1 //===----------- VectorUtils.cpp - Vectorizer utility functions -----------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines vectorizer utilities.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Analysis/VectorUtils.h"
15 #include "llvm/ADT/EquivalenceClasses.h"
16 #include "llvm/Analysis/DemandedBits.h"
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/Analysis/LoopIterator.h"
19 #include "llvm/Analysis/ScalarEvolution.h"
20 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
21 #include "llvm/Analysis/TargetTransformInfo.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/GetElementPtrTypeIterator.h"
25 #include "llvm/IR/IRBuilder.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/IR/Value.h"
29 #define DEBUG_TYPE "vectorutils"
32 using namespace llvm::PatternMatch
;
34 /// Maximum factor for an interleaved memory access.
35 static cl::opt
<unsigned> MaxInterleaveGroupFactor(
36 "max-interleave-group-factor", cl::Hidden
,
37 cl::desc("Maximum factor for an interleaved access group (default = 8)"),
40 /// Identify if the intrinsic is trivially vectorizable.
41 /// This method returns true if the intrinsic's argument types are all
42 /// scalars for the scalar form of the intrinsic and all vectors for
43 /// the vector form of the intrinsic.
44 bool llvm::isTriviallyVectorizable(Intrinsic::ID ID
) {
52 case Intrinsic::log10
:
55 case Intrinsic::minnum
:
56 case Intrinsic::maxnum
:
57 case Intrinsic::copysign
:
58 case Intrinsic::floor
:
60 case Intrinsic::trunc
:
62 case Intrinsic::nearbyint
:
63 case Intrinsic::round
:
64 case Intrinsic::bswap
:
65 case Intrinsic::bitreverse
:
66 case Intrinsic::ctpop
:
69 case Intrinsic::fmuladd
:
73 case Intrinsic::canonicalize
:
80 /// Identifies if the intrinsic has a scalar operand. It check for
81 /// ctlz,cttz and powi special intrinsics whose argument is scalar.
82 bool llvm::hasVectorInstrinsicScalarOpd(Intrinsic::ID ID
,
83 unsigned ScalarOpdIdx
) {
88 return (ScalarOpdIdx
== 1);
94 /// Returns intrinsic ID for call.
95 /// For the input call instruction it finds mapping intrinsic and returns
96 /// its ID, in case it does not found it return not_intrinsic.
97 Intrinsic::ID
llvm::getVectorIntrinsicIDForCall(const CallInst
*CI
,
98 const TargetLibraryInfo
*TLI
) {
99 Intrinsic::ID ID
= getIntrinsicForCallSite(CI
, TLI
);
100 if (ID
== Intrinsic::not_intrinsic
)
101 return Intrinsic::not_intrinsic
;
103 if (isTriviallyVectorizable(ID
) || ID
== Intrinsic::lifetime_start
||
104 ID
== Intrinsic::lifetime_end
|| ID
== Intrinsic::assume
||
105 ID
== Intrinsic::sideeffect
)
107 return Intrinsic::not_intrinsic
;
110 /// Find the operand of the GEP that should be checked for consecutive
111 /// stores. This ignores trailing indices that have no effect on the final
113 unsigned llvm::getGEPInductionOperand(const GetElementPtrInst
*Gep
) {
114 const DataLayout
&DL
= Gep
->getModule()->getDataLayout();
115 unsigned LastOperand
= Gep
->getNumOperands() - 1;
116 unsigned GEPAllocSize
= DL
.getTypeAllocSize(Gep
->getResultElementType());
118 // Walk backwards and try to peel off zeros.
119 while (LastOperand
> 1 && match(Gep
->getOperand(LastOperand
), m_Zero())) {
120 // Find the type we're currently indexing into.
121 gep_type_iterator GEPTI
= gep_type_begin(Gep
);
122 std::advance(GEPTI
, LastOperand
- 2);
124 // If it's a type with the same allocation size as the result of the GEP we
125 // can peel off the zero index.
126 if (DL
.getTypeAllocSize(GEPTI
.getIndexedType()) != GEPAllocSize
)
134 /// If the argument is a GEP, then returns the operand identified by
135 /// getGEPInductionOperand. However, if there is some other non-loop-invariant
136 /// operand, it returns that instead.
137 Value
*llvm::stripGetElementPtr(Value
*Ptr
, ScalarEvolution
*SE
, Loop
*Lp
) {
138 GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(Ptr
);
142 unsigned InductionOperand
= getGEPInductionOperand(GEP
);
144 // Check that all of the gep indices are uniform except for our induction
146 for (unsigned i
= 0, e
= GEP
->getNumOperands(); i
!= e
; ++i
)
147 if (i
!= InductionOperand
&&
148 !SE
->isLoopInvariant(SE
->getSCEV(GEP
->getOperand(i
)), Lp
))
150 return GEP
->getOperand(InductionOperand
);
153 /// If a value has only one user that is a CastInst, return it.
154 Value
*llvm::getUniqueCastUse(Value
*Ptr
, Loop
*Lp
, Type
*Ty
) {
155 Value
*UniqueCast
= nullptr;
156 for (User
*U
: Ptr
->users()) {
157 CastInst
*CI
= dyn_cast
<CastInst
>(U
);
158 if (CI
&& CI
->getType() == Ty
) {
168 /// Get the stride of a pointer access in a loop. Looks for symbolic
169 /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
170 Value
*llvm::getStrideFromPointer(Value
*Ptr
, ScalarEvolution
*SE
, Loop
*Lp
) {
171 auto *PtrTy
= dyn_cast
<PointerType
>(Ptr
->getType());
172 if (!PtrTy
|| PtrTy
->isAggregateType())
175 // Try to remove a gep instruction to make the pointer (actually index at this
176 // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the
177 // pointer, otherwise, we are analyzing the index.
178 Value
*OrigPtr
= Ptr
;
180 // The size of the pointer access.
181 int64_t PtrAccessSize
= 1;
183 Ptr
= stripGetElementPtr(Ptr
, SE
, Lp
);
184 const SCEV
*V
= SE
->getSCEV(Ptr
);
188 while (const SCEVCastExpr
*C
= dyn_cast
<SCEVCastExpr
>(V
))
191 const SCEVAddRecExpr
*S
= dyn_cast
<SCEVAddRecExpr
>(V
);
195 V
= S
->getStepRecurrence(*SE
);
199 // Strip off the size of access multiplication if we are still analyzing the
201 if (OrigPtr
== Ptr
) {
202 if (const SCEVMulExpr
*M
= dyn_cast
<SCEVMulExpr
>(V
)) {
203 if (M
->getOperand(0)->getSCEVType() != scConstant
)
206 const APInt
&APStepVal
= cast
<SCEVConstant
>(M
->getOperand(0))->getAPInt();
208 // Huge step value - give up.
209 if (APStepVal
.getBitWidth() > 64)
212 int64_t StepVal
= APStepVal
.getSExtValue();
213 if (PtrAccessSize
!= StepVal
)
215 V
= M
->getOperand(1);
220 Type
*StripedOffRecurrenceCast
= nullptr;
221 if (const SCEVCastExpr
*C
= dyn_cast
<SCEVCastExpr
>(V
)) {
222 StripedOffRecurrenceCast
= C
->getType();
226 // Look for the loop invariant symbolic value.
227 const SCEVUnknown
*U
= dyn_cast
<SCEVUnknown
>(V
);
231 Value
*Stride
= U
->getValue();
232 if (!Lp
->isLoopInvariant(Stride
))
235 // If we have stripped off the recurrence cast we have to make sure that we
236 // return the value that is used in this loop so that we can replace it later.
237 if (StripedOffRecurrenceCast
)
238 Stride
= getUniqueCastUse(Stride
, Lp
, StripedOffRecurrenceCast
);
243 /// Given a vector and an element number, see if the scalar value is
244 /// already around as a register, for example if it were inserted then extracted
246 Value
*llvm::findScalarElement(Value
*V
, unsigned EltNo
) {
247 assert(V
->getType()->isVectorTy() && "Not looking at a vector?");
248 VectorType
*VTy
= cast
<VectorType
>(V
->getType());
249 unsigned Width
= VTy
->getNumElements();
250 if (EltNo
>= Width
) // Out of range access.
251 return UndefValue::get(VTy
->getElementType());
253 if (Constant
*C
= dyn_cast
<Constant
>(V
))
254 return C
->getAggregateElement(EltNo
);
256 if (InsertElementInst
*III
= dyn_cast
<InsertElementInst
>(V
)) {
257 // If this is an insert to a variable element, we don't know what it is.
258 if (!isa
<ConstantInt
>(III
->getOperand(2)))
260 unsigned IIElt
= cast
<ConstantInt
>(III
->getOperand(2))->getZExtValue();
262 // If this is an insert to the element we are looking for, return the
265 return III
->getOperand(1);
267 // Otherwise, the insertelement doesn't modify the value, recurse on its
269 return findScalarElement(III
->getOperand(0), EltNo
);
272 if (ShuffleVectorInst
*SVI
= dyn_cast
<ShuffleVectorInst
>(V
)) {
273 unsigned LHSWidth
= SVI
->getOperand(0)->getType()->getVectorNumElements();
274 int InEl
= SVI
->getMaskValue(EltNo
);
276 return UndefValue::get(VTy
->getElementType());
277 if (InEl
< (int)LHSWidth
)
278 return findScalarElement(SVI
->getOperand(0), InEl
);
279 return findScalarElement(SVI
->getOperand(1), InEl
- LHSWidth
);
282 // Extract a value from a vector add operation with a constant zero.
283 // TODO: Use getBinOpIdentity() to generalize this.
284 Value
*Val
; Constant
*C
;
285 if (match(V
, m_Add(m_Value(Val
), m_Constant(C
))))
286 if (Constant
*Elt
= C
->getAggregateElement(EltNo
))
287 if (Elt
->isNullValue())
288 return findScalarElement(Val
, EltNo
);
290 // Otherwise, we don't know.
294 /// Get splat value if the input is a splat vector or return nullptr.
295 /// This function is not fully general. It checks only 2 cases:
296 /// the input value is (1) a splat constants vector or (2) a sequence
297 /// of instructions that broadcast a single value into a vector.
299 const llvm::Value
*llvm::getSplatValue(const Value
*V
) {
301 if (auto *C
= dyn_cast
<Constant
>(V
))
302 if (isa
<VectorType
>(V
->getType()))
303 return C
->getSplatValue();
305 auto *ShuffleInst
= dyn_cast
<ShuffleVectorInst
>(V
);
308 // All-zero (or undef) shuffle mask elements.
309 for (int MaskElt
: ShuffleInst
->getShuffleMask())
310 if (MaskElt
!= 0 && MaskElt
!= -1)
312 // The first shuffle source is 'insertelement' with index 0.
313 auto *InsertEltInst
=
314 dyn_cast
<InsertElementInst
>(ShuffleInst
->getOperand(0));
315 if (!InsertEltInst
|| !isa
<ConstantInt
>(InsertEltInst
->getOperand(2)) ||
316 !cast
<ConstantInt
>(InsertEltInst
->getOperand(2))->isZero())
319 return InsertEltInst
->getOperand(1);
322 MapVector
<Instruction
*, uint64_t>
323 llvm::computeMinimumValueSizes(ArrayRef
<BasicBlock
*> Blocks
, DemandedBits
&DB
,
324 const TargetTransformInfo
*TTI
) {
326 // DemandedBits will give us every value's live-out bits. But we want
327 // to ensure no extra casts would need to be inserted, so every DAG
328 // of connected values must have the same minimum bitwidth.
329 EquivalenceClasses
<Value
*> ECs
;
330 SmallVector
<Value
*, 16> Worklist
;
331 SmallPtrSet
<Value
*, 4> Roots
;
332 SmallPtrSet
<Value
*, 16> Visited
;
333 DenseMap
<Value
*, uint64_t> DBits
;
334 SmallPtrSet
<Instruction
*, 4> InstructionSet
;
335 MapVector
<Instruction
*, uint64_t> MinBWs
;
337 // Determine the roots. We work bottom-up, from truncs or icmps.
338 bool SeenExtFromIllegalType
= false;
339 for (auto *BB
: Blocks
)
340 for (auto &I
: *BB
) {
341 InstructionSet
.insert(&I
);
343 if (TTI
&& (isa
<ZExtInst
>(&I
) || isa
<SExtInst
>(&I
)) &&
344 !TTI
->isTypeLegal(I
.getOperand(0)->getType()))
345 SeenExtFromIllegalType
= true;
347 // Only deal with non-vector integers up to 64-bits wide.
348 if ((isa
<TruncInst
>(&I
) || isa
<ICmpInst
>(&I
)) &&
349 !I
.getType()->isVectorTy() &&
350 I
.getOperand(0)->getType()->getScalarSizeInBits() <= 64) {
351 // Don't make work for ourselves. If we know the loaded type is legal,
352 // don't add it to the worklist.
353 if (TTI
&& isa
<TruncInst
>(&I
) && TTI
->isTypeLegal(I
.getType()))
356 Worklist
.push_back(&I
);
361 if (Worklist
.empty() || (TTI
&& !SeenExtFromIllegalType
))
364 // Now proceed breadth-first, unioning values together.
365 while (!Worklist
.empty()) {
366 Value
*Val
= Worklist
.pop_back_val();
367 Value
*Leader
= ECs
.getOrInsertLeaderValue(Val
);
369 if (Visited
.count(Val
))
373 // Non-instructions terminate a chain successfully.
374 if (!isa
<Instruction
>(Val
))
376 Instruction
*I
= cast
<Instruction
>(Val
);
378 // If we encounter a type that is larger than 64 bits, we can't represent
380 if (DB
.getDemandedBits(I
).getBitWidth() > 64)
381 return MapVector
<Instruction
*, uint64_t>();
383 uint64_t V
= DB
.getDemandedBits(I
).getZExtValue();
387 // Casts, loads and instructions outside of our range terminate a chain
389 if (isa
<SExtInst
>(I
) || isa
<ZExtInst
>(I
) || isa
<LoadInst
>(I
) ||
390 !InstructionSet
.count(I
))
393 // Unsafe casts terminate a chain unsuccessfully. We can't do anything
394 // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to
395 // transform anything that relies on them.
396 if (isa
<BitCastInst
>(I
) || isa
<PtrToIntInst
>(I
) || isa
<IntToPtrInst
>(I
) ||
397 !I
->getType()->isIntegerTy()) {
398 DBits
[Leader
] |= ~0ULL;
402 // We don't modify the types of PHIs. Reductions will already have been
403 // truncated if possible, and inductions' sizes will have been chosen by
408 if (DBits
[Leader
] == ~0ULL)
409 // All bits demanded, no point continuing.
412 for (Value
*O
: cast
<User
>(I
)->operands()) {
413 ECs
.unionSets(Leader
, O
);
414 Worklist
.push_back(O
);
418 // Now we've discovered all values, walk them to see if there are
419 // any users we didn't see. If there are, we can't optimize that
421 for (auto &I
: DBits
)
422 for (auto *U
: I
.first
->users())
423 if (U
->getType()->isIntegerTy() && DBits
.count(U
) == 0)
424 DBits
[ECs
.getOrInsertLeaderValue(I
.first
)] |= ~0ULL;
426 for (auto I
= ECs
.begin(), E
= ECs
.end(); I
!= E
; ++I
) {
427 uint64_t LeaderDemandedBits
= 0;
428 for (auto MI
= ECs
.member_begin(I
), ME
= ECs
.member_end(); MI
!= ME
; ++MI
)
429 LeaderDemandedBits
|= DBits
[*MI
];
431 uint64_t MinBW
= (sizeof(LeaderDemandedBits
) * 8) -
432 llvm::countLeadingZeros(LeaderDemandedBits
);
433 // Round up to a power of 2
434 if (!isPowerOf2_64((uint64_t)MinBW
))
435 MinBW
= NextPowerOf2(MinBW
);
437 // We don't modify the types of PHIs. Reductions will already have been
438 // truncated if possible, and inductions' sizes will have been chosen by
440 // If we are required to shrink a PHI, abandon this entire equivalence class.
442 for (auto MI
= ECs
.member_begin(I
), ME
= ECs
.member_end(); MI
!= ME
; ++MI
)
443 if (isa
<PHINode
>(*MI
) && MinBW
< (*MI
)->getType()->getScalarSizeInBits()) {
450 for (auto MI
= ECs
.member_begin(I
), ME
= ECs
.member_end(); MI
!= ME
; ++MI
) {
451 if (!isa
<Instruction
>(*MI
))
453 Type
*Ty
= (*MI
)->getType();
454 if (Roots
.count(*MI
))
455 Ty
= cast
<Instruction
>(*MI
)->getOperand(0)->getType();
456 if (MinBW
< Ty
->getScalarSizeInBits())
457 MinBWs
[cast
<Instruction
>(*MI
)] = MinBW
;
464 /// \returns \p I after propagating metadata from \p VL.
465 Instruction
*llvm::propagateMetadata(Instruction
*Inst
, ArrayRef
<Value
*> VL
) {
466 Instruction
*I0
= cast
<Instruction
>(VL
[0]);
467 SmallVector
<std::pair
<unsigned, MDNode
*>, 4> Metadata
;
468 I0
->getAllMetadataOtherThanDebugLoc(Metadata
);
471 {LLVMContext::MD_tbaa
, LLVMContext::MD_alias_scope
,
472 LLVMContext::MD_noalias
, LLVMContext::MD_fpmath
,
473 LLVMContext::MD_nontemporal
, LLVMContext::MD_invariant_load
}) {
474 MDNode
*MD
= I0
->getMetadata(Kind
);
476 for (int J
= 1, E
= VL
.size(); MD
&& J
!= E
; ++J
) {
477 const Instruction
*IJ
= cast
<Instruction
>(VL
[J
]);
478 MDNode
*IMD
= IJ
->getMetadata(Kind
);
480 case LLVMContext::MD_tbaa
:
481 MD
= MDNode::getMostGenericTBAA(MD
, IMD
);
483 case LLVMContext::MD_alias_scope
:
484 MD
= MDNode::getMostGenericAliasScope(MD
, IMD
);
486 case LLVMContext::MD_fpmath
:
487 MD
= MDNode::getMostGenericFPMath(MD
, IMD
);
489 case LLVMContext::MD_noalias
:
490 case LLVMContext::MD_nontemporal
:
491 case LLVMContext::MD_invariant_load
:
492 MD
= MDNode::intersect(MD
, IMD
);
495 llvm_unreachable("unhandled metadata");
499 Inst
->setMetadata(Kind
, MD
);
505 Constant
*llvm::createReplicatedMask(IRBuilder
<> &Builder
,
506 unsigned ReplicationFactor
, unsigned VF
) {
507 SmallVector
<Constant
*, 16> MaskVec
;
508 for (unsigned i
= 0; i
< VF
; i
++)
509 for (unsigned j
= 0; j
< ReplicationFactor
; j
++)
510 MaskVec
.push_back(Builder
.getInt32(i
));
512 return ConstantVector::get(MaskVec
);
515 Constant
*llvm::createInterleaveMask(IRBuilder
<> &Builder
, unsigned VF
,
517 SmallVector
<Constant
*, 16> Mask
;
518 for (unsigned i
= 0; i
< VF
; i
++)
519 for (unsigned j
= 0; j
< NumVecs
; j
++)
520 Mask
.push_back(Builder
.getInt32(j
* VF
+ i
));
522 return ConstantVector::get(Mask
);
525 Constant
*llvm::createStrideMask(IRBuilder
<> &Builder
, unsigned Start
,
526 unsigned Stride
, unsigned VF
) {
527 SmallVector
<Constant
*, 16> Mask
;
528 for (unsigned i
= 0; i
< VF
; i
++)
529 Mask
.push_back(Builder
.getInt32(Start
+ i
* Stride
));
531 return ConstantVector::get(Mask
);
534 Constant
*llvm::createSequentialMask(IRBuilder
<> &Builder
, unsigned Start
,
535 unsigned NumInts
, unsigned NumUndefs
) {
536 SmallVector
<Constant
*, 16> Mask
;
537 for (unsigned i
= 0; i
< NumInts
; i
++)
538 Mask
.push_back(Builder
.getInt32(Start
+ i
));
540 Constant
*Undef
= UndefValue::get(Builder
.getInt32Ty());
541 for (unsigned i
= 0; i
< NumUndefs
; i
++)
542 Mask
.push_back(Undef
);
544 return ConstantVector::get(Mask
);
547 /// A helper function for concatenating vectors. This function concatenates two
548 /// vectors having the same element type. If the second vector has fewer
549 /// elements than the first, it is padded with undefs.
550 static Value
*concatenateTwoVectors(IRBuilder
<> &Builder
, Value
*V1
,
552 VectorType
*VecTy1
= dyn_cast
<VectorType
>(V1
->getType());
553 VectorType
*VecTy2
= dyn_cast
<VectorType
>(V2
->getType());
554 assert(VecTy1
&& VecTy2
&&
555 VecTy1
->getScalarType() == VecTy2
->getScalarType() &&
556 "Expect two vectors with the same element type");
558 unsigned NumElts1
= VecTy1
->getNumElements();
559 unsigned NumElts2
= VecTy2
->getNumElements();
560 assert(NumElts1
>= NumElts2
&& "Unexpect the first vector has less elements");
562 if (NumElts1
> NumElts2
) {
563 // Extend with UNDEFs.
565 createSequentialMask(Builder
, 0, NumElts2
, NumElts1
- NumElts2
);
566 V2
= Builder
.CreateShuffleVector(V2
, UndefValue::get(VecTy2
), ExtMask
);
569 Constant
*Mask
= createSequentialMask(Builder
, 0, NumElts1
+ NumElts2
, 0);
570 return Builder
.CreateShuffleVector(V1
, V2
, Mask
);
573 Value
*llvm::concatenateVectors(IRBuilder
<> &Builder
, ArrayRef
<Value
*> Vecs
) {
574 unsigned NumVecs
= Vecs
.size();
575 assert(NumVecs
> 1 && "Should be at least two vectors");
577 SmallVector
<Value
*, 8> ResList
;
578 ResList
.append(Vecs
.begin(), Vecs
.end());
580 SmallVector
<Value
*, 8> TmpList
;
581 for (unsigned i
= 0; i
< NumVecs
- 1; i
+= 2) {
582 Value
*V0
= ResList
[i
], *V1
= ResList
[i
+ 1];
583 assert((V0
->getType() == V1
->getType() || i
== NumVecs
- 2) &&
584 "Only the last vector may have a different type");
586 TmpList
.push_back(concatenateTwoVectors(Builder
, V0
, V1
));
589 // Push the last vector if the total number of vectors is odd.
590 if (NumVecs
% 2 != 0)
591 TmpList
.push_back(ResList
[NumVecs
- 1]);
594 NumVecs
= ResList
.size();
595 } while (NumVecs
> 1);
600 bool InterleavedAccessInfo::isStrided(int Stride
) {
601 unsigned Factor
= std::abs(Stride
);
602 return Factor
>= 2 && Factor
<= MaxInterleaveGroupFactor
;
605 void InterleavedAccessInfo::collectConstStrideAccesses(
606 MapVector
<Instruction
*, StrideDescriptor
> &AccessStrideInfo
,
607 const ValueToValueMap
&Strides
) {
608 auto &DL
= TheLoop
->getHeader()->getModule()->getDataLayout();
610 // Since it's desired that the load/store instructions be maintained in
611 // "program order" for the interleaved access analysis, we have to visit the
612 // blocks in the loop in reverse postorder (i.e., in a topological order).
613 // Such an ordering will ensure that any load/store that may be executed
614 // before a second load/store will precede the second load/store in
616 LoopBlocksDFS
DFS(TheLoop
);
618 for (BasicBlock
*BB
: make_range(DFS
.beginRPO(), DFS
.endRPO()))
619 for (auto &I
: *BB
) {
620 auto *LI
= dyn_cast
<LoadInst
>(&I
);
621 auto *SI
= dyn_cast
<StoreInst
>(&I
);
625 Value
*Ptr
= getLoadStorePointerOperand(&I
);
626 // We don't check wrapping here because we don't know yet if Ptr will be
627 // part of a full group or a group with gaps. Checking wrapping for all
628 // pointers (even those that end up in groups with no gaps) will be overly
629 // conservative. For full groups, wrapping should be ok since if we would
630 // wrap around the address space we would do a memory access at nullptr
631 // even without the transformation. The wrapping checks are therefore
632 // deferred until after we've formed the interleaved groups.
633 int64_t Stride
= getPtrStride(PSE
, Ptr
, TheLoop
, Strides
,
634 /*Assume=*/true, /*ShouldCheckWrap=*/false);
636 const SCEV
*Scev
= replaceSymbolicStrideSCEV(PSE
, Strides
, Ptr
);
637 PointerType
*PtrTy
= dyn_cast
<PointerType
>(Ptr
->getType());
638 uint64_t Size
= DL
.getTypeAllocSize(PtrTy
->getElementType());
640 // An alignment of 0 means target ABI alignment.
641 unsigned Align
= getLoadStoreAlignment(&I
);
643 Align
= DL
.getABITypeAlignment(PtrTy
->getElementType());
645 AccessStrideInfo
[&I
] = StrideDescriptor(Stride
, Scev
, Size
, Align
);
649 // Analyze interleaved accesses and collect them into interleaved load and
652 // When generating code for an interleaved load group, we effectively hoist all
653 // loads in the group to the location of the first load in program order. When
654 // generating code for an interleaved store group, we sink all stores to the
655 // location of the last store. This code motion can change the order of load
656 // and store instructions and may break dependences.
658 // The code generation strategy mentioned above ensures that we won't violate
659 // any write-after-read (WAR) dependences.
661 // E.g., for the WAR dependence: a = A[i]; // (1)
664 // The store group of (2) is always inserted at or below (2), and the load
665 // group of (1) is always inserted at or above (1). Thus, the instructions will
666 // never be reordered. All other dependences are checked to ensure the
667 // correctness of the instruction reordering.
669 // The algorithm visits all memory accesses in the loop in bottom-up program
670 // order. Program order is established by traversing the blocks in the loop in
671 // reverse postorder when collecting the accesses.
673 // We visit the memory accesses in bottom-up order because it can simplify the
674 // construction of store groups in the presence of write-after-write (WAW)
677 // E.g., for the WAW dependence: A[i] = a; // (1)
679 // A[i + 1] = c; // (3)
681 // We will first create a store group with (3) and (2). (1) can't be added to
682 // this group because it and (2) are dependent. However, (1) can be grouped
683 // with other accesses that may precede it in program order. Note that a
684 // bottom-up order does not imply that WAW dependences should not be checked.
685 void InterleavedAccessInfo::analyzeInterleaving(
686 bool EnablePredicatedInterleavedMemAccesses
) {
687 LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n");
688 const ValueToValueMap
&Strides
= LAI
->getSymbolicStrides();
690 // Holds all accesses with a constant stride.
691 MapVector
<Instruction
*, StrideDescriptor
> AccessStrideInfo
;
692 collectConstStrideAccesses(AccessStrideInfo
, Strides
);
694 if (AccessStrideInfo
.empty())
697 // Collect the dependences in the loop.
698 collectDependences();
700 // Holds all interleaved store groups temporarily.
701 SmallSetVector
<InterleaveGroup
*, 4> StoreGroups
;
702 // Holds all interleaved load groups temporarily.
703 SmallSetVector
<InterleaveGroup
*, 4> LoadGroups
;
705 // Search in bottom-up program order for pairs of accesses (A and B) that can
706 // form interleaved load or store groups. In the algorithm below, access A
707 // precedes access B in program order. We initialize a group for B in the
708 // outer loop of the algorithm, and then in the inner loop, we attempt to
709 // insert each A into B's group if:
711 // 1. A and B have the same stride,
712 // 2. A and B have the same memory object size, and
713 // 3. A belongs in B's group according to its distance from B.
715 // Special care is taken to ensure group formation will not break any
717 for (auto BI
= AccessStrideInfo
.rbegin(), E
= AccessStrideInfo
.rend();
719 Instruction
*B
= BI
->first
;
720 StrideDescriptor DesB
= BI
->second
;
722 // Initialize a group for B if it has an allowable stride. Even if we don't
723 // create a group for B, we continue with the bottom-up algorithm to ensure
724 // we don't break any of B's dependences.
725 InterleaveGroup
*Group
= nullptr;
726 if (isStrided(DesB
.Stride
) &&
727 (!isPredicated(B
->getParent()) || EnablePredicatedInterleavedMemAccesses
)) {
728 Group
= getInterleaveGroup(B
);
730 LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B
732 Group
= createInterleaveGroup(B
, DesB
.Stride
, DesB
.Align
);
734 if (B
->mayWriteToMemory())
735 StoreGroups
.insert(Group
);
737 LoadGroups
.insert(Group
);
740 for (auto AI
= std::next(BI
); AI
!= E
; ++AI
) {
741 Instruction
*A
= AI
->first
;
742 StrideDescriptor DesA
= AI
->second
;
744 // Our code motion strategy implies that we can't have dependences
745 // between accesses in an interleaved group and other accesses located
746 // between the first and last member of the group. Note that this also
747 // means that a group can't have more than one member at a given offset.
748 // The accesses in a group can have dependences with other accesses, but
749 // we must ensure we don't extend the boundaries of the group such that
750 // we encompass those dependent accesses.
752 // For example, assume we have the sequence of accesses shown below in a
755 // (1, 2) is a group | A[i] = a; // (1)
756 // | A[i-1] = b; // (2) |
757 // A[i-3] = c; // (3)
758 // A[i] = d; // (4) | (2, 4) is not a group
760 // Because accesses (2) and (3) are dependent, we can group (2) with (1)
761 // but not with (4). If we did, the dependent access (3) would be within
762 // the boundaries of the (2, 4) group.
763 if (!canReorderMemAccessesForInterleavedGroups(&*AI
, &*BI
)) {
764 // If a dependence exists and A is already in a group, we know that A
765 // must be a store since A precedes B and WAR dependences are allowed.
766 // Thus, A would be sunk below B. We release A's group to prevent this
767 // illegal code motion. A will then be free to form another group with
768 // instructions that precede it.
769 if (isInterleaved(A
)) {
770 InterleaveGroup
*StoreGroup
= getInterleaveGroup(A
);
771 StoreGroups
.remove(StoreGroup
);
772 releaseGroup(StoreGroup
);
775 // If a dependence exists and A is not already in a group (or it was
776 // and we just released it), B might be hoisted above A (if B is a
777 // load) or another store might be sunk below A (if B is a store). In
778 // either case, we can't add additional instructions to B's group. B
779 // will only form a group with instructions that it precedes.
783 // At this point, we've checked for illegal code motion. If either A or B
784 // isn't strided, there's nothing left to do.
785 if (!isStrided(DesA
.Stride
) || !isStrided(DesB
.Stride
))
788 // Ignore A if it's already in a group or isn't the same kind of memory
790 // Note that mayReadFromMemory() isn't mutually exclusive to
791 // mayWriteToMemory in the case of atomic loads. We shouldn't see those
792 // here, canVectorizeMemory() should have returned false - except for the
793 // case we asked for optimization remarks.
794 if (isInterleaved(A
) ||
795 (A
->mayReadFromMemory() != B
->mayReadFromMemory()) ||
796 (A
->mayWriteToMemory() != B
->mayWriteToMemory()))
799 // Check rules 1 and 2. Ignore A if its stride or size is different from
801 if (DesA
.Stride
!= DesB
.Stride
|| DesA
.Size
!= DesB
.Size
)
804 // Ignore A if the memory object of A and B don't belong to the same
806 if (getLoadStoreAddressSpace(A
) != getLoadStoreAddressSpace(B
))
809 // Calculate the distance from A to B.
810 const SCEVConstant
*DistToB
= dyn_cast
<SCEVConstant
>(
811 PSE
.getSE()->getMinusSCEV(DesA
.Scev
, DesB
.Scev
));
814 int64_t DistanceToB
= DistToB
->getAPInt().getSExtValue();
816 // Check rule 3. Ignore A if its distance to B is not a multiple of the
818 if (DistanceToB
% static_cast<int64_t>(DesB
.Size
))
821 // All members of a predicated interleave-group must have the same predicate,
822 // and currently must reside in the same BB.
823 BasicBlock
*BlockA
= A
->getParent();
824 BasicBlock
*BlockB
= B
->getParent();
825 if ((isPredicated(BlockA
) || isPredicated(BlockB
)) &&
826 (!EnablePredicatedInterleavedMemAccesses
|| BlockA
!= BlockB
))
829 // The index of A is the index of B plus A's distance to B in multiples
832 Group
->getIndex(B
) + DistanceToB
/ static_cast<int64_t>(DesB
.Size
);
834 // Try to insert A into B's group.
835 if (Group
->insertMember(A
, IndexA
, DesA
.Align
)) {
836 LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A
<< '\n'
837 << " into the interleave group with" << *B
839 InterleaveGroupMap
[A
] = Group
;
841 // Set the first load in program order as the insert position.
842 if (A
->mayReadFromMemory())
843 Group
->setInsertPos(A
);
845 } // Iteration over A accesses.
846 } // Iteration over B accesses.
848 // Remove interleaved store groups with gaps.
849 for (InterleaveGroup
*Group
: StoreGroups
)
850 if (Group
->getNumMembers() != Group
->getFactor()) {
852 dbgs() << "LV: Invalidate candidate interleaved store group due "
856 // Remove interleaved groups with gaps (currently only loads) whose memory
857 // accesses may wrap around. We have to revisit the getPtrStride analysis,
858 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does
859 // not check wrapping (see documentation there).
860 // FORNOW we use Assume=false;
861 // TODO: Change to Assume=true but making sure we don't exceed the threshold
862 // of runtime SCEV assumptions checks (thereby potentially failing to
863 // vectorize altogether).
864 // Additional optional optimizations:
865 // TODO: If we are peeling the loop and we know that the first pointer doesn't
866 // wrap then we can deduce that all pointers in the group don't wrap.
867 // This means that we can forcefully peel the loop in order to only have to
868 // check the first pointer for no-wrap. When we'll change to use Assume=true
869 // we'll only need at most one runtime check per interleaved group.
870 for (InterleaveGroup
*Group
: LoadGroups
) {
871 // Case 1: A full group. Can Skip the checks; For full groups, if the wide
872 // load would wrap around the address space we would do a memory access at
873 // nullptr even without the transformation.
874 if (Group
->getNumMembers() == Group
->getFactor())
877 // Case 2: If first and last members of the group don't wrap this implies
878 // that all the pointers in the group don't wrap.
879 // So we check only group member 0 (which is always guaranteed to exist),
880 // and group member Factor - 1; If the latter doesn't exist we rely on
881 // peeling (if it is a non-reveresed accsess -- see Case 3).
882 Value
*FirstMemberPtr
= getLoadStorePointerOperand(Group
->getMember(0));
883 if (!getPtrStride(PSE
, FirstMemberPtr
, TheLoop
, Strides
, /*Assume=*/false,
884 /*ShouldCheckWrap=*/true)) {
886 dbgs() << "LV: Invalidate candidate interleaved group due to "
887 "first group member potentially pointer-wrapping.\n");
891 Instruction
*LastMember
= Group
->getMember(Group
->getFactor() - 1);
893 Value
*LastMemberPtr
= getLoadStorePointerOperand(LastMember
);
894 if (!getPtrStride(PSE
, LastMemberPtr
, TheLoop
, Strides
, /*Assume=*/false,
895 /*ShouldCheckWrap=*/true)) {
897 dbgs() << "LV: Invalidate candidate interleaved group due to "
898 "last group member potentially pointer-wrapping.\n");
902 // Case 3: A non-reversed interleaved load group with gaps: We need
903 // to execute at least one scalar epilogue iteration. This will ensure
904 // we don't speculatively access memory out-of-bounds. We only need
905 // to look for a member at index factor - 1, since every group must have
906 // a member at index zero.
907 if (Group
->isReverse()) {
909 dbgs() << "LV: Invalidate candidate interleaved group due to "
910 "a reverse access with gaps.\n");
915 dbgs() << "LV: Interleaved group requires epilogue iteration.\n");
916 RequiresScalarEpilogue
= true;