[llvm-exegesis] Fix missing std::move.
[llvm-complete.git] / lib / Analysis / TargetTransformInfo.cpp
blob867403d0ef1eb9d5e5bb7d8cecbd4ace63ed0bc1
1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
10 #include "llvm/Analysis/TargetTransformInfo.h"
11 #include "llvm/Analysis/TargetTransformInfoImpl.h"
12 #include "llvm/IR/CallSite.h"
13 #include "llvm/IR/DataLayout.h"
14 #include "llvm/IR/Instruction.h"
15 #include "llvm/IR/Instructions.h"
16 #include "llvm/IR/IntrinsicInst.h"
17 #include "llvm/IR/Module.h"
18 #include "llvm/IR/Operator.h"
19 #include "llvm/IR/PatternMatch.h"
20 #include "llvm/Support/CommandLine.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include <utility>
24 using namespace llvm;
25 using namespace PatternMatch;
27 #define DEBUG_TYPE "tti"
29 static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false),
30 cl::Hidden,
31 cl::desc("Recognize reduction patterns."));
33 namespace {
34 /// No-op implementation of the TTI interface using the utility base
35 /// classes.
36 ///
37 /// This is used when no target specific information is available.
38 struct NoTTIImpl : TargetTransformInfoImplCRTPBase<NoTTIImpl> {
39 explicit NoTTIImpl(const DataLayout &DL)
40 : TargetTransformInfoImplCRTPBase<NoTTIImpl>(DL) {}
44 TargetTransformInfo::TargetTransformInfo(const DataLayout &DL)
45 : TTIImpl(new Model<NoTTIImpl>(NoTTIImpl(DL))) {}
47 TargetTransformInfo::~TargetTransformInfo() {}
49 TargetTransformInfo::TargetTransformInfo(TargetTransformInfo &&Arg)
50 : TTIImpl(std::move(Arg.TTIImpl)) {}
52 TargetTransformInfo &TargetTransformInfo::operator=(TargetTransformInfo &&RHS) {
53 TTIImpl = std::move(RHS.TTIImpl);
54 return *this;
57 int TargetTransformInfo::getOperationCost(unsigned Opcode, Type *Ty,
58 Type *OpTy) const {
59 int Cost = TTIImpl->getOperationCost(Opcode, Ty, OpTy);
60 assert(Cost >= 0 && "TTI should not produce negative costs!");
61 return Cost;
64 int TargetTransformInfo::getCallCost(FunctionType *FTy, int NumArgs) const {
65 int Cost = TTIImpl->getCallCost(FTy, NumArgs);
66 assert(Cost >= 0 && "TTI should not produce negative costs!");
67 return Cost;
70 int TargetTransformInfo::getCallCost(const Function *F,
71 ArrayRef<const Value *> Arguments) const {
72 int Cost = TTIImpl->getCallCost(F, Arguments);
73 assert(Cost >= 0 && "TTI should not produce negative costs!");
74 return Cost;
77 unsigned TargetTransformInfo::getInliningThresholdMultiplier() const {
78 return TTIImpl->getInliningThresholdMultiplier();
81 int TargetTransformInfo::getGEPCost(Type *PointeeType, const Value *Ptr,
82 ArrayRef<const Value *> Operands) const {
83 return TTIImpl->getGEPCost(PointeeType, Ptr, Operands);
86 int TargetTransformInfo::getExtCost(const Instruction *I,
87 const Value *Src) const {
88 return TTIImpl->getExtCost(I, Src);
91 int TargetTransformInfo::getIntrinsicCost(
92 Intrinsic::ID IID, Type *RetTy, ArrayRef<const Value *> Arguments) const {
93 int Cost = TTIImpl->getIntrinsicCost(IID, RetTy, Arguments);
94 assert(Cost >= 0 && "TTI should not produce negative costs!");
95 return Cost;
98 unsigned
99 TargetTransformInfo::getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
100 unsigned &JTSize) const {
101 return TTIImpl->getEstimatedNumberOfCaseClusters(SI, JTSize);
104 int TargetTransformInfo::getUserCost(const User *U,
105 ArrayRef<const Value *> Operands) const {
106 int Cost = TTIImpl->getUserCost(U, Operands);
107 assert(Cost >= 0 && "TTI should not produce negative costs!");
108 return Cost;
111 bool TargetTransformInfo::hasBranchDivergence() const {
112 return TTIImpl->hasBranchDivergence();
115 bool TargetTransformInfo::isSourceOfDivergence(const Value *V) const {
116 return TTIImpl->isSourceOfDivergence(V);
119 bool llvm::TargetTransformInfo::isAlwaysUniform(const Value *V) const {
120 return TTIImpl->isAlwaysUniform(V);
123 unsigned TargetTransformInfo::getFlatAddressSpace() const {
124 return TTIImpl->getFlatAddressSpace();
127 bool TargetTransformInfo::isLoweredToCall(const Function *F) const {
128 return TTIImpl->isLoweredToCall(F);
131 void TargetTransformInfo::getUnrollingPreferences(
132 Loop *L, ScalarEvolution &SE, UnrollingPreferences &UP) const {
133 return TTIImpl->getUnrollingPreferences(L, SE, UP);
136 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const {
137 return TTIImpl->isLegalAddImmediate(Imm);
140 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const {
141 return TTIImpl->isLegalICmpImmediate(Imm);
144 bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
145 int64_t BaseOffset,
146 bool HasBaseReg,
147 int64_t Scale,
148 unsigned AddrSpace,
149 Instruction *I) const {
150 return TTIImpl->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
151 Scale, AddrSpace, I);
154 bool TargetTransformInfo::isLSRCostLess(LSRCost &C1, LSRCost &C2) const {
155 return TTIImpl->isLSRCostLess(C1, C2);
158 bool TargetTransformInfo::canMacroFuseCmp() const {
159 return TTIImpl->canMacroFuseCmp();
162 bool TargetTransformInfo::shouldFavorPostInc() const {
163 return TTIImpl->shouldFavorPostInc();
166 bool TargetTransformInfo::isLegalMaskedStore(Type *DataType) const {
167 return TTIImpl->isLegalMaskedStore(DataType);
170 bool TargetTransformInfo::isLegalMaskedLoad(Type *DataType) const {
171 return TTIImpl->isLegalMaskedLoad(DataType);
174 bool TargetTransformInfo::isLegalMaskedGather(Type *DataType) const {
175 return TTIImpl->isLegalMaskedGather(DataType);
178 bool TargetTransformInfo::isLegalMaskedScatter(Type *DataType) const {
179 return TTIImpl->isLegalMaskedScatter(DataType);
182 bool TargetTransformInfo::hasDivRemOp(Type *DataType, bool IsSigned) const {
183 return TTIImpl->hasDivRemOp(DataType, IsSigned);
186 bool TargetTransformInfo::hasVolatileVariant(Instruction *I,
187 unsigned AddrSpace) const {
188 return TTIImpl->hasVolatileVariant(I, AddrSpace);
191 bool TargetTransformInfo::prefersVectorizedAddressing() const {
192 return TTIImpl->prefersVectorizedAddressing();
195 int TargetTransformInfo::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
196 int64_t BaseOffset,
197 bool HasBaseReg,
198 int64_t Scale,
199 unsigned AddrSpace) const {
200 int Cost = TTIImpl->getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg,
201 Scale, AddrSpace);
202 assert(Cost >= 0 && "TTI should not produce negative costs!");
203 return Cost;
206 bool TargetTransformInfo::LSRWithInstrQueries() const {
207 return TTIImpl->LSRWithInstrQueries();
210 bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const {
211 return TTIImpl->isTruncateFree(Ty1, Ty2);
214 bool TargetTransformInfo::isProfitableToHoist(Instruction *I) const {
215 return TTIImpl->isProfitableToHoist(I);
218 bool TargetTransformInfo::useAA() const { return TTIImpl->useAA(); }
220 bool TargetTransformInfo::isTypeLegal(Type *Ty) const {
221 return TTIImpl->isTypeLegal(Ty);
224 unsigned TargetTransformInfo::getJumpBufAlignment() const {
225 return TTIImpl->getJumpBufAlignment();
228 unsigned TargetTransformInfo::getJumpBufSize() const {
229 return TTIImpl->getJumpBufSize();
232 bool TargetTransformInfo::shouldBuildLookupTables() const {
233 return TTIImpl->shouldBuildLookupTables();
235 bool TargetTransformInfo::shouldBuildLookupTablesForConstant(Constant *C) const {
236 return TTIImpl->shouldBuildLookupTablesForConstant(C);
239 bool TargetTransformInfo::useColdCCForColdCall(Function &F) const {
240 return TTIImpl->useColdCCForColdCall(F);
243 unsigned TargetTransformInfo::
244 getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const {
245 return TTIImpl->getScalarizationOverhead(Ty, Insert, Extract);
248 unsigned TargetTransformInfo::
249 getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
250 unsigned VF) const {
251 return TTIImpl->getOperandsScalarizationOverhead(Args, VF);
254 bool TargetTransformInfo::supportsEfficientVectorElementLoadStore() const {
255 return TTIImpl->supportsEfficientVectorElementLoadStore();
258 bool TargetTransformInfo::enableAggressiveInterleaving(bool LoopHasReductions) const {
259 return TTIImpl->enableAggressiveInterleaving(LoopHasReductions);
262 const TargetTransformInfo::MemCmpExpansionOptions *
263 TargetTransformInfo::enableMemCmpExpansion(bool IsZeroCmp) const {
264 return TTIImpl->enableMemCmpExpansion(IsZeroCmp);
267 bool TargetTransformInfo::enableInterleavedAccessVectorization() const {
268 return TTIImpl->enableInterleavedAccessVectorization();
271 bool TargetTransformInfo::enableMaskedInterleavedAccessVectorization() const {
272 return TTIImpl->enableMaskedInterleavedAccessVectorization();
275 bool TargetTransformInfo::isFPVectorizationPotentiallyUnsafe() const {
276 return TTIImpl->isFPVectorizationPotentiallyUnsafe();
279 bool TargetTransformInfo::allowsMisalignedMemoryAccesses(LLVMContext &Context,
280 unsigned BitWidth,
281 unsigned AddressSpace,
282 unsigned Alignment,
283 bool *Fast) const {
284 return TTIImpl->allowsMisalignedMemoryAccesses(Context, BitWidth, AddressSpace,
285 Alignment, Fast);
288 TargetTransformInfo::PopcntSupportKind
289 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const {
290 return TTIImpl->getPopcntSupport(IntTyWidthInBit);
293 bool TargetTransformInfo::haveFastSqrt(Type *Ty) const {
294 return TTIImpl->haveFastSqrt(Ty);
297 bool TargetTransformInfo::isFCmpOrdCheaperThanFCmpZero(Type *Ty) const {
298 return TTIImpl->isFCmpOrdCheaperThanFCmpZero(Ty);
301 int TargetTransformInfo::getFPOpCost(Type *Ty) const {
302 int Cost = TTIImpl->getFPOpCost(Ty);
303 assert(Cost >= 0 && "TTI should not produce negative costs!");
304 return Cost;
307 int TargetTransformInfo::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx,
308 const APInt &Imm,
309 Type *Ty) const {
310 int Cost = TTIImpl->getIntImmCodeSizeCost(Opcode, Idx, Imm, Ty);
311 assert(Cost >= 0 && "TTI should not produce negative costs!");
312 return Cost;
315 int TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty) const {
316 int Cost = TTIImpl->getIntImmCost(Imm, Ty);
317 assert(Cost >= 0 && "TTI should not produce negative costs!");
318 return Cost;
321 int TargetTransformInfo::getIntImmCost(unsigned Opcode, unsigned Idx,
322 const APInt &Imm, Type *Ty) const {
323 int Cost = TTIImpl->getIntImmCost(Opcode, Idx, Imm, Ty);
324 assert(Cost >= 0 && "TTI should not produce negative costs!");
325 return Cost;
328 int TargetTransformInfo::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
329 const APInt &Imm, Type *Ty) const {
330 int Cost = TTIImpl->getIntImmCost(IID, Idx, Imm, Ty);
331 assert(Cost >= 0 && "TTI should not produce negative costs!");
332 return Cost;
335 unsigned TargetTransformInfo::getNumberOfRegisters(bool Vector) const {
336 return TTIImpl->getNumberOfRegisters(Vector);
339 unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const {
340 return TTIImpl->getRegisterBitWidth(Vector);
343 unsigned TargetTransformInfo::getMinVectorRegisterBitWidth() const {
344 return TTIImpl->getMinVectorRegisterBitWidth();
347 bool TargetTransformInfo::shouldMaximizeVectorBandwidth(bool OptSize) const {
348 return TTIImpl->shouldMaximizeVectorBandwidth(OptSize);
351 unsigned TargetTransformInfo::getMinimumVF(unsigned ElemWidth) const {
352 return TTIImpl->getMinimumVF(ElemWidth);
355 bool TargetTransformInfo::shouldConsiderAddressTypePromotion(
356 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const {
357 return TTIImpl->shouldConsiderAddressTypePromotion(
358 I, AllowPromotionWithoutCommonHeader);
361 unsigned TargetTransformInfo::getCacheLineSize() const {
362 return TTIImpl->getCacheLineSize();
365 llvm::Optional<unsigned> TargetTransformInfo::getCacheSize(CacheLevel Level)
366 const {
367 return TTIImpl->getCacheSize(Level);
370 llvm::Optional<unsigned> TargetTransformInfo::getCacheAssociativity(
371 CacheLevel Level) const {
372 return TTIImpl->getCacheAssociativity(Level);
375 unsigned TargetTransformInfo::getPrefetchDistance() const {
376 return TTIImpl->getPrefetchDistance();
379 unsigned TargetTransformInfo::getMinPrefetchStride() const {
380 return TTIImpl->getMinPrefetchStride();
383 unsigned TargetTransformInfo::getMaxPrefetchIterationsAhead() const {
384 return TTIImpl->getMaxPrefetchIterationsAhead();
387 unsigned TargetTransformInfo::getMaxInterleaveFactor(unsigned VF) const {
388 return TTIImpl->getMaxInterleaveFactor(VF);
391 TargetTransformInfo::OperandValueKind
392 TargetTransformInfo::getOperandInfo(Value *V,
393 OperandValueProperties &OpProps) const {
394 OperandValueKind OpInfo = OK_AnyValue;
395 OpProps = OP_None;
397 if (auto *CI = dyn_cast<ConstantInt>(V)) {
398 if (CI->getValue().isPowerOf2())
399 OpProps = OP_PowerOf2;
400 return OK_UniformConstantValue;
403 const Value *Splat = getSplatValue(V);
405 // Check for a splat of a constant or for a non uniform vector of constants
406 // and check if the constant(s) are all powers of two.
407 if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) {
408 OpInfo = OK_NonUniformConstantValue;
409 if (Splat) {
410 OpInfo = OK_UniformConstantValue;
411 if (auto *CI = dyn_cast<ConstantInt>(Splat))
412 if (CI->getValue().isPowerOf2())
413 OpProps = OP_PowerOf2;
414 } else if (auto *CDS = dyn_cast<ConstantDataSequential>(V)) {
415 OpProps = OP_PowerOf2;
416 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) {
417 if (auto *CI = dyn_cast<ConstantInt>(CDS->getElementAsConstant(I)))
418 if (CI->getValue().isPowerOf2())
419 continue;
420 OpProps = OP_None;
421 break;
426 // Check for a splat of a uniform value. This is not loop aware, so return
427 // true only for the obviously uniform cases (argument, globalvalue)
428 if (Splat && (isa<Argument>(Splat) || isa<GlobalValue>(Splat)))
429 OpInfo = OK_UniformValue;
431 return OpInfo;
434 int TargetTransformInfo::getArithmeticInstrCost(
435 unsigned Opcode, Type *Ty, OperandValueKind Opd1Info,
436 OperandValueKind Opd2Info, OperandValueProperties Opd1PropInfo,
437 OperandValueProperties Opd2PropInfo,
438 ArrayRef<const Value *> Args) const {
439 int Cost = TTIImpl->getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
440 Opd1PropInfo, Opd2PropInfo, Args);
441 assert(Cost >= 0 && "TTI should not produce negative costs!");
442 return Cost;
445 int TargetTransformInfo::getShuffleCost(ShuffleKind Kind, Type *Ty, int Index,
446 Type *SubTp) const {
447 int Cost = TTIImpl->getShuffleCost(Kind, Ty, Index, SubTp);
448 assert(Cost >= 0 && "TTI should not produce negative costs!");
449 return Cost;
452 int TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst,
453 Type *Src, const Instruction *I) const {
454 assert ((I == nullptr || I->getOpcode() == Opcode) &&
455 "Opcode should reflect passed instruction.");
456 int Cost = TTIImpl->getCastInstrCost(Opcode, Dst, Src, I);
457 assert(Cost >= 0 && "TTI should not produce negative costs!");
458 return Cost;
461 int TargetTransformInfo::getExtractWithExtendCost(unsigned Opcode, Type *Dst,
462 VectorType *VecTy,
463 unsigned Index) const {
464 int Cost = TTIImpl->getExtractWithExtendCost(Opcode, Dst, VecTy, Index);
465 assert(Cost >= 0 && "TTI should not produce negative costs!");
466 return Cost;
469 int TargetTransformInfo::getCFInstrCost(unsigned Opcode) const {
470 int Cost = TTIImpl->getCFInstrCost(Opcode);
471 assert(Cost >= 0 && "TTI should not produce negative costs!");
472 return Cost;
475 int TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
476 Type *CondTy, const Instruction *I) const {
477 assert ((I == nullptr || I->getOpcode() == Opcode) &&
478 "Opcode should reflect passed instruction.");
479 int Cost = TTIImpl->getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
480 assert(Cost >= 0 && "TTI should not produce negative costs!");
481 return Cost;
484 int TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val,
485 unsigned Index) const {
486 int Cost = TTIImpl->getVectorInstrCost(Opcode, Val, Index);
487 assert(Cost >= 0 && "TTI should not produce negative costs!");
488 return Cost;
491 int TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src,
492 unsigned Alignment,
493 unsigned AddressSpace,
494 const Instruction *I) const {
495 assert ((I == nullptr || I->getOpcode() == Opcode) &&
496 "Opcode should reflect passed instruction.");
497 int Cost = TTIImpl->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, I);
498 assert(Cost >= 0 && "TTI should not produce negative costs!");
499 return Cost;
502 int TargetTransformInfo::getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
503 unsigned Alignment,
504 unsigned AddressSpace) const {
505 int Cost =
506 TTIImpl->getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
507 assert(Cost >= 0 && "TTI should not produce negative costs!");
508 return Cost;
511 int TargetTransformInfo::getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
512 Value *Ptr, bool VariableMask,
513 unsigned Alignment) const {
514 int Cost = TTIImpl->getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
515 Alignment);
516 assert(Cost >= 0 && "TTI should not produce negative costs!");
517 return Cost;
520 int TargetTransformInfo::getInterleavedMemoryOpCost(
521 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
522 unsigned Alignment, unsigned AddressSpace, bool IsMasked) const {
523 int Cost = TTIImpl->getInterleavedMemoryOpCost(
524 Opcode, VecTy, Factor, Indices, Alignment, AddressSpace, IsMasked);
525 assert(Cost >= 0 && "TTI should not produce negative costs!");
526 return Cost;
529 int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
530 ArrayRef<Type *> Tys, FastMathFlags FMF,
531 unsigned ScalarizationCostPassed) const {
532 int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Tys, FMF,
533 ScalarizationCostPassed);
534 assert(Cost >= 0 && "TTI should not produce negative costs!");
535 return Cost;
538 int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
539 ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) const {
540 int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF);
541 assert(Cost >= 0 && "TTI should not produce negative costs!");
542 return Cost;
545 int TargetTransformInfo::getCallInstrCost(Function *F, Type *RetTy,
546 ArrayRef<Type *> Tys) const {
547 int Cost = TTIImpl->getCallInstrCost(F, RetTy, Tys);
548 assert(Cost >= 0 && "TTI should not produce negative costs!");
549 return Cost;
552 unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const {
553 return TTIImpl->getNumberOfParts(Tp);
556 int TargetTransformInfo::getAddressComputationCost(Type *Tp,
557 ScalarEvolution *SE,
558 const SCEV *Ptr) const {
559 int Cost = TTIImpl->getAddressComputationCost(Tp, SE, Ptr);
560 assert(Cost >= 0 && "TTI should not produce negative costs!");
561 return Cost;
564 int TargetTransformInfo::getArithmeticReductionCost(unsigned Opcode, Type *Ty,
565 bool IsPairwiseForm) const {
566 int Cost = TTIImpl->getArithmeticReductionCost(Opcode, Ty, IsPairwiseForm);
567 assert(Cost >= 0 && "TTI should not produce negative costs!");
568 return Cost;
571 int TargetTransformInfo::getMinMaxReductionCost(Type *Ty, Type *CondTy,
572 bool IsPairwiseForm,
573 bool IsUnsigned) const {
574 int Cost =
575 TTIImpl->getMinMaxReductionCost(Ty, CondTy, IsPairwiseForm, IsUnsigned);
576 assert(Cost >= 0 && "TTI should not produce negative costs!");
577 return Cost;
580 unsigned
581 TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const {
582 return TTIImpl->getCostOfKeepingLiveOverCall(Tys);
585 bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst,
586 MemIntrinsicInfo &Info) const {
587 return TTIImpl->getTgtMemIntrinsic(Inst, Info);
590 unsigned TargetTransformInfo::getAtomicMemIntrinsicMaxElementSize() const {
591 return TTIImpl->getAtomicMemIntrinsicMaxElementSize();
594 Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic(
595 IntrinsicInst *Inst, Type *ExpectedType) const {
596 return TTIImpl->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType);
599 Type *TargetTransformInfo::getMemcpyLoopLoweringType(LLVMContext &Context,
600 Value *Length,
601 unsigned SrcAlign,
602 unsigned DestAlign) const {
603 return TTIImpl->getMemcpyLoopLoweringType(Context, Length, SrcAlign,
604 DestAlign);
607 void TargetTransformInfo::getMemcpyLoopResidualLoweringType(
608 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
609 unsigned RemainingBytes, unsigned SrcAlign, unsigned DestAlign) const {
610 TTIImpl->getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes,
611 SrcAlign, DestAlign);
614 bool TargetTransformInfo::areInlineCompatible(const Function *Caller,
615 const Function *Callee) const {
616 return TTIImpl->areInlineCompatible(Caller, Callee);
619 bool TargetTransformInfo::isIndexedLoadLegal(MemIndexedMode Mode,
620 Type *Ty) const {
621 return TTIImpl->isIndexedLoadLegal(Mode, Ty);
624 bool TargetTransformInfo::isIndexedStoreLegal(MemIndexedMode Mode,
625 Type *Ty) const {
626 return TTIImpl->isIndexedStoreLegal(Mode, Ty);
629 unsigned TargetTransformInfo::getLoadStoreVecRegBitWidth(unsigned AS) const {
630 return TTIImpl->getLoadStoreVecRegBitWidth(AS);
633 bool TargetTransformInfo::isLegalToVectorizeLoad(LoadInst *LI) const {
634 return TTIImpl->isLegalToVectorizeLoad(LI);
637 bool TargetTransformInfo::isLegalToVectorizeStore(StoreInst *SI) const {
638 return TTIImpl->isLegalToVectorizeStore(SI);
641 bool TargetTransformInfo::isLegalToVectorizeLoadChain(
642 unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const {
643 return TTIImpl->isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment,
644 AddrSpace);
647 bool TargetTransformInfo::isLegalToVectorizeStoreChain(
648 unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const {
649 return TTIImpl->isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment,
650 AddrSpace);
653 unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF,
654 unsigned LoadSize,
655 unsigned ChainSizeInBytes,
656 VectorType *VecTy) const {
657 return TTIImpl->getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy);
660 unsigned TargetTransformInfo::getStoreVectorFactor(unsigned VF,
661 unsigned StoreSize,
662 unsigned ChainSizeInBytes,
663 VectorType *VecTy) const {
664 return TTIImpl->getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy);
667 bool TargetTransformInfo::useReductionIntrinsic(unsigned Opcode,
668 Type *Ty, ReductionFlags Flags) const {
669 return TTIImpl->useReductionIntrinsic(Opcode, Ty, Flags);
672 bool TargetTransformInfo::shouldExpandReduction(const IntrinsicInst *II) const {
673 return TTIImpl->shouldExpandReduction(II);
676 int TargetTransformInfo::getInstructionLatency(const Instruction *I) const {
677 return TTIImpl->getInstructionLatency(I);
680 static bool matchPairwiseShuffleMask(ShuffleVectorInst *SI, bool IsLeft,
681 unsigned Level) {
682 // We don't need a shuffle if we just want to have element 0 in position 0 of
683 // the vector.
684 if (!SI && Level == 0 && IsLeft)
685 return true;
686 else if (!SI)
687 return false;
689 SmallVector<int, 32> Mask(SI->getType()->getVectorNumElements(), -1);
691 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right) depending on whether
692 // we look at the left or right side.
693 for (unsigned i = 0, e = (1 << Level), val = !IsLeft; i != e; ++i, val += 2)
694 Mask[i] = val;
696 SmallVector<int, 16> ActualMask = SI->getShuffleMask();
697 return Mask == ActualMask;
700 namespace {
701 /// Kind of the reduction data.
702 enum ReductionKind {
703 RK_None, /// Not a reduction.
704 RK_Arithmetic, /// Binary reduction data.
705 RK_MinMax, /// Min/max reduction data.
706 RK_UnsignedMinMax, /// Unsigned min/max reduction data.
708 /// Contains opcode + LHS/RHS parts of the reduction operations.
709 struct ReductionData {
710 ReductionData() = delete;
711 ReductionData(ReductionKind Kind, unsigned Opcode, Value *LHS, Value *RHS)
712 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind) {
713 assert(Kind != RK_None && "expected binary or min/max reduction only.");
715 unsigned Opcode = 0;
716 Value *LHS = nullptr;
717 Value *RHS = nullptr;
718 ReductionKind Kind = RK_None;
719 bool hasSameData(ReductionData &RD) const {
720 return Kind == RD.Kind && Opcode == RD.Opcode;
723 } // namespace
725 static Optional<ReductionData> getReductionData(Instruction *I) {
726 Value *L, *R;
727 if (m_BinOp(m_Value(L), m_Value(R)).match(I))
728 return ReductionData(RK_Arithmetic, I->getOpcode(), L, R);
729 if (auto *SI = dyn_cast<SelectInst>(I)) {
730 if (m_SMin(m_Value(L), m_Value(R)).match(SI) ||
731 m_SMax(m_Value(L), m_Value(R)).match(SI) ||
732 m_OrdFMin(m_Value(L), m_Value(R)).match(SI) ||
733 m_OrdFMax(m_Value(L), m_Value(R)).match(SI) ||
734 m_UnordFMin(m_Value(L), m_Value(R)).match(SI) ||
735 m_UnordFMax(m_Value(L), m_Value(R)).match(SI)) {
736 auto *CI = cast<CmpInst>(SI->getCondition());
737 return ReductionData(RK_MinMax, CI->getOpcode(), L, R);
739 if (m_UMin(m_Value(L), m_Value(R)).match(SI) ||
740 m_UMax(m_Value(L), m_Value(R)).match(SI)) {
741 auto *CI = cast<CmpInst>(SI->getCondition());
742 return ReductionData(RK_UnsignedMinMax, CI->getOpcode(), L, R);
745 return llvm::None;
748 static ReductionKind matchPairwiseReductionAtLevel(Instruction *I,
749 unsigned Level,
750 unsigned NumLevels) {
751 // Match one level of pairwise operations.
752 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
753 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
754 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
755 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
756 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
757 if (!I)
758 return RK_None;
760 assert(I->getType()->isVectorTy() && "Expecting a vector type");
762 Optional<ReductionData> RD = getReductionData(I);
763 if (!RD)
764 return RK_None;
766 ShuffleVectorInst *LS = dyn_cast<ShuffleVectorInst>(RD->LHS);
767 if (!LS && Level)
768 return RK_None;
769 ShuffleVectorInst *RS = dyn_cast<ShuffleVectorInst>(RD->RHS);
770 if (!RS && Level)
771 return RK_None;
773 // On level 0 we can omit one shufflevector instruction.
774 if (!Level && !RS && !LS)
775 return RK_None;
777 // Shuffle inputs must match.
778 Value *NextLevelOpL = LS ? LS->getOperand(0) : nullptr;
779 Value *NextLevelOpR = RS ? RS->getOperand(0) : nullptr;
780 Value *NextLevelOp = nullptr;
781 if (NextLevelOpR && NextLevelOpL) {
782 // If we have two shuffles their operands must match.
783 if (NextLevelOpL != NextLevelOpR)
784 return RK_None;
786 NextLevelOp = NextLevelOpL;
787 } else if (Level == 0 && (NextLevelOpR || NextLevelOpL)) {
788 // On the first level we can omit the shufflevector <0, undef,...>. So the
789 // input to the other shufflevector <1, undef> must match with one of the
790 // inputs to the current binary operation.
791 // Example:
792 // %NextLevelOpL = shufflevector %R, <1, undef ...>
793 // %BinOp = fadd %NextLevelOpL, %R
794 if (NextLevelOpL && NextLevelOpL != RD->RHS)
795 return RK_None;
796 else if (NextLevelOpR && NextLevelOpR != RD->LHS)
797 return RK_None;
799 NextLevelOp = NextLevelOpL ? RD->RHS : RD->LHS;
800 } else
801 return RK_None;
803 // Check that the next levels binary operation exists and matches with the
804 // current one.
805 if (Level + 1 != NumLevels) {
806 Optional<ReductionData> NextLevelRD =
807 getReductionData(cast<Instruction>(NextLevelOp));
808 if (!NextLevelRD || !RD->hasSameData(*NextLevelRD))
809 return RK_None;
812 // Shuffle mask for pairwise operation must match.
813 if (matchPairwiseShuffleMask(LS, /*IsLeft=*/true, Level)) {
814 if (!matchPairwiseShuffleMask(RS, /*IsLeft=*/false, Level))
815 return RK_None;
816 } else if (matchPairwiseShuffleMask(RS, /*IsLeft=*/true, Level)) {
817 if (!matchPairwiseShuffleMask(LS, /*IsLeft=*/false, Level))
818 return RK_None;
819 } else {
820 return RK_None;
823 if (++Level == NumLevels)
824 return RD->Kind;
826 // Match next level.
827 return matchPairwiseReductionAtLevel(cast<Instruction>(NextLevelOp), Level,
828 NumLevels);
831 static ReductionKind matchPairwiseReduction(const ExtractElementInst *ReduxRoot,
832 unsigned &Opcode, Type *&Ty) {
833 if (!EnableReduxCost)
834 return RK_None;
836 // Need to extract the first element.
837 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1));
838 unsigned Idx = ~0u;
839 if (CI)
840 Idx = CI->getZExtValue();
841 if (Idx != 0)
842 return RK_None;
844 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0));
845 if (!RdxStart)
846 return RK_None;
847 Optional<ReductionData> RD = getReductionData(RdxStart);
848 if (!RD)
849 return RK_None;
851 Type *VecTy = RdxStart->getType();
852 unsigned NumVecElems = VecTy->getVectorNumElements();
853 if (!isPowerOf2_32(NumVecElems))
854 return RK_None;
856 // We look for a sequence of shuffle,shuffle,add triples like the following
857 // that builds a pairwise reduction tree.
859 // (X0, X1, X2, X3)
860 // (X0 + X1, X2 + X3, undef, undef)
861 // ((X0 + X1) + (X2 + X3), undef, undef, undef)
863 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
864 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
865 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
866 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
867 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
868 // %rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
869 // <4 x i32> <i32 0, i32 undef, i32 undef, i32 undef>
870 // %rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
871 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
872 // %bin.rdx8 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1
873 // %r = extractelement <4 x float> %bin.rdx8, i32 0
874 if (matchPairwiseReductionAtLevel(RdxStart, 0, Log2_32(NumVecElems)) ==
875 RK_None)
876 return RK_None;
878 Opcode = RD->Opcode;
879 Ty = VecTy;
881 return RD->Kind;
884 static std::pair<Value *, ShuffleVectorInst *>
885 getShuffleAndOtherOprd(Value *L, Value *R) {
886 ShuffleVectorInst *S = nullptr;
888 if ((S = dyn_cast<ShuffleVectorInst>(L)))
889 return std::make_pair(R, S);
891 S = dyn_cast<ShuffleVectorInst>(R);
892 return std::make_pair(L, S);
895 static ReductionKind
896 matchVectorSplittingReduction(const ExtractElementInst *ReduxRoot,
897 unsigned &Opcode, Type *&Ty) {
898 if (!EnableReduxCost)
899 return RK_None;
901 // Need to extract the first element.
902 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1));
903 unsigned Idx = ~0u;
904 if (CI)
905 Idx = CI->getZExtValue();
906 if (Idx != 0)
907 return RK_None;
909 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0));
910 if (!RdxStart)
911 return RK_None;
912 Optional<ReductionData> RD = getReductionData(RdxStart);
913 if (!RD)
914 return RK_None;
916 Type *VecTy = ReduxRoot->getOperand(0)->getType();
917 unsigned NumVecElems = VecTy->getVectorNumElements();
918 if (!isPowerOf2_32(NumVecElems))
919 return RK_None;
921 // We look for a sequence of shuffles and adds like the following matching one
922 // fadd, shuffle vector pair at a time.
924 // %rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef,
925 // <4 x i32> <i32 2, i32 3, i32 undef, i32 undef>
926 // %bin.rdx = fadd <4 x float> %rdx, %rdx.shuf
927 // %rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef,
928 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
929 // %bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7
930 // %r = extractelement <4 x float> %bin.rdx8, i32 0
932 unsigned MaskStart = 1;
933 Instruction *RdxOp = RdxStart;
934 SmallVector<int, 32> ShuffleMask(NumVecElems, 0);
935 unsigned NumVecElemsRemain = NumVecElems;
936 while (NumVecElemsRemain - 1) {
937 // Check for the right reduction operation.
938 if (!RdxOp)
939 return RK_None;
940 Optional<ReductionData> RDLevel = getReductionData(RdxOp);
941 if (!RDLevel || !RDLevel->hasSameData(*RD))
942 return RK_None;
944 Value *NextRdxOp;
945 ShuffleVectorInst *Shuffle;
946 std::tie(NextRdxOp, Shuffle) =
947 getShuffleAndOtherOprd(RDLevel->LHS, RDLevel->RHS);
949 // Check the current reduction operation and the shuffle use the same value.
950 if (Shuffle == nullptr)
951 return RK_None;
952 if (Shuffle->getOperand(0) != NextRdxOp)
953 return RK_None;
955 // Check that shuffle masks matches.
956 for (unsigned j = 0; j != MaskStart; ++j)
957 ShuffleMask[j] = MaskStart + j;
958 // Fill the rest of the mask with -1 for undef.
959 std::fill(&ShuffleMask[MaskStart], ShuffleMask.end(), -1);
961 SmallVector<int, 16> Mask = Shuffle->getShuffleMask();
962 if (ShuffleMask != Mask)
963 return RK_None;
965 RdxOp = dyn_cast<Instruction>(NextRdxOp);
966 NumVecElemsRemain /= 2;
967 MaskStart *= 2;
970 Opcode = RD->Opcode;
971 Ty = VecTy;
972 return RD->Kind;
975 int TargetTransformInfo::getInstructionThroughput(const Instruction *I) const {
976 switch (I->getOpcode()) {
977 case Instruction::GetElementPtr:
978 return getUserCost(I);
980 case Instruction::Ret:
981 case Instruction::PHI:
982 case Instruction::Br: {
983 return getCFInstrCost(I->getOpcode());
985 case Instruction::Add:
986 case Instruction::FAdd:
987 case Instruction::Sub:
988 case Instruction::FSub:
989 case Instruction::Mul:
990 case Instruction::FMul:
991 case Instruction::UDiv:
992 case Instruction::SDiv:
993 case Instruction::FDiv:
994 case Instruction::URem:
995 case Instruction::SRem:
996 case Instruction::FRem:
997 case Instruction::Shl:
998 case Instruction::LShr:
999 case Instruction::AShr:
1000 case Instruction::And:
1001 case Instruction::Or:
1002 case Instruction::Xor: {
1003 TargetTransformInfo::OperandValueKind Op1VK, Op2VK;
1004 TargetTransformInfo::OperandValueProperties Op1VP, Op2VP;
1005 Op1VK = getOperandInfo(I->getOperand(0), Op1VP);
1006 Op2VK = getOperandInfo(I->getOperand(1), Op2VP);
1007 SmallVector<const Value *, 2> Operands(I->operand_values());
1008 return getArithmeticInstrCost(I->getOpcode(), I->getType(), Op1VK, Op2VK,
1009 Op1VP, Op2VP, Operands);
1011 case Instruction::Select: {
1012 const SelectInst *SI = cast<SelectInst>(I);
1013 Type *CondTy = SI->getCondition()->getType();
1014 return getCmpSelInstrCost(I->getOpcode(), I->getType(), CondTy, I);
1016 case Instruction::ICmp:
1017 case Instruction::FCmp: {
1018 Type *ValTy = I->getOperand(0)->getType();
1019 return getCmpSelInstrCost(I->getOpcode(), ValTy, I->getType(), I);
1021 case Instruction::Store: {
1022 const StoreInst *SI = cast<StoreInst>(I);
1023 Type *ValTy = SI->getValueOperand()->getType();
1024 return getMemoryOpCost(I->getOpcode(), ValTy,
1025 SI->getAlignment(),
1026 SI->getPointerAddressSpace(), I);
1028 case Instruction::Load: {
1029 const LoadInst *LI = cast<LoadInst>(I);
1030 return getMemoryOpCost(I->getOpcode(), I->getType(),
1031 LI->getAlignment(),
1032 LI->getPointerAddressSpace(), I);
1034 case Instruction::ZExt:
1035 case Instruction::SExt:
1036 case Instruction::FPToUI:
1037 case Instruction::FPToSI:
1038 case Instruction::FPExt:
1039 case Instruction::PtrToInt:
1040 case Instruction::IntToPtr:
1041 case Instruction::SIToFP:
1042 case Instruction::UIToFP:
1043 case Instruction::Trunc:
1044 case Instruction::FPTrunc:
1045 case Instruction::BitCast:
1046 case Instruction::AddrSpaceCast: {
1047 Type *SrcTy = I->getOperand(0)->getType();
1048 return getCastInstrCost(I->getOpcode(), I->getType(), SrcTy, I);
1050 case Instruction::ExtractElement: {
1051 const ExtractElementInst * EEI = cast<ExtractElementInst>(I);
1052 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
1053 unsigned Idx = -1;
1054 if (CI)
1055 Idx = CI->getZExtValue();
1057 // Try to match a reduction sequence (series of shufflevector and vector
1058 // adds followed by a extractelement).
1059 unsigned ReduxOpCode;
1060 Type *ReduxType;
1062 switch (matchVectorSplittingReduction(EEI, ReduxOpCode, ReduxType)) {
1063 case RK_Arithmetic:
1064 return getArithmeticReductionCost(ReduxOpCode, ReduxType,
1065 /*IsPairwiseForm=*/false);
1066 case RK_MinMax:
1067 return getMinMaxReductionCost(
1068 ReduxType, CmpInst::makeCmpResultType(ReduxType),
1069 /*IsPairwiseForm=*/false, /*IsUnsigned=*/false);
1070 case RK_UnsignedMinMax:
1071 return getMinMaxReductionCost(
1072 ReduxType, CmpInst::makeCmpResultType(ReduxType),
1073 /*IsPairwiseForm=*/false, /*IsUnsigned=*/true);
1074 case RK_None:
1075 break;
1078 switch (matchPairwiseReduction(EEI, ReduxOpCode, ReduxType)) {
1079 case RK_Arithmetic:
1080 return getArithmeticReductionCost(ReduxOpCode, ReduxType,
1081 /*IsPairwiseForm=*/true);
1082 case RK_MinMax:
1083 return getMinMaxReductionCost(
1084 ReduxType, CmpInst::makeCmpResultType(ReduxType),
1085 /*IsPairwiseForm=*/true, /*IsUnsigned=*/false);
1086 case RK_UnsignedMinMax:
1087 return getMinMaxReductionCost(
1088 ReduxType, CmpInst::makeCmpResultType(ReduxType),
1089 /*IsPairwiseForm=*/true, /*IsUnsigned=*/true);
1090 case RK_None:
1091 break;
1094 return getVectorInstrCost(I->getOpcode(),
1095 EEI->getOperand(0)->getType(), Idx);
1097 case Instruction::InsertElement: {
1098 const InsertElementInst * IE = cast<InsertElementInst>(I);
1099 ConstantInt *CI = dyn_cast<ConstantInt>(IE->getOperand(2));
1100 unsigned Idx = -1;
1101 if (CI)
1102 Idx = CI->getZExtValue();
1103 return getVectorInstrCost(I->getOpcode(),
1104 IE->getType(), Idx);
1106 case Instruction::ShuffleVector: {
1107 const ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
1108 // TODO: Identify and add costs for insert/extract subvector, etc.
1109 if (Shuffle->changesLength())
1110 return -1;
1112 if (Shuffle->isIdentity())
1113 return 0;
1115 Type *Ty = Shuffle->getType();
1116 if (Shuffle->isReverse())
1117 return TTIImpl->getShuffleCost(SK_Reverse, Ty, 0, nullptr);
1119 if (Shuffle->isSelect())
1120 return TTIImpl->getShuffleCost(SK_Select, Ty, 0, nullptr);
1122 if (Shuffle->isTranspose())
1123 return TTIImpl->getShuffleCost(SK_Transpose, Ty, 0, nullptr);
1125 if (Shuffle->isZeroEltSplat())
1126 return TTIImpl->getShuffleCost(SK_Broadcast, Ty, 0, nullptr);
1128 if (Shuffle->isSingleSource())
1129 return TTIImpl->getShuffleCost(SK_PermuteSingleSrc, Ty, 0, nullptr);
1131 return TTIImpl->getShuffleCost(SK_PermuteTwoSrc, Ty, 0, nullptr);
1133 case Instruction::Call:
1134 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1135 SmallVector<Value *, 4> Args(II->arg_operands());
1137 FastMathFlags FMF;
1138 if (auto *FPMO = dyn_cast<FPMathOperator>(II))
1139 FMF = FPMO->getFastMathFlags();
1141 return getIntrinsicInstrCost(II->getIntrinsicID(), II->getType(),
1142 Args, FMF);
1144 return -1;
1145 default:
1146 // We don't have any information on this instruction.
1147 return -1;
1151 TargetTransformInfo::Concept::~Concept() {}
1153 TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI) {}
1155 TargetIRAnalysis::TargetIRAnalysis(
1156 std::function<Result(const Function &)> TTICallback)
1157 : TTICallback(std::move(TTICallback)) {}
1159 TargetIRAnalysis::Result TargetIRAnalysis::run(const Function &F,
1160 FunctionAnalysisManager &) {
1161 return TTICallback(F);
1164 AnalysisKey TargetIRAnalysis::Key;
1166 TargetIRAnalysis::Result TargetIRAnalysis::getDefaultTTI(const Function &F) {
1167 return Result(F.getParent()->getDataLayout());
1170 // Register the basic pass.
1171 INITIALIZE_PASS(TargetTransformInfoWrapperPass, "tti",
1172 "Target Transform Information", false, true)
1173 char TargetTransformInfoWrapperPass::ID = 0;
1175 void TargetTransformInfoWrapperPass::anchor() {}
1177 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass()
1178 : ImmutablePass(ID) {
1179 initializeTargetTransformInfoWrapperPassPass(
1180 *PassRegistry::getPassRegistry());
1183 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass(
1184 TargetIRAnalysis TIRA)
1185 : ImmutablePass(ID), TIRA(std::move(TIRA)) {
1186 initializeTargetTransformInfoWrapperPassPass(
1187 *PassRegistry::getPassRegistry());
1190 TargetTransformInfo &TargetTransformInfoWrapperPass::getTTI(const Function &F) {
1191 FunctionAnalysisManager DummyFAM;
1192 TTI = TIRA.run(F, DummyFAM);
1193 return *TTI;
1196 ImmutablePass *
1197 llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA) {
1198 return new TargetTransformInfoWrapperPass(std::move(TIRA));