1 //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines several CodeGen-specific LLVM IR analysis utilities.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/Analysis.h"
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/CodeGen/MachineFunction.h"
17 #include "llvm/CodeGen/TargetInstrInfo.h"
18 #include "llvm/CodeGen/TargetLowering.h"
19 #include "llvm/CodeGen/TargetSubtargetInfo.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/Function.h"
23 #include "llvm/IR/Instructions.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/IR/LLVMContext.h"
26 #include "llvm/IR/Module.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/MathExtras.h"
29 #include "llvm/Transforms/Utils/GlobalStatus.h"
33 /// Compute the linearized index of a member in a nested aggregate/struct/array
34 /// by recursing and accumulating CurIndex as long as there are indices in the
36 unsigned llvm::ComputeLinearIndex(Type
*Ty
,
37 const unsigned *Indices
,
38 const unsigned *IndicesEnd
,
40 // Base case: We're done.
41 if (Indices
&& Indices
== IndicesEnd
)
44 // Given a struct type, recursively traverse the elements.
45 if (StructType
*STy
= dyn_cast
<StructType
>(Ty
)) {
46 for (StructType::element_iterator EB
= STy
->element_begin(),
48 EE
= STy
->element_end();
50 if (Indices
&& *Indices
== unsigned(EI
- EB
))
51 return ComputeLinearIndex(*EI
, Indices
+1, IndicesEnd
, CurIndex
);
52 CurIndex
= ComputeLinearIndex(*EI
, nullptr, nullptr, CurIndex
);
54 assert(!Indices
&& "Unexpected out of bound");
57 // Given an array type, recursively traverse the elements.
58 else if (ArrayType
*ATy
= dyn_cast
<ArrayType
>(Ty
)) {
59 Type
*EltTy
= ATy
->getElementType();
60 unsigned NumElts
= ATy
->getNumElements();
61 // Compute the Linear offset when jumping one element of the array
62 unsigned EltLinearOffset
= ComputeLinearIndex(EltTy
, nullptr, nullptr, 0);
64 assert(*Indices
< NumElts
&& "Unexpected out of bound");
65 // If the indice is inside the array, compute the index to the requested
66 // elt and recurse inside the element with the end of the indices list
67 CurIndex
+= EltLinearOffset
* *Indices
;
68 return ComputeLinearIndex(EltTy
, Indices
+1, IndicesEnd
, CurIndex
);
70 CurIndex
+= EltLinearOffset
*NumElts
;
73 // We haven't found the type we're looking for, so keep searching.
77 /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
78 /// EVTs that represent all the individual underlying
79 /// non-aggregate types that comprise it.
81 /// If Offsets is non-null, it points to a vector to be filled in
82 /// with the in-memory offsets of each of the individual values.
84 void llvm::ComputeValueVTs(const TargetLowering
&TLI
, const DataLayout
&DL
,
85 Type
*Ty
, SmallVectorImpl
<EVT
> &ValueVTs
,
86 SmallVectorImpl
<uint64_t> *Offsets
,
87 uint64_t StartingOffset
) {
88 // Given a struct type, recursively traverse the elements.
89 if (StructType
*STy
= dyn_cast
<StructType
>(Ty
)) {
90 const StructLayout
*SL
= DL
.getStructLayout(STy
);
91 for (StructType::element_iterator EB
= STy
->element_begin(),
93 EE
= STy
->element_end();
95 ComputeValueVTs(TLI
, DL
, *EI
, ValueVTs
, Offsets
,
96 StartingOffset
+ SL
->getElementOffset(EI
- EB
));
99 // Given an array type, recursively traverse the elements.
100 if (ArrayType
*ATy
= dyn_cast
<ArrayType
>(Ty
)) {
101 Type
*EltTy
= ATy
->getElementType();
102 uint64_t EltSize
= DL
.getTypeAllocSize(EltTy
);
103 for (unsigned i
= 0, e
= ATy
->getNumElements(); i
!= e
; ++i
)
104 ComputeValueVTs(TLI
, DL
, EltTy
, ValueVTs
, Offsets
,
105 StartingOffset
+ i
* EltSize
);
108 // Interpret void as zero return values.
111 // Base case: we can get an EVT for this LLVM IR type.
112 ValueVTs
.push_back(TLI
.getValueType(DL
, Ty
));
114 Offsets
->push_back(StartingOffset
);
117 /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
118 GlobalValue
*llvm::ExtractTypeInfo(Value
*V
) {
119 V
= V
->stripPointerCasts();
120 GlobalValue
*GV
= dyn_cast
<GlobalValue
>(V
);
121 GlobalVariable
*Var
= dyn_cast
<GlobalVariable
>(V
);
123 if (Var
&& Var
->getName() == "llvm.eh.catch.all.value") {
124 assert(Var
->hasInitializer() &&
125 "The EH catch-all value must have an initializer");
126 Value
*Init
= Var
->getInitializer();
127 GV
= dyn_cast
<GlobalValue
>(Init
);
128 if (!GV
) V
= cast
<ConstantPointerNull
>(Init
);
131 assert((GV
|| isa
<ConstantPointerNull
>(V
)) &&
132 "TypeInfo must be a global variable or NULL");
136 /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being
137 /// processed uses a memory 'm' constraint.
139 llvm::hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector
&CInfos
,
140 const TargetLowering
&TLI
) {
141 for (unsigned i
= 0, e
= CInfos
.size(); i
!= e
; ++i
) {
142 InlineAsm::ConstraintInfo
&CI
= CInfos
[i
];
143 for (unsigned j
= 0, ee
= CI
.Codes
.size(); j
!= ee
; ++j
) {
144 TargetLowering::ConstraintType CType
= TLI
.getConstraintType(CI
.Codes
[j
]);
145 if (CType
== TargetLowering::C_Memory
)
149 // Indirect operand accesses access memory.
157 /// getFCmpCondCode - Return the ISD condition code corresponding to
158 /// the given LLVM IR floating-point condition code. This includes
159 /// consideration of global floating-point math flags.
161 ISD::CondCode
llvm::getFCmpCondCode(FCmpInst::Predicate Pred
) {
163 case FCmpInst::FCMP_FALSE
: return ISD::SETFALSE
;
164 case FCmpInst::FCMP_OEQ
: return ISD::SETOEQ
;
165 case FCmpInst::FCMP_OGT
: return ISD::SETOGT
;
166 case FCmpInst::FCMP_OGE
: return ISD::SETOGE
;
167 case FCmpInst::FCMP_OLT
: return ISD::SETOLT
;
168 case FCmpInst::FCMP_OLE
: return ISD::SETOLE
;
169 case FCmpInst::FCMP_ONE
: return ISD::SETONE
;
170 case FCmpInst::FCMP_ORD
: return ISD::SETO
;
171 case FCmpInst::FCMP_UNO
: return ISD::SETUO
;
172 case FCmpInst::FCMP_UEQ
: return ISD::SETUEQ
;
173 case FCmpInst::FCMP_UGT
: return ISD::SETUGT
;
174 case FCmpInst::FCMP_UGE
: return ISD::SETUGE
;
175 case FCmpInst::FCMP_ULT
: return ISD::SETULT
;
176 case FCmpInst::FCMP_ULE
: return ISD::SETULE
;
177 case FCmpInst::FCMP_UNE
: return ISD::SETUNE
;
178 case FCmpInst::FCMP_TRUE
: return ISD::SETTRUE
;
179 default: llvm_unreachable("Invalid FCmp predicate opcode!");
183 ISD::CondCode
llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC
) {
185 case ISD::SETOEQ
: case ISD::SETUEQ
: return ISD::SETEQ
;
186 case ISD::SETONE
: case ISD::SETUNE
: return ISD::SETNE
;
187 case ISD::SETOLT
: case ISD::SETULT
: return ISD::SETLT
;
188 case ISD::SETOLE
: case ISD::SETULE
: return ISD::SETLE
;
189 case ISD::SETOGT
: case ISD::SETUGT
: return ISD::SETGT
;
190 case ISD::SETOGE
: case ISD::SETUGE
: return ISD::SETGE
;
195 /// getICmpCondCode - Return the ISD condition code corresponding to
196 /// the given LLVM IR integer condition code.
198 ISD::CondCode
llvm::getICmpCondCode(ICmpInst::Predicate Pred
) {
200 case ICmpInst::ICMP_EQ
: return ISD::SETEQ
;
201 case ICmpInst::ICMP_NE
: return ISD::SETNE
;
202 case ICmpInst::ICMP_SLE
: return ISD::SETLE
;
203 case ICmpInst::ICMP_ULE
: return ISD::SETULE
;
204 case ICmpInst::ICMP_SGE
: return ISD::SETGE
;
205 case ICmpInst::ICMP_UGE
: return ISD::SETUGE
;
206 case ICmpInst::ICMP_SLT
: return ISD::SETLT
;
207 case ICmpInst::ICMP_ULT
: return ISD::SETULT
;
208 case ICmpInst::ICMP_SGT
: return ISD::SETGT
;
209 case ICmpInst::ICMP_UGT
: return ISD::SETUGT
;
211 llvm_unreachable("Invalid ICmp predicate opcode!");
215 static bool isNoopBitcast(Type
*T1
, Type
*T2
,
216 const TargetLoweringBase
& TLI
) {
217 return T1
== T2
|| (T1
->isPointerTy() && T2
->isPointerTy()) ||
218 (isa
<VectorType
>(T1
) && isa
<VectorType
>(T2
) &&
219 TLI
.isTypeLegal(EVT::getEVT(T1
)) && TLI
.isTypeLegal(EVT::getEVT(T2
)));
222 /// Look through operations that will be free to find the earliest source of
225 /// @param ValLoc If V has aggegate type, we will be interested in a particular
226 /// scalar component. This records its address; the reverse of this list gives a
227 /// sequence of indices appropriate for an extractvalue to locate the important
228 /// value. This value is updated during the function and on exit will indicate
229 /// similar information for the Value returned.
231 /// @param DataBits If this function looks through truncate instructions, this
232 /// will record the smallest size attained.
233 static const Value
*getNoopInput(const Value
*V
,
234 SmallVectorImpl
<unsigned> &ValLoc
,
236 const TargetLoweringBase
&TLI
,
237 const DataLayout
&DL
) {
239 // Try to look through V1; if V1 is not an instruction, it can't be looked
241 const Instruction
*I
= dyn_cast
<Instruction
>(V
);
242 if (!I
|| I
->getNumOperands() == 0) return V
;
243 const Value
*NoopInput
= nullptr;
245 Value
*Op
= I
->getOperand(0);
246 if (isa
<BitCastInst
>(I
)) {
247 // Look through truly no-op bitcasts.
248 if (isNoopBitcast(Op
->getType(), I
->getType(), TLI
))
250 } else if (isa
<GetElementPtrInst
>(I
)) {
251 // Look through getelementptr
252 if (cast
<GetElementPtrInst
>(I
)->hasAllZeroIndices())
254 } else if (isa
<IntToPtrInst
>(I
)) {
255 // Look through inttoptr.
256 // Make sure this isn't a truncating or extending cast. We could
257 // support this eventually, but don't bother for now.
258 if (!isa
<VectorType
>(I
->getType()) &&
259 DL
.getPointerSizeInBits() ==
260 cast
<IntegerType
>(Op
->getType())->getBitWidth())
262 } else if (isa
<PtrToIntInst
>(I
)) {
263 // Look through ptrtoint.
264 // Make sure this isn't a truncating or extending cast. We could
265 // support this eventually, but don't bother for now.
266 if (!isa
<VectorType
>(I
->getType()) &&
267 DL
.getPointerSizeInBits() ==
268 cast
<IntegerType
>(I
->getType())->getBitWidth())
270 } else if (isa
<TruncInst
>(I
) &&
271 TLI
.allowTruncateForTailCall(Op
->getType(), I
->getType())) {
272 DataBits
= std::min(DataBits
, I
->getType()->getPrimitiveSizeInBits());
274 } else if (auto CS
= ImmutableCallSite(I
)) {
275 const Value
*ReturnedOp
= CS
.getReturnedArgOperand();
276 if (ReturnedOp
&& isNoopBitcast(ReturnedOp
->getType(), I
->getType(), TLI
))
277 NoopInput
= ReturnedOp
;
278 } else if (const InsertValueInst
*IVI
= dyn_cast
<InsertValueInst
>(V
)) {
279 // Value may come from either the aggregate or the scalar
280 ArrayRef
<unsigned> InsertLoc
= IVI
->getIndices();
281 if (ValLoc
.size() >= InsertLoc
.size() &&
282 std::equal(InsertLoc
.begin(), InsertLoc
.end(), ValLoc
.rbegin())) {
283 // The type being inserted is a nested sub-type of the aggregate; we
284 // have to remove those initial indices to get the location we're
285 // interested in for the operand.
286 ValLoc
.resize(ValLoc
.size() - InsertLoc
.size());
287 NoopInput
= IVI
->getInsertedValueOperand();
289 // The struct we're inserting into has the value we're interested in, no
290 // change of address.
293 } else if (const ExtractValueInst
*EVI
= dyn_cast
<ExtractValueInst
>(V
)) {
294 // The part we're interested in will inevitably be some sub-section of the
295 // previous aggregate. Combine the two paths to obtain the true address of
297 ArrayRef
<unsigned> ExtractLoc
= EVI
->getIndices();
298 ValLoc
.append(ExtractLoc
.rbegin(), ExtractLoc
.rend());
301 // Terminate if we couldn't find anything to look through.
309 /// Return true if this scalar return value only has bits discarded on its path
310 /// from the "tail call" to the "ret". This includes the obvious noop
311 /// instructions handled by getNoopInput above as well as free truncations (or
312 /// extensions prior to the call).
313 static bool slotOnlyDiscardsData(const Value
*RetVal
, const Value
*CallVal
,
314 SmallVectorImpl
<unsigned> &RetIndices
,
315 SmallVectorImpl
<unsigned> &CallIndices
,
316 bool AllowDifferingSizes
,
317 const TargetLoweringBase
&TLI
,
318 const DataLayout
&DL
) {
320 // Trace the sub-value needed by the return value as far back up the graph as
321 // possible, in the hope that it will intersect with the value produced by the
322 // call. In the simple case with no "returned" attribute, the hope is actually
323 // that we end up back at the tail call instruction itself.
324 unsigned BitsRequired
= UINT_MAX
;
325 RetVal
= getNoopInput(RetVal
, RetIndices
, BitsRequired
, TLI
, DL
);
327 // If this slot in the value returned is undef, it doesn't matter what the
328 // call puts there, it'll be fine.
329 if (isa
<UndefValue
>(RetVal
))
332 // Now do a similar search up through the graph to find where the value
333 // actually returned by the "tail call" comes from. In the simple case without
334 // a "returned" attribute, the search will be blocked immediately and the loop
336 unsigned BitsProvided
= UINT_MAX
;
337 CallVal
= getNoopInput(CallVal
, CallIndices
, BitsProvided
, TLI
, DL
);
339 // There's no hope if we can't actually trace them to (the same part of!) the
341 if (CallVal
!= RetVal
|| CallIndices
!= RetIndices
)
344 // However, intervening truncates may have made the call non-tail. Make sure
345 // all the bits that are needed by the "ret" have been provided by the "tail
346 // call". FIXME: with sufficiently cunning bit-tracking, we could look through
348 if (BitsProvided
< BitsRequired
||
349 (!AllowDifferingSizes
&& BitsProvided
!= BitsRequired
))
355 /// For an aggregate type, determine whether a given index is within bounds or
357 static bool indexReallyValid(CompositeType
*T
, unsigned Idx
) {
358 if (ArrayType
*AT
= dyn_cast
<ArrayType
>(T
))
359 return Idx
< AT
->getNumElements();
361 return Idx
< cast
<StructType
>(T
)->getNumElements();
364 /// Move the given iterators to the next leaf type in depth first traversal.
366 /// Performs a depth-first traversal of the type as specified by its arguments,
367 /// stopping at the next leaf node (which may be a legitimate scalar type or an
368 /// empty struct or array).
370 /// @param SubTypes List of the partial components making up the type from
371 /// outermost to innermost non-empty aggregate. The element currently
372 /// represented is SubTypes.back()->getTypeAtIndex(Path.back() - 1).
374 /// @param Path Set of extractvalue indices leading from the outermost type
375 /// (SubTypes[0]) to the leaf node currently represented.
377 /// @returns true if a new type was found, false otherwise. Calling this
378 /// function again on a finished iterator will repeatedly return
379 /// false. SubTypes.back()->getTypeAtIndex(Path.back()) is either an empty
380 /// aggregate or a non-aggregate
381 static bool advanceToNextLeafType(SmallVectorImpl
<CompositeType
*> &SubTypes
,
382 SmallVectorImpl
<unsigned> &Path
) {
383 // First march back up the tree until we can successfully increment one of the
384 // coordinates in Path.
385 while (!Path
.empty() && !indexReallyValid(SubTypes
.back(), Path
.back() + 1)) {
390 // If we reached the top, then the iterator is done.
394 // We know there's *some* valid leaf now, so march back down the tree picking
395 // out the left-most element at each node.
397 Type
*DeeperType
= SubTypes
.back()->getTypeAtIndex(Path
.back());
398 while (DeeperType
->isAggregateType()) {
399 CompositeType
*CT
= cast
<CompositeType
>(DeeperType
);
400 if (!indexReallyValid(CT
, 0))
403 SubTypes
.push_back(CT
);
406 DeeperType
= CT
->getTypeAtIndex(0U);
412 /// Find the first non-empty, scalar-like type in Next and setup the iterator
415 /// Assuming Next is an aggregate of some kind, this function will traverse the
416 /// tree from left to right (i.e. depth-first) looking for the first
417 /// non-aggregate type which will play a role in function return.
419 /// For example, if Next was {[0 x i64], {{}, i32, {}}, i32} then we would setup
420 /// Path as [1, 1] and SubTypes as [Next, {{}, i32, {}}] to represent the first
421 /// i32 in that type.
422 static bool firstRealType(Type
*Next
,
423 SmallVectorImpl
<CompositeType
*> &SubTypes
,
424 SmallVectorImpl
<unsigned> &Path
) {
425 // First initialise the iterator components to the first "leaf" node
426 // (i.e. node with no valid sub-type at any index, so {} does count as a leaf
427 // despite nominally being an aggregate).
428 while (Next
->isAggregateType() &&
429 indexReallyValid(cast
<CompositeType
>(Next
), 0)) {
430 SubTypes
.push_back(cast
<CompositeType
>(Next
));
432 Next
= cast
<CompositeType
>(Next
)->getTypeAtIndex(0U);
435 // If there's no Path now, Next was originally scalar already (or empty
436 // leaf). We're done.
440 // Otherwise, use normal iteration to keep looking through the tree until we
441 // find a non-aggregate type.
442 while (SubTypes
.back()->getTypeAtIndex(Path
.back())->isAggregateType()) {
443 if (!advanceToNextLeafType(SubTypes
, Path
))
450 /// Set the iterator data-structures to the next non-empty, non-aggregate
452 static bool nextRealType(SmallVectorImpl
<CompositeType
*> &SubTypes
,
453 SmallVectorImpl
<unsigned> &Path
) {
455 if (!advanceToNextLeafType(SubTypes
, Path
))
458 assert(!Path
.empty() && "found a leaf but didn't set the path?");
459 } while (SubTypes
.back()->getTypeAtIndex(Path
.back())->isAggregateType());
465 /// Test if the given instruction is in a position to be optimized
466 /// with a tail-call. This roughly means that it's in a block with
467 /// a return and there's nothing that needs to be scheduled
468 /// between it and the return.
470 /// This function only tests target-independent requirements.
471 bool llvm::isInTailCallPosition(ImmutableCallSite CS
, const TargetMachine
&TM
) {
472 const Instruction
*I
= CS
.getInstruction();
473 const BasicBlock
*ExitBB
= I
->getParent();
474 const TerminatorInst
*Term
= ExitBB
->getTerminator();
475 const ReturnInst
*Ret
= dyn_cast
<ReturnInst
>(Term
);
477 // The block must end in a return statement or unreachable.
479 // FIXME: Decline tailcall if it's not guaranteed and if the block ends in
480 // an unreachable, for now. The way tailcall optimization is currently
481 // implemented means it will add an epilogue followed by a jump. That is
482 // not profitable. Also, if the callee is a special function (e.g.
483 // longjmp on x86), it can end up causing miscompilation that has not
484 // been fully understood.
486 (!TM
.Options
.GuaranteedTailCallOpt
|| !isa
<UnreachableInst
>(Term
)))
489 // If I will have a chain, make sure no other instruction that will have a
490 // chain interposes between I and the return.
491 if (I
->mayHaveSideEffects() || I
->mayReadFromMemory() ||
492 !isSafeToSpeculativelyExecute(I
))
493 for (BasicBlock::const_iterator BBI
= std::prev(ExitBB
->end(), 2);; --BBI
) {
496 // Debug info intrinsics do not get in the way of tail call optimization.
497 if (isa
<DbgInfoIntrinsic
>(BBI
))
499 if (BBI
->mayHaveSideEffects() || BBI
->mayReadFromMemory() ||
500 !isSafeToSpeculativelyExecute(&*BBI
))
504 const Function
*F
= ExitBB
->getParent();
505 return returnTypeIsEligibleForTailCall(
506 F
, I
, Ret
, *TM
.getSubtargetImpl(*F
)->getTargetLowering());
509 bool llvm::attributesPermitTailCall(const Function
*F
, const Instruction
*I
,
510 const ReturnInst
*Ret
,
511 const TargetLoweringBase
&TLI
,
512 bool *AllowDifferingSizes
) {
513 // ADS may be null, so don't write to it directly.
515 bool &ADS
= AllowDifferingSizes
? *AllowDifferingSizes
: DummyADS
;
518 AttrBuilder
CallerAttrs(F
->getAttributes(), AttributeList::ReturnIndex
);
519 AttrBuilder
CalleeAttrs(cast
<CallInst
>(I
)->getAttributes(),
520 AttributeList::ReturnIndex
);
522 // NoAlias and NonNull are completely benign as far as calling convention
523 // goes, they shouldn't affect whether the call is a tail call.
524 CallerAttrs
.removeAttribute(Attribute::NoAlias
);
525 CalleeAttrs
.removeAttribute(Attribute::NoAlias
);
526 CallerAttrs
.removeAttribute(Attribute::NonNull
);
527 CalleeAttrs
.removeAttribute(Attribute::NonNull
);
529 if (CallerAttrs
.contains(Attribute::ZExt
)) {
530 if (!CalleeAttrs
.contains(Attribute::ZExt
))
534 CallerAttrs
.removeAttribute(Attribute::ZExt
);
535 CalleeAttrs
.removeAttribute(Attribute::ZExt
);
536 } else if (CallerAttrs
.contains(Attribute::SExt
)) {
537 if (!CalleeAttrs
.contains(Attribute::SExt
))
541 CallerAttrs
.removeAttribute(Attribute::SExt
);
542 CalleeAttrs
.removeAttribute(Attribute::SExt
);
545 // If they're still different, there's some facet we don't understand
546 // (currently only "inreg", but in future who knows). It may be OK but the
547 // only safe option is to reject the tail call.
548 return CallerAttrs
== CalleeAttrs
;
551 bool llvm::returnTypeIsEligibleForTailCall(const Function
*F
,
552 const Instruction
*I
,
553 const ReturnInst
*Ret
,
554 const TargetLoweringBase
&TLI
) {
555 // If the block ends with a void return or unreachable, it doesn't matter
556 // what the call's return type is.
557 if (!Ret
|| Ret
->getNumOperands() == 0) return true;
559 // If the return value is undef, it doesn't matter what the call's
561 if (isa
<UndefValue
>(Ret
->getOperand(0))) return true;
563 // Make sure the attributes attached to each return are compatible.
564 bool AllowDifferingSizes
;
565 if (!attributesPermitTailCall(F
, I
, Ret
, TLI
, &AllowDifferingSizes
))
568 const Value
*RetVal
= Ret
->getOperand(0), *CallVal
= I
;
569 // Intrinsic like llvm.memcpy has no return value, but the expanded
570 // libcall may or may not have return value. On most platforms, it
571 // will be expanded as memcpy in libc, which returns the first
572 // argument. On other platforms like arm-none-eabi, memcpy may be
573 // expanded as library call without return value, like __aeabi_memcpy.
574 const CallInst
*Call
= cast
<CallInst
>(I
);
575 if (Function
*F
= Call
->getCalledFunction()) {
576 Intrinsic::ID IID
= F
->getIntrinsicID();
577 if (((IID
== Intrinsic::memcpy
&&
578 TLI
.getLibcallName(RTLIB::MEMCPY
) == StringRef("memcpy")) ||
579 (IID
== Intrinsic::memmove
&&
580 TLI
.getLibcallName(RTLIB::MEMMOVE
) == StringRef("memmove")) ||
581 (IID
== Intrinsic::memset
&&
582 TLI
.getLibcallName(RTLIB::MEMSET
) == StringRef("memset"))) &&
583 RetVal
== Call
->getArgOperand(0))
587 SmallVector
<unsigned, 4> RetPath
, CallPath
;
588 SmallVector
<CompositeType
*, 4> RetSubTypes
, CallSubTypes
;
590 bool RetEmpty
= !firstRealType(RetVal
->getType(), RetSubTypes
, RetPath
);
591 bool CallEmpty
= !firstRealType(CallVal
->getType(), CallSubTypes
, CallPath
);
593 // Nothing's actually returned, it doesn't matter what the callee put there
594 // it's a valid tail call.
598 // Iterate pairwise through each of the value types making up the tail call
599 // and the corresponding return. For each one we want to know whether it's
600 // essentially going directly from the tail call to the ret, via operations
601 // that end up not generating any code.
603 // We allow a certain amount of covariance here. For example it's permitted
604 // for the tail call to define more bits than the ret actually cares about
605 // (e.g. via a truncate).
608 // We've exhausted the values produced by the tail call instruction, the
609 // rest are essentially undef. The type doesn't really matter, but we need
611 Type
*SlotType
= RetSubTypes
.back()->getTypeAtIndex(RetPath
.back());
612 CallVal
= UndefValue::get(SlotType
);
615 // The manipulations performed when we're looking through an insertvalue or
616 // an extractvalue would happen at the front of the RetPath list, so since
617 // we have to copy it anyway it's more efficient to create a reversed copy.
618 SmallVector
<unsigned, 4> TmpRetPath(RetPath
.rbegin(), RetPath
.rend());
619 SmallVector
<unsigned, 4> TmpCallPath(CallPath
.rbegin(), CallPath
.rend());
621 // Finally, we can check whether the value produced by the tail call at this
622 // index is compatible with the value we return.
623 if (!slotOnlyDiscardsData(RetVal
, CallVal
, TmpRetPath
, TmpCallPath
,
624 AllowDifferingSizes
, TLI
,
625 F
->getParent()->getDataLayout()))
628 CallEmpty
= !nextRealType(CallSubTypes
, CallPath
);
629 } while(nextRealType(RetSubTypes
, RetPath
));
634 static void collectEHScopeMembers(
635 DenseMap
<const MachineBasicBlock
*, int> &EHScopeMembership
, int EHScope
,
636 const MachineBasicBlock
*MBB
) {
637 SmallVector
<const MachineBasicBlock
*, 16> Worklist
= {MBB
};
638 while (!Worklist
.empty()) {
639 const MachineBasicBlock
*Visiting
= Worklist
.pop_back_val();
640 // Don't follow blocks which start new scopes.
641 if (Visiting
->isEHPad() && Visiting
!= MBB
)
644 // Add this MBB to our scope.
645 auto P
= EHScopeMembership
.insert(std::make_pair(Visiting
, EHScope
));
647 // Don't revisit blocks.
649 assert(P
.first
->second
== EHScope
&& "MBB is part of two scopes!");
653 // Returns are boundaries where scope transfer can occur, don't follow
655 if (Visiting
->isEHScopeReturnBlock())
658 for (const MachineBasicBlock
*Succ
: Visiting
->successors())
659 Worklist
.push_back(Succ
);
663 DenseMap
<const MachineBasicBlock
*, int>
664 llvm::getEHScopeMembership(const MachineFunction
&MF
) {
665 DenseMap
<const MachineBasicBlock
*, int> EHScopeMembership
;
667 // We don't have anything to do if there aren't any EH pads.
668 if (!MF
.hasEHScopes())
669 return EHScopeMembership
;
671 int EntryBBNumber
= MF
.front().getNumber();
672 bool IsSEH
= isAsynchronousEHPersonality(
673 classifyEHPersonality(MF
.getFunction().getPersonalityFn()));
675 const TargetInstrInfo
*TII
= MF
.getSubtarget().getInstrInfo();
676 SmallVector
<const MachineBasicBlock
*, 16> EHScopeBlocks
;
677 SmallVector
<const MachineBasicBlock
*, 16> UnreachableBlocks
;
678 SmallVector
<const MachineBasicBlock
*, 16> SEHCatchPads
;
679 SmallVector
<std::pair
<const MachineBasicBlock
*, int>, 16> CatchRetSuccessors
;
680 for (const MachineBasicBlock
&MBB
: MF
) {
681 if (MBB
.isEHScopeEntry()) {
682 EHScopeBlocks
.push_back(&MBB
);
683 } else if (IsSEH
&& MBB
.isEHPad()) {
684 SEHCatchPads
.push_back(&MBB
);
685 } else if (MBB
.pred_empty()) {
686 UnreachableBlocks
.push_back(&MBB
);
689 MachineBasicBlock::const_iterator MBBI
= MBB
.getFirstTerminator();
691 // CatchPads are not scopes for SEH so do not consider CatchRet to
692 // transfer control to another scope.
693 if (MBBI
== MBB
.end() || MBBI
->getOpcode() != TII
->getCatchReturnOpcode())
696 // FIXME: SEH CatchPads are not necessarily in the parent function:
697 // they could be inside a finally block.
698 const MachineBasicBlock
*Successor
= MBBI
->getOperand(0).getMBB();
699 const MachineBasicBlock
*SuccessorColor
= MBBI
->getOperand(1).getMBB();
700 CatchRetSuccessors
.push_back(
701 {Successor
, IsSEH
? EntryBBNumber
: SuccessorColor
->getNumber()});
704 // We don't have anything to do if there aren't any EH pads.
705 if (EHScopeBlocks
.empty())
706 return EHScopeMembership
;
708 // Identify all the basic blocks reachable from the function entry.
709 collectEHScopeMembers(EHScopeMembership
, EntryBBNumber
, &MF
.front());
710 // All blocks not part of a scope are in the parent function.
711 for (const MachineBasicBlock
*MBB
: UnreachableBlocks
)
712 collectEHScopeMembers(EHScopeMembership
, EntryBBNumber
, MBB
);
713 // Next, identify all the blocks inside the scopes.
714 for (const MachineBasicBlock
*MBB
: EHScopeBlocks
)
715 collectEHScopeMembers(EHScopeMembership
, MBB
->getNumber(), MBB
);
716 // SEH CatchPads aren't really scopes, handle them separately.
717 for (const MachineBasicBlock
*MBB
: SEHCatchPads
)
718 collectEHScopeMembers(EHScopeMembership
, EntryBBNumber
, MBB
);
719 // Finally, identify all the targets of a catchret.
720 for (std::pair
<const MachineBasicBlock
*, int> CatchRetPair
:
722 collectEHScopeMembers(EHScopeMembership
, CatchRetPair
.second
,
724 return EHScopeMembership
;