[llvm-exegesis] Fix missing std::move.
[llvm-complete.git] / lib / Analysis / StratifiedSets.h
blob2f20cd12506c117458d19abbbf4d8e6099e90a36
1 //===- StratifiedSets.h - Abstract stratified sets implementation. --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
10 #ifndef LLVM_ADT_STRATIFIEDSETS_H
11 #define LLVM_ADT_STRATIFIEDSETS_H
13 #include "AliasAnalysisSummary.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/Optional.h"
16 #include "llvm/ADT/SmallSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include <bitset>
19 #include <cassert>
20 #include <cmath>
21 #include <type_traits>
22 #include <utility>
23 #include <vector>
25 namespace llvm {
26 namespace cflaa {
27 /// An index into Stratified Sets.
28 typedef unsigned StratifiedIndex;
29 /// NOTE: ^ This can't be a short -- bootstrapping clang has a case where
30 /// ~1M sets exist.
32 // Container of information related to a value in a StratifiedSet.
33 struct StratifiedInfo {
34 StratifiedIndex Index;
35 /// For field sensitivity, etc. we can tack fields on here.
38 /// A "link" between two StratifiedSets.
39 struct StratifiedLink {
40 /// This is a value used to signify "does not exist" where the
41 /// StratifiedIndex type is used.
42 ///
43 /// This is used instead of Optional<StratifiedIndex> because
44 /// Optional<StratifiedIndex> would eat up a considerable amount of extra
45 /// memory, after struct padding/alignment is taken into account.
46 static const StratifiedIndex SetSentinel;
48 /// The index for the set "above" current
49 StratifiedIndex Above;
51 /// The link for the set "below" current
52 StratifiedIndex Below;
54 /// Attributes for these StratifiedSets.
55 AliasAttrs Attrs;
57 StratifiedLink() : Above(SetSentinel), Below(SetSentinel) {}
59 bool hasBelow() const { return Below != SetSentinel; }
60 bool hasAbove() const { return Above != SetSentinel; }
62 void clearBelow() { Below = SetSentinel; }
63 void clearAbove() { Above = SetSentinel; }
66 /// These are stratified sets, as described in "Fast algorithms for
67 /// Dyck-CFL-reachability with applications to Alias Analysis" by Zhang Q, Lyu M
68 /// R, Yuan H, and Su Z. -- in short, this is meant to represent different sets
69 /// of Value*s. If two Value*s are in the same set, or if both sets have
70 /// overlapping attributes, then the Value*s are said to alias.
71 ///
72 /// Sets may be related by position, meaning that one set may be considered as
73 /// above or below another. In CFL Alias Analysis, this gives us an indication
74 /// of how two variables are related; if the set of variable A is below a set
75 /// containing variable B, then at some point, a variable that has interacted
76 /// with B (or B itself) was either used in order to extract the variable A, or
77 /// was used as storage of variable A.
78 ///
79 /// Sets may also have attributes (as noted above). These attributes are
80 /// generally used for noting whether a variable in the set has interacted with
81 /// a variable whose origins we don't quite know (i.e. globals/arguments), or if
82 /// the variable may have had operations performed on it (modified in a function
83 /// call). All attributes that exist in a set A must exist in all sets marked as
84 /// below set A.
85 template <typename T> class StratifiedSets {
86 public:
87 StratifiedSets() = default;
88 StratifiedSets(StratifiedSets &&) = default;
89 StratifiedSets &operator=(StratifiedSets &&) = default;
91 StratifiedSets(DenseMap<T, StratifiedInfo> Map,
92 std::vector<StratifiedLink> Links)
93 : Values(std::move(Map)), Links(std::move(Links)) {}
95 Optional<StratifiedInfo> find(const T &Elem) const {
96 auto Iter = Values.find(Elem);
97 if (Iter == Values.end())
98 return None;
99 return Iter->second;
102 const StratifiedLink &getLink(StratifiedIndex Index) const {
103 assert(inbounds(Index));
104 return Links[Index];
107 private:
108 DenseMap<T, StratifiedInfo> Values;
109 std::vector<StratifiedLink> Links;
111 bool inbounds(StratifiedIndex Idx) const { return Idx < Links.size(); }
114 /// Generic Builder class that produces StratifiedSets instances.
116 /// The goal of this builder is to efficiently produce correct StratifiedSets
117 /// instances. To this end, we use a few tricks:
118 /// > Set chains (A method for linking sets together)
119 /// > Set remaps (A method for marking a set as an alias [irony?] of another)
121 /// ==== Set chains ====
122 /// This builder has a notion of some value A being above, below, or with some
123 /// other value B:
124 /// > The `A above B` relationship implies that there is a reference edge
125 /// going from A to B. Namely, it notes that A can store anything in B's set.
126 /// > The `A below B` relationship is the opposite of `A above B`. It implies
127 /// that there's a dereference edge going from A to B.
128 /// > The `A with B` relationship states that there's an assignment edge going
129 /// from A to B, and that A and B should be treated as equals.
131 /// As an example, take the following code snippet:
133 /// %a = alloca i32, align 4
134 /// %ap = alloca i32*, align 8
135 /// %app = alloca i32**, align 8
136 /// store %a, %ap
137 /// store %ap, %app
138 /// %aw = getelementptr %ap, i32 0
140 /// Given this, the following relations exist:
141 /// - %a below %ap & %ap above %a
142 /// - %ap below %app & %app above %ap
143 /// - %aw with %ap & %ap with %aw
145 /// These relations produce the following sets:
146 /// [{%a}, {%ap, %aw}, {%app}]
148 /// ...Which state that the only MayAlias relationship in the above program is
149 /// between %ap and %aw.
151 /// Because LLVM allows arbitrary casts, code like the following needs to be
152 /// supported:
153 /// %ip = alloca i64, align 8
154 /// %ipp = alloca i64*, align 8
155 /// %i = bitcast i64** ipp to i64
156 /// store i64* %ip, i64** %ipp
157 /// store i64 %i, i64* %ip
159 /// Which, because %ipp ends up *both* above and below %ip, is fun.
161 /// This is solved by merging %i and %ipp into a single set (...which is the
162 /// only way to solve this, since their bit patterns are equivalent). Any sets
163 /// that ended up in between %i and %ipp at the time of merging (in this case,
164 /// the set containing %ip) also get conservatively merged into the set of %i
165 /// and %ipp. In short, the resulting StratifiedSet from the above code would be
166 /// {%ip, %ipp, %i}.
168 /// ==== Set remaps ====
169 /// More of an implementation detail than anything -- when merging sets, we need
170 /// to update the numbers of all of the elements mapped to those sets. Rather
171 /// than doing this at each merge, we note in the BuilderLink structure that a
172 /// remap has occurred, and use this information so we can defer renumbering set
173 /// elements until build time.
174 template <typename T> class StratifiedSetsBuilder {
175 /// Represents a Stratified Set, with information about the Stratified
176 /// Set above it, the set below it, and whether the current set has been
177 /// remapped to another.
178 struct BuilderLink {
179 const StratifiedIndex Number;
181 BuilderLink(StratifiedIndex N) : Number(N) {
182 Remap = StratifiedLink::SetSentinel;
185 bool hasAbove() const {
186 assert(!isRemapped());
187 return Link.hasAbove();
190 bool hasBelow() const {
191 assert(!isRemapped());
192 return Link.hasBelow();
195 void setBelow(StratifiedIndex I) {
196 assert(!isRemapped());
197 Link.Below = I;
200 void setAbove(StratifiedIndex I) {
201 assert(!isRemapped());
202 Link.Above = I;
205 void clearBelow() {
206 assert(!isRemapped());
207 Link.clearBelow();
210 void clearAbove() {
211 assert(!isRemapped());
212 Link.clearAbove();
215 StratifiedIndex getBelow() const {
216 assert(!isRemapped());
217 assert(hasBelow());
218 return Link.Below;
221 StratifiedIndex getAbove() const {
222 assert(!isRemapped());
223 assert(hasAbove());
224 return Link.Above;
227 AliasAttrs getAttrs() {
228 assert(!isRemapped());
229 return Link.Attrs;
232 void setAttrs(AliasAttrs Other) {
233 assert(!isRemapped());
234 Link.Attrs |= Other;
237 bool isRemapped() const { return Remap != StratifiedLink::SetSentinel; }
239 /// For initial remapping to another set
240 void remapTo(StratifiedIndex Other) {
241 assert(!isRemapped());
242 Remap = Other;
245 StratifiedIndex getRemapIndex() const {
246 assert(isRemapped());
247 return Remap;
250 /// Should only be called when we're already remapped.
251 void updateRemap(StratifiedIndex Other) {
252 assert(isRemapped());
253 Remap = Other;
256 /// Prefer the above functions to calling things directly on what's returned
257 /// from this -- they guard against unexpected calls when the current
258 /// BuilderLink is remapped.
259 const StratifiedLink &getLink() const { return Link; }
261 private:
262 StratifiedLink Link;
263 StratifiedIndex Remap;
266 /// This function performs all of the set unioning/value renumbering
267 /// that we've been putting off, and generates a vector<StratifiedLink> that
268 /// may be placed in a StratifiedSets instance.
269 void finalizeSets(std::vector<StratifiedLink> &StratLinks) {
270 DenseMap<StratifiedIndex, StratifiedIndex> Remaps;
271 for (auto &Link : Links) {
272 if (Link.isRemapped())
273 continue;
275 StratifiedIndex Number = StratLinks.size();
276 Remaps.insert(std::make_pair(Link.Number, Number));
277 StratLinks.push_back(Link.getLink());
280 for (auto &Link : StratLinks) {
281 if (Link.hasAbove()) {
282 auto &Above = linksAt(Link.Above);
283 auto Iter = Remaps.find(Above.Number);
284 assert(Iter != Remaps.end());
285 Link.Above = Iter->second;
288 if (Link.hasBelow()) {
289 auto &Below = linksAt(Link.Below);
290 auto Iter = Remaps.find(Below.Number);
291 assert(Iter != Remaps.end());
292 Link.Below = Iter->second;
296 for (auto &Pair : Values) {
297 auto &Info = Pair.second;
298 auto &Link = linksAt(Info.Index);
299 auto Iter = Remaps.find(Link.Number);
300 assert(Iter != Remaps.end());
301 Info.Index = Iter->second;
305 /// There's a guarantee in StratifiedLink where all bits set in a
306 /// Link.externals will be set in all Link.externals "below" it.
307 static void propagateAttrs(std::vector<StratifiedLink> &Links) {
308 const auto getHighestParentAbove = [&Links](StratifiedIndex Idx) {
309 const auto *Link = &Links[Idx];
310 while (Link->hasAbove()) {
311 Idx = Link->Above;
312 Link = &Links[Idx];
314 return Idx;
317 SmallSet<StratifiedIndex, 16> Visited;
318 for (unsigned I = 0, E = Links.size(); I < E; ++I) {
319 auto CurrentIndex = getHighestParentAbove(I);
320 if (!Visited.insert(CurrentIndex).second)
321 continue;
323 while (Links[CurrentIndex].hasBelow()) {
324 auto &CurrentBits = Links[CurrentIndex].Attrs;
325 auto NextIndex = Links[CurrentIndex].Below;
326 auto &NextBits = Links[NextIndex].Attrs;
327 NextBits |= CurrentBits;
328 CurrentIndex = NextIndex;
333 public:
334 /// Builds a StratifiedSet from the information we've been given since either
335 /// construction or the prior build() call.
336 StratifiedSets<T> build() {
337 std::vector<StratifiedLink> StratLinks;
338 finalizeSets(StratLinks);
339 propagateAttrs(StratLinks);
340 Links.clear();
341 return StratifiedSets<T>(std::move(Values), std::move(StratLinks));
344 bool has(const T &Elem) const { return get(Elem).hasValue(); }
346 bool add(const T &Main) {
347 if (get(Main).hasValue())
348 return false;
350 auto NewIndex = getNewUnlinkedIndex();
351 return addAtMerging(Main, NewIndex);
354 /// Restructures the stratified sets as necessary to make "ToAdd" in a
355 /// set above "Main". There are some cases where this is not possible (see
356 /// above), so we merge them such that ToAdd and Main are in the same set.
357 bool addAbove(const T &Main, const T &ToAdd) {
358 assert(has(Main));
359 auto Index = *indexOf(Main);
360 if (!linksAt(Index).hasAbove())
361 addLinkAbove(Index);
363 auto Above = linksAt(Index).getAbove();
364 return addAtMerging(ToAdd, Above);
367 /// Restructures the stratified sets as necessary to make "ToAdd" in a
368 /// set below "Main". There are some cases where this is not possible (see
369 /// above), so we merge them such that ToAdd and Main are in the same set.
370 bool addBelow(const T &Main, const T &ToAdd) {
371 assert(has(Main));
372 auto Index = *indexOf(Main);
373 if (!linksAt(Index).hasBelow())
374 addLinkBelow(Index);
376 auto Below = linksAt(Index).getBelow();
377 return addAtMerging(ToAdd, Below);
380 bool addWith(const T &Main, const T &ToAdd) {
381 assert(has(Main));
382 auto MainIndex = *indexOf(Main);
383 return addAtMerging(ToAdd, MainIndex);
386 void noteAttributes(const T &Main, AliasAttrs NewAttrs) {
387 assert(has(Main));
388 auto *Info = *get(Main);
389 auto &Link = linksAt(Info->Index);
390 Link.setAttrs(NewAttrs);
393 private:
394 DenseMap<T, StratifiedInfo> Values;
395 std::vector<BuilderLink> Links;
397 /// Adds the given element at the given index, merging sets if necessary.
398 bool addAtMerging(const T &ToAdd, StratifiedIndex Index) {
399 StratifiedInfo Info = {Index};
400 auto Pair = Values.insert(std::make_pair(ToAdd, Info));
401 if (Pair.second)
402 return true;
404 auto &Iter = Pair.first;
405 auto &IterSet = linksAt(Iter->second.Index);
406 auto &ReqSet = linksAt(Index);
408 // Failed to add where we wanted to. Merge the sets.
409 if (&IterSet != &ReqSet)
410 merge(IterSet.Number, ReqSet.Number);
412 return false;
415 /// Gets the BuilderLink at the given index, taking set remapping into
416 /// account.
417 BuilderLink &linksAt(StratifiedIndex Index) {
418 auto *Start = &Links[Index];
419 if (!Start->isRemapped())
420 return *Start;
422 auto *Current = Start;
423 while (Current->isRemapped())
424 Current = &Links[Current->getRemapIndex()];
426 auto NewRemap = Current->Number;
428 // Run through everything that has yet to be updated, and update them to
429 // remap to NewRemap
430 Current = Start;
431 while (Current->isRemapped()) {
432 auto *Next = &Links[Current->getRemapIndex()];
433 Current->updateRemap(NewRemap);
434 Current = Next;
437 return *Current;
440 /// Merges two sets into one another. Assumes that these sets are not
441 /// already one in the same.
442 void merge(StratifiedIndex Idx1, StratifiedIndex Idx2) {
443 assert(inbounds(Idx1) && inbounds(Idx2));
444 assert(&linksAt(Idx1) != &linksAt(Idx2) &&
445 "Merging a set into itself is not allowed");
447 // CASE 1: If the set at `Idx1` is above or below `Idx2`, we need to merge
448 // both the
449 // given sets, and all sets between them, into one.
450 if (tryMergeUpwards(Idx1, Idx2))
451 return;
453 if (tryMergeUpwards(Idx2, Idx1))
454 return;
456 // CASE 2: The set at `Idx1` is not in the same chain as the set at `Idx2`.
457 // We therefore need to merge the two chains together.
458 mergeDirect(Idx1, Idx2);
461 /// Merges two sets assuming that the set at `Idx1` is unreachable from
462 /// traversing above or below the set at `Idx2`.
463 void mergeDirect(StratifiedIndex Idx1, StratifiedIndex Idx2) {
464 assert(inbounds(Idx1) && inbounds(Idx2));
466 auto *LinksInto = &linksAt(Idx1);
467 auto *LinksFrom = &linksAt(Idx2);
468 // Merging everything above LinksInto then proceeding to merge everything
469 // below LinksInto becomes problematic, so we go as far "up" as possible!
470 while (LinksInto->hasAbove() && LinksFrom->hasAbove()) {
471 LinksInto = &linksAt(LinksInto->getAbove());
472 LinksFrom = &linksAt(LinksFrom->getAbove());
475 if (LinksFrom->hasAbove()) {
476 LinksInto->setAbove(LinksFrom->getAbove());
477 auto &NewAbove = linksAt(LinksInto->getAbove());
478 NewAbove.setBelow(LinksInto->Number);
481 // Merging strategy:
482 // > If neither has links below, stop.
483 // > If only `LinksInto` has links below, stop.
484 // > If only `LinksFrom` has links below, reset `LinksInto.Below` to
485 // match `LinksFrom.Below`
486 // > If both have links above, deal with those next.
487 while (LinksInto->hasBelow() && LinksFrom->hasBelow()) {
488 auto FromAttrs = LinksFrom->getAttrs();
489 LinksInto->setAttrs(FromAttrs);
491 // Remap needs to happen after getBelow(), but before
492 // assignment of LinksFrom
493 auto *NewLinksFrom = &linksAt(LinksFrom->getBelow());
494 LinksFrom->remapTo(LinksInto->Number);
495 LinksFrom = NewLinksFrom;
496 LinksInto = &linksAt(LinksInto->getBelow());
499 if (LinksFrom->hasBelow()) {
500 LinksInto->setBelow(LinksFrom->getBelow());
501 auto &NewBelow = linksAt(LinksInto->getBelow());
502 NewBelow.setAbove(LinksInto->Number);
505 LinksInto->setAttrs(LinksFrom->getAttrs());
506 LinksFrom->remapTo(LinksInto->Number);
509 /// Checks to see if lowerIndex is at a level lower than upperIndex. If so, it
510 /// will merge lowerIndex with upperIndex (and all of the sets between) and
511 /// return true. Otherwise, it will return false.
512 bool tryMergeUpwards(StratifiedIndex LowerIndex, StratifiedIndex UpperIndex) {
513 assert(inbounds(LowerIndex) && inbounds(UpperIndex));
514 auto *Lower = &linksAt(LowerIndex);
515 auto *Upper = &linksAt(UpperIndex);
516 if (Lower == Upper)
517 return true;
519 SmallVector<BuilderLink *, 8> Found;
520 auto *Current = Lower;
521 auto Attrs = Current->getAttrs();
522 while (Current->hasAbove() && Current != Upper) {
523 Found.push_back(Current);
524 Attrs |= Current->getAttrs();
525 Current = &linksAt(Current->getAbove());
528 if (Current != Upper)
529 return false;
531 Upper->setAttrs(Attrs);
533 if (Lower->hasBelow()) {
534 auto NewBelowIndex = Lower->getBelow();
535 Upper->setBelow(NewBelowIndex);
536 auto &NewBelow = linksAt(NewBelowIndex);
537 NewBelow.setAbove(UpperIndex);
538 } else {
539 Upper->clearBelow();
542 for (const auto &Ptr : Found)
543 Ptr->remapTo(Upper->Number);
545 return true;
548 Optional<const StratifiedInfo *> get(const T &Val) const {
549 auto Result = Values.find(Val);
550 if (Result == Values.end())
551 return None;
552 return &Result->second;
555 Optional<StratifiedInfo *> get(const T &Val) {
556 auto Result = Values.find(Val);
557 if (Result == Values.end())
558 return None;
559 return &Result->second;
562 Optional<StratifiedIndex> indexOf(const T &Val) {
563 auto MaybeVal = get(Val);
564 if (!MaybeVal.hasValue())
565 return None;
566 auto *Info = *MaybeVal;
567 auto &Link = linksAt(Info->Index);
568 return Link.Number;
571 StratifiedIndex addLinkBelow(StratifiedIndex Set) {
572 auto At = addLinks();
573 Links[Set].setBelow(At);
574 Links[At].setAbove(Set);
575 return At;
578 StratifiedIndex addLinkAbove(StratifiedIndex Set) {
579 auto At = addLinks();
580 Links[At].setBelow(Set);
581 Links[Set].setAbove(At);
582 return At;
585 StratifiedIndex getNewUnlinkedIndex() { return addLinks(); }
587 StratifiedIndex addLinks() {
588 auto Link = Links.size();
589 Links.push_back(BuilderLink(Link));
590 return Link;
593 bool inbounds(StratifiedIndex N) const { return N < Links.size(); }
597 #endif // LLVM_ADT_STRATIFIEDSETS_H