());
4619 if (!Trunc)
4620 return nullptr;
4621 const SCEV *X = Trunc->getOperand();
4622 if (X != SymbolicPHI)
4623 return nullptr;
4624 Signed = SExt != nullptr;
4625 return Trunc->getType();
4628 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) {
4629 if (!PN->getType()->isIntegerTy())
4630 return nullptr;
4631 const Loop *L = LI.getLoopFor(PN->getParent());
4632 if (!L || L->getHeader() != PN->getParent())
4633 return nullptr;
4634 return L;
4637 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the
4638 // computation that updates the phi follows the following pattern:
4639 // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
4640 // which correspond to a phi->trunc->sext/zext->add->phi update chain.
4641 // If so, try to see if it can be rewritten as an AddRecExpr under some
4642 // Predicates. If successful, return them as a pair. Also cache the results
4643 // of the analysis.
4645 // Example usage scenario:
4646 // Say the Rewriter is called for the following SCEV:
4647 // 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4648 // where:
4649 // %X = phi i64 (%Start, %BEValue)
4650 // It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X),
4651 // and call this function with %SymbolicPHI = %X.
4653 // The analysis will find that the value coming around the backedge has
4654 // the following SCEV:
4655 // BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4656 // Upon concluding that this matches the desired pattern, the function
4657 // will return the pair {NewAddRec, SmallPredsVec} where:
4658 // NewAddRec = {%Start,+,%Step}
4659 // SmallPredsVec = {P1, P2, P3} as follows:
4660 // P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw>
4661 // P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64)
4662 // P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64)
4663 // The returned pair means that SymbolicPHI can be rewritten into NewAddRec
4664 // under the predicates {P1,P2,P3}.
4665 // This predicated rewrite will be cached in PredicatedSCEVRewrites:
4666 // PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)}
4668 // TODO's:
4670 // 1) Extend the Induction descriptor to also support inductions that involve
4671 // casts: When needed (namely, when we are called in the context of the
4672 // vectorizer induction analysis), a Set of cast instructions will be
4673 // populated by this method, and provided back to isInductionPHI. This is
4674 // needed to allow the vectorizer to properly record them to be ignored by
4675 // the cost model and to avoid vectorizing them (otherwise these casts,
4676 // which are redundant under the runtime overflow checks, will be
4677 // vectorized, which can be costly).
4679 // 2) Support additional induction/PHISCEV patterns: We also want to support
4680 // inductions where the sext-trunc / zext-trunc operations (partly) occur
4681 // after the induction update operation (the induction increment):
4683 // (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix)
4684 // which correspond to a phi->add->trunc->sext/zext->phi update chain.
4686 // (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix)
4687 // which correspond to a phi->trunc->add->sext/zext->phi update chain.
4689 // 3) Outline common code with createAddRecFromPHI to avoid duplication.
4690 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4691 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) {
4692 SmallVector<const SCEVPredicate *, 3> Predicates;
4694 // *** Part1: Analyze if we have a phi-with-cast pattern for which we can
4695 // return an AddRec expression under some predicate.
4697 auto *PN = cast<PHINode>(SymbolicPHI->getValue());
4698 const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
4699 assert(L && "Expecting an integer loop header phi");
4701 // The loop may have multiple entrances or multiple exits; we can analyze
4702 // this phi as an addrec if it has a unique entry value and a unique
4703 // backedge value.
4704 Value *BEValueV = nullptr, *StartValueV = nullptr;
4705 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
4706 Value *V = PN->getIncomingValue(i);
4707 if (L->contains(PN->getIncomingBlock(i))) {
4708 if (!BEValueV) {
4709 BEValueV = V;
4710 } else if (BEValueV != V) {
4711 BEValueV = nullptr;
4712 break;
4714 } else if (!StartValueV) {
4715 StartValueV = V;
4716 } else if (StartValueV != V) {
4717 StartValueV = nullptr;
4718 break;
4721 if (!BEValueV || !StartValueV)
4722 return None;
4724 const SCEV *BEValue = getSCEV(BEValueV);
4726 // If the value coming around the backedge is an add with the symbolic
4727 // value we just inserted, possibly with casts that we can ignore under
4728 // an appropriate runtime guard, then we found a simple induction variable!
4729 const auto *Add = dyn_cast<SCEVAddExpr>(BEValue);
4730 if (!Add)
4731 return None;
4733 // If there is a single occurrence of the symbolic value, possibly
4734 // casted, replace it with a recurrence.
4735 unsigned FoundIndex = Add->getNumOperands();
4736 Type *TruncTy = nullptr;
4737 bool Signed;
4738 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4739 if ((TruncTy =
4740 isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this)))
4741 if (FoundIndex == e) {
4742 FoundIndex = i;
4743 break;
4746 if (FoundIndex == Add->getNumOperands())
4747 return None;
4749 // Create an add with everything but the specified operand.
4750 SmallVector<const SCEV *, 8> Ops;
4751 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4752 if (i != FoundIndex)
4753 Ops.push_back(Add->getOperand(i));
4754 const SCEV *Accum = getAddExpr(Ops);
4756 // The runtime checks will not be valid if the step amount is
4757 // varying inside the loop.
4758 if (!isLoopInvariant(Accum, L))
4759 return None;
4761 // *** Part2: Create the predicates
4763 // Analysis was successful: we have a phi-with-cast pattern for which we
4764 // can return an AddRec expression under the following predicates:
4766 // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum)
4767 // fits within the truncated type (does not overflow) for i = 0 to n-1.
4768 // P2: An Equal predicate that guarantees that
4769 // Start = (Ext ix (Trunc iy (Start) to ix) to iy)
4770 // P3: An Equal predicate that guarantees that
4771 // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy)
4773 // As we next prove, the above predicates guarantee that:
4774 // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy)
4777 // More formally, we want to prove that:
4778 // Expr(i+1) = Start + (i+1) * Accum
4779 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
4781 // Given that:
4782 // 1) Expr(0) = Start
4783 // 2) Expr(1) = Start + Accum
4784 // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2
4785 // 3) Induction hypothesis (step i):
4786 // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum
4788 // Proof:
4789 // Expr(i+1) =
4790 // = Start + (i+1)*Accum
4791 // = (Start + i*Accum) + Accum
4792 // = Expr(i) + Accum
4793 // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum
4794 // :: from step i
4796 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum
4798 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy)
4799 // + (Ext ix (Trunc iy (Accum) to ix) to iy)
4800 // + Accum :: from P3
4802 // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy)
4803 // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y)
4805 // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum
4806 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
4808 // By induction, the same applies to all iterations 1<=i<n:
4811 // Create a truncated addrec for which we will add a no overflow check (P1).
4812 const SCEV *StartVal = getSCEV(StartValueV);
4813 const SCEV *PHISCEV =
4814 getAddRecExpr(getTruncateExpr(StartVal, TruncTy),
4815 getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap);
4817 // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr.
4818 // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV
4819 // will be constant.
4821 // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't
4822 // add P1.
4823 if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
4824 SCEVWrapPredicate::IncrementWrapFlags AddedFlags =
4825 Signed ? SCEVWrapPredicate::IncrementNSSW
4826 : SCEVWrapPredicate::IncrementNUSW;
4827 const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags);
4828 Predicates.push_back(AddRecPred);
4831 // Create the Equal Predicates P2,P3:
4833 // It is possible that the predicates P2 and/or P3 are computable at
4834 // compile time due to StartVal and/or Accum being constants.
4835 // If either one is, then we can check that now and escape if either P2
4836 // or P3 is false.
4838 // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy)
4839 // for each of StartVal and Accum
4840 auto getExtendedExpr = [&](const SCEV *Expr,
4841 bool CreateSignExtend) -> const SCEV * {
4842 assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant");
4843 const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy);
4844 const SCEV *ExtendedExpr =
4845 CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType())
4846 : getZeroExtendExpr(TruncatedExpr, Expr->getType());
4847 return ExtendedExpr;
4850 // Given:
4851 // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy
4852 // = getExtendedExpr(Expr)
4853 // Determine whether the predicate P: Expr == ExtendedExpr
4854 // is known to be false at compile time
4855 auto PredIsKnownFalse = [&](const SCEV *Expr,
4856 const SCEV *ExtendedExpr) -> bool {
4857 return Expr != ExtendedExpr &&
4858 isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr);
4861 const SCEV *StartExtended = getExtendedExpr(StartVal, Signed);
4862 if (PredIsKnownFalse(StartVal, StartExtended)) {
4863 LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";);
4864 return None;
4867 // The Step is always Signed (because the overflow checks are either
4868 // NSSW or NUSW)
4869 const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true);
4870 if (PredIsKnownFalse(Accum, AccumExtended)) {
4871 LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";);
4872 return None;
4875 auto AppendPredicate = [&](const SCEV *Expr,
4876 const SCEV *ExtendedExpr) -> void {
4877 if (Expr != ExtendedExpr &&
4878 !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) {
4879 const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr);
4880 LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred);
4881 Predicates.push_back(Pred);
4885 AppendPredicate(StartVal, StartExtended);
4886 AppendPredicate(Accum, AccumExtended);
4888 // *** Part3: Predicates are ready. Now go ahead and create the new addrec in
4889 // which the casts had been folded away. The caller can rewrite SymbolicPHI
4890 // into NewAR if it will also add the runtime overflow checks specified in
4891 // Predicates.
4892 auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap);
4894 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite =
4895 std::make_pair(NewAR, Predicates);
4896 // Remember the result of the analysis for this SCEV at this locayyytion.
4897 PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite;
4898 return PredRewrite;
4901 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4902 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) {
4903 auto *PN = cast<PHINode>(SymbolicPHI->getValue());
4904 const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
4905 if (!L)
4906 return None;
4908 // Check to see if we already analyzed this PHI.
4909 auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L});
4910 if (I != PredicatedSCEVRewrites.end()) {
4911 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite =
4912 I->second;
4913 // Analysis was done before and failed to create an AddRec:
4914 if (Rewrite.first == SymbolicPHI)
4915 return None;
4916 // Analysis was done before and succeeded to create an AddRec under
4917 // a predicate:
4918 assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec");
4919 assert(!(Rewrite.second).empty() && "Expected to find Predicates");
4920 return Rewrite;
4923 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4924 Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI);
4926 // Record in the cache that the analysis failed
4927 if (!Rewrite) {
4928 SmallVector<const SCEVPredicate *, 3> Predicates;
4929 PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates};
4930 return None;
4933 return Rewrite;
4936 // FIXME: This utility is currently required because the Rewriter currently
4937 // does not rewrite this expression:
4938 // {0, +, (sext ix (trunc iy to ix) to iy)}
4939 // into {0, +, %step},
4940 // even when the following Equal predicate exists:
4941 // "%step == (sext ix (trunc iy to ix) to iy)".
4942 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds(
4943 const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const {
4944 if (AR1 == AR2)
4945 return true;
4947 auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool {
4948 if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) &&
4949 !Preds.implies(SE.getEqualPredicate(Expr2, Expr1)))
4950 return false;
4951 return true;
4954 if (!areExprsEqual(AR1->getStart(), AR2->getStart()) ||
4955 !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE)))
4956 return false;
4957 return true;
4960 /// A helper function for createAddRecFromPHI to handle simple cases.
4962 /// This function tries to find an AddRec expression for the simplest (yet most
4963 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)).
4964 /// If it fails, createAddRecFromPHI will use a more general, but slow,
4965 /// technique for finding the AddRec expression.
4966 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN,
4967 Value *BEValueV,
4968 Value *StartValueV) {
4969 const Loop *L = LI.getLoopFor(PN->getParent());
4970 assert(L && L->getHeader() == PN->getParent());
4971 assert(BEValueV && StartValueV);
4973 auto BO = MatchBinaryOp(BEValueV, DT);
4974 if (!BO)
4975 return nullptr;
4977 if (BO->Opcode != Instruction::Add)
4978 return nullptr;
4980 const SCEV *Accum = nullptr;
4981 if (BO->LHS == PN && L->isLoopInvariant(BO->RHS))
4982 Accum = getSCEV(BO->RHS);
4983 else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS))
4984 Accum = getSCEV(BO->LHS);
4986 if (!Accum)
4987 return nullptr;
4989 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4990 if (BO->IsNUW)
4991 Flags = setFlags(Flags, SCEV::FlagNUW);
4992 if (BO->IsNSW)
4993 Flags = setFlags(Flags, SCEV::FlagNSW);
4995 const SCEV *StartVal = getSCEV(StartValueV);
4996 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
4998 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
5000 // We can add Flags to the post-inc expression only if we
5001 // know that it is *undefined behavior* for BEValueV to
5002 // overflow.
5003 if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5004 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5005 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5007 return PHISCEV;
5010 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
5011 const Loop *L = LI.getLoopFor(PN->getParent());
5012 if (!L || L->getHeader() != PN->getParent())
5013 return nullptr;
5015 // The loop may have multiple entrances or multiple exits; we can analyze
5016 // this phi as an addrec if it has a unique entry value and a unique
5017 // backedge value.
5018 Value *BEValueV = nullptr, *StartValueV = nullptr;
5019 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5020 Value *V = PN->getIncomingValue(i);
5021 if (L->contains(PN->getIncomingBlock(i))) {
5022 if (!BEValueV) {
5023 BEValueV = V;
5024 } else if (BEValueV != V) {
5025 BEValueV = nullptr;
5026 break;
5028 } else if (!StartValueV) {
5029 StartValueV = V;
5030 } else if (StartValueV != V) {
5031 StartValueV = nullptr;
5032 break;
5035 if (!BEValueV || !StartValueV)
5036 return nullptr;
5038 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
5039 "PHI node already processed?");
5041 // First, try to find AddRec expression without creating a fictituos symbolic
5042 // value for PN.
5043 if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV))
5044 return S;
5046 // Handle PHI node value symbolically.
5047 const SCEV *SymbolicName = getUnknown(PN);
5048 ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
5050 // Using this symbolic name for the PHI, analyze the value coming around
5051 // the back-edge.
5052 const SCEV *BEValue = getSCEV(BEValueV);
5054 // NOTE: If BEValue is loop invariant, we know that the PHI node just
5055 // has a special value for the first iteration of the loop.
5057 // If the value coming around the backedge is an add with the symbolic
5058 // value we just inserted, then we found a simple induction variable!
5059 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
5060 // If there is a single occurrence of the symbolic value, replace it
5061 // with a recurrence.
5062 unsigned FoundIndex = Add->getNumOperands();
5063 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5064 if (Add->getOperand(i) == SymbolicName)
5065 if (FoundIndex == e) {
5066 FoundIndex = i;
5067 break;
5070 if (FoundIndex != Add->getNumOperands()) {
5071 // Create an add with everything but the specified operand.
5072 SmallVector<const SCEV *, 8> Ops;
5073 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5074 if (i != FoundIndex)
5075 Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i),
5076 L, *this));
5077 const SCEV *Accum = getAddExpr(Ops);
5079 // This is not a valid addrec if the step amount is varying each
5080 // loop iteration, but is not itself an addrec in this loop.
5081 if (isLoopInvariant(Accum, L) ||
5082 (isa<SCEVAddRecExpr>(Accum) &&
5083 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
5084 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5086 if (auto BO = MatchBinaryOp(BEValueV, DT)) {
5087 if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
5088 if (BO->IsNUW)
5089 Flags = setFlags(Flags, SCEV::FlagNUW);
5090 if (BO->IsNSW)
5091 Flags = setFlags(Flags, SCEV::FlagNSW);
5093 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
5094 // If the increment is an inbounds GEP, then we know the address
5095 // space cannot be wrapped around. We cannot make any guarantee
5096 // about signed or unsigned overflow because pointers are
5097 // unsigned but we may have a negative index from the base
5098 // pointer. We can guarantee that no unsigned wrap occurs if the
5099 // indices form a positive value.
5100 if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
5101 Flags = setFlags(Flags, SCEV::FlagNW);
5103 const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
5104 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
5105 Flags = setFlags(Flags, SCEV::FlagNUW);
5108 // We cannot transfer nuw and nsw flags from subtraction
5109 // operations -- sub nuw X, Y is not the same as add nuw X, -Y
5110 // for instance.
5113 const SCEV *StartVal = getSCEV(StartValueV);
5114 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5116 // Okay, for the entire analysis of this edge we assumed the PHI
5117 // to be symbolic. We now need to go back and purge all of the
5118 // entries for the scalars that use the symbolic expression.
5119 forgetSymbolicName(PN, SymbolicName);
5120 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
5122 // We can add Flags to the post-inc expression only if we
5123 // know that it is *undefined behavior* for BEValueV to
5124 // overflow.
5125 if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5126 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5127 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5129 return PHISCEV;
5132 } else {
5133 // Otherwise, this could be a loop like this:
5134 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
5135 // In this case, j = {1,+,1} and BEValue is j.
5136 // Because the other in-value of i (0) fits the evolution of BEValue
5137 // i really is an addrec evolution.
5139 // We can generalize this saying that i is the shifted value of BEValue
5140 // by one iteration:
5141 // PHI(f(0), f({1,+,1})) --> f({0,+,1})
5142 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
5143 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false);
5144 if (Shifted != getCouldNotCompute() &&
5145 Start != getCouldNotCompute()) {
5146 const SCEV *StartVal = getSCEV(StartValueV);
5147 if (Start == StartVal) {
5148 // Okay, for the entire analysis of this edge we assumed the PHI
5149 // to be symbolic. We now need to go back and purge all of the
5150 // entries for the scalars that use the symbolic expression.
5151 forgetSymbolicName(PN, SymbolicName);
5152 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
5153 return Shifted;
5158 // Remove the temporary PHI node SCEV that has been inserted while intending
5159 // to create an AddRecExpr for this PHI node. We can not keep this temporary
5160 // as it will prevent later (possibly simpler) SCEV expressions to be added
5161 // to the ValueExprMap.
5162 eraseValueFromMap(PN);
5164 return nullptr;
5167 // Checks if the SCEV S is available at BB. S is considered available at BB
5168 // if S can be materialized at BB without introducing a fault.
5169 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
5170 BasicBlock *BB) {
5171 struct CheckAvailable {
5172 bool TraversalDone = false;
5173 bool Available = true;
5175 const Loop *L = nullptr; // The loop BB is in (can be nullptr)
5176 BasicBlock *BB = nullptr;
5177 DominatorTree &DT;
5179 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
5180 : L(L), BB(BB), DT(DT) {}
5182 bool setUnavailable() {
5183 TraversalDone = true;
5184 Available = false;
5185 return false;
5188 bool follow(const SCEV *S) {
5189 switch (S->getSCEVType()) {
5190 case scConstant: case scTruncate: case scZeroExtend: case scSignExtend:
5191 case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr:
5192 // These expressions are available if their operand(s) is/are.
5193 return true;
5195 case scAddRecExpr: {
5196 // We allow add recurrences that are on the loop BB is in, or some
5197 // outer loop. This guarantees availability because the value of the
5198 // add recurrence at BB is simply the "current" value of the induction
5199 // variable. We can relax this in the future; for instance an add
5200 // recurrence on a sibling dominating loop is also available at BB.
5201 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
5202 if (L && (ARLoop == L || ARLoop->contains(L)))
5203 return true;
5205 return setUnavailable();
5208 case scUnknown: {
5209 // For SCEVUnknown, we check for simple dominance.
5210 const auto *SU = cast<SCEVUnknown>(S);
5211 Value *V = SU->getValue();
5213 if (isa<Argument>(V))
5214 return false;
5216 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
5217 return false;
5219 return setUnavailable();
5222 case scUDivExpr:
5223 case scCouldNotCompute:
5224 // We do not try to smart about these at all.
5225 return setUnavailable();
5227 llvm_unreachable("switch should be fully covered!");
5230 bool isDone() { return TraversalDone; }
5233 CheckAvailable CA(L, BB, DT);
5234 SCEVTraversal<CheckAvailable> ST(CA);
5236 ST.visitAll(S);
5237 return CA.Available;
5240 // Try to match a control flow sequence that branches out at BI and merges back
5241 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful
5242 // match.
5243 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
5244 Value *&C, Value *&LHS, Value *&RHS) {
5245 C = BI->getCondition();
5247 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
5248 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
5250 if (!LeftEdge.isSingleEdge())
5251 return false;
5253 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
5255 Use &LeftUse = Merge->getOperandUse(0);
5256 Use &RightUse = Merge->getOperandUse(1);
5258 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
5259 LHS = LeftUse;
5260 RHS = RightUse;
5261 return true;
5264 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
5265 LHS = RightUse;
5266 RHS = LeftUse;
5267 return true;
5270 return false;
5273 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
5274 auto IsReachable =
5275 [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); };
5276 if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) {
5277 const Loop *L = LI.getLoopFor(PN->getParent());
5279 // We don't want to break LCSSA, even in a SCEV expression tree.
5280 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5281 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
5282 return nullptr;
5284 // Try to match
5286 // br %cond, label %left, label %right
5287 // left:
5288 // br label %merge
5289 // right:
5290 // br label %merge
5291 // merge:
5292 // V = phi [ %x, %left ], [ %y, %right ]
5294 // as "select %cond, %x, %y"
5296 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
5297 assert(IDom && "At least the entry block should dominate PN");
5299 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
5300 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
5302 if (BI && BI->isConditional() &&
5303 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
5304 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
5305 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
5306 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
5309 return nullptr;
5312 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
5313 if (const SCEV *S = createAddRecFromPHI(PN))
5314 return S;
5316 if (const SCEV *S = createNodeFromSelectLikePHI(PN))
5317 return S;
5319 // If the PHI has a single incoming value, follow that value, unless the
5320 // PHI's incoming blocks are in a different loop, in which case doing so
5321 // risks breaking LCSSA form. Instcombine would normally zap these, but
5322 // it doesn't have DominatorTree information, so it may miss cases.
5323 if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC}))
5324 if (LI.replacementPreservesLCSSAForm(PN, V))
5325 return getSCEV(V);
5327 // If it's not a loop phi, we can't handle it yet.
5328 return getUnknown(PN);
5331 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
5332 Value *Cond,
5333 Value *TrueVal,
5334 Value *FalseVal) {
5335 // Handle "constant" branch or select. This can occur for instance when a
5336 // loop pass transforms an inner loop and moves on to process the outer loop.
5337 if (auto *CI = dyn_cast<ConstantInt>(Cond))
5338 return getSCEV(CI->isOne() ? TrueVal : FalseVal);
5340 // Try to match some simple smax or umax patterns.
5341 auto *ICI = dyn_cast<ICmpInst>(Cond);
5342 if (!ICI)
5343 return getUnknown(I);
5345 Value *LHS = ICI->getOperand(0);
5346 Value *RHS = ICI->getOperand(1);
5348 switch (ICI->getPredicate()) {
5349 case ICmpInst::ICMP_SLT:
5350 case ICmpInst::ICMP_SLE:
5351 std::swap(LHS, RHS);
5352 LLVM_FALLTHROUGH;
5353 case ICmpInst::ICMP_SGT:
5354 case ICmpInst::ICMP_SGE:
5355 // a >s b ? a+x : b+x -> smax(a, b)+x
5356 // a >s b ? b+x : a+x -> smin(a, b)+x
5357 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5358 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
5359 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
5360 const SCEV *LA = getSCEV(TrueVal);
5361 const SCEV *RA = getSCEV(FalseVal);
5362 const SCEV *LDiff = getMinusSCEV(LA, LS);
5363 const SCEV *RDiff = getMinusSCEV(RA, RS);
5364 if (LDiff == RDiff)
5365 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
5366 LDiff = getMinusSCEV(LA, RS);
5367 RDiff = getMinusSCEV(RA, LS);
5368 if (LDiff == RDiff)
5369 return getAddExpr(getSMinExpr(LS, RS), LDiff);
5371 break;
5372 case ICmpInst::ICMP_ULT:
5373 case ICmpInst::ICMP_ULE:
5374 std::swap(LHS, RHS);
5375 LLVM_FALLTHROUGH;
5376 case ICmpInst::ICMP_UGT:
5377 case ICmpInst::ICMP_UGE:
5378 // a >u b ? a+x : b+x -> umax(a, b)+x
5379 // a >u b ? b+x : a+x -> umin(a, b)+x
5380 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5381 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5382 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
5383 const SCEV *LA = getSCEV(TrueVal);
5384 const SCEV *RA = getSCEV(FalseVal);
5385 const SCEV *LDiff = getMinusSCEV(LA, LS);
5386 const SCEV *RDiff = getMinusSCEV(RA, RS);
5387 if (LDiff == RDiff)
5388 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
5389 LDiff = getMinusSCEV(LA, RS);
5390 RDiff = getMinusSCEV(RA, LS);
5391 if (LDiff == RDiff)
5392 return getAddExpr(getUMinExpr(LS, RS), LDiff);
5394 break;
5395 case ICmpInst::ICMP_NE:
5396 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
5397 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5398 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5399 const SCEV *One = getOne(I->getType());
5400 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5401 const SCEV *LA = getSCEV(TrueVal);
5402 const SCEV *RA = getSCEV(FalseVal);
5403 const SCEV *LDiff = getMinusSCEV(LA, LS);
5404 const SCEV *RDiff = getMinusSCEV(RA, One);
5405 if (LDiff == RDiff)
5406 return getAddExpr(getUMaxExpr(One, LS), LDiff);
5408 break;
5409 case ICmpInst::ICMP_EQ:
5410 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
5411 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5412 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5413 const SCEV *One = getOne(I->getType());
5414 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5415 const SCEV *LA = getSCEV(TrueVal);
5416 const SCEV *RA = getSCEV(FalseVal);
5417 const SCEV *LDiff = getMinusSCEV(LA, One);
5418 const SCEV *RDiff = getMinusSCEV(RA, LS);
5419 if (LDiff == RDiff)
5420 return getAddExpr(getUMaxExpr(One, LS), LDiff);
5422 break;
5423 default:
5424 break;
5427 return getUnknown(I);
5430 /// Expand GEP instructions into add and multiply operations. This allows them
5431 /// to be analyzed by regular SCEV code.
5432 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
5433 // Don't attempt to analyze GEPs over unsized objects.
5434 if (!GEP->getSourceElementType()->isSized())
5435 return getUnknown(GEP);
5437 SmallVector<const SCEV *, 4> IndexExprs;
5438 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
5439 IndexExprs.push_back(getSCEV(*Index));
5440 return getGEPExpr(GEP, IndexExprs);
5443 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) {
5444 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5445 return C->getAPInt().countTrailingZeros();
5447 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
5448 return std::min(GetMinTrailingZeros(T->getOperand()),
5449 (uint32_t)getTypeSizeInBits(T->getType()));
5451 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
5452 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5453 return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5454 ? getTypeSizeInBits(E->getType())
5455 : OpRes;
5458 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
5459 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5460 return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5461 ? getTypeSizeInBits(E->getType())
5462 : OpRes;
5465 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
5466 // The result is the min of all operands results.
5467 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5468 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5469 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5470 return MinOpRes;
5473 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
5474 // The result is the sum of all operands results.
5475 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
5476 uint32_t BitWidth = getTypeSizeInBits(M->getType());
5477 for (unsigned i = 1, e = M->getNumOperands();
5478 SumOpRes != BitWidth && i != e; ++i)
5479 SumOpRes =
5480 std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth);
5481 return SumOpRes;
5484 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
5485 // The result is the min of all operands results.
5486 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5487 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5488 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5489 return MinOpRes;
5492 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
5493 // The result is the min of all operands results.
5494 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5495 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5496 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5497 return MinOpRes;
5500 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
5501 // The result is the min of all operands results.
5502 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5503 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5504 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5505 return MinOpRes;
5508 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5509 // For a SCEVUnknown, ask ValueTracking.
5510 KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT);
5511 return Known.countMinTrailingZeros();
5514 // SCEVUDivExpr
5515 return 0;
5518 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
5519 auto I = MinTrailingZerosCache.find(S);
5520 if (I != MinTrailingZerosCache.end())
5521 return I->second;
5523 uint32_t Result = GetMinTrailingZerosImpl(S);
5524 auto InsertPair = MinTrailingZerosCache.insert({S, Result});
5525 assert(InsertPair.second && "Should insert a new key");
5526 return InsertPair.first->second;
5529 /// Helper method to assign a range to V from metadata present in the IR.
5530 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
5531 if (Instruction *I = dyn_cast<Instruction>(V))
5532 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
5533 return getConstantRangeFromMetadata(*MD);
5535 return None;
5538 /// Determine the range for a particular SCEV. If SignHint is
5539 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
5540 /// with a "cleaner" unsigned (resp. signed) representation.
5541 const ConstantRange &
5542 ScalarEvolution::getRangeRef(const SCEV *S,
5543 ScalarEvolution::RangeSignHint SignHint) {
5544 DenseMap<const SCEV *, ConstantRange> &Cache =
5545 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
5546 : SignedRanges;
5548 // See if we've computed this range already.
5549 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
5550 if (I != Cache.end())
5551 return I->second;
5553 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5554 return setRange(C, SignHint, ConstantRange(C->getAPInt()));
5556 unsigned BitWidth = getTypeSizeInBits(S->getType());
5557 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
5559 // If the value has known zeros, the maximum value will have those known zeros
5560 // as well.
5561 uint32_t TZ = GetMinTrailingZeros(S);
5562 if (TZ != 0) {
5563 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
5564 ConservativeResult =
5565 ConstantRange(APInt::getMinValue(BitWidth),
5566 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
5567 else
5568 ConservativeResult = ConstantRange(
5569 APInt::getSignedMinValue(BitWidth),
5570 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
5573 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
5574 ConstantRange X = getRangeRef(Add->getOperand(0), SignHint);
5575 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
5576 X = X.add(getRangeRef(Add->getOperand(i), SignHint));
5577 return setRange(Add, SignHint, ConservativeResult.intersectWith(X));
5580 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
5581 ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint);
5582 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
5583 X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint));
5584 return setRange(Mul, SignHint, ConservativeResult.intersectWith(X));
5587 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
5588 ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint);
5589 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
5590 X = X.smax(getRangeRef(SMax->getOperand(i), SignHint));
5591 return setRange(SMax, SignHint, ConservativeResult.intersectWith(X));
5594 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
5595 ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint);
5596 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
5597 X = X.umax(getRangeRef(UMax->getOperand(i), SignHint));
5598 return setRange(UMax, SignHint, ConservativeResult.intersectWith(X));
5601 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
5602 ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint);
5603 ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint);
5604 return setRange(UDiv, SignHint,
5605 ConservativeResult.intersectWith(X.udiv(Y)));
5608 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
5609 ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint);
5610 return setRange(ZExt, SignHint,
5611 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
5614 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
5615 ConstantRange X = getRangeRef(SExt->getOperand(), SignHint);
5616 return setRange(SExt, SignHint,
5617 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
5620 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
5621 ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint);
5622 return setRange(Trunc, SignHint,
5623 ConservativeResult.intersectWith(X.truncate(BitWidth)));
5626 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
5627 // If there's no unsigned wrap, the value will never be less than its
5628 // initial value.
5629 if (AddRec->hasNoUnsignedWrap())
5630 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
5631 if (!C->getValue()->isZero())
5632 ConservativeResult = ConservativeResult.intersectWith(
5633 ConstantRange(C->getAPInt(), APInt(BitWidth, 0)));
5635 // If there's no signed wrap, and all the operands have the same sign or
5636 // zero, the value won't ever change sign.
5637 if (AddRec->hasNoSignedWrap()) {
5638 bool AllNonNeg = true;
5639 bool AllNonPos = true;
5640 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
5641 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
5642 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
5644 if (AllNonNeg)
5645 ConservativeResult = ConservativeResult.intersectWith(
5646 ConstantRange(APInt(BitWidth, 0),
5647 APInt::getSignedMinValue(BitWidth)));
5648 else if (AllNonPos)
5649 ConservativeResult = ConservativeResult.intersectWith(
5650 ConstantRange(APInt::getSignedMinValue(BitWidth),
5651 APInt(BitWidth, 1)));
5654 // TODO: non-affine addrec
5655 if (AddRec->isAffine()) {
5656 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
5657 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
5658 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
5659 auto RangeFromAffine = getRangeForAffineAR(
5660 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
5661 BitWidth);
5662 if (!RangeFromAffine.isFullSet())
5663 ConservativeResult =
5664 ConservativeResult.intersectWith(RangeFromAffine);
5666 auto RangeFromFactoring = getRangeViaFactoring(
5667 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
5668 BitWidth);
5669 if (!RangeFromFactoring.isFullSet())
5670 ConservativeResult =
5671 ConservativeResult.intersectWith(RangeFromFactoring);
5675 return setRange(AddRec, SignHint, std::move(ConservativeResult));
5678 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5679 // Check if the IR explicitly contains !range metadata.
5680 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
5681 if (MDRange.hasValue())
5682 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
5684 // Split here to avoid paying the compile-time cost of calling both
5685 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted
5686 // if needed.
5687 const DataLayout &DL = getDataLayout();
5688 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
5689 // For a SCEVUnknown, ask ValueTracking.
5690 KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
5691 if (Known.One != ~Known.Zero + 1)
5692 ConservativeResult =
5693 ConservativeResult.intersectWith(ConstantRange(Known.One,
5694 ~Known.Zero + 1));
5695 } else {
5696 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
5697 "generalize as needed!");
5698 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
5699 if (NS > 1)
5700 ConservativeResult = ConservativeResult.intersectWith(
5701 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
5702 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1));
5705 // A range of Phi is a subset of union of all ranges of its input.
5706 if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) {
5707 // Make sure that we do not run over cycled Phis.
5708 if (PendingPhiRanges.insert(Phi).second) {
5709 ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false);
5710 for (auto &Op : Phi->operands()) {
5711 auto OpRange = getRangeRef(getSCEV(Op), SignHint);
5712 RangeFromOps = RangeFromOps.unionWith(OpRange);
5713 // No point to continue if we already have a full set.
5714 if (RangeFromOps.isFullSet())
5715 break;
5717 ConservativeResult = ConservativeResult.intersectWith(RangeFromOps);
5718 bool Erased = PendingPhiRanges.erase(Phi);
5719 assert(Erased && "Failed to erase Phi properly?");
5720 (void) Erased;
5724 return setRange(U, SignHint, std::move(ConservativeResult));
5727 return setRange(S, SignHint, std::move(ConservativeResult));
5730 // Given a StartRange, Step and MaxBECount for an expression compute a range of
5731 // values that the expression can take. Initially, the expression has a value
5732 // from StartRange and then is changed by Step up to MaxBECount times. Signed
5733 // argument defines if we treat Step as signed or unsigned.
5734 static ConstantRange getRangeForAffineARHelper(APInt Step,
5735 const ConstantRange &StartRange,
5736 const APInt &MaxBECount,
5737 unsigned BitWidth, bool Signed) {
5738 // If either Step or MaxBECount is 0, then the expression won't change, and we
5739 // just need to return the initial range.
5740 if (Step == 0 || MaxBECount == 0)
5741 return StartRange;
5743 // If we don't know anything about the initial value (i.e. StartRange is
5744 // FullRange), then we don't know anything about the final range either.
5745 // Return FullRange.
5746 if (StartRange.isFullSet())
5747 return ConstantRange(BitWidth, /* isFullSet = */ true);
5749 // If Step is signed and negative, then we use its absolute value, but we also
5750 // note that we're moving in the opposite direction.
5751 bool Descending = Signed && Step.isNegative();
5753 if (Signed)
5754 // This is correct even for INT_SMIN. Let's look at i8 to illustrate this:
5755 // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128.
5756 // This equations hold true due to the well-defined wrap-around behavior of
5757 // APInt.
5758 Step = Step.abs();
5760 // Check if Offset is more than full span of BitWidth. If it is, the
5761 // expression is guaranteed to overflow.
5762 if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount))
5763 return ConstantRange(BitWidth, /* isFullSet = */ true);
5765 // Offset is by how much the expression can change. Checks above guarantee no
5766 // overflow here.
5767 APInt Offset = Step * MaxBECount;
5769 // Minimum value of the final range will match the minimal value of StartRange
5770 // if the expression is increasing and will be decreased by Offset otherwise.
5771 // Maximum value of the final range will match the maximal value of StartRange
5772 // if the expression is decreasing and will be increased by Offset otherwise.
5773 APInt StartLower = StartRange.getLower();
5774 APInt StartUpper = StartRange.getUpper() - 1;
5775 APInt MovedBoundary = Descending ? (StartLower - std::move(Offset))
5776 : (StartUpper + std::move(Offset));
5778 // It's possible that the new minimum/maximum value will fall into the initial
5779 // range (due to wrap around). This means that the expression can take any
5780 // value in this bitwidth, and we have to return full range.
5781 if (StartRange.contains(MovedBoundary))
5782 return ConstantRange(BitWidth, /* isFullSet = */ true);
5784 APInt NewLower =
5785 Descending ? std::move(MovedBoundary) : std::move(StartLower);
5786 APInt NewUpper =
5787 Descending ? std::move(StartUpper) : std::move(MovedBoundary);
5788 NewUpper += 1;
5790 // If we end up with full range, return a proper full range.
5791 if (NewLower == NewUpper)
5792 return ConstantRange(BitWidth, /* isFullSet = */ true);
5794 // No overflow detected, return [StartLower, StartUpper + Offset + 1) range.
5795 return ConstantRange(std::move(NewLower), std::move(NewUpper));
5798 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
5799 const SCEV *Step,
5800 const SCEV *MaxBECount,
5801 unsigned BitWidth) {
5802 assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
5803 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
5804 "Precondition!");
5806 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
5807 APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount);
5809 // First, consider step signed.
5810 ConstantRange StartSRange = getSignedRange(Start);
5811 ConstantRange StepSRange = getSignedRange(Step);
5813 // If Step can be both positive and negative, we need to find ranges for the
5814 // maximum absolute step values in both directions and union them.
5815 ConstantRange SR =
5816 getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange,
5817 MaxBECountValue, BitWidth, /* Signed = */ true);
5818 SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(),
5819 StartSRange, MaxBECountValue,
5820 BitWidth, /* Signed = */ true));
5822 // Next, consider step unsigned.
5823 ConstantRange UR = getRangeForAffineARHelper(
5824 getUnsignedRangeMax(Step), getUnsignedRange(Start),
5825 MaxBECountValue, BitWidth, /* Signed = */ false);
5827 // Finally, intersect signed and unsigned ranges.
5828 return SR.intersectWith(UR);
5831 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
5832 const SCEV *Step,
5833 const SCEV *MaxBECount,
5834 unsigned BitWidth) {
5835 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
5836 // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
5838 struct SelectPattern {
5839 Value *Condition = nullptr;
5840 APInt TrueValue;
5841 APInt FalseValue;
5843 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
5844 const SCEV *S) {
5845 Optional<unsigned> CastOp;
5846 APInt Offset(BitWidth, 0);
5848 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
5849 "Should be!");
5851 // Peel off a constant offset:
5852 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
5853 // In the future we could consider being smarter here and handle
5854 // {Start+Step,+,Step} too.
5855 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
5856 return;
5858 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
5859 S = SA->getOperand(1);
5862 // Peel off a cast operation
5863 if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) {
5864 CastOp = SCast->getSCEVType();
5865 S = SCast->getOperand();
5868 using namespace llvm::PatternMatch;
5870 auto *SU = dyn_cast<SCEVUnknown>(S);
5871 const APInt *TrueVal, *FalseVal;
5872 if (!SU ||
5873 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
5874 m_APInt(FalseVal)))) {
5875 Condition = nullptr;
5876 return;
5879 TrueValue = *TrueVal;
5880 FalseValue = *FalseVal;
5882 // Re-apply the cast we peeled off earlier
5883 if (CastOp.hasValue())
5884 switch (*CastOp) {
5885 default:
5886 llvm_unreachable("Unknown SCEV cast type!");
5888 case scTruncate:
5889 TrueValue = TrueValue.trunc(BitWidth);
5890 FalseValue = FalseValue.trunc(BitWidth);
5891 break;
5892 case scZeroExtend:
5893 TrueValue = TrueValue.zext(BitWidth);
5894 FalseValue = FalseValue.zext(BitWidth);
5895 break;
5896 case scSignExtend:
5897 TrueValue = TrueValue.sext(BitWidth);
5898 FalseValue = FalseValue.sext(BitWidth);
5899 break;
5902 // Re-apply the constant offset we peeled off earlier
5903 TrueValue += Offset;
5904 FalseValue += Offset;
5907 bool isRecognized() { return Condition != nullptr; }
5910 SelectPattern StartPattern(*this, BitWidth, Start);
5911 if (!StartPattern.isRecognized())
5912 return ConstantRange(BitWidth, /* isFullSet = */ true);
5914 SelectPattern StepPattern(*this, BitWidth, Step);
5915 if (!StepPattern.isRecognized())
5916 return ConstantRange(BitWidth, /* isFullSet = */ true);
5918 if (StartPattern.Condition != StepPattern.Condition) {
5919 // We don't handle this case today; but we could, by considering four
5920 // possibilities below instead of two. I'm not sure if there are cases where
5921 // that will help over what getRange already does, though.
5922 return ConstantRange(BitWidth, /* isFullSet = */ true);
5925 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
5926 // construct arbitrary general SCEV expressions here. This function is called
5927 // from deep in the call stack, and calling getSCEV (on a sext instruction,
5928 // say) can end up caching a suboptimal value.
5930 // FIXME: without the explicit `this` receiver below, MSVC errors out with
5931 // C2352 and C2512 (otherwise it isn't needed).
5933 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
5934 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
5935 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
5936 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
5938 ConstantRange TrueRange =
5939 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
5940 ConstantRange FalseRange =
5941 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
5943 return TrueRange.unionWith(FalseRange);
5946 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
5947 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
5948 const BinaryOperator *BinOp = cast<BinaryOperator>(V);
5950 // Return early if there are no flags to propagate to the SCEV.
5951 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5952 if (BinOp->hasNoUnsignedWrap())
5953 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
5954 if (BinOp->hasNoSignedWrap())
5955 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
5956 if (Flags == SCEV::FlagAnyWrap)
5957 return SCEV::FlagAnyWrap;
5959 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
5962 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
5963 // Here we check that I is in the header of the innermost loop containing I,
5964 // since we only deal with instructions in the loop header. The actual loop we
5965 // need to check later will come from an add recurrence, but getting that
5966 // requires computing the SCEV of the operands, which can be expensive. This
5967 // check we can do cheaply to rule out some cases early.
5968 Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent());
5969 if (InnermostContainingLoop == nullptr ||
5970 InnermostContainingLoop->getHeader() != I->getParent())
5971 return false;
5973 // Only proceed if we can prove that I does not yield poison.
5974 if (!programUndefinedIfFullPoison(I))
5975 return false;
5977 // At this point we know that if I is executed, then it does not wrap
5978 // according to at least one of NSW or NUW. If I is not executed, then we do
5979 // not know if the calculation that I represents would wrap. Multiple
5980 // instructions can map to the same SCEV. If we apply NSW or NUW from I to
5981 // the SCEV, we must guarantee no wrapping for that SCEV also when it is
5982 // derived from other instructions that map to the same SCEV. We cannot make
5983 // that guarantee for cases where I is not executed. So we need to find the
5984 // loop that I is considered in relation to and prove that I is executed for
5985 // every iteration of that loop. That implies that the value that I
5986 // calculates does not wrap anywhere in the loop, so then we can apply the
5987 // flags to the SCEV.
5989 // We check isLoopInvariant to disambiguate in case we are adding recurrences
5990 // from different loops, so that we know which loop to prove that I is
5991 // executed in.
5992 for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) {
5993 // I could be an extractvalue from a call to an overflow intrinsic.
5994 // TODO: We can do better here in some cases.
5995 if (!isSCEVable(I->getOperand(OpIndex)->getType()))
5996 return false;
5997 const SCEV *Op = getSCEV(I->getOperand(OpIndex));
5998 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
5999 bool AllOtherOpsLoopInvariant = true;
6000 for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands();
6001 ++OtherOpIndex) {
6002 if (OtherOpIndex != OpIndex) {
6003 const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex));
6004 if (!isLoopInvariant(OtherOp, AddRec->getLoop())) {
6005 AllOtherOpsLoopInvariant = false;
6006 break;
6010 if (AllOtherOpsLoopInvariant &&
6011 isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop()))
6012 return true;
6015 return false;
6018 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
6019 // If we know that \c I can never be poison period, then that's enough.
6020 if (isSCEVExprNeverPoison(I))
6021 return true;
6023 // For an add recurrence specifically, we assume that infinite loops without
6024 // side effects are undefined behavior, and then reason as follows:
6026 // If the add recurrence is poison in any iteration, it is poison on all
6027 // future iterations (since incrementing poison yields poison). If the result
6028 // of the add recurrence is fed into the loop latch condition and the loop
6029 // does not contain any throws or exiting blocks other than the latch, we now
6030 // have the ability to "choose" whether the backedge is taken or not (by
6031 // choosing a sufficiently evil value for the poison feeding into the branch)
6032 // for every iteration including and after the one in which \p I first became
6033 // poison. There are two possibilities (let's call the iteration in which \p
6034 // I first became poison as K):
6036 // 1. In the set of iterations including and after K, the loop body executes
6037 // no side effects. In this case executing the backege an infinte number
6038 // of times will yield undefined behavior.
6040 // 2. In the set of iterations including and after K, the loop body executes
6041 // at least one side effect. In this case, that specific instance of side
6042 // effect is control dependent on poison, which also yields undefined
6043 // behavior.
6045 auto *ExitingBB = L->getExitingBlock();
6046 auto *LatchBB = L->getLoopLatch();
6047 if (!ExitingBB || !LatchBB || ExitingBB != LatchBB)
6048 return false;
6050 SmallPtrSet<const Instruction *, 16> Pushed;
6051 SmallVector<const Instruction *, 8> PoisonStack;
6053 // We start by assuming \c I, the post-inc add recurrence, is poison. Only
6054 // things that are known to be fully poison under that assumption go on the
6055 // PoisonStack.
6056 Pushed.insert(I);
6057 PoisonStack.push_back(I);
6059 bool LatchControlDependentOnPoison = false;
6060 while (!PoisonStack.empty() && !LatchControlDependentOnPoison) {
6061 const Instruction *Poison = PoisonStack.pop_back_val();
6063 for (auto *PoisonUser : Poison->users()) {
6064 if (propagatesFullPoison(cast<Instruction>(PoisonUser))) {
6065 if (Pushed.insert(cast<Instruction>(PoisonUser)).second)
6066 PoisonStack.push_back(cast<Instruction>(PoisonUser));
6067 } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) {
6068 assert(BI->isConditional() && "Only possibility!");
6069 if (BI->getParent() == LatchBB) {
6070 LatchControlDependentOnPoison = true;
6071 break;
6077 return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L);
6080 ScalarEvolution::LoopProperties
6081 ScalarEvolution::getLoopProperties(const Loop *L) {
6082 using LoopProperties = ScalarEvolution::LoopProperties;
6084 auto Itr = LoopPropertiesCache.find(L);
6085 if (Itr == LoopPropertiesCache.end()) {
6086 auto HasSideEffects = [](Instruction *I) {
6087 if (auto *SI = dyn_cast<StoreInst>(I))
6088 return !SI->isSimple();
6090 return I->mayHaveSideEffects();
6093 LoopProperties LP = {/* HasNoAbnormalExits */ true,
6094 /*HasNoSideEffects*/ true};
6096 for (auto *BB : L->getBlocks())
6097 for (auto &I : *BB) {
6098 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
6099 LP.HasNoAbnormalExits = false;
6100 if (HasSideEffects(&I))
6101 LP.HasNoSideEffects = false;
6102 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects)
6103 break; // We're already as pessimistic as we can get.
6106 auto InsertPair = LoopPropertiesCache.insert({L, LP});
6107 assert(InsertPair.second && "We just checked!");
6108 Itr = InsertPair.first;
6111 return Itr->second;
6114 const SCEV *ScalarEvolution::createSCEV(Value *V) {
6115 if (!isSCEVable(V->getType()))
6116 return getUnknown(V);
6118 if (Instruction *I = dyn_cast<Instruction>(V)) {
6119 // Don't attempt to analyze instructions in blocks that aren't
6120 // reachable. Such instructions don't matter, and they aren't required
6121 // to obey basic rules for definitions dominating uses which this
6122 // analysis depends on.
6123 if (!DT.isReachableFromEntry(I->getParent()))
6124 return getUnknown(V);
6125 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
6126 return getConstant(CI);
6127 else if (isa<ConstantPointerNull>(V))
6128 return getZero(V->getType());
6129 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
6130 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
6131 else if (!isa<ConstantExpr>(V))
6132 return getUnknown(V);
6134 Operator *U = cast<Operator>(V);
6135 if (auto BO = MatchBinaryOp(U, DT)) {
6136 switch (BO->Opcode) {
6137 case Instruction::Add: {
6138 // The simple thing to do would be to just call getSCEV on both operands
6139 // and call getAddExpr with the result. However if we're looking at a
6140 // bunch of things all added together, this can be quite inefficient,
6141 // because it leads to N-1 getAddExpr calls for N ultimate operands.
6142 // Instead, gather up all the operands and make a single getAddExpr call.
6143 // LLVM IR canonical form means we need only traverse the left operands.
6144 SmallVector<const SCEV *, 4> AddOps;
6145 do {
6146 if (BO->Op) {
6147 if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6148 AddOps.push_back(OpSCEV);
6149 break;
6152 // If a NUW or NSW flag can be applied to the SCEV for this
6153 // addition, then compute the SCEV for this addition by itself
6154 // with a separate call to getAddExpr. We need to do that
6155 // instead of pushing the operands of the addition onto AddOps,
6156 // since the flags are only known to apply to this particular
6157 // addition - they may not apply to other additions that can be
6158 // formed with operands from AddOps.
6159 const SCEV *RHS = getSCEV(BO->RHS);
6160 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6161 if (Flags != SCEV::FlagAnyWrap) {
6162 const SCEV *LHS = getSCEV(BO->LHS);
6163 if (BO->Opcode == Instruction::Sub)
6164 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
6165 else
6166 AddOps.push_back(getAddExpr(LHS, RHS, Flags));
6167 break;
6171 if (BO->Opcode == Instruction::Sub)
6172 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
6173 else
6174 AddOps.push_back(getSCEV(BO->RHS));
6176 auto NewBO = MatchBinaryOp(BO->LHS, DT);
6177 if (!NewBO || (NewBO->Opcode != Instruction::Add &&
6178 NewBO->Opcode != Instruction::Sub)) {
6179 AddOps.push_back(getSCEV(BO->LHS));
6180 break;
6182 BO = NewBO;
6183 } while (true);
6185 return getAddExpr(AddOps);
6188 case Instruction::Mul: {
6189 SmallVector<const SCEV *, 4> MulOps;
6190 do {
6191 if (BO->Op) {
6192 if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6193 MulOps.push_back(OpSCEV);
6194 break;
6197 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6198 if (Flags != SCEV::FlagAnyWrap) {
6199 MulOps.push_back(
6200 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
6201 break;
6205 MulOps.push_back(getSCEV(BO->RHS));
6206 auto NewBO = MatchBinaryOp(BO->LHS, DT);
6207 if (!NewBO || NewBO->Opcode != Instruction::Mul) {
6208 MulOps.push_back(getSCEV(BO->LHS));
6209 break;
6211 BO = NewBO;
6212 } while (true);
6214 return getMulExpr(MulOps);
6216 case Instruction::UDiv:
6217 return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6218 case Instruction::URem:
6219 return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6220 case Instruction::Sub: {
6221 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6222 if (BO->Op)
6223 Flags = getNoWrapFlagsFromUB(BO->Op);
6224 return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
6226 case Instruction::And:
6227 // For an expression like x&255 that merely masks off the high bits,
6228 // use zext(trunc(x)) as the SCEV expression.
6229 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6230 if (CI->isZero())
6231 return getSCEV(BO->RHS);
6232 if (CI->isMinusOne())
6233 return getSCEV(BO->LHS);
6234 const APInt &A = CI->getValue();
6236 // Instcombine's ShrinkDemandedConstant may strip bits out of
6237 // constants, obscuring what would otherwise be a low-bits mask.
6238 // Use computeKnownBits to compute what ShrinkDemandedConstant
6239 // knew about to reconstruct a low-bits mask value.
6240 unsigned LZ = A.countLeadingZeros();
6241 unsigned TZ = A.countTrailingZeros();
6242 unsigned BitWidth = A.getBitWidth();
6243 KnownBits Known(BitWidth);
6244 computeKnownBits(BO->LHS, Known, getDataLayout(),
6245 0, &AC, nullptr, &DT);
6247 APInt EffectiveMask =
6248 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
6249 if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) {
6250 const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ));
6251 const SCEV *LHS = getSCEV(BO->LHS);
6252 const SCEV *ShiftedLHS = nullptr;
6253 if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) {
6254 if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) {
6255 // For an expression like (x * 8) & 8, simplify the multiply.
6256 unsigned MulZeros = OpC->getAPInt().countTrailingZeros();
6257 unsigned GCD = std::min(MulZeros, TZ);
6258 APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD);
6259 SmallVector<const SCEV*, 4> MulOps;
6260 MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD)));
6261 MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end());
6262 auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags());
6263 ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt));
6266 if (!ShiftedLHS)
6267 ShiftedLHS = getUDivExpr(LHS, MulCount);
6268 return getMulExpr(
6269 getZeroExtendExpr(
6270 getTruncateExpr(ShiftedLHS,
6271 IntegerType::get(getContext(), BitWidth - LZ - TZ)),
6272 BO->LHS->getType()),
6273 MulCount);
6276 break;
6278 case Instruction::Or:
6279 // If the RHS of the Or is a constant, we may have something like:
6280 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
6281 // optimizations will transparently handle this case.
6283 // In order for this transformation to be safe, the LHS must be of the
6284 // form X*(2^n) and the Or constant must be less than 2^n.
6285 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6286 const SCEV *LHS = getSCEV(BO->LHS);
6287 const APInt &CIVal = CI->getValue();
6288 if (GetMinTrailingZeros(LHS) >=
6289 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
6290 // Build a plain add SCEV.
6291 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
6292 // If the LHS of the add was an addrec and it has no-wrap flags,
6293 // transfer the no-wrap flags, since an or won't introduce a wrap.
6294 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
6295 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
6296 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
6297 OldAR->getNoWrapFlags());
6299 return S;
6302 break;
6304 case Instruction::Xor:
6305 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6306 // If the RHS of xor is -1, then this is a not operation.
6307 if (CI->isMinusOne())
6308 return getNotSCEV(getSCEV(BO->LHS));
6310 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
6311 // This is a variant of the check for xor with -1, and it handles
6312 // the case where instcombine has trimmed non-demanded bits out
6313 // of an xor with -1.
6314 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
6315 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
6316 if (LBO->getOpcode() == Instruction::And &&
6317 LCI->getValue() == CI->getValue())
6318 if (const SCEVZeroExtendExpr *Z =
6319 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
6320 Type *UTy = BO->LHS->getType();
6321 const SCEV *Z0 = Z->getOperand();
6322 Type *Z0Ty = Z0->getType();
6323 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
6325 // If C is a low-bits mask, the zero extend is serving to
6326 // mask off the high bits. Complement the operand and
6327 // re-apply the zext.
6328 if (CI->getValue().isMask(Z0TySize))
6329 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
6331 // If C is a single bit, it may be in the sign-bit position
6332 // before the zero-extend. In this case, represent the xor
6333 // using an add, which is equivalent, and re-apply the zext.
6334 APInt Trunc = CI->getValue().trunc(Z0TySize);
6335 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
6336 Trunc.isSignMask())
6337 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
6338 UTy);
6341 break;
6343 case Instruction::Shl:
6344 // Turn shift left of a constant amount into a multiply.
6345 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
6346 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
6348 // If the shift count is not less than the bitwidth, the result of
6349 // the shift is undefined. Don't try to analyze it, because the
6350 // resolution chosen here may differ from the resolution chosen in
6351 // other parts of the compiler.
6352 if (SA->getValue().uge(BitWidth))
6353 break;
6355 // It is currently not resolved how to interpret NSW for left
6356 // shift by BitWidth - 1, so we avoid applying flags in that
6357 // case. Remove this check (or this comment) once the situation
6358 // is resolved. See
6359 // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html
6360 // and http://reviews.llvm.org/D8890 .
6361 auto Flags = SCEV::FlagAnyWrap;
6362 if (BO->Op && SA->getValue().ult(BitWidth - 1))
6363 Flags = getNoWrapFlagsFromUB(BO->Op);
6365 Constant *X = ConstantInt::get(
6366 getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
6367 return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
6369 break;
6371 case Instruction::AShr: {
6372 // AShr X, C, where C is a constant.
6373 ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS);
6374 if (!CI)
6375 break;
6377 Type *OuterTy = BO->LHS->getType();
6378 uint64_t BitWidth = getTypeSizeInBits(OuterTy);
6379 // If the shift count is not less than the bitwidth, the result of
6380 // the shift is undefined. Don't try to analyze it, because the
6381 // resolution chosen here may differ from the resolution chosen in
6382 // other parts of the compiler.
6383 if (CI->getValue().uge(BitWidth))
6384 break;
6386 if (CI->isZero())
6387 return getSCEV(BO->LHS); // shift by zero --> noop
6389 uint64_t AShrAmt = CI->getZExtValue();
6390 Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt);
6392 Operator *L = dyn_cast<Operator>(BO->LHS);
6393 if (L && L->getOpcode() == Instruction::Shl) {
6394 // X = Shl A, n
6395 // Y = AShr X, m
6396 // Both n and m are constant.
6398 const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0));
6399 if (L->getOperand(1) == BO->RHS)
6400 // For a two-shift sext-inreg, i.e. n = m,
6401 // use sext(trunc(x)) as the SCEV expression.
6402 return getSignExtendExpr(
6403 getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy);
6405 ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1));
6406 if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) {
6407 uint64_t ShlAmt = ShlAmtCI->getZExtValue();
6408 if (ShlAmt > AShrAmt) {
6409 // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV
6410 // expression. We already checked that ShlAmt < BitWidth, so
6411 // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as
6412 // ShlAmt - AShrAmt < Amt.
6413 APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt,
6414 ShlAmt - AShrAmt);
6415 return getSignExtendExpr(
6416 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy),
6417 getConstant(Mul)), OuterTy);
6421 break;
6426 switch (U->getOpcode()) {
6427 case Instruction::Trunc:
6428 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
6430 case Instruction::ZExt:
6431 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
6433 case Instruction::SExt:
6434 if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) {
6435 // The NSW flag of a subtract does not always survive the conversion to
6436 // A + (-1)*B. By pushing sign extension onto its operands we are much
6437 // more likely to preserve NSW and allow later AddRec optimisations.
6439 // NOTE: This is effectively duplicating this logic from getSignExtend:
6440 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
6441 // but by that point the NSW information has potentially been lost.
6442 if (BO->Opcode == Instruction::Sub && BO->IsNSW) {
6443 Type *Ty = U->getType();
6444 auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty);
6445 auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty);
6446 return getMinusSCEV(V1, V2, SCEV::FlagNSW);
6449 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
6451 case Instruction::BitCast:
6452 // BitCasts are no-op casts so we just eliminate the cast.
6453 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
6454 return getSCEV(U->getOperand(0));
6455 break;
6457 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
6458 // lead to pointer expressions which cannot safely be expanded to GEPs,
6459 // because ScalarEvolution doesn't respect the GEP aliasing rules when
6460 // simplifying integer expressions.
6462 case Instruction::GetElementPtr:
6463 return createNodeForGEP(cast<GEPOperator>(U));
6465 case Instruction::PHI:
6466 return createNodeForPHI(cast<PHINode>(U));
6468 case Instruction::Select:
6469 // U can also be a select constant expr, which let fall through. Since
6470 // createNodeForSelect only works for a condition that is an `ICmpInst`, and
6471 // constant expressions cannot have instructions as operands, we'd have
6472 // returned getUnknown for a select constant expressions anyway.
6473 if (isa<Instruction>(U))
6474 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
6475 U->getOperand(1), U->getOperand(2));
6476 break;
6478 case Instruction::Call:
6479 case Instruction::Invoke:
6480 if (Value *RV = CallSite(U).getReturnedArgOperand())
6481 return getSCEV(RV);
6482 break;
6485 return getUnknown(V);
6488 //===----------------------------------------------------------------------===//
6489 // Iteration Count Computation Code
6492 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) {
6493 if (!ExitCount)
6494 return 0;
6496 ConstantInt *ExitConst = ExitCount->getValue();
6498 // Guard against huge trip counts.
6499 if (ExitConst->getValue().getActiveBits() > 32)
6500 return 0;
6502 // In case of integer overflow, this returns 0, which is correct.
6503 return ((unsigned)ExitConst->getZExtValue()) + 1;
6506 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) {
6507 if (BasicBlock *ExitingBB = L->getExitingBlock())
6508 return getSmallConstantTripCount(L, ExitingBB);
6510 // No trip count information for multiple exits.
6511 return 0;
6514 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L,
6515 BasicBlock *ExitingBlock) {
6516 assert(ExitingBlock && "Must pass a non-null exiting block!");
6517 assert(L->isLoopExiting(ExitingBlock) &&
6518 "Exiting block must actually branch out of the loop!");
6519 const SCEVConstant *ExitCount =
6520 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
6521 return getConstantTripCount(ExitCount);
6524 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) {
6525 const auto *MaxExitCount =
6526 dyn_cast<SCEVConstant>(getMaxBackedgeTakenCount(L));
6527 return getConstantTripCount(MaxExitCount);
6530 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) {
6531 if (BasicBlock *ExitingBB = L->getExitingBlock())
6532 return getSmallConstantTripMultiple(L, ExitingBB);
6534 // No trip multiple information for multiple exits.
6535 return 0;
6538 /// Returns the largest constant divisor of the trip count of this loop as a
6539 /// normal unsigned value, if possible. This means that the actual trip count is
6540 /// always a multiple of the returned value (don't forget the trip count could
6541 /// very well be zero as well!).
6543 /// Returns 1 if the trip count is unknown or not guaranteed to be the
6544 /// multiple of a constant (which is also the case if the trip count is simply
6545 /// constant, use getSmallConstantTripCount for that case), Will also return 1
6546 /// if the trip count is very large (>= 2^32).
6548 /// As explained in the comments for getSmallConstantTripCount, this assumes
6549 /// that control exits the loop via ExitingBlock.
6550 unsigned
6551 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
6552 BasicBlock *ExitingBlock) {
6553 assert(ExitingBlock && "Must pass a non-null exiting block!");
6554 assert(L->isLoopExiting(ExitingBlock) &&
6555 "Exiting block must actually branch out of the loop!");
6556 const SCEV *ExitCount = getExitCount(L, ExitingBlock);
6557 if (ExitCount == getCouldNotCompute())
6558 return 1;
6560 // Get the trip count from the BE count by adding 1.
6561 const SCEV *TCExpr = getAddExpr(ExitCount, getOne(ExitCount->getType()));
6563 const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr);
6564 if (!TC)
6565 // Attempt to factor more general cases. Returns the greatest power of
6566 // two divisor. If overflow happens, the trip count expression is still
6567 // divisible by the greatest power of 2 divisor returned.
6568 return 1U << std::min((uint32_t)31, GetMinTrailingZeros(TCExpr));
6570 ConstantInt *Result = TC->getValue();
6572 // Guard against huge trip counts (this requires checking
6573 // for zero to handle the case where the trip count == -1 and the
6574 // addition wraps).
6575 if (!Result || Result->getValue().getActiveBits() > 32 ||
6576 Result->getValue().getActiveBits() == 0)
6577 return 1;
6579 return (unsigned)Result->getZExtValue();
6582 /// Get the expression for the number of loop iterations for which this loop is
6583 /// guaranteed not to exit via ExitingBlock. Otherwise return
6584 /// SCEVCouldNotCompute.
6585 const SCEV *ScalarEvolution::getExitCount(const Loop *L,
6586 BasicBlock *ExitingBlock) {
6587 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
6590 const SCEV *
6591 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
6592 SCEVUnionPredicate &Preds) {
6593 return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds);
6596 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
6597 return getBackedgeTakenInfo(L).getExact(L, this);
6600 /// Similar to getBackedgeTakenCount, except return the least SCEV value that is
6601 /// known never to be less than the actual backedge taken count.
6602 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
6603 return getBackedgeTakenInfo(L).getMax(this);
6606 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) {
6607 return getBackedgeTakenInfo(L).isMaxOrZero(this);
6610 /// Push PHI nodes in the header of the given loop onto the given Worklist.
6611 static void
6612 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
6613 BasicBlock *Header = L->getHeader();
6615 // Push all Loop-header PHIs onto the Worklist stack.
6616 for (PHINode &PN : Header->phis())
6617 Worklist.push_back(&PN);
6620 const ScalarEvolution::BackedgeTakenInfo &
6621 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
6622 auto &BTI = getBackedgeTakenInfo(L);
6623 if (BTI.hasFullInfo())
6624 return BTI;
6626 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
6628 if (!Pair.second)
6629 return Pair.first->second;
6631 BackedgeTakenInfo Result =
6632 computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
6634 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result);
6637 const ScalarEvolution::BackedgeTakenInfo &
6638 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
6639 // Initially insert an invalid entry for this loop. If the insertion
6640 // succeeds, proceed to actually compute a backedge-taken count and
6641 // update the value. The temporary CouldNotCompute value tells SCEV
6642 // code elsewhere that it shouldn't attempt to request a new
6643 // backedge-taken count, which could result in infinite recursion.
6644 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
6645 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
6646 if (!Pair.second)
6647 return Pair.first->second;
6649 // computeBackedgeTakenCount may allocate memory for its result. Inserting it
6650 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
6651 // must be cleared in this scope.
6652 BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
6654 // In product build, there are no usage of statistic.
6655 (void)NumTripCountsComputed;
6656 (void)NumTripCountsNotComputed;
6657 #if LLVM_ENABLE_STATS || !defined(NDEBUG)
6658 const SCEV *BEExact = Result.getExact(L, this);
6659 if (BEExact != getCouldNotCompute()) {
6660 assert(isLoopInvariant(BEExact, L) &&
6661 isLoopInvariant(Result.getMax(this), L) &&
6662 "Computed backedge-taken count isn't loop invariant for loop!");
6663 ++NumTripCountsComputed;
6665 else if (Result.getMax(this) == getCouldNotCompute() &&
6666 isa<PHINode>(L->getHeader()->begin())) {
6667 // Only count loops that have phi nodes as not being computable.
6668 ++NumTripCountsNotComputed;
6670 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG)
6672 // Now that we know more about the trip count for this loop, forget any
6673 // existing SCEV values for PHI nodes in this loop since they are only
6674 // conservative estimates made without the benefit of trip count
6675 // information. This is similar to the code in forgetLoop, except that
6676 // it handles SCEVUnknown PHI nodes specially.
6677 if (Result.hasAnyInfo()) {
6678 SmallVector<Instruction *, 16> Worklist;
6679 PushLoopPHIs(L, Worklist);
6681 SmallPtrSet<Instruction *, 8> Discovered;
6682 while (!Worklist.empty()) {
6683 Instruction *I = Worklist.pop_back_val();
6685 ValueExprMapType::iterator It =
6686 ValueExprMap.find_as(static_cast<Value *>(I));
6687 if (It != ValueExprMap.end()) {
6688 const SCEV *Old = It->second;
6690 // SCEVUnknown for a PHI either means that it has an unrecognized
6691 // structure, or it's a PHI that's in the progress of being computed
6692 // by createNodeForPHI. In the former case, additional loop trip
6693 // count information isn't going to change anything. In the later
6694 // case, createNodeForPHI will perform the necessary updates on its
6695 // own when it gets to that point.
6696 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
6697 eraseValueFromMap(It->first);
6698 forgetMemoizedResults(Old);
6700 if (PHINode *PN = dyn_cast<PHINode>(I))
6701 ConstantEvolutionLoopExitValue.erase(PN);
6704 // Since we don't need to invalidate anything for correctness and we're
6705 // only invalidating to make SCEV's results more precise, we get to stop
6706 // early to avoid invalidating too much. This is especially important in
6707 // cases like:
6709 // %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node
6710 // loop0:
6711 // %pn0 = phi
6712 // ...
6713 // loop1:
6714 // %pn1 = phi
6715 // ...
6717 // where both loop0 and loop1's backedge taken count uses the SCEV
6718 // expression for %v. If we don't have the early stop below then in cases
6719 // like the above, getBackedgeTakenInfo(loop1) will clear out the trip
6720 // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip
6721 // count for loop1, effectively nullifying SCEV's trip count cache.
6722 for (auto *U : I->users())
6723 if (auto *I = dyn_cast<Instruction>(U)) {
6724 auto *LoopForUser = LI.getLoopFor(I->getParent());
6725 if (LoopForUser && L->contains(LoopForUser) &&
6726 Discovered.insert(I).second)
6727 Worklist.push_back(I);
6732 // Re-lookup the insert position, since the call to
6733 // computeBackedgeTakenCount above could result in a
6734 // recusive call to getBackedgeTakenInfo (on a different
6735 // loop), which would invalidate the iterator computed
6736 // earlier.
6737 return BackedgeTakenCounts.find(L)->second = std::move(Result);
6740 void ScalarEvolution::forgetLoop(const Loop *L) {
6741 // Drop any stored trip count value.
6742 auto RemoveLoopFromBackedgeMap =
6743 [](DenseMap<const Loop *, BackedgeTakenInfo> &Map, const Loop *L) {
6744 auto BTCPos = Map.find(L);
6745 if (BTCPos != Map.end()) {
6746 BTCPos->second.clear();
6747 Map.erase(BTCPos);
6751 SmallVector<const Loop *, 16> LoopWorklist(1, L);
6752 SmallVector<Instruction *, 32> Worklist;
6753 SmallPtrSet<Instruction *, 16> Visited;
6755 // Iterate over all the loops and sub-loops to drop SCEV information.
6756 while (!LoopWorklist.empty()) {
6757 auto *CurrL = LoopWorklist.pop_back_val();
6759 RemoveLoopFromBackedgeMap(BackedgeTakenCounts, CurrL);
6760 RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts, CurrL);
6762 // Drop information about predicated SCEV rewrites for this loop.
6763 for (auto I = PredicatedSCEVRewrites.begin();
6764 I != PredicatedSCEVRewrites.end();) {
6765 std::pair<const SCEV *, const Loop *> Entry = I->first;
6766 if (Entry.second == CurrL)
6767 PredicatedSCEVRewrites.erase(I++);
6768 else
6769 ++I;
6772 auto LoopUsersItr = LoopUsers.find(CurrL);
6773 if (LoopUsersItr != LoopUsers.end()) {
6774 for (auto *S : LoopUsersItr->second)
6775 forgetMemoizedResults(S);
6776 LoopUsers.erase(LoopUsersItr);
6779 // Drop information about expressions based on loop-header PHIs.
6780 PushLoopPHIs(CurrL, Worklist);
6782 while (!Worklist.empty()) {
6783 Instruction *I = Worklist.pop_back_val();
6784 if (!Visited.insert(I).second)
6785 continue;
6787 ValueExprMapType::iterator It =
6788 ValueExprMap.find_as(static_cast<Value *>(I));
6789 if (It != ValueExprMap.end()) {
6790 eraseValueFromMap(It->first);
6791 forgetMemoizedResults(It->second);
6792 if (PHINode *PN = dyn_cast<PHINode>(I))
6793 ConstantEvolutionLoopExitValue.erase(PN);
6796 PushDefUseChildren(I, Worklist);
6799 LoopPropertiesCache.erase(CurrL);
6800 // Forget all contained loops too, to avoid dangling entries in the
6801 // ValuesAtScopes map.
6802 LoopWorklist.append(CurrL->begin(), CurrL->end());
6806 void ScalarEvolution::forgetTopmostLoop(const Loop *L) {
6807 while (Loop *Parent = L->getParentLoop())
6808 L = Parent;
6809 forgetLoop(L);
6812 void ScalarEvolution::forgetValue(Value *V) {
6813 Instruction *I = dyn_cast<Instruction>(V);
6814 if (!I) return;
6816 // Drop information about expressions based on loop-header PHIs.
6817 SmallVector<Instruction *, 16> Worklist;
6818 Worklist.push_back(I);
6820 SmallPtrSet<Instruction *, 8> Visited;
6821 while (!Worklist.empty()) {
6822 I = Worklist.pop_back_val();
6823 if (!Visited.insert(I).second)
6824 continue;
6826 ValueExprMapType::iterator It =
6827 ValueExprMap.find_as(static_cast<Value *>(I));
6828 if (It != ValueExprMap.end()) {
6829 eraseValueFromMap(It->first);
6830 forgetMemoizedResults(It->second);
6831 if (PHINode *PN = dyn_cast<PHINode>(I))
6832 ConstantEvolutionLoopExitValue.erase(PN);
6835 PushDefUseChildren(I, Worklist);
6839 /// Get the exact loop backedge taken count considering all loop exits. A
6840 /// computable result can only be returned for loops with all exiting blocks
6841 /// dominating the latch. howFarToZero assumes that the limit of each loop test
6842 /// is never skipped. This is a valid assumption as long as the loop exits via
6843 /// that test. For precise results, it is the caller's responsibility to specify
6844 /// the relevant loop exiting block using getExact(ExitingBlock, SE).
6845 const SCEV *
6846 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE,
6847 SCEVUnionPredicate *Preds) const {
6848 // If any exits were not computable, the loop is not computable.
6849 if (!isComplete() || ExitNotTaken.empty())
6850 return SE->getCouldNotCompute();
6852 const BasicBlock *Latch = L->getLoopLatch();
6853 // All exiting blocks we have collected must dominate the only backedge.
6854 if (!Latch)
6855 return SE->getCouldNotCompute();
6857 // All exiting blocks we have gathered dominate loop's latch, so exact trip
6858 // count is simply a minimum out of all these calculated exit counts.
6859 SmallVector<const SCEV *, 2> Ops;
6860 for (auto &ENT : ExitNotTaken) {
6861 const SCEV *BECount = ENT.ExactNotTaken;
6862 assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!");
6863 assert(SE->DT.dominates(ENT.ExitingBlock, Latch) &&
6864 "We should only have known counts for exiting blocks that dominate "
6865 "latch!");
6867 Ops.push_back(BECount);
6869 if (Preds && !ENT.hasAlwaysTruePredicate())
6870 Preds->add(ENT.Predicate.get());
6872 assert((Preds || ENT.hasAlwaysTruePredicate()) &&
6873 "Predicate should be always true!");
6876 return SE->getUMinFromMismatchedTypes(Ops);
6879 /// Get the exact not taken count for this loop exit.
6880 const SCEV *
6881 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
6882 ScalarEvolution *SE) const {
6883 for (auto &ENT : ExitNotTaken)
6884 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
6885 return ENT.ExactNotTaken;
6887 return SE->getCouldNotCompute();
6890 /// getMax - Get the max backedge taken count for the loop.
6891 const SCEV *
6892 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
6893 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
6894 return !ENT.hasAlwaysTruePredicate();
6897 if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getMax())
6898 return SE->getCouldNotCompute();
6900 assert((isa<SCEVCouldNotCompute>(getMax()) || isa<SCEVConstant>(getMax())) &&
6901 "No point in having a non-constant max backedge taken count!");
6902 return getMax();
6905 bool ScalarEvolution::BackedgeTakenInfo::isMaxOrZero(ScalarEvolution *SE) const {
6906 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
6907 return !ENT.hasAlwaysTruePredicate();
6909 return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue);
6912 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
6913 ScalarEvolution *SE) const {
6914 if (getMax() && getMax() != SE->getCouldNotCompute() &&
6915 SE->hasOperand(getMax(), S))
6916 return true;
6918 for (auto &ENT : ExitNotTaken)
6919 if (ENT.ExactNotTaken != SE->getCouldNotCompute() &&
6920 SE->hasOperand(ENT.ExactNotTaken, S))
6921 return true;
6923 return false;
6926 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E)
6927 : ExactNotTaken(E), MaxNotTaken(E) {
6928 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6929 isa<SCEVConstant>(MaxNotTaken)) &&
6930 "No point in having a non-constant max backedge taken count!");
6933 ScalarEvolution::ExitLimit::ExitLimit(
6934 const SCEV *E, const SCEV *M, bool MaxOrZero,
6935 ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList)
6936 : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) {
6937 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
6938 !isa<SCEVCouldNotCompute>(MaxNotTaken)) &&
6939 "Exact is not allowed to be less precise than Max");
6940 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6941 isa<SCEVConstant>(MaxNotTaken)) &&
6942 "No point in having a non-constant max backedge taken count!");
6943 for (auto *PredSet : PredSetList)
6944 for (auto *P : *PredSet)
6945 addPredicate(P);
6948 ScalarEvolution::ExitLimit::ExitLimit(
6949 const SCEV *E, const SCEV *M, bool MaxOrZero,
6950 const SmallPtrSetImpl<const SCEVPredicate *> &PredSet)
6951 : ExitLimit(E, M, MaxOrZero, {&PredSet}) {
6952 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6953 isa<SCEVConstant>(MaxNotTaken)) &&
6954 "No point in having a non-constant max backedge taken count!");
6957 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M,
6958 bool MaxOrZero)
6959 : ExitLimit(E, M, MaxOrZero, None) {
6960 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6961 isa<SCEVConstant>(MaxNotTaken)) &&
6962 "No point in having a non-constant max backedge taken count!");
6965 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
6966 /// computable exit into a persistent ExitNotTakenInfo array.
6967 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
6968 SmallVectorImpl<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo>
6969 &&ExitCounts,
6970 bool Complete, const SCEV *MaxCount, bool MaxOrZero)
6971 : MaxAndComplete(MaxCount, Complete), MaxOrZero(MaxOrZero) {
6972 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
6974 ExitNotTaken.reserve(ExitCounts.size());
6975 std::transform(
6976 ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken),
6977 [&](const EdgeExitInfo &EEI) {
6978 BasicBlock *ExitBB = EEI.first;
6979 const ExitLimit &EL = EEI.second;
6980 if (EL.Predicates.empty())
6981 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, nullptr);
6983 std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate);
6984 for (auto *Pred : EL.Predicates)
6985 Predicate->add(Pred);
6987 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, std::move(Predicate));
6989 assert((isa<SCEVCouldNotCompute>(MaxCount) || isa<SCEVConstant>(MaxCount)) &&
6990 "No point in having a non-constant max backedge taken count!");
6993 /// Invalidate this result and free the ExitNotTakenInfo array.
6994 void ScalarEvolution::BackedgeTakenInfo::clear() {
6995 ExitNotTaken.clear();
6998 /// Compute the number of times the backedge of the specified loop will execute.
6999 ScalarEvolution::BackedgeTakenInfo
7000 ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
7001 bool AllowPredicates) {
7002 SmallVector<BasicBlock *, 8> ExitingBlocks;
7003 L->getExitingBlocks(ExitingBlocks);
7005 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
7007 SmallVector<EdgeExitInfo, 4> ExitCounts;
7008 bool CouldComputeBECount = true;
7009 BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
7010 const SCEV *MustExitMaxBECount = nullptr;
7011 const SCEV *MayExitMaxBECount = nullptr;
7012 bool MustExitMaxOrZero = false;
7014 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
7015 // and compute maxBECount.
7016 // Do a union of all the predicates here.
7017 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
7018 BasicBlock *ExitBB = ExitingBlocks[i];
7019 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
7021 assert((AllowPredicates || EL.Predicates.empty()) &&
7022 "Predicated exit limit when predicates are not allowed!");
7024 // 1. For each exit that can be computed, add an entry to ExitCounts.
7025 // CouldComputeBECount is true only if all exits can be computed.
7026 if (EL.ExactNotTaken == getCouldNotCompute())
7027 // We couldn't compute an exact value for this exit, so
7028 // we won't be able to compute an exact value for the loop.
7029 CouldComputeBECount = false;
7030 else
7031 ExitCounts.emplace_back(ExitBB, EL);
7033 // 2. Derive the loop's MaxBECount from each exit's max number of
7034 // non-exiting iterations. Partition the loop exits into two kinds:
7035 // LoopMustExits and LoopMayExits.
7037 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
7038 // is a LoopMayExit. If any computable LoopMustExit is found, then
7039 // MaxBECount is the minimum EL.MaxNotTaken of computable
7040 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
7041 // EL.MaxNotTaken, where CouldNotCompute is considered greater than any
7042 // computable EL.MaxNotTaken.
7043 if (EL.MaxNotTaken != getCouldNotCompute() && Latch &&
7044 DT.dominates(ExitBB, Latch)) {
7045 if (!MustExitMaxBECount) {
7046 MustExitMaxBECount = EL.MaxNotTaken;
7047 MustExitMaxOrZero = EL.MaxOrZero;
7048 } else {
7049 MustExitMaxBECount =
7050 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken);
7052 } else if (MayExitMaxBECount != getCouldNotCompute()) {
7053 if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute())
7054 MayExitMaxBECount = EL.MaxNotTaken;
7055 else {
7056 MayExitMaxBECount =
7057 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken);
7061 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
7062 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
7063 // The loop backedge will be taken the maximum or zero times if there's
7064 // a single exit that must be taken the maximum or zero times.
7065 bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1);
7066 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount,
7067 MaxBECount, MaxOrZero);
7070 ScalarEvolution::ExitLimit
7071 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
7072 bool AllowPredicates) {
7073 assert(L->contains(ExitingBlock) && "Exit count for non-loop block?");
7074 // If our exiting block does not dominate the latch, then its connection with
7075 // loop's exit limit may be far from trivial.
7076 const BasicBlock *Latch = L->getLoopLatch();
7077 if (!Latch || !DT.dominates(ExitingBlock, Latch))
7078 return getCouldNotCompute();
7080 bool IsOnlyExit = (L->getExitingBlock() != nullptr);
7081 TerminatorInst *Term = ExitingBlock->getTerminator();
7082 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
7083 assert(BI->isConditional() && "If unconditional, it can't be in loop!");
7084 bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
7085 assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) &&
7086 "It should have one successor in loop and one exit block!");
7087 // Proceed to the next level to examine the exit condition expression.
7088 return computeExitLimitFromCond(
7089 L, BI->getCondition(), ExitIfTrue,
7090 /*ControlsExit=*/IsOnlyExit, AllowPredicates);
7093 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) {
7094 // For switch, make sure that there is a single exit from the loop.
7095 BasicBlock *Exit = nullptr;
7096 for (auto *SBB : successors(ExitingBlock))
7097 if (!L->contains(SBB)) {
7098 if (Exit) // Multiple exit successors.
7099 return getCouldNotCompute();
7100 Exit = SBB;
7102 assert(Exit && "Exiting block must have at least one exit");
7103 return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
7104 /*ControlsExit=*/IsOnlyExit);
7107 return getCouldNotCompute();
7110 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond(
7111 const Loop *L, Value *ExitCond, bool ExitIfTrue,
7112 bool ControlsExit, bool AllowPredicates) {
7113 ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates);
7114 return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue,
7115 ControlsExit, AllowPredicates);
7118 Optional<ScalarEvolution::ExitLimit>
7119 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond,
7120 bool ExitIfTrue, bool ControlsExit,
7121 bool AllowPredicates) {
7122 (void)this->L;
7123 (void)this->ExitIfTrue;
7124 (void)this->AllowPredicates;
7126 assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7127 this->AllowPredicates == AllowPredicates &&
7128 "Variance in assumed invariant key components!");
7129 auto Itr = TripCountMap.find({ExitCond, ControlsExit});
7130 if (Itr == TripCountMap.end())
7131 return None;
7132 return Itr->second;
7135 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond,
7136 bool ExitIfTrue,
7137 bool ControlsExit,
7138 bool AllowPredicates,
7139 const ExitLimit &EL) {
7140 assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7141 this->AllowPredicates == AllowPredicates &&
7142 "Variance in assumed invariant key components!");
7144 auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL});
7145 assert(InsertResult.second && "Expected successful insertion!");
7146 (void)InsertResult;
7147 (void)ExitIfTrue;
7150 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached(
7151 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7152 bool ControlsExit, bool AllowPredicates) {
7154 if (auto MaybeEL =
7155 Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
7156 return *MaybeEL;
7158 ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue,
7159 ControlsExit, AllowPredicates);
7160 Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL);
7161 return EL;
7164 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl(
7165 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7166 bool ControlsExit, bool AllowPredicates) {
7167 // Check if the controlling expression for this loop is an And or Or.
7168 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
7169 if (BO->getOpcode() == Instruction::And) {
7170 // Recurse on the operands of the and.
7171 bool EitherMayExit = !ExitIfTrue;
7172 ExitLimit EL0 = computeExitLimitFromCondCached(
7173 Cache, L, BO->getOperand(0), ExitIfTrue,
7174 ControlsExit && !EitherMayExit, AllowPredicates);
7175 ExitLimit EL1 = computeExitLimitFromCondCached(
7176 Cache, L, BO->getOperand(1), ExitIfTrue,
7177 ControlsExit && !EitherMayExit, AllowPredicates);
7178 const SCEV *BECount = getCouldNotCompute();
7179 const SCEV *MaxBECount = getCouldNotCompute();
7180 if (EitherMayExit) {
7181 // Both conditions must be true for the loop to continue executing.
7182 // Choose the less conservative count.
7183 if (EL0.ExactNotTaken == getCouldNotCompute() ||
7184 EL1.ExactNotTaken == getCouldNotCompute())
7185 BECount = getCouldNotCompute();
7186 else
7187 BECount =
7188 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
7189 if (EL0.MaxNotTaken == getCouldNotCompute())
7190 MaxBECount = EL1.MaxNotTaken;
7191 else if (EL1.MaxNotTaken == getCouldNotCompute())
7192 MaxBECount = EL0.MaxNotTaken;
7193 else
7194 MaxBECount =
7195 getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
7196 } else {
7197 // Both conditions must be true at the same time for the loop to exit.
7198 // For now, be conservative.
7199 if (EL0.MaxNotTaken == EL1.MaxNotTaken)
7200 MaxBECount = EL0.MaxNotTaken;
7201 if (EL0.ExactNotTaken == EL1.ExactNotTaken)
7202 BECount = EL0.ExactNotTaken;
7205 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
7206 // to be more aggressive when computing BECount than when computing
7207 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and
7208 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
7209 // to not.
7210 if (isa<SCEVCouldNotCompute>(MaxBECount) &&
7211 !isa<SCEVCouldNotCompute>(BECount))
7212 MaxBECount = getConstant(getUnsignedRangeMax(BECount));
7214 return ExitLimit(BECount, MaxBECount, false,
7215 {&EL0.Predicates, &EL1.Predicates});
7217 if (BO->getOpcode() == Instruction::Or) {
7218 // Recurse on the operands of the or.
7219 bool EitherMayExit = ExitIfTrue;
7220 ExitLimit EL0 = computeExitLimitFromCondCached(
7221 Cache, L, BO->getOperand(0), ExitIfTrue,
7222 ControlsExit && !EitherMayExit, AllowPredicates);
7223 ExitLimit EL1 = computeExitLimitFromCondCached(
7224 Cache, L, BO->getOperand(1), ExitIfTrue,
7225 ControlsExit && !EitherMayExit, AllowPredicates);
7226 const SCEV *BECount = getCouldNotCompute();
7227 const SCEV *MaxBECount = getCouldNotCompute();
7228 if (EitherMayExit) {
7229 // Both conditions must be false for the loop to continue executing.
7230 // Choose the less conservative count.
7231 if (EL0.ExactNotTaken == getCouldNotCompute() ||
7232 EL1.ExactNotTaken == getCouldNotCompute())
7233 BECount = getCouldNotCompute();
7234 else
7235 BECount =
7236 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
7237 if (EL0.MaxNotTaken == getCouldNotCompute())
7238 MaxBECount = EL1.MaxNotTaken;
7239 else if (EL1.MaxNotTaken == getCouldNotCompute())
7240 MaxBECount = EL0.MaxNotTaken;
7241 else
7242 MaxBECount =
7243 getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
7244 } else {
7245 // Both conditions must be false at the same time for the loop to exit.
7246 // For now, be conservative.
7247 if (EL0.MaxNotTaken == EL1.MaxNotTaken)
7248 MaxBECount = EL0.MaxNotTaken;
7249 if (EL0.ExactNotTaken == EL1.ExactNotTaken)
7250 BECount = EL0.ExactNotTaken;
7253 return ExitLimit(BECount, MaxBECount, false,
7254 {&EL0.Predicates, &EL1.Predicates});
7258 // With an icmp, it may be feasible to compute an exact backedge-taken count.
7259 // Proceed to the next level to examine the icmp.
7260 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
7261 ExitLimit EL =
7262 computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit);
7263 if (EL.hasFullInfo() || !AllowPredicates)
7264 return EL;
7266 // Try again, but use SCEV predicates this time.
7267 return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit,
7268 /*AllowPredicates=*/true);
7271 // Check for a constant condition. These are normally stripped out by
7272 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
7273 // preserve the CFG and is temporarily leaving constant conditions
7274 // in place.
7275 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
7276 if (ExitIfTrue == !CI->getZExtValue())
7277 // The backedge is always taken.
7278 return getCouldNotCompute();
7279 else
7280 // The backedge is never taken.
7281 return getZero(CI->getType());
7284 // If it's not an integer or pointer comparison then compute it the hard way.
7285 return computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
7288 ScalarEvolution::ExitLimit
7289 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
7290 ICmpInst *ExitCond,
7291 bool ExitIfTrue,
7292 bool ControlsExit,
7293 bool AllowPredicates) {
7294 // If the condition was exit on true, convert the condition to exit on false
7295 ICmpInst::Predicate Pred;
7296 if (!ExitIfTrue)
7297 Pred = ExitCond->getPredicate();
7298 else
7299 Pred = ExitCond->getInversePredicate();
7300 const ICmpInst::Predicate OriginalPred = Pred;
7302 // Handle common loops like: for (X = "string"; *X; ++X)
7303 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
7304 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
7305 ExitLimit ItCnt =
7306 computeLoadConstantCompareExitLimit(LI, RHS, L, Pred);
7307 if (ItCnt.hasAnyInfo())
7308 return ItCnt;
7311 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
7312 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
7314 // Try to evaluate any dependencies out of the loop.
7315 LHS = getSCEVAtScope(LHS, L);
7316 RHS = getSCEVAtScope(RHS, L);
7318 // At this point, we would like to compute how many iterations of the
7319 // loop the predicate will return true for these inputs.
7320 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
7321 // If there is a loop-invariant, force it into the RHS.
7322 std::swap(LHS, RHS);
7323 Pred = ICmpInst::getSwappedPredicate(Pred);
7326 // Simplify the operands before analyzing them.
7327 (void)SimplifyICmpOperands(Pred, LHS, RHS);
7329 // If we have a comparison of a chrec against a constant, try to use value
7330 // ranges to answer this query.
7331 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
7332 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
7333 if (AddRec->getLoop() == L) {
7334 // Form the constant range.
7335 ConstantRange CompRange =
7336 ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt());
7338 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
7339 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
7342 switch (Pred) {
7343 case ICmpInst::ICMP_NE: { // while (X != Y)
7344 // Convert to: while (X-Y != 0)
7345 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
7346 AllowPredicates);
7347 if (EL.hasAnyInfo()) return EL;
7348 break;
7350 case ICmpInst::ICMP_EQ: { // while (X == Y)
7351 // Convert to: while (X-Y == 0)
7352 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
7353 if (EL.hasAnyInfo()) return EL;
7354 break;
7356 case ICmpInst::ICMP_SLT:
7357 case ICmpInst::ICMP_ULT: { // while (X < Y)
7358 bool IsSigned = Pred == ICmpInst::ICMP_SLT;
7359 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
7360 AllowPredicates);
7361 if (EL.hasAnyInfo()) return EL;
7362 break;
7364 case ICmpInst::ICMP_SGT:
7365 case ICmpInst::ICMP_UGT: { // while (X > Y)
7366 bool IsSigned = Pred == ICmpInst::ICMP_SGT;
7367 ExitLimit EL =
7368 howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
7369 AllowPredicates);
7370 if (EL.hasAnyInfo()) return EL;
7371 break;
7373 default:
7374 break;
7377 auto *ExhaustiveCount =
7378 computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
7380 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
7381 return ExhaustiveCount;
7383 return computeShiftCompareExitLimit(ExitCond->getOperand(0),
7384 ExitCond->getOperand(1), L, OriginalPred);
7387 ScalarEvolution::ExitLimit
7388 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
7389 SwitchInst *Switch,
7390 BasicBlock *ExitingBlock,
7391 bool ControlsExit) {
7392 assert(!L->contains(ExitingBlock) && "Not an exiting block!");
7394 // Give up if the exit is the default dest of a switch.
7395 if (Switch->getDefaultDest() == ExitingBlock)
7396 return getCouldNotCompute();
7398 assert(L->contains(Switch->getDefaultDest()) &&
7399 "Default case must not exit the loop!");
7400 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
7401 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
7403 // while (X != Y) --> while (X-Y != 0)
7404 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
7405 if (EL.hasAnyInfo())
7406 return EL;
7408 return getCouldNotCompute();
7411 static ConstantInt *
7412 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
7413 ScalarEvolution &SE) {
7414 const SCEV *InVal = SE.getConstant(C);
7415 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
7416 assert(isa<SCEVConstant>(Val) &&
7417 "Evaluation of SCEV at constant didn't fold correctly?");
7418 return cast<SCEVConstant>(Val)->getValue();
7421 /// Given an exit condition of 'icmp op load X, cst', try to see if we can
7422 /// compute the backedge execution count.
7423 ScalarEvolution::ExitLimit
7424 ScalarEvolution::computeLoadConstantCompareExitLimit(
7425 LoadInst *LI,
7426 Constant *RHS,
7427 const Loop *L,
7428 ICmpInst::Predicate predicate) {
7429 if (LI->isVolatile()) return getCouldNotCompute();
7431 // Check to see if the loaded pointer is a getelementptr of a global.
7432 // TODO: Use SCEV instead of manually grubbing with GEPs.
7433 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
7434 if (!GEP) return getCouldNotCompute();
7436 // Make sure that it is really a constant global we are gepping, with an
7437 // initializer, and make sure the first IDX is really 0.
7438 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
7439 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
7440 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
7441 !cast<Constant>(GEP->getOperand(1))->isNullValue())
7442 return getCouldNotCompute();
7444 // Okay, we allow one non-constant index into the GEP instruction.
7445 Value *VarIdx = nullptr;
7446 std::vector<Constant*> Indexes;
7447 unsigned VarIdxNum = 0;
7448 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
7449 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
7450 Indexes.push_back(CI);
7451 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
7452 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
7453 VarIdx = GEP->getOperand(i);
7454 VarIdxNum = i-2;
7455 Indexes.push_back(nullptr);
7458 // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
7459 if (!VarIdx)
7460 return getCouldNotCompute();
7462 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
7463 // Check to see if X is a loop variant variable value now.
7464 const SCEV *Idx = getSCEV(VarIdx);
7465 Idx = getSCEVAtScope(Idx, L);
7467 // We can only recognize very limited forms of loop index expressions, in
7468 // particular, only affine AddRec's like {C1,+,C2}.
7469 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
7470 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
7471 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
7472 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
7473 return getCouldNotCompute();
7475 unsigned MaxSteps = MaxBruteForceIterations;
7476 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
7477 ConstantInt *ItCst = ConstantInt::get(
7478 cast<IntegerType>(IdxExpr->getType()), IterationNum);
7479 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
7481 // Form the GEP offset.
7482 Indexes[VarIdxNum] = Val;
7484 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
7485 Indexes);
7486 if (!Result) break; // Cannot compute!
7488 // Evaluate the condition for this iteration.
7489 Result = ConstantExpr::getICmp(predicate, Result, RHS);
7490 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
7491 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
7492 ++NumArrayLenItCounts;
7493 return getConstant(ItCst); // Found terminating iteration!
7496 return getCouldNotCompute();
7499 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
7500 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
7501 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
7502 if (!RHS)
7503 return getCouldNotCompute();
7505 const BasicBlock *Latch = L->getLoopLatch();
7506 if (!Latch)
7507 return getCouldNotCompute();
7509 const BasicBlock *Predecessor = L->getLoopPredecessor();
7510 if (!Predecessor)
7511 return getCouldNotCompute();
7513 // Return true if V is of the form "LHS `shift_op` <positive constant>".
7514 // Return LHS in OutLHS and shift_opt in OutOpCode.
7515 auto MatchPositiveShift =
7516 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
7518 using namespace PatternMatch;
7520 ConstantInt *ShiftAmt;
7521 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7522 OutOpCode = Instruction::LShr;
7523 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7524 OutOpCode = Instruction::AShr;
7525 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7526 OutOpCode = Instruction::Shl;
7527 else
7528 return false;
7530 return ShiftAmt->getValue().isStrictlyPositive();
7533 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
7535 // loop:
7536 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
7537 // %iv.shifted = lshr i32 %iv, <positive constant>
7539 // Return true on a successful match. Return the corresponding PHI node (%iv
7540 // above) in PNOut and the opcode of the shift operation in OpCodeOut.
7541 auto MatchShiftRecurrence =
7542 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
7543 Optional<Instruction::BinaryOps> PostShiftOpCode;
7546 Instruction::BinaryOps OpC;
7547 Value *V;
7549 // If we encounter a shift instruction, "peel off" the shift operation,
7550 // and remember that we did so. Later when we inspect %iv's backedge
7551 // value, we will make sure that the backedge value uses the same
7552 // operation.
7554 // Note: the peeled shift operation does not have to be the same
7555 // instruction as the one feeding into the PHI's backedge value. We only
7556 // really care about it being the same *kind* of shift instruction --
7557 // that's all that is required for our later inferences to hold.
7558 if (MatchPositiveShift(LHS, V, OpC)) {
7559 PostShiftOpCode = OpC;
7560 LHS = V;
7564 PNOut = dyn_cast<PHINode>(LHS);
7565 if (!PNOut || PNOut->getParent() != L->getHeader())
7566 return false;
7568 Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
7569 Value *OpLHS;
7571 return
7572 // The backedge value for the PHI node must be a shift by a positive
7573 // amount
7574 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
7576 // of the PHI node itself
7577 OpLHS == PNOut &&
7579 // and the kind of shift should be match the kind of shift we peeled
7580 // off, if any.
7581 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
7584 PHINode *PN;
7585 Instruction::BinaryOps OpCode;
7586 if (!MatchShiftRecurrence(LHS, PN, OpCode))
7587 return getCouldNotCompute();
7589 const DataLayout &DL = getDataLayout();
7591 // The key rationale for this optimization is that for some kinds of shift
7592 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
7593 // within a finite number of iterations. If the condition guarding the
7594 // backedge (in the sense that the backedge is taken if the condition is true)
7595 // is false for the value the shift recurrence stabilizes to, then we know
7596 // that the backedge is taken only a finite number of times.
7598 ConstantInt *StableValue = nullptr;
7599 switch (OpCode) {
7600 default:
7601 llvm_unreachable("Impossible case!");
7603 case Instruction::AShr: {
7604 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
7605 // bitwidth(K) iterations.
7606 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
7607 KnownBits Known = computeKnownBits(FirstValue, DL, 0, nullptr,
7608 Predecessor->getTerminator(), &DT);
7609 auto *Ty = cast<IntegerType>(RHS->getType());
7610 if (Known.isNonNegative())
7611 StableValue = ConstantInt::get(Ty, 0);
7612 else if (Known.isNegative())
7613 StableValue = ConstantInt::get(Ty, -1, true);
7614 else
7615 return getCouldNotCompute();
7617 break;
7619 case Instruction::LShr:
7620 case Instruction::Shl:
7621 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
7622 // stabilize to 0 in at most bitwidth(K) iterations.
7623 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
7624 break;
7627 auto *Result =
7628 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
7629 assert(Result->getType()->isIntegerTy(1) &&
7630 "Otherwise cannot be an operand to a branch instruction");
7632 if (Result->isZeroValue()) {
7633 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
7634 const SCEV *UpperBound =
7635 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
7636 return ExitLimit(getCouldNotCompute(), UpperBound, false);
7639 return getCouldNotCompute();
7642 /// Return true if we can constant fold an instruction of the specified type,
7643 /// assuming that all operands were constants.
7644 static bool CanConstantFold(const Instruction *I) {
7645 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
7646 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
7647 isa<LoadInst>(I))
7648 return true;
7650 if (const CallInst *CI = dyn_cast<CallInst>(I))
7651 if (const Function *F = CI->getCalledFunction())
7652 return canConstantFoldCallTo(CI, F);
7653 return false;
7656 /// Determine whether this instruction can constant evolve within this loop
7657 /// assuming its operands can all constant evolve.
7658 static bool canConstantEvolve(Instruction *I, const Loop *L) {
7659 // An instruction outside of the loop can't be derived from a loop PHI.
7660 if (!L->contains(I)) return false;
7662 if (isa<PHINode>(I)) {
7663 // We don't currently keep track of the control flow needed to evaluate
7664 // PHIs, so we cannot handle PHIs inside of loops.
7665 return L->getHeader() == I->getParent();
7668 // If we won't be able to constant fold this expression even if the operands
7669 // are constants, bail early.
7670 return CanConstantFold(I);
7673 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
7674 /// recursing through each instruction operand until reaching a loop header phi.
7675 static PHINode *
7676 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
7677 DenseMap<Instruction *, PHINode *> &PHIMap,
7678 unsigned Depth) {
7679 if (Depth > MaxConstantEvolvingDepth)
7680 return nullptr;
7682 // Otherwise, we can evaluate this instruction if all of its operands are
7683 // constant or derived from a PHI node themselves.
7684 PHINode *PHI = nullptr;
7685 for (Value *Op : UseInst->operands()) {
7686 if (isa<Constant>(Op)) continue;
7688 Instruction *OpInst = dyn_cast<Instruction>(Op);
7689 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
7691 PHINode *P = dyn_cast<PHINode>(OpInst);
7692 if (!P)
7693 // If this operand is already visited, reuse the prior result.
7694 // We may have P != PHI if this is the deepest point at which the
7695 // inconsistent paths meet.
7696 P = PHIMap.lookup(OpInst);
7697 if (!P) {
7698 // Recurse and memoize the results, whether a phi is found or not.
7699 // This recursive call invalidates pointers into PHIMap.
7700 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1);
7701 PHIMap[OpInst] = P;
7703 if (!P)
7704 return nullptr; // Not evolving from PHI
7705 if (PHI && PHI != P)
7706 return nullptr; // Evolving from multiple different PHIs.
7707 PHI = P;
7709 // This is a expression evolving from a constant PHI!
7710 return PHI;
7713 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
7714 /// in the loop that V is derived from. We allow arbitrary operations along the
7715 /// way, but the operands of an operation must either be constants or a value
7716 /// derived from a constant PHI. If this expression does not fit with these
7717 /// constraints, return null.
7718 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
7719 Instruction *I = dyn_cast<Instruction>(V);
7720 if (!I || !canConstantEvolve(I, L)) return nullptr;
7722 if (PHINode *PN = dyn_cast<PHINode>(I))
7723 return PN;
7725 // Record non-constant instructions contained by the loop.
7726 DenseMap<Instruction *, PHINode *> PHIMap;
7727 return getConstantEvolvingPHIOperands(I, L, PHIMap, 0);
7730 /// EvaluateExpression - Given an expression that passes the
7731 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
7732 /// in the loop has the value PHIVal. If we can't fold this expression for some
7733 /// reason, return null.
7734 static Constant *EvaluateExpression(Value *V, const Loop *L,
7735 DenseMap<Instruction *, Constant *> &Vals,
7736 const DataLayout &DL,
7737 const TargetLibraryInfo *TLI) {
7738 // Convenient constant check, but redundant for recursive calls.
7739 if (Constant *C = dyn_cast<Constant>(V)) return C;
7740 Instruction *I = dyn_cast<Instruction>(V);
7741 if (!I) return nullptr;
7743 if (Constant *C = Vals.lookup(I)) return C;
7745 // An instruction inside the loop depends on a value outside the loop that we
7746 // weren't given a mapping for, or a value such as a call inside the loop.
7747 if (!canConstantEvolve(I, L)) return nullptr;
7749 // An unmapped PHI can be due to a branch or another loop inside this loop,
7750 // or due to this not being the initial iteration through a loop where we
7751 // couldn't compute the evolution of this particular PHI last time.
7752 if (isa<PHINode>(I)) return nullptr;
7754 std::vector<Constant*> Operands(I->getNumOperands());
7756 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
7757 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
7758 if (!Operand) {
7759 Operands[i] = dyn_cast<Constant>(I->getOperand(i));
7760 if (!Operands[i]) return nullptr;
7761 continue;
7763 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
7764 Vals[Operand] = C;
7765 if (!C) return nullptr;
7766 Operands[i] = C;
7769 if (CmpInst *CI = dyn_cast<CmpInst>(I))
7770 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
7771 Operands[1], DL, TLI);
7772 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
7773 if (!LI->isVolatile())
7774 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
7776 return ConstantFoldInstOperands(I, Operands, DL, TLI);
7780 // If every incoming value to PN except the one for BB is a specific Constant,
7781 // return that, else return nullptr.
7782 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
7783 Constant *IncomingVal = nullptr;
7785 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
7786 if (PN->getIncomingBlock(i) == BB)
7787 continue;
7789 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
7790 if (!CurrentVal)
7791 return nullptr;
7793 if (IncomingVal != CurrentVal) {
7794 if (IncomingVal)
7795 return nullptr;
7796 IncomingVal = CurrentVal;
7800 return IncomingVal;
7803 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
7804 /// in the header of its containing loop, we know the loop executes a
7805 /// constant number of times, and the PHI node is just a recurrence
7806 /// involving constants, fold it.
7807 Constant *
7808 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
7809 const APInt &BEs,
7810 const Loop *L) {
7811 auto I = ConstantEvolutionLoopExitValue.find(PN);
7812 if (I != ConstantEvolutionLoopExitValue.end())
7813 return I->second;
7815 if (BEs.ugt(MaxBruteForceIterations))
7816 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it.
7818 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
7820 DenseMap<Instruction *, Constant *> CurrentIterVals;
7821 BasicBlock *Header = L->getHeader();
7822 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
7824 BasicBlock *Latch = L->getLoopLatch();
7825 if (!Latch)
7826 return nullptr;
7828 for (PHINode &PHI : Header->phis()) {
7829 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
7830 CurrentIterVals[&PHI] = StartCST;
7832 if (!CurrentIterVals.count(PN))
7833 return RetVal = nullptr;
7835 Value *BEValue = PN->getIncomingValueForBlock(Latch);
7837 // Execute the loop symbolically to determine the exit value.
7838 assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) &&
7839 "BEs is <= MaxBruteForceIterations which is an 'unsigned'!");
7841 unsigned NumIterations = BEs.getZExtValue(); // must be in range
7842 unsigned IterationNum = 0;
7843 const DataLayout &DL = getDataLayout();
7844 for (; ; ++IterationNum) {
7845 if (IterationNum == NumIterations)
7846 return RetVal = CurrentIterVals[PN]; // Got exit value!
7848 // Compute the value of the PHIs for the next iteration.
7849 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
7850 DenseMap<Instruction *, Constant *> NextIterVals;
7851 Constant *NextPHI =
7852 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
7853 if (!NextPHI)
7854 return nullptr; // Couldn't evaluate!
7855 NextIterVals[PN] = NextPHI;
7857 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
7859 // Also evaluate the other PHI nodes. However, we don't get to stop if we
7860 // cease to be able to evaluate one of them or if they stop evolving,
7861 // because that doesn't necessarily prevent us from computing PN.
7862 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
7863 for (const auto &I : CurrentIterVals) {
7864 PHINode *PHI = dyn_cast<PHINode>(I.first);
7865 if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
7866 PHIsToCompute.emplace_back(PHI, I.second);
7868 // We use two distinct loops because EvaluateExpression may invalidate any
7869 // iterators into CurrentIterVals.
7870 for (const auto &I : PHIsToCompute) {
7871 PHINode *PHI = I.first;
7872 Constant *&NextPHI = NextIterVals[PHI];
7873 if (!NextPHI) { // Not already computed.
7874 Value *BEValue = PHI->getIncomingValueForBlock(Latch);
7875 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
7877 if (NextPHI != I.second)
7878 StoppedEvolving = false;
7881 // If all entries in CurrentIterVals == NextIterVals then we can stop
7882 // iterating, the loop can't continue to change.
7883 if (StoppedEvolving)
7884 return RetVal = CurrentIterVals[PN];
7886 CurrentIterVals.swap(NextIterVals);
7890 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
7891 Value *Cond,
7892 bool ExitWhen) {
7893 PHINode *PN = getConstantEvolvingPHI(Cond, L);
7894 if (!PN) return getCouldNotCompute();
7896 // If the loop is canonicalized, the PHI will have exactly two entries.
7897 // That's the only form we support here.
7898 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
7900 DenseMap<Instruction *, Constant *> CurrentIterVals;
7901 BasicBlock *Header = L->getHeader();
7902 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
7904 BasicBlock *Latch = L->getLoopLatch();
7905 assert(Latch && "Should follow from NumIncomingValues == 2!");
7907 for (PHINode &PHI : Header->phis()) {
7908 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
7909 CurrentIterVals[&PHI] = StartCST;
7911 if (!CurrentIterVals.count(PN))
7912 return getCouldNotCompute();
7914 // Okay, we find a PHI node that defines the trip count of this loop. Execute
7915 // the loop symbolically to determine when the condition gets a value of
7916 // "ExitWhen".
7917 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
7918 const DataLayout &DL = getDataLayout();
7919 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
7920 auto *CondVal = dyn_cast_or_null<ConstantInt>(
7921 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
7923 // Couldn't symbolically evaluate.
7924 if (!CondVal) return getCouldNotCompute();
7926 if (CondVal->getValue() == uint64_t(ExitWhen)) {
7927 ++NumBruteForceTripCountsComputed;
7928 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
7931 // Update all the PHI nodes for the next iteration.
7932 DenseMap<Instruction *, Constant *> NextIterVals;
7934 // Create a list of which PHIs we need to compute. We want to do this before
7935 // calling EvaluateExpression on them because that may invalidate iterators
7936 // into CurrentIterVals.
7937 SmallVector<PHINode *, 8> PHIsToCompute;
7938 for (const auto &I : CurrentIterVals) {
7939 PHINode *PHI = dyn_cast<PHINode>(I.first);
7940 if (!PHI || PHI->getParent() != Header) continue;
7941 PHIsToCompute.push_back(PHI);
7943 for (PHINode *PHI : PHIsToCompute) {
7944 Constant *&NextPHI = NextIterVals[PHI];
7945 if (NextPHI) continue; // Already computed!
7947 Value *BEValue = PHI->getIncomingValueForBlock(Latch);
7948 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
7950 CurrentIterVals.swap(NextIterVals);
7953 // Too many iterations were needed to evaluate.
7954 return getCouldNotCompute();
7957 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
7958 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
7959 ValuesAtScopes[V];
7960 // Check to see if we've folded this expression at this loop before.
7961 for (auto &LS : Values)
7962 if (LS.first == L)
7963 return LS.second ? LS.second : V;
7965 Values.emplace_back(L, nullptr);
7967 // Otherwise compute it.
7968 const SCEV *C = computeSCEVAtScope(V, L);
7969 for (auto &LS : reverse(ValuesAtScopes[V]))
7970 if (LS.first == L) {
7971 LS.second = C;
7972 break;
7974 return C;
7977 /// This builds up a Constant using the ConstantExpr interface. That way, we
7978 /// will return Constants for objects which aren't represented by a
7979 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
7980 /// Returns NULL if the SCEV isn't representable as a Constant.
7981 static Constant *BuildConstantFromSCEV(const SCEV *V) {
7982 switch (static_cast<SCEVTypes>(V->getSCEVType())) {
7983 case scCouldNotCompute:
7984 case scAddRecExpr:
7985 break;
7986 case scConstant:
7987 return cast<SCEVConstant>(V)->getValue();
7988 case scUnknown:
7989 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
7990 case scSignExtend: {
7991 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
7992 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
7993 return ConstantExpr::getSExt(CastOp, SS->getType());
7994 break;
7996 case scZeroExtend: {
7997 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
7998 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
7999 return ConstantExpr::getZExt(CastOp, SZ->getType());
8000 break;
8002 case scTruncate: {
8003 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
8004 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
8005 return ConstantExpr::getTrunc(CastOp, ST->getType());
8006 break;
8008 case scAddExpr: {
8009 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
8010 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
8011 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
8012 unsigned AS = PTy->getAddressSpace();
8013 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8014 C = ConstantExpr::getBitCast(C, DestPtrTy);
8016 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
8017 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
8018 if (!C2) return nullptr;
8020 // First pointer!
8021 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
8022 unsigned AS = C2->getType()->getPointerAddressSpace();
8023 std::swap(C, C2);
8024 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8025 // The offsets have been converted to bytes. We can add bytes to an
8026 // i8* by GEP with the byte count in the first index.
8027 C = ConstantExpr::getBitCast(C, DestPtrTy);
8030 // Don't bother trying to sum two pointers. We probably can't
8031 // statically compute a load that results from it anyway.
8032 if (C2->getType()->isPointerTy())
8033 return nullptr;
8035 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
8036 if (PTy->getElementType()->isStructTy())
8037 C2 = ConstantExpr::getIntegerCast(
8038 C2, Type::getInt32Ty(C->getContext()), true);
8039 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
8040 } else
8041 C = ConstantExpr::getAdd(C, C2);
8043 return C;
8045 break;
8047 case scMulExpr: {
8048 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
8049 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
8050 // Don't bother with pointers at all.
8051 if (C->getType()->isPointerTy()) return nullptr;
8052 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
8053 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
8054 if (!C2 || C2->getType()->isPointerTy()) return nullptr;
8055 C = ConstantExpr::getMul(C, C2);
8057 return C;
8059 break;
8061 case scUDivExpr: {
8062 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
8063 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
8064 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
8065 if (LHS->getType() == RHS->getType())
8066 return ConstantExpr::getUDiv(LHS, RHS);
8067 break;
8069 case scSMaxExpr:
8070 case scUMaxExpr:
8071 break; // TODO: smax, umax.
8073 return nullptr;
8076 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
8077 if (isa<SCEVConstant>(V)) return V;
8079 // If this instruction is evolved from a constant-evolving PHI, compute the
8080 // exit value from the loop without using SCEVs.
8081 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
8082 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
8083 const Loop *LI = this->LI[I->getParent()];
8084 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
8085 if (PHINode *PN = dyn_cast<PHINode>(I))
8086 if (PN->getParent() == LI->getHeader()) {
8087 // Okay, there is no closed form solution for the PHI node. Check
8088 // to see if the loop that contains it has a known backedge-taken
8089 // count. If so, we may be able to force computation of the exit
8090 // value.
8091 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
8092 if (const SCEVConstant *BTCC =
8093 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
8095 // This trivial case can show up in some degenerate cases where
8096 // the incoming IR has not yet been fully simplified.
8097 if (BTCC->getValue()->isZero()) {
8098 Value *InitValue = nullptr;
8099 bool MultipleInitValues = false;
8100 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
8101 if (!LI->contains(PN->getIncomingBlock(i))) {
8102 if (!InitValue)
8103 InitValue = PN->getIncomingValue(i);
8104 else if (InitValue != PN->getIncomingValue(i)) {
8105 MultipleInitValues = true;
8106 break;
8109 if (!MultipleInitValues && InitValue)
8110 return getSCEV(InitValue);
8113 // Okay, we know how many times the containing loop executes. If
8114 // this is a constant evolving PHI node, get the final value at
8115 // the specified iteration number.
8116 Constant *RV =
8117 getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI);
8118 if (RV) return getSCEV(RV);
8122 // Okay, this is an expression that we cannot symbolically evaluate
8123 // into a SCEV. Check to see if it's possible to symbolically evaluate
8124 // the arguments into constants, and if so, try to constant propagate the
8125 // result. This is particularly useful for computing loop exit values.
8126 if (CanConstantFold(I)) {
8127 SmallVector<Constant *, 4> Operands;
8128 bool MadeImprovement = false;
8129 for (Value *Op : I->operands()) {
8130 if (Constant *C = dyn_cast<Constant>(Op)) {
8131 Operands.push_back(C);
8132 continue;
8135 // If any of the operands is non-constant and if they are
8136 // non-integer and non-pointer, don't even try to analyze them
8137 // with scev techniques.
8138 if (!isSCEVable(Op->getType()))
8139 return V;
8141 const SCEV *OrigV = getSCEV(Op);
8142 const SCEV *OpV = getSCEVAtScope(OrigV, L);
8143 MadeImprovement |= OrigV != OpV;
8145 Constant *C = BuildConstantFromSCEV(OpV);
8146 if (!C) return V;
8147 if (C->getType() != Op->getType())
8148 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
8149 Op->getType(),
8150 false),
8151 C, Op->getType());
8152 Operands.push_back(C);
8155 // Check to see if getSCEVAtScope actually made an improvement.
8156 if (MadeImprovement) {
8157 Constant *C = nullptr;
8158 const DataLayout &DL = getDataLayout();
8159 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
8160 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
8161 Operands[1], DL, &TLI);
8162 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
8163 if (!LI->isVolatile())
8164 C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
8165 } else
8166 C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
8167 if (!C) return V;
8168 return getSCEV(C);
8173 // This is some other type of SCEVUnknown, just return it.
8174 return V;
8177 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
8178 // Avoid performing the look-up in the common case where the specified
8179 // expression has no loop-variant portions.
8180 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
8181 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8182 if (OpAtScope != Comm->getOperand(i)) {
8183 // Okay, at least one of these operands is loop variant but might be
8184 // foldable. Build a new instance of the folded commutative expression.
8185 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
8186 Comm->op_begin()+i);
8187 NewOps.push_back(OpAtScope);
8189 for (++i; i != e; ++i) {
8190 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8191 NewOps.push_back(OpAtScope);
8193 if (isa<SCEVAddExpr>(Comm))
8194 return getAddExpr(NewOps);
8195 if (isa<SCEVMulExpr>(Comm))
8196 return getMulExpr(NewOps);
8197 if (isa<SCEVSMaxExpr>(Comm))
8198 return getSMaxExpr(NewOps);
8199 if (isa<SCEVUMaxExpr>(Comm))
8200 return getUMaxExpr(NewOps);
8201 llvm_unreachable("Unknown commutative SCEV type!");
8204 // If we got here, all operands are loop invariant.
8205 return Comm;
8208 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
8209 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
8210 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
8211 if (LHS == Div->getLHS() && RHS == Div->getRHS())
8212 return Div; // must be loop invariant
8213 return getUDivExpr(LHS, RHS);
8216 // If this is a loop recurrence for a loop that does not contain L, then we
8217 // are dealing with the final value computed by the loop.
8218 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
8219 // First, attempt to evaluate each operand.
8220 // Avoid performing the look-up in the common case where the specified
8221 // expression has no loop-variant portions.
8222 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
8223 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
8224 if (OpAtScope == AddRec->getOperand(i))
8225 continue;
8227 // Okay, at least one of these operands is loop variant but might be
8228 // foldable. Build a new instance of the folded commutative expression.
8229 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
8230 AddRec->op_begin()+i);
8231 NewOps.push_back(OpAtScope);
8232 for (++i; i != e; ++i)
8233 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
8235 const SCEV *FoldedRec =
8236 getAddRecExpr(NewOps, AddRec->getLoop(),
8237 AddRec->getNoWrapFlags(SCEV::FlagNW));
8238 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
8239 // The addrec may be folded to a nonrecurrence, for example, if the
8240 // induction variable is multiplied by zero after constant folding. Go
8241 // ahead and return the folded value.
8242 if (!AddRec)
8243 return FoldedRec;
8244 break;
8247 // If the scope is outside the addrec's loop, evaluate it by using the
8248 // loop exit value of the addrec.
8249 if (!AddRec->getLoop()->contains(L)) {
8250 // To evaluate this recurrence, we need to know how many times the AddRec
8251 // loop iterates. Compute this now.
8252 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
8253 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
8255 // Then, evaluate the AddRec.
8256 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
8259 return AddRec;
8262 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
8263 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8264 if (Op == Cast->getOperand())
8265 return Cast; // must be loop invariant
8266 return getZeroExtendExpr(Op, Cast->getType());
8269 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
8270 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8271 if (Op == Cast->getOperand())
8272 return Cast; // must be loop invariant
8273 return getSignExtendExpr(Op, Cast->getType());
8276 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
8277 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8278 if (Op == Cast->getOperand())
8279 return Cast; // must be loop invariant
8280 return getTruncateExpr(Op, Cast->getType());
8283 llvm_unreachable("Unknown SCEV type!");
8286 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
8287 return getSCEVAtScope(getSCEV(V), L);
8290 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const {
8291 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S))
8292 return stripInjectiveFunctions(ZExt->getOperand());
8293 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S))
8294 return stripInjectiveFunctions(SExt->getOperand());
8295 return S;
8298 /// Finds the minimum unsigned root of the following equation:
8300 /// A * X = B (mod N)
8302 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
8303 /// A and B isn't important.
8305 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
8306 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B,
8307 ScalarEvolution &SE) {
8308 uint32_t BW = A.getBitWidth();
8309 assert(BW == SE.getTypeSizeInBits(B->getType()));
8310 assert(A != 0 && "A must be non-zero.");
8312 // 1. D = gcd(A, N)
8314 // The gcd of A and N may have only one prime factor: 2. The number of
8315 // trailing zeros in A is its multiplicity
8316 uint32_t Mult2 = A.countTrailingZeros();
8317 // D = 2^Mult2
8319 // 2. Check if B is divisible by D.
8321 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
8322 // is not less than multiplicity of this prime factor for D.
8323 if (SE.GetMinTrailingZeros(B) < Mult2)
8324 return SE.getCouldNotCompute();
8326 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
8327 // modulo (N / D).
8329 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
8330 // (N / D) in general. The inverse itself always fits into BW bits, though,
8331 // so we immediately truncate it.
8332 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
8333 APInt Mod(BW + 1, 0);
8334 Mod.setBit(BW - Mult2); // Mod = N / D
8335 APInt I = AD.multiplicativeInverse(Mod).trunc(BW);
8337 // 4. Compute the minimum unsigned root of the equation:
8338 // I * (B / D) mod (N / D)
8339 // To simplify the computation, we factor out the divide by D:
8340 // (I * B mod N) / D
8341 const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2));
8342 return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D);
8345 /// For a given quadratic addrec, generate coefficients of the corresponding
8346 /// quadratic equation, multiplied by a common value to ensure that they are
8347 /// integers.
8348 /// The returned value is a tuple { A, B, C, M, BitWidth }, where
8349 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C
8350 /// were multiplied by, and BitWidth is the bit width of the original addrec
8351 /// coefficients.
8352 /// This function returns None if the addrec coefficients are not compile-
8353 /// time constants.
8354 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>>
8355 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) {
8356 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
8357 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
8358 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
8359 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
8360 LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: "
8361 << *AddRec << '\n');
8363 // We currently can only solve this if the coefficients are constants.
8364 if (!LC || !MC || !NC) {
8365 LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n");
8366 return None;
8369 APInt L = LC->getAPInt();
8370 APInt M = MC->getAPInt();
8371 APInt N = NC->getAPInt();
8372 assert(!N.isNullValue() && "This is not a quadratic addrec");
8374 unsigned BitWidth = LC->getAPInt().getBitWidth();
8375 unsigned NewWidth = BitWidth + 1;
8376 LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: "
8377 << BitWidth << '\n');
8378 // The sign-extension (as opposed to a zero-extension) here matches the
8379 // extension used in SolveQuadraticEquationWrap (with the same motivation).
8380 N = N.sext(NewWidth);
8381 M = M.sext(NewWidth);
8382 L = L.sext(NewWidth);
8384 // The increments are M, M+N, M+2N, ..., so the accumulated values are
8385 // L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is,
8386 // L+M, L+2M+N, L+3M+3N, ...
8387 // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N.
8389 // The equation Acc = 0 is then
8390 // L + nM + n(n-1)/2 N = 0, or 2L + 2M n + n(n-1) N = 0.
8391 // In a quadratic form it becomes:
8392 // N n^2 + (2M-N) n + 2L = 0.
8394 APInt A = N;
8395 APInt B = 2 * M - A;
8396 APInt C = 2 * L;
8397 APInt T = APInt(NewWidth, 2);
8398 LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B
8399 << "x + " << C << ", coeff bw: " << NewWidth
8400 << ", multiplied by " << T << '\n');
8401 return std::make_tuple(A, B, C, T, BitWidth);
8404 /// Helper function to compare optional APInts:
8405 /// (a) if X and Y both exist, return min(X, Y),
8406 /// (b) if neither X nor Y exist, return None,
8407 /// (c) if exactly one of X and Y exists, return that value.
8408 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) {
8409 if (X.hasValue() && Y.hasValue()) {
8410 unsigned W = std::max(X->getBitWidth(), Y->getBitWidth());
8411 APInt XW = X->sextOrSelf(W);
8412 APInt YW = Y->sextOrSelf(W);
8413 return XW.slt(YW) ? *X : *Y;
8415 if (!X.hasValue() && !Y.hasValue())
8416 return None;
8417 return X.hasValue() ? *X : *Y;
8420 /// Helper function to truncate an optional APInt to a given BitWidth.
8421 /// When solving addrec-related equations, it is preferable to return a value
8422 /// that has the same bit width as the original addrec's coefficients. If the
8423 /// solution fits in the original bit width, truncate it (except for i1).
8424 /// Returning a value of a different bit width may inhibit some optimizations.
8426 /// In general, a solution to a quadratic equation generated from an addrec
8427 /// may require BW+1 bits, where BW is the bit width of the addrec's
8428 /// coefficients. The reason is that the coefficients of the quadratic
8429 /// equation are BW+1 bits wide (to avoid truncation when converting from
8430 /// the addrec to the equation).
8431 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) {
8432 if (!X.hasValue())
8433 return None;
8434 unsigned W = X->getBitWidth();
8435 if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth))
8436 return X->trunc(BitWidth);
8437 return X;
8440 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n
8441 /// iterations. The values L, M, N are assumed to be signed, and they
8442 /// should all have the same bit widths.
8443 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW,
8444 /// where BW is the bit width of the addrec's coefficients.
8445 /// If the calculated value is a BW-bit integer (for BW > 1), it will be
8446 /// returned as such, otherwise the bit width of the returned value may
8447 /// be greater than BW.
8449 /// This function returns None if
8450 /// (a) the addrec coefficients are not constant, or
8451 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases
8452 /// like x^2 = 5, no integer solutions exist, in other cases an integer
8453 /// solution may exist, but SolveQuadraticEquationWrap may fail to find it.
8454 static Optional<APInt>
8455 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
8456 APInt A, B, C, M;
8457 unsigned BitWidth;
8458 auto T = GetQuadraticEquation(AddRec);
8459 if (!T.hasValue())
8460 return None;
8462 std::tie(A, B, C, M, BitWidth) = *T;
8463 LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n");
8464 Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1);
8465 if (!X.hasValue())
8466 return None;
8468 ConstantInt *CX = ConstantInt::get(SE.getContext(), *X);
8469 ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE);
8470 if (!V->isZero())
8471 return None;
8473 return TruncIfPossible(X, BitWidth);
8476 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n
8477 /// iterations. The values M, N are assumed to be signed, and they
8478 /// should all have the same bit widths.
8479 /// Find the least n such that c(n) does not belong to the given range,
8480 /// while c(n-1) does.
8482 /// This function returns None if
8483 /// (a) the addrec coefficients are not constant, or
8484 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the
8485 /// bounds of the range.
8486 static Optional<APInt>
8487 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec,
8488 const ConstantRange &Range, ScalarEvolution &SE) {
8489 assert(AddRec->getOperand(0)->isZero() &&
8490 "Starting value of addrec should be 0");
8491 LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range "
8492 << Range << ", addrec " << *AddRec << '\n');
8493 // This case is handled in getNumIterationsInRange. Here we can assume that
8494 // we start in the range.
8495 assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) &&
8496 "Addrec's initial value should be in range");
8498 APInt A, B, C, M;
8499 unsigned BitWidth;
8500 auto T = GetQuadraticEquation(AddRec);
8501 if (!T.hasValue())
8502 return None;
8504 // Be careful about the return value: there can be two reasons for not
8505 // returning an actual number. First, if no solutions to the equations
8506 // were found, and second, if the solutions don't leave the given range.
8507 // The first case means that the actual solution is "unknown", the second
8508 // means that it's known, but not valid. If the solution is unknown, we
8509 // cannot make any conclusions.
8510 // Return a pair: the optional solution and a flag indicating if the
8511 // solution was found.
8512 auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> {
8513 // Solve for signed overflow and unsigned overflow, pick the lower
8514 // solution.
8515 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary "
8516 << Bound << " (before multiplying by " << M << ")\n");
8517 Bound *= M; // The quadratic equation multiplier.
8519 Optional<APInt> SO = None;
8520 if (BitWidth > 1) {
8521 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
8522 "signed overflow\n");
8523 SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth);
8525 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
8526 "unsigned overflow\n");
8527 Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound,
8528 BitWidth+1);
8530 auto LeavesRange = [&] (const APInt &X) {
8531 ConstantInt *C0 = ConstantInt::get(SE.getContext(), X);
8532 ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE);
8533 if (Range.contains(V0->getValue()))
8534 return false;
8535 // X should be at least 1, so X-1 is non-negative.
8536 ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1);
8537 ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE);
8538 if (Range.contains(V1->getValue()))
8539 return true;
8540 return false;
8543 // If SolveQuadraticEquationWrap returns None, it means that there can
8544 // be a solution, but the function failed to find it. We cannot treat it
8545 // as "no solution".
8546 if (!SO.hasValue() || !UO.hasValue())
8547 return { None, false };
8549 // Check the smaller value first to see if it leaves the range.
8550 // At this point, both SO and UO must have values.
8551 Optional<APInt> Min = MinOptional(SO, UO);
8552 if (LeavesRange(*Min))
8553 return { Min, true };
8554 Optional<APInt> Max = Min == SO ? UO : SO;
8555 if (LeavesRange(*Max))
8556 return { Max, true };
8558 // Solutions were found, but were eliminated, hence the "true".
8559 return { None, true };
8562 std::tie(A, B, C, M, BitWidth) = *T;
8563 // Lower bound is inclusive, subtract 1 to represent the exiting value.
8564 APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1;
8565 APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth());
8566 auto SL = SolveForBoundary(Lower);
8567 auto SU = SolveForBoundary(Upper);
8568 // If any of the solutions was unknown, no meaninigful conclusions can
8569 // be made.
8570 if (!SL.second || !SU.second)
8571 return None;
8573 // Claim: The correct solution is not some value between Min and Max.
8575 // Justification: Assuming that Min and Max are different values, one of
8576 // them is when the first signed overflow happens, the other is when the
8577 // first unsigned overflow happens. Crossing the range boundary is only
8578 // possible via an overflow (treating 0 as a special case of it, modeling
8579 // an overflow as crossing k*2^W for some k).
8581 // The interesting case here is when Min was eliminated as an invalid
8582 // solution, but Max was not. The argument is that if there was another
8583 // overflow between Min and Max, it would also have been eliminated if
8584 // it was considered.
8586 // For a given boundary, it is possible to have two overflows of the same
8587 // type (signed/unsigned) without having the other type in between: this
8588 // can happen when the vertex of the parabola is between the iterations
8589 // corresponding to the overflows. This is only possible when the two
8590 // overflows cross k*2^W for the same k. In such case, if the second one
8591 // left the range (and was the first one to do so), the first overflow
8592 // would have to enter the range, which would mean that either we had left
8593 // the range before or that we started outside of it. Both of these cases
8594 // are contradictions.
8596 // Claim: In the case where SolveForBoundary returns None, the correct
8597 // solution is not some value between the Max for this boundary and the
8598 // Min of the other boundary.
8600 // Justification: Assume that we had such Max_A and Min_B corresponding
8601 // to range boundaries A and B and such that Max_A < Min_B. If there was
8602 // a solution between Max_A and Min_B, it would have to be caused by an
8603 // overflow corresponding to either A or B. It cannot correspond to B,
8604 // since Min_B is the first occurrence of such an overflow. If it
8605 // corresponded to A, it would have to be either a signed or an unsigned
8606 // overflow that is larger than both eliminated overflows for A. But
8607 // between the eliminated overflows and this overflow, the values would
8608 // cover the entire value space, thus crossing the other boundary, which
8609 // is a contradiction.
8611 return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth);
8614 ScalarEvolution::ExitLimit
8615 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
8616 bool AllowPredicates) {
8618 // This is only used for loops with a "x != y" exit test. The exit condition
8619 // is now expressed as a single expression, V = x-y. So the exit test is
8620 // effectively V != 0. We know and take advantage of the fact that this
8621 // expression only being used in a comparison by zero context.
8623 SmallPtrSet<const SCEVPredicate *, 4> Predicates;
8624 // If the value is a constant
8625 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
8626 // If the value is already zero, the branch will execute zero times.
8627 if (C->getValue()->isZero()) return C;
8628 return getCouldNotCompute(); // Otherwise it will loop infinitely.
8631 const SCEVAddRecExpr *AddRec =
8632 dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V));
8634 if (!AddRec && AllowPredicates)
8635 // Try to make this an AddRec using runtime tests, in the first X
8636 // iterations of this loop, where X is the SCEV expression found by the
8637 // algorithm below.
8638 AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates);
8640 if (!AddRec || AddRec->getLoop() != L)
8641 return getCouldNotCompute();
8643 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
8644 // the quadratic equation to solve it.
8645 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
8646 // We can only use this value if the chrec ends up with an exact zero
8647 // value at this index. When solving for "X*X != 5", for example, we
8648 // should not accept a root of 2.
8649 if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) {
8650 const auto *R = cast<SCEVConstant>(getConstant(S.getValue()));
8651 return ExitLimit(R, R, false, Predicates);
8653 return getCouldNotCompute();
8656 // Otherwise we can only handle this if it is affine.
8657 if (!AddRec->isAffine())
8658 return getCouldNotCompute();
8660 // If this is an affine expression, the execution count of this branch is
8661 // the minimum unsigned root of the following equation:
8663 // Start + Step*N = 0 (mod 2^BW)
8665 // equivalent to:
8667 // Step*N = -Start (mod 2^BW)
8669 // where BW is the common bit width of Start and Step.
8671 // Get the initial value for the loop.
8672 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
8673 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
8675 // For now we handle only constant steps.
8677 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
8678 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
8679 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
8680 // We have not yet seen any such cases.
8681 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
8682 if (!StepC || StepC->getValue()->isZero())
8683 return getCouldNotCompute();
8685 // For positive steps (counting up until unsigned overflow):
8686 // N = -Start/Step (as unsigned)
8687 // For negative steps (counting down to zero):
8688 // N = Start/-Step
8689 // First compute the unsigned distance from zero in the direction of Step.
8690 bool CountDown = StepC->getAPInt().isNegative();
8691 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
8693 // Handle unitary steps, which cannot wraparound.
8694 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
8695 // N = Distance (as unsigned)
8696 if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) {
8697 APInt MaxBECount = getUnsignedRangeMax(Distance);
8699 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated,
8700 // we end up with a loop whose backedge-taken count is n - 1. Detect this
8701 // case, and see if we can improve the bound.
8703 // Explicitly handling this here is necessary because getUnsignedRange
8704 // isn't context-sensitive; it doesn't know that we only care about the
8705 // range inside the loop.
8706 const SCEV *Zero = getZero(Distance->getType());
8707 const SCEV *One = getOne(Distance->getType());
8708 const SCEV *DistancePlusOne = getAddExpr(Distance, One);
8709 if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) {
8710 // If Distance + 1 doesn't overflow, we can compute the maximum distance
8711 // as "unsigned_max(Distance + 1) - 1".
8712 ConstantRange CR = getUnsignedRange(DistancePlusOne);
8713 MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1);
8715 return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates);
8718 // If the condition controls loop exit (the loop exits only if the expression
8719 // is true) and the addition is no-wrap we can use unsigned divide to
8720 // compute the backedge count. In this case, the step may not divide the
8721 // distance, but we don't care because if the condition is "missed" the loop
8722 // will have undefined behavior due to wrapping.
8723 if (ControlsExit && AddRec->hasNoSelfWrap() &&
8724 loopHasNoAbnormalExits(AddRec->getLoop())) {
8725 const SCEV *Exact =
8726 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
8727 const SCEV *Max =
8728 Exact == getCouldNotCompute()
8729 ? Exact
8730 : getConstant(getUnsignedRangeMax(Exact));
8731 return ExitLimit(Exact, Max, false, Predicates);
8734 // Solve the general equation.
8735 const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(),
8736 getNegativeSCEV(Start), *this);
8737 const SCEV *M = E == getCouldNotCompute()
8739 : getConstant(getUnsignedRangeMax(E));
8740 return ExitLimit(E, M, false, Predicates);
8743 ScalarEvolution::ExitLimit
8744 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
8745 // Loops that look like: while (X == 0) are very strange indeed. We don't
8746 // handle them yet except for the trivial case. This could be expanded in the
8747 // future as needed.
8749 // If the value is a constant, check to see if it is known to be non-zero
8750 // already. If so, the backedge will execute zero times.
8751 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
8752 if (!C->getValue()->isZero())
8753 return getZero(C->getType());
8754 return getCouldNotCompute(); // Otherwise it will loop infinitely.
8757 // We could implement others, but I really doubt anyone writes loops like
8758 // this, and if they did, they would already be constant folded.
8759 return getCouldNotCompute();
8762 std::pair<BasicBlock *, BasicBlock *>
8763 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
8764 // If the block has a unique predecessor, then there is no path from the
8765 // predecessor to the block that does not go through the direct edge
8766 // from the predecessor to the block.
8767 if (BasicBlock *Pred = BB->getSinglePredecessor())
8768 return {Pred, BB};
8770 // A loop's header is defined to be a block that dominates the loop.
8771 // If the header has a unique predecessor outside the loop, it must be
8772 // a block that has exactly one successor that can reach the loop.
8773 if (Loop *L = LI.getLoopFor(BB))
8774 return {L->getLoopPredecessor(), L->getHeader()};
8776 return {nullptr, nullptr};
8779 /// SCEV structural equivalence is usually sufficient for testing whether two
8780 /// expressions are equal, however for the purposes of looking for a condition
8781 /// guarding a loop, it can be useful to be a little more general, since a
8782 /// front-end may have replicated the controlling expression.
8783 static bool HasSameValue(const SCEV *A, const SCEV *B) {
8784 // Quick check to see if they are the same SCEV.
8785 if (A == B) return true;
8787 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
8788 // Not all instructions that are "identical" compute the same value. For
8789 // instance, two distinct alloca instructions allocating the same type are
8790 // identical and do not read memory; but compute distinct values.
8791 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
8794 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
8795 // two different instructions with the same value. Check for this case.
8796 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
8797 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
8798 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
8799 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
8800 if (ComputesEqualValues(AI, BI))
8801 return true;
8803 // Otherwise assume they may have a different value.
8804 return false;
8807 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
8808 const SCEV *&LHS, const SCEV *&RHS,
8809 unsigned Depth) {
8810 bool Changed = false;
8812 // If we hit the max recursion limit bail out.
8813 if (Depth >= 3)
8814 return false;
8816 // Canonicalize a constant to the right side.
8817 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
8818 // Check for both operands constant.
8819 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
8820 if (ConstantExpr::getICmp(Pred,
8821 LHSC->getValue(),
8822 RHSC->getValue())->isNullValue())
8823 goto trivially_false;
8824 else
8825 goto trivially_true;
8827 // Otherwise swap the operands to put the constant on the right.
8828 std::swap(LHS, RHS);
8829 Pred = ICmpInst::getSwappedPredicate(Pred);
8830 Changed = true;
8833 // If we're comparing an addrec with a value which is loop-invariant in the
8834 // addrec's loop, put the addrec on the left. Also make a dominance check,
8835 // as both operands could be addrecs loop-invariant in each other's loop.
8836 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
8837 const Loop *L = AR->getLoop();
8838 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
8839 std::swap(LHS, RHS);
8840 Pred = ICmpInst::getSwappedPredicate(Pred);
8841 Changed = true;
8845 // If there's a constant operand, canonicalize comparisons with boundary
8846 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
8847 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
8848 const APInt &RA = RC->getAPInt();
8850 bool SimplifiedByConstantRange = false;
8852 if (!ICmpInst::isEquality(Pred)) {
8853 ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA);
8854 if (ExactCR.isFullSet())
8855 goto trivially_true;
8856 else if (ExactCR.isEmptySet())
8857 goto trivially_false;
8859 APInt NewRHS;
8860 CmpInst::Predicate NewPred;
8861 if (ExactCR.getEquivalentICmp(NewPred, NewRHS) &&
8862 ICmpInst::isEquality(NewPred)) {
8863 // We were able to convert an inequality to an equality.
8864 Pred = NewPred;
8865 RHS = getConstant(NewRHS);
8866 Changed = SimplifiedByConstantRange = true;
8870 if (!SimplifiedByConstantRange) {
8871 switch (Pred) {
8872 default:
8873 break;
8874 case ICmpInst::ICMP_EQ:
8875 case ICmpInst::ICMP_NE:
8876 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
8877 if (!RA)
8878 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
8879 if (const SCEVMulExpr *ME =
8880 dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
8881 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
8882 ME->getOperand(0)->isAllOnesValue()) {
8883 RHS = AE->getOperand(1);
8884 LHS = ME->getOperand(1);
8885 Changed = true;
8887 break;
8890 // The "Should have been caught earlier!" messages refer to the fact
8891 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
8892 // should have fired on the corresponding cases, and canonicalized the
8893 // check to trivially_true or trivially_false.
8895 case ICmpInst::ICMP_UGE:
8896 assert(!RA.isMinValue() && "Should have been caught earlier!");
8897 Pred = ICmpInst::ICMP_UGT;
8898 RHS = getConstant(RA - 1);
8899 Changed = true;
8900 break;
8901 case ICmpInst::ICMP_ULE:
8902 assert(!RA.isMaxValue() && "Should have been caught earlier!");
8903 Pred = ICmpInst::ICMP_ULT;
8904 RHS = getConstant(RA + 1);
8905 Changed = true;
8906 break;
8907 case ICmpInst::ICMP_SGE:
8908 assert(!RA.isMinSignedValue() && "Should have been caught earlier!");
8909 Pred = ICmpInst::ICMP_SGT;
8910 RHS = getConstant(RA - 1);
8911 Changed = true;
8912 break;
8913 case ICmpInst::ICMP_SLE:
8914 assert(!RA.isMaxSignedValue() && "Should have been caught earlier!");
8915 Pred = ICmpInst::ICMP_SLT;
8916 RHS = getConstant(RA + 1);
8917 Changed = true;
8918 break;
8923 // Check for obvious equality.
8924 if (HasSameValue(LHS, RHS)) {
8925 if (ICmpInst::isTrueWhenEqual(Pred))
8926 goto trivially_true;
8927 if (ICmpInst::isFalseWhenEqual(Pred))
8928 goto trivially_false;
8931 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
8932 // adding or subtracting 1 from one of the operands.
8933 switch (Pred) {
8934 case ICmpInst::ICMP_SLE:
8935 if (!getSignedRangeMax(RHS).isMaxSignedValue()) {
8936 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
8937 SCEV::FlagNSW);
8938 Pred = ICmpInst::ICMP_SLT;
8939 Changed = true;
8940 } else if (!getSignedRangeMin(LHS).isMinSignedValue()) {
8941 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
8942 SCEV::FlagNSW);
8943 Pred = ICmpInst::ICMP_SLT;
8944 Changed = true;
8946 break;
8947 case ICmpInst::ICMP_SGE:
8948 if (!getSignedRangeMin(RHS).isMinSignedValue()) {
8949 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
8950 SCEV::FlagNSW);
8951 Pred = ICmpInst::ICMP_SGT;
8952 Changed = true;
8953 } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) {
8954 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
8955 SCEV::FlagNSW);
8956 Pred = ICmpInst::ICMP_SGT;
8957 Changed = true;
8959 break;
8960 case ICmpInst::ICMP_ULE:
8961 if (!getUnsignedRangeMax(RHS).isMaxValue()) {
8962 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
8963 SCEV::FlagNUW);
8964 Pred = ICmpInst::ICMP_ULT;
8965 Changed = true;
8966 } else if (!getUnsignedRangeMin(LHS).isMinValue()) {
8967 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
8968 Pred = ICmpInst::ICMP_ULT;
8969 Changed = true;
8971 break;
8972 case ICmpInst::ICMP_UGE:
8973 if (!getUnsignedRangeMin(RHS).isMinValue()) {
8974 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
8975 Pred = ICmpInst::ICMP_UGT;
8976 Changed = true;
8977 } else if (!getUnsignedRangeMax(LHS).isMaxValue()) {
8978 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
8979 SCEV::FlagNUW);
8980 Pred = ICmpInst::ICMP_UGT;
8981 Changed = true;
8983 break;
8984 default:
8985 break;
8988 // TODO: More simplifications are possible here.
8990 // Recursively simplify until we either hit a recursion limit or nothing
8991 // changes.
8992 if (Changed)
8993 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
8995 return Changed;
8997 trivially_true:
8998 // Return 0 == 0.
8999 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
9000 Pred = ICmpInst::ICMP_EQ;
9001 return true;
9003 trivially_false:
9004 // Return 0 != 0.
9005 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
9006 Pred = ICmpInst::ICMP_NE;
9007 return true;
9010 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
9011 return getSignedRangeMax(S).isNegative();
9014 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
9015 return getSignedRangeMin(S).isStrictlyPositive();
9018 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
9019 return !getSignedRangeMin(S).isNegative();
9022 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
9023 return !getSignedRangeMax(S).isStrictlyPositive();
9026 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
9027 return isKnownNegative(S) || isKnownPositive(S);
9030 std::pair<const SCEV *, const SCEV *>
9031 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) {
9032 // Compute SCEV on entry of loop L.
9033 const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this);
9034 if (Start == getCouldNotCompute())
9035 return { Start, Start };
9036 // Compute post increment SCEV for loop L.
9037 const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this);
9038 assert(PostInc != getCouldNotCompute() && "Unexpected could not compute");
9039 return { Start, PostInc };
9042 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred,
9043 const SCEV *LHS, const SCEV *RHS) {
9044 // First collect all loops.
9045 SmallPtrSet<const Loop *, 8> LoopsUsed;
9046 getUsedLoops(LHS, LoopsUsed);
9047 getUsedLoops(RHS, LoopsUsed);
9049 if (LoopsUsed.empty())
9050 return false;
9052 // Domination relationship must be a linear order on collected loops.
9053 #ifndef NDEBUG
9054 for (auto *L1 : LoopsUsed)
9055 for (auto *L2 : LoopsUsed)
9056 assert((DT.dominates(L1->getHeader(), L2->getHeader()) ||
9057 DT.dominates(L2->getHeader(), L1->getHeader())) &&
9058 "Domination relationship is not a linear order");
9059 #endif
9061 const Loop *MDL =
9062 *std::max_element(LoopsUsed.begin(), LoopsUsed.end(),
9063 [&](const Loop *L1, const Loop *L2) {
9064 return DT.properlyDominates(L1->getHeader(), L2->getHeader());
9067 // Get init and post increment value for LHS.
9068 auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS);
9069 // if LHS contains unknown non-invariant SCEV then bail out.
9070 if (SplitLHS.first == getCouldNotCompute())
9071 return false;
9072 assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC");
9073 // Get init and post increment value for RHS.
9074 auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS);
9075 // if RHS contains unknown non-invariant SCEV then bail out.
9076 if (SplitRHS.first == getCouldNotCompute())
9077 return false;
9078 assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC");
9079 // It is possible that init SCEV contains an invariant load but it does
9080 // not dominate MDL and is not available at MDL loop entry, so we should
9081 // check it here.
9082 if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) ||
9083 !isAvailableAtLoopEntry(SplitRHS.first, MDL))
9084 return false;
9086 return isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first) &&
9087 isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second,
9088 SplitRHS.second);
9091 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
9092 const SCEV *LHS, const SCEV *RHS) {
9093 // Canonicalize the inputs first.
9094 (void)SimplifyICmpOperands(Pred, LHS, RHS);
9096 if (isKnownViaInduction(Pred, LHS, RHS))
9097 return true;
9099 if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
9100 return true;
9102 // Otherwise see what can be done with some simple reasoning.
9103 return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS);
9106 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred,
9107 const SCEVAddRecExpr *LHS,
9108 const SCEV *RHS) {
9109 const Loop *L = LHS->getLoop();
9110 return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) &&
9111 isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS);
9114 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS,
9115 ICmpInst::Predicate Pred,
9116 bool &Increasing) {
9117 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing);
9119 #ifndef NDEBUG
9120 // Verify an invariant: inverting the predicate should turn a monotonically
9121 // increasing change to a monotonically decreasing one, and vice versa.
9122 bool IncreasingSwapped;
9123 bool ResultSwapped = isMonotonicPredicateImpl(
9124 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped);
9126 assert(Result == ResultSwapped && "should be able to analyze both!");
9127 if (ResultSwapped)
9128 assert(Increasing == !IncreasingSwapped &&
9129 "monotonicity should flip as we flip the predicate");
9130 #endif
9132 return Result;
9135 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
9136 ICmpInst::Predicate Pred,
9137 bool &Increasing) {
9139 // A zero step value for LHS means the induction variable is essentially a
9140 // loop invariant value. We don't really depend on the predicate actually
9141 // flipping from false to true (for increasing predicates, and the other way
9142 // around for decreasing predicates), all we care about is that *if* the
9143 // predicate changes then it only changes from false to true.
9145 // A zero step value in itself is not very useful, but there may be places
9146 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
9147 // as general as possible.
9149 switch (Pred) {
9150 default:
9151 return false; // Conservative answer
9153 case ICmpInst::ICMP_UGT:
9154 case ICmpInst::ICMP_UGE:
9155 case ICmpInst::ICMP_ULT:
9156 case ICmpInst::ICMP_ULE:
9157 if (!LHS->hasNoUnsignedWrap())
9158 return false;
9160 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE;
9161 return true;
9163 case ICmpInst::ICMP_SGT:
9164 case ICmpInst::ICMP_SGE:
9165 case ICmpInst::ICMP_SLT:
9166 case ICmpInst::ICMP_SLE: {
9167 if (!LHS->hasNoSignedWrap())
9168 return false;
9170 const SCEV *Step = LHS->getStepRecurrence(*this);
9172 if (isKnownNonNegative(Step)) {
9173 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE;
9174 return true;
9177 if (isKnownNonPositive(Step)) {
9178 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE;
9179 return true;
9182 return false;
9187 llvm_unreachable("switch has default clause!");
9190 bool ScalarEvolution::isLoopInvariantPredicate(
9191 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
9192 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS,
9193 const SCEV *&InvariantRHS) {
9195 // If there is a loop-invariant, force it into the RHS, otherwise bail out.
9196 if (!isLoopInvariant(RHS, L)) {
9197 if (!isLoopInvariant(LHS, L))
9198 return false;
9200 std::swap(LHS, RHS);
9201 Pred = ICmpInst::getSwappedPredicate(Pred);
9204 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
9205 if (!ArLHS || ArLHS->getLoop() != L)
9206 return false;
9208 bool Increasing;
9209 if (!isMonotonicPredicate(ArLHS, Pred, Increasing))
9210 return false;
9212 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
9213 // true as the loop iterates, and the backedge is control dependent on
9214 // "ArLHS `Pred` RHS" == true then we can reason as follows:
9216 // * if the predicate was false in the first iteration then the predicate
9217 // is never evaluated again, since the loop exits without taking the
9218 // backedge.
9219 // * if the predicate was true in the first iteration then it will
9220 // continue to be true for all future iterations since it is
9221 // monotonically increasing.
9223 // For both the above possibilities, we can replace the loop varying
9224 // predicate with its value on the first iteration of the loop (which is
9225 // loop invariant).
9227 // A similar reasoning applies for a monotonically decreasing predicate, by
9228 // replacing true with false and false with true in the above two bullets.
9230 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
9232 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
9233 return false;
9235 InvariantPred = Pred;
9236 InvariantLHS = ArLHS->getStart();
9237 InvariantRHS = RHS;
9238 return true;
9241 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
9242 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
9243 if (HasSameValue(LHS, RHS))
9244 return ICmpInst::isTrueWhenEqual(Pred);
9246 // This code is split out from isKnownPredicate because it is called from
9247 // within isLoopEntryGuardedByCond.
9249 auto CheckRanges =
9250 [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) {
9251 return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS)
9252 .contains(RangeLHS);
9255 // The check at the top of the function catches the case where the values are
9256 // known to be equal.
9257 if (Pred == CmpInst::ICMP_EQ)
9258 return false;
9260 if (Pred == CmpInst::ICMP_NE)
9261 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
9262 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) ||
9263 isKnownNonZero(getMinusSCEV(LHS, RHS));
9265 if (CmpInst::isSigned(Pred))
9266 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
9268 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
9271 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
9272 const SCEV *LHS,
9273 const SCEV *RHS) {
9274 // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
9275 // Return Y via OutY.
9276 auto MatchBinaryAddToConst =
9277 [this](const SCEV *Result, const SCEV *X, APInt &OutY,
9278 SCEV::NoWrapFlags ExpectedFlags) {
9279 const SCEV *NonConstOp, *ConstOp;
9280 SCEV::NoWrapFlags FlagsPresent;
9282 if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
9283 !isa<SCEVConstant>(ConstOp) || NonConstOp != X)
9284 return false;
9286 OutY = cast<SCEVConstant>(ConstOp)->getAPInt();
9287 return (FlagsPresent & ExpectedFlags) == ExpectedFlags;
9290 APInt C;
9292 switch (Pred) {
9293 default:
9294 break;
9296 case ICmpInst::ICMP_SGE:
9297 std::swap(LHS, RHS);
9298 LLVM_FALLTHROUGH;
9299 case ICmpInst::ICMP_SLE:
9300 // X s<= (X + C)<nsw> if C >= 0
9301 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
9302 return true;
9304 // (X + C)<nsw> s<= X if C <= 0
9305 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
9306 !C.isStrictlyPositive())
9307 return true;
9308 break;
9310 case ICmpInst::ICMP_SGT:
9311 std::swap(LHS, RHS);
9312 LLVM_FALLTHROUGH;
9313 case ICmpInst::ICMP_SLT:
9314 // X s< (X + C)<nsw> if C > 0
9315 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
9316 C.isStrictlyPositive())
9317 return true;
9319 // (X + C)<nsw> s< X if C < 0
9320 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
9321 return true;
9322 break;
9325 return false;
9328 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
9329 const SCEV *LHS,
9330 const SCEV *RHS) {
9331 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
9332 return false;
9334 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
9335 // the stack can result in exponential time complexity.
9336 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
9338 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
9340 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
9341 // isKnownPredicate. isKnownPredicate is more powerful, but also more
9342 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
9343 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to
9344 // use isKnownPredicate later if needed.
9345 return isKnownNonNegative(RHS) &&
9346 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
9347 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
9350 bool ScalarEvolution::isImpliedViaGuard(BasicBlock *BB,
9351 ICmpInst::Predicate Pred,
9352 const SCEV *LHS, const SCEV *RHS) {
9353 // No need to even try if we know the module has no guards.
9354 if (!HasGuards)
9355 return false;
9357 return any_of(*BB, [&](Instruction &I) {
9358 using namespace llvm::PatternMatch;
9360 Value *Condition;
9361 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
9362 m_Value(Condition))) &&
9363 isImpliedCond(Pred, LHS, RHS, Condition, false);
9367 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
9368 /// protected by a conditional between LHS and RHS. This is used to
9369 /// to eliminate casts.
9370 bool
9371 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
9372 ICmpInst::Predicate Pred,
9373 const SCEV *LHS, const SCEV *RHS) {
9374 // Interpret a null as meaning no loop, where there is obviously no guard
9375 // (interprocedural conditions notwithstanding).
9376 if (!L) return true;
9378 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
9379 return true;
9381 BasicBlock *Latch = L->getLoopLatch();
9382 if (!Latch)
9383 return false;
9385 BranchInst *LoopContinuePredicate =
9386 dyn_cast<BranchInst>(Latch->getTerminator());
9387 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
9388 isImpliedCond(Pred, LHS, RHS,
9389 LoopContinuePredicate->getCondition(),
9390 LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
9391 return true;
9393 // We don't want more than one activation of the following loops on the stack
9394 // -- that can lead to O(n!) time complexity.
9395 if (WalkingBEDominatingConds)
9396 return false;
9398 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
9400 // See if we can exploit a trip count to prove the predicate.
9401 const auto &BETakenInfo = getBackedgeTakenInfo(L);
9402 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
9403 if (LatchBECount != getCouldNotCompute()) {
9404 // We know that Latch branches back to the loop header exactly
9405 // LatchBECount times. This means the backdege condition at Latch is
9406 // equivalent to "{0,+,1} u< LatchBECount".
9407 Type *Ty = LatchBECount->getType();
9408 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
9409 const SCEV *LoopCounter =
9410 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
9411 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
9412 LatchBECount))
9413 return true;
9416 // Check conditions due to any @llvm.assume intrinsics.
9417 for (auto &AssumeVH : AC.assumptions()) {
9418 if (!AssumeVH)
9419 continue;
9420 auto *CI = cast<CallInst>(AssumeVH);
9421 if (!DT.dominates(CI, Latch->getTerminator()))
9422 continue;
9424 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
9425 return true;
9428 // If the loop is not reachable from the entry block, we risk running into an
9429 // infinite loop as we walk up into the dom tree. These loops do not matter
9430 // anyway, so we just return a conservative answer when we see them.
9431 if (!DT.isReachableFromEntry(L->getHeader()))
9432 return false;
9434 if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
9435 return true;
9437 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
9438 DTN != HeaderDTN; DTN = DTN->getIDom()) {
9439 assert(DTN && "should reach the loop header before reaching the root!");
9441 BasicBlock *BB = DTN->getBlock();
9442 if (isImpliedViaGuard(BB, Pred, LHS, RHS))
9443 return true;
9445 BasicBlock *PBB = BB->getSinglePredecessor();
9446 if (!PBB)
9447 continue;
9449 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
9450 if (!ContinuePredicate || !ContinuePredicate->isConditional())
9451 continue;
9453 Value *Condition = ContinuePredicate->getCondition();
9455 // If we have an edge `E` within the loop body that dominates the only
9456 // latch, the condition guarding `E` also guards the backedge. This
9457 // reasoning works only for loops with a single latch.
9459 BasicBlockEdge DominatingEdge(PBB, BB);
9460 if (DominatingEdge.isSingleEdge()) {
9461 // We're constructively (and conservatively) enumerating edges within the
9462 // loop body that dominate the latch. The dominator tree better agree
9463 // with us on this:
9464 assert(DT.dominates(DominatingEdge, Latch) && "should be!");
9466 if (isImpliedCond(Pred, LHS, RHS, Condition,
9467 BB != ContinuePredicate->getSuccessor(0)))
9468 return true;
9472 return false;
9475 bool
9476 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
9477 ICmpInst::Predicate Pred,
9478 const SCEV *LHS, const SCEV *RHS) {
9479 // Interpret a null as meaning no loop, where there is obviously no guard
9480 // (interprocedural conditions notwithstanding).
9481 if (!L) return false;
9483 // Both LHS and RHS must be available at loop entry.
9484 assert(isAvailableAtLoopEntry(LHS, L) &&
9485 "LHS is not available at Loop Entry");
9486 assert(isAvailableAtLoopEntry(RHS, L) &&
9487 "RHS is not available at Loop Entry");
9489 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
9490 return true;
9492 // If we cannot prove strict comparison (e.g. a > b), maybe we can prove
9493 // the facts (a >= b && a != b) separately. A typical situation is when the
9494 // non-strict comparison is known from ranges and non-equality is known from
9495 // dominating predicates. If we are proving strict comparison, we always try
9496 // to prove non-equality and non-strict comparison separately.
9497 auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred);
9498 const bool ProvingStrictComparison = (Pred != NonStrictPredicate);
9499 bool ProvedNonStrictComparison = false;
9500 bool ProvedNonEquality = false;
9502 if (ProvingStrictComparison) {
9503 ProvedNonStrictComparison =
9504 isKnownViaNonRecursiveReasoning(NonStrictPredicate, LHS, RHS);
9505 ProvedNonEquality =
9506 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, LHS, RHS);
9507 if (ProvedNonStrictComparison && ProvedNonEquality)
9508 return true;
9511 // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard.
9512 auto ProveViaGuard = [&](BasicBlock *Block) {
9513 if (isImpliedViaGuard(Block, Pred, LHS, RHS))
9514 return true;
9515 if (ProvingStrictComparison) {
9516 if (!ProvedNonStrictComparison)
9517 ProvedNonStrictComparison =
9518 isImpliedViaGuard(Block, NonStrictPredicate, LHS, RHS);
9519 if (!ProvedNonEquality)
9520 ProvedNonEquality =
9521 isImpliedViaGuard(Block, ICmpInst::ICMP_NE, LHS, RHS);
9522 if (ProvedNonStrictComparison && ProvedNonEquality)
9523 return true;
9525 return false;
9528 // Try to prove (Pred, LHS, RHS) using isImpliedCond.
9529 auto ProveViaCond = [&](Value *Condition, bool Inverse) {
9530 if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse))
9531 return true;
9532 if (ProvingStrictComparison) {
9533 if (!ProvedNonStrictComparison)
9534 ProvedNonStrictComparison =
9535 isImpliedCond(NonStrictPredicate, LHS, RHS, Condition, Inverse);
9536 if (!ProvedNonEquality)
9537 ProvedNonEquality =
9538 isImpliedCond(ICmpInst::ICMP_NE, LHS, RHS, Condition, Inverse);
9539 if (ProvedNonStrictComparison && ProvedNonEquality)
9540 return true;
9542 return false;
9545 // Starting at the loop predecessor, climb up the predecessor chain, as long
9546 // as there are predecessors that can be found that have unique successors
9547 // leading to the original header.
9548 for (std::pair<BasicBlock *, BasicBlock *>
9549 Pair(L->getLoopPredecessor(), L->getHeader());
9550 Pair.first;
9551 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
9553 if (ProveViaGuard(Pair.first))
9554 return true;
9556 BranchInst *LoopEntryPredicate =
9557 dyn_cast<BranchInst>(Pair.first->getTerminator());
9558 if (!LoopEntryPredicate ||
9559 LoopEntryPredicate->isUnconditional())
9560 continue;
9562 if (ProveViaCond(LoopEntryPredicate->getCondition(),
9563 LoopEntryPredicate->getSuccessor(0) != Pair.second))
9564 return true;
9567 // Check conditions due to any @llvm.assume intrinsics.
9568 for (auto &AssumeVH : AC.assumptions()) {
9569 if (!AssumeVH)
9570 continue;
9571 auto *CI = cast<CallInst>(AssumeVH);
9572 if (!DT.dominates(CI, L->getHeader()))
9573 continue;
9575 if (ProveViaCond(CI->getArgOperand(0), false))
9576 return true;
9579 return false;
9582 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
9583 const SCEV *LHS, const SCEV *RHS,
9584 Value *FoundCondValue,
9585 bool Inverse) {
9586 if (!PendingLoopPredicates.insert(FoundCondValue).second)
9587 return false;
9589 auto ClearOnExit =
9590 make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); });
9592 // Recursively handle And and Or conditions.
9593 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
9594 if (BO->getOpcode() == Instruction::And) {
9595 if (!Inverse)
9596 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
9597 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
9598 } else if (BO->getOpcode() == Instruction::Or) {
9599 if (Inverse)
9600 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
9601 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
9605 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
9606 if (!ICI) return false;
9608 // Now that we found a conditional branch that dominates the loop or controls
9609 // the loop latch. Check to see if it is the comparison we are looking for.
9610 ICmpInst::Predicate FoundPred;
9611 if (Inverse)
9612 FoundPred = ICI->getInversePredicate();
9613 else
9614 FoundPred = ICI->getPredicate();
9616 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
9617 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
9619 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS);
9622 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
9623 const SCEV *RHS,
9624 ICmpInst::Predicate FoundPred,
9625 const SCEV *FoundLHS,
9626 const SCEV *FoundRHS) {
9627 // Balance the types.
9628 if (getTypeSizeInBits(LHS->getType()) <
9629 getTypeSizeInBits(FoundLHS->getType())) {
9630 if (CmpInst::isSigned(Pred)) {
9631 LHS = getSignExtendExpr(LHS, FoundLHS->getType());
9632 RHS = getSignExtendExpr(RHS, FoundLHS->getType());
9633 } else {
9634 LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
9635 RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
9637 } else if (getTypeSizeInBits(LHS->getType()) >
9638 getTypeSizeInBits(FoundLHS->getType())) {
9639 if (CmpInst::isSigned(FoundPred)) {
9640 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
9641 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
9642 } else {
9643 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
9644 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
9648 // Canonicalize the query to match the way instcombine will have
9649 // canonicalized the comparison.
9650 if (SimplifyICmpOperands(Pred, LHS, RHS))
9651 if (LHS == RHS)
9652 return CmpInst::isTrueWhenEqual(Pred);
9653 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
9654 if (FoundLHS == FoundRHS)
9655 return CmpInst::isFalseWhenEqual(FoundPred);
9657 // Check to see if we can make the LHS or RHS match.
9658 if (LHS == FoundRHS || RHS == FoundLHS) {
9659 if (isa<SCEVConstant>(RHS)) {
9660 std::swap(FoundLHS, FoundRHS);
9661 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
9662 } else {
9663 std::swap(LHS, RHS);
9664 Pred = ICmpInst::getSwappedPredicate(Pred);
9668 // Check whether the found predicate is the same as the desired predicate.
9669 if (FoundPred == Pred)
9670 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
9672 // Check whether swapping the found predicate makes it the same as the
9673 // desired predicate.
9674 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
9675 if (isa<SCEVConstant>(RHS))
9676 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
9677 else
9678 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
9679 RHS, LHS, FoundLHS, FoundRHS);
9682 // Unsigned comparison is the same as signed comparison when both the operands
9683 // are non-negative.
9684 if (CmpInst::isUnsigned(FoundPred) &&
9685 CmpInst::getSignedPredicate(FoundPred) == Pred &&
9686 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
9687 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
9689 // Check if we can make progress by sharpening ranges.
9690 if (FoundPred == ICmpInst::ICMP_NE &&
9691 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
9693 const SCEVConstant *C = nullptr;
9694 const SCEV *V = nullptr;
9696 if (isa<SCEVConstant>(FoundLHS)) {
9697 C = cast<SCEVConstant>(FoundLHS);
9698 V = FoundRHS;
9699 } else {
9700 C = cast<SCEVConstant>(FoundRHS);
9701 V = FoundLHS;
9704 // The guarding predicate tells us that C != V. If the known range
9705 // of V is [C, t), we can sharpen the range to [C + 1, t). The
9706 // range we consider has to correspond to same signedness as the
9707 // predicate we're interested in folding.
9709 APInt Min = ICmpInst::isSigned(Pred) ?
9710 getSignedRangeMin(V) : getUnsignedRangeMin(V);
9712 if (Min == C->getAPInt()) {
9713 // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
9714 // This is true even if (Min + 1) wraps around -- in case of
9715 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
9717 APInt SharperMin = Min + 1;
9719 switch (Pred) {
9720 case ICmpInst::ICMP_SGE:
9721 case ICmpInst::ICMP_UGE:
9722 // We know V `Pred` SharperMin. If this implies LHS `Pred`
9723 // RHS, we're done.
9724 if (isImpliedCondOperands(Pred, LHS, RHS, V,
9725 getConstant(SharperMin)))
9726 return true;
9727 LLVM_FALLTHROUGH;
9729 case ICmpInst::ICMP_SGT:
9730 case ICmpInst::ICMP_UGT:
9731 // We know from the range information that (V `Pred` Min ||
9732 // V == Min). We know from the guarding condition that !(V
9733 // == Min). This gives us
9735 // V `Pred` Min || V == Min && !(V == Min)
9736 // => V `Pred` Min
9738 // If V `Pred` Min implies LHS `Pred` RHS, we're done.
9740 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
9741 return true;
9742 LLVM_FALLTHROUGH;
9744 default:
9745 // No change
9746 break;
9751 // Check whether the actual condition is beyond sufficient.
9752 if (FoundPred == ICmpInst::ICMP_EQ)
9753 if (ICmpInst::isTrueWhenEqual(Pred))
9754 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
9755 return true;
9756 if (Pred == ICmpInst::ICMP_NE)
9757 if (!ICmpInst::isTrueWhenEqual(FoundPred))
9758 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
9759 return true;
9761 // Otherwise assume the worst.
9762 return false;
9765 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
9766 const SCEV *&L, const SCEV *&R,
9767 SCEV::NoWrapFlags &Flags) {
9768 const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
9769 if (!AE || AE->getNumOperands() != 2)
9770 return false;
9772 L = AE->getOperand(0);
9773 R = AE->getOperand(1);
9774 Flags = AE->getNoWrapFlags();
9775 return true;
9778 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More,
9779 const SCEV *Less) {
9780 // We avoid subtracting expressions here because this function is usually
9781 // fairly deep in the call stack (i.e. is called many times).
9783 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
9784 const auto *LAR = cast<SCEVAddRecExpr>(Less);
9785 const auto *MAR = cast<SCEVAddRecExpr>(More);
9787 if (LAR->getLoop() != MAR->getLoop())
9788 return None;
9790 // We look at affine expressions only; not for correctness but to keep
9791 // getStepRecurrence cheap.
9792 if (!LAR->isAffine() || !MAR->isAffine())
9793 return None;
9795 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
9796 return None;
9798 Less = LAR->getStart();
9799 More = MAR->getStart();
9801 // fall through
9804 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
9805 const auto &M = cast<SCEVConstant>(More)->getAPInt();
9806 const auto &L = cast<SCEVConstant>(Less)->getAPInt();
9807 return M - L;
9810 SCEV::NoWrapFlags Flags;
9811 const SCEV *LLess = nullptr, *RLess = nullptr;
9812 const SCEV *LMore = nullptr, *RMore = nullptr;
9813 const SCEVConstant *C1 = nullptr, *C2 = nullptr;
9814 // Compare (X + C1) vs X.
9815 if (splitBinaryAdd(Less, LLess, RLess, Flags))
9816 if ((C1 = dyn_cast<SCEVConstant>(LLess)))
9817 if (RLess == More)
9818 return -(C1->getAPInt());
9820 // Compare X vs (X + C2).
9821 if (splitBinaryAdd(More, LMore, RMore, Flags))
9822 if ((C2 = dyn_cast<SCEVConstant>(LMore)))
9823 if (RMore == Less)
9824 return C2->getAPInt();
9826 // Compare (X + C1) vs (X + C2).
9827 if (C1 && C2 && RLess == RMore)
9828 return C2->getAPInt() - C1->getAPInt();
9830 return None;
9833 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
9834 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
9835 const SCEV *FoundLHS, const SCEV *FoundRHS) {
9836 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
9837 return false;
9839 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
9840 if (!AddRecLHS)
9841 return false;
9843 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
9844 if (!AddRecFoundLHS)
9845 return false;
9847 // We'd like to let SCEV reason about control dependencies, so we constrain
9848 // both the inequalities to be about add recurrences on the same loop. This
9849 // way we can use isLoopEntryGuardedByCond later.
9851 const Loop *L = AddRecFoundLHS->getLoop();
9852 if (L != AddRecLHS->getLoop())
9853 return false;
9855 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1)
9857 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
9858 // ... (2)
9860 // Informal proof for (2), assuming (1) [*]:
9862 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
9864 // Then
9866 // FoundLHS s< FoundRHS s< INT_MIN - C
9867 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ]
9868 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
9869 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s<
9870 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
9871 // <=> FoundLHS + C s< FoundRHS + C
9873 // [*]: (1) can be proved by ruling out overflow.
9875 // [**]: This can be proved by analyzing all the four possibilities:
9876 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
9877 // (A s>= 0, B s>= 0).
9879 // Note:
9880 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
9881 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS
9882 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS
9883 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is
9884 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
9885 // C)".
9887 Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS);
9888 Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS);
9889 if (!LDiff || !RDiff || *LDiff != *RDiff)
9890 return false;
9892 if (LDiff->isMinValue())
9893 return true;
9895 APInt FoundRHSLimit;
9897 if (Pred == CmpInst::ICMP_ULT) {
9898 FoundRHSLimit = -(*RDiff);
9899 } else {
9900 assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
9901 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff;
9904 // Try to prove (1) or (2), as needed.
9905 return isAvailableAtLoopEntry(FoundRHS, L) &&
9906 isLoopEntryGuardedByCond(L, Pred, FoundRHS,
9907 getConstant(FoundRHSLimit));
9910 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred,
9911 const SCEV *LHS, const SCEV *RHS,
9912 const SCEV *FoundLHS,
9913 const SCEV *FoundRHS, unsigned Depth) {
9914 const PHINode *LPhi = nullptr, *RPhi = nullptr;
9916 auto ClearOnExit = make_scope_exit([&]() {
9917 if (LPhi) {
9918 bool Erased = PendingMerges.erase(LPhi);
9919 assert(Erased && "Failed to erase LPhi!");
9920 (void)Erased;
9922 if (RPhi) {
9923 bool Erased = PendingMerges.erase(RPhi);
9924 assert(Erased && "Failed to erase RPhi!");
9925 (void)Erased;
9929 // Find respective Phis and check that they are not being pending.
9930 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS))
9931 if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) {
9932 if (!PendingMerges.insert(Phi).second)
9933 return false;
9934 LPhi = Phi;
9936 if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS))
9937 if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) {
9938 // If we detect a loop of Phi nodes being processed by this method, for
9939 // example:
9941 // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ]
9942 // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ]
9944 // we don't want to deal with a case that complex, so return conservative
9945 // answer false.
9946 if (!PendingMerges.insert(Phi).second)
9947 return false;
9948 RPhi = Phi;
9951 // If none of LHS, RHS is a Phi, nothing to do here.
9952 if (!LPhi && !RPhi)
9953 return false;
9955 // If there is a SCEVUnknown Phi we are interested in, make it left.
9956 if (!LPhi) {
9957 std::swap(LHS, RHS);
9958 std::swap(FoundLHS, FoundRHS);
9959 std::swap(LPhi, RPhi);
9960 Pred = ICmpInst::getSwappedPredicate(Pred);
9963 assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!");
9964 const BasicBlock *LBB = LPhi->getParent();
9965 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
9967 auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) {
9968 return isKnownViaNonRecursiveReasoning(Pred, S1, S2) ||
9969 isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) ||
9970 isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth);
9973 if (RPhi && RPhi->getParent() == LBB) {
9974 // Case one: RHS is also a SCEVUnknown Phi from the same basic block.
9975 // If we compare two Phis from the same block, and for each entry block
9976 // the predicate is true for incoming values from this block, then the
9977 // predicate is also true for the Phis.
9978 for (const BasicBlock *IncBB : predecessors(LBB)) {
9979 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
9980 const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB));
9981 if (!ProvedEasily(L, R))
9982 return false;
9984 } else if (RAR && RAR->getLoop()->getHeader() == LBB) {
9985 // Case two: RHS is also a Phi from the same basic block, and it is an
9986 // AddRec. It means that there is a loop which has both AddRec and Unknown
9987 // PHIs, for it we can compare incoming values of AddRec from above the loop
9988 // and latch with their respective incoming values of LPhi.
9989 // TODO: Generalize to handle loops with many inputs in a header.
9990 if (LPhi->getNumIncomingValues() != 2) return false;
9992 auto *RLoop = RAR->getLoop();
9993 auto *Predecessor = RLoop->getLoopPredecessor();
9994 assert(Predecessor && "Loop with AddRec with no predecessor?");
9995 const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor));
9996 if (!ProvedEasily(L1, RAR->getStart()))
9997 return false;
9998 auto *Latch = RLoop->getLoopLatch();
9999 assert(Latch && "Loop with AddRec with no latch?");
10000 const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch));
10001 if (!ProvedEasily(L2, RAR->getPostIncExpr(*this)))
10002 return false;
10003 } else {
10004 // In all other cases go over inputs of LHS and compare each of them to RHS,
10005 // the predicate is true for (LHS, RHS) if it is true for all such pairs.
10006 // At this point RHS is either a non-Phi, or it is a Phi from some block
10007 // different from LBB.
10008 for (const BasicBlock *IncBB : predecessors(LBB)) {
10009 // Check that RHS is available in this block.
10010 if (!dominates(RHS, IncBB))
10011 return false;
10012 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
10013 if (!ProvedEasily(L, RHS))
10014 return false;
10017 return true;
10020 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
10021 const SCEV *LHS, const SCEV *RHS,
10022 const SCEV *FoundLHS,
10023 const SCEV *FoundRHS) {
10024 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
10025 return true;
10027 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
10028 return true;
10030 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
10031 FoundLHS, FoundRHS) ||
10032 // ~x < ~y --> x > y
10033 isImpliedCondOperandsHelper(Pred, LHS, RHS,
10034 getNotSCEV(FoundRHS),
10035 getNotSCEV(FoundLHS));
10038 /// If Expr computes ~A, return A else return nullptr
10039 static const SCEV *MatchNotExpr(const SCEV *Expr) {
10040 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
10041 if (!Add || Add->getNumOperands() != 2 ||
10042 !Add->getOperand(0)->isAllOnesValue())
10043 return nullptr;
10045 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
10046 if (!AddRHS || AddRHS->getNumOperands() != 2 ||
10047 !AddRHS->getOperand(0)->isAllOnesValue())
10048 return nullptr;
10050 return AddRHS->getOperand(1);
10053 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values?
10054 template<typename MaxExprType>
10055 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr,
10056 const SCEV *Candidate) {
10057 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr);
10058 if (!MaxExpr) return false;
10060 return find(MaxExpr->operands(), Candidate) != MaxExpr->op_end();
10063 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values?
10064 template<typename MaxExprType>
10065 static bool IsMinConsistingOf(ScalarEvolution &SE,
10066 const SCEV *MaybeMinExpr,
10067 const SCEV *Candidate) {
10068 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr);
10069 if (!MaybeMaxExpr)
10070 return false;
10072 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate));
10075 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
10076 ICmpInst::Predicate Pred,
10077 const SCEV *LHS, const SCEV *RHS) {
10078 // If both sides are affine addrecs for the same loop, with equal
10079 // steps, and we know the recurrences don't wrap, then we only
10080 // need to check the predicate on the starting values.
10082 if (!ICmpInst::isRelational(Pred))
10083 return false;
10085 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
10086 if (!LAR)
10087 return false;
10088 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
10089 if (!RAR)
10090 return false;
10091 if (LAR->getLoop() != RAR->getLoop())
10092 return false;
10093 if (!LAR->isAffine() || !RAR->isAffine())
10094 return false;
10096 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
10097 return false;
10099 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
10100 SCEV::FlagNSW : SCEV::FlagNUW;
10101 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
10102 return false;
10104 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
10107 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
10108 /// expression?
10109 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
10110 ICmpInst::Predicate Pred,
10111 const SCEV *LHS, const SCEV *RHS) {
10112 switch (Pred) {
10113 default:
10114 return false;
10116 case ICmpInst::ICMP_SGE:
10117 std::swap(LHS, RHS);
10118 LLVM_FALLTHROUGH;
10119 case ICmpInst::ICMP_SLE:
10120 return
10121 // min(A, ...) <= A
10122 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) ||
10123 // A <= max(A, ...)
10124 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
10126 case ICmpInst::ICMP_UGE:
10127 std::swap(LHS, RHS);
10128 LLVM_FALLTHROUGH;
10129 case ICmpInst::ICMP_ULE:
10130 return
10131 // min(A, ...) <= A
10132 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) ||
10133 // A <= max(A, ...)
10134 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
10137 llvm_unreachable("covered switch fell through?!");
10140 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred,
10141 const SCEV *LHS, const SCEV *RHS,
10142 const SCEV *FoundLHS,
10143 const SCEV *FoundRHS,
10144 unsigned Depth) {
10145 assert(getTypeSizeInBits(LHS->getType()) ==
10146 getTypeSizeInBits(RHS->getType()) &&
10147 "LHS and RHS have different sizes?");
10148 assert(getTypeSizeInBits(FoundLHS->getType()) ==
10149 getTypeSizeInBits(FoundRHS->getType()) &&
10150 "FoundLHS and FoundRHS have different sizes?");
10151 // We want to avoid hurting the compile time with analysis of too big trees.
10152 if (Depth > MaxSCEVOperationsImplicationDepth)
10153 return false;
10154 // We only want to work with ICMP_SGT comparison so far.
10155 // TODO: Extend to ICMP_UGT?
10156 if (Pred == ICmpInst::ICMP_SLT) {
10157 Pred = ICmpInst::ICMP_SGT;
10158 std::swap(LHS, RHS);
10159 std::swap(FoundLHS, FoundRHS);
10161 if (Pred != ICmpInst::ICMP_SGT)
10162 return false;
10164 auto GetOpFromSExt = [&](const SCEV *S) {
10165 if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S))
10166 return Ext->getOperand();
10167 // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off
10168 // the constant in some cases.
10169 return S;
10172 // Acquire values from extensions.
10173 auto *OrigLHS = LHS;
10174 auto *OrigFoundLHS = FoundLHS;
10175 LHS = GetOpFromSExt(LHS);
10176 FoundLHS = GetOpFromSExt(FoundLHS);
10178 // Is the SGT predicate can be proved trivially or using the found context.
10179 auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) {
10180 return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) ||
10181 isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS,
10182 FoundRHS, Depth + 1);
10185 if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) {
10186 // We want to avoid creation of any new non-constant SCEV. Since we are
10187 // going to compare the operands to RHS, we should be certain that we don't
10188 // need any size extensions for this. So let's decline all cases when the
10189 // sizes of types of LHS and RHS do not match.
10190 // TODO: Maybe try to get RHS from sext to catch more cases?
10191 if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType()))
10192 return false;
10194 // Should not overflow.
10195 if (!LHSAddExpr->hasNoSignedWrap())
10196 return false;
10198 auto *LL = LHSAddExpr->getOperand(0);
10199 auto *LR = LHSAddExpr->getOperand(1);
10200 auto *MinusOne = getNegativeSCEV(getOne(RHS->getType()));
10202 // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context.
10203 auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) {
10204 return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS);
10206 // Try to prove the following rule:
10207 // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS).
10208 // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS).
10209 if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL))
10210 return true;
10211 } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) {
10212 Value *LL, *LR;
10213 // FIXME: Once we have SDiv implemented, we can get rid of this matching.
10215 using namespace llvm::PatternMatch;
10217 if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) {
10218 // Rules for division.
10219 // We are going to perform some comparisons with Denominator and its
10220 // derivative expressions. In general case, creating a SCEV for it may
10221 // lead to a complex analysis of the entire graph, and in particular it
10222 // can request trip count recalculation for the same loop. This would
10223 // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid
10224 // this, we only want to create SCEVs that are constants in this section.
10225 // So we bail if Denominator is not a constant.
10226 if (!isa<ConstantInt>(LR))
10227 return false;
10229 auto *Denominator = cast<SCEVConstant>(getSCEV(LR));
10231 // We want to make sure that LHS = FoundLHS / Denominator. If it is so,
10232 // then a SCEV for the numerator already exists and matches with FoundLHS.
10233 auto *Numerator = getExistingSCEV(LL);
10234 if (!Numerator || Numerator->getType() != FoundLHS->getType())
10235 return false;
10237 // Make sure that the numerator matches with FoundLHS and the denominator
10238 // is positive.
10239 if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator))
10240 return false;
10242 auto *DTy = Denominator->getType();
10243 auto *FRHSTy = FoundRHS->getType();
10244 if (DTy->isPointerTy() != FRHSTy->isPointerTy())
10245 // One of types is a pointer and another one is not. We cannot extend
10246 // them properly to a wider type, so let us just reject this case.
10247 // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help
10248 // to avoid this check.
10249 return false;
10251 // Given that:
10252 // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0.
10253 auto *WTy = getWiderType(DTy, FRHSTy);
10254 auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy);
10255 auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy);
10257 // Try to prove the following rule:
10258 // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS).
10259 // For example, given that FoundLHS > 2. It means that FoundLHS is at
10260 // least 3. If we divide it by Denominator < 4, we will have at least 1.
10261 auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2));
10262 if (isKnownNonPositive(RHS) &&
10263 IsSGTViaContext(FoundRHSExt, DenomMinusTwo))
10264 return true;
10266 // Try to prove the following rule:
10267 // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS).
10268 // For example, given that FoundLHS > -3. Then FoundLHS is at least -2.
10269 // If we divide it by Denominator > 2, then:
10270 // 1. If FoundLHS is negative, then the result is 0.
10271 // 2. If FoundLHS is non-negative, then the result is non-negative.
10272 // Anyways, the result is non-negative.
10273 auto *MinusOne = getNegativeSCEV(getOne(WTy));
10274 auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt);
10275 if (isKnownNegative(RHS) &&
10276 IsSGTViaContext(FoundRHSExt, NegDenomMinusOne))
10277 return true;
10281 // If our expression contained SCEVUnknown Phis, and we split it down and now
10282 // need to prove something for them, try to prove the predicate for every
10283 // possible incoming values of those Phis.
10284 if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1))
10285 return true;
10287 return false;
10290 bool
10291 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
10292 const SCEV *LHS, const SCEV *RHS) {
10293 return isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
10294 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
10295 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
10296 isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
10299 bool
10300 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
10301 const SCEV *LHS, const SCEV *RHS,
10302 const SCEV *FoundLHS,
10303 const SCEV *FoundRHS) {
10304 switch (Pred) {
10305 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
10306 case ICmpInst::ICMP_EQ:
10307 case ICmpInst::ICMP_NE:
10308 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
10309 return true;
10310 break;
10311 case ICmpInst::ICMP_SLT:
10312 case ICmpInst::ICMP_SLE:
10313 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
10314 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS))
10315 return true;
10316 break;
10317 case ICmpInst::ICMP_SGT:
10318 case ICmpInst::ICMP_SGE:
10319 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
10320 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS))
10321 return true;
10322 break;
10323 case ICmpInst::ICMP_ULT:
10324 case ICmpInst::ICMP_ULE:
10325 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
10326 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS))
10327 return true;
10328 break;
10329 case ICmpInst::ICMP_UGT:
10330 case ICmpInst::ICMP_UGE:
10331 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
10332 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS))
10333 return true;
10334 break;
10337 // Maybe it can be proved via operations?
10338 if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS))
10339 return true;
10341 return false;
10344 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
10345 const SCEV *LHS,
10346 const SCEV *RHS,
10347 const SCEV *FoundLHS,
10348 const SCEV *FoundRHS) {
10349 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
10350 // The restriction on `FoundRHS` be lifted easily -- it exists only to
10351 // reduce the compile time impact of this optimization.
10352 return false;
10354 Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS);
10355 if (!Addend)
10356 return false;
10358 const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
10360 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
10361 // antecedent "`FoundLHS` `Pred` `FoundRHS`".
10362 ConstantRange FoundLHSRange =
10363 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
10365 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
10366 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend));
10368 // We can also compute the range of values for `LHS` that satisfy the
10369 // consequent, "`LHS` `Pred` `RHS`":
10370 const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
10371 ConstantRange SatisfyingLHSRange =
10372 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
10374 // The antecedent implies the consequent if every value of `LHS` that
10375 // satisfies the antecedent also satisfies the consequent.
10376 return SatisfyingLHSRange.contains(LHSRange);
10379 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
10380 bool IsSigned, bool NoWrap) {
10381 assert(isKnownPositive(Stride) && "Positive stride expected!");
10383 if (NoWrap) return false;
10385 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
10386 const SCEV *One = getOne(Stride->getType());
10388 if (IsSigned) {
10389 APInt MaxRHS = getSignedRangeMax(RHS);
10390 APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
10391 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
10393 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
10394 return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS);
10397 APInt MaxRHS = getUnsignedRangeMax(RHS);
10398 APInt MaxValue = APInt::getMaxValue(BitWidth);
10399 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
10401 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
10402 return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS);
10405 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
10406 bool IsSigned, bool NoWrap) {
10407 if (NoWrap) return false;
10409 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
10410 const SCEV *One = getOne(Stride->getType());
10412 if (IsSigned) {
10413 APInt MinRHS = getSignedRangeMin(RHS);
10414 APInt MinValue = APInt::getSignedMinValue(BitWidth);
10415 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
10417 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
10418 return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS);
10421 APInt MinRHS = getUnsignedRangeMin(RHS);
10422 APInt MinValue = APInt::getMinValue(BitWidth);
10423 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
10425 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
10426 return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS);
10429 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
10430 bool Equality) {
10431 const SCEV *One = getOne(Step->getType());
10432 Delta = Equality ? getAddExpr(Delta, Step)
10433 : getAddExpr(Delta, getMinusSCEV(Step, One));
10434 return getUDivExpr(Delta, Step);
10437 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start,
10438 const SCEV *Stride,
10439 const SCEV *End,
10440 unsigned BitWidth,
10441 bool IsSigned) {
10443 assert(!isKnownNonPositive(Stride) &&
10444 "Stride is expected strictly positive!");
10445 // Calculate the maximum backedge count based on the range of values
10446 // permitted by Start, End, and Stride.
10447 const SCEV *MaxBECount;
10448 APInt MinStart =
10449 IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start);
10451 APInt StrideForMaxBECount =
10452 IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride);
10454 // We already know that the stride is positive, so we paper over conservatism
10455 // in our range computation by forcing StrideForMaxBECount to be at least one.
10456 // In theory this is unnecessary, but we expect MaxBECount to be a
10457 // SCEVConstant, and (udiv <constant> 0) is not constant folded by SCEV (there
10458 // is nothing to constant fold it to).
10459 APInt One(BitWidth, 1, IsSigned);
10460 StrideForMaxBECount = APIntOps::smax(One, StrideForMaxBECount);
10462 APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth)
10463 : APInt::getMaxValue(BitWidth);
10464 APInt Limit = MaxValue - (StrideForMaxBECount - 1);
10466 // Although End can be a MAX expression we estimate MaxEnd considering only
10467 // the case End = RHS of the loop termination condition. This is safe because
10468 // in the other case (End - Start) is zero, leading to a zero maximum backedge
10469 // taken count.
10470 APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit)
10471 : APIntOps::umin(getUnsignedRangeMax(End), Limit);
10473 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart) /* Delta */,
10474 getConstant(StrideForMaxBECount) /* Step */,
10475 false /* Equality */);
10477 return MaxBECount;
10480 ScalarEvolution::ExitLimit
10481 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
10482 const Loop *L, bool IsSigned,
10483 bool ControlsExit, bool AllowPredicates) {
10484 SmallPtrSet<const SCEVPredicate *, 4> Predicates;
10486 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
10487 bool PredicatedIV = false;
10489 if (!IV && AllowPredicates) {
10490 // Try to make this an AddRec using runtime tests, in the first X
10491 // iterations of this loop, where X is the SCEV expression found by the
10492 // algorithm below.
10493 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
10494 PredicatedIV = true;
10497 // Avoid weird loops
10498 if (!IV || IV->getLoop() != L || !IV->isAffine())
10499 return getCouldNotCompute();
10501 bool NoWrap = ControlsExit &&
10502 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
10504 const SCEV *Stride = IV->getStepRecurrence(*this);
10506 bool PositiveStride = isKnownPositive(Stride);
10508 // Avoid negative or zero stride values.
10509 if (!PositiveStride) {
10510 // We can compute the correct backedge taken count for loops with unknown
10511 // strides if we can prove that the loop is not an infinite loop with side
10512 // effects. Here's the loop structure we are trying to handle -
10514 // i = start
10515 // do {
10516 // A[i] = i;
10517 // i += s;
10518 // } while (i < end);
10520 // The backedge taken count for such loops is evaluated as -
10521 // (max(end, start + stride) - start - 1) /u stride
10523 // The additional preconditions that we need to check to prove correctness
10524 // of the above formula is as follows -
10526 // a) IV is either nuw or nsw depending upon signedness (indicated by the
10527 // NoWrap flag).
10528 // b) loop is single exit with no side effects.
10531 // Precondition a) implies that if the stride is negative, this is a single
10532 // trip loop. The backedge taken count formula reduces to zero in this case.
10534 // Precondition b) implies that the unknown stride cannot be zero otherwise
10535 // we have UB.
10537 // The positive stride case is the same as isKnownPositive(Stride) returning
10538 // true (original behavior of the function).
10540 // We want to make sure that the stride is truly unknown as there are edge
10541 // cases where ScalarEvolution propagates no wrap flags to the
10542 // post-increment/decrement IV even though the increment/decrement operation
10543 // itself is wrapping. The computed backedge taken count may be wrong in
10544 // such cases. This is prevented by checking that the stride is not known to
10545 // be either positive or non-positive. For example, no wrap flags are
10546 // propagated to the post-increment IV of this loop with a trip count of 2 -
10548 // unsigned char i;
10549 // for(i=127; i<128; i+=129)
10550 // A[i] = i;
10552 if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) ||
10553 !loopHasNoSideEffects(L))
10554 return getCouldNotCompute();
10555 } else if (!Stride->isOne() &&
10556 doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
10557 // Avoid proven overflow cases: this will ensure that the backedge taken
10558 // count will not generate any unsigned overflow. Relaxed no-overflow
10559 // conditions exploit NoWrapFlags, allowing to optimize in presence of
10560 // undefined behaviors like the case of C language.
10561 return getCouldNotCompute();
10563 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
10564 : ICmpInst::ICMP_ULT;
10565 const SCEV *Start = IV->getStart();
10566 const SCEV *End = RHS;
10567 // When the RHS is not invariant, we do not know the end bound of the loop and
10568 // cannot calculate the ExactBECount needed by ExitLimit. However, we can
10569 // calculate the MaxBECount, given the start, stride and max value for the end
10570 // bound of the loop (RHS), and the fact that IV does not overflow (which is
10571 // checked above).
10572 if (!isLoopInvariant(RHS, L)) {
10573 const SCEV *MaxBECount = computeMaxBECountForLT(
10574 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
10575 return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount,
10576 false /*MaxOrZero*/, Predicates);
10578 // If the backedge is taken at least once, then it will be taken
10579 // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start
10580 // is the LHS value of the less-than comparison the first time it is evaluated
10581 // and End is the RHS.
10582 const SCEV *BECountIfBackedgeTaken =
10583 computeBECount(getMinusSCEV(End, Start), Stride, false);
10584 // If the loop entry is guarded by the result of the backedge test of the
10585 // first loop iteration, then we know the backedge will be taken at least
10586 // once and so the backedge taken count is as above. If not then we use the
10587 // expression (max(End,Start)-Start)/Stride to describe the backedge count,
10588 // as if the backedge is taken at least once max(End,Start) is End and so the
10589 // result is as above, and if not max(End,Start) is Start so we get a backedge
10590 // count of zero.
10591 const SCEV *BECount;
10592 if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS))
10593 BECount = BECountIfBackedgeTaken;
10594 else {
10595 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
10596 BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
10599 const SCEV *MaxBECount;
10600 bool MaxOrZero = false;
10601 if (isa<SCEVConstant>(BECount))
10602 MaxBECount = BECount;
10603 else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) {
10604 // If we know exactly how many times the backedge will be taken if it's
10605 // taken at least once, then the backedge count will either be that or
10606 // zero.
10607 MaxBECount = BECountIfBackedgeTaken;
10608 MaxOrZero = true;
10609 } else {
10610 MaxBECount = computeMaxBECountForLT(
10611 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
10614 if (isa<SCEVCouldNotCompute>(MaxBECount) &&
10615 !isa<SCEVCouldNotCompute>(BECount))
10616 MaxBECount = getConstant(getUnsignedRangeMax(BECount));
10618 return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates);
10621 ScalarEvolution::ExitLimit
10622 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
10623 const Loop *L, bool IsSigned,
10624 bool ControlsExit, bool AllowPredicates) {
10625 SmallPtrSet<const SCEVPredicate *, 4> Predicates;
10626 // We handle only IV > Invariant
10627 if (!isLoopInvariant(RHS, L))
10628 return getCouldNotCompute();
10630 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
10631 if (!IV && AllowPredicates)
10632 // Try to make this an AddRec using runtime tests, in the first X
10633 // iterations of this loop, where X is the SCEV expression found by the
10634 // algorithm below.
10635 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
10637 // Avoid weird loops
10638 if (!IV || IV->getLoop() != L || !IV->isAffine())
10639 return getCouldNotCompute();
10641 bool NoWrap = ControlsExit &&
10642 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
10644 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
10646 // Avoid negative or zero stride values
10647 if (!isKnownPositive(Stride))
10648 return getCouldNotCompute();
10650 // Avoid proven overflow cases: this will ensure that the backedge taken count
10651 // will not generate any unsigned overflow. Relaxed no-overflow conditions
10652 // exploit NoWrapFlags, allowing to optimize in presence of undefined
10653 // behaviors like the case of C language.
10654 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
10655 return getCouldNotCompute();
10657 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
10658 : ICmpInst::ICMP_UGT;
10660 const SCEV *Start = IV->getStart();
10661 const SCEV *End = RHS;
10662 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS))
10663 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
10665 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
10667 APInt MaxStart = IsSigned ? getSignedRangeMax(Start)
10668 : getUnsignedRangeMax(Start);
10670 APInt MinStride = IsSigned ? getSignedRangeMin(Stride)
10671 : getUnsignedRangeMin(Stride);
10673 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
10674 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
10675 : APInt::getMinValue(BitWidth) + (MinStride - 1);
10677 // Although End can be a MIN expression we estimate MinEnd considering only
10678 // the case End = RHS. This is safe because in the other case (Start - End)
10679 // is zero, leading to a zero maximum backedge taken count.
10680 APInt MinEnd =
10681 IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit)
10682 : APIntOps::umax(getUnsignedRangeMin(RHS), Limit);
10685 const SCEV *MaxBECount = getCouldNotCompute();
10686 if (isa<SCEVConstant>(BECount))
10687 MaxBECount = BECount;
10688 else
10689 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
10690 getConstant(MinStride), false);
10692 if (isa<SCEVCouldNotCompute>(MaxBECount))
10693 MaxBECount = BECount;
10695 return ExitLimit(BECount, MaxBECount, false, Predicates);
10698 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
10699 ScalarEvolution &SE) const {
10700 if (Range.isFullSet()) // Infinite loop.
10701 return SE.getCouldNotCompute();
10703 // If the start is a non-zero constant, shift the range to simplify things.
10704 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
10705 if (!SC->getValue()->isZero()) {
10706 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
10707 Operands[0] = SE.getZero(SC->getType());
10708 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
10709 getNoWrapFlags(FlagNW));
10710 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
10711 return ShiftedAddRec->getNumIterationsInRange(
10712 Range.subtract(SC->getAPInt()), SE);
10713 // This is strange and shouldn't happen.
10714 return SE.getCouldNotCompute();
10717 // The only time we can solve this is when we have all constant indices.
10718 // Otherwise, we cannot determine the overflow conditions.
10719 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
10720 return SE.getCouldNotCompute();
10722 // Okay at this point we know that all elements of the chrec are constants and
10723 // that the start element is zero.
10725 // First check to see if the range contains zero. If not, the first
10726 // iteration exits.
10727 unsigned BitWidth = SE.getTypeSizeInBits(getType());
10728 if (!Range.contains(APInt(BitWidth, 0)))
10729 return SE.getZero(getType());
10731 if (isAffine()) {
10732 // If this is an affine expression then we have this situation:
10733 // Solve {0,+,A} in Range === Ax in Range
10735 // We know that zero is in the range. If A is positive then we know that
10736 // the upper value of the range must be the first possible exit value.
10737 // If A is negative then the lower of the range is the last possible loop
10738 // value. Also note that we already checked for a full range.
10739 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
10740 APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower();
10742 // The exit value should be (End+A)/A.
10743 APInt ExitVal = (End + A).udiv(A);
10744 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
10746 // Evaluate at the exit value. If we really did fall out of the valid
10747 // range, then we computed our trip count, otherwise wrap around or other
10748 // things must have happened.
10749 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
10750 if (Range.contains(Val->getValue()))
10751 return SE.getCouldNotCompute(); // Something strange happened
10753 // Ensure that the previous value is in the range. This is a sanity check.
10754 assert(Range.contains(
10755 EvaluateConstantChrecAtConstant(this,
10756 ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) &&
10757 "Linear scev computation is off in a bad way!");
10758 return SE.getConstant(ExitValue);
10761 if (isQuadratic()) {
10762 if (auto S = SolveQuadraticAddRecRange(this, Range, SE))
10763 return SE.getConstant(S.getValue());
10766 return SE.getCouldNotCompute();
10769 const SCEVAddRecExpr *
10770 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const {
10771 assert(getNumOperands() > 1 && "AddRec with zero step?");
10772 // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)),
10773 // but in this case we cannot guarantee that the value returned will be an
10774 // AddRec because SCEV does not have a fixed point where it stops
10775 // simplification: it is legal to return ({rec1} + {rec2}). For example, it
10776 // may happen if we reach arithmetic depth limit while simplifying. So we
10777 // construct the returned value explicitly.
10778 SmallVector<const SCEV *, 3> Ops;
10779 // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and
10780 // (this + Step) is {A+B,+,B+C,+...,+,N}.
10781 for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i)
10782 Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1)));
10783 // We know that the last operand is not a constant zero (otherwise it would
10784 // have been popped out earlier). This guarantees us that if the result has
10785 // the same last operand, then it will also not be popped out, meaning that
10786 // the returned value will be an AddRec.
10787 const SCEV *Last = getOperand(getNumOperands() - 1);
10788 assert(!Last->isZero() && "Recurrency with zero step?");
10789 Ops.push_back(Last);
10790 return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(),
10791 SCEV::FlagAnyWrap));
10794 // Return true when S contains at least an undef value.
10795 static inline bool containsUndefs(const SCEV *S) {
10796 return SCEVExprContains(S, [](const SCEV *S) {
10797 if (const auto *SU = dyn_cast<SCEVUnknown>(S))
10798 return isa<UndefValue>(SU->getValue());
10799 else if (const auto *SC = dyn_cast<SCEVConstant>(S))
10800 return isa<UndefValue>(SC->getValue());
10801 return false;
10805 namespace {
10807 // Collect all steps of SCEV expressions.
10808 struct SCEVCollectStrides {
10809 ScalarEvolution &SE;
10810 SmallVectorImpl<const SCEV *> &Strides;
10812 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
10813 : SE(SE), Strides(S) {}
10815 bool follow(const SCEV *S) {
10816 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
10817 Strides.push_back(AR->getStepRecurrence(SE));
10818 return true;
10821 bool isDone() const { return false; }
10824 // Collect all SCEVUnknown and SCEVMulExpr expressions.
10825 struct SCEVCollectTerms {
10826 SmallVectorImpl<const SCEV *> &Terms;
10828 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {}
10830 bool follow(const SCEV *S) {
10831 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) ||
10832 isa<SCEVSignExtendExpr>(S)) {
10833 if (!containsUndefs(S))
10834 Terms.push_back(S);
10836 // Stop recursion: once we collected a term, do not walk its operands.
10837 return false;
10840 // Keep looking.
10841 return true;
10844 bool isDone() const { return false; }
10847 // Check if a SCEV contains an AddRecExpr.
10848 struct SCEVHasAddRec {
10849 bool &ContainsAddRec;
10851 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
10852 ContainsAddRec = false;
10855 bool follow(const SCEV *S) {
10856 if (isa<SCEVAddRecExpr>(S)) {
10857 ContainsAddRec = true;
10859 // Stop recursion: once we collected a term, do not walk its operands.
10860 return false;
10863 // Keep looking.
10864 return true;
10867 bool isDone() const { return false; }
10870 // Find factors that are multiplied with an expression that (possibly as a
10871 // subexpression) contains an AddRecExpr. In the expression:
10873 // 8 * (100 + %p * %q * (%a + {0, +, 1}_loop))
10875 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
10876 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
10877 // parameters as they form a product with an induction variable.
10879 // This collector expects all array size parameters to be in the same MulExpr.
10880 // It might be necessary to later add support for collecting parameters that are
10881 // spread over different nested MulExpr.
10882 struct SCEVCollectAddRecMultiplies {
10883 SmallVectorImpl<const SCEV *> &Terms;
10884 ScalarEvolution &SE;
10886 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
10887 : Terms(T), SE(SE) {}
10889 bool follow(const SCEV *S) {
10890 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
10891 bool HasAddRec = false;
10892 SmallVector<const SCEV *, 0> Operands;
10893 for (auto Op : Mul->operands()) {
10894 const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op);
10895 if (Unknown && !isa<CallInst>(Unknown->getValue())) {
10896 Operands.push_back(Op);
10897 } else if (Unknown) {
10898 HasAddRec = true;
10899 } else {
10900 bool ContainsAddRec;
10901 SCEVHasAddRec ContiansAddRec(ContainsAddRec);
10902 visitAll(Op, ContiansAddRec);
10903 HasAddRec |= ContainsAddRec;
10906 if (Operands.size() == 0)
10907 return true;
10909 if (!HasAddRec)
10910 return false;
10912 Terms.push_back(SE.getMulExpr(Operands));
10913 // Stop recursion: once we collected a term, do not walk its operands.
10914 return false;
10917 // Keep looking.
10918 return true;
10921 bool isDone() const { return false; }
10924 } // end anonymous namespace
10926 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
10927 /// two places:
10928 /// 1) The strides of AddRec expressions.
10929 /// 2) Unknowns that are multiplied with AddRec expressions.
10930 void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
10931 SmallVectorImpl<const SCEV *> &Terms) {
10932 SmallVector<const SCEV *, 4> Strides;
10933 SCEVCollectStrides StrideCollector(*this, Strides);
10934 visitAll(Expr, StrideCollector);
10936 LLVM_DEBUG({
10937 dbgs() << "Strides:\n";
10938 for (const SCEV *S : Strides)
10939 dbgs() << *S << "\n";
10942 for (const SCEV *S : Strides) {
10943 SCEVCollectTerms TermCollector(Terms);
10944 visitAll(S, TermCollector);
10947 LLVM_DEBUG({
10948 dbgs() << "Terms:\n";
10949 for (const SCEV *T : Terms)
10950 dbgs() << *T << "\n";
10953 SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
10954 visitAll(Expr, MulCollector);
10957 static bool findArrayDimensionsRec(ScalarEvolution &SE,
10958 SmallVectorImpl<const SCEV *> &Terms,
10959 SmallVectorImpl<const SCEV *> &Sizes) {
10960 int Last = Terms.size() - 1;
10961 const SCEV *Step = Terms[Last];
10963 // End of recursion.
10964 if (Last == 0) {
10965 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
10966 SmallVector<const SCEV *, 2> Qs;
10967 for (const SCEV *Op : M->operands())
10968 if (!isa<SCEVConstant>(Op))
10969 Qs.push_back(Op);
10971 Step = SE.getMulExpr(Qs);
10974 Sizes.push_back(Step);
10975 return true;
10978 for (const SCEV *&Term : Terms) {
10979 // Normalize the terms before the next call to findArrayDimensionsRec.
10980 const SCEV *Q, *R;
10981 SCEVDivision::divide(SE, Term, Step, &Q, &R);
10983 // Bail out when GCD does not evenly divide one of the terms.
10984 if (!R->isZero())
10985 return false;
10987 Term = Q;
10990 // Remove all SCEVConstants.
10991 Terms.erase(
10992 remove_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }),
10993 Terms.end());
10995 if (Terms.size() > 0)
10996 if (!findArrayDimensionsRec(SE, Terms, Sizes))
10997 return false;
10999 Sizes.push_back(Step);
11000 return true;
11003 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
11004 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
11005 for (const SCEV *T : Terms)
11006 if (SCEVExprContains(T, isa<SCEVUnknown, const SCEV *>))
11007 return true;
11008 return false;
11011 // Return the number of product terms in S.
11012 static inline int numberOfTerms(const SCEV *S) {
11013 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
11014 return Expr->getNumOperands();
11015 return 1;
11018 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
11019 if (isa<SCEVConstant>(T))
11020 return nullptr;
11022 if (isa<SCEVUnknown>(T))
11023 return T;
11025 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
11026 SmallVector<const SCEV *, 2> Factors;
11027 for (const SCEV *Op : M->operands())
11028 if (!isa<SCEVConstant>(Op))
11029 Factors.push_back(Op);
11031 return SE.getMulExpr(Factors);
11034 return T;
11037 /// Return the size of an element read or written by Inst.
11038 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
11039 Type *Ty;
11040 if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
11041 Ty = Store->getValueOperand()->getType();
11042 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
11043 Ty = Load->getType();
11044 else
11045 return nullptr;
11047 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
11048 return getSizeOfExpr(ETy, Ty);
11051 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
11052 SmallVectorImpl<const SCEV *> &Sizes,
11053 const SCEV *ElementSize) {
11054 if (Terms.size() < 1 || !ElementSize)
11055 return;
11057 // Early return when Terms do not contain parameters: we do not delinearize
11058 // non parametric SCEVs.
11059 if (!containsParameters(Terms))
11060 return;
11062 LLVM_DEBUG({
11063 dbgs() << "Terms:\n";
11064 for (const SCEV *T : Terms)
11065 dbgs() << *T << "\n";
11068 // Remove duplicates.
11069 array_pod_sort(Terms.begin(), Terms.end());
11070 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
11072 // Put larger terms first.
11073 llvm::sort(Terms, [](const SCEV *LHS, const SCEV *RHS) {
11074 return numberOfTerms(LHS) > numberOfTerms(RHS);
11077 // Try to divide all terms by the element size. If term is not divisible by
11078 // element size, proceed with the original term.
11079 for (const SCEV *&Term : Terms) {
11080 const SCEV *Q, *R;
11081 SCEVDivision::divide(*this, Term, ElementSize, &Q, &R);
11082 if (!Q->isZero())
11083 Term = Q;
11086 SmallVector<const SCEV *, 4> NewTerms;
11088 // Remove constant factors.
11089 for (const SCEV *T : Terms)
11090 if (const SCEV *NewT = removeConstantFactors(*this, T))
11091 NewTerms.push_back(NewT);
11093 LLVM_DEBUG({
11094 dbgs() << "Terms after sorting:\n";
11095 for (const SCEV *T : NewTerms)
11096 dbgs() << *T << "\n";
11099 if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) {
11100 Sizes.clear();
11101 return;
11104 // The last element to be pushed into Sizes is the size of an element.
11105 Sizes.push_back(ElementSize);
11107 LLVM_DEBUG({
11108 dbgs() << "Sizes:\n";
11109 for (const SCEV *S : Sizes)
11110 dbgs() << *S << "\n";
11114 void ScalarEvolution::computeAccessFunctions(
11115 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
11116 SmallVectorImpl<const SCEV *> &Sizes) {
11117 // Early exit in case this SCEV is not an affine multivariate function.
11118 if (Sizes.empty())
11119 return;
11121 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
11122 if (!AR->isAffine())
11123 return;
11125 const SCEV *Res = Expr;
11126 int Last = Sizes.size() - 1;
11127 for (int i = Last; i >= 0; i--) {
11128 const SCEV *Q, *R;
11129 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
11131 LLVM_DEBUG({
11132 dbgs() << "Res: " << *Res << "\n";
11133 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
11134 dbgs() << "Res divided by Sizes[i]:\n";
11135 dbgs() << "Quotient: " << *Q << "\n";
11136 dbgs() << "Remainder: " << *R << "\n";
11139 Res = Q;
11141 // Do not record the last subscript corresponding to the size of elements in
11142 // the array.
11143 if (i == Last) {
11145 // Bail out if the remainder is too complex.
11146 if (isa<SCEVAddRecExpr>(R)) {
11147 Subscripts.clear();
11148 Sizes.clear();
11149 return;
11152 continue;
11155 // Record the access function for the current subscript.
11156 Subscripts.push_back(R);
11159 // Also push in last position the remainder of the last division: it will be
11160 // the access function of the innermost dimension.
11161 Subscripts.push_back(Res);
11163 std::reverse(Subscripts.begin(), Subscripts.end());
11165 LLVM_DEBUG({
11166 dbgs() << "Subscripts:\n";
11167 for (const SCEV *S : Subscripts)
11168 dbgs() << *S << "\n";
11172 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and
11173 /// sizes of an array access. Returns the remainder of the delinearization that
11174 /// is the offset start of the array. The SCEV->delinearize algorithm computes
11175 /// the multiples of SCEV coefficients: that is a pattern matching of sub
11176 /// expressions in the stride and base of a SCEV corresponding to the
11177 /// computation of a GCD (greatest common divisor) of base and stride. When
11178 /// SCEV->delinearize fails, it returns the SCEV unchanged.
11180 /// For example: when analyzing the memory access A[i][j][k] in this loop nest
11182 /// void foo(long n, long m, long o, double A[n][m][o]) {
11184 /// for (long i = 0; i < n; i++)
11185 /// for (long j = 0; j < m; j++)
11186 /// for (long k = 0; k < o; k++)
11187 /// A[i][j][k] = 1.0;
11188 /// }
11190 /// the delinearization input is the following AddRec SCEV:
11192 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
11194 /// From this SCEV, we are able to say that the base offset of the access is %A
11195 /// because it appears as an offset that does not divide any of the strides in
11196 /// the loops:
11198 /// CHECK: Base offset: %A
11200 /// and then SCEV->delinearize determines the size of some of the dimensions of
11201 /// the array as these are the multiples by which the strides are happening:
11203 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
11205 /// Note that the outermost dimension remains of UnknownSize because there are
11206 /// no strides that would help identifying the size of the last dimension: when
11207 /// the array has been statically allocated, one could compute the size of that
11208 /// dimension by dividing the overall size of the array by the size of the known
11209 /// dimensions: %m * %o * 8.
11211 /// Finally delinearize provides the access functions for the array reference
11212 /// that does correspond to A[i][j][k] of the above C testcase:
11214 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
11216 /// The testcases are checking the output of a function pass:
11217 /// DelinearizationPass that walks through all loads and stores of a function
11218 /// asking for the SCEV of the memory access with respect to all enclosing
11219 /// loops, calling SCEV->delinearize on that and printing the results.
11220 void ScalarEvolution::delinearize(const SCEV *Expr,
11221 SmallVectorImpl<const SCEV *> &Subscripts,
11222 SmallVectorImpl<const SCEV *> &Sizes,
11223 const SCEV *ElementSize) {
11224 // First step: collect parametric terms.
11225 SmallVector<const SCEV *, 4> Terms;
11226 collectParametricTerms(Expr, Terms);
11228 if (Terms.empty())
11229 return;
11231 // Second step: find subscript sizes.
11232 findArrayDimensions(Terms, Sizes, ElementSize);
11234 if (Sizes.empty())
11235 return;
11237 // Third step: compute the access functions for each subscript.
11238 computeAccessFunctions(Expr, Subscripts, Sizes);
11240 if (Subscripts.empty())
11241 return;
11243 LLVM_DEBUG({
11244 dbgs() << "succeeded to delinearize " << *Expr << "\n";
11245 dbgs() << "ArrayDecl[UnknownSize]";
11246 for (const SCEV *S : Sizes)
11247 dbgs() << "[" << *S << "]";
11249 dbgs() << "\nArrayRef";
11250 for (const SCEV *S : Subscripts)
11251 dbgs() << "[" << *S << "]";
11252 dbgs() << "\n";
11256 //===----------------------------------------------------------------------===//
11257 // SCEVCallbackVH Class Implementation
11258 //===----------------------------------------------------------------------===//
11260 void ScalarEvolution::SCEVCallbackVH::deleted() {
11261 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
11262 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
11263 SE->ConstantEvolutionLoopExitValue.erase(PN);
11264 SE->eraseValueFromMap(getValPtr());
11265 // this now dangles!
11268 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
11269 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
11271 // Forget all the expressions associated with users of the old value,
11272 // so that future queries will recompute the expressions using the new
11273 // value.
11274 Value *Old = getValPtr();
11275 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
11276 SmallPtrSet<User *, 8> Visited;
11277 while (!Worklist.empty()) {
11278 User *U = Worklist.pop_back_val();
11279 // Deleting the Old value will cause this to dangle. Postpone
11280 // that until everything else is done.
11281 if (U == Old)
11282 continue;
11283 if (!Visited.insert(U).second)
11284 continue;
11285 if (PHINode *PN = dyn_cast<PHINode>(U))
11286 SE->ConstantEvolutionLoopExitValue.erase(PN);
11287 SE->eraseValueFromMap(U);
11288 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
11290 // Delete the Old value.
11291 if (PHINode *PN = dyn_cast<PHINode>(Old))
11292 SE->ConstantEvolutionLoopExitValue.erase(PN);
11293 SE->eraseValueFromMap(Old);
11294 // this now dangles!
11297 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
11298 : CallbackVH(V), SE(se) {}
11300 //===----------------------------------------------------------------------===//
11301 // ScalarEvolution Class Implementation
11302 //===----------------------------------------------------------------------===//
11304 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
11305 AssumptionCache &AC, DominatorTree &DT,
11306 LoopInfo &LI)
11307 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
11308 CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64),
11309 LoopDispositions(64), BlockDispositions(64) {
11310 // To use guards for proving predicates, we need to scan every instruction in
11311 // relevant basic blocks, and not just terminators. Doing this is a waste of
11312 // time if the IR does not actually contain any calls to
11313 // @llvm.experimental.guard, so do a quick check and remember this beforehand.
11315 // This pessimizes the case where a pass that preserves ScalarEvolution wants
11316 // to _add_ guards to the module when there weren't any before, and wants
11317 // ScalarEvolution to optimize based on those guards. For now we prefer to be
11318 // efficient in lieu of being smart in that rather obscure case.
11320 auto *GuardDecl = F.getParent()->getFunction(
11321 Intrinsic::getName(Intrinsic::experimental_guard));
11322 HasGuards = GuardDecl && !GuardDecl->use_empty();
11325 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
11326 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
11327 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
11328 ValueExprMap(std::move(Arg.ValueExprMap)),
11329 PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)),
11330 PendingPhiRanges(std::move(Arg.PendingPhiRanges)),
11331 PendingMerges(std::move(Arg.PendingMerges)),
11332 MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)),
11333 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
11334 PredicatedBackedgeTakenCounts(
11335 std::move(Arg.PredicatedBackedgeTakenCounts)),
11336 ConstantEvolutionLoopExitValue(
11337 std::move(Arg.ConstantEvolutionLoopExitValue)),
11338 ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
11339 LoopDispositions(std::move(Arg.LoopDispositions)),
11340 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)),
11341 BlockDispositions(std::move(Arg.BlockDispositions)),
11342 UnsignedRanges(std::move(Arg.UnsignedRanges)),
11343 SignedRanges(std::move(Arg.SignedRanges)),
11344 UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
11345 UniquePreds(std::move(Arg.UniquePreds)),
11346 SCEVAllocator(std::move(Arg.SCEVAllocator)),
11347 LoopUsers(std::move(Arg.LoopUsers)),
11348 PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)),
11349 FirstUnknown(Arg.FirstUnknown) {
11350 Arg.FirstUnknown = nullptr;
11353 ScalarEvolution::~ScalarEvolution() {
11354 // Iterate through all the SCEVUnknown instances and call their
11355 // destructors, so that they release their references to their values.
11356 for (SCEVUnknown *U = FirstUnknown; U;) {
11357 SCEVUnknown *Tmp = U;
11358 U = U->Next;
11359 Tmp->~SCEVUnknown();
11361 FirstUnknown = nullptr;
11363 ExprValueMap.clear();
11364 ValueExprMap.clear();
11365 HasRecMap.clear();
11367 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
11368 // that a loop had multiple computable exits.
11369 for (auto &BTCI : BackedgeTakenCounts)
11370 BTCI.second.clear();
11371 for (auto &BTCI : PredicatedBackedgeTakenCounts)
11372 BTCI.second.clear();
11374 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
11375 assert(PendingPhiRanges.empty() && "getRangeRef garbage");
11376 assert(PendingMerges.empty() && "isImpliedViaMerge garbage");
11377 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
11378 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
11381 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
11382 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
11385 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
11386 const Loop *L) {
11387 // Print all inner loops first
11388 for (Loop *I : *L)
11389 PrintLoopInfo(OS, SE, I);
11391 OS << "Loop ";
11392 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11393 OS << ": ";
11395 SmallVector<BasicBlock *, 8> ExitBlocks;
11396 L->getExitBlocks(ExitBlocks);
11397 if (ExitBlocks.size() != 1)
11398 OS << "<multiple exits> ";
11400 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
11401 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
11402 } else {
11403 OS << "Unpredictable backedge-taken count. ";
11406 OS << "\n"
11407 "Loop ";
11408 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11409 OS << ": ";
11411 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
11412 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
11413 if (SE->isBackedgeTakenCountMaxOrZero(L))
11414 OS << ", actual taken count either this or zero.";
11415 } else {
11416 OS << "Unpredictable max backedge-taken count. ";
11419 OS << "\n"
11420 "Loop ";
11421 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11422 OS << ": ";
11424 SCEVUnionPredicate Pred;
11425 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred);
11426 if (!isa<SCEVCouldNotCompute>(PBT)) {
11427 OS << "Predicated backedge-taken count is " << *PBT << "\n";
11428 OS << " Predicates:\n";
11429 Pred.print(OS, 4);
11430 } else {
11431 OS << "Unpredictable predicated backedge-taken count. ";
11433 OS << "\n";
11435 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
11436 OS << "Loop ";
11437 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11438 OS << ": ";
11439 OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n";
11443 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
11444 switch (LD) {
11445 case ScalarEvolution::LoopVariant:
11446 return "Variant";
11447 case ScalarEvolution::LoopInvariant:
11448 return "Invariant";
11449 case ScalarEvolution::LoopComputable:
11450 return "Computable";
11452 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
11455 void ScalarEvolution::print(raw_ostream &OS) const {
11456 // ScalarEvolution's implementation of the print method is to print
11457 // out SCEV values of all instructions that are interesting. Doing
11458 // this potentially causes it to create new SCEV objects though,
11459 // which technically conflicts with the const qualifier. This isn't
11460 // observable from outside the class though, so casting away the
11461 // const isn't dangerous.
11462 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
11464 OS << "Classifying expressions for: ";
11465 F.printAsOperand(OS, /*PrintType=*/false);
11466 OS << "\n";
11467 for (Instruction &I : instructions(F))
11468 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
11469 OS << I << '\n';
11470 OS << " --> ";
11471 const SCEV *SV = SE.getSCEV(&I);
11472 SV->print(OS);
11473 if (!isa<SCEVCouldNotCompute>(SV)) {
11474 OS << " U: ";
11475 SE.getUnsignedRange(SV).print(OS);
11476 OS << " S: ";
11477 SE.getSignedRange(SV).print(OS);
11480 const Loop *L = LI.getLoopFor(I.getParent());
11482 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
11483 if (AtUse != SV) {
11484 OS << " --> ";
11485 AtUse->print(OS);
11486 if (!isa<SCEVCouldNotCompute>(AtUse)) {
11487 OS << " U: ";
11488 SE.getUnsignedRange(AtUse).print(OS);
11489 OS << " S: ";
11490 SE.getSignedRange(AtUse).print(OS);
11494 if (L) {
11495 OS << "\t\t" "Exits: ";
11496 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
11497 if (!SE.isLoopInvariant(ExitValue, L)) {
11498 OS << "<<Unknown>>";
11499 } else {
11500 OS << *ExitValue;
11503 bool First = true;
11504 for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
11505 if (First) {
11506 OS << "\t\t" "LoopDispositions: { ";
11507 First = false;
11508 } else {
11509 OS << ", ";
11512 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11513 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
11516 for (auto *InnerL : depth_first(L)) {
11517 if (InnerL == L)
11518 continue;
11519 if (First) {
11520 OS << "\t\t" "LoopDispositions: { ";
11521 First = false;
11522 } else {
11523 OS << ", ";
11526 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11527 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
11530 OS << " }";
11533 OS << "\n";
11536 OS << "Determining loop execution counts for: ";
11537 F.printAsOperand(OS, /*PrintType=*/false);
11538 OS << "\n";
11539 for (Loop *I : LI)
11540 PrintLoopInfo(OS, &SE, I);
11543 ScalarEvolution::LoopDisposition
11544 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
11545 auto &Values = LoopDispositions[S];
11546 for (auto &V : Values) {
11547 if (V.getPointer() == L)
11548 return V.getInt();
11550 Values.emplace_back(L, LoopVariant);
11551 LoopDisposition D = computeLoopDisposition(S, L);
11552 auto &Values2 = LoopDispositions[S];
11553 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
11554 if (V.getPointer() == L) {
11555 V.setInt(D);
11556 break;
11559 return D;
11562 ScalarEvolution::LoopDisposition
11563 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
11564 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
11565 case scConstant:
11566 return LoopInvariant;
11567 case scTruncate:
11568 case scZeroExtend:
11569 case scSignExtend:
11570 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
11571 case scAddRecExpr: {
11572 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
11574 // If L is the addrec's loop, it's computable.
11575 if (AR->getLoop() == L)
11576 return LoopComputable;
11578 // Add recurrences are never invariant in the function-body (null loop).
11579 if (!L)
11580 return LoopVariant;
11582 // Everything that is not defined at loop entry is variant.
11583 if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))
11584 return LoopVariant;
11585 assert(!L->contains(AR->getLoop()) && "Containing loop's header does not"
11586 " dominate the contained loop's header?");
11588 // This recurrence is invariant w.r.t. L if AR's loop contains L.
11589 if (AR->getLoop()->contains(L))
11590 return LoopInvariant;
11592 // This recurrence is variant w.r.t. L if any of its operands
11593 // are variant.
11594 for (auto *Op : AR->operands())
11595 if (!isLoopInvariant(Op, L))
11596 return LoopVariant;
11598 // Otherwise it's loop-invariant.
11599 return LoopInvariant;
11601 case scAddExpr:
11602 case scMulExpr:
11603 case scUMaxExpr:
11604 case scSMaxExpr: {
11605 bool HasVarying = false;
11606 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
11607 LoopDisposition D = getLoopDisposition(Op, L);
11608 if (D == LoopVariant)
11609 return LoopVariant;
11610 if (D == LoopComputable)
11611 HasVarying = true;
11613 return HasVarying ? LoopComputable : LoopInvariant;
11615 case scUDivExpr: {
11616 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
11617 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
11618 if (LD == LoopVariant)
11619 return LoopVariant;
11620 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
11621 if (RD == LoopVariant)
11622 return LoopVariant;
11623 return (LD == LoopInvariant && RD == LoopInvariant) ?
11624 LoopInvariant : LoopComputable;
11626 case scUnknown:
11627 // All non-instruction values are loop invariant. All instructions are loop
11628 // invariant if they are not contained in the specified loop.
11629 // Instructions are never considered invariant in the function body
11630 // (null loop) because they are defined within the "loop".
11631 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
11632 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
11633 return LoopInvariant;
11634 case scCouldNotCompute:
11635 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
11637 llvm_unreachable("Unknown SCEV kind!");
11640 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
11641 return getLoopDisposition(S, L) == LoopInvariant;
11644 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
11645 return getLoopDisposition(S, L) == LoopComputable;
11648 ScalarEvolution::BlockDisposition
11649 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
11650 auto &Values = BlockDispositions[S];
11651 for (auto &V : Values) {
11652 if (V.getPointer() == BB)
11653 return V.getInt();
11655 Values.emplace_back(BB, DoesNotDominateBlock);
11656 BlockDisposition D = computeBlockDisposition(S, BB);
11657 auto &Values2 = BlockDispositions[S];
11658 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
11659 if (V.getPointer() == BB) {
11660 V.setInt(D);
11661 break;
11664 return D;
11667 ScalarEvolution::BlockDisposition
11668 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
11669 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
11670 case scConstant:
11671 return ProperlyDominatesBlock;
11672 case scTruncate:
11673 case scZeroExtend:
11674 case scSignExtend:
11675 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
11676 case scAddRecExpr: {
11677 // This uses a "dominates" query instead of "properly dominates" query
11678 // to test for proper dominance too, because the instruction which
11679 // produces the addrec's value is a PHI, and a PHI effectively properly
11680 // dominates its entire containing block.
11681 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
11682 if (!DT.dominates(AR->getLoop()->getHeader(), BB))
11683 return DoesNotDominateBlock;
11685 // Fall through into SCEVNAryExpr handling.
11686 LLVM_FALLTHROUGH;
11688 case scAddExpr:
11689 case scMulExpr:
11690 case scUMaxExpr:
11691 case scSMaxExpr: {
11692 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
11693 bool Proper = true;
11694 for (const SCEV *NAryOp : NAry->operands()) {
11695 BlockDisposition D = getBlockDisposition(NAryOp, BB);
11696 if (D == DoesNotDominateBlock)
11697 return DoesNotDominateBlock;
11698 if (D == DominatesBlock)
11699 Proper = false;
11701 return Proper ? ProperlyDominatesBlock : DominatesBlock;
11703 case scUDivExpr: {
11704 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
11705 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
11706 BlockDisposition LD = getBlockDisposition(LHS, BB);
11707 if (LD == DoesNotDominateBlock)
11708 return DoesNotDominateBlock;
11709 BlockDisposition RD = getBlockDisposition(RHS, BB);
11710 if (RD == DoesNotDominateBlock)
11711 return DoesNotDominateBlock;
11712 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
11713 ProperlyDominatesBlock : DominatesBlock;
11715 case scUnknown:
11716 if (Instruction *I =
11717 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
11718 if (I->getParent() == BB)
11719 return DominatesBlock;
11720 if (DT.properlyDominates(I->getParent(), BB))
11721 return ProperlyDominatesBlock;
11722 return DoesNotDominateBlock;
11724 return ProperlyDominatesBlock;
11725 case scCouldNotCompute:
11726 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
11728 llvm_unreachable("Unknown SCEV kind!");
11731 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
11732 return getBlockDisposition(S, BB) >= DominatesBlock;
11735 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
11736 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
11739 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
11740 return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; });
11743 bool ScalarEvolution::ExitLimit::hasOperand(const SCEV *S) const {
11744 auto IsS = [&](const SCEV *X) { return S == X; };
11745 auto ContainsS = [&](const SCEV *X) {
11746 return !isa<SCEVCouldNotCompute>(X) && SCEVExprContains(X, IsS);
11748 return ContainsS(ExactNotTaken) || ContainsS(MaxNotTaken);
11751 void
11752 ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
11753 ValuesAtScopes.erase(S);
11754 LoopDispositions.erase(S);
11755 BlockDispositions.erase(S);
11756 UnsignedRanges.erase(S);
11757 SignedRanges.erase(S);
11758 ExprValueMap.erase(S);
11759 HasRecMap.erase(S);
11760 MinTrailingZerosCache.erase(S);
11762 for (auto I = PredicatedSCEVRewrites.begin();
11763 I != PredicatedSCEVRewrites.end();) {
11764 std::pair<const SCEV *, const Loop *> Entry = I->first;
11765 if (Entry.first == S)
11766 PredicatedSCEVRewrites.erase(I++);
11767 else
11768 ++I;
11771 auto RemoveSCEVFromBackedgeMap =
11772 [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
11773 for (auto I = Map.begin(), E = Map.end(); I != E;) {
11774 BackedgeTakenInfo &BEInfo = I->second;
11775 if (BEInfo.hasOperand(S, this)) {
11776 BEInfo.clear();
11777 Map.erase(I++);
11778 } else
11779 ++I;
11783 RemoveSCEVFromBackedgeMap(BackedgeTakenCounts);
11784 RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts);
11787 void
11788 ScalarEvolution::getUsedLoops(const SCEV *S,
11789 SmallPtrSetImpl<const Loop *> &LoopsUsed) {
11790 struct FindUsedLoops {
11791 FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed)
11792 : LoopsUsed(LoopsUsed) {}
11793 SmallPtrSetImpl<const Loop *> &LoopsUsed;
11794 bool follow(const SCEV *S) {
11795 if (auto *AR = dyn_cast<SCEVAddRecExpr>(S))
11796 LoopsUsed.insert(AR->getLoop());
11797 return true;
11800 bool isDone() const { return false; }
11803 FindUsedLoops F(LoopsUsed);
11804 SCEVTraversal<FindUsedLoops>(F).visitAll(S);
11807 void ScalarEvolution::addToLoopUseLists(const SCEV *S) {
11808 SmallPtrSet<const Loop *, 8> LoopsUsed;
11809 getUsedLoops(S, LoopsUsed);
11810 for (auto *L : LoopsUsed)
11811 LoopUsers[L].push_back(S);
11814 void ScalarEvolution::verify() const {
11815 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
11816 ScalarEvolution SE2(F, TLI, AC, DT, LI);
11818 SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end());
11820 // Map's SCEV expressions from one ScalarEvolution "universe" to another.
11821 struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> {
11822 SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {}
11824 const SCEV *visitConstant(const SCEVConstant *Constant) {
11825 return SE.getConstant(Constant->getAPInt());
11828 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
11829 return SE.getUnknown(Expr->getValue());
11832 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
11833 return SE.getCouldNotCompute();
11837 SCEVMapper SCM(SE2);
11839 while (!LoopStack.empty()) {
11840 auto *L = LoopStack.pop_back_val();
11841 LoopStack.insert(LoopStack.end(), L->begin(), L->end());
11843 auto *CurBECount = SCM.visit(
11844 const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L));
11845 auto *NewBECount = SE2.getBackedgeTakenCount(L);
11847 if (CurBECount == SE2.getCouldNotCompute() ||
11848 NewBECount == SE2.getCouldNotCompute()) {
11849 // NB! This situation is legal, but is very suspicious -- whatever pass
11850 // change the loop to make a trip count go from could not compute to
11851 // computable or vice-versa *should have* invalidated SCEV. However, we
11852 // choose not to assert here (for now) since we don't want false
11853 // positives.
11854 continue;
11857 if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) {
11858 // SCEV treats "undef" as an unknown but consistent value (i.e. it does
11859 // not propagate undef aggressively). This means we can (and do) fail
11860 // verification in cases where a transform makes the trip count of a loop
11861 // go from "undef" to "undef+1" (say). The transform is fine, since in
11862 // both cases the loop iterates "undef" times, but SCEV thinks we
11863 // increased the trip count of the loop by 1 incorrectly.
11864 continue;
11867 if (SE.getTypeSizeInBits(CurBECount->getType()) >
11868 SE.getTypeSizeInBits(NewBECount->getType()))
11869 NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType());
11870 else if (SE.getTypeSizeInBits(CurBECount->getType()) <
11871 SE.getTypeSizeInBits(NewBECount->getType()))
11872 CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType());
11874 auto *ConstantDelta =
11875 dyn_cast<SCEVConstant>(SE2.getMinusSCEV(CurBECount, NewBECount));
11877 if (ConstantDelta && ConstantDelta->getAPInt() != 0) {
11878 dbgs() << "Trip Count Changed!\n";
11879 dbgs() << "Old: " << *CurBECount << "\n";
11880 dbgs() << "New: " << *NewBECount << "\n";
11881 dbgs() << "Delta: " << *ConstantDelta << "\n";
11882 std::abort();
11887 bool ScalarEvolution::invalidate(
11888 Function &F, const PreservedAnalyses &PA,
11889 FunctionAnalysisManager::Invalidator &Inv) {
11890 // Invalidate the ScalarEvolution object whenever it isn't preserved or one
11891 // of its dependencies is invalidated.
11892 auto PAC = PA.getChecker<ScalarEvolutionAnalysis>();
11893 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
11894 Inv.invalidate<AssumptionAnalysis>(F, PA) ||
11895 Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
11896 Inv.invalidate<LoopAnalysis>(F, PA);
11899 AnalysisKey ScalarEvolutionAnalysis::Key;
11901 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
11902 FunctionAnalysisManager &AM) {
11903 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
11904 AM.getResult<AssumptionAnalysis>(F),
11905 AM.getResult<DominatorTreeAnalysis>(F),
11906 AM.getResult<LoopAnalysis>(F));
11909 PreservedAnalyses
11910 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
11911 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
11912 return PreservedAnalyses::all();
11915 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
11916 "Scalar Evolution Analysis", false, true)
11917 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
11918 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
11919 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
11920 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
11921 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
11922 "Scalar Evolution Analysis", false, true)
11924 char ScalarEvolutionWrapperPass::ID = 0;
11926 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
11927 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
11930 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
11931 SE.reset(new ScalarEvolution(
11932 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
11933 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
11934 getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
11935 getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
11936 return false;
11939 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
11941 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
11942 SE->print(OS);
11945 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
11946 if (!VerifySCEV)
11947 return;
11949 SE->verify();
11952 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
11953 AU.setPreservesAll();
11954 AU.addRequiredTransitive<AssumptionCacheTracker>();
11955 AU.addRequiredTransitive<LoopInfoWrapperPass>();
11956 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
11957 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
11960 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS,
11961 const SCEV *RHS) {
11962 FoldingSetNodeID ID;
11963 assert(LHS->getType() == RHS->getType() &&
11964 "Type mismatch between LHS and RHS");
11965 // Unique this node based on the arguments
11966 ID.AddInteger(SCEVPredicate::P_Equal);
11967 ID.AddPointer(LHS);
11968 ID.AddPointer(RHS);
11969 void *IP = nullptr;
11970 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
11971 return S;
11972 SCEVEqualPredicate *Eq = new (SCEVAllocator)
11973 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
11974 UniquePreds.InsertNode(Eq, IP);
11975 return Eq;
11978 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
11979 const SCEVAddRecExpr *AR,
11980 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
11981 FoldingSetNodeID ID;
11982 // Unique this node based on the arguments
11983 ID.AddInteger(SCEVPredicate::P_Wrap);
11984 ID.AddPointer(AR);
11985 ID.AddInteger(AddedFlags);
11986 void *IP = nullptr;
11987 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
11988 return S;
11989 auto *OF = new (SCEVAllocator)
11990 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
11991 UniquePreds.InsertNode(OF, IP);
11992 return OF;
11995 namespace {
11997 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
11998 public:
12000 /// Rewrites \p S in the context of a loop L and the SCEV predication
12001 /// infrastructure.
12003 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
12004 /// equivalences present in \p Pred.
12006 /// If \p NewPreds is non-null, rewrite is free to add further predicates to
12007 /// \p NewPreds such that the result will be an AddRecExpr.
12008 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
12009 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
12010 SCEVUnionPredicate *Pred) {
12011 SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred);
12012 return Rewriter.visit(S);
12015 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
12016 if (Pred) {
12017 auto ExprPreds = Pred->getPredicatesForExpr(Expr);
12018 for (auto *Pred : ExprPreds)
12019 if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred))
12020 if (IPred->getLHS() == Expr)
12021 return IPred->getRHS();
12023 return convertToAddRecWithPreds(Expr);
12026 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
12027 const SCEV *Operand = visit(Expr->getOperand());
12028 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
12029 if (AR && AR->getLoop() == L && AR->isAffine()) {
12030 // This couldn't be folded because the operand didn't have the nuw
12031 // flag. Add the nusw flag as an assumption that we could make.
12032 const SCEV *Step = AR->getStepRecurrence(SE);
12033 Type *Ty = Expr->getType();
12034 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
12035 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
12036 SE.getSignExtendExpr(Step, Ty), L,
12037 AR->getNoWrapFlags());
12039 return SE.getZeroExtendExpr(Operand, Expr->getType());
12042 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
12043 const SCEV *Operand = visit(Expr->getOperand());
12044 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
12045 if (AR && AR->getLoop() == L && AR->isAffine()) {
12046 // This couldn't be folded because the operand didn't have the nsw
12047 // flag. Add the nssw flag as an assumption that we could make.
12048 const SCEV *Step = AR->getStepRecurrence(SE);
12049 Type *Ty = Expr->getType();
12050 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
12051 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
12052 SE.getSignExtendExpr(Step, Ty), L,
12053 AR->getNoWrapFlags());
12055 return SE.getSignExtendExpr(Operand, Expr->getType());
12058 private:
12059 explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
12060 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
12061 SCEVUnionPredicate *Pred)
12062 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {}
12064 bool addOverflowAssumption(const SCEVPredicate *P) {
12065 if (!NewPreds) {
12066 // Check if we've already made this assumption.
12067 return Pred && Pred->implies(P);
12069 NewPreds->insert(P);
12070 return true;
12073 bool addOverflowAssumption(const SCEVAddRecExpr *AR,
12074 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
12075 auto *A = SE.getWrapPredicate(AR, AddedFlags);
12076 return addOverflowAssumption(A);
12079 // If \p Expr represents a PHINode, we try to see if it can be represented
12080 // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible
12081 // to add this predicate as a runtime overflow check, we return the AddRec.
12082 // If \p Expr does not meet these conditions (is not a PHI node, or we
12083 // couldn't create an AddRec for it, or couldn't add the predicate), we just
12084 // return \p Expr.
12085 const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) {
12086 if (!isa<PHINode>(Expr->getValue()))
12087 return Expr;
12088 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
12089 PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr);
12090 if (!PredicatedRewrite)
12091 return Expr;
12092 for (auto *P : PredicatedRewrite->second){
12093 // Wrap predicates from outer loops are not supported.
12094 if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) {
12095 auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr());
12096 if (L != AR->getLoop())
12097 return Expr;
12099 if (!addOverflowAssumption(P))
12100 return Expr;
12102 return PredicatedRewrite->first;
12105 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds;
12106 SCEVUnionPredicate *Pred;
12107 const Loop *L;
12110 } // end anonymous namespace
12112 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
12113 SCEVUnionPredicate &Preds) {
12114 return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds);
12117 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates(
12118 const SCEV *S, const Loop *L,
12119 SmallPtrSetImpl<const SCEVPredicate *> &Preds) {
12120 SmallPtrSet<const SCEVPredicate *, 4> TransformPreds;
12121 S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr);
12122 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
12124 if (!AddRec)
12125 return nullptr;
12127 // Since the transformation was successful, we can now transfer the SCEV
12128 // predicates.
12129 for (auto *P : TransformPreds)
12130 Preds.insert(P);
12132 return AddRec;
12135 /// SCEV predicates
12136 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
12137 SCEVPredicateKind Kind)
12138 : FastID(ID), Kind(Kind) {}
12140 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
12141 const SCEV *LHS, const SCEV *RHS)
12142 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {
12143 assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match");
12144 assert(LHS != RHS && "LHS and RHS are the same SCEV");
12147 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
12148 const auto *Op = dyn_cast<SCEVEqualPredicate>(N);
12150 if (!Op)
12151 return false;
12153 return Op->LHS == LHS && Op->RHS == RHS;
12156 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
12158 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
12160 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
12161 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
12164 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
12165 const SCEVAddRecExpr *AR,
12166 IncrementWrapFlags Flags)
12167 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
12169 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
12171 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
12172 const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
12174 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
12177 bool SCEVWrapPredicate::isAlwaysTrue() const {
12178 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
12179 IncrementWrapFlags IFlags = Flags;
12181 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
12182 IFlags = clearFlags(IFlags, IncrementNSSW);
12184 return IFlags == IncrementAnyWrap;
12187 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
12188 OS.indent(Depth) << *getExpr() << " Added Flags: ";
12189 if (SCEVWrapPredicate::IncrementNUSW & getFlags())
12190 OS << "<nusw>";
12191 if (SCEVWrapPredicate::IncrementNSSW & getFlags())
12192 OS << "<nssw>";
12193 OS << "\n";
12196 SCEVWrapPredicate::IncrementWrapFlags
12197 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
12198 ScalarEvolution &SE) {
12199 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
12200 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
12202 // We can safely transfer the NSW flag as NSSW.
12203 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
12204 ImpliedFlags = IncrementNSSW;
12206 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
12207 // If the increment is positive, the SCEV NUW flag will also imply the
12208 // WrapPredicate NUSW flag.
12209 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
12210 if (Step->getValue()->getValue().isNonNegative())
12211 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
12214 return ImpliedFlags;
12217 /// Union predicates don't get cached so create a dummy set ID for it.
12218 SCEVUnionPredicate::SCEVUnionPredicate()
12219 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
12221 bool SCEVUnionPredicate::isAlwaysTrue() const {
12222 return all_of(Preds,
12223 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
12226 ArrayRef<const SCEVPredicate *>
12227 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
12228 auto I = SCEVToPreds.find(Expr);
12229 if (I == SCEVToPreds.end())
12230 return ArrayRef<const SCEVPredicate *>();
12231 return I->second;
12234 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
12235 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
12236 return all_of(Set->Preds,
12237 [this](const SCEVPredicate *I) { return this->implies(I); });
12239 auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
12240 if (ScevPredsIt == SCEVToPreds.end())
12241 return false;
12242 auto &SCEVPreds = ScevPredsIt->second;
12244 return any_of(SCEVPreds,
12245 [N](const SCEVPredicate *I) { return I->implies(N); });
12248 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
12250 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
12251 for (auto Pred : Preds)
12252 Pred->print(OS, Depth);
12255 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
12256 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
12257 for (auto Pred : Set->Preds)
12258 add(Pred);
12259 return;
12262 if (implies(N))
12263 return;
12265 const SCEV *Key = N->getExpr();
12266 assert(Key && "Only SCEVUnionPredicate doesn't have an "
12267 " associated expression!");
12269 SCEVToPreds[Key].push_back(N);
12270 Preds.push_back(N);
12273 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
12274 Loop &L)
12275 : SE(SE), L(L) {}
12277 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
12278 const SCEV *Expr = SE.getSCEV(V);
12279 RewriteEntry &Entry = RewriteMap[Expr];
12281 // If we already have an entry and the version matches, return it.
12282 if (Entry.second && Generation == Entry.first)
12283 return Entry.second;
12285 // We found an entry but it's stale. Rewrite the stale entry
12286 // according to the current predicate.
12287 if (Entry.second)
12288 Expr = Entry.second;
12290 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
12291 Entry = {Generation, NewSCEV};
12293 return NewSCEV;
12296 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
12297 if (!BackedgeCount) {
12298 SCEVUnionPredicate BackedgePred;
12299 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred);
12300 addPredicate(BackedgePred);
12302 return BackedgeCount;
12305 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
12306 if (Preds.implies(&Pred))
12307 return;
12308 Preds.add(&Pred);
12309 updateGeneration();
12312 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
12313 return Preds;
12316 void PredicatedScalarEvolution::updateGeneration() {
12317 // If the generation number wrapped recompute everything.
12318 if (++Generation == 0) {
12319 for (auto &II : RewriteMap) {
12320 const SCEV *Rewritten = II.second.second;
12321 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
12326 void PredicatedScalarEvolution::setNoOverflow(
12327 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
12328 const SCEV *Expr = getSCEV(V);
12329 const auto *AR = cast<SCEVAddRecExpr>(Expr);
12331 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
12333 // Clear the statically implied flags.
12334 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
12335 addPredicate(*SE.getWrapPredicate(AR, Flags));
12337 auto II = FlagsMap.insert({V, Flags});
12338 if (!II.second)
12339 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
12342 bool PredicatedScalarEvolution::hasNoOverflow(
12343 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
12344 const SCEV *Expr = getSCEV(V);
12345 const auto *AR = cast<SCEVAddRecExpr>(Expr);
12347 Flags = SCEVWrapPredicate::clearFlags(
12348 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
12350 auto II = FlagsMap.find(V);
12352 if (II != FlagsMap.end())
12353 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
12355 return Flags == SCEVWrapPredicate::IncrementAnyWrap;
12358 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
12359 const SCEV *Expr = this->getSCEV(V);
12360 SmallPtrSet<const SCEVPredicate *, 4> NewPreds;
12361 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds);
12363 if (!New)
12364 return nullptr;
12366 for (auto *P : NewPreds)
12367 Preds.add(P);
12369 updateGeneration();
12370 RewriteMap[SE.getSCEV(V)] = {Generation, New};
12371 return New;
12374 PredicatedScalarEvolution::PredicatedScalarEvolution(
12375 const PredicatedScalarEvolution &Init)
12376 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
12377 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
12378 for (const auto &I : Init.FlagsMap)
12379 FlagsMap.insert(I);
12382 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
12383 // For each block.
12384 for (auto *BB : L.getBlocks())
12385 for (auto &I : *BB) {
12386 if (!SE.isSCEVable(I.getType()))
12387 continue;
12389 auto *Expr = SE.getSCEV(&I);
12390 auto II = RewriteMap.find(Expr);
12392 if (II == RewriteMap.end())
12393 continue;
12395 // Don't print things that are not interesting.
12396 if (II->second.second == Expr)
12397 continue;
12399 OS.indent(Depth) << "[PSE]" << I << ":\n";
12400 OS.indent(Depth + 2) << *Expr << "\n";
12401 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
12405 // Match the mathematical pattern A - (A / B) * B, where A and B can be
12406 // arbitrary expressions.
12407 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is
12408 // 4, A / B becomes X / 8).
12409 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS,
12410 const SCEV *&RHS) {
12411 const auto *Add = dyn_cast<SCEVAddExpr>(Expr);
12412 if (Add == nullptr || Add->getNumOperands() != 2)
12413 return false;
12415 const SCEV *A = Add->getOperand(1);
12416 const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0));
12418 if (Mul == nullptr)
12419 return false;
12421 const auto MatchURemWithDivisor = [&](const SCEV *B) {
12422 // (SomeExpr + (-(SomeExpr / B) * B)).
12423 if (Expr == getURemExpr(A, B)) {
12424 LHS = A;
12425 RHS = B;
12426 return true;
12428 return false;
12431 // (SomeExpr + (-1 * (SomeExpr / B) * B)).
12432 if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0)))
12433 return MatchURemWithDivisor(Mul->getOperand(1)) ||
12434 MatchURemWithDivisor(Mul->getOperand(2));
12436 // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)).
12437 if (Mul->getNumOperands() == 2)
12438 return MatchURemWithDivisor(Mul->getOperand(1)) ||
12439 MatchURemWithDivisor(Mul->getOperand(0)) ||
12440 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) ||
12441 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0)));
12442 return false;