1 //===- BuiltinGCs.cpp - Boilerplate for our built in GC types -------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file contains the boilerplate required to define our various built in
11 // gc lowering strategies.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/CodeGen/GCStrategy.h"
16 #include "llvm/CodeGen/GCs.h"
17 #include "llvm/IR/DerivedTypes.h"
18 #include "llvm/Support/Casting.h"
24 /// An example GC which attempts to be compatibile with Erlang/OTP garbage
27 /// The frametable emitter is in ErlangGCPrinter.cpp.
28 class ErlangGC
: public GCStrategy
{
32 NeededSafePoints
= 1 << GC::PostCall
;
38 /// An example GC which attempts to be compatible with Objective Caml 3.10.0
40 /// The frametable emitter is in OcamlGCPrinter.cpp.
41 class OcamlGC
: public GCStrategy
{
44 NeededSafePoints
= 1 << GC::PostCall
;
49 /// A GC strategy for uncooperative targets. This implements lowering for the
50 /// llvm.gc* intrinsics for targets that do not natively support them (which
51 /// includes the C backend). Note that the code generated is not quite as
52 /// efficient as algorithms which generate stack maps to identify roots.
54 /// In order to support this particular transformation, all stack roots are
55 /// coallocated in the stack. This allows a fully target-independent stack map
56 /// while introducing only minor runtime overhead.
57 class ShadowStackGC
: public GCStrategy
{
65 /// A GCStrategy which serves as an example for the usage of a statepoint based
66 /// lowering strategy. This GCStrategy is intended to suitable as a default
67 /// implementation usable with any collector which can consume the standard
68 /// stackmap format generated by statepoints, uses the default addrespace to
69 /// distinguish between gc managed and non-gc managed pointers, and has
70 /// reasonable relocation semantics.
71 class StatepointGC
: public GCStrategy
{
74 UseStatepoints
= true;
75 // These options are all gc.root specific, we specify them so that the
76 // gc.root lowering code doesn't run.
83 Optional
<bool> isGCManagedPointer(const Type
*Ty
) const override
{
84 // Method is only valid on pointer typed values.
85 const PointerType
*PT
= cast
<PointerType
>(Ty
);
86 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
87 // GC managed heap. We know that a pointer into this heap needs to be
88 // updated and that no other pointer does. Note that addrspace(1) is used
89 // only as an example, it has no special meaning, and is not reserved for
91 return (1 == PT
->getAddressSpace());
95 /// A GCStrategy for the CoreCLR Runtime. The strategy is similar to
96 /// Statepoint-example GC, but differs from it in certain aspects, such as:
97 /// 1) Base-pointers need not be explicitly tracked and reported for
99 /// 2) Uses a different format for encoding stack-maps
100 /// 3) Location of Safe-point polls: polls are only needed before loop-back
101 /// edges and before tail-calls (not needed at function-entry)
103 /// The above differences in behavior are to be implemented in upcoming
105 class CoreCLRGC
: public GCStrategy
{
108 UseStatepoints
= true;
109 // These options are all gc.root specific, we specify them so that the
110 // gc.root lowering code doesn't run.
112 NeededSafePoints
= 0;
113 UsesMetadata
= false;
117 Optional
<bool> isGCManagedPointer(const Type
*Ty
) const override
{
118 // Method is only valid on pointer typed values.
119 const PointerType
*PT
= cast
<PointerType
>(Ty
);
120 // We pick addrspace(1) as our GC managed heap.
121 return (1 == PT
->getAddressSpace());
125 } // end anonymous namespace
127 // Register all the above so that they can be found at runtime. Note that
128 // these static initializers are important since the registration list is
129 // constructed from their storage.
130 static GCRegistry::Add
<ErlangGC
> A("erlang",
131 "erlang-compatible garbage collector");
132 static GCRegistry::Add
<OcamlGC
> B("ocaml", "ocaml 3.10-compatible GC");
133 static GCRegistry::Add
<ShadowStackGC
>
134 C("shadow-stack", "Very portable GC for uncooperative code generators");
135 static GCRegistry::Add
<StatepointGC
> D("statepoint-example",
136 "an example strategy for statepoint");
137 static GCRegistry::Add
<CoreCLRGC
> E("coreclr", "CoreCLR-compatible GC");
139 // Provide hooks to ensure the containing library is fully loaded.
140 void llvm::linkErlangGC() {}
141 void llvm::linkOcamlGC() {}
142 void llvm::linkShadowStackGC() {}
143 void llvm::linkStatepointExampleGC() {}
144 void llvm::linkCoreCLRGC() {}